1/* deflate.c -- compress data using the deflation algorithm
2 * Copyright (C) 1995-2005 Jean-loup Gailly.
3 * For conditions of distribution and use, see copyright notice in zlib.h
4 */
5
6/*
7 *  ALGORITHM
8 *
9 *      The "deflation" process depends on being able to identify portions
10 *      of the input text which are identical to earlier input (within a
11 *      sliding window trailing behind the input currently being processed).
12 *
13 *      The most straightforward technique turns out to be the fastest for
14 *      most input files: try all possible matches and select the longest.
15 *      The key feature of this algorithm is that insertions into the string
16 *      dictionary are very simple and thus fast, and deletions are avoided
17 *      completely. Insertions are performed at each input character, whereas
18 *      string matches are performed only when the previous match ends. So it
19 *      is preferable to spend more time in matches to allow very fast string
20 *      insertions and avoid deletions. The matching algorithm for small
21 *      strings is inspired from that of Rabin & Karp. A brute force approach
22 *      is used to find longer strings when a small match has been found.
23 *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
24 *      (by Leonid Broukhis).
25 *         A previous version of this file used a more sophisticated algorithm
26 *      (by Fiala and Greene) which is guaranteed to run in linear amortized
27 *      time, but has a larger average cost, uses more memory and is patented.
28 *      However the F&G algorithm may be faster for some highly redundant
29 *      files if the parameter max_chain_length (described below) is too large.
30 *
31 *  ACKNOWLEDGEMENTS
32 *
33 *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
34 *      I found it in 'freeze' written by Leonid Broukhis.
35 *      Thanks to many people for bug reports and testing.
36 *
37 *  REFERENCES
38 *
39 *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
40 *      Available in http://www.ietf.org/rfc/rfc1951.txt
41 *
42 *      A description of the Rabin and Karp algorithm is given in the book
43 *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
44 *
45 *      Fiala,E.R., and Greene,D.H.
46 *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
47 *
48 */
49
50/* @(#) $Id$ */
51
52#include "deflate.h"
53
54#define read_buf dread_buf
55
56const char deflate_copyright[] =
57   " deflate 1.2.3 Copyright 1995-2005 Jean-loup Gailly ";
58/*
59  If you use the zlib library in a product, an acknowledgment is welcome
60  in the documentation of your product. If for some reason you cannot
61  include such an acknowledgment, I would appreciate that you keep this
62  copyright string in the executable of your product.
63 */
64
65/* ===========================================================================
66 *  Function prototypes.
67 */
68typedef enum {
69    need_more,      /* block not completed, need more input or more output */
70    block_done,     /* block flush performed */
71    finish_started, /* finish started, need only more output at next deflate */
72    finish_done     /* finish done, accept no more input or output */
73} block_state;
74
75typedef block_state (*compress_func) OF((deflate_state *s, int flush));
76/* Compression function. Returns the block state after the call. */
77
78local void fill_window    OF((deflate_state *s));
79local block_state deflate_stored OF((deflate_state *s, int flush));
80local block_state deflate_fast   OF((deflate_state *s, int flush));
81#ifndef FASTEST
82local block_state deflate_slow   OF((deflate_state *s, int flush));
83#endif
84local void lm_init        OF((deflate_state *s));
85local void putShortMSB    OF((deflate_state *s, uInt b));
86local void flush_pending  OF((z_streamp strm));
87local int read_buf        OF((z_streamp strm, Bytef *buf, unsigned size));
88#ifndef FASTEST
89#ifdef ASMV
90      void match_init OF((void)); /* asm code initialization */
91      uInt longest_match  OF((deflate_state *s, IPos cur_match));
92#else
93local uInt longest_match  OF((deflate_state *s, IPos cur_match));
94#endif
95#endif
96local uInt longest_match_fast OF((deflate_state *s, IPos cur_match));
97
98#ifdef DEBUG
99local  void check_match OF((deflate_state *s, IPos start, IPos match,
100                            int length));
101#endif
102
103/* ===========================================================================
104 * Local data
105 */
106
107#define NIL 0
108/* Tail of hash chains */
109
110#ifndef TOO_FAR
111#  define TOO_FAR 4096
112#endif
113/* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
114
115#define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
116/* Minimum amount of lookahead, except at the end of the input file.
117 * See deflate.c for comments about the MIN_MATCH+1.
118 */
119
120/* Values for max_lazy_match, good_match and max_chain_length, depending on
121 * the desired pack level (0..9). The values given below have been tuned to
122 * exclude worst case performance for pathological files. Better values may be
123 * found for specific files.
124 */
125typedef struct config_s {
126   ush good_length; /* reduce lazy search above this match length */
127   ush max_lazy;    /* do not perform lazy search above this match length */
128   ush nice_length; /* quit search above this match length */
129   ush max_chain;
130   compress_func func;
131} config;
132
133#ifdef FASTEST
134local const config configuration_table[2] = {
135/*      good lazy nice chain */
136/* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
137/* 1 */ {4,    4,  8,    4, deflate_fast}}; /* max speed, no lazy matches */
138#else
139local const config configuration_table[10] = {
140/*      good lazy nice chain */
141/* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
142/* 1 */ {4,    4,  8,    4, deflate_fast}, /* max speed, no lazy matches */
143/* 2 */ {4,    5, 16,    8, deflate_fast},
144/* 3 */ {4,    6, 32,   32, deflate_fast},
145
146/* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */
147/* 5 */ {8,   16, 32,   32, deflate_slow},
148/* 6 */ {8,   16, 128, 128, deflate_slow},
149/* 7 */ {8,   32, 128, 256, deflate_slow},
150/* 8 */ {32, 128, 258, 1024, deflate_slow},
151/* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
152#endif
153
154/* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
155 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
156 * meaning.
157 */
158
159#define EQUAL 0
160/* result of memcmp for equal strings */
161
162#ifndef NO_DUMMY_DECL
163struct static_tree_desc_s {int dummy;}; /* for buggy compilers */
164#endif
165
166/* ===========================================================================
167 * Update a hash value with the given input byte
168 * IN  assertion: all calls to to UPDATE_HASH are made with consecutive
169 *    input characters, so that a running hash key can be computed from the
170 *    previous key instead of complete recalculation each time.
171 */
172#define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
173
174
175/* ===========================================================================
176 * Insert string str in the dictionary and set match_head to the previous head
177 * of the hash chain (the most recent string with same hash key). Return
178 * the previous length of the hash chain.
179 * If this file is compiled with -DFASTEST, the compression level is forced
180 * to 1, and no hash chains are maintained.
181 * IN  assertion: all calls to to INSERT_STRING are made with consecutive
182 *    input characters and the first MIN_MATCH bytes of str are valid
183 *    (except for the last MIN_MATCH-1 bytes of the input file).
184 */
185#ifdef FASTEST
186#define INSERT_STRING(s, str, match_head) \
187   (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
188    match_head = s->head[s->ins_h], \
189    s->head[s->ins_h] = (Pos)(str))
190#else
191#define INSERT_STRING(s, str, match_head) \
192   (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
193    match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
194    s->head[s->ins_h] = (Pos)(str))
195#endif
196
197/* ===========================================================================
198 * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
199 * prev[] will be initialized on the fly.
200 */
201#define CLEAR_HASH(s) \
202    s->head[s->hash_size-1] = NIL; \
203    zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
204
205/* ========================================================================= */
206int ZEXPORT deflateInit_(strm, level, version, stream_size)
207    z_streamp strm;
208    int level;
209    const char *version;
210    int stream_size;
211{
212    return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
213                         Z_DEFAULT_STRATEGY, version, stream_size);
214    /* To do: ignore strm->next_in if we use it as window */
215}
216
217/* ========================================================================= */
218int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
219                  version, stream_size)
220    z_streamp strm;
221    int  level;
222    int  method;
223    int  windowBits;
224    int  memLevel;
225    int  strategy;
226    const char *version;
227    int stream_size;
228{
229    deflate_state *s;
230    int wrap = 1;
231    static const char my_version[] = ZLIB_VERSION;
232
233    ushf *overlay;
234    /* We overlay pending_buf and d_buf+l_buf. This works since the average
235     * output size for (length,distance) codes is <= 24 bits.
236     */
237
238    if (version == Z_NULL || version[0] != my_version[0] ||
239        stream_size != sizeof(z_stream)) {
240        return Z_VERSION_ERROR;
241    }
242    if (strm == Z_NULL) return Z_STREAM_ERROR;
243
244    strm->msg = Z_NULL;
245    if (strm->zalloc == (alloc_func)0) {
246        strm->zalloc = zcalloc;
247        strm->opaque = (voidpf)0;
248    }
249    if (strm->zfree == (free_func)0) strm->zfree = zcfree;
250
251#ifdef FASTEST
252    if (level != 0) level = 1;
253#else
254    if (level == Z_DEFAULT_COMPRESSION) level = 6;
255#endif
256
257    if (windowBits < 0) { /* suppress zlib wrapper */
258        wrap = 0;
259        windowBits = -windowBits;
260    }
261#ifdef GZIP
262    else if (windowBits > 15) {
263        wrap = 2;       /* write gzip wrapper instead */
264        windowBits -= 16;
265    }
266#endif
267    if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
268        windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
269        strategy < 0 || strategy > Z_FIXED) {
270        return Z_STREAM_ERROR;
271    }
272    if (windowBits == 8) windowBits = 9;  /* until 256-byte window bug fixed */
273    s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
274    if (s == Z_NULL) return Z_MEM_ERROR;
275    strm->state = (struct internal_state FAR *)s;
276    s->strm = strm;
277
278    s->wrap = wrap;
279    s->gzhead = Z_NULL;
280    s->w_bits = windowBits;
281    s->w_size = 1 << s->w_bits;
282    s->w_mask = s->w_size - 1;
283
284    s->hash_bits = memLevel + 7;
285    s->hash_size = 1 << s->hash_bits;
286    s->hash_mask = s->hash_size - 1;
287    s->hash_shift =  ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
288
289    s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
290    s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
291    s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));
292
293    s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
294
295    overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2);
296    s->pending_buf = (uchf *) overlay;
297    s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L);
298
299    if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
300        s->pending_buf == Z_NULL) {
301        s->status = FINISH_STATE;
302        strm->msg = (char*)ERR_MSG(Z_MEM_ERROR);
303        deflateEnd (strm);
304        return Z_MEM_ERROR;
305    }
306    s->d_buf = overlay + s->lit_bufsize/sizeof(ush);
307    s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize;
308
309    s->level = level;
310    s->strategy = strategy;
311    s->method = (Byte)method;
312
313    return deflateReset(strm);
314}
315
316/* ========================================================================= */
317int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength)
318    z_streamp strm;
319    const Bytef *dictionary;
320    uInt  dictLength;
321{
322    deflate_state *s;
323    uInt length = dictLength;
324    uInt n;
325    IPos hash_head = 0;
326
327    if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL ||
328        strm->state->wrap == 2 ||
329        (strm->state->wrap == 1 && strm->state->status != INIT_STATE))
330        return Z_STREAM_ERROR;
331
332    s = strm->state;
333    if (s->wrap)
334        strm->adler = adler32(strm->adler, dictionary, dictLength);
335
336    if (length < MIN_MATCH) return Z_OK;
337    if (length > MAX_DIST(s)) {
338        length = MAX_DIST(s);
339        dictionary += dictLength - length; /* use the tail of the dictionary */
340    }
341    zmemcpy(s->window, dictionary, length);
342    s->strstart = length;
343    s->block_start = (long)length;
344
345    /* Insert all strings in the hash table (except for the last two bytes).
346     * s->lookahead stays null, so s->ins_h will be recomputed at the next
347     * call of fill_window.
348     */
349    s->ins_h = s->window[0];
350    UPDATE_HASH(s, s->ins_h, s->window[1]);
351    for (n = 0; n <= length - MIN_MATCH; n++) {
352        INSERT_STRING(s, n, hash_head);
353    }
354    if (hash_head) hash_head = 0;  /* to make compiler happy */
355    return Z_OK;
356}
357
358/* ========================================================================= */
359int ZEXPORT deflateReset (strm)
360    z_streamp strm;
361{
362    deflate_state *s;
363
364    if (strm == Z_NULL || strm->state == Z_NULL ||
365        strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0) {
366        return Z_STREAM_ERROR;
367    }
368
369    strm->total_in = strm->total_out = 0;
370    strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
371    strm->data_type = Z_UNKNOWN;
372
373    s = (deflate_state *)strm->state;
374    s->pending = 0;
375    s->pending_out = s->pending_buf;
376
377    if (s->wrap < 0) {
378        s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
379    }
380    s->status = s->wrap ? INIT_STATE : BUSY_STATE;
381    strm->adler =
382#ifdef GZIP
383        s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
384#endif
385        adler32(0L, Z_NULL, 0);
386    s->last_flush = Z_NO_FLUSH;
387
388    _tr_init(s);
389    lm_init(s);
390
391    return Z_OK;
392}
393
394/* ========================================================================= */
395int ZEXPORT deflateSetHeader (strm, head)
396    z_streamp strm;
397    gz_headerp head;
398{
399    if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
400    if (strm->state->wrap != 2) return Z_STREAM_ERROR;
401    strm->state->gzhead = head;
402    return Z_OK;
403}
404
405/* ========================================================================= */
406int ZEXPORT deflatePrime (strm, bits, value)
407    z_streamp strm;
408    int bits;
409    int value;
410{
411    if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
412    strm->state->bi_valid = bits;
413    strm->state->bi_buf = (ush)(value & ((1 << bits) - 1));
414    return Z_OK;
415}
416
417/* ========================================================================= */
418int ZEXPORT deflateParams(strm, level, strategy)
419    z_streamp strm;
420    int level;
421    int strategy;
422{
423    deflate_state *s;
424    compress_func func;
425    int err = Z_OK;
426
427    if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
428    s = strm->state;
429
430#ifdef FASTEST
431    if (level != 0) level = 1;
432#else
433    if (level == Z_DEFAULT_COMPRESSION) level = 6;
434#endif
435    if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
436        return Z_STREAM_ERROR;
437    }
438    func = configuration_table[s->level].func;
439
440    if (func != configuration_table[level].func && strm->total_in != 0) {
441        /* Flush the last buffer: */
442        err = deflate(strm, Z_PARTIAL_FLUSH);
443    }
444    if (s->level != level) {
445        s->level = level;
446        s->max_lazy_match   = configuration_table[level].max_lazy;
447        s->good_match       = configuration_table[level].good_length;
448        s->nice_match       = configuration_table[level].nice_length;
449        s->max_chain_length = configuration_table[level].max_chain;
450    }
451    s->strategy = strategy;
452    return err;
453}
454
455/* ========================================================================= */
456int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain)
457    z_streamp strm;
458    int good_length;
459    int max_lazy;
460    int nice_length;
461    int max_chain;
462{
463    deflate_state *s;
464
465    if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
466    s = strm->state;
467    s->good_match = good_length;
468    s->max_lazy_match = max_lazy;
469    s->nice_match = nice_length;
470    s->max_chain_length = max_chain;
471    return Z_OK;
472}
473
474/* =========================================================================
475 * For the default windowBits of 15 and memLevel of 8, this function returns
476 * a close to exact, as well as small, upper bound on the compressed size.
477 * They are coded as constants here for a reason--if the #define's are
478 * changed, then this function needs to be changed as well.  The return
479 * value for 15 and 8 only works for those exact settings.
480 *
481 * For any setting other than those defaults for windowBits and memLevel,
482 * the value returned is a conservative worst case for the maximum expansion
483 * resulting from using fixed blocks instead of stored blocks, which deflate
484 * can emit on compressed data for some combinations of the parameters.
485 *
486 * This function could be more sophisticated to provide closer upper bounds
487 * for every combination of windowBits and memLevel, as well as wrap.
488 * But even the conservative upper bound of about 14% expansion does not
489 * seem onerous for output buffer allocation.
490 */
491uLong ZEXPORT deflateBound(strm, sourceLen)
492    z_streamp strm;
493    uLong sourceLen;
494{
495    deflate_state *s;
496    uLong destLen;
497
498    /* conservative upper bound */
499    destLen = sourceLen +
500              ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 11;
501
502    /* if can't get parameters, return conservative bound */
503    if (strm == Z_NULL || strm->state == Z_NULL)
504        return destLen;
505
506    /* if not default parameters, return conservative bound */
507    s = strm->state;
508    if (s->w_bits != 15 || s->hash_bits != 8 + 7)
509        return destLen;
510
511    /* default settings: return tight bound for that case */
512    return compressBound(sourceLen);
513}
514
515/* =========================================================================
516 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
517 * IN assertion: the stream state is correct and there is enough room in
518 * pending_buf.
519 */
520local void putShortMSB (s, b)
521    deflate_state *s;
522    uInt b;
523{
524    put_byte(s, (Byte)(b >> 8));
525    put_byte(s, (Byte)(b & 0xff));
526}
527
528/* =========================================================================
529 * Flush as much pending output as possible. All deflate() output goes
530 * through this function so some applications may wish to modify it
531 * to avoid allocating a large strm->next_out buffer and copying into it.
532 * (See also read_buf()).
533 */
534local void flush_pending(strm)
535    z_streamp strm;
536{
537    unsigned len = strm->state->pending;
538
539    if (len > strm->avail_out) len = strm->avail_out;
540    if (len == 0) return;
541
542    zmemcpy(strm->next_out, strm->state->pending_out, len);
543    strm->next_out  += len;
544    strm->state->pending_out  += len;
545    strm->total_out += len;
546    strm->avail_out  -= len;
547    strm->state->pending -= len;
548    if (strm->state->pending == 0) {
549        strm->state->pending_out = strm->state->pending_buf;
550    }
551}
552
553/* ========================================================================= */
554int ZEXPORT deflate (strm, flush)
555    z_streamp strm;
556    int flush;
557{
558    int old_flush; /* value of flush param for previous deflate call */
559    deflate_state *s;
560
561    if (strm == Z_NULL || strm->state == Z_NULL ||
562        flush > Z_INSERT_ONLY || flush < 0) {
563        return Z_STREAM_ERROR;
564    }
565    s = strm->state;
566
567    if (strm->next_out == Z_NULL ||
568        (strm->next_in == Z_NULL && strm->avail_in != 0) ||
569        (s->status == FINISH_STATE && flush != Z_FINISH)) {
570        ERR_RETURN(strm, Z_STREAM_ERROR);
571    }
572    if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
573
574    s->strm = strm; /* just in case */
575    old_flush = s->last_flush;
576    s->last_flush = flush;
577
578    /* Write the header */
579    if (s->status == INIT_STATE) {
580#ifdef GZIP
581        if (s->wrap == 2) {
582            strm->adler = crc32(0L, Z_NULL, 0);
583            put_byte(s, 31);
584            put_byte(s, 139);
585            put_byte(s, 8);
586            if (s->gzhead == NULL) {
587                put_byte(s, 0);
588                put_byte(s, 0);
589                put_byte(s, 0);
590                put_byte(s, 0);
591                put_byte(s, 0);
592                put_byte(s, s->level == 9 ? 2 :
593                            (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
594                             4 : 0));
595                put_byte(s, OS_CODE);
596                s->status = BUSY_STATE;
597            }
598            else {
599                put_byte(s, (s->gzhead->text ? 1 : 0) +
600                            (s->gzhead->hcrc ? 2 : 0) +
601                            (s->gzhead->extra == Z_NULL ? 0 : 4) +
602                            (s->gzhead->name == Z_NULL ? 0 : 8) +
603                            (s->gzhead->comment == Z_NULL ? 0 : 16)
604                        );
605                put_byte(s, (Byte)(s->gzhead->time & 0xff));
606                put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
607                put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
608                put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
609                put_byte(s, s->level == 9 ? 2 :
610                            (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
611                             4 : 0));
612                put_byte(s, s->gzhead->os & 0xff);
613                if (s->gzhead->extra != NULL) {
614                    put_byte(s, s->gzhead->extra_len & 0xff);
615                    put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
616                }
617                if (s->gzhead->hcrc)
618                    strm->adler = crc32(strm->adler, s->pending_buf,
619                                        s->pending);
620                s->gzindex = 0;
621                s->status = EXTRA_STATE;
622            }
623        }
624        else
625#endif
626        {
627            uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
628            uInt level_flags;
629
630            if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
631                level_flags = 0;
632            else if (s->level < 6)
633                level_flags = 1;
634            else if (s->level == 6)
635                level_flags = 2;
636            else
637                level_flags = 3;
638            header |= (level_flags << 6);
639            if (s->strstart != 0) header |= PRESET_DICT;
640            header += 31 - (header % 31);
641
642            s->status = BUSY_STATE;
643            putShortMSB(s, header);
644
645            /* Save the adler32 of the preset dictionary: */
646            if (s->strstart != 0) {
647                putShortMSB(s, (uInt)(strm->adler >> 16));
648                putShortMSB(s, (uInt)(strm->adler & 0xffff));
649            }
650            strm->adler = adler32(0L, Z_NULL, 0);
651        }
652    }
653#ifdef GZIP
654    if (s->status == EXTRA_STATE) {
655        if (s->gzhead->extra != NULL) {
656            uInt beg = s->pending;  /* start of bytes to update crc */
657
658            while (s->gzindex < (s->gzhead->extra_len & 0xffff)) {
659                if (s->pending == s->pending_buf_size) {
660                    if (s->gzhead->hcrc && s->pending > beg)
661                        strm->adler = crc32(strm->adler, s->pending_buf + beg,
662                                            s->pending - beg);
663                    flush_pending(strm);
664                    beg = s->pending;
665                    if (s->pending == s->pending_buf_size)
666                        break;
667                }
668                put_byte(s, s->gzhead->extra[s->gzindex]);
669                s->gzindex++;
670            }
671            if (s->gzhead->hcrc && s->pending > beg)
672                strm->adler = crc32(strm->adler, s->pending_buf + beg,
673                                    s->pending - beg);
674            if (s->gzindex == s->gzhead->extra_len) {
675                s->gzindex = 0;
676                s->status = NAME_STATE;
677            }
678        }
679        else
680            s->status = NAME_STATE;
681    }
682    if (s->status == NAME_STATE) {
683        if (s->gzhead->name != NULL) {
684            uInt beg = s->pending;  /* start of bytes to update crc */
685            int val;
686
687            do {
688                if (s->pending == s->pending_buf_size) {
689                    if (s->gzhead->hcrc && s->pending > beg)
690                        strm->adler = crc32(strm->adler, s->pending_buf + beg,
691                                            s->pending - beg);
692                    flush_pending(strm);
693                    beg = s->pending;
694                    if (s->pending == s->pending_buf_size) {
695                        val = 1;
696                        break;
697                    }
698                }
699                val = s->gzhead->name[s->gzindex++];
700                put_byte(s, val);
701            } while (val != 0);
702            if (s->gzhead->hcrc && s->pending > beg)
703                strm->adler = crc32(strm->adler, s->pending_buf + beg,
704                                    s->pending - beg);
705            if (val == 0) {
706                s->gzindex = 0;
707                s->status = COMMENT_STATE;
708            }
709        }
710        else
711            s->status = COMMENT_STATE;
712    }
713    if (s->status == COMMENT_STATE) {
714        if (s->gzhead->comment != NULL) {
715            uInt beg = s->pending;  /* start of bytes to update crc */
716            int val;
717
718            do {
719                if (s->pending == s->pending_buf_size) {
720                    if (s->gzhead->hcrc && s->pending > beg)
721                        strm->adler = crc32(strm->adler, s->pending_buf + beg,
722                                            s->pending - beg);
723                    flush_pending(strm);
724                    beg = s->pending;
725                    if (s->pending == s->pending_buf_size) {
726                        val = 1;
727                        break;
728                    }
729                }
730                val = s->gzhead->comment[s->gzindex++];
731                put_byte(s, val);
732            } while (val != 0);
733            if (s->gzhead->hcrc && s->pending > beg)
734                strm->adler = crc32(strm->adler, s->pending_buf + beg,
735                                    s->pending - beg);
736            if (val == 0)
737                s->status = HCRC_STATE;
738        }
739        else
740            s->status = HCRC_STATE;
741    }
742    if (s->status == HCRC_STATE) {
743        if (s->gzhead->hcrc) {
744            if (s->pending + 2 > s->pending_buf_size)
745                flush_pending(strm);
746            if (s->pending + 2 <= s->pending_buf_size) {
747                put_byte(s, (Byte)(strm->adler & 0xff));
748                put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
749                strm->adler = crc32(0L, Z_NULL, 0);
750                s->status = BUSY_STATE;
751            }
752        }
753        else
754            s->status = BUSY_STATE;
755    }
756#endif
757
758    /* Flush as much pending output as possible */
759    if (s->pending != 0) {
760        flush_pending(strm);
761        if (strm->avail_out == 0) {
762            /* Since avail_out is 0, deflate will be called again with
763             * more output space, but possibly with both pending and
764             * avail_in equal to zero. There won't be anything to do,
765             * but this is not an error situation so make sure we
766             * return OK instead of BUF_ERROR at next call of deflate:
767             */
768            s->last_flush = -1;
769            return Z_OK;
770        }
771
772    /* Make sure there is something to do and avoid duplicate consecutive
773     * flushes. For repeated and useless calls with Z_FINISH, we keep
774     * returning Z_STREAM_END instead of Z_BUF_ERROR.
775     */
776    } else if (strm->avail_in == 0 && flush <= old_flush &&
777               flush != Z_FINISH) {
778        ERR_RETURN(strm, Z_BUF_ERROR);
779    }
780
781    /* User must not provide more input after the first FINISH: */
782    if (s->status == FINISH_STATE && strm->avail_in != 0) {
783        ERR_RETURN(strm, Z_BUF_ERROR);
784    }
785
786    /* Start a new block or continue the current one.
787     */
788    if (strm->avail_in != 0 || s->lookahead != 0 ||
789        (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
790        block_state bstate;
791
792        bstate = (*(configuration_table[s->level].func))(s, flush);
793
794        if (bstate == finish_started || bstate == finish_done) {
795            s->status = FINISH_STATE;
796        }
797        if (bstate == need_more || bstate == finish_started) {
798            if (strm->avail_out == 0) {
799                s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
800            }
801            return Z_OK;
802            /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
803             * of deflate should use the same flush parameter to make sure
804             * that the flush is complete. So we don't have to output an
805             * empty block here, this will be done at next call. This also
806             * ensures that for a very small output buffer, we emit at most
807             * one empty block.
808             */
809        }
810        if (bstate == block_done) {
811            if (flush == Z_PARTIAL_FLUSH) {
812                _tr_align(s);
813            } else { /* FULL_FLUSH or SYNC_FLUSH */
814                _tr_stored_block(s, (char*)0, 0L, 0);
815                /* For a full flush, this empty block will be recognized
816                 * as a special marker by inflate_sync().
817                 */
818                if (flush == Z_FULL_FLUSH) {
819                    CLEAR_HASH(s);             /* forget history */
820                }
821            }
822            flush_pending(strm);
823            if (strm->avail_out == 0) {
824              s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
825              return Z_OK;
826            }
827        }
828    }
829    Assert(strm->avail_out > 0, "bug2");
830
831    if (flush != Z_FINISH) return Z_OK;
832    if (s->wrap <= 0) return Z_STREAM_END;
833
834    /* Write the trailer */
835#ifdef GZIP
836    if (s->wrap == 2) {
837        put_byte(s, (Byte)(strm->adler & 0xff));
838        put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
839        put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
840        put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
841        put_byte(s, (Byte)(strm->total_in & 0xff));
842        put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
843        put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
844        put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
845    }
846    else
847#endif
848    {
849        putShortMSB(s, (uInt)(strm->adler >> 16));
850        putShortMSB(s, (uInt)(strm->adler & 0xffff));
851    }
852    flush_pending(strm);
853    /* If avail_out is zero, the application will call deflate again
854     * to flush the rest.
855     */
856    if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
857    return s->pending != 0 ? Z_OK : Z_STREAM_END;
858}
859
860/* ========================================================================= */
861int ZEXPORT deflateEnd (strm)
862    z_streamp strm;
863{
864    int status;
865
866    if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
867
868    status = strm->state->status;
869    if (status != INIT_STATE &&
870        status != EXTRA_STATE &&
871        status != NAME_STATE &&
872        status != COMMENT_STATE &&
873        status != HCRC_STATE &&
874        status != BUSY_STATE &&
875        status != FINISH_STATE) {
876      return Z_STREAM_ERROR;
877    }
878
879    /* Deallocate in reverse order of allocations: */
880    TRY_FREE(strm, strm->state->pending_buf);
881    TRY_FREE(strm, strm->state->head);
882    TRY_FREE(strm, strm->state->prev);
883    TRY_FREE(strm, strm->state->window);
884
885    ZFREE(strm, strm->state);
886    strm->state = Z_NULL;
887
888    return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
889}
890
891/* =========================================================================
892 * Copy the source state to the destination state.
893 * To simplify the source, this is not supported for 16-bit MSDOS (which
894 * doesn't have enough memory anyway to duplicate compression states).
895 */
896int ZEXPORT deflateCopy (dest, source)
897    z_streamp dest;
898    z_streamp source;
899{
900#ifdef MAXSEG_64K
901    return Z_STREAM_ERROR;
902#else
903    deflate_state *ds;
904    deflate_state *ss;
905    ushf *overlay;
906
907
908    if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL) {
909        return Z_STREAM_ERROR;
910    }
911
912    ss = source->state;
913
914    zmemcpy(dest, source, sizeof(z_stream));
915
916    ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
917    if (ds == Z_NULL) return Z_MEM_ERROR;
918    dest->state = (struct internal_state FAR *) ds;
919    zmemcpy(ds, ss, sizeof(deflate_state));
920    ds->strm = dest;
921
922    ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
923    ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos));
924    ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof(Pos));
925    overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2);
926    ds->pending_buf = (uchf *) overlay;
927
928    if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
929        ds->pending_buf == Z_NULL) {
930        deflateEnd (dest);
931        return Z_MEM_ERROR;
932    }
933    /* following zmemcpy do not work for 16-bit MSDOS */
934    zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
935    zmemcpy(ds->prev, ss->prev, ds->w_size * sizeof(Pos));
936    zmemcpy(ds->head, ss->head, ds->hash_size * sizeof(Pos));
937    zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
938
939    ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
940    ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush);
941    ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize;
942
943    ds->l_desc.dyn_tree = ds->dyn_ltree;
944    ds->d_desc.dyn_tree = ds->dyn_dtree;
945    ds->bl_desc.dyn_tree = ds->bl_tree;
946
947    return Z_OK;
948#endif /* MAXSEG_64K */
949}
950
951/* ===========================================================================
952 * Read a new buffer from the current input stream, update the adler32
953 * and total number of bytes read.  All deflate() input goes through
954 * this function so some applications may wish to modify it to avoid
955 * allocating a large strm->next_in buffer and copying from it.
956 * (See also flush_pending()).
957 */
958local int read_buf(strm, buf, size)
959    z_streamp strm;
960    Bytef *buf;
961    unsigned size;
962{
963    unsigned len = strm->avail_in;
964
965    if (len > size) len = size;
966    if (len == 0) return 0;
967
968    strm->avail_in  -= len;
969
970    if (strm->state->wrap == 1) {
971        strm->adler = adler32(strm->adler, strm->next_in, len);
972    }
973#ifdef GZIP
974    else if (strm->state->wrap == 2) {
975        strm->adler = crc32(strm->adler, strm->next_in, len);
976    }
977#endif
978    zmemcpy(buf, strm->next_in, len);
979    strm->next_in  += len;
980    strm->total_in += len;
981
982    return (int)len;
983}
984
985/* ===========================================================================
986 * Initialize the "longest match" routines for a new zlib stream
987 */
988local void lm_init (s)
989    deflate_state *s;
990{
991    s->window_size = (ulg)2L*s->w_size;
992
993    CLEAR_HASH(s);
994
995    /* Set the default configuration parameters:
996     */
997    s->max_lazy_match   = configuration_table[s->level].max_lazy;
998    s->good_match       = configuration_table[s->level].good_length;
999    s->nice_match       = configuration_table[s->level].nice_length;
1000    s->max_chain_length = configuration_table[s->level].max_chain;
1001
1002    s->strstart = 0;
1003    s->block_start = 0L;
1004    s->lookahead = 0;
1005    s->match_length = s->prev_length = MIN_MATCH-1;
1006    s->match_available = 0;
1007    s->ins_h = 0;
1008#ifndef FASTEST
1009#ifdef ASMV
1010    match_init(); /* initialize the asm code */
1011#endif
1012#endif
1013}
1014
1015#ifndef FASTEST
1016/* ===========================================================================
1017 * Set match_start to the longest match starting at the given string and
1018 * return its length. Matches shorter or equal to prev_length are discarded,
1019 * in which case the result is equal to prev_length and match_start is
1020 * garbage.
1021 * IN assertions: cur_match is the head of the hash chain for the current
1022 *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1023 * OUT assertion: the match length is not greater than s->lookahead.
1024 */
1025#ifndef ASMV
1026/* For 80x86 and 680x0, an optimized version will be provided in match.asm or
1027 * match.S. The code will be functionally equivalent.
1028 */
1029local uInt longest_match(s, cur_match)
1030    deflate_state *s;
1031    IPos cur_match;                             /* current match */
1032{
1033    unsigned chain_length = s->max_chain_length;/* max hash chain length */
1034    register Bytef *scan = s->window + s->strstart; /* current string */
1035    register Bytef *match;                       /* matched string */
1036    register int len;                           /* length of current match */
1037    int best_len = s->prev_length;              /* best match length so far */
1038    int nice_match = s->nice_match;             /* stop if match long enough */
1039    IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1040        s->strstart - (IPos)MAX_DIST(s) : NIL;
1041    /* Stop when cur_match becomes <= limit. To simplify the code,
1042     * we prevent matches with the string of window index 0.
1043     */
1044    Posf *prev = s->prev;
1045    uInt wmask = s->w_mask;
1046
1047#ifdef UNALIGNED_OK
1048    /* Compare two bytes at a time. Note: this is not always beneficial.
1049     * Try with and without -DUNALIGNED_OK to check.
1050     */
1051    register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1052    register ush scan_start = *(ushf*)scan;
1053    register ush scan_end   = *(ushf*)(scan+best_len-1);
1054#else
1055    register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1056    register Byte scan_end1  = scan[best_len-1];
1057    register Byte scan_end   = scan[best_len];
1058#endif
1059
1060    /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1061     * It is easy to get rid of this optimization if necessary.
1062     */
1063    Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1064
1065    /* Do not waste too much time if we already have a good match: */
1066    if (s->prev_length >= s->good_match) {
1067        chain_length >>= 2;
1068    }
1069    /* Do not look for matches beyond the end of the input. This is necessary
1070     * to make deflate deterministic.
1071     */
1072    if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead;
1073
1074    Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1075
1076    do {
1077        Assert(cur_match < s->strstart, "no future");
1078        match = s->window + cur_match;
1079
1080        /* Skip to next match if the match length cannot increase
1081         * or if the match length is less than 2.  Note that the checks below
1082         * for insufficient lookahead only occur occasionally for performance
1083         * reasons.  Therefore uninitialized memory will be accessed, and
1084         * conditional jumps will be made that depend on those values.
1085         * However the length of the match is limited to the lookahead, so
1086         * the output of deflate is not affected by the uninitialized values.
1087         */
1088#if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1089        /* This code assumes sizeof(unsigned short) == 2. Do not use
1090         * UNALIGNED_OK if your compiler uses a different size.
1091         */
1092        if (*(ushf*)(match+best_len-1) != scan_end ||
1093            *(ushf*)match != scan_start) continue;
1094
1095        /* It is not necessary to compare scan[2] and match[2] since they are
1096         * always equal when the other bytes match, given that the hash keys
1097         * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1098         * strstart+3, +5, ... up to strstart+257. We check for insufficient
1099         * lookahead only every 4th comparison; the 128th check will be made
1100         * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1101         * necessary to put more guard bytes at the end of the window, or
1102         * to check more often for insufficient lookahead.
1103         */
1104        Assert(scan[2] == match[2], "scan[2]?");
1105        scan++, match++;
1106        do {
1107        } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1108                 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1109                 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1110                 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1111                 scan < strend);
1112        /* The funny "do {}" generates better code on most compilers */
1113
1114        /* Here, scan <= window+strstart+257 */
1115        Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1116        if (*scan == *match) scan++;
1117
1118        len = (MAX_MATCH - 1) - (int)(strend-scan);
1119        scan = strend - (MAX_MATCH-1);
1120
1121#else /* UNALIGNED_OK */
1122
1123        if (match[best_len]   != scan_end  ||
1124            match[best_len-1] != scan_end1 ||
1125            *match            != *scan     ||
1126            *++match          != scan[1])      continue;
1127
1128        /* The check at best_len-1 can be removed because it will be made
1129         * again later. (This heuristic is not always a win.)
1130         * It is not necessary to compare scan[2] and match[2] since they
1131         * are always equal when the other bytes match, given that
1132         * the hash keys are equal and that HASH_BITS >= 8.
1133         */
1134        scan += 2, match++;
1135        Assert(*scan == *match, "match[2]?");
1136
1137        /* We check for insufficient lookahead only every 8th comparison;
1138         * the 256th check will be made at strstart+258.
1139         */
1140        do {
1141        } while (*++scan == *++match && *++scan == *++match &&
1142                 *++scan == *++match && *++scan == *++match &&
1143                 *++scan == *++match && *++scan == *++match &&
1144                 *++scan == *++match && *++scan == *++match &&
1145                 scan < strend);
1146
1147        Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1148
1149        len = MAX_MATCH - (int)(strend - scan);
1150        scan = strend - MAX_MATCH;
1151
1152#endif /* UNALIGNED_OK */
1153
1154        if (len > best_len) {
1155            s->match_start = cur_match;
1156            best_len = len;
1157            if (len >= nice_match) break;
1158#ifdef UNALIGNED_OK
1159            scan_end = *(ushf*)(scan+best_len-1);
1160#else
1161            scan_end1  = scan[best_len-1];
1162            scan_end   = scan[best_len];
1163#endif
1164        }
1165    } while ((cur_match = prev[cur_match & wmask]) > limit
1166             && --chain_length != 0);
1167
1168    if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
1169    return s->lookahead;
1170}
1171#endif /* ASMV */
1172#endif /* FASTEST */
1173
1174/* ---------------------------------------------------------------------------
1175 * Optimized version for level == 1 or strategy == Z_RLE only
1176 */
1177local uInt longest_match_fast(s, cur_match)
1178    deflate_state *s;
1179    IPos cur_match;                             /* current match */
1180{
1181    register Bytef *scan = s->window + s->strstart; /* current string */
1182    register Bytef *match;                       /* matched string */
1183    register int len;                           /* length of current match */
1184    register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1185
1186    /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1187     * It is easy to get rid of this optimization if necessary.
1188     */
1189    Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1190
1191    Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1192
1193    Assert(cur_match < s->strstart, "no future");
1194
1195    match = s->window + cur_match;
1196
1197    /* Return failure if the match length is less than 2:
1198     */
1199    if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
1200
1201    /* The check at best_len-1 can be removed because it will be made
1202     * again later. (This heuristic is not always a win.)
1203     * It is not necessary to compare scan[2] and match[2] since they
1204     * are always equal when the other bytes match, given that
1205     * the hash keys are equal and that HASH_BITS >= 8.
1206     */
1207    scan += 2, match += 2;
1208    Assert(*scan == *match, "match[2]?");
1209
1210    /* We check for insufficient lookahead only every 8th comparison;
1211     * the 256th check will be made at strstart+258.
1212     */
1213    do {
1214    } while (*++scan == *++match && *++scan == *++match &&
1215             *++scan == *++match && *++scan == *++match &&
1216             *++scan == *++match && *++scan == *++match &&
1217             *++scan == *++match && *++scan == *++match &&
1218             scan < strend);
1219
1220    Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1221
1222    len = MAX_MATCH - (int)(strend - scan);
1223
1224    if (len < MIN_MATCH) return MIN_MATCH - 1;
1225
1226    s->match_start = cur_match;
1227    return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
1228}
1229
1230#ifdef DEBUG
1231/* ===========================================================================
1232 * Check that the match at match_start is indeed a match.
1233 */
1234local void check_match(s, start, match, length)
1235    deflate_state *s;
1236    IPos start, match;
1237    int length;
1238{
1239    /* check that the match is indeed a match */
1240    if (zmemcmp(s->window + match,
1241                s->window + start, length) != EQUAL) {
1242        fprintf(stderr, " start %u, match %u, length %d\n",
1243                start, match, length);
1244        do {
1245            fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1246        } while (--length != 0);
1247        z_error("invalid match");
1248    }
1249    if (z_verbose > 1) {
1250        fprintf(stderr,"\\[%d,%d]", start-match, length);
1251        do { putc(s->window[start++], stderr); } while (--length != 0);
1252    }
1253}
1254#else
1255#  define check_match(s, start, match, length)
1256#endif /* DEBUG */
1257
1258/* ===========================================================================
1259 * Fill the window when the lookahead becomes insufficient.
1260 * Updates strstart and lookahead.
1261 *
1262 * IN assertion: lookahead < MIN_LOOKAHEAD
1263 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1264 *    At least one byte has been read, or avail_in == 0; reads are
1265 *    performed for at least two bytes (required for the zip translate_eol
1266 *    option -- not supported here).
1267 */
1268local void fill_window(s)
1269    deflate_state *s;
1270{
1271    register unsigned n, m;
1272    register Posf *p;
1273    unsigned more;    /* Amount of free space at the end of the window. */
1274    uInt wsize = s->w_size;
1275
1276    do {
1277        more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1278
1279        /* Deal with !@#$% 64K limit: */
1280        if (sizeof(int) <= 2) {
1281            if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1282                more = wsize;
1283
1284            } else if (more == (unsigned)(-1)) {
1285                /* Very unlikely, but possible on 16 bit machine if
1286                 * strstart == 0 && lookahead == 1 (input done a byte at time)
1287                 */
1288                more--;
1289            }
1290        }
1291
1292        /* If the window is almost full and there is insufficient lookahead,
1293         * move the upper half to the lower one to make room in the upper half.
1294         */
1295        if (s->strstart >= wsize+MAX_DIST(s)) {
1296
1297            zmemcpy(s->window, s->window+wsize, (unsigned)wsize);
1298            s->match_start -= wsize;
1299            s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
1300            s->block_start -= (long) wsize;
1301
1302            /* Slide the hash table (could be avoided with 32 bit values
1303               at the expense of memory usage). We slide even when level == 0
1304               to keep the hash table consistent if we switch back to level > 0
1305               later. (Using level 0 permanently is not an optimal usage of
1306               zlib, so we don't care about this pathological case.)
1307             */
1308            /* %%% avoid this when Z_RLE */
1309            n = s->hash_size;
1310            p = &s->head[n];
1311            do {
1312                m = *--p;
1313                *p = (Pos)(m >= wsize ? m-wsize : NIL);
1314            } while (--n);
1315
1316            n = wsize;
1317#ifndef FASTEST
1318            p = &s->prev[n];
1319            do {
1320                m = *--p;
1321                *p = (Pos)(m >= wsize ? m-wsize : NIL);
1322                /* If n is not on any hash chain, prev[n] is garbage but
1323                 * its value will never be used.
1324                 */
1325            } while (--n);
1326#endif
1327            more += wsize;
1328        }
1329        if (s->strm->avail_in == 0) return;
1330
1331        /* If there was no sliding:
1332         *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1333         *    more == window_size - lookahead - strstart
1334         * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1335         * => more >= window_size - 2*WSIZE + 2
1336         * In the BIG_MEM or MMAP case (not yet supported),
1337         *   window_size == input_size + MIN_LOOKAHEAD  &&
1338         *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1339         * Otherwise, window_size == 2*WSIZE so more >= 2.
1340         * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1341         */
1342        Assert(more >= 2, "more < 2");
1343
1344        n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
1345        s->lookahead += n;
1346
1347        /* Initialize the hash value now that we have some input: */
1348        if (s->lookahead >= MIN_MATCH) {
1349            s->ins_h = s->window[s->strstart];
1350            UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1351#if MIN_MATCH != 3
1352            Call UPDATE_HASH() MIN_MATCH-3 more times
1353#endif
1354        }
1355        /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1356         * but this is not important since only literal bytes will be emitted.
1357         */
1358
1359    } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1360}
1361
1362/* ===========================================================================
1363 * Flush the current block, with given end-of-file flag.
1364 * IN assertion: strstart is set to the end of the current match.
1365 */
1366#define FLUSH_BLOCK_ONLY(s, eof) { \
1367   _tr_flush_block(s, (s->block_start >= 0L ? \
1368                   (charf *)&s->window[(unsigned)s->block_start] : \
1369                   (charf *)Z_NULL), \
1370                (ulg)((long)s->strstart - s->block_start), \
1371                (eof)); \
1372   s->block_start = s->strstart; \
1373   flush_pending(s->strm); \
1374   Tracev((stderr,"[FLUSH]")); \
1375}
1376
1377/* Same but force premature exit if necessary. */
1378#define FLUSH_BLOCK(s, eof) { \
1379   FLUSH_BLOCK_ONLY(s, eof); \
1380   if (s->strm->avail_out == 0) return (eof) ? finish_started : need_more; \
1381}
1382
1383/* ===========================================================================
1384 * Copy without compression as much as possible from the input stream, return
1385 * the current block state.
1386 * This function does not insert new strings in the dictionary since
1387 * uncompressible data is probably not useful. This function is used
1388 * only for the level=0 compression option.
1389 * NOTE: this function should be optimized to avoid extra copying from
1390 * window to pending_buf.
1391 */
1392local block_state deflate_stored(s, flush)
1393    deflate_state *s;
1394    int flush;
1395{
1396    /* Stored blocks are limited to 0xffff bytes, pending_buf is limited
1397     * to pending_buf_size, and each stored block has a 5 byte header:
1398     */
1399    ulg max_block_size = 0xffff;
1400    ulg max_start;
1401
1402    if (max_block_size > s->pending_buf_size - 5) {
1403        max_block_size = s->pending_buf_size - 5;
1404    }
1405
1406    /* Copy as much as possible from input to output: */
1407    for (;;) {
1408        /* Fill the window as much as possible: */
1409        if (s->lookahead <= 1) {
1410
1411            Assert(s->strstart < s->w_size+MAX_DIST(s) ||
1412                   s->block_start >= (long)s->w_size, "slide too late");
1413
1414            fill_window(s);
1415            if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more;
1416
1417            if (s->lookahead == 0) break; /* flush the current block */
1418        }
1419        Assert(s->block_start >= 0L, "block gone");
1420
1421        s->strstart += s->lookahead;
1422        s->lookahead = 0;
1423
1424	if (flush == Z_INSERT_ONLY) {
1425	    s->block_start = s->strstart;
1426	    continue;
1427	}
1428
1429        /* Emit a stored block if pending_buf will be full: */
1430        max_start = s->block_start + max_block_size;
1431        if (s->strstart == 0 || (ulg)s->strstart >= max_start) {
1432            /* strstart == 0 is possible when wraparound on 16-bit machine */
1433            s->lookahead = (uInt)(s->strstart - max_start);
1434            s->strstart = (uInt)max_start;
1435            FLUSH_BLOCK(s, 0);
1436        }
1437        /* Flush if we may have to slide, otherwise block_start may become
1438         * negative and the data will be gone:
1439         */
1440        if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) {
1441            FLUSH_BLOCK(s, 0);
1442        }
1443    }
1444    if (flush == Z_INSERT_ONLY) {
1445	s->block_start = s->strstart;
1446	return need_more;
1447    }
1448
1449    FLUSH_BLOCK(s, flush == Z_FINISH);
1450    return flush == Z_FINISH ? finish_done : block_done;
1451}
1452
1453/* ===========================================================================
1454 * Compress as much as possible from the input stream, return the current
1455 * block state.
1456 * This function does not perform lazy evaluation of matches and inserts
1457 * new strings in the dictionary only for unmatched strings or for short
1458 * matches. It is used only for the fast compression options.
1459 */
1460local block_state deflate_fast(s, flush)
1461    deflate_state *s;
1462    int flush;
1463{
1464    IPos hash_head = NIL; /* head of the hash chain */
1465    int bflush;           /* set if current block must be flushed */
1466
1467    for (;;) {
1468        /* Make sure that we always have enough lookahead, except
1469         * at the end of the input file. We need MAX_MATCH bytes
1470         * for the next match, plus MIN_MATCH bytes to insert the
1471         * string following the next match.
1472         */
1473        if (s->lookahead < MIN_LOOKAHEAD) {
1474            fill_window(s);
1475            if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1476                return need_more;
1477            }
1478            if (s->lookahead == 0) break; /* flush the current block */
1479        }
1480
1481        /* Insert the string window[strstart .. strstart+2] in the
1482         * dictionary, and set hash_head to the head of the hash chain:
1483         */
1484        if (s->lookahead >= MIN_MATCH) {
1485            INSERT_STRING(s, s->strstart, hash_head);
1486        }
1487
1488	if (flush == Z_INSERT_ONLY) {
1489	    s->strstart++;
1490	    s->lookahead--;
1491	    continue;
1492	}
1493
1494        /* Find the longest match, discarding those <= prev_length.
1495         * At this point we have always match_length < MIN_MATCH
1496         */
1497        if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1498            /* To simplify the code, we prevent matches with the string
1499             * of window index 0 (in particular we have to avoid a match
1500             * of the string with itself at the start of the input file).
1501             */
1502#ifdef FASTEST
1503            if ((s->strategy != Z_HUFFMAN_ONLY && s->strategy != Z_RLE) ||
1504                (s->strategy == Z_RLE && s->strstart - hash_head == 1)) {
1505                s->match_length = longest_match_fast (s, hash_head);
1506            }
1507#else
1508            if (s->strategy != Z_HUFFMAN_ONLY && s->strategy != Z_RLE) {
1509                s->match_length = longest_match (s, hash_head);
1510            } else if (s->strategy == Z_RLE && s->strstart - hash_head == 1) {
1511                s->match_length = longest_match_fast (s, hash_head);
1512            }
1513#endif
1514            /* longest_match() or longest_match_fast() sets match_start */
1515        }
1516        if (s->match_length >= MIN_MATCH) {
1517            check_match(s, s->strstart, s->match_start, s->match_length);
1518
1519            _tr_tally_dist(s, s->strstart - s->match_start,
1520                           s->match_length - MIN_MATCH, bflush);
1521
1522            s->lookahead -= s->match_length;
1523
1524            /* Insert new strings in the hash table only if the match length
1525             * is not too large. This saves time but degrades compression.
1526             */
1527#ifndef FASTEST
1528            if (s->match_length <= s->max_insert_length &&
1529                s->lookahead >= MIN_MATCH) {
1530                s->match_length--; /* string at strstart already in table */
1531                do {
1532                    s->strstart++;
1533                    INSERT_STRING(s, s->strstart, hash_head);
1534                    /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1535                     * always MIN_MATCH bytes ahead.
1536                     */
1537                } while (--s->match_length != 0);
1538                s->strstart++;
1539            } else
1540#endif
1541            {
1542                s->strstart += s->match_length;
1543                s->match_length = 0;
1544                s->ins_h = s->window[s->strstart];
1545                UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1546#if MIN_MATCH != 3
1547                Call UPDATE_HASH() MIN_MATCH-3 more times
1548#endif
1549                /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1550                 * matter since it will be recomputed at next deflate call.
1551                 */
1552            }
1553        } else {
1554            /* No match, output a literal byte */
1555            Tracevv((stderr,"%c", s->window[s->strstart]));
1556            _tr_tally_lit (s, s->window[s->strstart], bflush);
1557            s->lookahead--;
1558            s->strstart++;
1559        }
1560        if (bflush) FLUSH_BLOCK(s, 0);
1561    }
1562    if (flush == Z_INSERT_ONLY) {
1563	s->block_start = s->strstart;
1564	return need_more;
1565    }
1566    FLUSH_BLOCK(s, flush == Z_FINISH);
1567    return flush == Z_FINISH ? finish_done : block_done;
1568}
1569
1570#ifndef FASTEST
1571/* ===========================================================================
1572 * Same as above, but achieves better compression. We use a lazy
1573 * evaluation for matches: a match is finally adopted only if there is
1574 * no better match at the next window position.
1575 */
1576local block_state deflate_slow(s, flush)
1577    deflate_state *s;
1578    int flush;
1579{
1580    IPos hash_head = NIL;    /* head of hash chain */
1581    int bflush;              /* set if current block must be flushed */
1582
1583    /* Process the input block. */
1584    for (;;) {
1585        /* Make sure that we always have enough lookahead, except
1586         * at the end of the input file. We need MAX_MATCH bytes
1587         * for the next match, plus MIN_MATCH bytes to insert the
1588         * string following the next match.
1589         */
1590        if (s->lookahead < MIN_LOOKAHEAD) {
1591            fill_window(s);
1592            if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1593                return need_more;
1594            }
1595            if (s->lookahead == 0) break; /* flush the current block */
1596        }
1597
1598        /* Insert the string window[strstart .. strstart+2] in the
1599         * dictionary, and set hash_head to the head of the hash chain:
1600         */
1601        if (s->lookahead >= MIN_MATCH) {
1602            INSERT_STRING(s, s->strstart, hash_head);
1603        }
1604
1605	if (flush == Z_INSERT_ONLY) {
1606	    s->strstart++;
1607	    s->lookahead--;
1608	    continue;
1609	}
1610
1611        /* Find the longest match, discarding those <= prev_length.
1612         */
1613        s->prev_length = s->match_length, s->prev_match = s->match_start;
1614        s->match_length = MIN_MATCH-1;
1615
1616        if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1617            s->strstart - hash_head <= MAX_DIST(s)) {
1618            /* To simplify the code, we prevent matches with the string
1619             * of window index 0 (in particular we have to avoid a match
1620             * of the string with itself at the start of the input file).
1621             */
1622            if (s->strategy != Z_HUFFMAN_ONLY && s->strategy != Z_RLE) {
1623                s->match_length = longest_match (s, hash_head);
1624            } else if (s->strategy == Z_RLE && s->strstart - hash_head == 1) {
1625                s->match_length = longest_match_fast (s, hash_head);
1626            }
1627            /* longest_match() or longest_match_fast() sets match_start */
1628
1629            if (s->match_length <= 5 && (s->strategy == Z_FILTERED
1630#if TOO_FAR <= 32767
1631                || (s->match_length == MIN_MATCH &&
1632                    s->strstart - s->match_start > TOO_FAR)
1633#endif
1634                )) {
1635
1636                /* If prev_match is also MIN_MATCH, match_start is garbage
1637                 * but we will ignore the current match anyway.
1638                 */
1639                s->match_length = MIN_MATCH-1;
1640            }
1641        }
1642        /* If there was a match at the previous step and the current
1643         * match is not better, output the previous match:
1644         */
1645        if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1646            uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1647            /* Do not insert strings in hash table beyond this. */
1648
1649            check_match(s, s->strstart-1, s->prev_match, s->prev_length);
1650
1651            _tr_tally_dist(s, s->strstart -1 - s->prev_match,
1652                           s->prev_length - MIN_MATCH, bflush);
1653
1654            /* Insert in hash table all strings up to the end of the match.
1655             * strstart-1 and strstart are already inserted. If there is not
1656             * enough lookahead, the last two strings are not inserted in
1657             * the hash table.
1658             */
1659            s->lookahead -= s->prev_length-1;
1660            s->prev_length -= 2;
1661            do {
1662                if (++s->strstart <= max_insert) {
1663                    INSERT_STRING(s, s->strstart, hash_head);
1664                }
1665            } while (--s->prev_length != 0);
1666            s->match_available = 0;
1667            s->match_length = MIN_MATCH-1;
1668            s->strstart++;
1669
1670            if (bflush) FLUSH_BLOCK(s, 0);
1671
1672        } else if (s->match_available) {
1673            /* If there was no match at the previous position, output a
1674             * single literal. If there was a match but the current match
1675             * is longer, truncate the previous match to a single literal.
1676             */
1677            Tracevv((stderr,"%c", s->window[s->strstart-1]));
1678            _tr_tally_lit(s, s->window[s->strstart-1], bflush);
1679            if (bflush) {
1680                FLUSH_BLOCK_ONLY(s, 0);
1681            }
1682            s->strstart++;
1683            s->lookahead--;
1684            if (s->strm->avail_out == 0) return need_more;
1685        } else {
1686            /* There is no previous match to compare with, wait for
1687             * the next step to decide.
1688             */
1689            s->match_available = 1;
1690            s->strstart++;
1691            s->lookahead--;
1692        }
1693    }
1694    if (flush == Z_INSERT_ONLY) {
1695	s->block_start = s->strstart;
1696	return need_more;
1697    }
1698    Assert (flush != Z_NO_FLUSH, "no flush?");
1699    if (s->match_available) {
1700        Tracevv((stderr,"%c", s->window[s->strstart-1]));
1701        _tr_tally_lit(s, s->window[s->strstart-1], bflush);
1702        s->match_available = 0;
1703    }
1704    FLUSH_BLOCK(s, flush == Z_FINISH);
1705    return flush == Z_FINISH ? finish_done : block_done;
1706}
1707#endif /* FASTEST */
1708
1709#if 0
1710/* ===========================================================================
1711 * For Z_RLE, simply look for runs of bytes, generate matches only of distance
1712 * one.  Do not maintain a hash table.  (It will be regenerated if this run of
1713 * deflate switches away from Z_RLE.)
1714 */
1715local block_state deflate_rle(s, flush)
1716    deflate_state *s;
1717    int flush;
1718{
1719    int bflush;         /* set if current block must be flushed */
1720    uInt run;           /* length of run */
1721    uInt max;           /* maximum length of run */
1722    uInt prev;          /* byte at distance one to match */
1723    Bytef *scan;        /* scan for end of run */
1724
1725    for (;;) {
1726        /* Make sure that we always have enough lookahead, except
1727         * at the end of the input file. We need MAX_MATCH bytes
1728         * for the longest encodable run.
1729         */
1730        if (s->lookahead < MAX_MATCH) {
1731            fill_window(s);
1732            if (s->lookahead < MAX_MATCH && flush == Z_NO_FLUSH) {
1733                return need_more;
1734            }
1735            if (s->lookahead == 0) break; /* flush the current block */
1736        }
1737
1738        /* See how many times the previous byte repeats */
1739        run = 0;
1740        if (s->strstart > 0) {      /* if there is a previous byte, that is */
1741            max = s->lookahead < MAX_MATCH ? s->lookahead : MAX_MATCH;
1742            scan = s->window + s->strstart - 1;
1743            prev = *scan++;
1744            do {
1745                if (*scan++ != prev)
1746                    break;
1747            } while (++run < max);
1748        }
1749
1750        /* Emit match if have run of MIN_MATCH or longer, else emit literal */
1751        if (run >= MIN_MATCH) {
1752            check_match(s, s->strstart, s->strstart - 1, run);
1753            _tr_tally_dist(s, 1, run - MIN_MATCH, bflush);
1754            s->lookahead -= run;
1755            s->strstart += run;
1756        } else {
1757            /* No match, output a literal byte */
1758            Tracevv((stderr,"%c", s->window[s->strstart]));
1759            _tr_tally_lit (s, s->window[s->strstart], bflush);
1760            s->lookahead--;
1761            s->strstart++;
1762        }
1763        if (bflush) FLUSH_BLOCK(s, 0);
1764    }
1765    FLUSH_BLOCK(s, flush == Z_FINISH);
1766    return flush == Z_FINISH ? finish_done : block_done;
1767}
1768#endif
1769