1/*
2 * BLIST.C -	Bitmap allocator/deallocator, using a radix tree with hinting
3 *
4 *	(c)Copyright 1998, Matthew Dillon.  Terms for use and redistribution
5 *	are covered by the BSD Copyright as found in /usr/src/COPYRIGHT.
6 *
7 *	This module implements a general bitmap allocator/deallocator.  The
8 *	allocator eats around 2 bits per 'block'.  The module does not
9 *	try to interpret the meaning of a 'block' other then to return
10 *	SWAPBLK_NONE on an allocation failure.
11 *
12 *	A radix tree is used to maintain the bitmap.  Two radix constants are
13 *	involved:  One for the bitmaps contained in the leaf nodes (typically
14 *	32), and one for the meta nodes (typically 16).  Both meta and leaf
15 *	nodes have a hint field.  This field gives us a hint as to the largest
16 *	free contiguous range of blocks under the node.  It may contain a
17 *	value that is too high, but will never contain a value that is too
18 *	low.  When the radix tree is searched, allocation failures in subtrees
19 *	update the hint.
20 *
21 *	The radix tree also implements two collapsed states for meta nodes:
22 *	the ALL-ALLOCATED state and the ALL-FREE state.  If a meta node is
23 *	in either of these two states, all information contained underneath
24 *	the node is considered stale.  These states are used to optimize
25 *	allocation and freeing operations.
26 *
27 * 	The hinting greatly increases code efficiency for allocations while
28 *	the general radix structure optimizes both allocations and frees.  The
29 *	radix tree should be able to operate well no matter how much
30 *	fragmentation there is and no matter how large a bitmap is used.
31 *
32 *	Unlike the rlist code, the blist code wires all necessary memory at
33 *	creation time.  Neither allocations nor frees require interaction with
34 *	the memory subsystem.  In contrast, the rlist code may allocate memory
35 *	on an rlist_free() call.  The non-blocking features of the blist code
36 *	are used to great advantage in the swap code (vm/nswap_pager.c).  The
37 *	rlist code uses a little less overall memory then the blist code (but
38 *	due to swap interleaving not all that much less), but the blist code
39 *	scales much, much better.
40 *
41 *	LAYOUT: The radix tree is layed out recursively using a
42 *	linear array.  Each meta node is immediately followed (layed out
43 *	sequentially in memory) by BLIST_META_RADIX lower level nodes.  This
44 *	is a recursive structure but one that can be easily scanned through
45 *	a very simple 'skip' calculation.  In order to support large radixes,
46 *	portions of the tree may reside outside our memory allocation.  We
47 *	handle this with an early-termination optimization (when bighint is
48 *	set to -1) on the scan.  The memory allocation is only large enough
49 *	to cover the number of blocks requested at creation time even if it
50 *	must be encompassed in larger root-node radix.
51 *
52 *	NOTE: the allocator cannot currently allocate more then
53 *	BLIST_BMAP_RADIX blocks per call.  It will panic with 'allocation too
54 *	large' if you try.  This is an area that could use improvement.  The
55 *	radix is large enough that this restriction does not effect the swap
56 *	system, though.  Currently only the allocation code is effected by
57 *	this algorithmic unfeature.  The freeing code can handle arbitrary
58 *	ranges.
59 *
60 *	This code can be compiled stand-alone for debugging.
61 *
62 * $FreeBSD: src/sys/kern/subr_blist.c,v 1.5.2.1 2000/03/17 10:47:29 ps Exp $
63 */
64
65#if !defined(__APPLE__)
66#ifdef _KERNEL
67
68#include <sys/param.h>
69#include <sys/systm.h>
70#include <sys/lock.h>
71#include <sys/kernel.h>
72#include <sys/blist.h>
73#include <sys/malloc.h>
74#include <vm/vm.h>
75#include <vm/vm_object.h>
76#include <vm/vm_kern.h>
77#include <vm/vm_extern.h>
78#include <vm/vm_page.h>
79
80#else
81
82#ifndef BLIST_NO_DEBUG
83#define BLIST_DEBUG
84#endif
85
86#define SWAPBLK_NONE ((daddr_t)-1)
87
88#include <sys/types.h>
89#include <stdio.h>
90#include <string.h>
91#include <stdlib.h>
92#include <stdarg.h>
93
94#define malloc(a,b,c)	malloc(a)
95#define free(a,b)	free(a)
96
97typedef unsigned int u_daddr_t;
98
99#include <sys/blist.h>
100
101void panic(const char *ctl, ...);
102
103#endif
104#else /* is MacOS X */
105#ifdef KERNEL
106#ifndef _KERNEL
107#define _KERNEL /* Solaris vs. Darwin */
108#endif
109#endif
110
111typedef unsigned int u_daddr_t;
112
113#include <sys/param.h>
114#include <sys/systm.h>
115#include <sys/lock.h>
116#include <sys/kernel.h>
117/* #include <sys/blist.h> */
118#include "blist.h"
119#include <sys/malloc.h>
120
121#define SWAPBLK_NONE ((daddr_t)-1)
122#define malloc _MALLOC
123#define free _FREE
124#define M_SWAP M_TEMP
125
126#endif /* __APPLE__ */
127
128/*
129 * static support functions
130 */
131
132static daddr_t blst_leaf_alloc(blmeta_t *scan, daddr_t blk, int count);
133static daddr_t blst_meta_alloc(blmeta_t *scan, daddr_t blk,
134				daddr_t count, daddr_t radix, int skip);
135static void blst_leaf_free(blmeta_t *scan, daddr_t relblk, int count);
136static void blst_meta_free(blmeta_t *scan, daddr_t freeBlk, daddr_t count,
137					daddr_t radix, int skip, daddr_t blk);
138static void blst_copy(blmeta_t *scan, daddr_t blk, daddr_t radix,
139				daddr_t skip, blist_t dest, daddr_t count);
140static daddr_t	blst_radix_init(blmeta_t *scan, daddr_t radix,
141						int skip, daddr_t count);
142#ifndef _KERNEL
143static void	blst_radix_print(blmeta_t *scan, daddr_t blk,
144					daddr_t radix, int skip, int tab);
145#endif
146
147#if !defined(__APPLE__)
148#ifdef _KERNEL
149static MALLOC_DEFINE(M_SWAP, "SWAP", "Swap space");
150#endif
151#endif /* __APPLE__ */
152
153/*
154 * blist_create() - create a blist capable of handling up to the specified
155 *		    number of blocks
156 *
157 *	blocks must be greater then 0
158 *
159 *	The smallest blist consists of a single leaf node capable of
160 *	managing BLIST_BMAP_RADIX blocks.
161 */
162
163blist_t
164blist_create(daddr_t blocks)
165{
166	blist_t bl;
167	int radix;
168	int skip = 0;
169
170	/*
171	 * Calculate radix and skip field used for scanning.
172	 */
173	radix = BLIST_BMAP_RADIX;
174
175	while (radix < blocks) {
176		radix <<= BLIST_META_RADIX_SHIFT;
177		skip = (skip + 1) << BLIST_META_RADIX_SHIFT;
178	}
179
180	bl = malloc(sizeof(struct blist), M_SWAP, M_WAITOK);
181
182	bzero(bl, sizeof(*bl));
183
184	bl->bl_blocks = blocks;
185	bl->bl_radix = radix;
186	bl->bl_skip = skip;
187	bl->bl_rootblks = 1 +
188	    blst_radix_init(NULL, bl->bl_radix, bl->bl_skip, blocks);
189	bl->bl_root = malloc(sizeof(blmeta_t) * bl->bl_rootblks, M_SWAP, M_WAITOK);
190
191#if defined(BLIST_DEBUG)
192	printf(
193		"BLIST representing %d blocks (%d MB of swap)"
194		", requiring %dK of ram\n",
195		bl->bl_blocks,
196		bl->bl_blocks * 4 / 1024,
197		(bl->bl_rootblks * sizeof(blmeta_t) + 1023) / 1024
198	);
199	printf("BLIST raw radix tree contains %d records\n", bl->bl_rootblks);
200#endif
201	blst_radix_init(bl->bl_root, bl->bl_radix, bl->bl_skip, blocks);
202
203	return(bl);
204}
205
206void
207blist_destroy(blist_t bl)
208{
209	free(bl->bl_root, M_SWAP);
210	free(bl, M_SWAP);
211}
212
213/*
214 * blist_alloc() - reserve space in the block bitmap.  Return the base
215 *		     of a contiguous region or SWAPBLK_NONE if space could
216 *		     not be allocated.
217 */
218
219daddr_t
220blist_alloc(blist_t bl, daddr_t count)
221{
222	daddr_t blk = SWAPBLK_NONE;
223
224	if (bl) {
225		if (bl->bl_radix == BLIST_BMAP_RADIX)
226			blk = blst_leaf_alloc(bl->bl_root, 0, count);
227		else
228			blk = blst_meta_alloc(bl->bl_root, 0, count,
229					      bl->bl_radix, bl->bl_skip);
230		if (blk != SWAPBLK_NONE)
231			bl->bl_free -= count;
232	}
233	return(blk);
234}
235
236/*
237 * blist_free() -	free up space in the block bitmap.  Return the base
238 *		     	of a contiguous region.  Panic if an inconsistancy is
239 *			found.
240 */
241
242void
243blist_free(blist_t bl, daddr_t blkno, daddr_t count)
244{
245	if (bl) {
246		if (bl->bl_radix == BLIST_BMAP_RADIX)
247			blst_leaf_free(bl->bl_root, blkno, count);
248		else
249			blst_meta_free(bl->bl_root, blkno, count,
250				       bl->bl_radix, bl->bl_skip, 0);
251		bl->bl_free += count;
252	}
253}
254
255/*
256 * blist_resize() -	resize an existing radix tree to handle the
257 *			specified number of blocks.  This will reallocate
258 *			the tree and transfer the previous bitmap to the new
259 *			one.  When extending the tree you can specify whether
260 *			the new blocks are to left allocated or freed.
261 */
262
263void
264blist_resize(blist_t *pbl, daddr_t count, int freenew)
265{
266    blist_t newbl = blist_create(count);
267    blist_t save = *pbl;
268
269    *pbl = newbl;
270    if (count > save->bl_blocks)
271	    count = save->bl_blocks;
272    blst_copy(save->bl_root, 0, save->bl_radix, save->bl_skip, newbl, count);
273
274    /*
275     * If resizing upwards, should we free the new space or not?
276     */
277    if (freenew && count < newbl->bl_blocks)
278	    blist_free(newbl, count, newbl->bl_blocks - count);
279    blist_destroy(save);
280}
281
282#ifdef BLIST_DEBUG
283
284/*
285 * blist_print()    - dump radix tree
286 */
287
288void
289blist_print(blist_t bl)
290{
291	printf("BLIST {\n");
292	blst_radix_print(bl->bl_root, 0, bl->bl_radix, bl->bl_skip, 4);
293	printf("}\n");
294}
295
296#endif
297
298/************************************************************************
299 *			  ALLOCATION SUPPORT FUNCTIONS			*
300 ************************************************************************
301 *
302 *	These support functions do all the actual work.  They may seem
303 *	rather longish, but that's because I've commented them up.  The
304 *	actual code is straight forward.
305 *
306 */
307
308/*
309 * blist_leaf_alloc() -	allocate at a leaf in the radix tree (a bitmap).
310 *
311 *	This is the core of the allocator and is optimized for the 1 block
312 *	and the BLIST_BMAP_RADIX block allocation cases.  Other cases are
313 *	somewhat slower.  The 1 block allocation case is log2 and extremely
314 *	quick.
315 */
316
317static daddr_t
318blst_leaf_alloc(blmeta_t *scan, daddr_t blk, int count)
319{
320	u_daddr_t orig = scan->u.bmu_bitmap;
321
322	if (orig == 0) {
323		/*
324		 * Optimize bitmap all-allocated case.  Also, count = 1
325		 * case assumes at least 1 bit is free in the bitmap, so
326		 * we have to take care of this case here.
327		 */
328		scan->bm_bighint = 0;
329		return(SWAPBLK_NONE);
330	}
331	if (count == 1) {
332		/*
333		 * Optimized code to allocate one bit out of the bitmap
334		 */
335		u_daddr_t mask;
336		int j = BLIST_BMAP_RADIX/2;
337		int r = 0;
338
339		mask = (u_daddr_t)-1 >> (BLIST_BMAP_RADIX/2);
340
341		while (j) {
342			if ((orig & mask) == 0) {
343			    r += j;
344			    orig >>= j;
345			}
346			j >>= 1;
347			mask >>= j;
348		}
349		scan->u.bmu_bitmap &= ~(1 << r);
350		return(blk + r);
351	}
352#if !defined(__APPLE__)
353	if (count <= BLIST_BMAP_RADIX) {
354#else
355	if (count <= (int)BLIST_BMAP_RADIX) {
356#endif /* __APPLE__ */
357		/*
358		 * non-optimized code to allocate N bits out of the bitmap.
359		 * The more bits, the faster the code runs.  It will run
360		 * the slowest allocating 2 bits, but since there aren't any
361		 * memory ops in the core loop (or shouldn't be, anyway),
362		 * you probably won't notice the difference.
363		 */
364		int j;
365		int n = BLIST_BMAP_RADIX - count;
366		u_daddr_t mask;
367
368		mask = (u_daddr_t)-1 >> n;
369
370		for (j = 0; j <= n; ++j) {
371			if ((orig & mask) == mask) {
372				scan->u.bmu_bitmap &= ~mask;
373				return(blk + j);
374			}
375			mask = (mask << 1);
376		}
377	}
378	/*
379	 * We couldn't allocate count in this subtree, update bighint.
380	 */
381	scan->bm_bighint = count - 1;
382	return(SWAPBLK_NONE);
383}
384
385/*
386 * blist_meta_alloc() -	allocate at a meta in the radix tree.
387 *
388 *	Attempt to allocate at a meta node.  If we can't, we update
389 *	bighint and return a failure.  Updating bighint optimize future
390 *	calls that hit this node.  We have to check for our collapse cases
391 *	and we have a few optimizations strewn in as well.
392 */
393
394static daddr_t
395blst_meta_alloc(blmeta_t *scan, daddr_t blk, daddr_t count, daddr_t radix,
396		int skip)
397{
398	int i;
399	int next_skip = (skip >> BLIST_META_RADIX_SHIFT);
400
401	if (scan->u.bmu_avail == 0)  {
402		/*
403		 * ALL-ALLOCATED special case
404		 */
405		scan->bm_bighint = count;
406		return(SWAPBLK_NONE);
407	}
408
409	if (scan->u.bmu_avail == radix) {
410		radix >>= BLIST_META_RADIX_SHIFT;
411
412		/*
413		 * ALL-FREE special case, initialize uninitialize
414		 * sublevel.
415		 */
416		for (i = 1; i <= skip; i += next_skip) {
417			if (scan[i].bm_bighint == (daddr_t)-1)
418				break;
419			if (next_skip == 1) {
420				scan[i].u.bmu_bitmap = (u_daddr_t)-1;
421				scan[i].bm_bighint = BLIST_BMAP_RADIX;
422			} else {
423				scan[i].bm_bighint = radix;
424				scan[i].u.bmu_avail = radix;
425			}
426		}
427	} else {
428		radix >>= BLIST_META_RADIX_SHIFT;
429	}
430
431	for (i = 1; i <= skip; i += next_skip) {
432		if (count <= scan[i].bm_bighint) {
433			/*
434			 * count fits in object
435			 */
436			daddr_t r;
437			if (next_skip == 1)
438				r = blst_leaf_alloc(&scan[i], blk, count);
439			else
440				r = blst_meta_alloc(&scan[i], blk, count,
441						    radix, next_skip - 1);
442			if (r != SWAPBLK_NONE) {
443				scan->u.bmu_avail -= count;
444				if (scan->bm_bighint > scan->u.bmu_avail)
445					scan->bm_bighint = scan->u.bmu_avail;
446				return r;
447			}
448		} else if (scan[i].bm_bighint == (daddr_t)-1) {
449			/*
450			 * Terminator
451			 */
452			break;
453		} else if (count > radix) {
454			/*
455			 * count does not fit in object even if it were
456			 * complete free.
457			 */
458			panic("blist_meta_alloc: allocation too large");
459		}
460		blk += radix;
461	}
462
463	/*
464	 * We couldn't allocate count in this subtree, update bighint.
465	 */
466	if (scan->bm_bighint >= count)
467		scan->bm_bighint = count - 1;
468	return(SWAPBLK_NONE);
469}
470
471/*
472 * BLST_LEAF_FREE() -	free allocated block from leaf bitmap
473 *
474 */
475
476static void
477blst_leaf_free(blmeta_t *scan, daddr_t blk, int count)
478{
479	/*
480	 * free some data in this bitmap
481	 *
482	 * e.g.
483	 *	0000111111111110000
484	 *          \_________/\__/
485	 *		v        n
486	 */
487	int n = blk & (BLIST_BMAP_RADIX - 1);
488	u_daddr_t mask;
489
490	mask = ((u_daddr_t)-1 << n) &
491	    ((u_daddr_t)-1 >> (BLIST_BMAP_RADIX - count - n));
492
493	if (scan->u.bmu_bitmap & mask)
494		panic("blst_radix_free: freeing free block");
495	scan->u.bmu_bitmap |= mask;
496
497	/*
498	 * We could probably do a better job here.  We are required to make
499	 * bighint at least as large as the biggest contiguous block of
500	 * data.  If we just shoehorn it, a little extra overhead will
501	 * be incured on the next allocation (but only that one typically).
502	 */
503	scan->bm_bighint = BLIST_BMAP_RADIX;
504}
505
506/*
507 * BLST_META_FREE() - free allocated blocks from radix tree meta info
508 *
509 *	This support routine frees a range of blocks from the bitmap.
510 *	The range must be entirely enclosed by this radix node.  If a
511 *	meta node, we break the range down recursively to free blocks
512 *	in subnodes (which means that this code can free an arbitrary
513 *	range whereas the allocation code cannot allocate an arbitrary
514 *	range).
515 */
516
517static void
518blst_meta_free(blmeta_t *scan, daddr_t freeBlk, daddr_t count, daddr_t radix,
519	       int skip, daddr_t blk)
520{
521	int i;
522	int next_skip = (skip >> BLIST_META_RADIX_SHIFT);
523
524#if 0
525	printf("FREE (%x,%d) FROM (%x,%d)\n",
526	    freeBlk, count,
527	    blk, radix
528	);
529#endif
530
531	if (scan->u.bmu_avail == 0) {
532		/*
533		 * ALL-ALLOCATED special case, with possible
534		 * shortcut to ALL-FREE special case.
535		 */
536		scan->u.bmu_avail = count;
537		scan->bm_bighint = count;
538
539		if (count != radix)  {
540			for (i = 1; i <= skip; i += next_skip) {
541				if (scan[i].bm_bighint == (daddr_t)-1)
542					break;
543				scan[i].bm_bighint = 0;
544				if (next_skip == 1)
545					scan[i].u.bmu_bitmap = 0;
546				else
547					scan[i].u.bmu_avail = 0;
548			}
549			/* fall through */
550		}
551	} else {
552		scan->u.bmu_avail += count;
553		/* scan->bm_bighint = radix; */
554	}
555
556	/*
557	 * ALL-FREE special case.
558	 */
559
560	if (scan->u.bmu_avail == radix)
561		return;
562	if (scan->u.bmu_avail > radix)
563		panic("blst_meta_free: freeing already free blocks (%d) %d/%d", count, scan->u.bmu_avail, radix);
564
565	/*
566	 * Break the free down into its components
567	 */
568
569	radix >>= BLIST_META_RADIX_SHIFT;
570
571	i = (freeBlk - blk) / radix;
572	blk += i * radix;
573	i = i * next_skip + 1;
574
575	while (i <= skip && blk < freeBlk + count) {
576		daddr_t v;
577
578		v = blk + radix - freeBlk;
579		if (v > count)
580			v = count;
581
582		if (scan->bm_bighint == (daddr_t)-1)
583			panic("blst_meta_free: freeing unexpected range");
584
585		if (next_skip == 1)
586			blst_leaf_free(&scan[i], freeBlk, v);
587		else
588			blst_meta_free(&scan[i], freeBlk, v, radix,
589				       next_skip - 1, blk);
590		if (scan->bm_bighint < scan[i].bm_bighint)
591		    scan->bm_bighint = scan[i].bm_bighint;
592		count -= v;
593		freeBlk += v;
594		blk += radix;
595		i += next_skip;
596	}
597}
598
599/*
600 * BLIST_RADIX_COPY() - copy one radix tree to another
601 *
602 *	Locates free space in the source tree and frees it in the destination
603 *	tree.  The space may not already be free in the destination.
604 */
605
606static void blst_copy(blmeta_t *scan, daddr_t blk, daddr_t radix,
607		      daddr_t skip, blist_t dest, daddr_t count)
608{
609	int next_skip;
610	int i;
611
612	/*
613	 * Leaf node
614	 */
615
616	if (radix == BLIST_BMAP_RADIX) {
617		u_daddr_t v = scan->u.bmu_bitmap;
618
619		if (v == (u_daddr_t)-1) {
620			blist_free(dest, blk, count);
621		} else if (v != 0) {
622#if !defined(__APPLE__)
623			int i;
624
625			for (i = 0; i < BLIST_BMAP_RADIX && i < count; ++i)
626				if (v & (1 << i))
627					blist_free(dest, blk + i, 1);
628#else
629			int j;   /* Avoid shadow warnings */
630
631			for (j = 0; j < (int)BLIST_BMAP_RADIX && j < count; ++j)
632				if (v & (1 << j))
633					blist_free(dest, blk + j, 1);
634#endif /* __APPLE__ */
635		}
636		return;
637	}
638
639	/*
640	 * Meta node
641	 */
642
643	/*
644	 * Source all allocated, leave dest allocated
645	 */
646	if (scan->u.bmu_avail == 0)
647		return;
648	if (scan->u.bmu_avail == radix) {
649		/*
650		 * Source all free, free entire dest
651		 */
652		if (count < radix)
653			blist_free(dest, blk, count);
654		else
655			blist_free(dest, blk, radix);
656		return;
657	}
658
659	radix >>= BLIST_META_RADIX_SHIFT;
660	next_skip = (skip >> BLIST_META_RADIX_SHIFT);
661
662	for (i = 1; count && i <= skip; i += next_skip) {
663		if (scan[i].bm_bighint == (daddr_t)-1)
664			break;
665
666		if (count >= radix) {
667			blst_copy(
668			    &scan[i],
669			    blk,
670			    radix,
671			    next_skip - 1,
672			    dest,
673			    radix
674			);
675			count -= radix;
676		} else {
677			if (count) {
678				blst_copy(
679				    &scan[i],
680				    blk,
681				    radix,
682				    next_skip - 1,
683				    dest,
684				    count
685				);
686			}
687			count = 0;
688		}
689		blk += radix;
690	}
691}
692
693/*
694 * BLST_RADIX_INIT() - initialize radix tree
695 *
696 *	Initialize our meta structures and bitmaps and calculate the exact
697 *	amount of space required to manage 'count' blocks - this space may
698 *	be considerably less then the calculated radix due to the large
699 *	RADIX values we use.
700 */
701
702static daddr_t
703blst_radix_init(blmeta_t *scan, daddr_t radix, int skip, daddr_t count)
704{
705	int i;
706	int next_skip;
707	daddr_t memindex = 0;
708
709	/*
710	 * Leaf node
711	 */
712
713	if (radix == BLIST_BMAP_RADIX) {
714		if (scan) {
715			scan->bm_bighint = 0;
716			scan->u.bmu_bitmap = 0;
717		}
718		return(memindex);
719	}
720
721	/*
722	 * Meta node.  If allocating the entire object we can special
723	 * case it.  However, we need to figure out how much memory
724	 * is required to manage 'count' blocks, so we continue on anyway.
725	 */
726
727	if (scan) {
728		scan->bm_bighint = 0;
729		scan->u.bmu_avail = 0;
730	}
731
732	radix >>= BLIST_META_RADIX_SHIFT;
733	next_skip = (skip >> BLIST_META_RADIX_SHIFT);
734
735	for (i = 1; i <= skip; i += next_skip) {
736		if (count >= radix) {
737			/*
738			 * Allocate the entire object
739			 */
740			memindex = i + blst_radix_init(
741			    ((scan) ? &scan[i] : NULL),
742			    radix,
743			    next_skip - 1,
744			    radix
745			);
746			count -= radix;
747		} else if (count > 0) {
748			/*
749			 * Allocate a partial object
750			 */
751			memindex = i + blst_radix_init(
752			    ((scan) ? &scan[i] : NULL),
753			    radix,
754			    next_skip - 1,
755			    count
756			);
757			count = 0;
758		} else {
759			/*
760			 * Add terminator and break out
761			 */
762			if (scan)
763				scan[i].bm_bighint = (daddr_t)-1;
764			break;
765		}
766	}
767	if (memindex < i)
768		memindex = i;
769	return(memindex);
770}
771
772#ifdef BLIST_DEBUG
773
774static void
775blst_radix_print(blmeta_t *scan, daddr_t blk, daddr_t radix, int skip, int tab)
776{
777	int i;
778	int next_skip;
779	int lastState = 0;
780
781	if (radix == BLIST_BMAP_RADIX) {
782		printf(
783		    "%*.*s(%04x,%d): bitmap %08x big=%d\n",
784		    tab, tab, "",
785		    blk, radix,
786		    scan->u.bmu_bitmap,
787		    scan->bm_bighint
788		);
789		return;
790	}
791
792	if (scan->u.bmu_avail == 0) {
793		printf(
794		    "%*.*s(%04x,%d) ALL ALLOCATED\n",
795		    tab, tab, "",
796		    blk,
797		    radix
798		);
799		return;
800	}
801	if (scan->u.bmu_avail == radix) {
802		printf(
803		    "%*.*s(%04x,%d) ALL FREE\n",
804		    tab, tab, "",
805		    blk,
806		    radix
807		);
808		return;
809	}
810
811	printf(
812	    "%*.*s(%04x,%d): subtree (%d/%d) big=%d {\n",
813	    tab, tab, "",
814	    blk, radix,
815	    scan->u.bmu_avail,
816	    radix,
817	    scan->bm_bighint
818	);
819
820	radix >>= BLIST_META_RADIX_SHIFT;
821	next_skip = (skip >> BLIST_META_RADIX_SHIFT);
822	tab += 4;
823
824	for (i = 1; i <= skip; i += next_skip) {
825		if (scan[i].bm_bighint == (daddr_t)-1) {
826			printf(
827			    "%*.*s(%04x,%d): Terminator\n",
828			    tab, tab, "",
829			    blk, radix
830			);
831			lastState = 0;
832			break;
833		}
834		blst_radix_print(
835		    &scan[i],
836		    blk,
837		    radix,
838		    next_skip - 1,
839		    tab
840		);
841		blk += radix;
842	}
843	tab -= 4;
844
845	printf(
846	    "%*.*s}\n",
847	    tab, tab, ""
848	);
849}
850
851#endif
852
853#ifdef BLIST_DEBUG
854
855int
856main(int ac, char **av)
857{
858	int size = 1024;
859	int i;
860	blist_t bl;
861
862	for (i = 1; i < ac; ++i) {
863		const char *ptr = av[i];
864		if (*ptr != '-') {
865			size = strtol(ptr, NULL, 0);
866			continue;
867		}
868		ptr += 2;
869		fprintf(stderr, "Bad option: %s\n", ptr - 2);
870		exit(1);
871	}
872	bl = blist_create(size);
873	blist_free(bl, 0, size);
874
875	for (;;) {
876		char buf[1024];
877		daddr_t da = 0;
878		daddr_t count = 0;
879
880
881		printf("%d/%d/%d> ", bl->bl_free, size, bl->bl_radix);
882		fflush(stdout);
883		if (fgets(buf, sizeof(buf), stdin) == NULL)
884			break;
885		switch(buf[0]) {
886		case 'r':
887			if (sscanf(buf + 1, "%d", &count) == 1) {
888				blist_resize(&bl, count, 1);
889			} else {
890				printf("?\n");
891			}
892		case 'p':
893			blist_print(bl);
894			break;
895		case 'a':
896			if (sscanf(buf + 1, "%d", &count) == 1) {
897				daddr_t blk = blist_alloc(bl, count);
898				printf("    R=%04x\n", blk);
899			} else {
900				printf("?\n");
901			}
902			break;
903		case 'f':
904			if (sscanf(buf + 1, "%x %d", &da, &count) == 2) {
905				blist_free(bl, da, count);
906			} else {
907				printf("?\n");
908			}
909			break;
910		case '?':
911		case 'h':
912			puts(
913			    "p          -print\n"
914			    "a %d       -allocate\n"
915			    "f %x %d    -free\n"
916			    "r %d       -resize\n"
917			    "h/?        -help"
918			);
919			break;
920		default:
921			printf("?\n");
922			break;
923		}
924	}
925	return(0);
926}
927
928void
929panic(const char *ctl, ...)
930{
931	va_list va;
932
933	va_start(va, ctl);
934	vfprintf(stderr, ctl, va);
935	fprintf(stderr, "\n");
936	va_end(va);
937	exit(1);
938}
939
940#endif
941