1//===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Peephole optimize the CFG.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "simplifycfg"
15#include "llvm/Transforms/Utils/Local.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/GlobalVariable.h"
19#include "llvm/IRBuilder.h"
20#include "llvm/Instructions.h"
21#include "llvm/IntrinsicInst.h"
22#include "llvm/LLVMContext.h"
23#include "llvm/MDBuilder.h"
24#include "llvm/Metadata.h"
25#include "llvm/Module.h"
26#include "llvm/Operator.h"
27#include "llvm/Type.h"
28#include "llvm/ADT/DenseMap.h"
29#include "llvm/ADT/STLExtras.h"
30#include "llvm/ADT/SetVector.h"
31#include "llvm/ADT/SmallPtrSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/Analysis/InstructionSimplify.h"
35#include "llvm/Analysis/ValueTracking.h"
36#include "llvm/Support/CFG.h"
37#include "llvm/Support/CommandLine.h"
38#include "llvm/Support/ConstantRange.h"
39#include "llvm/Support/Debug.h"
40#include "llvm/Support/NoFolder.h"
41#include "llvm/Support/raw_ostream.h"
42#include "llvm/Target/TargetData.h"
43#include "llvm/Transforms/Utils/BasicBlockUtils.h"
44#include <algorithm>
45#include <set>
46#include <map>
47using namespace llvm;
48
49static cl::opt<unsigned>
50PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(1),
51   cl::desc("Control the amount of phi node folding to perform (default = 1)"));
52
53static cl::opt<bool>
54DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false),
55       cl::desc("Duplicate return instructions into unconditional branches"));
56
57static cl::opt<bool>
58SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
59       cl::desc("Sink common instructions down to the end block"));
60
61STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
62STATISTIC(NumLookupTables, "Number of switch instructions turned into lookup tables");
63STATISTIC(NumSinkCommons, "Number of common instructions sunk down to the end block");
64STATISTIC(NumSpeculations, "Number of speculative executed instructions");
65
66namespace {
67  /// ValueEqualityComparisonCase - Represents a case of a switch.
68  struct ValueEqualityComparisonCase {
69    ConstantInt *Value;
70    BasicBlock *Dest;
71
72    ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
73      : Value(Value), Dest(Dest) {}
74
75    bool operator<(ValueEqualityComparisonCase RHS) const {
76      // Comparing pointers is ok as we only rely on the order for uniquing.
77      return Value < RHS.Value;
78    }
79  };
80
81class SimplifyCFGOpt {
82  const TargetData *const TD;
83
84  Value *isValueEqualityComparison(TerminatorInst *TI);
85  BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI,
86                               std::vector<ValueEqualityComparisonCase> &Cases);
87  bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
88                                                     BasicBlock *Pred,
89                                                     IRBuilder<> &Builder);
90  bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
91                                           IRBuilder<> &Builder);
92
93  bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
94  bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
95  bool SimplifyUnreachable(UnreachableInst *UI);
96  bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
97  bool SimplifyIndirectBr(IndirectBrInst *IBI);
98  bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder);
99  bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder);
100
101public:
102  explicit SimplifyCFGOpt(const TargetData *td) : TD(td) {}
103  bool run(BasicBlock *BB);
104};
105}
106
107/// SafeToMergeTerminators - Return true if it is safe to merge these two
108/// terminator instructions together.
109///
110static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
111  if (SI1 == SI2) return false;  // Can't merge with self!
112
113  // It is not safe to merge these two switch instructions if they have a common
114  // successor, and if that successor has a PHI node, and if *that* PHI node has
115  // conflicting incoming values from the two switch blocks.
116  BasicBlock *SI1BB = SI1->getParent();
117  BasicBlock *SI2BB = SI2->getParent();
118  SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
119
120  for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
121    if (SI1Succs.count(*I))
122      for (BasicBlock::iterator BBI = (*I)->begin();
123           isa<PHINode>(BBI); ++BBI) {
124        PHINode *PN = cast<PHINode>(BBI);
125        if (PN->getIncomingValueForBlock(SI1BB) !=
126            PN->getIncomingValueForBlock(SI2BB))
127          return false;
128      }
129
130  return true;
131}
132
133/// isProfitableToFoldUnconditional - Return true if it is safe and profitable
134/// to merge these two terminator instructions together, where SI1 is an
135/// unconditional branch. PhiNodes will store all PHI nodes in common
136/// successors.
137///
138static bool isProfitableToFoldUnconditional(BranchInst *SI1,
139                                          BranchInst *SI2,
140                                          Instruction *Cond,
141                                          SmallVectorImpl<PHINode*> &PhiNodes) {
142  if (SI1 == SI2) return false;  // Can't merge with self!
143  assert(SI1->isUnconditional() && SI2->isConditional());
144
145  // We fold the unconditional branch if we can easily update all PHI nodes in
146  // common successors:
147  // 1> We have a constant incoming value for the conditional branch;
148  // 2> We have "Cond" as the incoming value for the unconditional branch;
149  // 3> SI2->getCondition() and Cond have same operands.
150  CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
151  if (!Ci2) return false;
152  if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
153        Cond->getOperand(1) == Ci2->getOperand(1)) &&
154      !(Cond->getOperand(0) == Ci2->getOperand(1) &&
155        Cond->getOperand(1) == Ci2->getOperand(0)))
156    return false;
157
158  BasicBlock *SI1BB = SI1->getParent();
159  BasicBlock *SI2BB = SI2->getParent();
160  SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
161  for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
162    if (SI1Succs.count(*I))
163      for (BasicBlock::iterator BBI = (*I)->begin();
164           isa<PHINode>(BBI); ++BBI) {
165        PHINode *PN = cast<PHINode>(BBI);
166        if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
167            !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
168          return false;
169        PhiNodes.push_back(PN);
170      }
171  return true;
172}
173
174/// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
175/// now be entries in it from the 'NewPred' block.  The values that will be
176/// flowing into the PHI nodes will be the same as those coming in from
177/// ExistPred, an existing predecessor of Succ.
178static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
179                                  BasicBlock *ExistPred) {
180  if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
181
182  PHINode *PN;
183  for (BasicBlock::iterator I = Succ->begin();
184       (PN = dyn_cast<PHINode>(I)); ++I)
185    PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
186}
187
188
189/// GetIfCondition - Given a basic block (BB) with two predecessors (and at
190/// least one PHI node in it), check to see if the merge at this block is due
191/// to an "if condition".  If so, return the boolean condition that determines
192/// which entry into BB will be taken.  Also, return by references the block
193/// that will be entered from if the condition is true, and the block that will
194/// be entered if the condition is false.
195///
196/// This does no checking to see if the true/false blocks have large or unsavory
197/// instructions in them.
198static Value *GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
199                             BasicBlock *&IfFalse) {
200  PHINode *SomePHI = cast<PHINode>(BB->begin());
201  assert(SomePHI->getNumIncomingValues() == 2 &&
202         "Function can only handle blocks with 2 predecessors!");
203  BasicBlock *Pred1 = SomePHI->getIncomingBlock(0);
204  BasicBlock *Pred2 = SomePHI->getIncomingBlock(1);
205
206  // We can only handle branches.  Other control flow will be lowered to
207  // branches if possible anyway.
208  BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
209  BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
210  if (Pred1Br == 0 || Pred2Br == 0)
211    return 0;
212
213  // Eliminate code duplication by ensuring that Pred1Br is conditional if
214  // either are.
215  if (Pred2Br->isConditional()) {
216    // If both branches are conditional, we don't have an "if statement".  In
217    // reality, we could transform this case, but since the condition will be
218    // required anyway, we stand no chance of eliminating it, so the xform is
219    // probably not profitable.
220    if (Pred1Br->isConditional())
221      return 0;
222
223    std::swap(Pred1, Pred2);
224    std::swap(Pred1Br, Pred2Br);
225  }
226
227  if (Pred1Br->isConditional()) {
228    // The only thing we have to watch out for here is to make sure that Pred2
229    // doesn't have incoming edges from other blocks.  If it does, the condition
230    // doesn't dominate BB.
231    if (Pred2->getSinglePredecessor() == 0)
232      return 0;
233
234    // If we found a conditional branch predecessor, make sure that it branches
235    // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
236    if (Pred1Br->getSuccessor(0) == BB &&
237        Pred1Br->getSuccessor(1) == Pred2) {
238      IfTrue = Pred1;
239      IfFalse = Pred2;
240    } else if (Pred1Br->getSuccessor(0) == Pred2 &&
241               Pred1Br->getSuccessor(1) == BB) {
242      IfTrue = Pred2;
243      IfFalse = Pred1;
244    } else {
245      // We know that one arm of the conditional goes to BB, so the other must
246      // go somewhere unrelated, and this must not be an "if statement".
247      return 0;
248    }
249
250    return Pred1Br->getCondition();
251  }
252
253  // Ok, if we got here, both predecessors end with an unconditional branch to
254  // BB.  Don't panic!  If both blocks only have a single (identical)
255  // predecessor, and THAT is a conditional branch, then we're all ok!
256  BasicBlock *CommonPred = Pred1->getSinglePredecessor();
257  if (CommonPred == 0 || CommonPred != Pred2->getSinglePredecessor())
258    return 0;
259
260  // Otherwise, if this is a conditional branch, then we can use it!
261  BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
262  if (BI == 0) return 0;
263
264  assert(BI->isConditional() && "Two successors but not conditional?");
265  if (BI->getSuccessor(0) == Pred1) {
266    IfTrue = Pred1;
267    IfFalse = Pred2;
268  } else {
269    IfTrue = Pred2;
270    IfFalse = Pred1;
271  }
272  return BI->getCondition();
273}
274
275/// ComputeSpeculuationCost - Compute an abstract "cost" of speculating the
276/// given instruction, which is assumed to be safe to speculate. 1 means
277/// cheap, 2 means less cheap, and UINT_MAX means prohibitively expensive.
278static unsigned ComputeSpeculationCost(const User *I) {
279  assert(isSafeToSpeculativelyExecute(I) &&
280         "Instruction is not safe to speculatively execute!");
281  switch (Operator::getOpcode(I)) {
282  default:
283    // In doubt, be conservative.
284    return UINT_MAX;
285  case Instruction::GetElementPtr:
286    // GEPs are cheap if all indices are constant.
287    if (!cast<GEPOperator>(I)->hasAllConstantIndices())
288      return UINT_MAX;
289    return 1;
290  case Instruction::Load:
291  case Instruction::Add:
292  case Instruction::Sub:
293  case Instruction::And:
294  case Instruction::Or:
295  case Instruction::Xor:
296  case Instruction::Shl:
297  case Instruction::LShr:
298  case Instruction::AShr:
299  case Instruction::ICmp:
300  case Instruction::Trunc:
301  case Instruction::ZExt:
302  case Instruction::SExt:
303    return 1; // These are all cheap.
304
305  case Instruction::Call:
306  case Instruction::Select:
307    return 2;
308  }
309}
310
311/// DominatesMergePoint - If we have a merge point of an "if condition" as
312/// accepted above, return true if the specified value dominates the block.  We
313/// don't handle the true generality of domination here, just a special case
314/// which works well enough for us.
315///
316/// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
317/// see if V (which must be an instruction) and its recursive operands
318/// that do not dominate BB have a combined cost lower than CostRemaining and
319/// are non-trapping.  If both are true, the instruction is inserted into the
320/// set and true is returned.
321///
322/// The cost for most non-trapping instructions is defined as 1 except for
323/// Select whose cost is 2.
324///
325/// After this function returns, CostRemaining is decreased by the cost of
326/// V plus its non-dominating operands.  If that cost is greater than
327/// CostRemaining, false is returned and CostRemaining is undefined.
328static bool DominatesMergePoint(Value *V, BasicBlock *BB,
329                                SmallPtrSet<Instruction*, 4> *AggressiveInsts,
330                                unsigned &CostRemaining) {
331  Instruction *I = dyn_cast<Instruction>(V);
332  if (!I) {
333    // Non-instructions all dominate instructions, but not all constantexprs
334    // can be executed unconditionally.
335    if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
336      if (C->canTrap())
337        return false;
338    return true;
339  }
340  BasicBlock *PBB = I->getParent();
341
342  // We don't want to allow weird loops that might have the "if condition" in
343  // the bottom of this block.
344  if (PBB == BB) return false;
345
346  // If this instruction is defined in a block that contains an unconditional
347  // branch to BB, then it must be in the 'conditional' part of the "if
348  // statement".  If not, it definitely dominates the region.
349  BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
350  if (BI == 0 || BI->isConditional() || BI->getSuccessor(0) != BB)
351    return true;
352
353  // If we aren't allowing aggressive promotion anymore, then don't consider
354  // instructions in the 'if region'.
355  if (AggressiveInsts == 0) return false;
356
357  // If we have seen this instruction before, don't count it again.
358  if (AggressiveInsts->count(I)) return true;
359
360  // Okay, it looks like the instruction IS in the "condition".  Check to
361  // see if it's a cheap instruction to unconditionally compute, and if it
362  // only uses stuff defined outside of the condition.  If so, hoist it out.
363  if (!isSafeToSpeculativelyExecute(I))
364    return false;
365
366  unsigned Cost = ComputeSpeculationCost(I);
367
368  if (Cost > CostRemaining)
369    return false;
370
371  CostRemaining -= Cost;
372
373  // Okay, we can only really hoist these out if their operands do
374  // not take us over the cost threshold.
375  for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
376    if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining))
377      return false;
378  // Okay, it's safe to do this!  Remember this instruction.
379  AggressiveInsts->insert(I);
380  return true;
381}
382
383/// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr
384/// and PointerNullValue. Return NULL if value is not a constant int.
385static ConstantInt *GetConstantInt(Value *V, const TargetData *TD) {
386  // Normal constant int.
387  ConstantInt *CI = dyn_cast<ConstantInt>(V);
388  if (CI || !TD || !isa<Constant>(V) || !V->getType()->isPointerTy())
389    return CI;
390
391  // This is some kind of pointer constant. Turn it into a pointer-sized
392  // ConstantInt if possible.
393  IntegerType *PtrTy = TD->getIntPtrType(V->getContext());
394
395  // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
396  if (isa<ConstantPointerNull>(V))
397    return ConstantInt::get(PtrTy, 0);
398
399  // IntToPtr const int.
400  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
401    if (CE->getOpcode() == Instruction::IntToPtr)
402      if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
403        // The constant is very likely to have the right type already.
404        if (CI->getType() == PtrTy)
405          return CI;
406        else
407          return cast<ConstantInt>
408            (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
409      }
410  return 0;
411}
412
413/// GatherConstantCompares - Given a potentially 'or'd or 'and'd together
414/// collection of icmp eq/ne instructions that compare a value against a
415/// constant, return the value being compared, and stick the constant into the
416/// Values vector.
417static Value *
418GatherConstantCompares(Value *V, std::vector<ConstantInt*> &Vals, Value *&Extra,
419                       const TargetData *TD, bool isEQ, unsigned &UsedICmps) {
420  Instruction *I = dyn_cast<Instruction>(V);
421  if (I == 0) return 0;
422
423  // If this is an icmp against a constant, handle this as one of the cases.
424  if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
425    if (ConstantInt *C = GetConstantInt(I->getOperand(1), TD)) {
426      if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) {
427        UsedICmps++;
428        Vals.push_back(C);
429        return I->getOperand(0);
430      }
431
432      // If we have "x ult 3" comparison, for example, then we can add 0,1,2 to
433      // the set.
434      ConstantRange Span =
435        ConstantRange::makeICmpRegion(ICI->getPredicate(), C->getValue());
436
437      // If this is an and/!= check then we want to optimize "x ugt 2" into
438      // x != 0 && x != 1.
439      if (!isEQ)
440        Span = Span.inverse();
441
442      // If there are a ton of values, we don't want to make a ginormous switch.
443      if (Span.getSetSize().ugt(8) || Span.isEmptySet())
444        return 0;
445
446      for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
447        Vals.push_back(ConstantInt::get(V->getContext(), Tmp));
448      UsedICmps++;
449      return I->getOperand(0);
450    }
451    return 0;
452  }
453
454  // Otherwise, we can only handle an | or &, depending on isEQ.
455  if (I->getOpcode() != (isEQ ? Instruction::Or : Instruction::And))
456    return 0;
457
458  unsigned NumValsBeforeLHS = Vals.size();
459  unsigned UsedICmpsBeforeLHS = UsedICmps;
460  if (Value *LHS = GatherConstantCompares(I->getOperand(0), Vals, Extra, TD,
461                                          isEQ, UsedICmps)) {
462    unsigned NumVals = Vals.size();
463    unsigned UsedICmpsBeforeRHS = UsedICmps;
464    if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
465                                            isEQ, UsedICmps)) {
466      if (LHS == RHS)
467        return LHS;
468      Vals.resize(NumVals);
469      UsedICmps = UsedICmpsBeforeRHS;
470    }
471
472    // The RHS of the or/and can't be folded in and we haven't used "Extra" yet,
473    // set it and return success.
474    if (Extra == 0 || Extra == I->getOperand(1)) {
475      Extra = I->getOperand(1);
476      return LHS;
477    }
478
479    Vals.resize(NumValsBeforeLHS);
480    UsedICmps = UsedICmpsBeforeLHS;
481    return 0;
482  }
483
484  // If the LHS can't be folded in, but Extra is available and RHS can, try to
485  // use LHS as Extra.
486  if (Extra == 0 || Extra == I->getOperand(0)) {
487    Value *OldExtra = Extra;
488    Extra = I->getOperand(0);
489    if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, TD,
490                                            isEQ, UsedICmps))
491      return RHS;
492    assert(Vals.size() == NumValsBeforeLHS);
493    Extra = OldExtra;
494  }
495
496  return 0;
497}
498
499static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
500  Instruction *Cond = 0;
501  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
502    Cond = dyn_cast<Instruction>(SI->getCondition());
503  } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
504    if (BI->isConditional())
505      Cond = dyn_cast<Instruction>(BI->getCondition());
506  } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
507    Cond = dyn_cast<Instruction>(IBI->getAddress());
508  }
509
510  TI->eraseFromParent();
511  if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond);
512}
513
514/// isValueEqualityComparison - Return true if the specified terminator checks
515/// to see if a value is equal to constant integer value.
516Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
517  Value *CV = 0;
518  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
519    // Do not permit merging of large switch instructions into their
520    // predecessors unless there is only one predecessor.
521    if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()),
522                                             pred_end(SI->getParent())) <= 128)
523      CV = SI->getCondition();
524  } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
525    if (BI->isConditional() && BI->getCondition()->hasOneUse())
526      if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
527        if ((ICI->getPredicate() == ICmpInst::ICMP_EQ ||
528             ICI->getPredicate() == ICmpInst::ICMP_NE) &&
529            GetConstantInt(ICI->getOperand(1), TD))
530          CV = ICI->getOperand(0);
531
532  // Unwrap any lossless ptrtoint cast.
533  if (TD && CV && CV->getType() == TD->getIntPtrType(CV->getContext()))
534    if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV))
535      CV = PTII->getOperand(0);
536  return CV;
537}
538
539/// GetValueEqualityComparisonCases - Given a value comparison instruction,
540/// decode all of the 'cases' that it represents and return the 'default' block.
541BasicBlock *SimplifyCFGOpt::
542GetValueEqualityComparisonCases(TerminatorInst *TI,
543                                std::vector<ValueEqualityComparisonCase>
544                                                                       &Cases) {
545  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
546    Cases.reserve(SI->getNumCases());
547    for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i)
548      Cases.push_back(ValueEqualityComparisonCase(i.getCaseValue(),
549                                                  i.getCaseSuccessor()));
550    return SI->getDefaultDest();
551  }
552
553  BranchInst *BI = cast<BranchInst>(TI);
554  ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
555  BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
556  Cases.push_back(ValueEqualityComparisonCase(GetConstantInt(ICI->getOperand(1),
557                                                             TD),
558                                              Succ));
559  return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
560}
561
562
563/// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries
564/// in the list that match the specified block.
565static void EliminateBlockCases(BasicBlock *BB,
566                              std::vector<ValueEqualityComparisonCase> &Cases) {
567  for (unsigned i = 0, e = Cases.size(); i != e; ++i)
568    if (Cases[i].Dest == BB) {
569      Cases.erase(Cases.begin()+i);
570      --i; --e;
571    }
572}
573
574/// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
575/// well.
576static bool
577ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
578              std::vector<ValueEqualityComparisonCase > &C2) {
579  std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
580
581  // Make V1 be smaller than V2.
582  if (V1->size() > V2->size())
583    std::swap(V1, V2);
584
585  if (V1->size() == 0) return false;
586  if (V1->size() == 1) {
587    // Just scan V2.
588    ConstantInt *TheVal = (*V1)[0].Value;
589    for (unsigned i = 0, e = V2->size(); i != e; ++i)
590      if (TheVal == (*V2)[i].Value)
591        return true;
592  }
593
594  // Otherwise, just sort both lists and compare element by element.
595  array_pod_sort(V1->begin(), V1->end());
596  array_pod_sort(V2->begin(), V2->end());
597  unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
598  while (i1 != e1 && i2 != e2) {
599    if ((*V1)[i1].Value == (*V2)[i2].Value)
600      return true;
601    if ((*V1)[i1].Value < (*V2)[i2].Value)
602      ++i1;
603    else
604      ++i2;
605  }
606  return false;
607}
608
609/// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
610/// terminator instruction and its block is known to only have a single
611/// predecessor block, check to see if that predecessor is also a value
612/// comparison with the same value, and if that comparison determines the
613/// outcome of this comparison.  If so, simplify TI.  This does a very limited
614/// form of jump threading.
615bool SimplifyCFGOpt::
616SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
617                                              BasicBlock *Pred,
618                                              IRBuilder<> &Builder) {
619  Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
620  if (!PredVal) return false;  // Not a value comparison in predecessor.
621
622  Value *ThisVal = isValueEqualityComparison(TI);
623  assert(ThisVal && "This isn't a value comparison!!");
624  if (ThisVal != PredVal) return false;  // Different predicates.
625
626  // TODO: Preserve branch weight metadata, similarly to how
627  // FoldValueComparisonIntoPredecessors preserves it.
628
629  // Find out information about when control will move from Pred to TI's block.
630  std::vector<ValueEqualityComparisonCase> PredCases;
631  BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
632                                                        PredCases);
633  EliminateBlockCases(PredDef, PredCases);  // Remove default from cases.
634
635  // Find information about how control leaves this block.
636  std::vector<ValueEqualityComparisonCase> ThisCases;
637  BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
638  EliminateBlockCases(ThisDef, ThisCases);  // Remove default from cases.
639
640  // If TI's block is the default block from Pred's comparison, potentially
641  // simplify TI based on this knowledge.
642  if (PredDef == TI->getParent()) {
643    // If we are here, we know that the value is none of those cases listed in
644    // PredCases.  If there are any cases in ThisCases that are in PredCases, we
645    // can simplify TI.
646    if (!ValuesOverlap(PredCases, ThisCases))
647      return false;
648
649    if (isa<BranchInst>(TI)) {
650      // Okay, one of the successors of this condbr is dead.  Convert it to a
651      // uncond br.
652      assert(ThisCases.size() == 1 && "Branch can only have one case!");
653      // Insert the new branch.
654      Instruction *NI = Builder.CreateBr(ThisDef);
655      (void) NI;
656
657      // Remove PHI node entries for the dead edge.
658      ThisCases[0].Dest->removePredecessor(TI->getParent());
659
660      DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
661           << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
662
663      EraseTerminatorInstAndDCECond(TI);
664      return true;
665    }
666
667    SwitchInst *SI = cast<SwitchInst>(TI);
668    // Okay, TI has cases that are statically dead, prune them away.
669    SmallPtrSet<Constant*, 16> DeadCases;
670    for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
671      DeadCases.insert(PredCases[i].Value);
672
673    DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
674                 << "Through successor TI: " << *TI);
675
676    // Collect branch weights into a vector.
677    SmallVector<uint32_t, 8> Weights;
678    MDNode* MD = SI->getMetadata(LLVMContext::MD_prof);
679    bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
680    if (HasWeight)
681      for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
682           ++MD_i) {
683        ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(MD_i));
684        assert(CI);
685        Weights.push_back(CI->getValue().getZExtValue());
686      }
687    for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
688      --i;
689      if (DeadCases.count(i.getCaseValue())) {
690        if (HasWeight) {
691          std::swap(Weights[i.getCaseIndex()+1], Weights.back());
692          Weights.pop_back();
693        }
694        i.getCaseSuccessor()->removePredecessor(TI->getParent());
695        SI->removeCase(i);
696      }
697    }
698    if (HasWeight && Weights.size() >= 2)
699      SI->setMetadata(LLVMContext::MD_prof,
700                      MDBuilder(SI->getParent()->getContext()).
701                      createBranchWeights(Weights));
702
703    DEBUG(dbgs() << "Leaving: " << *TI << "\n");
704    return true;
705  }
706
707  // Otherwise, TI's block must correspond to some matched value.  Find out
708  // which value (or set of values) this is.
709  ConstantInt *TIV = 0;
710  BasicBlock *TIBB = TI->getParent();
711  for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
712    if (PredCases[i].Dest == TIBB) {
713      if (TIV != 0)
714        return false;  // Cannot handle multiple values coming to this block.
715      TIV = PredCases[i].Value;
716    }
717  assert(TIV && "No edge from pred to succ?");
718
719  // Okay, we found the one constant that our value can be if we get into TI's
720  // BB.  Find out which successor will unconditionally be branched to.
721  BasicBlock *TheRealDest = 0;
722  for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
723    if (ThisCases[i].Value == TIV) {
724      TheRealDest = ThisCases[i].Dest;
725      break;
726    }
727
728  // If not handled by any explicit cases, it is handled by the default case.
729  if (TheRealDest == 0) TheRealDest = ThisDef;
730
731  // Remove PHI node entries for dead edges.
732  BasicBlock *CheckEdge = TheRealDest;
733  for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
734    if (*SI != CheckEdge)
735      (*SI)->removePredecessor(TIBB);
736    else
737      CheckEdge = 0;
738
739  // Insert the new branch.
740  Instruction *NI = Builder.CreateBr(TheRealDest);
741  (void) NI;
742
743  DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
744            << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
745
746  EraseTerminatorInstAndDCECond(TI);
747  return true;
748}
749
750namespace {
751  /// ConstantIntOrdering - This class implements a stable ordering of constant
752  /// integers that does not depend on their address.  This is important for
753  /// applications that sort ConstantInt's to ensure uniqueness.
754  struct ConstantIntOrdering {
755    bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
756      return LHS->getValue().ult(RHS->getValue());
757    }
758  };
759}
760
761static int ConstantIntSortPredicate(const void *P1, const void *P2) {
762  const ConstantInt *LHS = *(const ConstantInt*const*)P1;
763  const ConstantInt *RHS = *(const ConstantInt*const*)P2;
764  if (LHS->getValue().ult(RHS->getValue()))
765    return 1;
766  if (LHS->getValue() == RHS->getValue())
767    return 0;
768  return -1;
769}
770
771static inline bool HasBranchWeights(const Instruction* I) {
772  MDNode* ProfMD = I->getMetadata(LLVMContext::MD_prof);
773  if (ProfMD && ProfMD->getOperand(0))
774    if (MDString* MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
775      return MDS->getString().equals("branch_weights");
776
777  return false;
778}
779
780/// Get Weights of a given TerminatorInst, the default weight is at the front
781/// of the vector. If TI is a conditional eq, we need to swap the branch-weight
782/// metadata.
783static void GetBranchWeights(TerminatorInst *TI,
784                             SmallVectorImpl<uint64_t> &Weights) {
785  MDNode* MD = TI->getMetadata(LLVMContext::MD_prof);
786  assert(MD);
787  for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
788    ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(i));
789    assert(CI);
790    Weights.push_back(CI->getValue().getZExtValue());
791  }
792
793  // If TI is a conditional eq, the default case is the false case,
794  // and the corresponding branch-weight data is at index 2. We swap the
795  // default weight to be the first entry.
796  if (BranchInst* BI = dyn_cast<BranchInst>(TI)) {
797    assert(Weights.size() == 2);
798    ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
799    if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
800      std::swap(Weights.front(), Weights.back());
801  }
802}
803
804/// Sees if any of the weights are too big for a uint32_t, and halves all the
805/// weights if any are.
806static void FitWeights(MutableArrayRef<uint64_t> Weights) {
807  bool Halve = false;
808  for (unsigned i = 0; i < Weights.size(); ++i)
809    if (Weights[i] > UINT_MAX) {
810      Halve = true;
811      break;
812    }
813
814  if (! Halve)
815    return;
816
817  for (unsigned i = 0; i < Weights.size(); ++i)
818    Weights[i] /= 2;
819}
820
821/// FoldValueComparisonIntoPredecessors - The specified terminator is a value
822/// equality comparison instruction (either a switch or a branch on "X == c").
823/// See if any of the predecessors of the terminator block are value comparisons
824/// on the same value.  If so, and if safe to do so, fold them together.
825bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
826                                                         IRBuilder<> &Builder) {
827  BasicBlock *BB = TI->getParent();
828  Value *CV = isValueEqualityComparison(TI);  // CondVal
829  assert(CV && "Not a comparison?");
830  bool Changed = false;
831
832  SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
833  while (!Preds.empty()) {
834    BasicBlock *Pred = Preds.pop_back_val();
835
836    // See if the predecessor is a comparison with the same value.
837    TerminatorInst *PTI = Pred->getTerminator();
838    Value *PCV = isValueEqualityComparison(PTI);  // PredCondVal
839
840    if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
841      // Figure out which 'cases' to copy from SI to PSI.
842      std::vector<ValueEqualityComparisonCase> BBCases;
843      BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
844
845      std::vector<ValueEqualityComparisonCase> PredCases;
846      BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
847
848      // Based on whether the default edge from PTI goes to BB or not, fill in
849      // PredCases and PredDefault with the new switch cases we would like to
850      // build.
851      SmallVector<BasicBlock*, 8> NewSuccessors;
852
853      // Update the branch weight metadata along the way
854      SmallVector<uint64_t, 8> Weights;
855      bool PredHasWeights = HasBranchWeights(PTI);
856      bool SuccHasWeights = HasBranchWeights(TI);
857
858      if (PredHasWeights) {
859        GetBranchWeights(PTI, Weights);
860        // branch-weight metadata is inconsistant here.
861        if (Weights.size() != 1 + PredCases.size())
862          PredHasWeights = SuccHasWeights = false;
863      } else if (SuccHasWeights)
864        // If there are no predecessor weights but there are successor weights,
865        // populate Weights with 1, which will later be scaled to the sum of
866        // successor's weights
867        Weights.assign(1 + PredCases.size(), 1);
868
869      SmallVector<uint64_t, 8> SuccWeights;
870      if (SuccHasWeights) {
871        GetBranchWeights(TI, SuccWeights);
872        // branch-weight metadata is inconsistant here.
873        if (SuccWeights.size() != 1 + BBCases.size())
874          PredHasWeights = SuccHasWeights = false;
875      } else if (PredHasWeights)
876        SuccWeights.assign(1 + BBCases.size(), 1);
877
878      if (PredDefault == BB) {
879        // If this is the default destination from PTI, only the edges in TI
880        // that don't occur in PTI, or that branch to BB will be activated.
881        std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
882        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
883          if (PredCases[i].Dest != BB)
884            PTIHandled.insert(PredCases[i].Value);
885          else {
886            // The default destination is BB, we don't need explicit targets.
887            std::swap(PredCases[i], PredCases.back());
888
889            if (PredHasWeights || SuccHasWeights) {
890              // Increase weight for the default case.
891              Weights[0] += Weights[i+1];
892              std::swap(Weights[i+1], Weights.back());
893              Weights.pop_back();
894            }
895
896            PredCases.pop_back();
897            --i; --e;
898          }
899
900        // Reconstruct the new switch statement we will be building.
901        if (PredDefault != BBDefault) {
902          PredDefault->removePredecessor(Pred);
903          PredDefault = BBDefault;
904          NewSuccessors.push_back(BBDefault);
905        }
906
907        unsigned CasesFromPred = Weights.size();
908        uint64_t ValidTotalSuccWeight = 0;
909        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
910          if (!PTIHandled.count(BBCases[i].Value) &&
911              BBCases[i].Dest != BBDefault) {
912            PredCases.push_back(BBCases[i]);
913            NewSuccessors.push_back(BBCases[i].Dest);
914            if (SuccHasWeights || PredHasWeights) {
915              // The default weight is at index 0, so weight for the ith case
916              // should be at index i+1. Scale the cases from successor by
917              // PredDefaultWeight (Weights[0]).
918              Weights.push_back(Weights[0] * SuccWeights[i+1]);
919              ValidTotalSuccWeight += SuccWeights[i+1];
920            }
921          }
922
923        if (SuccHasWeights || PredHasWeights) {
924          ValidTotalSuccWeight += SuccWeights[0];
925          // Scale the cases from predecessor by ValidTotalSuccWeight.
926          for (unsigned i = 1; i < CasesFromPred; ++i)
927            Weights[i] *= ValidTotalSuccWeight;
928          // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
929          Weights[0] *= SuccWeights[0];
930        }
931      } else {
932        // If this is not the default destination from PSI, only the edges
933        // in SI that occur in PSI with a destination of BB will be
934        // activated.
935        std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
936        std::map<ConstantInt*, uint64_t> WeightsForHandled;
937        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
938          if (PredCases[i].Dest == BB) {
939            PTIHandled.insert(PredCases[i].Value);
940
941            if (PredHasWeights || SuccHasWeights) {
942              WeightsForHandled[PredCases[i].Value] = Weights[i+1];
943              std::swap(Weights[i+1], Weights.back());
944              Weights.pop_back();
945            }
946
947            std::swap(PredCases[i], PredCases.back());
948            PredCases.pop_back();
949            --i; --e;
950          }
951
952        // Okay, now we know which constants were sent to BB from the
953        // predecessor.  Figure out where they will all go now.
954        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
955          if (PTIHandled.count(BBCases[i].Value)) {
956            // If this is one we are capable of getting...
957            if (PredHasWeights || SuccHasWeights)
958              Weights.push_back(WeightsForHandled[BBCases[i].Value]);
959            PredCases.push_back(BBCases[i]);
960            NewSuccessors.push_back(BBCases[i].Dest);
961            PTIHandled.erase(BBCases[i].Value);// This constant is taken care of
962          }
963
964        // If there are any constants vectored to BB that TI doesn't handle,
965        // they must go to the default destination of TI.
966        for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I =
967                                    PTIHandled.begin(),
968               E = PTIHandled.end(); I != E; ++I) {
969          if (PredHasWeights || SuccHasWeights)
970            Weights.push_back(WeightsForHandled[*I]);
971          PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault));
972          NewSuccessors.push_back(BBDefault);
973        }
974      }
975
976      // Okay, at this point, we know which new successor Pred will get.  Make
977      // sure we update the number of entries in the PHI nodes for these
978      // successors.
979      for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
980        AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
981
982      Builder.SetInsertPoint(PTI);
983      // Convert pointer to int before we switch.
984      if (CV->getType()->isPointerTy()) {
985        assert(TD && "Cannot switch on pointer without TargetData");
986        CV = Builder.CreatePtrToInt(CV, TD->getIntPtrType(CV->getContext()),
987                                    "magicptr");
988      }
989
990      // Now that the successors are updated, create the new Switch instruction.
991      SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault,
992                                               PredCases.size());
993      NewSI->setDebugLoc(PTI->getDebugLoc());
994      for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
995        NewSI->addCase(PredCases[i].Value, PredCases[i].Dest);
996
997      if (PredHasWeights || SuccHasWeights) {
998        // Halve the weights if any of them cannot fit in an uint32_t
999        FitWeights(Weights);
1000
1001        SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1002
1003        NewSI->setMetadata(LLVMContext::MD_prof,
1004                           MDBuilder(BB->getContext()).
1005                           createBranchWeights(MDWeights));
1006      }
1007
1008      EraseTerminatorInstAndDCECond(PTI);
1009
1010      // Okay, last check.  If BB is still a successor of PSI, then we must
1011      // have an infinite loop case.  If so, add an infinitely looping block
1012      // to handle the case to preserve the behavior of the code.
1013      BasicBlock *InfLoopBlock = 0;
1014      for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1015        if (NewSI->getSuccessor(i) == BB) {
1016          if (InfLoopBlock == 0) {
1017            // Insert it at the end of the function, because it's either code,
1018            // or it won't matter if it's hot. :)
1019            InfLoopBlock = BasicBlock::Create(BB->getContext(),
1020                                              "infloop", BB->getParent());
1021            BranchInst::Create(InfLoopBlock, InfLoopBlock);
1022          }
1023          NewSI->setSuccessor(i, InfLoopBlock);
1024        }
1025
1026      Changed = true;
1027    }
1028  }
1029  return Changed;
1030}
1031
1032// isSafeToHoistInvoke - If we would need to insert a select that uses the
1033// value of this invoke (comments in HoistThenElseCodeToIf explain why we
1034// would need to do this), we can't hoist the invoke, as there is nowhere
1035// to put the select in this case.
1036static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1037                                Instruction *I1, Instruction *I2) {
1038  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
1039    PHINode *PN;
1040    for (BasicBlock::iterator BBI = SI->begin();
1041         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1042      Value *BB1V = PN->getIncomingValueForBlock(BB1);
1043      Value *BB2V = PN->getIncomingValueForBlock(BB2);
1044      if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) {
1045        return false;
1046      }
1047    }
1048  }
1049  return true;
1050}
1051
1052/// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
1053/// BB2, hoist any common code in the two blocks up into the branch block.  The
1054/// caller of this function guarantees that BI's block dominates BB1 and BB2.
1055static bool HoistThenElseCodeToIf(BranchInst *BI) {
1056  // This does very trivial matching, with limited scanning, to find identical
1057  // instructions in the two blocks.  In particular, we don't want to get into
1058  // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1059  // such, we currently just scan for obviously identical instructions in an
1060  // identical order.
1061  BasicBlock *BB1 = BI->getSuccessor(0);  // The true destination.
1062  BasicBlock *BB2 = BI->getSuccessor(1);  // The false destination
1063
1064  BasicBlock::iterator BB1_Itr = BB1->begin();
1065  BasicBlock::iterator BB2_Itr = BB2->begin();
1066
1067  Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++;
1068  // Skip debug info if it is not identical.
1069  DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1070  DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1071  if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1072    while (isa<DbgInfoIntrinsic>(I1))
1073      I1 = BB1_Itr++;
1074    while (isa<DbgInfoIntrinsic>(I2))
1075      I2 = BB2_Itr++;
1076  }
1077  if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1078      (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
1079    return false;
1080
1081  // If we get here, we can hoist at least one instruction.
1082  BasicBlock *BIParent = BI->getParent();
1083
1084  do {
1085    // If we are hoisting the terminator instruction, don't move one (making a
1086    // broken BB), instead clone it, and remove BI.
1087    if (isa<TerminatorInst>(I1))
1088      goto HoistTerminator;
1089
1090    // For a normal instruction, we just move one to right before the branch,
1091    // then replace all uses of the other with the first.  Finally, we remove
1092    // the now redundant second instruction.
1093    BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
1094    if (!I2->use_empty())
1095      I2->replaceAllUsesWith(I1);
1096    I1->intersectOptionalDataWith(I2);
1097    I2->eraseFromParent();
1098
1099    I1 = BB1_Itr++;
1100    I2 = BB2_Itr++;
1101    // Skip debug info if it is not identical.
1102    DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1103    DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1104    if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1105      while (isa<DbgInfoIntrinsic>(I1))
1106        I1 = BB1_Itr++;
1107      while (isa<DbgInfoIntrinsic>(I2))
1108        I2 = BB2_Itr++;
1109    }
1110  } while (I1->isIdenticalToWhenDefined(I2));
1111
1112  return true;
1113
1114HoistTerminator:
1115  // It may not be possible to hoist an invoke.
1116  if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1117    return true;
1118
1119  // Okay, it is safe to hoist the terminator.
1120  Instruction *NT = I1->clone();
1121  BIParent->getInstList().insert(BI, NT);
1122  if (!NT->getType()->isVoidTy()) {
1123    I1->replaceAllUsesWith(NT);
1124    I2->replaceAllUsesWith(NT);
1125    NT->takeName(I1);
1126  }
1127
1128  IRBuilder<true, NoFolder> Builder(NT);
1129  // Hoisting one of the terminators from our successor is a great thing.
1130  // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1131  // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1132  // nodes, so we insert select instruction to compute the final result.
1133  std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
1134  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
1135    PHINode *PN;
1136    for (BasicBlock::iterator BBI = SI->begin();
1137         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1138      Value *BB1V = PN->getIncomingValueForBlock(BB1);
1139      Value *BB2V = PN->getIncomingValueForBlock(BB2);
1140      if (BB1V == BB2V) continue;
1141
1142      // These values do not agree.  Insert a select instruction before NT
1143      // that determines the right value.
1144      SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1145      if (SI == 0)
1146        SI = cast<SelectInst>
1147          (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1148                                BB1V->getName()+"."+BB2V->getName()));
1149
1150      // Make the PHI node use the select for all incoming values for BB1/BB2
1151      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1152        if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
1153          PN->setIncomingValue(i, SI);
1154    }
1155  }
1156
1157  // Update any PHI nodes in our new successors.
1158  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
1159    AddPredecessorToBlock(*SI, BIParent, BB1);
1160
1161  EraseTerminatorInstAndDCECond(BI);
1162  return true;
1163}
1164
1165/// SinkThenElseCodeToEnd - Given an unconditional branch that goes to BBEnd,
1166/// check whether BBEnd has only two predecessors and the other predecessor
1167/// ends with an unconditional branch. If it is true, sink any common code
1168/// in the two predecessors to BBEnd.
1169static bool SinkThenElseCodeToEnd(BranchInst *BI1) {
1170  assert(BI1->isUnconditional());
1171  BasicBlock *BB1 = BI1->getParent();
1172  BasicBlock *BBEnd = BI1->getSuccessor(0);
1173
1174  // Check that BBEnd has two predecessors and the other predecessor ends with
1175  // an unconditional branch.
1176  pred_iterator PI = pred_begin(BBEnd), PE = pred_end(BBEnd);
1177  BasicBlock *Pred0 = *PI++;
1178  if (PI == PE) // Only one predecessor.
1179    return false;
1180  BasicBlock *Pred1 = *PI++;
1181  if (PI != PE) // More than two predecessors.
1182    return false;
1183  BasicBlock *BB2 = (Pred0 == BB1) ? Pred1 : Pred0;
1184  BranchInst *BI2 = dyn_cast<BranchInst>(BB2->getTerminator());
1185  if (!BI2 || !BI2->isUnconditional())
1186    return false;
1187
1188  // Gather the PHI nodes in BBEnd.
1189  std::map<Value*, std::pair<Value*, PHINode*> > MapValueFromBB1ToBB2;
1190  Instruction *FirstNonPhiInBBEnd = 0;
1191  for (BasicBlock::iterator I = BBEnd->begin(), E = BBEnd->end();
1192       I != E; ++I) {
1193    if (PHINode *PN = dyn_cast<PHINode>(I)) {
1194      Value *BB1V = PN->getIncomingValueForBlock(BB1);
1195      Value *BB2V = PN->getIncomingValueForBlock(BB2);
1196      MapValueFromBB1ToBB2[BB1V] = std::make_pair(BB2V, PN);
1197    } else {
1198      FirstNonPhiInBBEnd = &*I;
1199      break;
1200    }
1201  }
1202  if (!FirstNonPhiInBBEnd)
1203    return false;
1204
1205
1206  // This does very trivial matching, with limited scanning, to find identical
1207  // instructions in the two blocks.  We scan backward for obviously identical
1208  // instructions in an identical order.
1209  BasicBlock::InstListType::reverse_iterator RI1 = BB1->getInstList().rbegin(),
1210      RE1 = BB1->getInstList().rend(), RI2 = BB2->getInstList().rbegin(),
1211      RE2 = BB2->getInstList().rend();
1212  // Skip debug info.
1213  while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1;
1214  if (RI1 == RE1)
1215    return false;
1216  while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2;
1217  if (RI2 == RE2)
1218    return false;
1219  // Skip the unconditional branches.
1220  ++RI1;
1221  ++RI2;
1222
1223  bool Changed = false;
1224  while (RI1 != RE1 && RI2 != RE2) {
1225    // Skip debug info.
1226    while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1;
1227    if (RI1 == RE1)
1228      return Changed;
1229    while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2;
1230    if (RI2 == RE2)
1231      return Changed;
1232
1233    Instruction *I1 = &*RI1, *I2 = &*RI2;
1234    // I1 and I2 should have a single use in the same PHI node, and they
1235    // perform the same operation.
1236    // Cannot move control-flow-involving, volatile loads, vaarg, etc.
1237    if (isa<PHINode>(I1) || isa<PHINode>(I2) ||
1238        isa<TerminatorInst>(I1) || isa<TerminatorInst>(I2) ||
1239        isa<LandingPadInst>(I1) || isa<LandingPadInst>(I2) ||
1240        isa<AllocaInst>(I1) || isa<AllocaInst>(I2) ||
1241        I1->mayHaveSideEffects() || I2->mayHaveSideEffects() ||
1242        I1->mayReadOrWriteMemory() || I2->mayReadOrWriteMemory() ||
1243        !I1->hasOneUse() || !I2->hasOneUse() ||
1244        MapValueFromBB1ToBB2.find(I1) == MapValueFromBB1ToBB2.end() ||
1245        MapValueFromBB1ToBB2[I1].first != I2)
1246      return Changed;
1247
1248    // Check whether we should swap the operands of ICmpInst.
1249    ICmpInst *ICmp1 = dyn_cast<ICmpInst>(I1), *ICmp2 = dyn_cast<ICmpInst>(I2);
1250    bool SwapOpnds = false;
1251    if (ICmp1 && ICmp2 &&
1252        ICmp1->getOperand(0) != ICmp2->getOperand(0) &&
1253        ICmp1->getOperand(1) != ICmp2->getOperand(1) &&
1254        (ICmp1->getOperand(0) == ICmp2->getOperand(1) ||
1255         ICmp1->getOperand(1) == ICmp2->getOperand(0))) {
1256      ICmp2->swapOperands();
1257      SwapOpnds = true;
1258    }
1259    if (!I1->isSameOperationAs(I2)) {
1260      if (SwapOpnds)
1261        ICmp2->swapOperands();
1262      return Changed;
1263    }
1264
1265    // The operands should be either the same or they need to be generated
1266    // with a PHI node after sinking. We only handle the case where there is
1267    // a single pair of different operands.
1268    Value *DifferentOp1 = 0, *DifferentOp2 = 0;
1269    unsigned Op1Idx = 0;
1270    for (unsigned I = 0, E = I1->getNumOperands(); I != E; ++I) {
1271      if (I1->getOperand(I) == I2->getOperand(I))
1272        continue;
1273      // Early exit if we have more-than one pair of different operands or
1274      // the different operand is already in MapValueFromBB1ToBB2.
1275      // Early exit if we need a PHI node to replace a constant.
1276      if (DifferentOp1 ||
1277          MapValueFromBB1ToBB2.find(I1->getOperand(I)) !=
1278          MapValueFromBB1ToBB2.end() ||
1279          isa<Constant>(I1->getOperand(I)) ||
1280          isa<Constant>(I2->getOperand(I))) {
1281        // If we can't sink the instructions, undo the swapping.
1282        if (SwapOpnds)
1283          ICmp2->swapOperands();
1284        return Changed;
1285      }
1286      DifferentOp1 = I1->getOperand(I);
1287      Op1Idx = I;
1288      DifferentOp2 = I2->getOperand(I);
1289    }
1290
1291    // We insert the pair of different operands to MapValueFromBB1ToBB2 and
1292    // remove (I1, I2) from MapValueFromBB1ToBB2.
1293    if (DifferentOp1) {
1294      PHINode *NewPN = PHINode::Create(DifferentOp1->getType(), 2,
1295                                       DifferentOp1->getName() + ".sink",
1296                                       BBEnd->begin());
1297      MapValueFromBB1ToBB2[DifferentOp1] = std::make_pair(DifferentOp2, NewPN);
1298      // I1 should use NewPN instead of DifferentOp1.
1299      I1->setOperand(Op1Idx, NewPN);
1300      NewPN->addIncoming(DifferentOp1, BB1);
1301      NewPN->addIncoming(DifferentOp2, BB2);
1302      DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";);
1303    }
1304    PHINode *OldPN = MapValueFromBB1ToBB2[I1].second;
1305    MapValueFromBB1ToBB2.erase(I1);
1306
1307    DEBUG(dbgs() << "SINK common instructions " << *I1 << "\n";);
1308    DEBUG(dbgs() << "                         " << *I2 << "\n";);
1309    // We need to update RE1 and RE2 if we are going to sink the first
1310    // instruction in the basic block down.
1311    bool UpdateRE1 = (I1 == BB1->begin()), UpdateRE2 = (I2 == BB2->begin());
1312    // Sink the instruction.
1313    BBEnd->getInstList().splice(FirstNonPhiInBBEnd, BB1->getInstList(), I1);
1314    if (!OldPN->use_empty())
1315      OldPN->replaceAllUsesWith(I1);
1316    OldPN->eraseFromParent();
1317
1318    if (!I2->use_empty())
1319      I2->replaceAllUsesWith(I1);
1320    I1->intersectOptionalDataWith(I2);
1321    I2->eraseFromParent();
1322
1323    if (UpdateRE1)
1324      RE1 = BB1->getInstList().rend();
1325    if (UpdateRE2)
1326      RE2 = BB2->getInstList().rend();
1327    FirstNonPhiInBBEnd = I1;
1328    NumSinkCommons++;
1329    Changed = true;
1330  }
1331  return Changed;
1332}
1333
1334/// SpeculativelyExecuteBB - Given a conditional branch that goes to BB1
1335/// and an BB2 and the only successor of BB1 is BB2, hoist simple code
1336/// (for now, restricted to a single instruction that's side effect free) from
1337/// the BB1 into the branch block to speculatively execute it.
1338///
1339/// Turn
1340/// BB:
1341///     %t1 = icmp
1342///     br i1 %t1, label %BB1, label %BB2
1343/// BB1:
1344///     %t3 = add %t2, c
1345///     br label BB2
1346/// BB2:
1347/// =>
1348/// BB:
1349///     %t1 = icmp
1350///     %t4 = add %t2, c
1351///     %t3 = select i1 %t1, %t2, %t3
1352static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *BB1) {
1353  // Only speculatively execution a single instruction (not counting the
1354  // terminator) for now.
1355  Instruction *HInst = NULL;
1356  Instruction *Term = BB1->getTerminator();
1357  for (BasicBlock::iterator BBI = BB1->begin(), BBE = BB1->end();
1358       BBI != BBE; ++BBI) {
1359    Instruction *I = BBI;
1360    // Skip debug info.
1361    if (isa<DbgInfoIntrinsic>(I)) continue;
1362    if (I == Term) break;
1363
1364    if (HInst)
1365      return false;
1366    HInst = I;
1367  }
1368
1369  BasicBlock *BIParent = BI->getParent();
1370
1371  // Check the instruction to be hoisted, if there is one.
1372  if (HInst) {
1373    // Don't hoist the instruction if it's unsafe or expensive.
1374    if (!isSafeToSpeculativelyExecute(HInst))
1375      return false;
1376    if (ComputeSpeculationCost(HInst) > PHINodeFoldingThreshold)
1377      return false;
1378
1379    // Do not hoist the instruction if any of its operands are defined but not
1380    // used in this BB. The transformation will prevent the operand from
1381    // being sunk into the use block.
1382    for (User::op_iterator i = HInst->op_begin(), e = HInst->op_end();
1383         i != e; ++i) {
1384      Instruction *OpI = dyn_cast<Instruction>(*i);
1385      if (OpI && OpI->getParent() == BIParent &&
1386          !OpI->mayHaveSideEffects() &&
1387          !OpI->isUsedInBasicBlock(BIParent))
1388        return false;
1389    }
1390  }
1391
1392  // Be conservative for now. FP select instruction can often be expensive.
1393  Value *BrCond = BI->getCondition();
1394  if (isa<FCmpInst>(BrCond))
1395    return false;
1396
1397  // If BB1 is actually on the false edge of the conditional branch, remember
1398  // to swap the select operands later.
1399  bool Invert = false;
1400  if (BB1 != BI->getSuccessor(0)) {
1401    assert(BB1 == BI->getSuccessor(1) && "No edge from 'if' block?");
1402    Invert = true;
1403  }
1404
1405  // Collect interesting PHIs, and scan for hazards.
1406  SmallSetVector<std::pair<Value *, Value *>, 4> PHIs;
1407  BasicBlock *BB2 = BB1->getTerminator()->getSuccessor(0);
1408  for (BasicBlock::iterator I = BB2->begin();
1409       PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1410    Value *BB1V = PN->getIncomingValueForBlock(BB1);
1411    Value *BIParentV = PN->getIncomingValueForBlock(BIParent);
1412
1413    // Skip PHIs which are trivial.
1414    if (BB1V == BIParentV)
1415      continue;
1416
1417    // Check for saftey.
1418    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BB1V)) {
1419      // An unfolded ConstantExpr could end up getting expanded into
1420      // Instructions. Don't speculate this and another instruction at
1421      // the same time.
1422      if (HInst)
1423        return false;
1424      if (!isSafeToSpeculativelyExecute(CE))
1425        return false;
1426      if (ComputeSpeculationCost(CE) > PHINodeFoldingThreshold)
1427        return false;
1428    }
1429
1430    // Ok, we may insert a select for this PHI.
1431    PHIs.insert(std::make_pair(BB1V, BIParentV));
1432  }
1433
1434  // If there are no PHIs to process, bail early. This helps ensure idempotence
1435  // as well.
1436  if (PHIs.empty())
1437    return false;
1438
1439  // If we get here, we can hoist the instruction and if-convert.
1440  DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *BB1 << "\n";);
1441
1442  // Hoist the instruction.
1443  if (HInst)
1444    BIParent->getInstList().splice(BI, BB1->getInstList(), HInst);
1445
1446  // Insert selects and rewrite the PHI operands.
1447  IRBuilder<true, NoFolder> Builder(BI);
1448  for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
1449    Value *TrueV = PHIs[i].first;
1450    Value *FalseV = PHIs[i].second;
1451
1452    // Create a select whose true value is the speculatively executed value and
1453    // false value is the previously determined FalseV.
1454    SelectInst *SI;
1455    if (Invert)
1456      SI = cast<SelectInst>
1457        (Builder.CreateSelect(BrCond, FalseV, TrueV,
1458                              FalseV->getName() + "." + TrueV->getName()));
1459    else
1460      SI = cast<SelectInst>
1461        (Builder.CreateSelect(BrCond, TrueV, FalseV,
1462                              TrueV->getName() + "." + FalseV->getName()));
1463
1464    // Make the PHI node use the select for all incoming values for "then" and
1465    // "if" blocks.
1466    for (BasicBlock::iterator I = BB2->begin();
1467         PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1468      unsigned BB1I = PN->getBasicBlockIndex(BB1);
1469      unsigned BIParentI = PN->getBasicBlockIndex(BIParent);
1470      Value *BB1V = PN->getIncomingValue(BB1I);
1471      Value *BIParentV = PN->getIncomingValue(BIParentI);
1472      if (TrueV == BB1V && FalseV == BIParentV) {
1473        PN->setIncomingValue(BB1I, SI);
1474        PN->setIncomingValue(BIParentI, SI);
1475      }
1476    }
1477  }
1478
1479  ++NumSpeculations;
1480  return true;
1481}
1482
1483/// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
1484/// across this block.
1485static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
1486  BranchInst *BI = cast<BranchInst>(BB->getTerminator());
1487  unsigned Size = 0;
1488
1489  for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1490    if (isa<DbgInfoIntrinsic>(BBI))
1491      continue;
1492    if (Size > 10) return false;  // Don't clone large BB's.
1493    ++Size;
1494
1495    // We can only support instructions that do not define values that are
1496    // live outside of the current basic block.
1497    for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
1498         UI != E; ++UI) {
1499      Instruction *U = cast<Instruction>(*UI);
1500      if (U->getParent() != BB || isa<PHINode>(U)) return false;
1501    }
1502
1503    // Looks ok, continue checking.
1504  }
1505
1506  return true;
1507}
1508
1509/// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
1510/// that is defined in the same block as the branch and if any PHI entries are
1511/// constants, thread edges corresponding to that entry to be branches to their
1512/// ultimate destination.
1513static bool FoldCondBranchOnPHI(BranchInst *BI, const TargetData *TD) {
1514  BasicBlock *BB = BI->getParent();
1515  PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
1516  // NOTE: we currently cannot transform this case if the PHI node is used
1517  // outside of the block.
1518  if (!PN || PN->getParent() != BB || !PN->hasOneUse())
1519    return false;
1520
1521  // Degenerate case of a single entry PHI.
1522  if (PN->getNumIncomingValues() == 1) {
1523    FoldSingleEntryPHINodes(PN->getParent());
1524    return true;
1525  }
1526
1527  // Now we know that this block has multiple preds and two succs.
1528  if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
1529
1530  // Okay, this is a simple enough basic block.  See if any phi values are
1531  // constants.
1532  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1533    ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
1534    if (CB == 0 || !CB->getType()->isIntegerTy(1)) continue;
1535
1536    // Okay, we now know that all edges from PredBB should be revectored to
1537    // branch to RealDest.
1538    BasicBlock *PredBB = PN->getIncomingBlock(i);
1539    BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
1540
1541    if (RealDest == BB) continue;  // Skip self loops.
1542    // Skip if the predecessor's terminator is an indirect branch.
1543    if (isa<IndirectBrInst>(PredBB->getTerminator())) continue;
1544
1545    // The dest block might have PHI nodes, other predecessors and other
1546    // difficult cases.  Instead of being smart about this, just insert a new
1547    // block that jumps to the destination block, effectively splitting
1548    // the edge we are about to create.
1549    BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(),
1550                                            RealDest->getName()+".critedge",
1551                                            RealDest->getParent(), RealDest);
1552    BranchInst::Create(RealDest, EdgeBB);
1553
1554    // Update PHI nodes.
1555    AddPredecessorToBlock(RealDest, EdgeBB, BB);
1556
1557    // BB may have instructions that are being threaded over.  Clone these
1558    // instructions into EdgeBB.  We know that there will be no uses of the
1559    // cloned instructions outside of EdgeBB.
1560    BasicBlock::iterator InsertPt = EdgeBB->begin();
1561    DenseMap<Value*, Value*> TranslateMap;  // Track translated values.
1562    for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1563      if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
1564        TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
1565        continue;
1566      }
1567      // Clone the instruction.
1568      Instruction *N = BBI->clone();
1569      if (BBI->hasName()) N->setName(BBI->getName()+".c");
1570
1571      // Update operands due to translation.
1572      for (User::op_iterator i = N->op_begin(), e = N->op_end();
1573           i != e; ++i) {
1574        DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i);
1575        if (PI != TranslateMap.end())
1576          *i = PI->second;
1577      }
1578
1579      // Check for trivial simplification.
1580      if (Value *V = SimplifyInstruction(N, TD)) {
1581        TranslateMap[BBI] = V;
1582        delete N;   // Instruction folded away, don't need actual inst
1583      } else {
1584        // Insert the new instruction into its new home.
1585        EdgeBB->getInstList().insert(InsertPt, N);
1586        if (!BBI->use_empty())
1587          TranslateMap[BBI] = N;
1588      }
1589    }
1590
1591    // Loop over all of the edges from PredBB to BB, changing them to branch
1592    // to EdgeBB instead.
1593    TerminatorInst *PredBBTI = PredBB->getTerminator();
1594    for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
1595      if (PredBBTI->getSuccessor(i) == BB) {
1596        BB->removePredecessor(PredBB);
1597        PredBBTI->setSuccessor(i, EdgeBB);
1598      }
1599
1600    // Recurse, simplifying any other constants.
1601    return FoldCondBranchOnPHI(BI, TD) | true;
1602  }
1603
1604  return false;
1605}
1606
1607/// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
1608/// PHI node, see if we can eliminate it.
1609static bool FoldTwoEntryPHINode(PHINode *PN, const TargetData *TD) {
1610  // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
1611  // statement", which has a very simple dominance structure.  Basically, we
1612  // are trying to find the condition that is being branched on, which
1613  // subsequently causes this merge to happen.  We really want control
1614  // dependence information for this check, but simplifycfg can't keep it up
1615  // to date, and this catches most of the cases we care about anyway.
1616  BasicBlock *BB = PN->getParent();
1617  BasicBlock *IfTrue, *IfFalse;
1618  Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
1619  if (!IfCond ||
1620      // Don't bother if the branch will be constant folded trivially.
1621      isa<ConstantInt>(IfCond))
1622    return false;
1623
1624  // Okay, we found that we can merge this two-entry phi node into a select.
1625  // Doing so would require us to fold *all* two entry phi nodes in this block.
1626  // At some point this becomes non-profitable (particularly if the target
1627  // doesn't support cmov's).  Only do this transformation if there are two or
1628  // fewer PHI nodes in this block.
1629  unsigned NumPhis = 0;
1630  for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
1631    if (NumPhis > 2)
1632      return false;
1633
1634  // Loop over the PHI's seeing if we can promote them all to select
1635  // instructions.  While we are at it, keep track of the instructions
1636  // that need to be moved to the dominating block.
1637  SmallPtrSet<Instruction*, 4> AggressiveInsts;
1638  unsigned MaxCostVal0 = PHINodeFoldingThreshold,
1639           MaxCostVal1 = PHINodeFoldingThreshold;
1640
1641  for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
1642    PHINode *PN = cast<PHINode>(II++);
1643    if (Value *V = SimplifyInstruction(PN, TD)) {
1644      PN->replaceAllUsesWith(V);
1645      PN->eraseFromParent();
1646      continue;
1647    }
1648
1649    if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
1650                             MaxCostVal0) ||
1651        !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
1652                             MaxCostVal1))
1653      return false;
1654  }
1655
1656  // If we folded the first phi, PN dangles at this point.  Refresh it.  If
1657  // we ran out of PHIs then we simplified them all.
1658  PN = dyn_cast<PHINode>(BB->begin());
1659  if (PN == 0) return true;
1660
1661  // Don't fold i1 branches on PHIs which contain binary operators.  These can
1662  // often be turned into switches and other things.
1663  if (PN->getType()->isIntegerTy(1) &&
1664      (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
1665       isa<BinaryOperator>(PN->getIncomingValue(1)) ||
1666       isa<BinaryOperator>(IfCond)))
1667    return false;
1668
1669  // If we all PHI nodes are promotable, check to make sure that all
1670  // instructions in the predecessor blocks can be promoted as well.  If
1671  // not, we won't be able to get rid of the control flow, so it's not
1672  // worth promoting to select instructions.
1673  BasicBlock *DomBlock = 0;
1674  BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
1675  BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
1676  if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
1677    IfBlock1 = 0;
1678  } else {
1679    DomBlock = *pred_begin(IfBlock1);
1680    for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I)
1681      if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1682        // This is not an aggressive instruction that we can promote.
1683        // Because of this, we won't be able to get rid of the control
1684        // flow, so the xform is not worth it.
1685        return false;
1686      }
1687  }
1688
1689  if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
1690    IfBlock2 = 0;
1691  } else {
1692    DomBlock = *pred_begin(IfBlock2);
1693    for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I)
1694      if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1695        // This is not an aggressive instruction that we can promote.
1696        // Because of this, we won't be able to get rid of the control
1697        // flow, so the xform is not worth it.
1698        return false;
1699      }
1700  }
1701
1702  DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond << "  T: "
1703               << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
1704
1705  // If we can still promote the PHI nodes after this gauntlet of tests,
1706  // do all of the PHI's now.
1707  Instruction *InsertPt = DomBlock->getTerminator();
1708  IRBuilder<true, NoFolder> Builder(InsertPt);
1709
1710  // Move all 'aggressive' instructions, which are defined in the
1711  // conditional parts of the if's up to the dominating block.
1712  if (IfBlock1)
1713    DomBlock->getInstList().splice(InsertPt,
1714                                   IfBlock1->getInstList(), IfBlock1->begin(),
1715                                   IfBlock1->getTerminator());
1716  if (IfBlock2)
1717    DomBlock->getInstList().splice(InsertPt,
1718                                   IfBlock2->getInstList(), IfBlock2->begin(),
1719                                   IfBlock2->getTerminator());
1720
1721  while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
1722    // Change the PHI node into a select instruction.
1723    Value *TrueVal  = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
1724    Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
1725
1726    SelectInst *NV =
1727      cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, ""));
1728    PN->replaceAllUsesWith(NV);
1729    NV->takeName(PN);
1730    PN->eraseFromParent();
1731  }
1732
1733  // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
1734  // has been flattened.  Change DomBlock to jump directly to our new block to
1735  // avoid other simplifycfg's kicking in on the diamond.
1736  TerminatorInst *OldTI = DomBlock->getTerminator();
1737  Builder.SetInsertPoint(OldTI);
1738  Builder.CreateBr(BB);
1739  OldTI->eraseFromParent();
1740  return true;
1741}
1742
1743/// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes
1744/// to two returning blocks, try to merge them together into one return,
1745/// introducing a select if the return values disagree.
1746static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
1747                                           IRBuilder<> &Builder) {
1748  assert(BI->isConditional() && "Must be a conditional branch");
1749  BasicBlock *TrueSucc = BI->getSuccessor(0);
1750  BasicBlock *FalseSucc = BI->getSuccessor(1);
1751  ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
1752  ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
1753
1754  // Check to ensure both blocks are empty (just a return) or optionally empty
1755  // with PHI nodes.  If there are other instructions, merging would cause extra
1756  // computation on one path or the other.
1757  if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
1758    return false;
1759  if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
1760    return false;
1761
1762  Builder.SetInsertPoint(BI);
1763  // Okay, we found a branch that is going to two return nodes.  If
1764  // there is no return value for this function, just change the
1765  // branch into a return.
1766  if (FalseRet->getNumOperands() == 0) {
1767    TrueSucc->removePredecessor(BI->getParent());
1768    FalseSucc->removePredecessor(BI->getParent());
1769    Builder.CreateRetVoid();
1770    EraseTerminatorInstAndDCECond(BI);
1771    return true;
1772  }
1773
1774  // Otherwise, figure out what the true and false return values are
1775  // so we can insert a new select instruction.
1776  Value *TrueValue = TrueRet->getReturnValue();
1777  Value *FalseValue = FalseRet->getReturnValue();
1778
1779  // Unwrap any PHI nodes in the return blocks.
1780  if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
1781    if (TVPN->getParent() == TrueSucc)
1782      TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
1783  if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
1784    if (FVPN->getParent() == FalseSucc)
1785      FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
1786
1787  // In order for this transformation to be safe, we must be able to
1788  // unconditionally execute both operands to the return.  This is
1789  // normally the case, but we could have a potentially-trapping
1790  // constant expression that prevents this transformation from being
1791  // safe.
1792  if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
1793    if (TCV->canTrap())
1794      return false;
1795  if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
1796    if (FCV->canTrap())
1797      return false;
1798
1799  // Okay, we collected all the mapped values and checked them for sanity, and
1800  // defined to really do this transformation.  First, update the CFG.
1801  TrueSucc->removePredecessor(BI->getParent());
1802  FalseSucc->removePredecessor(BI->getParent());
1803
1804  // Insert select instructions where needed.
1805  Value *BrCond = BI->getCondition();
1806  if (TrueValue) {
1807    // Insert a select if the results differ.
1808    if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
1809    } else if (isa<UndefValue>(TrueValue)) {
1810      TrueValue = FalseValue;
1811    } else {
1812      TrueValue = Builder.CreateSelect(BrCond, TrueValue,
1813                                       FalseValue, "retval");
1814    }
1815  }
1816
1817  Value *RI = !TrueValue ?
1818    Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
1819
1820  (void) RI;
1821
1822  DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
1823               << "\n  " << *BI << "NewRet = " << *RI
1824               << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc);
1825
1826  EraseTerminatorInstAndDCECond(BI);
1827
1828  return true;
1829}
1830
1831/// ExtractBranchMetadata - Given a conditional BranchInstruction, retrieve the
1832/// probabilities of the branch taking each edge. Fills in the two APInt
1833/// parameters and return true, or returns false if no or invalid metadata was
1834/// found.
1835static bool ExtractBranchMetadata(BranchInst *BI,
1836                                  uint64_t &ProbTrue, uint64_t &ProbFalse) {
1837  assert(BI->isConditional() &&
1838         "Looking for probabilities on unconditional branch?");
1839  MDNode *ProfileData = BI->getMetadata(LLVMContext::MD_prof);
1840  if (!ProfileData || ProfileData->getNumOperands() != 3) return false;
1841  ConstantInt *CITrue = dyn_cast<ConstantInt>(ProfileData->getOperand(1));
1842  ConstantInt *CIFalse = dyn_cast<ConstantInt>(ProfileData->getOperand(2));
1843  if (!CITrue || !CIFalse) return false;
1844  ProbTrue = CITrue->getValue().getZExtValue();
1845  ProbFalse = CIFalse->getValue().getZExtValue();
1846  return true;
1847}
1848
1849/// checkCSEInPredecessor - Return true if the given instruction is available
1850/// in its predecessor block. If yes, the instruction will be removed.
1851///
1852static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) {
1853  if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
1854    return false;
1855  for (BasicBlock::iterator I = PB->begin(), E = PB->end(); I != E; I++) {
1856    Instruction *PBI = &*I;
1857    // Check whether Inst and PBI generate the same value.
1858    if (Inst->isIdenticalTo(PBI)) {
1859      Inst->replaceAllUsesWith(PBI);
1860      Inst->eraseFromParent();
1861      return true;
1862    }
1863  }
1864  return false;
1865}
1866
1867/// FoldBranchToCommonDest - If this basic block is simple enough, and if a
1868/// predecessor branches to us and one of our successors, fold the block into
1869/// the predecessor and use logical operations to pick the right destination.
1870bool llvm::FoldBranchToCommonDest(BranchInst *BI) {
1871  BasicBlock *BB = BI->getParent();
1872
1873  Instruction *Cond = 0;
1874  if (BI->isConditional())
1875    Cond = dyn_cast<Instruction>(BI->getCondition());
1876  else {
1877    // For unconditional branch, check for a simple CFG pattern, where
1878    // BB has a single predecessor and BB's successor is also its predecessor's
1879    // successor. If such pattern exisits, check for CSE between BB and its
1880    // predecessor.
1881    if (BasicBlock *PB = BB->getSinglePredecessor())
1882      if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
1883        if (PBI->isConditional() &&
1884            (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
1885             BI->getSuccessor(0) == PBI->getSuccessor(1))) {
1886          for (BasicBlock::iterator I = BB->begin(), E = BB->end();
1887               I != E; ) {
1888            Instruction *Curr = I++;
1889            if (isa<CmpInst>(Curr)) {
1890              Cond = Curr;
1891              break;
1892            }
1893            // Quit if we can't remove this instruction.
1894            if (!checkCSEInPredecessor(Curr, PB))
1895              return false;
1896          }
1897        }
1898
1899    if (Cond == 0)
1900      return false;
1901  }
1902
1903  if (Cond == 0 || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
1904    Cond->getParent() != BB || !Cond->hasOneUse())
1905  return false;
1906
1907  // Only allow this if the condition is a simple instruction that can be
1908  // executed unconditionally.  It must be in the same block as the branch, and
1909  // must be at the front of the block.
1910  BasicBlock::iterator FrontIt = BB->front();
1911
1912  // Ignore dbg intrinsics.
1913  while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
1914
1915  // Allow a single instruction to be hoisted in addition to the compare
1916  // that feeds the branch.  We later ensure that any values that _it_ uses
1917  // were also live in the predecessor, so that we don't unnecessarily create
1918  // register pressure or inhibit out-of-order execution.
1919  Instruction *BonusInst = 0;
1920  if (&*FrontIt != Cond &&
1921      FrontIt->hasOneUse() && *FrontIt->use_begin() == Cond &&
1922      isSafeToSpeculativelyExecute(FrontIt)) {
1923    BonusInst = &*FrontIt;
1924    ++FrontIt;
1925
1926    // Ignore dbg intrinsics.
1927    while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
1928  }
1929
1930  // Only a single bonus inst is allowed.
1931  if (&*FrontIt != Cond)
1932    return false;
1933
1934  // Make sure the instruction after the condition is the cond branch.
1935  BasicBlock::iterator CondIt = Cond; ++CondIt;
1936
1937  // Ingore dbg intrinsics.
1938  while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt;
1939
1940  if (&*CondIt != BI)
1941    return false;
1942
1943  // Cond is known to be a compare or binary operator.  Check to make sure that
1944  // neither operand is a potentially-trapping constant expression.
1945  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
1946    if (CE->canTrap())
1947      return false;
1948  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
1949    if (CE->canTrap())
1950      return false;
1951
1952  // Finally, don't infinitely unroll conditional loops.
1953  BasicBlock *TrueDest  = BI->getSuccessor(0);
1954  BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : 0;
1955  if (TrueDest == BB || FalseDest == BB)
1956    return false;
1957
1958  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1959    BasicBlock *PredBlock = *PI;
1960    BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
1961
1962    // Check that we have two conditional branches.  If there is a PHI node in
1963    // the common successor, verify that the same value flows in from both
1964    // blocks.
1965    SmallVector<PHINode*, 4> PHIs;
1966    if (PBI == 0 || PBI->isUnconditional() ||
1967        (BI->isConditional() &&
1968         !SafeToMergeTerminators(BI, PBI)) ||
1969        (!BI->isConditional() &&
1970         !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
1971      continue;
1972
1973    // Determine if the two branches share a common destination.
1974    Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
1975    bool InvertPredCond = false;
1976
1977    if (BI->isConditional()) {
1978      if (PBI->getSuccessor(0) == TrueDest)
1979        Opc = Instruction::Or;
1980      else if (PBI->getSuccessor(1) == FalseDest)
1981        Opc = Instruction::And;
1982      else if (PBI->getSuccessor(0) == FalseDest)
1983        Opc = Instruction::And, InvertPredCond = true;
1984      else if (PBI->getSuccessor(1) == TrueDest)
1985        Opc = Instruction::Or, InvertPredCond = true;
1986      else
1987        continue;
1988    } else {
1989      if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
1990        continue;
1991    }
1992
1993    // Ensure that any values used in the bonus instruction are also used
1994    // by the terminator of the predecessor.  This means that those values
1995    // must already have been resolved, so we won't be inhibiting the
1996    // out-of-order core by speculating them earlier.
1997    if (BonusInst) {
1998      // Collect the values used by the bonus inst
1999      SmallPtrSet<Value*, 4> UsedValues;
2000      for (Instruction::op_iterator OI = BonusInst->op_begin(),
2001           OE = BonusInst->op_end(); OI != OE; ++OI) {
2002        Value *V = *OI;
2003        if (!isa<Constant>(V))
2004          UsedValues.insert(V);
2005      }
2006
2007      SmallVector<std::pair<Value*, unsigned>, 4> Worklist;
2008      Worklist.push_back(std::make_pair(PBI->getOperand(0), 0));
2009
2010      // Walk up to four levels back up the use-def chain of the predecessor's
2011      // terminator to see if all those values were used.  The choice of four
2012      // levels is arbitrary, to provide a compile-time-cost bound.
2013      while (!Worklist.empty()) {
2014        std::pair<Value*, unsigned> Pair = Worklist.back();
2015        Worklist.pop_back();
2016
2017        if (Pair.second >= 4) continue;
2018        UsedValues.erase(Pair.first);
2019        if (UsedValues.empty()) break;
2020
2021        if (Instruction *I = dyn_cast<Instruction>(Pair.first)) {
2022          for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
2023               OI != OE; ++OI)
2024            Worklist.push_back(std::make_pair(OI->get(), Pair.second+1));
2025        }
2026      }
2027
2028      if (!UsedValues.empty()) return false;
2029    }
2030
2031    DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2032    IRBuilder<> Builder(PBI);
2033
2034    // If we need to invert the condition in the pred block to match, do so now.
2035    if (InvertPredCond) {
2036      Value *NewCond = PBI->getCondition();
2037
2038      if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2039        CmpInst *CI = cast<CmpInst>(NewCond);
2040        CI->setPredicate(CI->getInversePredicate());
2041      } else {
2042        NewCond = Builder.CreateNot(NewCond,
2043                                    PBI->getCondition()->getName()+".not");
2044      }
2045
2046      PBI->setCondition(NewCond);
2047      PBI->swapSuccessors();
2048    }
2049
2050    // If we have a bonus inst, clone it into the predecessor block.
2051    Instruction *NewBonus = 0;
2052    if (BonusInst) {
2053      NewBonus = BonusInst->clone();
2054      PredBlock->getInstList().insert(PBI, NewBonus);
2055      NewBonus->takeName(BonusInst);
2056      BonusInst->setName(BonusInst->getName()+".old");
2057    }
2058
2059    // Clone Cond into the predecessor basic block, and or/and the
2060    // two conditions together.
2061    Instruction *New = Cond->clone();
2062    if (BonusInst) New->replaceUsesOfWith(BonusInst, NewBonus);
2063    PredBlock->getInstList().insert(PBI, New);
2064    New->takeName(Cond);
2065    Cond->setName(New->getName()+".old");
2066
2067    if (BI->isConditional()) {
2068      Instruction *NewCond =
2069        cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(),
2070                                            New, "or.cond"));
2071      PBI->setCondition(NewCond);
2072
2073      uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2074      bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight,
2075                                                  PredFalseWeight);
2076      bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight,
2077                                                  SuccFalseWeight);
2078      SmallVector<uint64_t, 8> NewWeights;
2079
2080      if (PBI->getSuccessor(0) == BB) {
2081        if (PredHasWeights && SuccHasWeights) {
2082          // PBI: br i1 %x, BB, FalseDest
2083          // BI:  br i1 %y, TrueDest, FalseDest
2084          //TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2085          NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2086          //FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2087          //               TrueWeight for PBI * FalseWeight for BI.
2088          // We assume that total weights of a BranchInst can fit into 32 bits.
2089          // Therefore, we will not have overflow using 64-bit arithmetic.
2090          NewWeights.push_back(PredFalseWeight * (SuccFalseWeight +
2091               SuccTrueWeight) + PredTrueWeight * SuccFalseWeight);
2092        }
2093        AddPredecessorToBlock(TrueDest, PredBlock, BB);
2094        PBI->setSuccessor(0, TrueDest);
2095      }
2096      if (PBI->getSuccessor(1) == BB) {
2097        if (PredHasWeights && SuccHasWeights) {
2098          // PBI: br i1 %x, TrueDest, BB
2099          // BI:  br i1 %y, TrueDest, FalseDest
2100          //TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2101          //              FalseWeight for PBI * TrueWeight for BI.
2102          NewWeights.push_back(PredTrueWeight * (SuccFalseWeight +
2103              SuccTrueWeight) + PredFalseWeight * SuccTrueWeight);
2104          //FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2105          NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2106        }
2107        AddPredecessorToBlock(FalseDest, PredBlock, BB);
2108        PBI->setSuccessor(1, FalseDest);
2109      }
2110      if (NewWeights.size() == 2) {
2111        // Halve the weights if any of them cannot fit in an uint32_t
2112        FitWeights(NewWeights);
2113
2114        SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),NewWeights.end());
2115        PBI->setMetadata(LLVMContext::MD_prof,
2116                         MDBuilder(BI->getContext()).
2117                         createBranchWeights(MDWeights));
2118      } else
2119        PBI->setMetadata(LLVMContext::MD_prof, NULL);
2120    } else {
2121      // Update PHI nodes in the common successors.
2122      for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
2123        ConstantInt *PBI_C = cast<ConstantInt>(
2124          PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
2125        assert(PBI_C->getType()->isIntegerTy(1));
2126        Instruction *MergedCond = 0;
2127        if (PBI->getSuccessor(0) == TrueDest) {
2128          // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2129          // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2130          //       is false: !PBI_Cond and BI_Value
2131          Instruction *NotCond =
2132            cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
2133                                "not.cond"));
2134          MergedCond =
2135            cast<Instruction>(Builder.CreateBinOp(Instruction::And,
2136                                NotCond, New,
2137                                "and.cond"));
2138          if (PBI_C->isOne())
2139            MergedCond =
2140              cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
2141                                  PBI->getCondition(), MergedCond,
2142                                  "or.cond"));
2143        } else {
2144          // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2145          // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2146          //       is false: PBI_Cond and BI_Value
2147          MergedCond =
2148            cast<Instruction>(Builder.CreateBinOp(Instruction::And,
2149                                PBI->getCondition(), New,
2150                                "and.cond"));
2151          if (PBI_C->isOne()) {
2152            Instruction *NotCond =
2153              cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
2154                                  "not.cond"));
2155            MergedCond =
2156              cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
2157                                  NotCond, MergedCond,
2158                                  "or.cond"));
2159          }
2160        }
2161        // Update PHI Node.
2162        PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
2163                                  MergedCond);
2164      }
2165      // Change PBI from Conditional to Unconditional.
2166      BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
2167      EraseTerminatorInstAndDCECond(PBI);
2168      PBI = New_PBI;
2169    }
2170
2171    // TODO: If BB is reachable from all paths through PredBlock, then we
2172    // could replace PBI's branch probabilities with BI's.
2173
2174    // Copy any debug value intrinsics into the end of PredBlock.
2175    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
2176      if (isa<DbgInfoIntrinsic>(*I))
2177        I->clone()->insertBefore(PBI);
2178
2179    return true;
2180  }
2181  return false;
2182}
2183
2184/// SimplifyCondBranchToCondBranch - If we have a conditional branch as a
2185/// predecessor of another block, this function tries to simplify it.  We know
2186/// that PBI and BI are both conditional branches, and BI is in one of the
2187/// successor blocks of PBI - PBI branches to BI.
2188static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
2189  assert(PBI->isConditional() && BI->isConditional());
2190  BasicBlock *BB = BI->getParent();
2191
2192  // If this block ends with a branch instruction, and if there is a
2193  // predecessor that ends on a branch of the same condition, make
2194  // this conditional branch redundant.
2195  if (PBI->getCondition() == BI->getCondition() &&
2196      PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
2197    // Okay, the outcome of this conditional branch is statically
2198    // knowable.  If this block had a single pred, handle specially.
2199    if (BB->getSinglePredecessor()) {
2200      // Turn this into a branch on constant.
2201      bool CondIsTrue = PBI->getSuccessor(0) == BB;
2202      BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
2203                                        CondIsTrue));
2204      return true;  // Nuke the branch on constant.
2205    }
2206
2207    // Otherwise, if there are multiple predecessors, insert a PHI that merges
2208    // in the constant and simplify the block result.  Subsequent passes of
2209    // simplifycfg will thread the block.
2210    if (BlockIsSimpleEnoughToThreadThrough(BB)) {
2211      pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
2212      PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()),
2213                                       std::distance(PB, PE),
2214                                       BI->getCondition()->getName() + ".pr",
2215                                       BB->begin());
2216      // Okay, we're going to insert the PHI node.  Since PBI is not the only
2217      // predecessor, compute the PHI'd conditional value for all of the preds.
2218      // Any predecessor where the condition is not computable we keep symbolic.
2219      for (pred_iterator PI = PB; PI != PE; ++PI) {
2220        BasicBlock *P = *PI;
2221        if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) &&
2222            PBI != BI && PBI->isConditional() &&
2223            PBI->getCondition() == BI->getCondition() &&
2224            PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
2225          bool CondIsTrue = PBI->getSuccessor(0) == BB;
2226          NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
2227                                              CondIsTrue), P);
2228        } else {
2229          NewPN->addIncoming(BI->getCondition(), P);
2230        }
2231      }
2232
2233      BI->setCondition(NewPN);
2234      return true;
2235    }
2236  }
2237
2238  // If this is a conditional branch in an empty block, and if any
2239  // predecessors is a conditional branch to one of our destinations,
2240  // fold the conditions into logical ops and one cond br.
2241  BasicBlock::iterator BBI = BB->begin();
2242  // Ignore dbg intrinsics.
2243  while (isa<DbgInfoIntrinsic>(BBI))
2244    ++BBI;
2245  if (&*BBI != BI)
2246    return false;
2247
2248
2249  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
2250    if (CE->canTrap())
2251      return false;
2252
2253  int PBIOp, BIOp;
2254  if (PBI->getSuccessor(0) == BI->getSuccessor(0))
2255    PBIOp = BIOp = 0;
2256  else if (PBI->getSuccessor(0) == BI->getSuccessor(1))
2257    PBIOp = 0, BIOp = 1;
2258  else if (PBI->getSuccessor(1) == BI->getSuccessor(0))
2259    PBIOp = 1, BIOp = 0;
2260  else if (PBI->getSuccessor(1) == BI->getSuccessor(1))
2261    PBIOp = BIOp = 1;
2262  else
2263    return false;
2264
2265  // Check to make sure that the other destination of this branch
2266  // isn't BB itself.  If so, this is an infinite loop that will
2267  // keep getting unwound.
2268  if (PBI->getSuccessor(PBIOp) == BB)
2269    return false;
2270
2271  // Do not perform this transformation if it would require
2272  // insertion of a large number of select instructions. For targets
2273  // without predication/cmovs, this is a big pessimization.
2274  BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
2275
2276  unsigned NumPhis = 0;
2277  for (BasicBlock::iterator II = CommonDest->begin();
2278       isa<PHINode>(II); ++II, ++NumPhis)
2279    if (NumPhis > 2) // Disable this xform.
2280      return false;
2281
2282  // Finally, if everything is ok, fold the branches to logical ops.
2283  BasicBlock *OtherDest  = BI->getSuccessor(BIOp ^ 1);
2284
2285  DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
2286               << "AND: " << *BI->getParent());
2287
2288
2289  // If OtherDest *is* BB, then BB is a basic block with a single conditional
2290  // branch in it, where one edge (OtherDest) goes back to itself but the other
2291  // exits.  We don't *know* that the program avoids the infinite loop
2292  // (even though that seems likely).  If we do this xform naively, we'll end up
2293  // recursively unpeeling the loop.  Since we know that (after the xform is
2294  // done) that the block *is* infinite if reached, we just make it an obviously
2295  // infinite loop with no cond branch.
2296  if (OtherDest == BB) {
2297    // Insert it at the end of the function, because it's either code,
2298    // or it won't matter if it's hot. :)
2299    BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(),
2300                                                  "infloop", BB->getParent());
2301    BranchInst::Create(InfLoopBlock, InfLoopBlock);
2302    OtherDest = InfLoopBlock;
2303  }
2304
2305  DEBUG(dbgs() << *PBI->getParent()->getParent());
2306
2307  // BI may have other predecessors.  Because of this, we leave
2308  // it alone, but modify PBI.
2309
2310  // Make sure we get to CommonDest on True&True directions.
2311  Value *PBICond = PBI->getCondition();
2312  IRBuilder<true, NoFolder> Builder(PBI);
2313  if (PBIOp)
2314    PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not");
2315
2316  Value *BICond = BI->getCondition();
2317  if (BIOp)
2318    BICond = Builder.CreateNot(BICond, BICond->getName()+".not");
2319
2320  // Merge the conditions.
2321  Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
2322
2323  // Modify PBI to branch on the new condition to the new dests.
2324  PBI->setCondition(Cond);
2325  PBI->setSuccessor(0, CommonDest);
2326  PBI->setSuccessor(1, OtherDest);
2327
2328  // Update branch weight for PBI.
2329  uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2330  bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight,
2331                                              PredFalseWeight);
2332  bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight,
2333                                              SuccFalseWeight);
2334  if (PredHasWeights && SuccHasWeights) {
2335    uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
2336    uint64_t PredOther = PBIOp ?PredTrueWeight : PredFalseWeight;
2337    uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
2338    uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
2339    // The weight to CommonDest should be PredCommon * SuccTotal +
2340    //                                    PredOther * SuccCommon.
2341    // The weight to OtherDest should be PredOther * SuccOther.
2342    SmallVector<uint64_t, 2> NewWeights;
2343    NewWeights.push_back(PredCommon * (SuccCommon + SuccOther) +
2344                         PredOther * SuccCommon);
2345    NewWeights.push_back(PredOther * SuccOther);
2346    // Halve the weights if any of them cannot fit in an uint32_t
2347    FitWeights(NewWeights);
2348
2349    SmallVector<uint32_t, 2> MDWeights(NewWeights.begin(),NewWeights.end());
2350    PBI->setMetadata(LLVMContext::MD_prof,
2351                     MDBuilder(BI->getContext()).
2352                     createBranchWeights(MDWeights));
2353  }
2354
2355  // OtherDest may have phi nodes.  If so, add an entry from PBI's
2356  // block that are identical to the entries for BI's block.
2357  AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
2358
2359  // We know that the CommonDest already had an edge from PBI to
2360  // it.  If it has PHIs though, the PHIs may have different
2361  // entries for BB and PBI's BB.  If so, insert a select to make
2362  // them agree.
2363  PHINode *PN;
2364  for (BasicBlock::iterator II = CommonDest->begin();
2365       (PN = dyn_cast<PHINode>(II)); ++II) {
2366    Value *BIV = PN->getIncomingValueForBlock(BB);
2367    unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
2368    Value *PBIV = PN->getIncomingValue(PBBIdx);
2369    if (BIV != PBIV) {
2370      // Insert a select in PBI to pick the right value.
2371      Value *NV = cast<SelectInst>
2372        (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux"));
2373      PN->setIncomingValue(PBBIdx, NV);
2374    }
2375  }
2376
2377  DEBUG(dbgs() << "INTO: " << *PBI->getParent());
2378  DEBUG(dbgs() << *PBI->getParent()->getParent());
2379
2380  // This basic block is probably dead.  We know it has at least
2381  // one fewer predecessor.
2382  return true;
2383}
2384
2385// SimplifyTerminatorOnSelect - Simplifies a terminator by replacing it with a
2386// branch to TrueBB if Cond is true or to FalseBB if Cond is false.
2387// Takes care of updating the successors and removing the old terminator.
2388// Also makes sure not to introduce new successors by assuming that edges to
2389// non-successor TrueBBs and FalseBBs aren't reachable.
2390static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
2391                                       BasicBlock *TrueBB, BasicBlock *FalseBB,
2392                                       uint32_t TrueWeight,
2393                                       uint32_t FalseWeight){
2394  // Remove any superfluous successor edges from the CFG.
2395  // First, figure out which successors to preserve.
2396  // If TrueBB and FalseBB are equal, only try to preserve one copy of that
2397  // successor.
2398  BasicBlock *KeepEdge1 = TrueBB;
2399  BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : 0;
2400
2401  // Then remove the rest.
2402  for (unsigned I = 0, E = OldTerm->getNumSuccessors(); I != E; ++I) {
2403    BasicBlock *Succ = OldTerm->getSuccessor(I);
2404    // Make sure only to keep exactly one copy of each edge.
2405    if (Succ == KeepEdge1)
2406      KeepEdge1 = 0;
2407    else if (Succ == KeepEdge2)
2408      KeepEdge2 = 0;
2409    else
2410      Succ->removePredecessor(OldTerm->getParent());
2411  }
2412
2413  IRBuilder<> Builder(OldTerm);
2414  Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
2415
2416  // Insert an appropriate new terminator.
2417  if ((KeepEdge1 == 0) && (KeepEdge2 == 0)) {
2418    if (TrueBB == FalseBB)
2419      // We were only looking for one successor, and it was present.
2420      // Create an unconditional branch to it.
2421      Builder.CreateBr(TrueBB);
2422    else {
2423      // We found both of the successors we were looking for.
2424      // Create a conditional branch sharing the condition of the select.
2425      BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
2426      if (TrueWeight != FalseWeight)
2427        NewBI->setMetadata(LLVMContext::MD_prof,
2428                           MDBuilder(OldTerm->getContext()).
2429                           createBranchWeights(TrueWeight, FalseWeight));
2430    }
2431  } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
2432    // Neither of the selected blocks were successors, so this
2433    // terminator must be unreachable.
2434    new UnreachableInst(OldTerm->getContext(), OldTerm);
2435  } else {
2436    // One of the selected values was a successor, but the other wasn't.
2437    // Insert an unconditional branch to the one that was found;
2438    // the edge to the one that wasn't must be unreachable.
2439    if (KeepEdge1 == 0)
2440      // Only TrueBB was found.
2441      Builder.CreateBr(TrueBB);
2442    else
2443      // Only FalseBB was found.
2444      Builder.CreateBr(FalseBB);
2445  }
2446
2447  EraseTerminatorInstAndDCECond(OldTerm);
2448  return true;
2449}
2450
2451// SimplifySwitchOnSelect - Replaces
2452//   (switch (select cond, X, Y)) on constant X, Y
2453// with a branch - conditional if X and Y lead to distinct BBs,
2454// unconditional otherwise.
2455static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
2456  // Check for constant integer values in the select.
2457  ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
2458  ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
2459  if (!TrueVal || !FalseVal)
2460    return false;
2461
2462  // Find the relevant condition and destinations.
2463  Value *Condition = Select->getCondition();
2464  BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor();
2465  BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor();
2466
2467  // Get weight for TrueBB and FalseBB.
2468  uint32_t TrueWeight = 0, FalseWeight = 0;
2469  SmallVector<uint64_t, 8> Weights;
2470  bool HasWeights = HasBranchWeights(SI);
2471  if (HasWeights) {
2472    GetBranchWeights(SI, Weights);
2473    if (Weights.size() == 1 + SI->getNumCases()) {
2474      TrueWeight = (uint32_t)Weights[SI->findCaseValue(TrueVal).
2475                                     getSuccessorIndex()];
2476      FalseWeight = (uint32_t)Weights[SI->findCaseValue(FalseVal).
2477                                      getSuccessorIndex()];
2478    }
2479  }
2480
2481  // Perform the actual simplification.
2482  return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB,
2483                                    TrueWeight, FalseWeight);
2484}
2485
2486// SimplifyIndirectBrOnSelect - Replaces
2487//   (indirectbr (select cond, blockaddress(@fn, BlockA),
2488//                             blockaddress(@fn, BlockB)))
2489// with
2490//   (br cond, BlockA, BlockB).
2491static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
2492  // Check that both operands of the select are block addresses.
2493  BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
2494  BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
2495  if (!TBA || !FBA)
2496    return false;
2497
2498  // Extract the actual blocks.
2499  BasicBlock *TrueBB = TBA->getBasicBlock();
2500  BasicBlock *FalseBB = FBA->getBasicBlock();
2501
2502  // Perform the actual simplification.
2503  return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB,
2504                                    0, 0);
2505}
2506
2507/// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp
2508/// instruction (a seteq/setne with a constant) as the only instruction in a
2509/// block that ends with an uncond branch.  We are looking for a very specific
2510/// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
2511/// this case, we merge the first two "or's of icmp" into a switch, but then the
2512/// default value goes to an uncond block with a seteq in it, we get something
2513/// like:
2514///
2515///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
2516/// DEFAULT:
2517///   %tmp = icmp eq i8 %A, 92
2518///   br label %end
2519/// end:
2520///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
2521///
2522/// We prefer to split the edge to 'end' so that there is a true/false entry to
2523/// the PHI, merging the third icmp into the switch.
2524static bool TryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
2525                                                  const TargetData *TD,
2526                                                  IRBuilder<> &Builder) {
2527  BasicBlock *BB = ICI->getParent();
2528
2529  // If the block has any PHIs in it or the icmp has multiple uses, it is too
2530  // complex.
2531  if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false;
2532
2533  Value *V = ICI->getOperand(0);
2534  ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
2535
2536  // The pattern we're looking for is where our only predecessor is a switch on
2537  // 'V' and this block is the default case for the switch.  In this case we can
2538  // fold the compared value into the switch to simplify things.
2539  BasicBlock *Pred = BB->getSinglePredecessor();
2540  if (Pred == 0 || !isa<SwitchInst>(Pred->getTerminator())) return false;
2541
2542  SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
2543  if (SI->getCondition() != V)
2544    return false;
2545
2546  // If BB is reachable on a non-default case, then we simply know the value of
2547  // V in this block.  Substitute it and constant fold the icmp instruction
2548  // away.
2549  if (SI->getDefaultDest() != BB) {
2550    ConstantInt *VVal = SI->findCaseDest(BB);
2551    assert(VVal && "Should have a unique destination value");
2552    ICI->setOperand(0, VVal);
2553
2554    if (Value *V = SimplifyInstruction(ICI, TD)) {
2555      ICI->replaceAllUsesWith(V);
2556      ICI->eraseFromParent();
2557    }
2558    // BB is now empty, so it is likely to simplify away.
2559    return SimplifyCFG(BB) | true;
2560  }
2561
2562  // Ok, the block is reachable from the default dest.  If the constant we're
2563  // comparing exists in one of the other edges, then we can constant fold ICI
2564  // and zap it.
2565  if (SI->findCaseValue(Cst) != SI->case_default()) {
2566    Value *V;
2567    if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
2568      V = ConstantInt::getFalse(BB->getContext());
2569    else
2570      V = ConstantInt::getTrue(BB->getContext());
2571
2572    ICI->replaceAllUsesWith(V);
2573    ICI->eraseFromParent();
2574    // BB is now empty, so it is likely to simplify away.
2575    return SimplifyCFG(BB) | true;
2576  }
2577
2578  // The use of the icmp has to be in the 'end' block, by the only PHI node in
2579  // the block.
2580  BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
2581  PHINode *PHIUse = dyn_cast<PHINode>(ICI->use_back());
2582  if (PHIUse == 0 || PHIUse != &SuccBlock->front() ||
2583      isa<PHINode>(++BasicBlock::iterator(PHIUse)))
2584    return false;
2585
2586  // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
2587  // true in the PHI.
2588  Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
2589  Constant *NewCst     = ConstantInt::getFalse(BB->getContext());
2590
2591  if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
2592    std::swap(DefaultCst, NewCst);
2593
2594  // Replace ICI (which is used by the PHI for the default value) with true or
2595  // false depending on if it is EQ or NE.
2596  ICI->replaceAllUsesWith(DefaultCst);
2597  ICI->eraseFromParent();
2598
2599  // Okay, the switch goes to this block on a default value.  Add an edge from
2600  // the switch to the merge point on the compared value.
2601  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge",
2602                                         BB->getParent(), BB);
2603  SmallVector<uint64_t, 8> Weights;
2604  bool HasWeights = HasBranchWeights(SI);
2605  if (HasWeights) {
2606    GetBranchWeights(SI, Weights);
2607    if (Weights.size() == 1 + SI->getNumCases()) {
2608      // Split weight for default case to case for "Cst".
2609      Weights[0] = (Weights[0]+1) >> 1;
2610      Weights.push_back(Weights[0]);
2611
2612      SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
2613      SI->setMetadata(LLVMContext::MD_prof,
2614                      MDBuilder(SI->getContext()).
2615                      createBranchWeights(MDWeights));
2616    }
2617  }
2618  SI->addCase(Cst, NewBB);
2619
2620  // NewBB branches to the phi block, add the uncond branch and the phi entry.
2621  Builder.SetInsertPoint(NewBB);
2622  Builder.SetCurrentDebugLocation(SI->getDebugLoc());
2623  Builder.CreateBr(SuccBlock);
2624  PHIUse->addIncoming(NewCst, NewBB);
2625  return true;
2626}
2627
2628/// SimplifyBranchOnICmpChain - The specified branch is a conditional branch.
2629/// Check to see if it is branching on an or/and chain of icmp instructions, and
2630/// fold it into a switch instruction if so.
2631static bool SimplifyBranchOnICmpChain(BranchInst *BI, const TargetData *TD,
2632                                      IRBuilder<> &Builder) {
2633  Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
2634  if (Cond == 0) return false;
2635
2636
2637  // Change br (X == 0 | X == 1), T, F into a switch instruction.
2638  // If this is a bunch of seteq's or'd together, or if it's a bunch of
2639  // 'setne's and'ed together, collect them.
2640  Value *CompVal = 0;
2641  std::vector<ConstantInt*> Values;
2642  bool TrueWhenEqual = true;
2643  Value *ExtraCase = 0;
2644  unsigned UsedICmps = 0;
2645
2646  if (Cond->getOpcode() == Instruction::Or) {
2647    CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, true,
2648                                     UsedICmps);
2649  } else if (Cond->getOpcode() == Instruction::And) {
2650    CompVal = GatherConstantCompares(Cond, Values, ExtraCase, TD, false,
2651                                     UsedICmps);
2652    TrueWhenEqual = false;
2653  }
2654
2655  // If we didn't have a multiply compared value, fail.
2656  if (CompVal == 0) return false;
2657
2658  // Avoid turning single icmps into a switch.
2659  if (UsedICmps <= 1)
2660    return false;
2661
2662  // There might be duplicate constants in the list, which the switch
2663  // instruction can't handle, remove them now.
2664  array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
2665  Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
2666
2667  // If Extra was used, we require at least two switch values to do the
2668  // transformation.  A switch with one value is just an cond branch.
2669  if (ExtraCase && Values.size() < 2) return false;
2670
2671  // TODO: Preserve branch weight metadata, similarly to how
2672  // FoldValueComparisonIntoPredecessors preserves it.
2673
2674  // Figure out which block is which destination.
2675  BasicBlock *DefaultBB = BI->getSuccessor(1);
2676  BasicBlock *EdgeBB    = BI->getSuccessor(0);
2677  if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
2678
2679  BasicBlock *BB = BI->getParent();
2680
2681  DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
2682               << " cases into SWITCH.  BB is:\n" << *BB);
2683
2684  // If there are any extra values that couldn't be folded into the switch
2685  // then we evaluate them with an explicit branch first.  Split the block
2686  // right before the condbr to handle it.
2687  if (ExtraCase) {
2688    BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test");
2689    // Remove the uncond branch added to the old block.
2690    TerminatorInst *OldTI = BB->getTerminator();
2691    Builder.SetInsertPoint(OldTI);
2692
2693    if (TrueWhenEqual)
2694      Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
2695    else
2696      Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
2697
2698    OldTI->eraseFromParent();
2699
2700    // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
2701    // for the edge we just added.
2702    AddPredecessorToBlock(EdgeBB, BB, NewBB);
2703
2704    DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
2705          << "\nEXTRABB = " << *BB);
2706    BB = NewBB;
2707  }
2708
2709  Builder.SetInsertPoint(BI);
2710  // Convert pointer to int before we switch.
2711  if (CompVal->getType()->isPointerTy()) {
2712    assert(TD && "Cannot switch on pointer without TargetData");
2713    CompVal = Builder.CreatePtrToInt(CompVal,
2714                                     TD->getIntPtrType(CompVal->getContext()),
2715                                     "magicptr");
2716  }
2717
2718  // Create the new switch instruction now.
2719  SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
2720
2721  // Add all of the 'cases' to the switch instruction.
2722  for (unsigned i = 0, e = Values.size(); i != e; ++i)
2723    New->addCase(Values[i], EdgeBB);
2724
2725  // We added edges from PI to the EdgeBB.  As such, if there were any
2726  // PHI nodes in EdgeBB, they need entries to be added corresponding to
2727  // the number of edges added.
2728  for (BasicBlock::iterator BBI = EdgeBB->begin();
2729       isa<PHINode>(BBI); ++BBI) {
2730    PHINode *PN = cast<PHINode>(BBI);
2731    Value *InVal = PN->getIncomingValueForBlock(BB);
2732    for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
2733      PN->addIncoming(InVal, BB);
2734  }
2735
2736  // Erase the old branch instruction.
2737  EraseTerminatorInstAndDCECond(BI);
2738
2739  DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
2740  return true;
2741}
2742
2743bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
2744  // If this is a trivial landing pad that just continues unwinding the caught
2745  // exception then zap the landing pad, turning its invokes into calls.
2746  BasicBlock *BB = RI->getParent();
2747  LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
2748  if (RI->getValue() != LPInst)
2749    // Not a landing pad, or the resume is not unwinding the exception that
2750    // caused control to branch here.
2751    return false;
2752
2753  // Check that there are no other instructions except for debug intrinsics.
2754  BasicBlock::iterator I = LPInst, E = RI;
2755  while (++I != E)
2756    if (!isa<DbgInfoIntrinsic>(I))
2757      return false;
2758
2759  // Turn all invokes that unwind here into calls and delete the basic block.
2760  for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
2761    InvokeInst *II = cast<InvokeInst>((*PI++)->getTerminator());
2762    SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3);
2763    // Insert a call instruction before the invoke.
2764    CallInst *Call = CallInst::Create(II->getCalledValue(), Args, "", II);
2765    Call->takeName(II);
2766    Call->setCallingConv(II->getCallingConv());
2767    Call->setAttributes(II->getAttributes());
2768    Call->setDebugLoc(II->getDebugLoc());
2769
2770    // Anything that used the value produced by the invoke instruction now uses
2771    // the value produced by the call instruction.  Note that we do this even
2772    // for void functions and calls with no uses so that the callgraph edge is
2773    // updated.
2774    II->replaceAllUsesWith(Call);
2775    BB->removePredecessor(II->getParent());
2776
2777    // Insert a branch to the normal destination right before the invoke.
2778    BranchInst::Create(II->getNormalDest(), II);
2779
2780    // Finally, delete the invoke instruction!
2781    II->eraseFromParent();
2782  }
2783
2784  // The landingpad is now unreachable.  Zap it.
2785  BB->eraseFromParent();
2786  return true;
2787}
2788
2789bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
2790  BasicBlock *BB = RI->getParent();
2791  if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
2792
2793  // Find predecessors that end with branches.
2794  SmallVector<BasicBlock*, 8> UncondBranchPreds;
2795  SmallVector<BranchInst*, 8> CondBranchPreds;
2796  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2797    BasicBlock *P = *PI;
2798    TerminatorInst *PTI = P->getTerminator();
2799    if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
2800      if (BI->isUnconditional())
2801        UncondBranchPreds.push_back(P);
2802      else
2803        CondBranchPreds.push_back(BI);
2804    }
2805  }
2806
2807  // If we found some, do the transformation!
2808  if (!UncondBranchPreds.empty() && DupRet) {
2809    while (!UncondBranchPreds.empty()) {
2810      BasicBlock *Pred = UncondBranchPreds.pop_back_val();
2811      DEBUG(dbgs() << "FOLDING: " << *BB
2812            << "INTO UNCOND BRANCH PRED: " << *Pred);
2813      (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
2814    }
2815
2816    // If we eliminated all predecessors of the block, delete the block now.
2817    if (pred_begin(BB) == pred_end(BB))
2818      // We know there are no successors, so just nuke the block.
2819      BB->eraseFromParent();
2820
2821    return true;
2822  }
2823
2824  // Check out all of the conditional branches going to this return
2825  // instruction.  If any of them just select between returns, change the
2826  // branch itself into a select/return pair.
2827  while (!CondBranchPreds.empty()) {
2828    BranchInst *BI = CondBranchPreds.pop_back_val();
2829
2830    // Check to see if the non-BB successor is also a return block.
2831    if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
2832        isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
2833        SimplifyCondBranchToTwoReturns(BI, Builder))
2834      return true;
2835  }
2836  return false;
2837}
2838
2839bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
2840  BasicBlock *BB = UI->getParent();
2841
2842  bool Changed = false;
2843
2844  // If there are any instructions immediately before the unreachable that can
2845  // be removed, do so.
2846  while (UI != BB->begin()) {
2847    BasicBlock::iterator BBI = UI;
2848    --BBI;
2849    // Do not delete instructions that can have side effects which might cause
2850    // the unreachable to not be reachable; specifically, calls and volatile
2851    // operations may have this effect.
2852    if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break;
2853
2854    if (BBI->mayHaveSideEffects()) {
2855      if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
2856        if (SI->isVolatile())
2857          break;
2858      } else if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
2859        if (LI->isVolatile())
2860          break;
2861      } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
2862        if (RMWI->isVolatile())
2863          break;
2864      } else if (AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
2865        if (CXI->isVolatile())
2866          break;
2867      } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
2868                 !isa<LandingPadInst>(BBI)) {
2869        break;
2870      }
2871      // Note that deleting LandingPad's here is in fact okay, although it
2872      // involves a bit of subtle reasoning. If this inst is a LandingPad,
2873      // all the predecessors of this block will be the unwind edges of Invokes,
2874      // and we can therefore guarantee this block will be erased.
2875    }
2876
2877    // Delete this instruction (any uses are guaranteed to be dead)
2878    if (!BBI->use_empty())
2879      BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
2880    BBI->eraseFromParent();
2881    Changed = true;
2882  }
2883
2884  // If the unreachable instruction is the first in the block, take a gander
2885  // at all of the predecessors of this instruction, and simplify them.
2886  if (&BB->front() != UI) return Changed;
2887
2888  SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
2889  for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
2890    TerminatorInst *TI = Preds[i]->getTerminator();
2891    IRBuilder<> Builder(TI);
2892    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
2893      if (BI->isUnconditional()) {
2894        if (BI->getSuccessor(0) == BB) {
2895          new UnreachableInst(TI->getContext(), TI);
2896          TI->eraseFromParent();
2897          Changed = true;
2898        }
2899      } else {
2900        if (BI->getSuccessor(0) == BB) {
2901          Builder.CreateBr(BI->getSuccessor(1));
2902          EraseTerminatorInstAndDCECond(BI);
2903        } else if (BI->getSuccessor(1) == BB) {
2904          Builder.CreateBr(BI->getSuccessor(0));
2905          EraseTerminatorInstAndDCECond(BI);
2906          Changed = true;
2907        }
2908      }
2909    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
2910      for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
2911           i != e; ++i)
2912        if (i.getCaseSuccessor() == BB) {
2913          BB->removePredecessor(SI->getParent());
2914          SI->removeCase(i);
2915          --i; --e;
2916          Changed = true;
2917        }
2918      // If the default value is unreachable, figure out the most popular
2919      // destination and make it the default.
2920      if (SI->getDefaultDest() == BB) {
2921        std::map<BasicBlock*, std::pair<unsigned, unsigned> > Popularity;
2922        for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
2923             i != e; ++i) {
2924          std::pair<unsigned, unsigned> &entry =
2925              Popularity[i.getCaseSuccessor()];
2926          if (entry.first == 0) {
2927            entry.first = 1;
2928            entry.second = i.getCaseIndex();
2929          } else {
2930            entry.first++;
2931          }
2932        }
2933
2934        // Find the most popular block.
2935        unsigned MaxPop = 0;
2936        unsigned MaxIndex = 0;
2937        BasicBlock *MaxBlock = 0;
2938        for (std::map<BasicBlock*, std::pair<unsigned, unsigned> >::iterator
2939             I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
2940          if (I->second.first > MaxPop ||
2941              (I->second.first == MaxPop && MaxIndex > I->second.second)) {
2942            MaxPop = I->second.first;
2943            MaxIndex = I->second.second;
2944            MaxBlock = I->first;
2945          }
2946        }
2947        if (MaxBlock) {
2948          // Make this the new default, allowing us to delete any explicit
2949          // edges to it.
2950          SI->setDefaultDest(MaxBlock);
2951          Changed = true;
2952
2953          // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
2954          // it.
2955          if (isa<PHINode>(MaxBlock->begin()))
2956            for (unsigned i = 0; i != MaxPop-1; ++i)
2957              MaxBlock->removePredecessor(SI->getParent());
2958
2959          for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
2960               i != e; ++i)
2961            if (i.getCaseSuccessor() == MaxBlock) {
2962              SI->removeCase(i);
2963              --i; --e;
2964            }
2965        }
2966      }
2967    } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
2968      if (II->getUnwindDest() == BB) {
2969        // Convert the invoke to a call instruction.  This would be a good
2970        // place to note that the call does not throw though.
2971        BranchInst *BI = Builder.CreateBr(II->getNormalDest());
2972        II->removeFromParent();   // Take out of symbol table
2973
2974        // Insert the call now...
2975        SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3);
2976        Builder.SetInsertPoint(BI);
2977        CallInst *CI = Builder.CreateCall(II->getCalledValue(),
2978                                          Args, II->getName());
2979        CI->setCallingConv(II->getCallingConv());
2980        CI->setAttributes(II->getAttributes());
2981        // If the invoke produced a value, the call does now instead.
2982        II->replaceAllUsesWith(CI);
2983        delete II;
2984        Changed = true;
2985      }
2986    }
2987  }
2988
2989  // If this block is now dead, remove it.
2990  if (pred_begin(BB) == pred_end(BB) &&
2991      BB != &BB->getParent()->getEntryBlock()) {
2992    // We know there are no successors, so just nuke the block.
2993    BB->eraseFromParent();
2994    return true;
2995  }
2996
2997  return Changed;
2998}
2999
3000/// TurnSwitchRangeIntoICmp - Turns a switch with that contains only a
3001/// integer range comparison into a sub, an icmp and a branch.
3002static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
3003  assert(SI->getNumCases() > 1 && "Degenerate switch?");
3004
3005  // Make sure all cases point to the same destination and gather the values.
3006  SmallVector<ConstantInt *, 16> Cases;
3007  SwitchInst::CaseIt I = SI->case_begin();
3008  Cases.push_back(I.getCaseValue());
3009  SwitchInst::CaseIt PrevI = I++;
3010  for (SwitchInst::CaseIt E = SI->case_end(); I != E; PrevI = I++) {
3011    if (PrevI.getCaseSuccessor() != I.getCaseSuccessor())
3012      return false;
3013    Cases.push_back(I.getCaseValue());
3014  }
3015  assert(Cases.size() == SI->getNumCases() && "Not all cases gathered");
3016
3017  // Sort the case values, then check if they form a range we can transform.
3018  array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
3019  for (unsigned I = 1, E = Cases.size(); I != E; ++I) {
3020    if (Cases[I-1]->getValue() != Cases[I]->getValue()+1)
3021      return false;
3022  }
3023
3024  Constant *Offset = ConstantExpr::getNeg(Cases.back());
3025  Constant *NumCases = ConstantInt::get(Offset->getType(), SI->getNumCases());
3026
3027  Value *Sub = SI->getCondition();
3028  if (!Offset->isNullValue())
3029    Sub = Builder.CreateAdd(Sub, Offset, Sub->getName()+".off");
3030  Value *Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
3031  BranchInst *NewBI = Builder.CreateCondBr(
3032      Cmp, SI->case_begin().getCaseSuccessor(), SI->getDefaultDest());
3033
3034  // Update weight for the newly-created conditional branch.
3035  SmallVector<uint64_t, 8> Weights;
3036  bool HasWeights = HasBranchWeights(SI);
3037  if (HasWeights) {
3038    GetBranchWeights(SI, Weights);
3039    if (Weights.size() == 1 + SI->getNumCases()) {
3040      // Combine all weights for the cases to be the true weight of NewBI.
3041      // We assume that the sum of all weights for a Terminator can fit into 32
3042      // bits.
3043      uint32_t NewTrueWeight = 0;
3044      for (unsigned I = 1, E = Weights.size(); I != E; ++I)
3045        NewTrueWeight += (uint32_t)Weights[I];
3046      NewBI->setMetadata(LLVMContext::MD_prof,
3047                         MDBuilder(SI->getContext()).
3048                         createBranchWeights(NewTrueWeight,
3049                                             (uint32_t)Weights[0]));
3050    }
3051  }
3052
3053  // Prune obsolete incoming values off the successor's PHI nodes.
3054  for (BasicBlock::iterator BBI = SI->case_begin().getCaseSuccessor()->begin();
3055       isa<PHINode>(BBI); ++BBI) {
3056    for (unsigned I = 0, E = SI->getNumCases()-1; I != E; ++I)
3057      cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
3058  }
3059  SI->eraseFromParent();
3060
3061  return true;
3062}
3063
3064/// EliminateDeadSwitchCases - Compute masked bits for the condition of a switch
3065/// and use it to remove dead cases.
3066static bool EliminateDeadSwitchCases(SwitchInst *SI) {
3067  Value *Cond = SI->getCondition();
3068  unsigned Bits = cast<IntegerType>(Cond->getType())->getBitWidth();
3069  APInt KnownZero(Bits, 0), KnownOne(Bits, 0);
3070  ComputeMaskedBits(Cond, KnownZero, KnownOne);
3071
3072  // Gather dead cases.
3073  SmallVector<ConstantInt*, 8> DeadCases;
3074  for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
3075    if ((I.getCaseValue()->getValue() & KnownZero) != 0 ||
3076        (I.getCaseValue()->getValue() & KnownOne) != KnownOne) {
3077      DeadCases.push_back(I.getCaseValue());
3078      DEBUG(dbgs() << "SimplifyCFG: switch case '"
3079                   << I.getCaseValue() << "' is dead.\n");
3080    }
3081  }
3082
3083  SmallVector<uint64_t, 8> Weights;
3084  bool HasWeight = HasBranchWeights(SI);
3085  if (HasWeight) {
3086    GetBranchWeights(SI, Weights);
3087    HasWeight = (Weights.size() == 1 + SI->getNumCases());
3088  }
3089
3090  // Remove dead cases from the switch.
3091  for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) {
3092    SwitchInst::CaseIt Case = SI->findCaseValue(DeadCases[I]);
3093    assert(Case != SI->case_default() &&
3094           "Case was not found. Probably mistake in DeadCases forming.");
3095    if (HasWeight) {
3096      std::swap(Weights[Case.getCaseIndex()+1], Weights.back());
3097      Weights.pop_back();
3098    }
3099
3100    // Prune unused values from PHI nodes.
3101    Case.getCaseSuccessor()->removePredecessor(SI->getParent());
3102    SI->removeCase(Case);
3103  }
3104  if (HasWeight) {
3105    SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
3106    SI->setMetadata(LLVMContext::MD_prof,
3107                    MDBuilder(SI->getParent()->getContext()).
3108                    createBranchWeights(MDWeights));
3109  }
3110
3111  return !DeadCases.empty();
3112}
3113
3114/// FindPHIForConditionForwarding - If BB would be eligible for simplification
3115/// by TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
3116/// by an unconditional branch), look at the phi node for BB in the successor
3117/// block and see if the incoming value is equal to CaseValue. If so, return
3118/// the phi node, and set PhiIndex to BB's index in the phi node.
3119static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
3120                                              BasicBlock *BB,
3121                                              int *PhiIndex) {
3122  if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
3123    return NULL; // BB must be empty to be a candidate for simplification.
3124  if (!BB->getSinglePredecessor())
3125    return NULL; // BB must be dominated by the switch.
3126
3127  BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
3128  if (!Branch || !Branch->isUnconditional())
3129    return NULL; // Terminator must be unconditional branch.
3130
3131  BasicBlock *Succ = Branch->getSuccessor(0);
3132
3133  BasicBlock::iterator I = Succ->begin();
3134  while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
3135    int Idx = PHI->getBasicBlockIndex(BB);
3136    assert(Idx >= 0 && "PHI has no entry for predecessor?");
3137
3138    Value *InValue = PHI->getIncomingValue(Idx);
3139    if (InValue != CaseValue) continue;
3140
3141    *PhiIndex = Idx;
3142    return PHI;
3143  }
3144
3145  return NULL;
3146}
3147
3148/// ForwardSwitchConditionToPHI - Try to forward the condition of a switch
3149/// instruction to a phi node dominated by the switch, if that would mean that
3150/// some of the destination blocks of the switch can be folded away.
3151/// Returns true if a change is made.
3152static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
3153  typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap;
3154  ForwardingNodesMap ForwardingNodes;
3155
3156  for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
3157    ConstantInt *CaseValue = I.getCaseValue();
3158    BasicBlock *CaseDest = I.getCaseSuccessor();
3159
3160    int PhiIndex;
3161    PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest,
3162                                                 &PhiIndex);
3163    if (!PHI) continue;
3164
3165    ForwardingNodes[PHI].push_back(PhiIndex);
3166  }
3167
3168  bool Changed = false;
3169
3170  for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(),
3171       E = ForwardingNodes.end(); I != E; ++I) {
3172    PHINode *Phi = I->first;
3173    SmallVector<int,4> &Indexes = I->second;
3174
3175    if (Indexes.size() < 2) continue;
3176
3177    for (size_t I = 0, E = Indexes.size(); I != E; ++I)
3178      Phi->setIncomingValue(Indexes[I], SI->getCondition());
3179    Changed = true;
3180  }
3181
3182  return Changed;
3183}
3184
3185/// ValidLookupTableConstant - Return true if the backend will be able to handle
3186/// initializing an array of constants like C.
3187static bool ValidLookupTableConstant(Constant *C) {
3188  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
3189    return CE->isGEPWithNoNotionalOverIndexing();
3190
3191  return isa<ConstantFP>(C) ||
3192      isa<ConstantInt>(C) ||
3193      isa<ConstantPointerNull>(C) ||
3194      isa<GlobalValue>(C) ||
3195      isa<UndefValue>(C);
3196}
3197
3198/// GetCaseResulsts - Try to determine the resulting constant values in phi
3199/// nodes at the common destination basic block for one of the case
3200/// destinations of a switch instruction.
3201static bool GetCaseResults(SwitchInst *SI,
3202                           BasicBlock *CaseDest,
3203                           BasicBlock **CommonDest,
3204                           SmallVector<std::pair<PHINode*,Constant*>, 4> &Res) {
3205  // The block from which we enter the common destination.
3206  BasicBlock *Pred = SI->getParent();
3207
3208  // If CaseDest is empty, continue to its successor.
3209  if (CaseDest->getFirstNonPHIOrDbg() == CaseDest->getTerminator() &&
3210      !isa<PHINode>(CaseDest->begin())) {
3211
3212    TerminatorInst *Terminator = CaseDest->getTerminator();
3213    if (Terminator->getNumSuccessors() != 1)
3214      return false;
3215
3216    Pred = CaseDest;
3217    CaseDest = Terminator->getSuccessor(0);
3218  }
3219
3220  // If we did not have a CommonDest before, use the current one.
3221  if (!*CommonDest)
3222    *CommonDest = CaseDest;
3223  // If the destination isn't the common one, abort.
3224  if (CaseDest != *CommonDest)
3225    return false;
3226
3227  // Get the values for this case from phi nodes in the destination block.
3228  BasicBlock::iterator I = (*CommonDest)->begin();
3229  while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
3230    int Idx = PHI->getBasicBlockIndex(Pred);
3231    if (Idx == -1)
3232      continue;
3233
3234    Constant *ConstVal = dyn_cast<Constant>(PHI->getIncomingValue(Idx));
3235    if (!ConstVal)
3236      return false;
3237
3238    // Be conservative about which kinds of constants we support.
3239    if (!ValidLookupTableConstant(ConstVal))
3240      return false;
3241
3242    Res.push_back(std::make_pair(PHI, ConstVal));
3243  }
3244
3245  return true;
3246}
3247
3248namespace {
3249  /// SwitchLookupTable - This class represents a lookup table that can be used
3250  /// to replace a switch.
3251  class SwitchLookupTable {
3252  public:
3253    /// SwitchLookupTable - Create a lookup table to use as a switch replacement
3254    /// with the contents of Values, using DefaultValue to fill any holes in the
3255    /// table.
3256    SwitchLookupTable(Module &M,
3257                      uint64_t TableSize,
3258                      ConstantInt *Offset,
3259               const SmallVector<std::pair<ConstantInt*, Constant*>, 4>& Values,
3260                      Constant *DefaultValue,
3261                      const TargetData *TD);
3262
3263    /// BuildLookup - Build instructions with Builder to retrieve the value at
3264    /// the position given by Index in the lookup table.
3265    Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
3266
3267    /// WouldFitInRegister - Return true if a table with TableSize elements of
3268    /// type ElementType would fit in a target-legal register.
3269    static bool WouldFitInRegister(const TargetData *TD,
3270                                   uint64_t TableSize,
3271                                   const Type *ElementType);
3272
3273  private:
3274    // Depending on the contents of the table, it can be represented in
3275    // different ways.
3276    enum {
3277      // For tables where each element contains the same value, we just have to
3278      // store that single value and return it for each lookup.
3279      SingleValueKind,
3280
3281      // For small tables with integer elements, we can pack them into a bitmap
3282      // that fits into a target-legal register. Values are retrieved by
3283      // shift and mask operations.
3284      BitMapKind,
3285
3286      // The table is stored as an array of values. Values are retrieved by load
3287      // instructions from the table.
3288      ArrayKind
3289    } Kind;
3290
3291    // For SingleValueKind, this is the single value.
3292    Constant *SingleValue;
3293
3294    // For BitMapKind, this is the bitmap.
3295    ConstantInt *BitMap;
3296    IntegerType *BitMapElementTy;
3297
3298    // For ArrayKind, this is the array.
3299    GlobalVariable *Array;
3300  };
3301}
3302
3303SwitchLookupTable::SwitchLookupTable(Module &M,
3304                                     uint64_t TableSize,
3305                                     ConstantInt *Offset,
3306               const SmallVector<std::pair<ConstantInt*, Constant*>, 4>& Values,
3307                                     Constant *DefaultValue,
3308                                     const TargetData *TD) {
3309  assert(Values.size() && "Can't build lookup table without values!");
3310  assert(TableSize >= Values.size() && "Can't fit values in table!");
3311
3312  // If all values in the table are equal, this is that value.
3313  SingleValue = Values.begin()->second;
3314
3315  // Build up the table contents.
3316  SmallVector<Constant*, 64> TableContents(TableSize);
3317  for (size_t I = 0, E = Values.size(); I != E; ++I) {
3318    ConstantInt *CaseVal = Values[I].first;
3319    Constant *CaseRes = Values[I].second;
3320    assert(CaseRes->getType() == DefaultValue->getType());
3321
3322    uint64_t Idx = (CaseVal->getValue() - Offset->getValue())
3323                   .getLimitedValue();
3324    TableContents[Idx] = CaseRes;
3325
3326    if (CaseRes != SingleValue)
3327      SingleValue = NULL;
3328  }
3329
3330  // Fill in any holes in the table with the default result.
3331  if (Values.size() < TableSize) {
3332    for (uint64_t I = 0; I < TableSize; ++I) {
3333      if (!TableContents[I])
3334        TableContents[I] = DefaultValue;
3335    }
3336
3337    if (DefaultValue != SingleValue)
3338      SingleValue = NULL;
3339  }
3340
3341  // If each element in the table contains the same value, we only need to store
3342  // that single value.
3343  if (SingleValue) {
3344    Kind = SingleValueKind;
3345    return;
3346  }
3347
3348  // If the type is integer and the table fits in a register, build a bitmap.
3349  if (WouldFitInRegister(TD, TableSize, DefaultValue->getType())) {
3350    IntegerType *IT = cast<IntegerType>(DefaultValue->getType());
3351    APInt TableInt(TableSize * IT->getBitWidth(), 0);
3352    for (uint64_t I = TableSize; I > 0; --I) {
3353      TableInt <<= IT->getBitWidth();
3354      // Insert values into the bitmap. Undef values are set to zero.
3355      if (!isa<UndefValue>(TableContents[I - 1])) {
3356        ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
3357        TableInt |= Val->getValue().zext(TableInt.getBitWidth());
3358      }
3359    }
3360    BitMap = ConstantInt::get(M.getContext(), TableInt);
3361    BitMapElementTy = IT;
3362    Kind = BitMapKind;
3363    ++NumBitMaps;
3364    return;
3365  }
3366
3367  // Store the table in an array.
3368  ArrayType *ArrayTy = ArrayType::get(DefaultValue->getType(), TableSize);
3369  Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
3370
3371  Array = new GlobalVariable(M, ArrayTy, /*constant=*/ true,
3372                             GlobalVariable::PrivateLinkage,
3373                             Initializer,
3374                             "switch.table");
3375  Array->setUnnamedAddr(true);
3376  Kind = ArrayKind;
3377}
3378
3379Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
3380  switch (Kind) {
3381    case SingleValueKind:
3382      return SingleValue;
3383    case BitMapKind: {
3384      // Type of the bitmap (e.g. i59).
3385      IntegerType *MapTy = BitMap->getType();
3386
3387      // Cast Index to the same type as the bitmap.
3388      // Note: The Index is <= the number of elements in the table, so
3389      // truncating it to the width of the bitmask is safe.
3390      Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
3391
3392      // Multiply the shift amount by the element width.
3393      ShiftAmt = Builder.CreateMul(ShiftAmt,
3394                      ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
3395                                   "switch.shiftamt");
3396
3397      // Shift down.
3398      Value *DownShifted = Builder.CreateLShr(BitMap, ShiftAmt,
3399                                              "switch.downshift");
3400      // Mask off.
3401      return Builder.CreateTrunc(DownShifted, BitMapElementTy,
3402                                 "switch.masked");
3403    }
3404    case ArrayKind: {
3405      Value *GEPIndices[] = { Builder.getInt32(0), Index };
3406      Value *GEP = Builder.CreateInBoundsGEP(Array, GEPIndices,
3407                                             "switch.gep");
3408      return Builder.CreateLoad(GEP, "switch.load");
3409    }
3410  }
3411  llvm_unreachable("Unknown lookup table kind!");
3412}
3413
3414bool SwitchLookupTable::WouldFitInRegister(const TargetData *TD,
3415                                           uint64_t TableSize,
3416                                           const Type *ElementType) {
3417  if (!TD)
3418    return false;
3419  const IntegerType *IT = dyn_cast<IntegerType>(ElementType);
3420  if (!IT)
3421    return false;
3422  // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
3423  // are <= 15, we could try to narrow the type.
3424
3425  // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
3426  if (TableSize >= UINT_MAX/IT->getBitWidth())
3427    return false;
3428  return TD->fitsInLegalInteger(TableSize * IT->getBitWidth());
3429}
3430
3431/// ShouldBuildLookupTable - Determine whether a lookup table should be built
3432/// for this switch, based on the number of caes, size of the table and the
3433/// types of the results.
3434static bool ShouldBuildLookupTable(SwitchInst *SI,
3435                                   uint64_t TableSize,
3436                                   const TargetData *TD,
3437                            const SmallDenseMap<PHINode*, Type*>& ResultTypes) {
3438  // The table density should be at least 40%. This is the same criterion as for
3439  // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
3440  // FIXME: Find the best cut-off.
3441  if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
3442    return false; // TableSize overflowed, or mul below might overflow.
3443  if (SI->getNumCases() * 10 >= TableSize * 4)
3444    return true;
3445
3446  // If each table would fit in a register, we should build it anyway.
3447  for (SmallDenseMap<PHINode*, Type*>::const_iterator I = ResultTypes.begin(),
3448       E = ResultTypes.end(); I != E; ++I) {
3449    if (!SwitchLookupTable::WouldFitInRegister(TD, TableSize, I->second))
3450      return false;
3451  }
3452  return true;
3453}
3454
3455/// SwitchToLookupTable - If the switch is only used to initialize one or more
3456/// phi nodes in a common successor block with different constant values,
3457/// replace the switch with lookup tables.
3458static bool SwitchToLookupTable(SwitchInst *SI,
3459                                IRBuilder<> &Builder,
3460                                const TargetData* TD) {
3461  assert(SI->getNumCases() > 1 && "Degenerate switch?");
3462  // FIXME: Handle unreachable cases.
3463
3464  // FIXME: If the switch is too sparse for a lookup table, perhaps we could
3465  // split off a dense part and build a lookup table for that.
3466
3467  // FIXME: This creates arrays of GEPs to constant strings, which means each
3468  // GEP needs a runtime relocation in PIC code. We should just build one big
3469  // string and lookup indices into that.
3470
3471  // Ignore the switch if the number of cases is too small.
3472  // This is similar to the check when building jump tables in
3473  // SelectionDAGBuilder::handleJTSwitchCase.
3474  // FIXME: Determine the best cut-off.
3475  if (SI->getNumCases() < 4)
3476    return false;
3477
3478  // Figure out the corresponding result for each case value and phi node in the
3479  // common destination, as well as the the min and max case values.
3480  assert(SI->case_begin() != SI->case_end());
3481  SwitchInst::CaseIt CI = SI->case_begin();
3482  ConstantInt *MinCaseVal = CI.getCaseValue();
3483  ConstantInt *MaxCaseVal = CI.getCaseValue();
3484
3485  BasicBlock *CommonDest = NULL;
3486  typedef SmallVector<std::pair<ConstantInt*, Constant*>, 4> ResultListTy;
3487  SmallDenseMap<PHINode*, ResultListTy> ResultLists;
3488  SmallDenseMap<PHINode*, Constant*> DefaultResults;
3489  SmallDenseMap<PHINode*, Type*> ResultTypes;
3490  SmallVector<PHINode*, 4> PHIs;
3491
3492  for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
3493    ConstantInt *CaseVal = CI.getCaseValue();
3494    if (CaseVal->getValue().slt(MinCaseVal->getValue()))
3495      MinCaseVal = CaseVal;
3496    if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
3497      MaxCaseVal = CaseVal;
3498
3499    // Resulting value at phi nodes for this case value.
3500    typedef SmallVector<std::pair<PHINode*, Constant*>, 4> ResultsTy;
3501    ResultsTy Results;
3502    if (!GetCaseResults(SI, CI.getCaseSuccessor(), &CommonDest, Results))
3503      return false;
3504
3505    // Append the result from this case to the list for each phi.
3506    for (ResultsTy::iterator I = Results.begin(), E = Results.end(); I!=E; ++I) {
3507      if (!ResultLists.count(I->first))
3508        PHIs.push_back(I->first);
3509      ResultLists[I->first].push_back(std::make_pair(CaseVal, I->second));
3510    }
3511  }
3512
3513  // Get the resulting values for the default case.
3514  SmallVector<std::pair<PHINode*, Constant*>, 4> DefaultResultsList;
3515  if (!GetCaseResults(SI, SI->getDefaultDest(), &CommonDest, DefaultResultsList))
3516    return false;
3517  for (size_t I = 0, E = DefaultResultsList.size(); I != E; ++I) {
3518    PHINode *PHI = DefaultResultsList[I].first;
3519    Constant *Result = DefaultResultsList[I].second;
3520    DefaultResults[PHI] = Result;
3521    ResultTypes[PHI] = Result->getType();
3522  }
3523
3524  APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
3525  uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
3526  if (!ShouldBuildLookupTable(SI, TableSize, TD, ResultTypes))
3527    return false;
3528
3529  // Create the BB that does the lookups.
3530  Module &Mod = *CommonDest->getParent()->getParent();
3531  BasicBlock *LookupBB = BasicBlock::Create(Mod.getContext(),
3532                                            "switch.lookup",
3533                                            CommonDest->getParent(),
3534                                            CommonDest);
3535
3536  // Check whether the condition value is within the case range, and branch to
3537  // the new BB.
3538  Builder.SetInsertPoint(SI);
3539  Value *TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
3540                                        "switch.tableidx");
3541  Value *Cmp = Builder.CreateICmpULT(TableIndex, ConstantInt::get(
3542      MinCaseVal->getType(), TableSize));
3543  Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
3544
3545  // Populate the BB that does the lookups.
3546  Builder.SetInsertPoint(LookupBB);
3547  bool ReturnedEarly = false;
3548  for (size_t I = 0, E = PHIs.size(); I != E; ++I) {
3549    PHINode *PHI = PHIs[I];
3550
3551    SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultLists[PHI],
3552                            DefaultResults[PHI], TD);
3553
3554    Value *Result = Table.BuildLookup(TableIndex, Builder);
3555
3556    // If the result is used to return immediately from the function, we want to
3557    // do that right here.
3558    if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->use_begin()) &&
3559        *PHI->use_begin() == CommonDest->getFirstNonPHIOrDbg()) {
3560      Builder.CreateRet(Result);
3561      ReturnedEarly = true;
3562      break;
3563    }
3564
3565    PHI->addIncoming(Result, LookupBB);
3566  }
3567
3568  if (!ReturnedEarly)
3569    Builder.CreateBr(CommonDest);
3570
3571  // Remove the switch.
3572  for (unsigned i = 0; i < SI->getNumSuccessors(); ++i) {
3573    BasicBlock *Succ = SI->getSuccessor(i);
3574    if (Succ == SI->getDefaultDest()) continue;
3575    Succ->removePredecessor(SI->getParent());
3576  }
3577  SI->eraseFromParent();
3578
3579  ++NumLookupTables;
3580  return true;
3581}
3582
3583bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
3584  BasicBlock *BB = SI->getParent();
3585
3586  if (isValueEqualityComparison(SI)) {
3587    // If we only have one predecessor, and if it is a branch on this value,
3588    // see if that predecessor totally determines the outcome of this switch.
3589    if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
3590      if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
3591        return SimplifyCFG(BB) | true;
3592
3593    Value *Cond = SI->getCondition();
3594    if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
3595      if (SimplifySwitchOnSelect(SI, Select))
3596        return SimplifyCFG(BB) | true;
3597
3598    // If the block only contains the switch, see if we can fold the block
3599    // away into any preds.
3600    BasicBlock::iterator BBI = BB->begin();
3601    // Ignore dbg intrinsics.
3602    while (isa<DbgInfoIntrinsic>(BBI))
3603      ++BBI;
3604    if (SI == &*BBI)
3605      if (FoldValueComparisonIntoPredecessors(SI, Builder))
3606        return SimplifyCFG(BB) | true;
3607  }
3608
3609  // Try to transform the switch into an icmp and a branch.
3610  if (TurnSwitchRangeIntoICmp(SI, Builder))
3611    return SimplifyCFG(BB) | true;
3612
3613  // Remove unreachable cases.
3614  if (EliminateDeadSwitchCases(SI))
3615    return SimplifyCFG(BB) | true;
3616
3617  if (ForwardSwitchConditionToPHI(SI))
3618    return SimplifyCFG(BB) | true;
3619
3620  if (SwitchToLookupTable(SI, Builder, TD))
3621    return SimplifyCFG(BB) | true;
3622
3623  return false;
3624}
3625
3626bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
3627  BasicBlock *BB = IBI->getParent();
3628  bool Changed = false;
3629
3630  // Eliminate redundant destinations.
3631  SmallPtrSet<Value *, 8> Succs;
3632  for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
3633    BasicBlock *Dest = IBI->getDestination(i);
3634    if (!Dest->hasAddressTaken() || !Succs.insert(Dest)) {
3635      Dest->removePredecessor(BB);
3636      IBI->removeDestination(i);
3637      --i; --e;
3638      Changed = true;
3639    }
3640  }
3641
3642  if (IBI->getNumDestinations() == 0) {
3643    // If the indirectbr has no successors, change it to unreachable.
3644    new UnreachableInst(IBI->getContext(), IBI);
3645    EraseTerminatorInstAndDCECond(IBI);
3646    return true;
3647  }
3648
3649  if (IBI->getNumDestinations() == 1) {
3650    // If the indirectbr has one successor, change it to a direct branch.
3651    BranchInst::Create(IBI->getDestination(0), IBI);
3652    EraseTerminatorInstAndDCECond(IBI);
3653    return true;
3654  }
3655
3656  if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
3657    if (SimplifyIndirectBrOnSelect(IBI, SI))
3658      return SimplifyCFG(BB) | true;
3659  }
3660  return Changed;
3661}
3662
3663bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){
3664  BasicBlock *BB = BI->getParent();
3665
3666  if (SinkCommon && SinkThenElseCodeToEnd(BI))
3667    return true;
3668
3669  // If the Terminator is the only non-phi instruction, simplify the block.
3670  BasicBlock::iterator I = BB->getFirstNonPHIOrDbgOrLifetime();
3671  if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
3672      TryToSimplifyUncondBranchFromEmptyBlock(BB))
3673    return true;
3674
3675  // If the only instruction in the block is a seteq/setne comparison
3676  // against a constant, try to simplify the block.
3677  if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
3678    if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
3679      for (++I; isa<DbgInfoIntrinsic>(I); ++I)
3680        ;
3681      if (I->isTerminator() &&
3682          TryToSimplifyUncondBranchWithICmpInIt(ICI, TD, Builder))
3683        return true;
3684    }
3685
3686  // If this basic block is ONLY a compare and a branch, and if a predecessor
3687  // branches to us and our successor, fold the comparison into the
3688  // predecessor and use logical operations to update the incoming value
3689  // for PHI nodes in common successor.
3690  if (FoldBranchToCommonDest(BI))
3691    return SimplifyCFG(BB) | true;
3692  return false;
3693}
3694
3695
3696bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
3697  BasicBlock *BB = BI->getParent();
3698
3699  // Conditional branch
3700  if (isValueEqualityComparison(BI)) {
3701    // If we only have one predecessor, and if it is a branch on this value,
3702    // see if that predecessor totally determines the outcome of this
3703    // switch.
3704    if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
3705      if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
3706        return SimplifyCFG(BB) | true;
3707
3708    // This block must be empty, except for the setcond inst, if it exists.
3709    // Ignore dbg intrinsics.
3710    BasicBlock::iterator I = BB->begin();
3711    // Ignore dbg intrinsics.
3712    while (isa<DbgInfoIntrinsic>(I))
3713      ++I;
3714    if (&*I == BI) {
3715      if (FoldValueComparisonIntoPredecessors(BI, Builder))
3716        return SimplifyCFG(BB) | true;
3717    } else if (&*I == cast<Instruction>(BI->getCondition())){
3718      ++I;
3719      // Ignore dbg intrinsics.
3720      while (isa<DbgInfoIntrinsic>(I))
3721        ++I;
3722      if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
3723        return SimplifyCFG(BB) | true;
3724    }
3725  }
3726
3727  // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
3728  if (SimplifyBranchOnICmpChain(BI, TD, Builder))
3729    return true;
3730
3731  // If this basic block is ONLY a compare and a branch, and if a predecessor
3732  // branches to us and one of our successors, fold the comparison into the
3733  // predecessor and use logical operations to pick the right destination.
3734  if (FoldBranchToCommonDest(BI))
3735    return SimplifyCFG(BB) | true;
3736
3737  // We have a conditional branch to two blocks that are only reachable
3738  // from BI.  We know that the condbr dominates the two blocks, so see if
3739  // there is any identical code in the "then" and "else" blocks.  If so, we
3740  // can hoist it up to the branching block.
3741  if (BI->getSuccessor(0)->getSinglePredecessor() != 0) {
3742    if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
3743      if (HoistThenElseCodeToIf(BI))
3744        return SimplifyCFG(BB) | true;
3745    } else {
3746      // If Successor #1 has multiple preds, we may be able to conditionally
3747      // execute Successor #0 if it branches to successor #1.
3748      TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
3749      if (Succ0TI->getNumSuccessors() == 1 &&
3750          Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
3751        if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0)))
3752          return SimplifyCFG(BB) | true;
3753    }
3754  } else if (BI->getSuccessor(1)->getSinglePredecessor() != 0) {
3755    // If Successor #0 has multiple preds, we may be able to conditionally
3756    // execute Successor #1 if it branches to successor #0.
3757    TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
3758    if (Succ1TI->getNumSuccessors() == 1 &&
3759        Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
3760      if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1)))
3761        return SimplifyCFG(BB) | true;
3762  }
3763
3764  // If this is a branch on a phi node in the current block, thread control
3765  // through this block if any PHI node entries are constants.
3766  if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
3767    if (PN->getParent() == BI->getParent())
3768      if (FoldCondBranchOnPHI(BI, TD))
3769        return SimplifyCFG(BB) | true;
3770
3771  // Scan predecessor blocks for conditional branches.
3772  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
3773    if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
3774      if (PBI != BI && PBI->isConditional())
3775        if (SimplifyCondBranchToCondBranch(PBI, BI))
3776          return SimplifyCFG(BB) | true;
3777
3778  return false;
3779}
3780
3781/// Check if passing a value to an instruction will cause undefined behavior.
3782static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
3783  Constant *C = dyn_cast<Constant>(V);
3784  if (!C)
3785    return false;
3786
3787  if (!I->hasOneUse()) // Only look at single-use instructions, for compile time
3788    return false;
3789
3790  if (C->isNullValue()) {
3791    Instruction *Use = I->use_back();
3792
3793    // Now make sure that there are no instructions in between that can alter
3794    // control flow (eg. calls)
3795    for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i)
3796      if (i == I->getParent()->end() || i->mayHaveSideEffects())
3797        return false;
3798
3799    // Look through GEPs. A load from a GEP derived from NULL is still undefined
3800    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
3801      if (GEP->getPointerOperand() == I)
3802        return passingValueIsAlwaysUndefined(V, GEP);
3803
3804    // Look through bitcasts.
3805    if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
3806      return passingValueIsAlwaysUndefined(V, BC);
3807
3808    // Load from null is undefined.
3809    if (LoadInst *LI = dyn_cast<LoadInst>(Use))
3810      return LI->getPointerAddressSpace() == 0;
3811
3812    // Store to null is undefined.
3813    if (StoreInst *SI = dyn_cast<StoreInst>(Use))
3814      return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I;
3815  }
3816  return false;
3817}
3818
3819/// If BB has an incoming value that will always trigger undefined behavior
3820/// (eg. null pointer dereference), remove the branch leading here.
3821static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
3822  for (BasicBlock::iterator i = BB->begin();
3823       PHINode *PHI = dyn_cast<PHINode>(i); ++i)
3824    for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
3825      if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) {
3826        TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator();
3827        IRBuilder<> Builder(T);
3828        if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
3829          BB->removePredecessor(PHI->getIncomingBlock(i));
3830          // Turn uncoditional branches into unreachables and remove the dead
3831          // destination from conditional branches.
3832          if (BI->isUnconditional())
3833            Builder.CreateUnreachable();
3834          else
3835            Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) :
3836                                                         BI->getSuccessor(0));
3837          BI->eraseFromParent();
3838          return true;
3839        }
3840        // TODO: SwitchInst.
3841      }
3842
3843  return false;
3844}
3845
3846bool SimplifyCFGOpt::run(BasicBlock *BB) {
3847  bool Changed = false;
3848
3849  assert(BB && BB->getParent() && "Block not embedded in function!");
3850  assert(BB->getTerminator() && "Degenerate basic block encountered!");
3851
3852  // Remove basic blocks that have no predecessors (except the entry block)...
3853  // or that just have themself as a predecessor.  These are unreachable.
3854  if ((pred_begin(BB) == pred_end(BB) &&
3855       BB != &BB->getParent()->getEntryBlock()) ||
3856      BB->getSinglePredecessor() == BB) {
3857    DEBUG(dbgs() << "Removing BB: \n" << *BB);
3858    DeleteDeadBlock(BB);
3859    return true;
3860  }
3861
3862  // Check to see if we can constant propagate this terminator instruction
3863  // away...
3864  Changed |= ConstantFoldTerminator(BB, true);
3865
3866  // Check for and eliminate duplicate PHI nodes in this block.
3867  Changed |= EliminateDuplicatePHINodes(BB);
3868
3869  // Check for and remove branches that will always cause undefined behavior.
3870  Changed |= removeUndefIntroducingPredecessor(BB);
3871
3872  // Merge basic blocks into their predecessor if there is only one distinct
3873  // pred, and if there is only one distinct successor of the predecessor, and
3874  // if there are no PHI nodes.
3875  //
3876  if (MergeBlockIntoPredecessor(BB))
3877    return true;
3878
3879  IRBuilder<> Builder(BB);
3880
3881  // If there is a trivial two-entry PHI node in this basic block, and we can
3882  // eliminate it, do so now.
3883  if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
3884    if (PN->getNumIncomingValues() == 2)
3885      Changed |= FoldTwoEntryPHINode(PN, TD);
3886
3887  Builder.SetInsertPoint(BB->getTerminator());
3888  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
3889    if (BI->isUnconditional()) {
3890      if (SimplifyUncondBranch(BI, Builder)) return true;
3891    } else {
3892      if (SimplifyCondBranch(BI, Builder)) return true;
3893    }
3894  } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
3895    if (SimplifyReturn(RI, Builder)) return true;
3896  } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
3897    if (SimplifyResume(RI, Builder)) return true;
3898  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
3899    if (SimplifySwitch(SI, Builder)) return true;
3900  } else if (UnreachableInst *UI =
3901               dyn_cast<UnreachableInst>(BB->getTerminator())) {
3902    if (SimplifyUnreachable(UI)) return true;
3903  } else if (IndirectBrInst *IBI =
3904               dyn_cast<IndirectBrInst>(BB->getTerminator())) {
3905    if (SimplifyIndirectBr(IBI)) return true;
3906  }
3907
3908  return Changed;
3909}
3910
3911/// SimplifyCFG - This function is used to do simplification of a CFG.  For
3912/// example, it adjusts branches to branches to eliminate the extra hop, it
3913/// eliminates unreachable basic blocks, and does other "peephole" optimization
3914/// of the CFG.  It returns true if a modification was made.
3915///
3916bool llvm::SimplifyCFG(BasicBlock *BB, const TargetData *TD) {
3917  return SimplifyCFGOpt(TD).run(BB);
3918}
3919