1//===- LowerInvoke.cpp - Eliminate Invoke & Unwind instructions -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation is designed for use by code generators which do not yet
11// support stack unwinding.  This pass supports two models of exception handling
12// lowering, the 'cheap' support and the 'expensive' support.
13//
14// 'Cheap' exception handling support gives the program the ability to execute
15// any program which does not "throw an exception", by turning 'invoke'
16// instructions into calls and by turning 'unwind' instructions into calls to
17// abort().  If the program does dynamically use the unwind instruction, the
18// program will print a message then abort.
19//
20// 'Expensive' exception handling support gives the full exception handling
21// support to the program at the cost of making the 'invoke' instruction
22// really expensive.  It basically inserts setjmp/longjmp calls to emulate the
23// exception handling as necessary.
24//
25// Because the 'expensive' support slows down programs a lot, and EH is only
26// used for a subset of the programs, it must be specifically enabled by an
27// option.
28//
29// Note that after this pass runs the CFG is not entirely accurate (exceptional
30// control flow edges are not correct anymore) so only very simple things should
31// be done after the lowerinvoke pass has run (like generation of native code).
32// This should not be used as a general purpose "my LLVM-to-LLVM pass doesn't
33// support the invoke instruction yet" lowering pass.
34//
35//===----------------------------------------------------------------------===//
36
37#define DEBUG_TYPE "lowerinvoke"
38#include "llvm/Transforms/Scalar.h"
39#include "llvm/Constants.h"
40#include "llvm/DerivedTypes.h"
41#include "llvm/Instructions.h"
42#include "llvm/Intrinsics.h"
43#include "llvm/LLVMContext.h"
44#include "llvm/Module.h"
45#include "llvm/Pass.h"
46#include "llvm/Transforms/Utils/BasicBlockUtils.h"
47#include "llvm/Transforms/Utils/Local.h"
48#include "llvm/ADT/SmallVector.h"
49#include "llvm/ADT/Statistic.h"
50#include "llvm/Support/CommandLine.h"
51#include "llvm/Target/TargetLowering.h"
52#include <csetjmp>
53#include <set>
54using namespace llvm;
55
56STATISTIC(NumInvokes, "Number of invokes replaced");
57STATISTIC(NumSpilled, "Number of registers live across unwind edges");
58
59static cl::opt<bool> ExpensiveEHSupport("enable-correct-eh-support",
60 cl::desc("Make the -lowerinvoke pass insert expensive, but correct, EH code"));
61
62namespace {
63  class LowerInvoke : public FunctionPass {
64    // Used for both models.
65    Constant *AbortFn;
66
67    // Used for expensive EH support.
68    StructType *JBLinkTy;
69    GlobalVariable *JBListHead;
70    Constant *SetJmpFn, *LongJmpFn, *StackSaveFn, *StackRestoreFn;
71    bool useExpensiveEHSupport;
72
73    // We peek in TLI to grab the target's jmp_buf size and alignment
74    const TargetLowering *TLI;
75
76  public:
77    static char ID; // Pass identification, replacement for typeid
78    explicit LowerInvoke(const TargetLowering *tli = NULL,
79                         bool useExpensiveEHSupport = ExpensiveEHSupport)
80      : FunctionPass(ID), useExpensiveEHSupport(useExpensiveEHSupport),
81        TLI(tli) {
82      initializeLowerInvokePass(*PassRegistry::getPassRegistry());
83    }
84    bool doInitialization(Module &M);
85    bool runOnFunction(Function &F);
86
87    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
88      // This is a cluster of orthogonal Transforms
89      AU.addPreserved("mem2reg");
90      AU.addPreservedID(LowerSwitchID);
91    }
92
93  private:
94    bool insertCheapEHSupport(Function &F);
95    void splitLiveRangesLiveAcrossInvokes(SmallVectorImpl<InvokeInst*>&Invokes);
96    void rewriteExpensiveInvoke(InvokeInst *II, unsigned InvokeNo,
97                                AllocaInst *InvokeNum, AllocaInst *StackPtr,
98                                SwitchInst *CatchSwitch);
99    bool insertExpensiveEHSupport(Function &F);
100  };
101}
102
103char LowerInvoke::ID = 0;
104INITIALIZE_PASS(LowerInvoke, "lowerinvoke",
105                "Lower invoke and unwind, for unwindless code generators",
106                false, false)
107
108char &llvm::LowerInvokePassID = LowerInvoke::ID;
109
110// Public Interface To the LowerInvoke pass.
111FunctionPass *llvm::createLowerInvokePass(const TargetLowering *TLI) {
112  return new LowerInvoke(TLI, ExpensiveEHSupport);
113}
114FunctionPass *llvm::createLowerInvokePass(const TargetLowering *TLI,
115                                          bool useExpensiveEHSupport) {
116  return new LowerInvoke(TLI, useExpensiveEHSupport);
117}
118
119// doInitialization - Make sure that there is a prototype for abort in the
120// current module.
121bool LowerInvoke::doInitialization(Module &M) {
122  Type *VoidPtrTy = Type::getInt8PtrTy(M.getContext());
123  if (useExpensiveEHSupport) {
124    // Insert a type for the linked list of jump buffers.
125    unsigned JBSize = TLI ? TLI->getJumpBufSize() : 0;
126    JBSize = JBSize ? JBSize : 200;
127    Type *JmpBufTy = ArrayType::get(VoidPtrTy, JBSize);
128
129    JBLinkTy = StructType::create(M.getContext(), "llvm.sjljeh.jmpbufty");
130    Type *Elts[] = { JmpBufTy, PointerType::getUnqual(JBLinkTy) };
131    JBLinkTy->setBody(Elts);
132
133    Type *PtrJBList = PointerType::getUnqual(JBLinkTy);
134
135    // Now that we've done that, insert the jmpbuf list head global, unless it
136    // already exists.
137    if (!(JBListHead = M.getGlobalVariable("llvm.sjljeh.jblist", PtrJBList))) {
138      JBListHead = new GlobalVariable(M, PtrJBList, false,
139                                      GlobalValue::LinkOnceAnyLinkage,
140                                      Constant::getNullValue(PtrJBList),
141                                      "llvm.sjljeh.jblist");
142    }
143
144// VisualStudio defines setjmp as _setjmp
145#if defined(_MSC_VER) && defined(setjmp) && \
146                         !defined(setjmp_undefined_for_msvc)
147#  pragma push_macro("setjmp")
148#  undef setjmp
149#  define setjmp_undefined_for_msvc
150#endif
151
152    SetJmpFn = Intrinsic::getDeclaration(&M, Intrinsic::setjmp);
153
154#if defined(_MSC_VER) && defined(setjmp_undefined_for_msvc)
155   // let's return it to _setjmp state
156#  pragma pop_macro("setjmp")
157#  undef setjmp_undefined_for_msvc
158#endif
159
160    LongJmpFn = Intrinsic::getDeclaration(&M, Intrinsic::longjmp);
161    StackSaveFn = Intrinsic::getDeclaration(&M, Intrinsic::stacksave);
162    StackRestoreFn = Intrinsic::getDeclaration(&M, Intrinsic::stackrestore);
163  }
164
165  // We need the 'write' and 'abort' functions for both models.
166  AbortFn = M.getOrInsertFunction("abort", Type::getVoidTy(M.getContext()),
167                                  (Type *)0);
168  return true;
169}
170
171bool LowerInvoke::insertCheapEHSupport(Function &F) {
172  bool Changed = false;
173  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
174    if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
175      SmallVector<Value*,16> CallArgs(II->op_begin(), II->op_end() - 3);
176      // Insert a normal call instruction...
177      CallInst *NewCall = CallInst::Create(II->getCalledValue(),
178                                           CallArgs, "", II);
179      NewCall->takeName(II);
180      NewCall->setCallingConv(II->getCallingConv());
181      NewCall->setAttributes(II->getAttributes());
182      NewCall->setDebugLoc(II->getDebugLoc());
183      II->replaceAllUsesWith(NewCall);
184
185      // Insert an unconditional branch to the normal destination.
186      BranchInst::Create(II->getNormalDest(), II);
187
188      // Remove any PHI node entries from the exception destination.
189      II->getUnwindDest()->removePredecessor(BB);
190
191      // Remove the invoke instruction now.
192      BB->getInstList().erase(II);
193
194      ++NumInvokes; Changed = true;
195    }
196  return Changed;
197}
198
199/// rewriteExpensiveInvoke - Insert code and hack the function to replace the
200/// specified invoke instruction with a call.
201void LowerInvoke::rewriteExpensiveInvoke(InvokeInst *II, unsigned InvokeNo,
202                                         AllocaInst *InvokeNum,
203                                         AllocaInst *StackPtr,
204                                         SwitchInst *CatchSwitch) {
205  ConstantInt *InvokeNoC = ConstantInt::get(Type::getInt32Ty(II->getContext()),
206                                            InvokeNo);
207
208  // If the unwind edge has phi nodes, split the edge.
209  if (isa<PHINode>(II->getUnwindDest()->begin())) {
210    SplitCriticalEdge(II, 1, this);
211
212    // If there are any phi nodes left, they must have a single predecessor.
213    while (PHINode *PN = dyn_cast<PHINode>(II->getUnwindDest()->begin())) {
214      PN->replaceAllUsesWith(PN->getIncomingValue(0));
215      PN->eraseFromParent();
216    }
217  }
218
219  // Insert a store of the invoke num before the invoke and store zero into the
220  // location afterward.
221  new StoreInst(InvokeNoC, InvokeNum, true, II);  // volatile
222
223  // Insert a store of the stack ptr before the invoke, so we can restore it
224  // later in the exception case.
225  CallInst* StackSaveRet = CallInst::Create(StackSaveFn, "ssret", II);
226  new StoreInst(StackSaveRet, StackPtr, true, II); // volatile
227
228  BasicBlock::iterator NI = II->getNormalDest()->getFirstInsertionPt();
229  // nonvolatile.
230  new StoreInst(Constant::getNullValue(Type::getInt32Ty(II->getContext())),
231                InvokeNum, false, NI);
232
233  Instruction* StackPtrLoad =
234    new LoadInst(StackPtr, "stackptr.restore", true,
235                 II->getUnwindDest()->getFirstInsertionPt());
236  CallInst::Create(StackRestoreFn, StackPtrLoad, "")->insertAfter(StackPtrLoad);
237
238  // Add a switch case to our unwind block.
239  CatchSwitch->addCase(InvokeNoC, II->getUnwindDest());
240
241  // Insert a normal call instruction.
242  SmallVector<Value*,16> CallArgs(II->op_begin(), II->op_end() - 3);
243  CallInst *NewCall = CallInst::Create(II->getCalledValue(),
244                                       CallArgs, "", II);
245  NewCall->takeName(II);
246  NewCall->setCallingConv(II->getCallingConv());
247  NewCall->setAttributes(II->getAttributes());
248  NewCall->setDebugLoc(II->getDebugLoc());
249  II->replaceAllUsesWith(NewCall);
250
251  // Replace the invoke with an uncond branch.
252  BranchInst::Create(II->getNormalDest(), NewCall->getParent());
253  II->eraseFromParent();
254}
255
256/// MarkBlocksLiveIn - Insert BB and all of its predescessors into LiveBBs until
257/// we reach blocks we've already seen.
258static void MarkBlocksLiveIn(BasicBlock *BB, std::set<BasicBlock*> &LiveBBs) {
259  if (!LiveBBs.insert(BB).second) return; // already been here.
260
261  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
262    MarkBlocksLiveIn(*PI, LiveBBs);
263}
264
265// First thing we need to do is scan the whole function for values that are
266// live across unwind edges.  Each value that is live across an unwind edge
267// we spill into a stack location, guaranteeing that there is nothing live
268// across the unwind edge.  This process also splits all critical edges
269// coming out of invoke's.
270void LowerInvoke::
271splitLiveRangesLiveAcrossInvokes(SmallVectorImpl<InvokeInst*> &Invokes) {
272  // First step, split all critical edges from invoke instructions.
273  for (unsigned i = 0, e = Invokes.size(); i != e; ++i) {
274    InvokeInst *II = Invokes[i];
275    SplitCriticalEdge(II, 0, this);
276    SplitCriticalEdge(II, 1, this);
277    assert(!isa<PHINode>(II->getNormalDest()) &&
278           !isa<PHINode>(II->getUnwindDest()) &&
279           "critical edge splitting left single entry phi nodes?");
280  }
281
282  Function *F = Invokes.back()->getParent()->getParent();
283
284  // To avoid having to handle incoming arguments specially, we lower each arg
285  // to a copy instruction in the entry block.  This ensures that the argument
286  // value itself cannot be live across the entry block.
287  BasicBlock::iterator AfterAllocaInsertPt = F->begin()->begin();
288  while (isa<AllocaInst>(AfterAllocaInsertPt) &&
289        isa<ConstantInt>(cast<AllocaInst>(AfterAllocaInsertPt)->getArraySize()))
290    ++AfterAllocaInsertPt;
291  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
292       AI != E; ++AI) {
293    Type *Ty = AI->getType();
294    // Aggregate types can't be cast, but are legal argument types, so we have
295    // to handle them differently. We use an extract/insert pair as a
296    // lightweight method to achieve the same goal.
297    if (isa<StructType>(Ty) || isa<ArrayType>(Ty) || isa<VectorType>(Ty)) {
298      Instruction *EI = ExtractValueInst::Create(AI, 0, "",AfterAllocaInsertPt);
299      Instruction *NI = InsertValueInst::Create(AI, EI, 0);
300      NI->insertAfter(EI);
301      AI->replaceAllUsesWith(NI);
302      // Set the operand of the instructions back to the AllocaInst.
303      EI->setOperand(0, AI);
304      NI->setOperand(0, AI);
305    } else {
306      // This is always a no-op cast because we're casting AI to AI->getType()
307      // so src and destination types are identical. BitCast is the only
308      // possibility.
309      CastInst *NC = new BitCastInst(
310        AI, AI->getType(), AI->getName()+".tmp", AfterAllocaInsertPt);
311      AI->replaceAllUsesWith(NC);
312      // Set the operand of the cast instruction back to the AllocaInst.
313      // Normally it's forbidden to replace a CastInst's operand because it
314      // could cause the opcode to reflect an illegal conversion. However,
315      // we're replacing it here with the same value it was constructed with.
316      // We do this because the above replaceAllUsesWith() clobbered the
317      // operand, but we want this one to remain.
318      NC->setOperand(0, AI);
319    }
320  }
321
322  // Finally, scan the code looking for instructions with bad live ranges.
323  for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
324    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
325      // Ignore obvious cases we don't have to handle.  In particular, most
326      // instructions either have no uses or only have a single use inside the
327      // current block.  Ignore them quickly.
328      Instruction *Inst = II;
329      if (Inst->use_empty()) continue;
330      if (Inst->hasOneUse() &&
331          cast<Instruction>(Inst->use_back())->getParent() == BB &&
332          !isa<PHINode>(Inst->use_back())) continue;
333
334      // If this is an alloca in the entry block, it's not a real register
335      // value.
336      if (AllocaInst *AI = dyn_cast<AllocaInst>(Inst))
337        if (isa<ConstantInt>(AI->getArraySize()) && BB == F->begin())
338          continue;
339
340      // Avoid iterator invalidation by copying users to a temporary vector.
341      SmallVector<Instruction*,16> Users;
342      for (Value::use_iterator UI = Inst->use_begin(), E = Inst->use_end();
343           UI != E; ++UI) {
344        Instruction *User = cast<Instruction>(*UI);
345        if (User->getParent() != BB || isa<PHINode>(User))
346          Users.push_back(User);
347      }
348
349      // Scan all of the uses and see if the live range is live across an unwind
350      // edge.  If we find a use live across an invoke edge, create an alloca
351      // and spill the value.
352      std::set<InvokeInst*> InvokesWithStoreInserted;
353
354      // Find all of the blocks that this value is live in.
355      std::set<BasicBlock*> LiveBBs;
356      LiveBBs.insert(Inst->getParent());
357      while (!Users.empty()) {
358        Instruction *U = Users.back();
359        Users.pop_back();
360
361        if (!isa<PHINode>(U)) {
362          MarkBlocksLiveIn(U->getParent(), LiveBBs);
363        } else {
364          // Uses for a PHI node occur in their predecessor block.
365          PHINode *PN = cast<PHINode>(U);
366          for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
367            if (PN->getIncomingValue(i) == Inst)
368              MarkBlocksLiveIn(PN->getIncomingBlock(i), LiveBBs);
369        }
370      }
371
372      // Now that we know all of the blocks that this thing is live in, see if
373      // it includes any of the unwind locations.
374      bool NeedsSpill = false;
375      for (unsigned i = 0, e = Invokes.size(); i != e; ++i) {
376        BasicBlock *UnwindBlock = Invokes[i]->getUnwindDest();
377        if (UnwindBlock != BB && LiveBBs.count(UnwindBlock)) {
378          NeedsSpill = true;
379        }
380      }
381
382      // If we decided we need a spill, do it.
383      if (NeedsSpill) {
384        ++NumSpilled;
385        DemoteRegToStack(*Inst, true);
386      }
387    }
388}
389
390bool LowerInvoke::insertExpensiveEHSupport(Function &F) {
391  SmallVector<ReturnInst*,16> Returns;
392  SmallVector<InvokeInst*,16> Invokes;
393  UnreachableInst* UnreachablePlaceholder = 0;
394
395  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
396    if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
397      // Remember all return instructions in case we insert an invoke into this
398      // function.
399      Returns.push_back(RI);
400    } else if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
401      Invokes.push_back(II);
402    }
403
404  if (Invokes.empty()) return false;
405
406  NumInvokes += Invokes.size();
407
408  // TODO: This is not an optimal way to do this.  In particular, this always
409  // inserts setjmp calls into the entries of functions with invoke instructions
410  // even though there are possibly paths through the function that do not
411  // execute any invokes.  In particular, for functions with early exits, e.g.
412  // the 'addMove' method in hexxagon, it would be nice to not have to do the
413  // setjmp stuff on the early exit path.  This requires a bit of dataflow, but
414  // would not be too hard to do.
415
416  // If we have an invoke instruction, insert a setjmp that dominates all
417  // invokes.  After the setjmp, use a cond branch that goes to the original
418  // code path on zero, and to a designated 'catch' block of nonzero.
419  Value *OldJmpBufPtr = 0;
420  if (!Invokes.empty()) {
421    // First thing we need to do is scan the whole function for values that are
422    // live across unwind edges.  Each value that is live across an unwind edge
423    // we spill into a stack location, guaranteeing that there is nothing live
424    // across the unwind edge.  This process also splits all critical edges
425    // coming out of invoke's.
426    splitLiveRangesLiveAcrossInvokes(Invokes);
427
428    BasicBlock *EntryBB = F.begin();
429
430    // Create an alloca for the incoming jump buffer ptr and the new jump buffer
431    // that needs to be restored on all exits from the function.  This is an
432    // alloca because the value needs to be live across invokes.
433    unsigned Align = TLI ? TLI->getJumpBufAlignment() : 0;
434    AllocaInst *JmpBuf =
435      new AllocaInst(JBLinkTy, 0, Align,
436                     "jblink", F.begin()->begin());
437
438    Value *Idx[] = { Constant::getNullValue(Type::getInt32Ty(F.getContext())),
439                     ConstantInt::get(Type::getInt32Ty(F.getContext()), 1) };
440    OldJmpBufPtr = GetElementPtrInst::Create(JmpBuf, Idx, "OldBuf",
441                                             EntryBB->getTerminator());
442
443    // Copy the JBListHead to the alloca.
444    Value *OldBuf = new LoadInst(JBListHead, "oldjmpbufptr", true,
445                                 EntryBB->getTerminator());
446    new StoreInst(OldBuf, OldJmpBufPtr, true, EntryBB->getTerminator());
447
448    // Add the new jumpbuf to the list.
449    new StoreInst(JmpBuf, JBListHead, true, EntryBB->getTerminator());
450
451    // Create the catch block.  The catch block is basically a big switch
452    // statement that goes to all of the invoke catch blocks.
453    BasicBlock *CatchBB =
454            BasicBlock::Create(F.getContext(), "setjmp.catch", &F);
455
456    // Create an alloca which keeps track of the stack pointer before every
457    // invoke, this allows us to properly restore the stack pointer after
458    // long jumping.
459    AllocaInst *StackPtr = new AllocaInst(Type::getInt8PtrTy(F.getContext()), 0,
460                                          "stackptr", EntryBB->begin());
461
462    // Create an alloca which keeps track of which invoke is currently
463    // executing.  For normal calls it contains zero.
464    AllocaInst *InvokeNum = new AllocaInst(Type::getInt32Ty(F.getContext()), 0,
465                                           "invokenum",EntryBB->begin());
466    new StoreInst(ConstantInt::get(Type::getInt32Ty(F.getContext()), 0),
467                  InvokeNum, true, EntryBB->getTerminator());
468
469    // Insert a load in the Catch block, and a switch on its value.  By default,
470    // we go to a block that just does an unwind (which is the correct action
471    // for a standard call). We insert an unreachable instruction here and
472    // modify the block to jump to the correct unwinding pad later.
473    BasicBlock *UnwindBB = BasicBlock::Create(F.getContext(), "unwindbb", &F);
474    UnreachablePlaceholder = new UnreachableInst(F.getContext(), UnwindBB);
475
476    Value *CatchLoad = new LoadInst(InvokeNum, "invoke.num", true, CatchBB);
477    SwitchInst *CatchSwitch =
478      SwitchInst::Create(CatchLoad, UnwindBB, Invokes.size(), CatchBB);
479
480    // Now that things are set up, insert the setjmp call itself.
481
482    // Split the entry block to insert the conditional branch for the setjmp.
483    BasicBlock *ContBlock = EntryBB->splitBasicBlock(EntryBB->getTerminator(),
484                                                     "setjmp.cont");
485
486    Idx[1] = ConstantInt::get(Type::getInt32Ty(F.getContext()), 0);
487    Value *JmpBufPtr = GetElementPtrInst::Create(JmpBuf, Idx, "TheJmpBuf",
488                                                 EntryBB->getTerminator());
489    JmpBufPtr = new BitCastInst(JmpBufPtr,
490                        Type::getInt8PtrTy(F.getContext()),
491                                "tmp", EntryBB->getTerminator());
492    Value *SJRet = CallInst::Create(SetJmpFn, JmpBufPtr, "sjret",
493                                    EntryBB->getTerminator());
494
495    // Compare the return value to zero.
496    Value *IsNormal = new ICmpInst(EntryBB->getTerminator(),
497                                   ICmpInst::ICMP_EQ, SJRet,
498                                   Constant::getNullValue(SJRet->getType()),
499                                   "notunwind");
500    // Nuke the uncond branch.
501    EntryBB->getTerminator()->eraseFromParent();
502
503    // Put in a new condbranch in its place.
504    BranchInst::Create(ContBlock, CatchBB, IsNormal, EntryBB);
505
506    // At this point, we are all set up, rewrite each invoke instruction.
507    for (unsigned i = 0, e = Invokes.size(); i != e; ++i)
508      rewriteExpensiveInvoke(Invokes[i], i+1, InvokeNum, StackPtr, CatchSwitch);
509  }
510
511  // We know that there is at least one unwind.
512
513  // Create three new blocks, the block to load the jmpbuf ptr and compare
514  // against null, the block to do the longjmp, and the error block for if it
515  // is null.  Add them at the end of the function because they are not hot.
516  BasicBlock *UnwindHandler = BasicBlock::Create(F.getContext(),
517                                                "dounwind", &F);
518  BasicBlock *UnwindBlock = BasicBlock::Create(F.getContext(), "unwind", &F);
519  BasicBlock *TermBlock = BasicBlock::Create(F.getContext(), "unwinderror", &F);
520
521  // If this function contains an invoke, restore the old jumpbuf ptr.
522  Value *BufPtr;
523  if (OldJmpBufPtr) {
524    // Before the return, insert a copy from the saved value to the new value.
525    BufPtr = new LoadInst(OldJmpBufPtr, "oldjmpbufptr", UnwindHandler);
526    new StoreInst(BufPtr, JBListHead, UnwindHandler);
527  } else {
528    BufPtr = new LoadInst(JBListHead, "ehlist", UnwindHandler);
529  }
530
531  // Load the JBList, if it's null, then there was no catch!
532  Value *NotNull = new ICmpInst(*UnwindHandler, ICmpInst::ICMP_NE, BufPtr,
533                                Constant::getNullValue(BufPtr->getType()),
534                                "notnull");
535  BranchInst::Create(UnwindBlock, TermBlock, NotNull, UnwindHandler);
536
537  // Create the block to do the longjmp.
538  // Get a pointer to the jmpbuf and longjmp.
539  Value *Idx[] = { Constant::getNullValue(Type::getInt32Ty(F.getContext())),
540                   ConstantInt::get(Type::getInt32Ty(F.getContext()), 0) };
541  Idx[0] = GetElementPtrInst::Create(BufPtr, Idx, "JmpBuf", UnwindBlock);
542  Idx[0] = new BitCastInst(Idx[0],
543             Type::getInt8PtrTy(F.getContext()),
544                           "tmp", UnwindBlock);
545  Idx[1] = ConstantInt::get(Type::getInt32Ty(F.getContext()), 1);
546  CallInst::Create(LongJmpFn, Idx, "", UnwindBlock);
547  new UnreachableInst(F.getContext(), UnwindBlock);
548
549  // Set up the term block ("throw without a catch").
550  new UnreachableInst(F.getContext(), TermBlock);
551
552  // Insert a call to abort()
553  CallInst::Create(AbortFn, "",
554                   TermBlock->getTerminator())->setTailCall();
555
556  // Replace the inserted unreachable with a branch to the unwind handler.
557  if (UnreachablePlaceholder) {
558    BranchInst::Create(UnwindHandler, UnreachablePlaceholder);
559    UnreachablePlaceholder->eraseFromParent();
560  }
561
562  // Finally, for any returns from this function, if this function contains an
563  // invoke, restore the old jmpbuf pointer to its input value.
564  if (OldJmpBufPtr) {
565    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
566      ReturnInst *R = Returns[i];
567
568      // Before the return, insert a copy from the saved value to the new value.
569      Value *OldBuf = new LoadInst(OldJmpBufPtr, "oldjmpbufptr", true, R);
570      new StoreInst(OldBuf, JBListHead, true, R);
571    }
572  }
573
574  return true;
575}
576
577bool LowerInvoke::runOnFunction(Function &F) {
578  if (useExpensiveEHSupport)
579    return insertExpensiveEHSupport(F);
580  else
581    return insertCheapEHSupport(F);
582}
583