1//===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation analyzes and transforms the induction variables (and
11// computations derived from them) into forms suitable for efficient execution
12// on the target.
13//
14// This pass performs a strength reduction on array references inside loops that
15// have as one or more of their components the loop induction variable, it
16// rewrites expressions to take advantage of scaled-index addressing modes
17// available on the target, and it performs a variety of other optimizations
18// related to loop induction variables.
19//
20// Terminology note: this code has a lot of handling for "post-increment" or
21// "post-inc" users. This is not talking about post-increment addressing modes;
22// it is instead talking about code like this:
23//
24//   %i = phi [ 0, %entry ], [ %i.next, %latch ]
25//   ...
26//   %i.next = add %i, 1
27//   %c = icmp eq %i.next, %n
28//
29// The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
30// it's useful to think about these as the same register, with some uses using
31// the value of the register before the add and some using // it after. In this
32// example, the icmp is a post-increment user, since it uses %i.next, which is
33// the value of the induction variable after the increment. The other common
34// case of post-increment users is users outside the loop.
35//
36// TODO: More sophistication in the way Formulae are generated and filtered.
37//
38// TODO: Handle multiple loops at a time.
39//
40// TODO: Should TargetLowering::AddrMode::BaseGV be changed to a ConstantExpr
41//       instead of a GlobalValue?
42//
43// TODO: When truncation is free, truncate ICmp users' operands to make it a
44//       smaller encoding (on x86 at least).
45//
46// TODO: When a negated register is used by an add (such as in a list of
47//       multiple base registers, or as the increment expression in an addrec),
48//       we may not actually need both reg and (-1 * reg) in registers; the
49//       negation can be implemented by using a sub instead of an add. The
50//       lack of support for taking this into consideration when making
51//       register pressure decisions is partly worked around by the "Special"
52//       use kind.
53//
54//===----------------------------------------------------------------------===//
55
56#define DEBUG_TYPE "loop-reduce"
57#include "llvm/Transforms/Scalar.h"
58#include "llvm/Constants.h"
59#include "llvm/Instructions.h"
60#include "llvm/IntrinsicInst.h"
61#include "llvm/DerivedTypes.h"
62#include "llvm/Analysis/IVUsers.h"
63#include "llvm/Analysis/Dominators.h"
64#include "llvm/Analysis/LoopPass.h"
65#include "llvm/Analysis/ScalarEvolutionExpander.h"
66#include "llvm/Assembly/Writer.h"
67#include "llvm/Transforms/Utils/BasicBlockUtils.h"
68#include "llvm/Transforms/Utils/Local.h"
69#include "llvm/ADT/SmallBitVector.h"
70#include "llvm/ADT/SetVector.h"
71#include "llvm/ADT/DenseSet.h"
72#include "llvm/Support/Debug.h"
73#include "llvm/Support/CommandLine.h"
74#include "llvm/Support/ValueHandle.h"
75#include "llvm/Support/raw_ostream.h"
76#include "llvm/Target/TargetLowering.h"
77#include <algorithm>
78using namespace llvm;
79
80/// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for
81/// bail out. This threshold is far beyond the number of users that LSR can
82/// conceivably solve, so it should not affect generated code, but catches the
83/// worst cases before LSR burns too much compile time and stack space.
84static const unsigned MaxIVUsers = 200;
85
86// Temporary flag to cleanup congruent phis after LSR phi expansion.
87// It's currently disabled until we can determine whether it's truly useful or
88// not. The flag should be removed after the v3.0 release.
89// This is now needed for ivchains.
90static cl::opt<bool> EnablePhiElim(
91  "enable-lsr-phielim", cl::Hidden, cl::init(true),
92  cl::desc("Enable LSR phi elimination"));
93
94#ifndef NDEBUG
95// Stress test IV chain generation.
96static cl::opt<bool> StressIVChain(
97  "stress-ivchain", cl::Hidden, cl::init(false),
98  cl::desc("Stress test LSR IV chains"));
99#else
100static bool StressIVChain = false;
101#endif
102
103namespace {
104
105/// RegSortData - This class holds data which is used to order reuse candidates.
106class RegSortData {
107public:
108  /// UsedByIndices - This represents the set of LSRUse indices which reference
109  /// a particular register.
110  SmallBitVector UsedByIndices;
111
112  RegSortData() {}
113
114  void print(raw_ostream &OS) const;
115  void dump() const;
116};
117
118}
119
120void RegSortData::print(raw_ostream &OS) const {
121  OS << "[NumUses=" << UsedByIndices.count() << ']';
122}
123
124#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
125void RegSortData::dump() const {
126  print(errs()); errs() << '\n';
127}
128#endif
129
130namespace {
131
132/// RegUseTracker - Map register candidates to information about how they are
133/// used.
134class RegUseTracker {
135  typedef DenseMap<const SCEV *, RegSortData> RegUsesTy;
136
137  RegUsesTy RegUsesMap;
138  SmallVector<const SCEV *, 16> RegSequence;
139
140public:
141  void CountRegister(const SCEV *Reg, size_t LUIdx);
142  void DropRegister(const SCEV *Reg, size_t LUIdx);
143  void SwapAndDropUse(size_t LUIdx, size_t LastLUIdx);
144
145  bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
146
147  const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
148
149  void clear();
150
151  typedef SmallVectorImpl<const SCEV *>::iterator iterator;
152  typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator;
153  iterator begin() { return RegSequence.begin(); }
154  iterator end()   { return RegSequence.end(); }
155  const_iterator begin() const { return RegSequence.begin(); }
156  const_iterator end() const   { return RegSequence.end(); }
157};
158
159}
160
161void
162RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) {
163  std::pair<RegUsesTy::iterator, bool> Pair =
164    RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
165  RegSortData &RSD = Pair.first->second;
166  if (Pair.second)
167    RegSequence.push_back(Reg);
168  RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
169  RSD.UsedByIndices.set(LUIdx);
170}
171
172void
173RegUseTracker::DropRegister(const SCEV *Reg, size_t LUIdx) {
174  RegUsesTy::iterator It = RegUsesMap.find(Reg);
175  assert(It != RegUsesMap.end());
176  RegSortData &RSD = It->second;
177  assert(RSD.UsedByIndices.size() > LUIdx);
178  RSD.UsedByIndices.reset(LUIdx);
179}
180
181void
182RegUseTracker::SwapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
183  assert(LUIdx <= LastLUIdx);
184
185  // Update RegUses. The data structure is not optimized for this purpose;
186  // we must iterate through it and update each of the bit vectors.
187  for (RegUsesTy::iterator I = RegUsesMap.begin(), E = RegUsesMap.end();
188       I != E; ++I) {
189    SmallBitVector &UsedByIndices = I->second.UsedByIndices;
190    if (LUIdx < UsedByIndices.size())
191      UsedByIndices[LUIdx] =
192        LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : 0;
193    UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
194  }
195}
196
197bool
198RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
199  RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
200  if (I == RegUsesMap.end())
201    return false;
202  const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
203  int i = UsedByIndices.find_first();
204  if (i == -1) return false;
205  if ((size_t)i != LUIdx) return true;
206  return UsedByIndices.find_next(i) != -1;
207}
208
209const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
210  RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
211  assert(I != RegUsesMap.end() && "Unknown register!");
212  return I->second.UsedByIndices;
213}
214
215void RegUseTracker::clear() {
216  RegUsesMap.clear();
217  RegSequence.clear();
218}
219
220namespace {
221
222/// Formula - This class holds information that describes a formula for
223/// computing satisfying a use. It may include broken-out immediates and scaled
224/// registers.
225struct Formula {
226  /// AM - This is used to represent complex addressing, as well as other kinds
227  /// of interesting uses.
228  TargetLowering::AddrMode AM;
229
230  /// BaseRegs - The list of "base" registers for this use. When this is
231  /// non-empty, AM.HasBaseReg should be set to true.
232  SmallVector<const SCEV *, 2> BaseRegs;
233
234  /// ScaledReg - The 'scaled' register for this use. This should be non-null
235  /// when AM.Scale is not zero.
236  const SCEV *ScaledReg;
237
238  /// UnfoldedOffset - An additional constant offset which added near the
239  /// use. This requires a temporary register, but the offset itself can
240  /// live in an add immediate field rather than a register.
241  int64_t UnfoldedOffset;
242
243  Formula() : ScaledReg(0), UnfoldedOffset(0) {}
244
245  void InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
246
247  unsigned getNumRegs() const;
248  Type *getType() const;
249
250  void DeleteBaseReg(const SCEV *&S);
251
252  bool referencesReg(const SCEV *S) const;
253  bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
254                                  const RegUseTracker &RegUses) const;
255
256  void print(raw_ostream &OS) const;
257  void dump() const;
258};
259
260}
261
262/// DoInitialMatch - Recursion helper for InitialMatch.
263static void DoInitialMatch(const SCEV *S, Loop *L,
264                           SmallVectorImpl<const SCEV *> &Good,
265                           SmallVectorImpl<const SCEV *> &Bad,
266                           ScalarEvolution &SE) {
267  // Collect expressions which properly dominate the loop header.
268  if (SE.properlyDominates(S, L->getHeader())) {
269    Good.push_back(S);
270    return;
271  }
272
273  // Look at add operands.
274  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
275    for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
276         I != E; ++I)
277      DoInitialMatch(*I, L, Good, Bad, SE);
278    return;
279  }
280
281  // Look at addrec operands.
282  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
283    if (!AR->getStart()->isZero()) {
284      DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
285      DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
286                                      AR->getStepRecurrence(SE),
287                                      // FIXME: AR->getNoWrapFlags()
288                                      AR->getLoop(), SCEV::FlagAnyWrap),
289                     L, Good, Bad, SE);
290      return;
291    }
292
293  // Handle a multiplication by -1 (negation) if it didn't fold.
294  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
295    if (Mul->getOperand(0)->isAllOnesValue()) {
296      SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
297      const SCEV *NewMul = SE.getMulExpr(Ops);
298
299      SmallVector<const SCEV *, 4> MyGood;
300      SmallVector<const SCEV *, 4> MyBad;
301      DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
302      const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
303        SE.getEffectiveSCEVType(NewMul->getType())));
304      for (SmallVectorImpl<const SCEV *>::const_iterator I = MyGood.begin(),
305           E = MyGood.end(); I != E; ++I)
306        Good.push_back(SE.getMulExpr(NegOne, *I));
307      for (SmallVectorImpl<const SCEV *>::const_iterator I = MyBad.begin(),
308           E = MyBad.end(); I != E; ++I)
309        Bad.push_back(SE.getMulExpr(NegOne, *I));
310      return;
311    }
312
313  // Ok, we can't do anything interesting. Just stuff the whole thing into a
314  // register and hope for the best.
315  Bad.push_back(S);
316}
317
318/// InitialMatch - Incorporate loop-variant parts of S into this Formula,
319/// attempting to keep all loop-invariant and loop-computable values in a
320/// single base register.
321void Formula::InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
322  SmallVector<const SCEV *, 4> Good;
323  SmallVector<const SCEV *, 4> Bad;
324  DoInitialMatch(S, L, Good, Bad, SE);
325  if (!Good.empty()) {
326    const SCEV *Sum = SE.getAddExpr(Good);
327    if (!Sum->isZero())
328      BaseRegs.push_back(Sum);
329    AM.HasBaseReg = true;
330  }
331  if (!Bad.empty()) {
332    const SCEV *Sum = SE.getAddExpr(Bad);
333    if (!Sum->isZero())
334      BaseRegs.push_back(Sum);
335    AM.HasBaseReg = true;
336  }
337}
338
339/// getNumRegs - Return the total number of register operands used by this
340/// formula. This does not include register uses implied by non-constant
341/// addrec strides.
342unsigned Formula::getNumRegs() const {
343  return !!ScaledReg + BaseRegs.size();
344}
345
346/// getType - Return the type of this formula, if it has one, or null
347/// otherwise. This type is meaningless except for the bit size.
348Type *Formula::getType() const {
349  return !BaseRegs.empty() ? BaseRegs.front()->getType() :
350         ScaledReg ? ScaledReg->getType() :
351         AM.BaseGV ? AM.BaseGV->getType() :
352         0;
353}
354
355/// DeleteBaseReg - Delete the given base reg from the BaseRegs list.
356void Formula::DeleteBaseReg(const SCEV *&S) {
357  if (&S != &BaseRegs.back())
358    std::swap(S, BaseRegs.back());
359  BaseRegs.pop_back();
360}
361
362/// referencesReg - Test if this formula references the given register.
363bool Formula::referencesReg(const SCEV *S) const {
364  return S == ScaledReg ||
365         std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end();
366}
367
368/// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers
369/// which are used by uses other than the use with the given index.
370bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
371                                         const RegUseTracker &RegUses) const {
372  if (ScaledReg)
373    if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
374      return true;
375  for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
376       E = BaseRegs.end(); I != E; ++I)
377    if (RegUses.isRegUsedByUsesOtherThan(*I, LUIdx))
378      return true;
379  return false;
380}
381
382void Formula::print(raw_ostream &OS) const {
383  bool First = true;
384  if (AM.BaseGV) {
385    if (!First) OS << " + "; else First = false;
386    WriteAsOperand(OS, AM.BaseGV, /*PrintType=*/false);
387  }
388  if (AM.BaseOffs != 0) {
389    if (!First) OS << " + "; else First = false;
390    OS << AM.BaseOffs;
391  }
392  for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(),
393       E = BaseRegs.end(); I != E; ++I) {
394    if (!First) OS << " + "; else First = false;
395    OS << "reg(" << **I << ')';
396  }
397  if (AM.HasBaseReg && BaseRegs.empty()) {
398    if (!First) OS << " + "; else First = false;
399    OS << "**error: HasBaseReg**";
400  } else if (!AM.HasBaseReg && !BaseRegs.empty()) {
401    if (!First) OS << " + "; else First = false;
402    OS << "**error: !HasBaseReg**";
403  }
404  if (AM.Scale != 0) {
405    if (!First) OS << " + "; else First = false;
406    OS << AM.Scale << "*reg(";
407    if (ScaledReg)
408      OS << *ScaledReg;
409    else
410      OS << "<unknown>";
411    OS << ')';
412  }
413  if (UnfoldedOffset != 0) {
414    if (!First) OS << " + "; else First = false;
415    OS << "imm(" << UnfoldedOffset << ')';
416  }
417}
418
419#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
420void Formula::dump() const {
421  print(errs()); errs() << '\n';
422}
423#endif
424
425/// isAddRecSExtable - Return true if the given addrec can be sign-extended
426/// without changing its value.
427static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
428  Type *WideTy =
429    IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
430  return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
431}
432
433/// isAddSExtable - Return true if the given add can be sign-extended
434/// without changing its value.
435static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
436  Type *WideTy =
437    IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
438  return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
439}
440
441/// isMulSExtable - Return true if the given mul can be sign-extended
442/// without changing its value.
443static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
444  Type *WideTy =
445    IntegerType::get(SE.getContext(),
446                     SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
447  return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
448}
449
450/// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined
451/// and if the remainder is known to be zero,  or null otherwise. If
452/// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified
453/// to Y, ignoring that the multiplication may overflow, which is useful when
454/// the result will be used in a context where the most significant bits are
455/// ignored.
456static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
457                                ScalarEvolution &SE,
458                                bool IgnoreSignificantBits = false) {
459  // Handle the trivial case, which works for any SCEV type.
460  if (LHS == RHS)
461    return SE.getConstant(LHS->getType(), 1);
462
463  // Handle a few RHS special cases.
464  const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
465  if (RC) {
466    const APInt &RA = RC->getValue()->getValue();
467    // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
468    // some folding.
469    if (RA.isAllOnesValue())
470      return SE.getMulExpr(LHS, RC);
471    // Handle x /s 1 as x.
472    if (RA == 1)
473      return LHS;
474  }
475
476  // Check for a division of a constant by a constant.
477  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
478    if (!RC)
479      return 0;
480    const APInt &LA = C->getValue()->getValue();
481    const APInt &RA = RC->getValue()->getValue();
482    if (LA.srem(RA) != 0)
483      return 0;
484    return SE.getConstant(LA.sdiv(RA));
485  }
486
487  // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
488  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
489    if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) {
490      const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
491                                      IgnoreSignificantBits);
492      if (!Step) return 0;
493      const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
494                                       IgnoreSignificantBits);
495      if (!Start) return 0;
496      // FlagNW is independent of the start value, step direction, and is
497      // preserved with smaller magnitude steps.
498      // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
499      return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
500    }
501    return 0;
502  }
503
504  // Distribute the sdiv over add operands, if the add doesn't overflow.
505  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
506    if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
507      SmallVector<const SCEV *, 8> Ops;
508      for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
509           I != E; ++I) {
510        const SCEV *Op = getExactSDiv(*I, RHS, SE,
511                                      IgnoreSignificantBits);
512        if (!Op) return 0;
513        Ops.push_back(Op);
514      }
515      return SE.getAddExpr(Ops);
516    }
517    return 0;
518  }
519
520  // Check for a multiply operand that we can pull RHS out of.
521  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
522    if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
523      SmallVector<const SCEV *, 4> Ops;
524      bool Found = false;
525      for (SCEVMulExpr::op_iterator I = Mul->op_begin(), E = Mul->op_end();
526           I != E; ++I) {
527        const SCEV *S = *I;
528        if (!Found)
529          if (const SCEV *Q = getExactSDiv(S, RHS, SE,
530                                           IgnoreSignificantBits)) {
531            S = Q;
532            Found = true;
533          }
534        Ops.push_back(S);
535      }
536      return Found ? SE.getMulExpr(Ops) : 0;
537    }
538    return 0;
539  }
540
541  // Otherwise we don't know.
542  return 0;
543}
544
545/// ExtractImmediate - If S involves the addition of a constant integer value,
546/// return that integer value, and mutate S to point to a new SCEV with that
547/// value excluded.
548static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
549  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
550    if (C->getValue()->getValue().getMinSignedBits() <= 64) {
551      S = SE.getConstant(C->getType(), 0);
552      return C->getValue()->getSExtValue();
553    }
554  } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
555    SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
556    int64_t Result = ExtractImmediate(NewOps.front(), SE);
557    if (Result != 0)
558      S = SE.getAddExpr(NewOps);
559    return Result;
560  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
561    SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
562    int64_t Result = ExtractImmediate(NewOps.front(), SE);
563    if (Result != 0)
564      S = SE.getAddRecExpr(NewOps, AR->getLoop(),
565                           // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
566                           SCEV::FlagAnyWrap);
567    return Result;
568  }
569  return 0;
570}
571
572/// ExtractSymbol - If S involves the addition of a GlobalValue address,
573/// return that symbol, and mutate S to point to a new SCEV with that
574/// value excluded.
575static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
576  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
577    if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
578      S = SE.getConstant(GV->getType(), 0);
579      return GV;
580    }
581  } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
582    SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
583    GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
584    if (Result)
585      S = SE.getAddExpr(NewOps);
586    return Result;
587  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
588    SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
589    GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
590    if (Result)
591      S = SE.getAddRecExpr(NewOps, AR->getLoop(),
592                           // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
593                           SCEV::FlagAnyWrap);
594    return Result;
595  }
596  return 0;
597}
598
599/// isAddressUse - Returns true if the specified instruction is using the
600/// specified value as an address.
601static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
602  bool isAddress = isa<LoadInst>(Inst);
603  if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
604    if (SI->getOperand(1) == OperandVal)
605      isAddress = true;
606  } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
607    // Addressing modes can also be folded into prefetches and a variety
608    // of intrinsics.
609    switch (II->getIntrinsicID()) {
610      default: break;
611      case Intrinsic::prefetch:
612      case Intrinsic::x86_sse_storeu_ps:
613      case Intrinsic::x86_sse2_storeu_pd:
614      case Intrinsic::x86_sse2_storeu_dq:
615      case Intrinsic::x86_sse2_storel_dq:
616        if (II->getArgOperand(0) == OperandVal)
617          isAddress = true;
618        break;
619    }
620  }
621  return isAddress;
622}
623
624/// getAccessType - Return the type of the memory being accessed.
625static Type *getAccessType(const Instruction *Inst) {
626  Type *AccessTy = Inst->getType();
627  if (const StoreInst *SI = dyn_cast<StoreInst>(Inst))
628    AccessTy = SI->getOperand(0)->getType();
629  else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
630    // Addressing modes can also be folded into prefetches and a variety
631    // of intrinsics.
632    switch (II->getIntrinsicID()) {
633    default: break;
634    case Intrinsic::x86_sse_storeu_ps:
635    case Intrinsic::x86_sse2_storeu_pd:
636    case Intrinsic::x86_sse2_storeu_dq:
637    case Intrinsic::x86_sse2_storel_dq:
638      AccessTy = II->getArgOperand(0)->getType();
639      break;
640    }
641  }
642
643  // All pointers have the same requirements, so canonicalize them to an
644  // arbitrary pointer type to minimize variation.
645  if (PointerType *PTy = dyn_cast<PointerType>(AccessTy))
646    AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
647                                PTy->getAddressSpace());
648
649  return AccessTy;
650}
651
652/// isExistingPhi - Return true if this AddRec is already a phi in its loop.
653static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
654  for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
655       PHINode *PN = dyn_cast<PHINode>(I); ++I) {
656    if (SE.isSCEVable(PN->getType()) &&
657        (SE.getEffectiveSCEVType(PN->getType()) ==
658         SE.getEffectiveSCEVType(AR->getType())) &&
659        SE.getSCEV(PN) == AR)
660      return true;
661  }
662  return false;
663}
664
665/// Check if expanding this expression is likely to incur significant cost. This
666/// is tricky because SCEV doesn't track which expressions are actually computed
667/// by the current IR.
668///
669/// We currently allow expansion of IV increments that involve adds,
670/// multiplication by constants, and AddRecs from existing phis.
671///
672/// TODO: Allow UDivExpr if we can find an existing IV increment that is an
673/// obvious multiple of the UDivExpr.
674static bool isHighCostExpansion(const SCEV *S,
675                                SmallPtrSet<const SCEV*, 8> &Processed,
676                                ScalarEvolution &SE) {
677  // Zero/One operand expressions
678  switch (S->getSCEVType()) {
679  case scUnknown:
680  case scConstant:
681    return false;
682  case scTruncate:
683    return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
684                               Processed, SE);
685  case scZeroExtend:
686    return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
687                               Processed, SE);
688  case scSignExtend:
689    return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
690                               Processed, SE);
691  }
692
693  if (!Processed.insert(S))
694    return false;
695
696  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
697    for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
698         I != E; ++I) {
699      if (isHighCostExpansion(*I, Processed, SE))
700        return true;
701    }
702    return false;
703  }
704
705  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
706    if (Mul->getNumOperands() == 2) {
707      // Multiplication by a constant is ok
708      if (isa<SCEVConstant>(Mul->getOperand(0)))
709        return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
710
711      // If we have the value of one operand, check if an existing
712      // multiplication already generates this expression.
713      if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
714        Value *UVal = U->getValue();
715        for (Value::use_iterator UI = UVal->use_begin(), UE = UVal->use_end();
716             UI != UE; ++UI) {
717          // If U is a constant, it may be used by a ConstantExpr.
718          Instruction *User = dyn_cast<Instruction>(*UI);
719          if (User && User->getOpcode() == Instruction::Mul
720              && SE.isSCEVable(User->getType())) {
721            return SE.getSCEV(User) == Mul;
722          }
723        }
724      }
725    }
726  }
727
728  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
729    if (isExistingPhi(AR, SE))
730      return false;
731  }
732
733  // Fow now, consider any other type of expression (div/mul/min/max) high cost.
734  return true;
735}
736
737/// DeleteTriviallyDeadInstructions - If any of the instructions is the
738/// specified set are trivially dead, delete them and see if this makes any of
739/// their operands subsequently dead.
740static bool
741DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) {
742  bool Changed = false;
743
744  while (!DeadInsts.empty()) {
745    Value *V = DeadInsts.pop_back_val();
746    Instruction *I = dyn_cast_or_null<Instruction>(V);
747
748    if (I == 0 || !isInstructionTriviallyDead(I))
749      continue;
750
751    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
752      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
753        *OI = 0;
754        if (U->use_empty())
755          DeadInsts.push_back(U);
756      }
757
758    I->eraseFromParent();
759    Changed = true;
760  }
761
762  return Changed;
763}
764
765namespace {
766
767/// Cost - This class is used to measure and compare candidate formulae.
768class Cost {
769  /// TODO: Some of these could be merged. Also, a lexical ordering
770  /// isn't always optimal.
771  unsigned NumRegs;
772  unsigned AddRecCost;
773  unsigned NumIVMuls;
774  unsigned NumBaseAdds;
775  unsigned ImmCost;
776  unsigned SetupCost;
777
778public:
779  Cost()
780    : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0),
781      SetupCost(0) {}
782
783  bool operator<(const Cost &Other) const;
784
785  void Loose();
786
787#ifndef NDEBUG
788  // Once any of the metrics loses, they must all remain losers.
789  bool isValid() {
790    return ((NumRegs | AddRecCost | NumIVMuls | NumBaseAdds
791             | ImmCost | SetupCost) != ~0u)
792      || ((NumRegs & AddRecCost & NumIVMuls & NumBaseAdds
793           & ImmCost & SetupCost) == ~0u);
794  }
795#endif
796
797  bool isLoser() {
798    assert(isValid() && "invalid cost");
799    return NumRegs == ~0u;
800  }
801
802  void RateFormula(const Formula &F,
803                   SmallPtrSet<const SCEV *, 16> &Regs,
804                   const DenseSet<const SCEV *> &VisitedRegs,
805                   const Loop *L,
806                   const SmallVectorImpl<int64_t> &Offsets,
807                   ScalarEvolution &SE, DominatorTree &DT,
808                   SmallPtrSet<const SCEV *, 16> *LoserRegs = 0);
809
810  void print(raw_ostream &OS) const;
811  void dump() const;
812
813private:
814  void RateRegister(const SCEV *Reg,
815                    SmallPtrSet<const SCEV *, 16> &Regs,
816                    const Loop *L,
817                    ScalarEvolution &SE, DominatorTree &DT);
818  void RatePrimaryRegister(const SCEV *Reg,
819                           SmallPtrSet<const SCEV *, 16> &Regs,
820                           const Loop *L,
821                           ScalarEvolution &SE, DominatorTree &DT,
822                           SmallPtrSet<const SCEV *, 16> *LoserRegs);
823};
824
825}
826
827/// RateRegister - Tally up interesting quantities from the given register.
828void Cost::RateRegister(const SCEV *Reg,
829                        SmallPtrSet<const SCEV *, 16> &Regs,
830                        const Loop *L,
831                        ScalarEvolution &SE, DominatorTree &DT) {
832  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
833    // If this is an addrec for another loop, don't second-guess its addrec phi
834    // nodes. LSR isn't currently smart enough to reason about more than one
835    // loop at a time. LSR has already run on inner loops, will not run on outer
836    // loops, and cannot be expected to change sibling loops.
837    if (AR->getLoop() != L) {
838      // If the AddRec exists, consider it's register free and leave it alone.
839      if (isExistingPhi(AR, SE))
840        return;
841
842      // Otherwise, do not consider this formula at all.
843      Loose();
844      return;
845    }
846    AddRecCost += 1; /// TODO: This should be a function of the stride.
847
848    // Add the step value register, if it needs one.
849    // TODO: The non-affine case isn't precisely modeled here.
850    if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
851      if (!Regs.count(AR->getOperand(1))) {
852        RateRegister(AR->getOperand(1), Regs, L, SE, DT);
853        if (isLoser())
854          return;
855      }
856    }
857  }
858  ++NumRegs;
859
860  // Rough heuristic; favor registers which don't require extra setup
861  // instructions in the preheader.
862  if (!isa<SCEVUnknown>(Reg) &&
863      !isa<SCEVConstant>(Reg) &&
864      !(isa<SCEVAddRecExpr>(Reg) &&
865        (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
866         isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
867    ++SetupCost;
868
869    NumIVMuls += isa<SCEVMulExpr>(Reg) &&
870                 SE.hasComputableLoopEvolution(Reg, L);
871}
872
873/// RatePrimaryRegister - Record this register in the set. If we haven't seen it
874/// before, rate it. Optional LoserRegs provides a way to declare any formula
875/// that refers to one of those regs an instant loser.
876void Cost::RatePrimaryRegister(const SCEV *Reg,
877                               SmallPtrSet<const SCEV *, 16> &Regs,
878                               const Loop *L,
879                               ScalarEvolution &SE, DominatorTree &DT,
880                               SmallPtrSet<const SCEV *, 16> *LoserRegs) {
881  if (LoserRegs && LoserRegs->count(Reg)) {
882    Loose();
883    return;
884  }
885  if (Regs.insert(Reg)) {
886    RateRegister(Reg, Regs, L, SE, DT);
887    if (isLoser())
888      LoserRegs->insert(Reg);
889  }
890}
891
892void Cost::RateFormula(const Formula &F,
893                       SmallPtrSet<const SCEV *, 16> &Regs,
894                       const DenseSet<const SCEV *> &VisitedRegs,
895                       const Loop *L,
896                       const SmallVectorImpl<int64_t> &Offsets,
897                       ScalarEvolution &SE, DominatorTree &DT,
898                       SmallPtrSet<const SCEV *, 16> *LoserRegs) {
899  // Tally up the registers.
900  if (const SCEV *ScaledReg = F.ScaledReg) {
901    if (VisitedRegs.count(ScaledReg)) {
902      Loose();
903      return;
904    }
905    RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs);
906    if (isLoser())
907      return;
908  }
909  for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
910       E = F.BaseRegs.end(); I != E; ++I) {
911    const SCEV *BaseReg = *I;
912    if (VisitedRegs.count(BaseReg)) {
913      Loose();
914      return;
915    }
916    RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs);
917    if (isLoser())
918      return;
919  }
920
921  // Determine how many (unfolded) adds we'll need inside the loop.
922  size_t NumBaseParts = F.BaseRegs.size() + (F.UnfoldedOffset != 0);
923  if (NumBaseParts > 1)
924    NumBaseAdds += NumBaseParts - 1;
925
926  // Tally up the non-zero immediates.
927  for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
928       E = Offsets.end(); I != E; ++I) {
929    int64_t Offset = (uint64_t)*I + F.AM.BaseOffs;
930    if (F.AM.BaseGV)
931      ImmCost += 64; // Handle symbolic values conservatively.
932                     // TODO: This should probably be the pointer size.
933    else if (Offset != 0)
934      ImmCost += APInt(64, Offset, true).getMinSignedBits();
935  }
936  assert(isValid() && "invalid cost");
937}
938
939/// Loose - Set this cost to a losing value.
940void Cost::Loose() {
941  NumRegs = ~0u;
942  AddRecCost = ~0u;
943  NumIVMuls = ~0u;
944  NumBaseAdds = ~0u;
945  ImmCost = ~0u;
946  SetupCost = ~0u;
947}
948
949/// operator< - Choose the lower cost.
950bool Cost::operator<(const Cost &Other) const {
951  if (NumRegs != Other.NumRegs)
952    return NumRegs < Other.NumRegs;
953  if (AddRecCost != Other.AddRecCost)
954    return AddRecCost < Other.AddRecCost;
955  if (NumIVMuls != Other.NumIVMuls)
956    return NumIVMuls < Other.NumIVMuls;
957  if (NumBaseAdds != Other.NumBaseAdds)
958    return NumBaseAdds < Other.NumBaseAdds;
959  if (ImmCost != Other.ImmCost)
960    return ImmCost < Other.ImmCost;
961  if (SetupCost != Other.SetupCost)
962    return SetupCost < Other.SetupCost;
963  return false;
964}
965
966void Cost::print(raw_ostream &OS) const {
967  OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s");
968  if (AddRecCost != 0)
969    OS << ", with addrec cost " << AddRecCost;
970  if (NumIVMuls != 0)
971    OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s");
972  if (NumBaseAdds != 0)
973    OS << ", plus " << NumBaseAdds << " base add"
974       << (NumBaseAdds == 1 ? "" : "s");
975  if (ImmCost != 0)
976    OS << ", plus " << ImmCost << " imm cost";
977  if (SetupCost != 0)
978    OS << ", plus " << SetupCost << " setup cost";
979}
980
981#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
982void Cost::dump() const {
983  print(errs()); errs() << '\n';
984}
985#endif
986
987namespace {
988
989/// LSRFixup - An operand value in an instruction which is to be replaced
990/// with some equivalent, possibly strength-reduced, replacement.
991struct LSRFixup {
992  /// UserInst - The instruction which will be updated.
993  Instruction *UserInst;
994
995  /// OperandValToReplace - The operand of the instruction which will
996  /// be replaced. The operand may be used more than once; every instance
997  /// will be replaced.
998  Value *OperandValToReplace;
999
1000  /// PostIncLoops - If this user is to use the post-incremented value of an
1001  /// induction variable, this variable is non-null and holds the loop
1002  /// associated with the induction variable.
1003  PostIncLoopSet PostIncLoops;
1004
1005  /// LUIdx - The index of the LSRUse describing the expression which
1006  /// this fixup needs, minus an offset (below).
1007  size_t LUIdx;
1008
1009  /// Offset - A constant offset to be added to the LSRUse expression.
1010  /// This allows multiple fixups to share the same LSRUse with different
1011  /// offsets, for example in an unrolled loop.
1012  int64_t Offset;
1013
1014  bool isUseFullyOutsideLoop(const Loop *L) const;
1015
1016  LSRFixup();
1017
1018  void print(raw_ostream &OS) const;
1019  void dump() const;
1020};
1021
1022}
1023
1024LSRFixup::LSRFixup()
1025  : UserInst(0), OperandValToReplace(0), LUIdx(~size_t(0)), Offset(0) {}
1026
1027/// isUseFullyOutsideLoop - Test whether this fixup always uses its
1028/// value outside of the given loop.
1029bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1030  // PHI nodes use their value in their incoming blocks.
1031  if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1032    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1033      if (PN->getIncomingValue(i) == OperandValToReplace &&
1034          L->contains(PN->getIncomingBlock(i)))
1035        return false;
1036    return true;
1037  }
1038
1039  return !L->contains(UserInst);
1040}
1041
1042void LSRFixup::print(raw_ostream &OS) const {
1043  OS << "UserInst=";
1044  // Store is common and interesting enough to be worth special-casing.
1045  if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1046    OS << "store ";
1047    WriteAsOperand(OS, Store->getOperand(0), /*PrintType=*/false);
1048  } else if (UserInst->getType()->isVoidTy())
1049    OS << UserInst->getOpcodeName();
1050  else
1051    WriteAsOperand(OS, UserInst, /*PrintType=*/false);
1052
1053  OS << ", OperandValToReplace=";
1054  WriteAsOperand(OS, OperandValToReplace, /*PrintType=*/false);
1055
1056  for (PostIncLoopSet::const_iterator I = PostIncLoops.begin(),
1057       E = PostIncLoops.end(); I != E; ++I) {
1058    OS << ", PostIncLoop=";
1059    WriteAsOperand(OS, (*I)->getHeader(), /*PrintType=*/false);
1060  }
1061
1062  if (LUIdx != ~size_t(0))
1063    OS << ", LUIdx=" << LUIdx;
1064
1065  if (Offset != 0)
1066    OS << ", Offset=" << Offset;
1067}
1068
1069#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1070void LSRFixup::dump() const {
1071  print(errs()); errs() << '\n';
1072}
1073#endif
1074
1075namespace {
1076
1077/// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding
1078/// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*.
1079struct UniquifierDenseMapInfo {
1080  static SmallVector<const SCEV *, 2> getEmptyKey() {
1081    SmallVector<const SCEV *, 2> V;
1082    V.push_back(reinterpret_cast<const SCEV *>(-1));
1083    return V;
1084  }
1085
1086  static SmallVector<const SCEV *, 2> getTombstoneKey() {
1087    SmallVector<const SCEV *, 2> V;
1088    V.push_back(reinterpret_cast<const SCEV *>(-2));
1089    return V;
1090  }
1091
1092  static unsigned getHashValue(const SmallVector<const SCEV *, 2> &V) {
1093    unsigned Result = 0;
1094    for (SmallVectorImpl<const SCEV *>::const_iterator I = V.begin(),
1095         E = V.end(); I != E; ++I)
1096      Result ^= DenseMapInfo<const SCEV *>::getHashValue(*I);
1097    return Result;
1098  }
1099
1100  static bool isEqual(const SmallVector<const SCEV *, 2> &LHS,
1101                      const SmallVector<const SCEV *, 2> &RHS) {
1102    return LHS == RHS;
1103  }
1104};
1105
1106/// LSRUse - This class holds the state that LSR keeps for each use in
1107/// IVUsers, as well as uses invented by LSR itself. It includes information
1108/// about what kinds of things can be folded into the user, information about
1109/// the user itself, and information about how the use may be satisfied.
1110/// TODO: Represent multiple users of the same expression in common?
1111class LSRUse {
1112  DenseSet<SmallVector<const SCEV *, 2>, UniquifierDenseMapInfo> Uniquifier;
1113
1114public:
1115  /// KindType - An enum for a kind of use, indicating what types of
1116  /// scaled and immediate operands it might support.
1117  enum KindType {
1118    Basic,   ///< A normal use, with no folding.
1119    Special, ///< A special case of basic, allowing -1 scales.
1120    Address, ///< An address use; folding according to TargetLowering
1121    ICmpZero ///< An equality icmp with both operands folded into one.
1122    // TODO: Add a generic icmp too?
1123  };
1124
1125  KindType Kind;
1126  Type *AccessTy;
1127
1128  SmallVector<int64_t, 8> Offsets;
1129  int64_t MinOffset;
1130  int64_t MaxOffset;
1131
1132  /// AllFixupsOutsideLoop - This records whether all of the fixups using this
1133  /// LSRUse are outside of the loop, in which case some special-case heuristics
1134  /// may be used.
1135  bool AllFixupsOutsideLoop;
1136
1137  /// WidestFixupType - This records the widest use type for any fixup using
1138  /// this LSRUse. FindUseWithSimilarFormula can't consider uses with different
1139  /// max fixup widths to be equivalent, because the narrower one may be relying
1140  /// on the implicit truncation to truncate away bogus bits.
1141  Type *WidestFixupType;
1142
1143  /// Formulae - A list of ways to build a value that can satisfy this user.
1144  /// After the list is populated, one of these is selected heuristically and
1145  /// used to formulate a replacement for OperandValToReplace in UserInst.
1146  SmallVector<Formula, 12> Formulae;
1147
1148  /// Regs - The set of register candidates used by all formulae in this LSRUse.
1149  SmallPtrSet<const SCEV *, 4> Regs;
1150
1151  LSRUse(KindType K, Type *T) : Kind(K), AccessTy(T),
1152                                      MinOffset(INT64_MAX),
1153                                      MaxOffset(INT64_MIN),
1154                                      AllFixupsOutsideLoop(true),
1155                                      WidestFixupType(0) {}
1156
1157  bool HasFormulaWithSameRegs(const Formula &F) const;
1158  bool InsertFormula(const Formula &F);
1159  void DeleteFormula(Formula &F);
1160  void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1161
1162  void print(raw_ostream &OS) const;
1163  void dump() const;
1164};
1165
1166}
1167
1168/// HasFormula - Test whether this use as a formula which has the same
1169/// registers as the given formula.
1170bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1171  SmallVector<const SCEV *, 2> Key = F.BaseRegs;
1172  if (F.ScaledReg) Key.push_back(F.ScaledReg);
1173  // Unstable sort by host order ok, because this is only used for uniquifying.
1174  std::sort(Key.begin(), Key.end());
1175  return Uniquifier.count(Key);
1176}
1177
1178/// InsertFormula - If the given formula has not yet been inserted, add it to
1179/// the list, and return true. Return false otherwise.
1180bool LSRUse::InsertFormula(const Formula &F) {
1181  SmallVector<const SCEV *, 2> Key = F.BaseRegs;
1182  if (F.ScaledReg) Key.push_back(F.ScaledReg);
1183  // Unstable sort by host order ok, because this is only used for uniquifying.
1184  std::sort(Key.begin(), Key.end());
1185
1186  if (!Uniquifier.insert(Key).second)
1187    return false;
1188
1189  // Using a register to hold the value of 0 is not profitable.
1190  assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1191         "Zero allocated in a scaled register!");
1192#ifndef NDEBUG
1193  for (SmallVectorImpl<const SCEV *>::const_iterator I =
1194       F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I)
1195    assert(!(*I)->isZero() && "Zero allocated in a base register!");
1196#endif
1197
1198  // Add the formula to the list.
1199  Formulae.push_back(F);
1200
1201  // Record registers now being used by this use.
1202  Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1203
1204  return true;
1205}
1206
1207/// DeleteFormula - Remove the given formula from this use's list.
1208void LSRUse::DeleteFormula(Formula &F) {
1209  if (&F != &Formulae.back())
1210    std::swap(F, Formulae.back());
1211  Formulae.pop_back();
1212}
1213
1214/// RecomputeRegs - Recompute the Regs field, and update RegUses.
1215void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1216  // Now that we've filtered out some formulae, recompute the Regs set.
1217  SmallPtrSet<const SCEV *, 4> OldRegs = Regs;
1218  Regs.clear();
1219  for (SmallVectorImpl<Formula>::const_iterator I = Formulae.begin(),
1220       E = Formulae.end(); I != E; ++I) {
1221    const Formula &F = *I;
1222    if (F.ScaledReg) Regs.insert(F.ScaledReg);
1223    Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1224  }
1225
1226  // Update the RegTracker.
1227  for (SmallPtrSet<const SCEV *, 4>::iterator I = OldRegs.begin(),
1228       E = OldRegs.end(); I != E; ++I)
1229    if (!Regs.count(*I))
1230      RegUses.DropRegister(*I, LUIdx);
1231}
1232
1233void LSRUse::print(raw_ostream &OS) const {
1234  OS << "LSR Use: Kind=";
1235  switch (Kind) {
1236  case Basic:    OS << "Basic"; break;
1237  case Special:  OS << "Special"; break;
1238  case ICmpZero: OS << "ICmpZero"; break;
1239  case Address:
1240    OS << "Address of ";
1241    if (AccessTy->isPointerTy())
1242      OS << "pointer"; // the full pointer type could be really verbose
1243    else
1244      OS << *AccessTy;
1245  }
1246
1247  OS << ", Offsets={";
1248  for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(),
1249       E = Offsets.end(); I != E; ++I) {
1250    OS << *I;
1251    if (llvm::next(I) != E)
1252      OS << ',';
1253  }
1254  OS << '}';
1255
1256  if (AllFixupsOutsideLoop)
1257    OS << ", all-fixups-outside-loop";
1258
1259  if (WidestFixupType)
1260    OS << ", widest fixup type: " << *WidestFixupType;
1261}
1262
1263#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1264void LSRUse::dump() const {
1265  print(errs()); errs() << '\n';
1266}
1267#endif
1268
1269/// isLegalUse - Test whether the use described by AM is "legal", meaning it can
1270/// be completely folded into the user instruction at isel time. This includes
1271/// address-mode folding and special icmp tricks.
1272static bool isLegalUse(const TargetLowering::AddrMode &AM,
1273                       LSRUse::KindType Kind, Type *AccessTy,
1274                       const TargetLowering *TLI) {
1275  switch (Kind) {
1276  case LSRUse::Address:
1277    // If we have low-level target information, ask the target if it can
1278    // completely fold this address.
1279    if (TLI) return TLI->isLegalAddressingMode(AM, AccessTy);
1280
1281    // Otherwise, just guess that reg+reg addressing is legal.
1282    return !AM.BaseGV && AM.BaseOffs == 0 && AM.Scale <= 1;
1283
1284  case LSRUse::ICmpZero:
1285    // There's not even a target hook for querying whether it would be legal to
1286    // fold a GV into an ICmp.
1287    if (AM.BaseGV)
1288      return false;
1289
1290    // ICmp only has two operands; don't allow more than two non-trivial parts.
1291    if (AM.Scale != 0 && AM.HasBaseReg && AM.BaseOffs != 0)
1292      return false;
1293
1294    // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1295    // putting the scaled register in the other operand of the icmp.
1296    if (AM.Scale != 0 && AM.Scale != -1)
1297      return false;
1298
1299    // If we have low-level target information, ask the target if it can fold an
1300    // integer immediate on an icmp.
1301    if (AM.BaseOffs != 0) {
1302      if (!TLI)
1303        return false;
1304      // We have one of:
1305      // ICmpZero     BaseReg + Offset => ICmp BaseReg, -Offset
1306      // ICmpZero -1*ScaleReg + Offset => ICmp ScaleReg, Offset
1307      // Offs is the ICmp immediate.
1308      int64_t Offs = AM.BaseOffs;
1309      if (AM.Scale == 0)
1310        Offs = -(uint64_t)Offs; // The cast does the right thing with INT64_MIN.
1311      return TLI->isLegalICmpImmediate(Offs);
1312    }
1313
1314    // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
1315    return true;
1316
1317  case LSRUse::Basic:
1318    // Only handle single-register values.
1319    return !AM.BaseGV && AM.Scale == 0 && AM.BaseOffs == 0;
1320
1321  case LSRUse::Special:
1322    // Special case Basic to handle -1 scales.
1323    return !AM.BaseGV && (AM.Scale == 0 || AM.Scale == -1) && AM.BaseOffs == 0;
1324  }
1325
1326  llvm_unreachable("Invalid LSRUse Kind!");
1327}
1328
1329static bool isLegalUse(TargetLowering::AddrMode AM,
1330                       int64_t MinOffset, int64_t MaxOffset,
1331                       LSRUse::KindType Kind, Type *AccessTy,
1332                       const TargetLowering *TLI) {
1333  // Check for overflow.
1334  if (((int64_t)((uint64_t)AM.BaseOffs + MinOffset) > AM.BaseOffs) !=
1335      (MinOffset > 0))
1336    return false;
1337  AM.BaseOffs = (uint64_t)AM.BaseOffs + MinOffset;
1338  if (isLegalUse(AM, Kind, AccessTy, TLI)) {
1339    AM.BaseOffs = (uint64_t)AM.BaseOffs - MinOffset;
1340    // Check for overflow.
1341    if (((int64_t)((uint64_t)AM.BaseOffs + MaxOffset) > AM.BaseOffs) !=
1342        (MaxOffset > 0))
1343      return false;
1344    AM.BaseOffs = (uint64_t)AM.BaseOffs + MaxOffset;
1345    return isLegalUse(AM, Kind, AccessTy, TLI);
1346  }
1347  return false;
1348}
1349
1350static bool isAlwaysFoldable(int64_t BaseOffs,
1351                             GlobalValue *BaseGV,
1352                             bool HasBaseReg,
1353                             LSRUse::KindType Kind, Type *AccessTy,
1354                             const TargetLowering *TLI) {
1355  // Fast-path: zero is always foldable.
1356  if (BaseOffs == 0 && !BaseGV) return true;
1357
1358  // Conservatively, create an address with an immediate and a
1359  // base and a scale.
1360  TargetLowering::AddrMode AM;
1361  AM.BaseOffs = BaseOffs;
1362  AM.BaseGV = BaseGV;
1363  AM.HasBaseReg = HasBaseReg;
1364  AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1365
1366  // Canonicalize a scale of 1 to a base register if the formula doesn't
1367  // already have a base register.
1368  if (!AM.HasBaseReg && AM.Scale == 1) {
1369    AM.Scale = 0;
1370    AM.HasBaseReg = true;
1371  }
1372
1373  return isLegalUse(AM, Kind, AccessTy, TLI);
1374}
1375
1376static bool isAlwaysFoldable(const SCEV *S,
1377                             int64_t MinOffset, int64_t MaxOffset,
1378                             bool HasBaseReg,
1379                             LSRUse::KindType Kind, Type *AccessTy,
1380                             const TargetLowering *TLI,
1381                             ScalarEvolution &SE) {
1382  // Fast-path: zero is always foldable.
1383  if (S->isZero()) return true;
1384
1385  // Conservatively, create an address with an immediate and a
1386  // base and a scale.
1387  int64_t BaseOffs = ExtractImmediate(S, SE);
1388  GlobalValue *BaseGV = ExtractSymbol(S, SE);
1389
1390  // If there's anything else involved, it's not foldable.
1391  if (!S->isZero()) return false;
1392
1393  // Fast-path: zero is always foldable.
1394  if (BaseOffs == 0 && !BaseGV) return true;
1395
1396  // Conservatively, create an address with an immediate and a
1397  // base and a scale.
1398  TargetLowering::AddrMode AM;
1399  AM.BaseOffs = BaseOffs;
1400  AM.BaseGV = BaseGV;
1401  AM.HasBaseReg = HasBaseReg;
1402  AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1403
1404  return isLegalUse(AM, MinOffset, MaxOffset, Kind, AccessTy, TLI);
1405}
1406
1407namespace {
1408
1409/// UseMapDenseMapInfo - A DenseMapInfo implementation for holding
1410/// DenseMaps and DenseSets of pairs of const SCEV* and LSRUse::Kind.
1411struct UseMapDenseMapInfo {
1412  static std::pair<const SCEV *, LSRUse::KindType> getEmptyKey() {
1413    return std::make_pair(reinterpret_cast<const SCEV *>(-1), LSRUse::Basic);
1414  }
1415
1416  static std::pair<const SCEV *, LSRUse::KindType> getTombstoneKey() {
1417    return std::make_pair(reinterpret_cast<const SCEV *>(-2), LSRUse::Basic);
1418  }
1419
1420  static unsigned
1421  getHashValue(const std::pair<const SCEV *, LSRUse::KindType> &V) {
1422    unsigned Result = DenseMapInfo<const SCEV *>::getHashValue(V.first);
1423    Result ^= DenseMapInfo<unsigned>::getHashValue(unsigned(V.second));
1424    return Result;
1425  }
1426
1427  static bool isEqual(const std::pair<const SCEV *, LSRUse::KindType> &LHS,
1428                      const std::pair<const SCEV *, LSRUse::KindType> &RHS) {
1429    return LHS == RHS;
1430  }
1431};
1432
1433/// IVInc - An individual increment in a Chain of IV increments.
1434/// Relate an IV user to an expression that computes the IV it uses from the IV
1435/// used by the previous link in the Chain.
1436///
1437/// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1438/// original IVOperand. The head of the chain's IVOperand is only valid during
1439/// chain collection, before LSR replaces IV users. During chain generation,
1440/// IncExpr can be used to find the new IVOperand that computes the same
1441/// expression.
1442struct IVInc {
1443  Instruction *UserInst;
1444  Value* IVOperand;
1445  const SCEV *IncExpr;
1446
1447  IVInc(Instruction *U, Value *O, const SCEV *E):
1448    UserInst(U), IVOperand(O), IncExpr(E) {}
1449};
1450
1451// IVChain - The list of IV increments in program order.
1452// We typically add the head of a chain without finding subsequent links.
1453struct IVChain {
1454  SmallVector<IVInc,1> Incs;
1455  const SCEV *ExprBase;
1456
1457  IVChain() : ExprBase(0) {}
1458
1459  IVChain(const IVInc &Head, const SCEV *Base)
1460    : Incs(1, Head), ExprBase(Base) {}
1461
1462  typedef SmallVectorImpl<IVInc>::const_iterator const_iterator;
1463
1464  // begin - return the first increment in the chain.
1465  const_iterator begin() const {
1466    assert(!Incs.empty());
1467    return llvm::next(Incs.begin());
1468  }
1469  const_iterator end() const {
1470    return Incs.end();
1471  }
1472
1473  // hasIncs - Returns true if this chain contains any increments.
1474  bool hasIncs() const { return Incs.size() >= 2; }
1475
1476  // add - Add an IVInc to the end of this chain.
1477  void add(const IVInc &X) { Incs.push_back(X); }
1478
1479  // tailUserInst - Returns the last UserInst in the chain.
1480  Instruction *tailUserInst() const { return Incs.back().UserInst; }
1481
1482  // isProfitableIncrement - Returns true if IncExpr can be profitably added to
1483  // this chain.
1484  bool isProfitableIncrement(const SCEV *OperExpr,
1485                             const SCEV *IncExpr,
1486                             ScalarEvolution&);
1487};
1488
1489/// ChainUsers - Helper for CollectChains to track multiple IV increment uses.
1490/// Distinguish between FarUsers that definitely cross IV increments and
1491/// NearUsers that may be used between IV increments.
1492struct ChainUsers {
1493  SmallPtrSet<Instruction*, 4> FarUsers;
1494  SmallPtrSet<Instruction*, 4> NearUsers;
1495};
1496
1497/// LSRInstance - This class holds state for the main loop strength reduction
1498/// logic.
1499class LSRInstance {
1500  IVUsers &IU;
1501  ScalarEvolution &SE;
1502  DominatorTree &DT;
1503  LoopInfo &LI;
1504  const TargetLowering *const TLI;
1505  Loop *const L;
1506  bool Changed;
1507
1508  /// IVIncInsertPos - This is the insert position that the current loop's
1509  /// induction variable increment should be placed. In simple loops, this is
1510  /// the latch block's terminator. But in more complicated cases, this is a
1511  /// position which will dominate all the in-loop post-increment users.
1512  Instruction *IVIncInsertPos;
1513
1514  /// Factors - Interesting factors between use strides.
1515  SmallSetVector<int64_t, 8> Factors;
1516
1517  /// Types - Interesting use types, to facilitate truncation reuse.
1518  SmallSetVector<Type *, 4> Types;
1519
1520  /// Fixups - The list of operands which are to be replaced.
1521  SmallVector<LSRFixup, 16> Fixups;
1522
1523  /// Uses - The list of interesting uses.
1524  SmallVector<LSRUse, 16> Uses;
1525
1526  /// RegUses - Track which uses use which register candidates.
1527  RegUseTracker RegUses;
1528
1529  // Limit the number of chains to avoid quadratic behavior. We don't expect to
1530  // have more than a few IV increment chains in a loop. Missing a Chain falls
1531  // back to normal LSR behavior for those uses.
1532  static const unsigned MaxChains = 8;
1533
1534  /// IVChainVec - IV users can form a chain of IV increments.
1535  SmallVector<IVChain, MaxChains> IVChainVec;
1536
1537  /// IVIncSet - IV users that belong to profitable IVChains.
1538  SmallPtrSet<Use*, MaxChains> IVIncSet;
1539
1540  void OptimizeShadowIV();
1541  bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1542  ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1543  void OptimizeLoopTermCond();
1544
1545  void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
1546                        SmallVectorImpl<ChainUsers> &ChainUsersVec);
1547  void FinalizeChain(IVChain &Chain);
1548  void CollectChains();
1549  void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
1550                       SmallVectorImpl<WeakVH> &DeadInsts);
1551
1552  void CollectInterestingTypesAndFactors();
1553  void CollectFixupsAndInitialFormulae();
1554
1555  LSRFixup &getNewFixup() {
1556    Fixups.push_back(LSRFixup());
1557    return Fixups.back();
1558  }
1559
1560  // Support for sharing of LSRUses between LSRFixups.
1561  typedef DenseMap<std::pair<const SCEV *, LSRUse::KindType>,
1562                   size_t,
1563                   UseMapDenseMapInfo> UseMapTy;
1564  UseMapTy UseMap;
1565
1566  bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1567                          LSRUse::KindType Kind, Type *AccessTy);
1568
1569  std::pair<size_t, int64_t> getUse(const SCEV *&Expr,
1570                                    LSRUse::KindType Kind,
1571                                    Type *AccessTy);
1572
1573  void DeleteUse(LSRUse &LU, size_t LUIdx);
1574
1575  LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1576
1577  void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1578  void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1579  void CountRegisters(const Formula &F, size_t LUIdx);
1580  bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1581
1582  void CollectLoopInvariantFixupsAndFormulae();
1583
1584  void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1585                              unsigned Depth = 0);
1586  void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1587  void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1588  void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1589  void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1590  void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1591  void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
1592  void GenerateCrossUseConstantOffsets();
1593  void GenerateAllReuseFormulae();
1594
1595  void FilterOutUndesirableDedicatedRegisters();
1596
1597  size_t EstimateSearchSpaceComplexity() const;
1598  void NarrowSearchSpaceByDetectingSupersets();
1599  void NarrowSearchSpaceByCollapsingUnrolledCode();
1600  void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
1601  void NarrowSearchSpaceByPickingWinnerRegs();
1602  void NarrowSearchSpaceUsingHeuristics();
1603
1604  void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
1605                    Cost &SolutionCost,
1606                    SmallVectorImpl<const Formula *> &Workspace,
1607                    const Cost &CurCost,
1608                    const SmallPtrSet<const SCEV *, 16> &CurRegs,
1609                    DenseSet<const SCEV *> &VisitedRegs) const;
1610  void Solve(SmallVectorImpl<const Formula *> &Solution) const;
1611
1612  BasicBlock::iterator
1613    HoistInsertPosition(BasicBlock::iterator IP,
1614                        const SmallVectorImpl<Instruction *> &Inputs) const;
1615  BasicBlock::iterator
1616    AdjustInsertPositionForExpand(BasicBlock::iterator IP,
1617                                  const LSRFixup &LF,
1618                                  const LSRUse &LU,
1619                                  SCEVExpander &Rewriter) const;
1620
1621  Value *Expand(const LSRFixup &LF,
1622                const Formula &F,
1623                BasicBlock::iterator IP,
1624                SCEVExpander &Rewriter,
1625                SmallVectorImpl<WeakVH> &DeadInsts) const;
1626  void RewriteForPHI(PHINode *PN, const LSRFixup &LF,
1627                     const Formula &F,
1628                     SCEVExpander &Rewriter,
1629                     SmallVectorImpl<WeakVH> &DeadInsts,
1630                     Pass *P) const;
1631  void Rewrite(const LSRFixup &LF,
1632               const Formula &F,
1633               SCEVExpander &Rewriter,
1634               SmallVectorImpl<WeakVH> &DeadInsts,
1635               Pass *P) const;
1636  void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
1637                         Pass *P);
1638
1639public:
1640  LSRInstance(const TargetLowering *tli, Loop *l, Pass *P);
1641
1642  bool getChanged() const { return Changed; }
1643
1644  void print_factors_and_types(raw_ostream &OS) const;
1645  void print_fixups(raw_ostream &OS) const;
1646  void print_uses(raw_ostream &OS) const;
1647  void print(raw_ostream &OS) const;
1648  void dump() const;
1649};
1650
1651}
1652
1653/// OptimizeShadowIV - If IV is used in a int-to-float cast
1654/// inside the loop then try to eliminate the cast operation.
1655void LSRInstance::OptimizeShadowIV() {
1656  const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1657  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1658    return;
1659
1660  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
1661       UI != E; /* empty */) {
1662    IVUsers::const_iterator CandidateUI = UI;
1663    ++UI;
1664    Instruction *ShadowUse = CandidateUI->getUser();
1665    Type *DestTy = NULL;
1666    bool IsSigned = false;
1667
1668    /* If shadow use is a int->float cast then insert a second IV
1669       to eliminate this cast.
1670
1671         for (unsigned i = 0; i < n; ++i)
1672           foo((double)i);
1673
1674       is transformed into
1675
1676         double d = 0.0;
1677         for (unsigned i = 0; i < n; ++i, ++d)
1678           foo(d);
1679    */
1680    if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
1681      IsSigned = false;
1682      DestTy = UCast->getDestTy();
1683    }
1684    else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
1685      IsSigned = true;
1686      DestTy = SCast->getDestTy();
1687    }
1688    if (!DestTy) continue;
1689
1690    if (TLI) {
1691      // If target does not support DestTy natively then do not apply
1692      // this transformation.
1693      EVT DVT = TLI->getValueType(DestTy);
1694      if (!TLI->isTypeLegal(DVT)) continue;
1695    }
1696
1697    PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
1698    if (!PH) continue;
1699    if (PH->getNumIncomingValues() != 2) continue;
1700
1701    Type *SrcTy = PH->getType();
1702    int Mantissa = DestTy->getFPMantissaWidth();
1703    if (Mantissa == -1) continue;
1704    if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
1705      continue;
1706
1707    unsigned Entry, Latch;
1708    if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
1709      Entry = 0;
1710      Latch = 1;
1711    } else {
1712      Entry = 1;
1713      Latch = 0;
1714    }
1715
1716    ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
1717    if (!Init) continue;
1718    Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
1719                                        (double)Init->getSExtValue() :
1720                                        (double)Init->getZExtValue());
1721
1722    BinaryOperator *Incr =
1723      dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
1724    if (!Incr) continue;
1725    if (Incr->getOpcode() != Instruction::Add
1726        && Incr->getOpcode() != Instruction::Sub)
1727      continue;
1728
1729    /* Initialize new IV, double d = 0.0 in above example. */
1730    ConstantInt *C = NULL;
1731    if (Incr->getOperand(0) == PH)
1732      C = dyn_cast<ConstantInt>(Incr->getOperand(1));
1733    else if (Incr->getOperand(1) == PH)
1734      C = dyn_cast<ConstantInt>(Incr->getOperand(0));
1735    else
1736      continue;
1737
1738    if (!C) continue;
1739
1740    // Ignore negative constants, as the code below doesn't handle them
1741    // correctly. TODO: Remove this restriction.
1742    if (!C->getValue().isStrictlyPositive()) continue;
1743
1744    /* Add new PHINode. */
1745    PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
1746
1747    /* create new increment. '++d' in above example. */
1748    Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
1749    BinaryOperator *NewIncr =
1750      BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
1751                               Instruction::FAdd : Instruction::FSub,
1752                             NewPH, CFP, "IV.S.next.", Incr);
1753
1754    NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
1755    NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
1756
1757    /* Remove cast operation */
1758    ShadowUse->replaceAllUsesWith(NewPH);
1759    ShadowUse->eraseFromParent();
1760    Changed = true;
1761    break;
1762  }
1763}
1764
1765/// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
1766/// set the IV user and stride information and return true, otherwise return
1767/// false.
1768bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
1769  for (IVUsers::iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
1770    if (UI->getUser() == Cond) {
1771      // NOTE: we could handle setcc instructions with multiple uses here, but
1772      // InstCombine does it as well for simple uses, it's not clear that it
1773      // occurs enough in real life to handle.
1774      CondUse = UI;
1775      return true;
1776    }
1777  return false;
1778}
1779
1780/// OptimizeMax - Rewrite the loop's terminating condition if it uses
1781/// a max computation.
1782///
1783/// This is a narrow solution to a specific, but acute, problem. For loops
1784/// like this:
1785///
1786///   i = 0;
1787///   do {
1788///     p[i] = 0.0;
1789///   } while (++i < n);
1790///
1791/// the trip count isn't just 'n', because 'n' might not be positive. And
1792/// unfortunately this can come up even for loops where the user didn't use
1793/// a C do-while loop. For example, seemingly well-behaved top-test loops
1794/// will commonly be lowered like this:
1795//
1796///   if (n > 0) {
1797///     i = 0;
1798///     do {
1799///       p[i] = 0.0;
1800///     } while (++i < n);
1801///   }
1802///
1803/// and then it's possible for subsequent optimization to obscure the if
1804/// test in such a way that indvars can't find it.
1805///
1806/// When indvars can't find the if test in loops like this, it creates a
1807/// max expression, which allows it to give the loop a canonical
1808/// induction variable:
1809///
1810///   i = 0;
1811///   max = n < 1 ? 1 : n;
1812///   do {
1813///     p[i] = 0.0;
1814///   } while (++i != max);
1815///
1816/// Canonical induction variables are necessary because the loop passes
1817/// are designed around them. The most obvious example of this is the
1818/// LoopInfo analysis, which doesn't remember trip count values. It
1819/// expects to be able to rediscover the trip count each time it is
1820/// needed, and it does this using a simple analysis that only succeeds if
1821/// the loop has a canonical induction variable.
1822///
1823/// However, when it comes time to generate code, the maximum operation
1824/// can be quite costly, especially if it's inside of an outer loop.
1825///
1826/// This function solves this problem by detecting this type of loop and
1827/// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
1828/// the instructions for the maximum computation.
1829///
1830ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
1831  // Check that the loop matches the pattern we're looking for.
1832  if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
1833      Cond->getPredicate() != CmpInst::ICMP_NE)
1834    return Cond;
1835
1836  SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
1837  if (!Sel || !Sel->hasOneUse()) return Cond;
1838
1839  const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1840  if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1841    return Cond;
1842  const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
1843
1844  // Add one to the backedge-taken count to get the trip count.
1845  const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
1846  if (IterationCount != SE.getSCEV(Sel)) return Cond;
1847
1848  // Check for a max calculation that matches the pattern. There's no check
1849  // for ICMP_ULE here because the comparison would be with zero, which
1850  // isn't interesting.
1851  CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1852  const SCEVNAryExpr *Max = 0;
1853  if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
1854    Pred = ICmpInst::ICMP_SLE;
1855    Max = S;
1856  } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
1857    Pred = ICmpInst::ICMP_SLT;
1858    Max = S;
1859  } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
1860    Pred = ICmpInst::ICMP_ULT;
1861    Max = U;
1862  } else {
1863    // No match; bail.
1864    return Cond;
1865  }
1866
1867  // To handle a max with more than two operands, this optimization would
1868  // require additional checking and setup.
1869  if (Max->getNumOperands() != 2)
1870    return Cond;
1871
1872  const SCEV *MaxLHS = Max->getOperand(0);
1873  const SCEV *MaxRHS = Max->getOperand(1);
1874
1875  // ScalarEvolution canonicalizes constants to the left. For < and >, look
1876  // for a comparison with 1. For <= and >=, a comparison with zero.
1877  if (!MaxLHS ||
1878      (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
1879    return Cond;
1880
1881  // Check the relevant induction variable for conformance to
1882  // the pattern.
1883  const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
1884  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
1885  if (!AR || !AR->isAffine() ||
1886      AR->getStart() != One ||
1887      AR->getStepRecurrence(SE) != One)
1888    return Cond;
1889
1890  assert(AR->getLoop() == L &&
1891         "Loop condition operand is an addrec in a different loop!");
1892
1893  // Check the right operand of the select, and remember it, as it will
1894  // be used in the new comparison instruction.
1895  Value *NewRHS = 0;
1896  if (ICmpInst::isTrueWhenEqual(Pred)) {
1897    // Look for n+1, and grab n.
1898    if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
1899      if (isa<ConstantInt>(BO->getOperand(1)) &&
1900          cast<ConstantInt>(BO->getOperand(1))->isOne() &&
1901          SE.getSCEV(BO->getOperand(0)) == MaxRHS)
1902        NewRHS = BO->getOperand(0);
1903    if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
1904      if (isa<ConstantInt>(BO->getOperand(1)) &&
1905          cast<ConstantInt>(BO->getOperand(1))->isOne() &&
1906          SE.getSCEV(BO->getOperand(0)) == MaxRHS)
1907        NewRHS = BO->getOperand(0);
1908    if (!NewRHS)
1909      return Cond;
1910  } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
1911    NewRHS = Sel->getOperand(1);
1912  else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
1913    NewRHS = Sel->getOperand(2);
1914  else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
1915    NewRHS = SU->getValue();
1916  else
1917    // Max doesn't match expected pattern.
1918    return Cond;
1919
1920  // Determine the new comparison opcode. It may be signed or unsigned,
1921  // and the original comparison may be either equality or inequality.
1922  if (Cond->getPredicate() == CmpInst::ICMP_EQ)
1923    Pred = CmpInst::getInversePredicate(Pred);
1924
1925  // Ok, everything looks ok to change the condition into an SLT or SGE and
1926  // delete the max calculation.
1927  ICmpInst *NewCond =
1928    new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
1929
1930  // Delete the max calculation instructions.
1931  Cond->replaceAllUsesWith(NewCond);
1932  CondUse->setUser(NewCond);
1933  Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
1934  Cond->eraseFromParent();
1935  Sel->eraseFromParent();
1936  if (Cmp->use_empty())
1937    Cmp->eraseFromParent();
1938  return NewCond;
1939}
1940
1941/// OptimizeLoopTermCond - Change loop terminating condition to use the
1942/// postinc iv when possible.
1943void
1944LSRInstance::OptimizeLoopTermCond() {
1945  SmallPtrSet<Instruction *, 4> PostIncs;
1946
1947  BasicBlock *LatchBlock = L->getLoopLatch();
1948  SmallVector<BasicBlock*, 8> ExitingBlocks;
1949  L->getExitingBlocks(ExitingBlocks);
1950
1951  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
1952    BasicBlock *ExitingBlock = ExitingBlocks[i];
1953
1954    // Get the terminating condition for the loop if possible.  If we
1955    // can, we want to change it to use a post-incremented version of its
1956    // induction variable, to allow coalescing the live ranges for the IV into
1957    // one register value.
1958
1959    BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
1960    if (!TermBr)
1961      continue;
1962    // FIXME: Overly conservative, termination condition could be an 'or' etc..
1963    if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
1964      continue;
1965
1966    // Search IVUsesByStride to find Cond's IVUse if there is one.
1967    IVStrideUse *CondUse = 0;
1968    ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
1969    if (!FindIVUserForCond(Cond, CondUse))
1970      continue;
1971
1972    // If the trip count is computed in terms of a max (due to ScalarEvolution
1973    // being unable to find a sufficient guard, for example), change the loop
1974    // comparison to use SLT or ULT instead of NE.
1975    // One consequence of doing this now is that it disrupts the count-down
1976    // optimization. That's not always a bad thing though, because in such
1977    // cases it may still be worthwhile to avoid a max.
1978    Cond = OptimizeMax(Cond, CondUse);
1979
1980    // If this exiting block dominates the latch block, it may also use
1981    // the post-inc value if it won't be shared with other uses.
1982    // Check for dominance.
1983    if (!DT.dominates(ExitingBlock, LatchBlock))
1984      continue;
1985
1986    // Conservatively avoid trying to use the post-inc value in non-latch
1987    // exits if there may be pre-inc users in intervening blocks.
1988    if (LatchBlock != ExitingBlock)
1989      for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
1990        // Test if the use is reachable from the exiting block. This dominator
1991        // query is a conservative approximation of reachability.
1992        if (&*UI != CondUse &&
1993            !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
1994          // Conservatively assume there may be reuse if the quotient of their
1995          // strides could be a legal scale.
1996          const SCEV *A = IU.getStride(*CondUse, L);
1997          const SCEV *B = IU.getStride(*UI, L);
1998          if (!A || !B) continue;
1999          if (SE.getTypeSizeInBits(A->getType()) !=
2000              SE.getTypeSizeInBits(B->getType())) {
2001            if (SE.getTypeSizeInBits(A->getType()) >
2002                SE.getTypeSizeInBits(B->getType()))
2003              B = SE.getSignExtendExpr(B, A->getType());
2004            else
2005              A = SE.getSignExtendExpr(A, B->getType());
2006          }
2007          if (const SCEVConstant *D =
2008                dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
2009            const ConstantInt *C = D->getValue();
2010            // Stride of one or negative one can have reuse with non-addresses.
2011            if (C->isOne() || C->isAllOnesValue())
2012              goto decline_post_inc;
2013            // Avoid weird situations.
2014            if (C->getValue().getMinSignedBits() >= 64 ||
2015                C->getValue().isMinSignedValue())
2016              goto decline_post_inc;
2017            // Without TLI, assume that any stride might be valid, and so any
2018            // use might be shared.
2019            if (!TLI)
2020              goto decline_post_inc;
2021            // Check for possible scaled-address reuse.
2022            Type *AccessTy = getAccessType(UI->getUser());
2023            TargetLowering::AddrMode AM;
2024            AM.Scale = C->getSExtValue();
2025            if (TLI->isLegalAddressingMode(AM, AccessTy))
2026              goto decline_post_inc;
2027            AM.Scale = -AM.Scale;
2028            if (TLI->isLegalAddressingMode(AM, AccessTy))
2029              goto decline_post_inc;
2030          }
2031        }
2032
2033    DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
2034                 << *Cond << '\n');
2035
2036    // It's possible for the setcc instruction to be anywhere in the loop, and
2037    // possible for it to have multiple users.  If it is not immediately before
2038    // the exiting block branch, move it.
2039    if (&*++BasicBlock::iterator(Cond) != TermBr) {
2040      if (Cond->hasOneUse()) {
2041        Cond->moveBefore(TermBr);
2042      } else {
2043        // Clone the terminating condition and insert into the loopend.
2044        ICmpInst *OldCond = Cond;
2045        Cond = cast<ICmpInst>(Cond->clone());
2046        Cond->setName(L->getHeader()->getName() + ".termcond");
2047        ExitingBlock->getInstList().insert(TermBr, Cond);
2048
2049        // Clone the IVUse, as the old use still exists!
2050        CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
2051        TermBr->replaceUsesOfWith(OldCond, Cond);
2052      }
2053    }
2054
2055    // If we get to here, we know that we can transform the setcc instruction to
2056    // use the post-incremented version of the IV, allowing us to coalesce the
2057    // live ranges for the IV correctly.
2058    CondUse->transformToPostInc(L);
2059    Changed = true;
2060
2061    PostIncs.insert(Cond);
2062  decline_post_inc:;
2063  }
2064
2065  // Determine an insertion point for the loop induction variable increment. It
2066  // must dominate all the post-inc comparisons we just set up, and it must
2067  // dominate the loop latch edge.
2068  IVIncInsertPos = L->getLoopLatch()->getTerminator();
2069  for (SmallPtrSet<Instruction *, 4>::const_iterator I = PostIncs.begin(),
2070       E = PostIncs.end(); I != E; ++I) {
2071    BasicBlock *BB =
2072      DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
2073                                    (*I)->getParent());
2074    if (BB == (*I)->getParent())
2075      IVIncInsertPos = *I;
2076    else if (BB != IVIncInsertPos->getParent())
2077      IVIncInsertPos = BB->getTerminator();
2078  }
2079}
2080
2081/// reconcileNewOffset - Determine if the given use can accommodate a fixup
2082/// at the given offset and other details. If so, update the use and
2083/// return true.
2084bool
2085LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
2086                                LSRUse::KindType Kind, Type *AccessTy) {
2087  int64_t NewMinOffset = LU.MinOffset;
2088  int64_t NewMaxOffset = LU.MaxOffset;
2089  Type *NewAccessTy = AccessTy;
2090
2091  // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2092  // something conservative, however this can pessimize in the case that one of
2093  // the uses will have all its uses outside the loop, for example.
2094  if (LU.Kind != Kind)
2095    return false;
2096  // Conservatively assume HasBaseReg is true for now.
2097  if (NewOffset < LU.MinOffset) {
2098    if (!isAlwaysFoldable(LU.MaxOffset - NewOffset, 0, HasBaseReg,
2099                          Kind, AccessTy, TLI))
2100      return false;
2101    NewMinOffset = NewOffset;
2102  } else if (NewOffset > LU.MaxOffset) {
2103    if (!isAlwaysFoldable(NewOffset - LU.MinOffset, 0, HasBaseReg,
2104                          Kind, AccessTy, TLI))
2105      return false;
2106    NewMaxOffset = NewOffset;
2107  }
2108  // Check for a mismatched access type, and fall back conservatively as needed.
2109  // TODO: Be less conservative when the type is similar and can use the same
2110  // addressing modes.
2111  if (Kind == LSRUse::Address && AccessTy != LU.AccessTy)
2112    NewAccessTy = Type::getVoidTy(AccessTy->getContext());
2113
2114  // Update the use.
2115  LU.MinOffset = NewMinOffset;
2116  LU.MaxOffset = NewMaxOffset;
2117  LU.AccessTy = NewAccessTy;
2118  if (NewOffset != LU.Offsets.back())
2119    LU.Offsets.push_back(NewOffset);
2120  return true;
2121}
2122
2123/// getUse - Return an LSRUse index and an offset value for a fixup which
2124/// needs the given expression, with the given kind and optional access type.
2125/// Either reuse an existing use or create a new one, as needed.
2126std::pair<size_t, int64_t>
2127LSRInstance::getUse(const SCEV *&Expr,
2128                    LSRUse::KindType Kind, Type *AccessTy) {
2129  const SCEV *Copy = Expr;
2130  int64_t Offset = ExtractImmediate(Expr, SE);
2131
2132  // Basic uses can't accept any offset, for example.
2133  if (!isAlwaysFoldable(Offset, 0, /*HasBaseReg=*/true, Kind, AccessTy, TLI)) {
2134    Expr = Copy;
2135    Offset = 0;
2136  }
2137
2138  std::pair<UseMapTy::iterator, bool> P =
2139    UseMap.insert(std::make_pair(std::make_pair(Expr, Kind), 0));
2140  if (!P.second) {
2141    // A use already existed with this base.
2142    size_t LUIdx = P.first->second;
2143    LSRUse &LU = Uses[LUIdx];
2144    if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
2145      // Reuse this use.
2146      return std::make_pair(LUIdx, Offset);
2147  }
2148
2149  // Create a new use.
2150  size_t LUIdx = Uses.size();
2151  P.first->second = LUIdx;
2152  Uses.push_back(LSRUse(Kind, AccessTy));
2153  LSRUse &LU = Uses[LUIdx];
2154
2155  // We don't need to track redundant offsets, but we don't need to go out
2156  // of our way here to avoid them.
2157  if (LU.Offsets.empty() || Offset != LU.Offsets.back())
2158    LU.Offsets.push_back(Offset);
2159
2160  LU.MinOffset = Offset;
2161  LU.MaxOffset = Offset;
2162  return std::make_pair(LUIdx, Offset);
2163}
2164
2165/// DeleteUse - Delete the given use from the Uses list.
2166void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
2167  if (&LU != &Uses.back())
2168    std::swap(LU, Uses.back());
2169  Uses.pop_back();
2170
2171  // Update RegUses.
2172  RegUses.SwapAndDropUse(LUIdx, Uses.size());
2173}
2174
2175/// FindUseWithFormula - Look for a use distinct from OrigLU which is has
2176/// a formula that has the same registers as the given formula.
2177LSRUse *
2178LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
2179                                       const LSRUse &OrigLU) {
2180  // Search all uses for the formula. This could be more clever.
2181  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2182    LSRUse &LU = Uses[LUIdx];
2183    // Check whether this use is close enough to OrigLU, to see whether it's
2184    // worthwhile looking through its formulae.
2185    // Ignore ICmpZero uses because they may contain formulae generated by
2186    // GenerateICmpZeroScales, in which case adding fixup offsets may
2187    // be invalid.
2188    if (&LU != &OrigLU &&
2189        LU.Kind != LSRUse::ICmpZero &&
2190        LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
2191        LU.WidestFixupType == OrigLU.WidestFixupType &&
2192        LU.HasFormulaWithSameRegs(OrigF)) {
2193      // Scan through this use's formulae.
2194      for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
2195           E = LU.Formulae.end(); I != E; ++I) {
2196        const Formula &F = *I;
2197        // Check to see if this formula has the same registers and symbols
2198        // as OrigF.
2199        if (F.BaseRegs == OrigF.BaseRegs &&
2200            F.ScaledReg == OrigF.ScaledReg &&
2201            F.AM.BaseGV == OrigF.AM.BaseGV &&
2202            F.AM.Scale == OrigF.AM.Scale &&
2203            F.UnfoldedOffset == OrigF.UnfoldedOffset) {
2204          if (F.AM.BaseOffs == 0)
2205            return &LU;
2206          // This is the formula where all the registers and symbols matched;
2207          // there aren't going to be any others. Since we declined it, we
2208          // can skip the rest of the formulae and proceed to the next LSRUse.
2209          break;
2210        }
2211      }
2212    }
2213  }
2214
2215  // Nothing looked good.
2216  return 0;
2217}
2218
2219void LSRInstance::CollectInterestingTypesAndFactors() {
2220  SmallSetVector<const SCEV *, 4> Strides;
2221
2222  // Collect interesting types and strides.
2223  SmallVector<const SCEV *, 4> Worklist;
2224  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
2225    const SCEV *Expr = IU.getExpr(*UI);
2226
2227    // Collect interesting types.
2228    Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
2229
2230    // Add strides for mentioned loops.
2231    Worklist.push_back(Expr);
2232    do {
2233      const SCEV *S = Worklist.pop_back_val();
2234      if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2235        if (AR->getLoop() == L)
2236          Strides.insert(AR->getStepRecurrence(SE));
2237        Worklist.push_back(AR->getStart());
2238      } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2239        Worklist.append(Add->op_begin(), Add->op_end());
2240      }
2241    } while (!Worklist.empty());
2242  }
2243
2244  // Compute interesting factors from the set of interesting strides.
2245  for (SmallSetVector<const SCEV *, 4>::const_iterator
2246       I = Strides.begin(), E = Strides.end(); I != E; ++I)
2247    for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2248         llvm::next(I); NewStrideIter != E; ++NewStrideIter) {
2249      const SCEV *OldStride = *I;
2250      const SCEV *NewStride = *NewStrideIter;
2251
2252      if (SE.getTypeSizeInBits(OldStride->getType()) !=
2253          SE.getTypeSizeInBits(NewStride->getType())) {
2254        if (SE.getTypeSizeInBits(OldStride->getType()) >
2255            SE.getTypeSizeInBits(NewStride->getType()))
2256          NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2257        else
2258          OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2259      }
2260      if (const SCEVConstant *Factor =
2261            dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2262                                                        SE, true))) {
2263        if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
2264          Factors.insert(Factor->getValue()->getValue().getSExtValue());
2265      } else if (const SCEVConstant *Factor =
2266                   dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2267                                                               NewStride,
2268                                                               SE, true))) {
2269        if (Factor->getValue()->getValue().getMinSignedBits() <= 64)
2270          Factors.insert(Factor->getValue()->getValue().getSExtValue());
2271      }
2272    }
2273
2274  // If all uses use the same type, don't bother looking for truncation-based
2275  // reuse.
2276  if (Types.size() == 1)
2277    Types.clear();
2278
2279  DEBUG(print_factors_and_types(dbgs()));
2280}
2281
2282/// findIVOperand - Helper for CollectChains that finds an IV operand (computed
2283/// by an AddRec in this loop) within [OI,OE) or returns OE. If IVUsers mapped
2284/// Instructions to IVStrideUses, we could partially skip this.
2285static User::op_iterator
2286findIVOperand(User::op_iterator OI, User::op_iterator OE,
2287              Loop *L, ScalarEvolution &SE) {
2288  for(; OI != OE; ++OI) {
2289    if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2290      if (!SE.isSCEVable(Oper->getType()))
2291        continue;
2292
2293      if (const SCEVAddRecExpr *AR =
2294          dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2295        if (AR->getLoop() == L)
2296          break;
2297      }
2298    }
2299  }
2300  return OI;
2301}
2302
2303/// getWideOperand - IVChain logic must consistenctly peek base TruncInst
2304/// operands, so wrap it in a convenient helper.
2305static Value *getWideOperand(Value *Oper) {
2306  if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2307    return Trunc->getOperand(0);
2308  return Oper;
2309}
2310
2311/// isCompatibleIVType - Return true if we allow an IV chain to include both
2312/// types.
2313static bool isCompatibleIVType(Value *LVal, Value *RVal) {
2314  Type *LType = LVal->getType();
2315  Type *RType = RVal->getType();
2316  return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy());
2317}
2318
2319/// getExprBase - Return an approximation of this SCEV expression's "base", or
2320/// NULL for any constant. Returning the expression itself is
2321/// conservative. Returning a deeper subexpression is more precise and valid as
2322/// long as it isn't less complex than another subexpression. For expressions
2323/// involving multiple unscaled values, we need to return the pointer-type
2324/// SCEVUnknown. This avoids forming chains across objects, such as:
2325/// PrevOper==a[i], IVOper==b[i], IVInc==b-a.
2326///
2327/// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2328/// SCEVUnknown, we simply return the rightmost SCEV operand.
2329static const SCEV *getExprBase(const SCEV *S) {
2330  switch (S->getSCEVType()) {
2331  default: // uncluding scUnknown.
2332    return S;
2333  case scConstant:
2334    return 0;
2335  case scTruncate:
2336    return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
2337  case scZeroExtend:
2338    return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
2339  case scSignExtend:
2340    return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
2341  case scAddExpr: {
2342    // Skip over scaled operands (scMulExpr) to follow add operands as long as
2343    // there's nothing more complex.
2344    // FIXME: not sure if we want to recognize negation.
2345    const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
2346    for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
2347           E(Add->op_begin()); I != E; ++I) {
2348      const SCEV *SubExpr = *I;
2349      if (SubExpr->getSCEVType() == scAddExpr)
2350        return getExprBase(SubExpr);
2351
2352      if (SubExpr->getSCEVType() != scMulExpr)
2353        return SubExpr;
2354    }
2355    return S; // all operands are scaled, be conservative.
2356  }
2357  case scAddRecExpr:
2358    return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
2359  }
2360}
2361
2362/// Return true if the chain increment is profitable to expand into a loop
2363/// invariant value, which may require its own register. A profitable chain
2364/// increment will be an offset relative to the same base. We allow such offsets
2365/// to potentially be used as chain increment as long as it's not obviously
2366/// expensive to expand using real instructions.
2367bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
2368                                    const SCEV *IncExpr,
2369                                    ScalarEvolution &SE) {
2370  // Aggressively form chains when -stress-ivchain.
2371  if (StressIVChain)
2372    return true;
2373
2374  // Do not replace a constant offset from IV head with a nonconstant IV
2375  // increment.
2376  if (!isa<SCEVConstant>(IncExpr)) {
2377    const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
2378    if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
2379      return 0;
2380  }
2381
2382  SmallPtrSet<const SCEV*, 8> Processed;
2383  return !isHighCostExpansion(IncExpr, Processed, SE);
2384}
2385
2386/// Return true if the number of registers needed for the chain is estimated to
2387/// be less than the number required for the individual IV users. First prohibit
2388/// any IV users that keep the IV live across increments (the Users set should
2389/// be empty). Next count the number and type of increments in the chain.
2390///
2391/// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2392/// effectively use postinc addressing modes. Only consider it profitable it the
2393/// increments can be computed in fewer registers when chained.
2394///
2395/// TODO: Consider IVInc free if it's already used in another chains.
2396static bool
2397isProfitableChain(IVChain &Chain, SmallPtrSet<Instruction*, 4> &Users,
2398                  ScalarEvolution &SE, const TargetLowering *TLI) {
2399  if (StressIVChain)
2400    return true;
2401
2402  if (!Chain.hasIncs())
2403    return false;
2404
2405  if (!Users.empty()) {
2406    DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
2407          for (SmallPtrSet<Instruction*, 4>::const_iterator I = Users.begin(),
2408                 E = Users.end(); I != E; ++I) {
2409            dbgs() << "  " << **I << "\n";
2410          });
2411    return false;
2412  }
2413  assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2414
2415  // The chain itself may require a register, so intialize cost to 1.
2416  int cost = 1;
2417
2418  // A complete chain likely eliminates the need for keeping the original IV in
2419  // a register. LSR does not currently know how to form a complete chain unless
2420  // the header phi already exists.
2421  if (isa<PHINode>(Chain.tailUserInst())
2422      && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
2423    --cost;
2424  }
2425  const SCEV *LastIncExpr = 0;
2426  unsigned NumConstIncrements = 0;
2427  unsigned NumVarIncrements = 0;
2428  unsigned NumReusedIncrements = 0;
2429  for (IVChain::const_iterator I = Chain.begin(), E = Chain.end();
2430       I != E; ++I) {
2431
2432    if (I->IncExpr->isZero())
2433      continue;
2434
2435    // Incrementing by zero or some constant is neutral. We assume constants can
2436    // be folded into an addressing mode or an add's immediate operand.
2437    if (isa<SCEVConstant>(I->IncExpr)) {
2438      ++NumConstIncrements;
2439      continue;
2440    }
2441
2442    if (I->IncExpr == LastIncExpr)
2443      ++NumReusedIncrements;
2444    else
2445      ++NumVarIncrements;
2446
2447    LastIncExpr = I->IncExpr;
2448  }
2449  // An IV chain with a single increment is handled by LSR's postinc
2450  // uses. However, a chain with multiple increments requires keeping the IV's
2451  // value live longer than it needs to be if chained.
2452  if (NumConstIncrements > 1)
2453    --cost;
2454
2455  // Materializing increment expressions in the preheader that didn't exist in
2456  // the original code may cost a register. For example, sign-extended array
2457  // indices can produce ridiculous increments like this:
2458  // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2459  cost += NumVarIncrements;
2460
2461  // Reusing variable increments likely saves a register to hold the multiple of
2462  // the stride.
2463  cost -= NumReusedIncrements;
2464
2465  DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
2466               << "\n");
2467
2468  return cost < 0;
2469}
2470
2471/// ChainInstruction - Add this IV user to an existing chain or make it the head
2472/// of a new chain.
2473void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2474                                   SmallVectorImpl<ChainUsers> &ChainUsersVec) {
2475  // When IVs are used as types of varying widths, they are generally converted
2476  // to a wider type with some uses remaining narrow under a (free) trunc.
2477  Value *const NextIV = getWideOperand(IVOper);
2478  const SCEV *const OperExpr = SE.getSCEV(NextIV);
2479  const SCEV *const OperExprBase = getExprBase(OperExpr);
2480
2481  // Visit all existing chains. Check if its IVOper can be computed as a
2482  // profitable loop invariant increment from the last link in the Chain.
2483  unsigned ChainIdx = 0, NChains = IVChainVec.size();
2484  const SCEV *LastIncExpr = 0;
2485  for (; ChainIdx < NChains; ++ChainIdx) {
2486    IVChain &Chain = IVChainVec[ChainIdx];
2487
2488    // Prune the solution space aggressively by checking that both IV operands
2489    // are expressions that operate on the same unscaled SCEVUnknown. This
2490    // "base" will be canceled by the subsequent getMinusSCEV call. Checking
2491    // first avoids creating extra SCEV expressions.
2492    if (!StressIVChain && Chain.ExprBase != OperExprBase)
2493      continue;
2494
2495    Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
2496    if (!isCompatibleIVType(PrevIV, NextIV))
2497      continue;
2498
2499    // A phi node terminates a chain.
2500    if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
2501      continue;
2502
2503    // The increment must be loop-invariant so it can be kept in a register.
2504    const SCEV *PrevExpr = SE.getSCEV(PrevIV);
2505    const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
2506    if (!SE.isLoopInvariant(IncExpr, L))
2507      continue;
2508
2509    if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
2510      LastIncExpr = IncExpr;
2511      break;
2512    }
2513  }
2514  // If we haven't found a chain, create a new one, unless we hit the max. Don't
2515  // bother for phi nodes, because they must be last in the chain.
2516  if (ChainIdx == NChains) {
2517    if (isa<PHINode>(UserInst))
2518      return;
2519    if (NChains >= MaxChains && !StressIVChain) {
2520      DEBUG(dbgs() << "IV Chain Limit\n");
2521      return;
2522    }
2523    LastIncExpr = OperExpr;
2524    // IVUsers may have skipped over sign/zero extensions. We don't currently
2525    // attempt to form chains involving extensions unless they can be hoisted
2526    // into this loop's AddRec.
2527    if (!isa<SCEVAddRecExpr>(LastIncExpr))
2528      return;
2529    ++NChains;
2530    IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
2531                                 OperExprBase));
2532    ChainUsersVec.resize(NChains);
2533    DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
2534                 << ") IV=" << *LastIncExpr << "\n");
2535  } else {
2536    DEBUG(dbgs() << "IV Chain#" << ChainIdx << "  Inc: (" << *UserInst
2537                 << ") IV+" << *LastIncExpr << "\n");
2538    // Add this IV user to the end of the chain.
2539    IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
2540  }
2541
2542  SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
2543  // This chain's NearUsers become FarUsers.
2544  if (!LastIncExpr->isZero()) {
2545    ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
2546                                            NearUsers.end());
2547    NearUsers.clear();
2548  }
2549
2550  // All other uses of IVOperand become near uses of the chain.
2551  // We currently ignore intermediate values within SCEV expressions, assuming
2552  // they will eventually be used be the current chain, or can be computed
2553  // from one of the chain increments. To be more precise we could
2554  // transitively follow its user and only add leaf IV users to the set.
2555  for (Value::use_iterator UseIter = IVOper->use_begin(),
2556         UseEnd = IVOper->use_end(); UseIter != UseEnd; ++UseIter) {
2557    Instruction *OtherUse = dyn_cast<Instruction>(*UseIter);
2558    if (!OtherUse || OtherUse == UserInst)
2559      continue;
2560    if (SE.isSCEVable(OtherUse->getType())
2561        && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
2562        && IU.isIVUserOrOperand(OtherUse)) {
2563      continue;
2564    }
2565    NearUsers.insert(OtherUse);
2566  }
2567
2568  // Since this user is part of the chain, it's no longer considered a use
2569  // of the chain.
2570  ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
2571}
2572
2573/// CollectChains - Populate the vector of Chains.
2574///
2575/// This decreases ILP at the architecture level. Targets with ample registers,
2576/// multiple memory ports, and no register renaming probably don't want
2577/// this. However, such targets should probably disable LSR altogether.
2578///
2579/// The job of LSR is to make a reasonable choice of induction variables across
2580/// the loop. Subsequent passes can easily "unchain" computation exposing more
2581/// ILP *within the loop* if the target wants it.
2582///
2583/// Finding the best IV chain is potentially a scheduling problem. Since LSR
2584/// will not reorder memory operations, it will recognize this as a chain, but
2585/// will generate redundant IV increments. Ideally this would be corrected later
2586/// by a smart scheduler:
2587///        = A[i]
2588///        = A[i+x]
2589/// A[i]   =
2590/// A[i+x] =
2591///
2592/// TODO: Walk the entire domtree within this loop, not just the path to the
2593/// loop latch. This will discover chains on side paths, but requires
2594/// maintaining multiple copies of the Chains state.
2595void LSRInstance::CollectChains() {
2596  DEBUG(dbgs() << "Collecting IV Chains.\n");
2597  SmallVector<ChainUsers, 8> ChainUsersVec;
2598
2599  SmallVector<BasicBlock *,8> LatchPath;
2600  BasicBlock *LoopHeader = L->getHeader();
2601  for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
2602       Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
2603    LatchPath.push_back(Rung->getBlock());
2604  }
2605  LatchPath.push_back(LoopHeader);
2606
2607  // Walk the instruction stream from the loop header to the loop latch.
2608  for (SmallVectorImpl<BasicBlock *>::reverse_iterator
2609         BBIter = LatchPath.rbegin(), BBEnd = LatchPath.rend();
2610       BBIter != BBEnd; ++BBIter) {
2611    for (BasicBlock::iterator I = (*BBIter)->begin(), E = (*BBIter)->end();
2612         I != E; ++I) {
2613      // Skip instructions that weren't seen by IVUsers analysis.
2614      if (isa<PHINode>(I) || !IU.isIVUserOrOperand(I))
2615        continue;
2616
2617      // Ignore users that are part of a SCEV expression. This way we only
2618      // consider leaf IV Users. This effectively rediscovers a portion of
2619      // IVUsers analysis but in program order this time.
2620      if (SE.isSCEVable(I->getType()) && !isa<SCEVUnknown>(SE.getSCEV(I)))
2621        continue;
2622
2623      // Remove this instruction from any NearUsers set it may be in.
2624      for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
2625           ChainIdx < NChains; ++ChainIdx) {
2626        ChainUsersVec[ChainIdx].NearUsers.erase(I);
2627      }
2628      // Search for operands that can be chained.
2629      SmallPtrSet<Instruction*, 4> UniqueOperands;
2630      User::op_iterator IVOpEnd = I->op_end();
2631      User::op_iterator IVOpIter = findIVOperand(I->op_begin(), IVOpEnd, L, SE);
2632      while (IVOpIter != IVOpEnd) {
2633        Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
2634        if (UniqueOperands.insert(IVOpInst))
2635          ChainInstruction(I, IVOpInst, ChainUsersVec);
2636        IVOpIter = findIVOperand(llvm::next(IVOpIter), IVOpEnd, L, SE);
2637      }
2638    } // Continue walking down the instructions.
2639  } // Continue walking down the domtree.
2640  // Visit phi backedges to determine if the chain can generate the IV postinc.
2641  for (BasicBlock::iterator I = L->getHeader()->begin();
2642       PHINode *PN = dyn_cast<PHINode>(I); ++I) {
2643    if (!SE.isSCEVable(PN->getType()))
2644      continue;
2645
2646    Instruction *IncV =
2647      dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch()));
2648    if (IncV)
2649      ChainInstruction(PN, IncV, ChainUsersVec);
2650  }
2651  // Remove any unprofitable chains.
2652  unsigned ChainIdx = 0;
2653  for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
2654       UsersIdx < NChains; ++UsersIdx) {
2655    if (!isProfitableChain(IVChainVec[UsersIdx],
2656                           ChainUsersVec[UsersIdx].FarUsers, SE, TLI))
2657      continue;
2658    // Preserve the chain at UsesIdx.
2659    if (ChainIdx != UsersIdx)
2660      IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
2661    FinalizeChain(IVChainVec[ChainIdx]);
2662    ++ChainIdx;
2663  }
2664  IVChainVec.resize(ChainIdx);
2665}
2666
2667void LSRInstance::FinalizeChain(IVChain &Chain) {
2668  assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2669  DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
2670
2671  for (IVChain::const_iterator I = Chain.begin(), E = Chain.end();
2672       I != E; ++I) {
2673    DEBUG(dbgs() << "        Inc: " << *I->UserInst << "\n");
2674    User::op_iterator UseI =
2675      std::find(I->UserInst->op_begin(), I->UserInst->op_end(), I->IVOperand);
2676    assert(UseI != I->UserInst->op_end() && "cannot find IV operand");
2677    IVIncSet.insert(UseI);
2678  }
2679}
2680
2681/// Return true if the IVInc can be folded into an addressing mode.
2682static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
2683                             Value *Operand, const TargetLowering *TLI) {
2684  const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
2685  if (!IncConst || !isAddressUse(UserInst, Operand))
2686    return false;
2687
2688  if (IncConst->getValue()->getValue().getMinSignedBits() > 64)
2689    return false;
2690
2691  int64_t IncOffset = IncConst->getValue()->getSExtValue();
2692  if (!isAlwaysFoldable(IncOffset, /*BaseGV=*/0, /*HaseBaseReg=*/false,
2693                       LSRUse::Address, getAccessType(UserInst), TLI))
2694    return false;
2695
2696  return true;
2697}
2698
2699/// GenerateIVChains - Generate an add or subtract for each IVInc in a chain to
2700/// materialize the IV user's operand from the previous IV user's operand.
2701void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
2702                                  SmallVectorImpl<WeakVH> &DeadInsts) {
2703  // Find the new IVOperand for the head of the chain. It may have been replaced
2704  // by LSR.
2705  const IVInc &Head = Chain.Incs[0];
2706  User::op_iterator IVOpEnd = Head.UserInst->op_end();
2707  User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
2708                                             IVOpEnd, L, SE);
2709  Value *IVSrc = 0;
2710  while (IVOpIter != IVOpEnd) {
2711    IVSrc = getWideOperand(*IVOpIter);
2712
2713    // If this operand computes the expression that the chain needs, we may use
2714    // it. (Check this after setting IVSrc which is used below.)
2715    //
2716    // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
2717    // narrow for the chain, so we can no longer use it. We do allow using a
2718    // wider phi, assuming the LSR checked for free truncation. In that case we
2719    // should already have a truncate on this operand such that
2720    // getSCEV(IVSrc) == IncExpr.
2721    if (SE.getSCEV(*IVOpIter) == Head.IncExpr
2722        || SE.getSCEV(IVSrc) == Head.IncExpr) {
2723      break;
2724    }
2725    IVOpIter = findIVOperand(llvm::next(IVOpIter), IVOpEnd, L, SE);
2726  }
2727  if (IVOpIter == IVOpEnd) {
2728    // Gracefully give up on this chain.
2729    DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
2730    return;
2731  }
2732
2733  DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
2734  Type *IVTy = IVSrc->getType();
2735  Type *IntTy = SE.getEffectiveSCEVType(IVTy);
2736  const SCEV *LeftOverExpr = 0;
2737  for (IVChain::const_iterator IncI = Chain.begin(),
2738         IncE = Chain.end(); IncI != IncE; ++IncI) {
2739
2740    Instruction *InsertPt = IncI->UserInst;
2741    if (isa<PHINode>(InsertPt))
2742      InsertPt = L->getLoopLatch()->getTerminator();
2743
2744    // IVOper will replace the current IV User's operand. IVSrc is the IV
2745    // value currently held in a register.
2746    Value *IVOper = IVSrc;
2747    if (!IncI->IncExpr->isZero()) {
2748      // IncExpr was the result of subtraction of two narrow values, so must
2749      // be signed.
2750      const SCEV *IncExpr = SE.getNoopOrSignExtend(IncI->IncExpr, IntTy);
2751      LeftOverExpr = LeftOverExpr ?
2752        SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
2753    }
2754    if (LeftOverExpr && !LeftOverExpr->isZero()) {
2755      // Expand the IV increment.
2756      Rewriter.clearPostInc();
2757      Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
2758      const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
2759                                             SE.getUnknown(IncV));
2760      IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
2761
2762      // If an IV increment can't be folded, use it as the next IV value.
2763      if (!canFoldIVIncExpr(LeftOverExpr, IncI->UserInst, IncI->IVOperand,
2764                            TLI)) {
2765        assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
2766        IVSrc = IVOper;
2767        LeftOverExpr = 0;
2768      }
2769    }
2770    Type *OperTy = IncI->IVOperand->getType();
2771    if (IVTy != OperTy) {
2772      assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
2773             "cannot extend a chained IV");
2774      IRBuilder<> Builder(InsertPt);
2775      IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
2776    }
2777    IncI->UserInst->replaceUsesOfWith(IncI->IVOperand, IVOper);
2778    DeadInsts.push_back(IncI->IVOperand);
2779  }
2780  // If LSR created a new, wider phi, we may also replace its postinc. We only
2781  // do this if we also found a wide value for the head of the chain.
2782  if (isa<PHINode>(Chain.tailUserInst())) {
2783    for (BasicBlock::iterator I = L->getHeader()->begin();
2784         PHINode *Phi = dyn_cast<PHINode>(I); ++I) {
2785      if (!isCompatibleIVType(Phi, IVSrc))
2786        continue;
2787      Instruction *PostIncV = dyn_cast<Instruction>(
2788        Phi->getIncomingValueForBlock(L->getLoopLatch()));
2789      if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
2790        continue;
2791      Value *IVOper = IVSrc;
2792      Type *PostIncTy = PostIncV->getType();
2793      if (IVTy != PostIncTy) {
2794        assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
2795        IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
2796        Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
2797        IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
2798      }
2799      Phi->replaceUsesOfWith(PostIncV, IVOper);
2800      DeadInsts.push_back(PostIncV);
2801    }
2802  }
2803}
2804
2805void LSRInstance::CollectFixupsAndInitialFormulae() {
2806  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
2807    Instruction *UserInst = UI->getUser();
2808    // Skip IV users that are part of profitable IV Chains.
2809    User::op_iterator UseI = std::find(UserInst->op_begin(), UserInst->op_end(),
2810                                       UI->getOperandValToReplace());
2811    assert(UseI != UserInst->op_end() && "cannot find IV operand");
2812    if (IVIncSet.count(UseI))
2813      continue;
2814
2815    // Record the uses.
2816    LSRFixup &LF = getNewFixup();
2817    LF.UserInst = UserInst;
2818    LF.OperandValToReplace = UI->getOperandValToReplace();
2819    LF.PostIncLoops = UI->getPostIncLoops();
2820
2821    LSRUse::KindType Kind = LSRUse::Basic;
2822    Type *AccessTy = 0;
2823    if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) {
2824      Kind = LSRUse::Address;
2825      AccessTy = getAccessType(LF.UserInst);
2826    }
2827
2828    const SCEV *S = IU.getExpr(*UI);
2829
2830    // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
2831    // (N - i == 0), and this allows (N - i) to be the expression that we work
2832    // with rather than just N or i, so we can consider the register
2833    // requirements for both N and i at the same time. Limiting this code to
2834    // equality icmps is not a problem because all interesting loops use
2835    // equality icmps, thanks to IndVarSimplify.
2836    if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst))
2837      if (CI->isEquality()) {
2838        // Swap the operands if needed to put the OperandValToReplace on the
2839        // left, for consistency.
2840        Value *NV = CI->getOperand(1);
2841        if (NV == LF.OperandValToReplace) {
2842          CI->setOperand(1, CI->getOperand(0));
2843          CI->setOperand(0, NV);
2844          NV = CI->getOperand(1);
2845          Changed = true;
2846        }
2847
2848        // x == y  -->  x - y == 0
2849        const SCEV *N = SE.getSCEV(NV);
2850        if (SE.isLoopInvariant(N, L) && isSafeToExpand(N)) {
2851          // S is normalized, so normalize N before folding it into S
2852          // to keep the result normalized.
2853          N = TransformForPostIncUse(Normalize, N, CI, 0,
2854                                     LF.PostIncLoops, SE, DT);
2855          Kind = LSRUse::ICmpZero;
2856          S = SE.getMinusSCEV(N, S);
2857        }
2858
2859        // -1 and the negations of all interesting strides (except the negation
2860        // of -1) are now also interesting.
2861        for (size_t i = 0, e = Factors.size(); i != e; ++i)
2862          if (Factors[i] != -1)
2863            Factors.insert(-(uint64_t)Factors[i]);
2864        Factors.insert(-1);
2865      }
2866
2867    // Set up the initial formula for this use.
2868    std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
2869    LF.LUIdx = P.first;
2870    LF.Offset = P.second;
2871    LSRUse &LU = Uses[LF.LUIdx];
2872    LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
2873    if (!LU.WidestFixupType ||
2874        SE.getTypeSizeInBits(LU.WidestFixupType) <
2875        SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
2876      LU.WidestFixupType = LF.OperandValToReplace->getType();
2877
2878    // If this is the first use of this LSRUse, give it a formula.
2879    if (LU.Formulae.empty()) {
2880      InsertInitialFormula(S, LU, LF.LUIdx);
2881      CountRegisters(LU.Formulae.back(), LF.LUIdx);
2882    }
2883  }
2884
2885  DEBUG(print_fixups(dbgs()));
2886}
2887
2888/// InsertInitialFormula - Insert a formula for the given expression into
2889/// the given use, separating out loop-variant portions from loop-invariant
2890/// and loop-computable portions.
2891void
2892LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
2893  Formula F;
2894  F.InitialMatch(S, L, SE);
2895  bool Inserted = InsertFormula(LU, LUIdx, F);
2896  assert(Inserted && "Initial formula already exists!"); (void)Inserted;
2897}
2898
2899/// InsertSupplementalFormula - Insert a simple single-register formula for
2900/// the given expression into the given use.
2901void
2902LSRInstance::InsertSupplementalFormula(const SCEV *S,
2903                                       LSRUse &LU, size_t LUIdx) {
2904  Formula F;
2905  F.BaseRegs.push_back(S);
2906  F.AM.HasBaseReg = true;
2907  bool Inserted = InsertFormula(LU, LUIdx, F);
2908  assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
2909}
2910
2911/// CountRegisters - Note which registers are used by the given formula,
2912/// updating RegUses.
2913void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
2914  if (F.ScaledReg)
2915    RegUses.CountRegister(F.ScaledReg, LUIdx);
2916  for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
2917       E = F.BaseRegs.end(); I != E; ++I)
2918    RegUses.CountRegister(*I, LUIdx);
2919}
2920
2921/// InsertFormula - If the given formula has not yet been inserted, add it to
2922/// the list, and return true. Return false otherwise.
2923bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
2924  if (!LU.InsertFormula(F))
2925    return false;
2926
2927  CountRegisters(F, LUIdx);
2928  return true;
2929}
2930
2931/// CollectLoopInvariantFixupsAndFormulae - Check for other uses of
2932/// loop-invariant values which we're tracking. These other uses will pin these
2933/// values in registers, making them less profitable for elimination.
2934/// TODO: This currently misses non-constant addrec step registers.
2935/// TODO: Should this give more weight to users inside the loop?
2936void
2937LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
2938  SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
2939  SmallPtrSet<const SCEV *, 8> Inserted;
2940
2941  while (!Worklist.empty()) {
2942    const SCEV *S = Worklist.pop_back_val();
2943
2944    if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
2945      Worklist.append(N->op_begin(), N->op_end());
2946    else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
2947      Worklist.push_back(C->getOperand());
2948    else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
2949      Worklist.push_back(D->getLHS());
2950      Worklist.push_back(D->getRHS());
2951    } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
2952      if (!Inserted.insert(U)) continue;
2953      const Value *V = U->getValue();
2954      if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
2955        // Look for instructions defined outside the loop.
2956        if (L->contains(Inst)) continue;
2957      } else if (isa<UndefValue>(V))
2958        // Undef doesn't have a live range, so it doesn't matter.
2959        continue;
2960      for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
2961           UI != UE; ++UI) {
2962        const Instruction *UserInst = dyn_cast<Instruction>(*UI);
2963        // Ignore non-instructions.
2964        if (!UserInst)
2965          continue;
2966        // Ignore instructions in other functions (as can happen with
2967        // Constants).
2968        if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
2969          continue;
2970        // Ignore instructions not dominated by the loop.
2971        const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
2972          UserInst->getParent() :
2973          cast<PHINode>(UserInst)->getIncomingBlock(
2974            PHINode::getIncomingValueNumForOperand(UI.getOperandNo()));
2975        if (!DT.dominates(L->getHeader(), UseBB))
2976          continue;
2977        // Ignore uses which are part of other SCEV expressions, to avoid
2978        // analyzing them multiple times.
2979        if (SE.isSCEVable(UserInst->getType())) {
2980          const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
2981          // If the user is a no-op, look through to its uses.
2982          if (!isa<SCEVUnknown>(UserS))
2983            continue;
2984          if (UserS == U) {
2985            Worklist.push_back(
2986              SE.getUnknown(const_cast<Instruction *>(UserInst)));
2987            continue;
2988          }
2989        }
2990        // Ignore icmp instructions which are already being analyzed.
2991        if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
2992          unsigned OtherIdx = !UI.getOperandNo();
2993          Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
2994          if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
2995            continue;
2996        }
2997
2998        LSRFixup &LF = getNewFixup();
2999        LF.UserInst = const_cast<Instruction *>(UserInst);
3000        LF.OperandValToReplace = UI.getUse();
3001        std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, 0);
3002        LF.LUIdx = P.first;
3003        LF.Offset = P.second;
3004        LSRUse &LU = Uses[LF.LUIdx];
3005        LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3006        if (!LU.WidestFixupType ||
3007            SE.getTypeSizeInBits(LU.WidestFixupType) <
3008            SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3009          LU.WidestFixupType = LF.OperandValToReplace->getType();
3010        InsertSupplementalFormula(U, LU, LF.LUIdx);
3011        CountRegisters(LU.Formulae.back(), Uses.size() - 1);
3012        break;
3013      }
3014    }
3015  }
3016}
3017
3018/// CollectSubexprs - Split S into subexpressions which can be pulled out into
3019/// separate registers. If C is non-null, multiply each subexpression by C.
3020///
3021/// Return remainder expression after factoring the subexpressions captured by
3022/// Ops. If Ops is complete, return NULL.
3023static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
3024                                   SmallVectorImpl<const SCEV *> &Ops,
3025                                   const Loop *L,
3026                                   ScalarEvolution &SE,
3027                                   unsigned Depth = 0) {
3028  // Arbitrarily cap recursion to protect compile time.
3029  if (Depth >= 3)
3030    return S;
3031
3032  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3033    // Break out add operands.
3034    for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
3035         I != E; ++I) {
3036      const SCEV *Remainder = CollectSubexprs(*I, C, Ops, L, SE, Depth+1);
3037      if (Remainder)
3038        Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3039    }
3040    return NULL;
3041  } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
3042    // Split a non-zero base out of an addrec.
3043    if (AR->getStart()->isZero())
3044      return S;
3045
3046    const SCEV *Remainder = CollectSubexprs(AR->getStart(),
3047                                            C, Ops, L, SE, Depth+1);
3048    // Split the non-zero AddRec unless it is part of a nested recurrence that
3049    // does not pertain to this loop.
3050    if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
3051      Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3052      Remainder = NULL;
3053    }
3054    if (Remainder != AR->getStart()) {
3055      if (!Remainder)
3056        Remainder = SE.getConstant(AR->getType(), 0);
3057      return SE.getAddRecExpr(Remainder,
3058                              AR->getStepRecurrence(SE),
3059                              AR->getLoop(),
3060                              //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
3061                              SCEV::FlagAnyWrap);
3062    }
3063  } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3064    // Break (C * (a + b + c)) into C*a + C*b + C*c.
3065    if (Mul->getNumOperands() != 2)
3066      return S;
3067    if (const SCEVConstant *Op0 =
3068        dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3069      C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
3070      const SCEV *Remainder =
3071        CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
3072      if (Remainder)
3073        Ops.push_back(SE.getMulExpr(C, Remainder));
3074      return NULL;
3075    }
3076  }
3077  return S;
3078}
3079
3080/// GenerateReassociations - Split out subexpressions from adds and the bases of
3081/// addrecs.
3082void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
3083                                         Formula Base,
3084                                         unsigned Depth) {
3085  // Arbitrarily cap recursion to protect compile time.
3086  if (Depth >= 3) return;
3087
3088  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
3089    const SCEV *BaseReg = Base.BaseRegs[i];
3090
3091    SmallVector<const SCEV *, 8> AddOps;
3092    const SCEV *Remainder = CollectSubexprs(BaseReg, 0, AddOps, L, SE);
3093    if (Remainder)
3094      AddOps.push_back(Remainder);
3095
3096    if (AddOps.size() == 1) continue;
3097
3098    for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
3099         JE = AddOps.end(); J != JE; ++J) {
3100
3101      // Loop-variant "unknown" values are uninteresting; we won't be able to
3102      // do anything meaningful with them.
3103      if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
3104        continue;
3105
3106      // Don't pull a constant into a register if the constant could be folded
3107      // into an immediate field.
3108      if (isAlwaysFoldable(*J, LU.MinOffset, LU.MaxOffset,
3109                           Base.getNumRegs() > 1,
3110                           LU.Kind, LU.AccessTy, TLI, SE))
3111        continue;
3112
3113      // Collect all operands except *J.
3114      SmallVector<const SCEV *, 8> InnerAddOps
3115        (((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
3116      InnerAddOps.append
3117        (llvm::next(J), ((const SmallVector<const SCEV *, 8> &)AddOps).end());
3118
3119      // Don't leave just a constant behind in a register if the constant could
3120      // be folded into an immediate field.
3121      if (InnerAddOps.size() == 1 &&
3122          isAlwaysFoldable(InnerAddOps[0], LU.MinOffset, LU.MaxOffset,
3123                           Base.getNumRegs() > 1,
3124                           LU.Kind, LU.AccessTy, TLI, SE))
3125        continue;
3126
3127      const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3128      if (InnerSum->isZero())
3129        continue;
3130      Formula F = Base;
3131
3132      // Add the remaining pieces of the add back into the new formula.
3133      const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3134      if (TLI && InnerSumSC &&
3135          SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3136          TLI->isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3137                                   InnerSumSC->getValue()->getZExtValue())) {
3138        F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset +
3139                           InnerSumSC->getValue()->getZExtValue();
3140        F.BaseRegs.erase(F.BaseRegs.begin() + i);
3141      } else
3142        F.BaseRegs[i] = InnerSum;
3143
3144      // Add J as its own register, or an unfolded immediate.
3145      const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3146      if (TLI && SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3147          TLI->isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3148                                   SC->getValue()->getZExtValue()))
3149        F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset +
3150                           SC->getValue()->getZExtValue();
3151      else
3152        F.BaseRegs.push_back(*J);
3153
3154      if (InsertFormula(LU, LUIdx, F))
3155        // If that formula hadn't been seen before, recurse to find more like
3156        // it.
3157        GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth+1);
3158    }
3159  }
3160}
3161
3162/// GenerateCombinations - Generate a formula consisting of all of the
3163/// loop-dominating registers added into a single register.
3164void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
3165                                       Formula Base) {
3166  // This method is only interesting on a plurality of registers.
3167  if (Base.BaseRegs.size() <= 1) return;
3168
3169  Formula F = Base;
3170  F.BaseRegs.clear();
3171  SmallVector<const SCEV *, 4> Ops;
3172  for (SmallVectorImpl<const SCEV *>::const_iterator
3173       I = Base.BaseRegs.begin(), E = Base.BaseRegs.end(); I != E; ++I) {
3174    const SCEV *BaseReg = *I;
3175    if (SE.properlyDominates(BaseReg, L->getHeader()) &&
3176        !SE.hasComputableLoopEvolution(BaseReg, L))
3177      Ops.push_back(BaseReg);
3178    else
3179      F.BaseRegs.push_back(BaseReg);
3180  }
3181  if (Ops.size() > 1) {
3182    const SCEV *Sum = SE.getAddExpr(Ops);
3183    // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3184    // opportunity to fold something. For now, just ignore such cases
3185    // rather than proceed with zero in a register.
3186    if (!Sum->isZero()) {
3187      F.BaseRegs.push_back(Sum);
3188      (void)InsertFormula(LU, LUIdx, F);
3189    }
3190  }
3191}
3192
3193/// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets.
3194void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
3195                                          Formula Base) {
3196  // We can't add a symbolic offset if the address already contains one.
3197  if (Base.AM.BaseGV) return;
3198
3199  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
3200    const SCEV *G = Base.BaseRegs[i];
3201    GlobalValue *GV = ExtractSymbol(G, SE);
3202    if (G->isZero() || !GV)
3203      continue;
3204    Formula F = Base;
3205    F.AM.BaseGV = GV;
3206    if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
3207                    LU.Kind, LU.AccessTy, TLI))
3208      continue;
3209    F.BaseRegs[i] = G;
3210    (void)InsertFormula(LU, LUIdx, F);
3211  }
3212}
3213
3214/// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
3215void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
3216                                          Formula Base) {
3217  // TODO: For now, just add the min and max offset, because it usually isn't
3218  // worthwhile looking at everything inbetween.
3219  SmallVector<int64_t, 2> Worklist;
3220  Worklist.push_back(LU.MinOffset);
3221  if (LU.MaxOffset != LU.MinOffset)
3222    Worklist.push_back(LU.MaxOffset);
3223
3224  for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
3225    const SCEV *G = Base.BaseRegs[i];
3226
3227    for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(),
3228         E = Worklist.end(); I != E; ++I) {
3229      Formula F = Base;
3230      F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs - *I;
3231      if (isLegalUse(F.AM, LU.MinOffset - *I, LU.MaxOffset - *I,
3232                     LU.Kind, LU.AccessTy, TLI)) {
3233        // Add the offset to the base register.
3234        const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), *I), G);
3235        // If it cancelled out, drop the base register, otherwise update it.
3236        if (NewG->isZero()) {
3237          std::swap(F.BaseRegs[i], F.BaseRegs.back());
3238          F.BaseRegs.pop_back();
3239        } else
3240          F.BaseRegs[i] = NewG;
3241
3242        (void)InsertFormula(LU, LUIdx, F);
3243      }
3244    }
3245
3246    int64_t Imm = ExtractImmediate(G, SE);
3247    if (G->isZero() || Imm == 0)
3248      continue;
3249    Formula F = Base;
3250    F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Imm;
3251    if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset,
3252                    LU.Kind, LU.AccessTy, TLI))
3253      continue;
3254    F.BaseRegs[i] = G;
3255    (void)InsertFormula(LU, LUIdx, F);
3256  }
3257}
3258
3259/// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up
3260/// the comparison. For example, x == y -> x*c == y*c.
3261void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
3262                                         Formula Base) {
3263  if (LU.Kind != LSRUse::ICmpZero) return;
3264
3265  // Determine the integer type for the base formula.
3266  Type *IntTy = Base.getType();
3267  if (!IntTy) return;
3268  if (SE.getTypeSizeInBits(IntTy) > 64) return;
3269
3270  // Don't do this if there is more than one offset.
3271  if (LU.MinOffset != LU.MaxOffset) return;
3272
3273  assert(!Base.AM.BaseGV && "ICmpZero use is not legal!");
3274
3275  // Check each interesting stride.
3276  for (SmallSetVector<int64_t, 8>::const_iterator
3277       I = Factors.begin(), E = Factors.end(); I != E; ++I) {
3278    int64_t Factor = *I;
3279
3280    // Check that the multiplication doesn't overflow.
3281    if (Base.AM.BaseOffs == INT64_MIN && Factor == -1)
3282      continue;
3283    int64_t NewBaseOffs = (uint64_t)Base.AM.BaseOffs * Factor;
3284    if (NewBaseOffs / Factor != Base.AM.BaseOffs)
3285      continue;
3286
3287    // Check that multiplying with the use offset doesn't overflow.
3288    int64_t Offset = LU.MinOffset;
3289    if (Offset == INT64_MIN && Factor == -1)
3290      continue;
3291    Offset = (uint64_t)Offset * Factor;
3292    if (Offset / Factor != LU.MinOffset)
3293      continue;
3294
3295    Formula F = Base;
3296    F.AM.BaseOffs = NewBaseOffs;
3297
3298    // Check that this scale is legal.
3299    if (!isLegalUse(F.AM, Offset, Offset, LU.Kind, LU.AccessTy, TLI))
3300      continue;
3301
3302    // Compensate for the use having MinOffset built into it.
3303    F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Offset - LU.MinOffset;
3304
3305    const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3306
3307    // Check that multiplying with each base register doesn't overflow.
3308    for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
3309      F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
3310      if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
3311        goto next;
3312    }
3313
3314    // Check that multiplying with the scaled register doesn't overflow.
3315    if (F.ScaledReg) {
3316      F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
3317      if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
3318        continue;
3319    }
3320
3321    // Check that multiplying with the unfolded offset doesn't overflow.
3322    if (F.UnfoldedOffset != 0) {
3323      if (F.UnfoldedOffset == INT64_MIN && Factor == -1)
3324        continue;
3325      F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
3326      if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
3327        continue;
3328    }
3329
3330    // If we make it here and it's legal, add it.
3331    (void)InsertFormula(LU, LUIdx, F);
3332  next:;
3333  }
3334}
3335
3336/// GenerateScales - Generate stride factor reuse formulae by making use of
3337/// scaled-offset address modes, for example.
3338void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
3339  // Determine the integer type for the base formula.
3340  Type *IntTy = Base.getType();
3341  if (!IntTy) return;
3342
3343  // If this Formula already has a scaled register, we can't add another one.
3344  if (Base.AM.Scale != 0) return;
3345
3346  // Check each interesting stride.
3347  for (SmallSetVector<int64_t, 8>::const_iterator
3348       I = Factors.begin(), E = Factors.end(); I != E; ++I) {
3349    int64_t Factor = *I;
3350
3351    Base.AM.Scale = Factor;
3352    Base.AM.HasBaseReg = Base.BaseRegs.size() > 1;
3353    // Check whether this scale is going to be legal.
3354    if (!isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
3355                    LU.Kind, LU.AccessTy, TLI)) {
3356      // As a special-case, handle special out-of-loop Basic users specially.
3357      // TODO: Reconsider this special case.
3358      if (LU.Kind == LSRUse::Basic &&
3359          isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset,
3360                     LSRUse::Special, LU.AccessTy, TLI) &&
3361          LU.AllFixupsOutsideLoop)
3362        LU.Kind = LSRUse::Special;
3363      else
3364        continue;
3365    }
3366    // For an ICmpZero, negating a solitary base register won't lead to
3367    // new solutions.
3368    if (LU.Kind == LSRUse::ICmpZero &&
3369        !Base.AM.HasBaseReg && Base.AM.BaseOffs == 0 && !Base.AM.BaseGV)
3370      continue;
3371    // For each addrec base reg, apply the scale, if possible.
3372    for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3373      if (const SCEVAddRecExpr *AR =
3374            dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) {
3375        const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3376        if (FactorS->isZero())
3377          continue;
3378        // Divide out the factor, ignoring high bits, since we'll be
3379        // scaling the value back up in the end.
3380        if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
3381          // TODO: This could be optimized to avoid all the copying.
3382          Formula F = Base;
3383          F.ScaledReg = Quotient;
3384          F.DeleteBaseReg(F.BaseRegs[i]);
3385          (void)InsertFormula(LU, LUIdx, F);
3386        }
3387      }
3388  }
3389}
3390
3391/// GenerateTruncates - Generate reuse formulae from different IV types.
3392void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
3393  // This requires TargetLowering to tell us which truncates are free.
3394  if (!TLI) return;
3395
3396  // Don't bother truncating symbolic values.
3397  if (Base.AM.BaseGV) return;
3398
3399  // Determine the integer type for the base formula.
3400  Type *DstTy = Base.getType();
3401  if (!DstTy) return;
3402  DstTy = SE.getEffectiveSCEVType(DstTy);
3403
3404  for (SmallSetVector<Type *, 4>::const_iterator
3405       I = Types.begin(), E = Types.end(); I != E; ++I) {
3406    Type *SrcTy = *I;
3407    if (SrcTy != DstTy && TLI->isTruncateFree(SrcTy, DstTy)) {
3408      Formula F = Base;
3409
3410      if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I);
3411      for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(),
3412           JE = F.BaseRegs.end(); J != JE; ++J)
3413        *J = SE.getAnyExtendExpr(*J, SrcTy);
3414
3415      // TODO: This assumes we've done basic processing on all uses and
3416      // have an idea what the register usage is.
3417      if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
3418        continue;
3419
3420      (void)InsertFormula(LU, LUIdx, F);
3421    }
3422  }
3423}
3424
3425namespace {
3426
3427/// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to
3428/// defer modifications so that the search phase doesn't have to worry about
3429/// the data structures moving underneath it.
3430struct WorkItem {
3431  size_t LUIdx;
3432  int64_t Imm;
3433  const SCEV *OrigReg;
3434
3435  WorkItem(size_t LI, int64_t I, const SCEV *R)
3436    : LUIdx(LI), Imm(I), OrigReg(R) {}
3437
3438  void print(raw_ostream &OS) const;
3439  void dump() const;
3440};
3441
3442}
3443
3444void WorkItem::print(raw_ostream &OS) const {
3445  OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
3446     << " , add offset " << Imm;
3447}
3448
3449#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3450void WorkItem::dump() const {
3451  print(errs()); errs() << '\n';
3452}
3453#endif
3454
3455/// GenerateCrossUseConstantOffsets - Look for registers which are a constant
3456/// distance apart and try to form reuse opportunities between them.
3457void LSRInstance::GenerateCrossUseConstantOffsets() {
3458  // Group the registers by their value without any added constant offset.
3459  typedef std::map<int64_t, const SCEV *> ImmMapTy;
3460  typedef DenseMap<const SCEV *, ImmMapTy> RegMapTy;
3461  RegMapTy Map;
3462  DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
3463  SmallVector<const SCEV *, 8> Sequence;
3464  for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
3465       I != E; ++I) {
3466    const SCEV *Reg = *I;
3467    int64_t Imm = ExtractImmediate(Reg, SE);
3468    std::pair<RegMapTy::iterator, bool> Pair =
3469      Map.insert(std::make_pair(Reg, ImmMapTy()));
3470    if (Pair.second)
3471      Sequence.push_back(Reg);
3472    Pair.first->second.insert(std::make_pair(Imm, *I));
3473    UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(*I);
3474  }
3475
3476  // Now examine each set of registers with the same base value. Build up
3477  // a list of work to do and do the work in a separate step so that we're
3478  // not adding formulae and register counts while we're searching.
3479  SmallVector<WorkItem, 32> WorkItems;
3480  SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
3481  for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(),
3482       E = Sequence.end(); I != E; ++I) {
3483    const SCEV *Reg = *I;
3484    const ImmMapTy &Imms = Map.find(Reg)->second;
3485
3486    // It's not worthwhile looking for reuse if there's only one offset.
3487    if (Imms.size() == 1)
3488      continue;
3489
3490    DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
3491          for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
3492               J != JE; ++J)
3493            dbgs() << ' ' << J->first;
3494          dbgs() << '\n');
3495
3496    // Examine each offset.
3497    for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
3498         J != JE; ++J) {
3499      const SCEV *OrigReg = J->second;
3500
3501      int64_t JImm = J->first;
3502      const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
3503
3504      if (!isa<SCEVConstant>(OrigReg) &&
3505          UsedByIndicesMap[Reg].count() == 1) {
3506        DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
3507        continue;
3508      }
3509
3510      // Conservatively examine offsets between this orig reg a few selected
3511      // other orig regs.
3512      ImmMapTy::const_iterator OtherImms[] = {
3513        Imms.begin(), prior(Imms.end()),
3514        Imms.lower_bound((Imms.begin()->first + prior(Imms.end())->first) / 2)
3515      };
3516      for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
3517        ImmMapTy::const_iterator M = OtherImms[i];
3518        if (M == J || M == JE) continue;
3519
3520        // Compute the difference between the two.
3521        int64_t Imm = (uint64_t)JImm - M->first;
3522        for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1;
3523             LUIdx = UsedByIndices.find_next(LUIdx))
3524          // Make a memo of this use, offset, and register tuple.
3525          if (UniqueItems.insert(std::make_pair(LUIdx, Imm)))
3526            WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
3527      }
3528    }
3529  }
3530
3531  Map.clear();
3532  Sequence.clear();
3533  UsedByIndicesMap.clear();
3534  UniqueItems.clear();
3535
3536  // Now iterate through the worklist and add new formulae.
3537  for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(),
3538       E = WorkItems.end(); I != E; ++I) {
3539    const WorkItem &WI = *I;
3540    size_t LUIdx = WI.LUIdx;
3541    LSRUse &LU = Uses[LUIdx];
3542    int64_t Imm = WI.Imm;
3543    const SCEV *OrigReg = WI.OrigReg;
3544
3545    Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
3546    const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
3547    unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
3548
3549    // TODO: Use a more targeted data structure.
3550    for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
3551      const Formula &F = LU.Formulae[L];
3552      // Use the immediate in the scaled register.
3553      if (F.ScaledReg == OrigReg) {
3554        int64_t Offs = (uint64_t)F.AM.BaseOffs +
3555                       Imm * (uint64_t)F.AM.Scale;
3556        // Don't create 50 + reg(-50).
3557        if (F.referencesReg(SE.getSCEV(
3558                   ConstantInt::get(IntTy, -(uint64_t)Offs))))
3559          continue;
3560        Formula NewF = F;
3561        NewF.AM.BaseOffs = Offs;
3562        if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
3563                        LU.Kind, LU.AccessTy, TLI))
3564          continue;
3565        NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
3566
3567        // If the new scale is a constant in a register, and adding the constant
3568        // value to the immediate would produce a value closer to zero than the
3569        // immediate itself, then the formula isn't worthwhile.
3570        if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
3571          if (C->getValue()->isNegative() !=
3572                (NewF.AM.BaseOffs < 0) &&
3573              (C->getValue()->getValue().abs() * APInt(BitWidth, F.AM.Scale))
3574                .ule(abs64(NewF.AM.BaseOffs)))
3575            continue;
3576
3577        // OK, looks good.
3578        (void)InsertFormula(LU, LUIdx, NewF);
3579      } else {
3580        // Use the immediate in a base register.
3581        for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
3582          const SCEV *BaseReg = F.BaseRegs[N];
3583          if (BaseReg != OrigReg)
3584            continue;
3585          Formula NewF = F;
3586          NewF.AM.BaseOffs = (uint64_t)NewF.AM.BaseOffs + Imm;
3587          if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset,
3588                          LU.Kind, LU.AccessTy, TLI)) {
3589            if (!TLI ||
3590                !TLI->isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
3591              continue;
3592            NewF = F;
3593            NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
3594          }
3595          NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
3596
3597          // If the new formula has a constant in a register, and adding the
3598          // constant value to the immediate would produce a value closer to
3599          // zero than the immediate itself, then the formula isn't worthwhile.
3600          for (SmallVectorImpl<const SCEV *>::const_iterator
3601               J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end();
3602               J != JE; ++J)
3603            if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J))
3604              if ((C->getValue()->getValue() + NewF.AM.BaseOffs).abs().slt(
3605                   abs64(NewF.AM.BaseOffs)) &&
3606                  (C->getValue()->getValue() +
3607                   NewF.AM.BaseOffs).countTrailingZeros() >=
3608                   CountTrailingZeros_64(NewF.AM.BaseOffs))
3609                goto skip_formula;
3610
3611          // Ok, looks good.
3612          (void)InsertFormula(LU, LUIdx, NewF);
3613          break;
3614        skip_formula:;
3615        }
3616      }
3617    }
3618  }
3619}
3620
3621/// GenerateAllReuseFormulae - Generate formulae for each use.
3622void
3623LSRInstance::GenerateAllReuseFormulae() {
3624  // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
3625  // queries are more precise.
3626  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3627    LSRUse &LU = Uses[LUIdx];
3628    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3629      GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
3630    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3631      GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
3632  }
3633  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3634    LSRUse &LU = Uses[LUIdx];
3635    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3636      GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
3637    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3638      GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
3639    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3640      GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
3641    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3642      GenerateScales(LU, LUIdx, LU.Formulae[i]);
3643  }
3644  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3645    LSRUse &LU = Uses[LUIdx];
3646    for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3647      GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
3648  }
3649
3650  GenerateCrossUseConstantOffsets();
3651
3652  DEBUG(dbgs() << "\n"
3653                  "After generating reuse formulae:\n";
3654        print_uses(dbgs()));
3655}
3656
3657/// If there are multiple formulae with the same set of registers used
3658/// by other uses, pick the best one and delete the others.
3659void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
3660  DenseSet<const SCEV *> VisitedRegs;
3661  SmallPtrSet<const SCEV *, 16> Regs;
3662  SmallPtrSet<const SCEV *, 16> LoserRegs;
3663#ifndef NDEBUG
3664  bool ChangedFormulae = false;
3665#endif
3666
3667  // Collect the best formula for each unique set of shared registers. This
3668  // is reset for each use.
3669  typedef DenseMap<SmallVector<const SCEV *, 2>, size_t, UniquifierDenseMapInfo>
3670    BestFormulaeTy;
3671  BestFormulaeTy BestFormulae;
3672
3673  for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3674    LSRUse &LU = Uses[LUIdx];
3675    DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');
3676
3677    bool Any = false;
3678    for (size_t FIdx = 0, NumForms = LU.Formulae.size();
3679         FIdx != NumForms; ++FIdx) {
3680      Formula &F = LU.Formulae[FIdx];
3681
3682      // Some formulas are instant losers. For example, they may depend on
3683      // nonexistent AddRecs from other loops. These need to be filtered
3684      // immediately, otherwise heuristics could choose them over others leading
3685      // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
3686      // avoids the need to recompute this information across formulae using the
3687      // same bad AddRec. Passing LoserRegs is also essential unless we remove
3688      // the corresponding bad register from the Regs set.
3689      Cost CostF;
3690      Regs.clear();
3691      CostF.RateFormula(F, Regs, VisitedRegs, L, LU.Offsets, SE, DT,
3692                        &LoserRegs);
3693      if (CostF.isLoser()) {
3694        // During initial formula generation, undesirable formulae are generated
3695        // by uses within other loops that have some non-trivial address mode or
3696        // use the postinc form of the IV. LSR needs to provide these formulae
3697        // as the basis of rediscovering the desired formula that uses an AddRec
3698        // corresponding to the existing phi. Once all formulae have been
3699        // generated, these initial losers may be pruned.
3700        DEBUG(dbgs() << "  Filtering loser "; F.print(dbgs());
3701              dbgs() << "\n");
3702      }
3703      else {
3704        SmallVector<const SCEV *, 2> Key;
3705        for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(),
3706               JE = F.BaseRegs.end(); J != JE; ++J) {
3707          const SCEV *Reg = *J;
3708          if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
3709            Key.push_back(Reg);
3710        }
3711        if (F.ScaledReg &&
3712            RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
3713          Key.push_back(F.ScaledReg);
3714        // Unstable sort by host order ok, because this is only used for
3715        // uniquifying.
3716        std::sort(Key.begin(), Key.end());
3717
3718        std::pair<BestFormulaeTy::const_iterator, bool> P =
3719          BestFormulae.insert(std::make_pair(Key, FIdx));
3720        if (P.second)
3721          continue;
3722
3723        Formula &Best = LU.Formulae[P.first->second];
3724
3725        Cost CostBest;
3726        Regs.clear();
3727        CostBest.RateFormula(Best, Regs, VisitedRegs, L, LU.Offsets, SE, DT);
3728        if (CostF < CostBest)
3729          std::swap(F, Best);
3730        DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
3731              dbgs() << "\n"
3732                        "    in favor of formula "; Best.print(dbgs());
3733              dbgs() << '\n');
3734      }
3735#ifndef NDEBUG
3736      ChangedFormulae = true;
3737#endif
3738      LU.DeleteFormula(F);
3739      --FIdx;
3740      --NumForms;
3741      Any = true;
3742    }
3743
3744    // Now that we've filtered out some formulae, recompute the Regs set.
3745    if (Any)
3746      LU.RecomputeRegs(LUIdx, RegUses);
3747
3748    // Reset this to prepare for the next use.
3749    BestFormulae.clear();
3750  }
3751
3752  DEBUG(if (ChangedFormulae) {
3753          dbgs() << "\n"
3754                    "After filtering out undesirable candidates:\n";
3755          print_uses(dbgs());
3756        });
3757}
3758
3759// This is a rough guess that seems to work fairly well.
3760static const size_t ComplexityLimit = UINT16_MAX;
3761
3762/// EstimateSearchSpaceComplexity - Estimate the worst-case number of
3763/// solutions the solver might have to consider. It almost never considers
3764/// this many solutions because it prune the search space, but the pruning
3765/// isn't always sufficient.
3766size_t LSRInstance::EstimateSearchSpaceComplexity() const {
3767  size_t Power = 1;
3768  for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
3769       E = Uses.end(); I != E; ++I) {
3770    size_t FSize = I->Formulae.size();
3771    if (FSize >= ComplexityLimit) {
3772      Power = ComplexityLimit;
3773      break;
3774    }
3775    Power *= FSize;
3776    if (Power >= ComplexityLimit)
3777      break;
3778  }
3779  return Power;
3780}
3781
3782/// NarrowSearchSpaceByDetectingSupersets - When one formula uses a superset
3783/// of the registers of another formula, it won't help reduce register
3784/// pressure (though it may not necessarily hurt register pressure); remove
3785/// it to simplify the system.
3786void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
3787  if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
3788    DEBUG(dbgs() << "The search space is too complex.\n");
3789
3790    DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
3791                    "which use a superset of registers used by other "
3792                    "formulae.\n");
3793
3794    for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3795      LSRUse &LU = Uses[LUIdx];
3796      bool Any = false;
3797      for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
3798        Formula &F = LU.Formulae[i];
3799        // Look for a formula with a constant or GV in a register. If the use
3800        // also has a formula with that same value in an immediate field,
3801        // delete the one that uses a register.
3802        for (SmallVectorImpl<const SCEV *>::const_iterator
3803             I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
3804          if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
3805            Formula NewF = F;
3806            NewF.AM.BaseOffs += C->getValue()->getSExtValue();
3807            NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
3808                                (I - F.BaseRegs.begin()));
3809            if (LU.HasFormulaWithSameRegs(NewF)) {
3810              DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
3811              LU.DeleteFormula(F);
3812              --i;
3813              --e;
3814              Any = true;
3815              break;
3816            }
3817          } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
3818            if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
3819              if (!F.AM.BaseGV) {
3820                Formula NewF = F;
3821                NewF.AM.BaseGV = GV;
3822                NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
3823                                    (I - F.BaseRegs.begin()));
3824                if (LU.HasFormulaWithSameRegs(NewF)) {
3825                  DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
3826                        dbgs() << '\n');
3827                  LU.DeleteFormula(F);
3828                  --i;
3829                  --e;
3830                  Any = true;
3831                  break;
3832                }
3833              }
3834          }
3835        }
3836      }
3837      if (Any)
3838        LU.RecomputeRegs(LUIdx, RegUses);
3839    }
3840
3841    DEBUG(dbgs() << "After pre-selection:\n";
3842          print_uses(dbgs()));
3843  }
3844}
3845
3846/// NarrowSearchSpaceByCollapsingUnrolledCode - When there are many registers
3847/// for expressions like A, A+1, A+2, etc., allocate a single register for
3848/// them.
3849void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
3850  if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
3851    DEBUG(dbgs() << "The search space is too complex.\n");
3852
3853    DEBUG(dbgs() << "Narrowing the search space by assuming that uses "
3854                    "separated by a constant offset will use the same "
3855                    "registers.\n");
3856
3857    // This is especially useful for unrolled loops.
3858
3859    for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3860      LSRUse &LU = Uses[LUIdx];
3861      for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
3862           E = LU.Formulae.end(); I != E; ++I) {
3863        const Formula &F = *I;
3864        if (F.AM.BaseOffs != 0 && F.AM.Scale == 0) {
3865          if (LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU)) {
3866            if (reconcileNewOffset(*LUThatHas, F.AM.BaseOffs,
3867                                   /*HasBaseReg=*/false,
3868                                   LU.Kind, LU.AccessTy)) {
3869              DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs());
3870                    dbgs() << '\n');
3871
3872              LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
3873
3874              // Update the relocs to reference the new use.
3875              for (SmallVectorImpl<LSRFixup>::iterator I = Fixups.begin(),
3876                   E = Fixups.end(); I != E; ++I) {
3877                LSRFixup &Fixup = *I;
3878                if (Fixup.LUIdx == LUIdx) {
3879                  Fixup.LUIdx = LUThatHas - &Uses.front();
3880                  Fixup.Offset += F.AM.BaseOffs;
3881                  // Add the new offset to LUThatHas' offset list.
3882                  if (LUThatHas->Offsets.back() != Fixup.Offset) {
3883                    LUThatHas->Offsets.push_back(Fixup.Offset);
3884                    if (Fixup.Offset > LUThatHas->MaxOffset)
3885                      LUThatHas->MaxOffset = Fixup.Offset;
3886                    if (Fixup.Offset < LUThatHas->MinOffset)
3887                      LUThatHas->MinOffset = Fixup.Offset;
3888                  }
3889                  DEBUG(dbgs() << "New fixup has offset "
3890                               << Fixup.Offset << '\n');
3891                }
3892                if (Fixup.LUIdx == NumUses-1)
3893                  Fixup.LUIdx = LUIdx;
3894              }
3895
3896              // Delete formulae from the new use which are no longer legal.
3897              bool Any = false;
3898              for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
3899                Formula &F = LUThatHas->Formulae[i];
3900                if (!isLegalUse(F.AM,
3901                                LUThatHas->MinOffset, LUThatHas->MaxOffset,
3902                                LUThatHas->Kind, LUThatHas->AccessTy, TLI)) {
3903                  DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
3904                        dbgs() << '\n');
3905                  LUThatHas->DeleteFormula(F);
3906                  --i;
3907                  --e;
3908                  Any = true;
3909                }
3910              }
3911              if (Any)
3912                LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
3913
3914              // Delete the old use.
3915              DeleteUse(LU, LUIdx);
3916              --LUIdx;
3917              --NumUses;
3918              break;
3919            }
3920          }
3921        }
3922      }
3923    }
3924
3925    DEBUG(dbgs() << "After pre-selection:\n";
3926          print_uses(dbgs()));
3927  }
3928}
3929
3930/// NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters - Call
3931/// FilterOutUndesirableDedicatedRegisters again, if necessary, now that
3932/// we've done more filtering, as it may be able to find more formulae to
3933/// eliminate.
3934void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
3935  if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
3936    DEBUG(dbgs() << "The search space is too complex.\n");
3937
3938    DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
3939                    "undesirable dedicated registers.\n");
3940
3941    FilterOutUndesirableDedicatedRegisters();
3942
3943    DEBUG(dbgs() << "After pre-selection:\n";
3944          print_uses(dbgs()));
3945  }
3946}
3947
3948/// NarrowSearchSpaceByPickingWinnerRegs - Pick a register which seems likely
3949/// to be profitable, and then in any use which has any reference to that
3950/// register, delete all formulae which do not reference that register.
3951void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
3952  // With all other options exhausted, loop until the system is simple
3953  // enough to handle.
3954  SmallPtrSet<const SCEV *, 4> Taken;
3955  while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
3956    // Ok, we have too many of formulae on our hands to conveniently handle.
3957    // Use a rough heuristic to thin out the list.
3958    DEBUG(dbgs() << "The search space is too complex.\n");
3959
3960    // Pick the register which is used by the most LSRUses, which is likely
3961    // to be a good reuse register candidate.
3962    const SCEV *Best = 0;
3963    unsigned BestNum = 0;
3964    for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end();
3965         I != E; ++I) {
3966      const SCEV *Reg = *I;
3967      if (Taken.count(Reg))
3968        continue;
3969      if (!Best)
3970        Best = Reg;
3971      else {
3972        unsigned Count = RegUses.getUsedByIndices(Reg).count();
3973        if (Count > BestNum) {
3974          Best = Reg;
3975          BestNum = Count;
3976        }
3977      }
3978    }
3979
3980    DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
3981                 << " will yield profitable reuse.\n");
3982    Taken.insert(Best);
3983
3984    // In any use with formulae which references this register, delete formulae
3985    // which don't reference it.
3986    for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3987      LSRUse &LU = Uses[LUIdx];
3988      if (!LU.Regs.count(Best)) continue;
3989
3990      bool Any = false;
3991      for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
3992        Formula &F = LU.Formulae[i];
3993        if (!F.referencesReg(Best)) {
3994          DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
3995          LU.DeleteFormula(F);
3996          --e;
3997          --i;
3998          Any = true;
3999          assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
4000          continue;
4001        }
4002      }
4003
4004      if (Any)
4005        LU.RecomputeRegs(LUIdx, RegUses);
4006    }
4007
4008    DEBUG(dbgs() << "After pre-selection:\n";
4009          print_uses(dbgs()));
4010  }
4011}
4012
4013/// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of
4014/// formulae to choose from, use some rough heuristics to prune down the number
4015/// of formulae. This keeps the main solver from taking an extraordinary amount
4016/// of time in some worst-case scenarios.
4017void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
4018  NarrowSearchSpaceByDetectingSupersets();
4019  NarrowSearchSpaceByCollapsingUnrolledCode();
4020  NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
4021  NarrowSearchSpaceByPickingWinnerRegs();
4022}
4023
4024/// SolveRecurse - This is the recursive solver.
4025void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
4026                               Cost &SolutionCost,
4027                               SmallVectorImpl<const Formula *> &Workspace,
4028                               const Cost &CurCost,
4029                               const SmallPtrSet<const SCEV *, 16> &CurRegs,
4030                               DenseSet<const SCEV *> &VisitedRegs) const {
4031  // Some ideas:
4032  //  - prune more:
4033  //    - use more aggressive filtering
4034  //    - sort the formula so that the most profitable solutions are found first
4035  //    - sort the uses too
4036  //  - search faster:
4037  //    - don't compute a cost, and then compare. compare while computing a cost
4038  //      and bail early.
4039  //    - track register sets with SmallBitVector
4040
4041  const LSRUse &LU = Uses[Workspace.size()];
4042
4043  // If this use references any register that's already a part of the
4044  // in-progress solution, consider it a requirement that a formula must
4045  // reference that register in order to be considered. This prunes out
4046  // unprofitable searching.
4047  SmallSetVector<const SCEV *, 4> ReqRegs;
4048  for (SmallPtrSet<const SCEV *, 16>::const_iterator I = CurRegs.begin(),
4049       E = CurRegs.end(); I != E; ++I)
4050    if (LU.Regs.count(*I))
4051      ReqRegs.insert(*I);
4052
4053  SmallPtrSet<const SCEV *, 16> NewRegs;
4054  Cost NewCost;
4055  for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(),
4056       E = LU.Formulae.end(); I != E; ++I) {
4057    const Formula &F = *I;
4058
4059    // Ignore formulae which do not use any of the required registers.
4060    bool SatisfiedReqReg = true;
4061    for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(),
4062         JE = ReqRegs.end(); J != JE; ++J) {
4063      const SCEV *Reg = *J;
4064      if ((!F.ScaledReg || F.ScaledReg != Reg) &&
4065          std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) ==
4066          F.BaseRegs.end()) {
4067        SatisfiedReqReg = false;
4068        break;
4069      }
4070    }
4071    if (!SatisfiedReqReg) {
4072      // If none of the formulae satisfied the required registers, then we could
4073      // clear ReqRegs and try again. Currently, we simply give up in this case.
4074      continue;
4075    }
4076
4077    // Evaluate the cost of the current formula. If it's already worse than
4078    // the current best, prune the search at that point.
4079    NewCost = CurCost;
4080    NewRegs = CurRegs;
4081    NewCost.RateFormula(F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT);
4082    if (NewCost < SolutionCost) {
4083      Workspace.push_back(&F);
4084      if (Workspace.size() != Uses.size()) {
4085        SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
4086                     NewRegs, VisitedRegs);
4087        if (F.getNumRegs() == 1 && Workspace.size() == 1)
4088          VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
4089      } else {
4090        DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
4091              dbgs() << ".\n Regs:";
4092              for (SmallPtrSet<const SCEV *, 16>::const_iterator
4093                   I = NewRegs.begin(), E = NewRegs.end(); I != E; ++I)
4094                dbgs() << ' ' << **I;
4095              dbgs() << '\n');
4096
4097        SolutionCost = NewCost;
4098        Solution = Workspace;
4099      }
4100      Workspace.pop_back();
4101    }
4102  }
4103}
4104
4105/// Solve - Choose one formula from each use. Return the results in the given
4106/// Solution vector.
4107void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
4108  SmallVector<const Formula *, 8> Workspace;
4109  Cost SolutionCost;
4110  SolutionCost.Loose();
4111  Cost CurCost;
4112  SmallPtrSet<const SCEV *, 16> CurRegs;
4113  DenseSet<const SCEV *> VisitedRegs;
4114  Workspace.reserve(Uses.size());
4115
4116  // SolveRecurse does all the work.
4117  SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
4118               CurRegs, VisitedRegs);
4119  if (Solution.empty()) {
4120    DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
4121    return;
4122  }
4123
4124  // Ok, we've now made all our decisions.
4125  DEBUG(dbgs() << "\n"
4126                  "The chosen solution requires "; SolutionCost.print(dbgs());
4127        dbgs() << ":\n";
4128        for (size_t i = 0, e = Uses.size(); i != e; ++i) {
4129          dbgs() << "  ";
4130          Uses[i].print(dbgs());
4131          dbgs() << "\n"
4132                    "    ";
4133          Solution[i]->print(dbgs());
4134          dbgs() << '\n';
4135        });
4136
4137  assert(Solution.size() == Uses.size() && "Malformed solution!");
4138}
4139
4140/// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up
4141/// the dominator tree far as we can go while still being dominated by the
4142/// input positions. This helps canonicalize the insert position, which
4143/// encourages sharing.
4144BasicBlock::iterator
4145LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
4146                                 const SmallVectorImpl<Instruction *> &Inputs)
4147                                                                         const {
4148  for (;;) {
4149    const Loop *IPLoop = LI.getLoopFor(IP->getParent());
4150    unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
4151
4152    BasicBlock *IDom;
4153    for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
4154      if (!Rung) return IP;
4155      Rung = Rung->getIDom();
4156      if (!Rung) return IP;
4157      IDom = Rung->getBlock();
4158
4159      // Don't climb into a loop though.
4160      const Loop *IDomLoop = LI.getLoopFor(IDom);
4161      unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
4162      if (IDomDepth <= IPLoopDepth &&
4163          (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
4164        break;
4165    }
4166
4167    bool AllDominate = true;
4168    Instruction *BetterPos = 0;
4169    Instruction *Tentative = IDom->getTerminator();
4170    for (SmallVectorImpl<Instruction *>::const_iterator I = Inputs.begin(),
4171         E = Inputs.end(); I != E; ++I) {
4172      Instruction *Inst = *I;
4173      if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
4174        AllDominate = false;
4175        break;
4176      }
4177      // Attempt to find an insert position in the middle of the block,
4178      // instead of at the end, so that it can be used for other expansions.
4179      if (IDom == Inst->getParent() &&
4180          (!BetterPos || !DT.dominates(Inst, BetterPos)))
4181        BetterPos = llvm::next(BasicBlock::iterator(Inst));
4182    }
4183    if (!AllDominate)
4184      break;
4185    if (BetterPos)
4186      IP = BetterPos;
4187    else
4188      IP = Tentative;
4189  }
4190
4191  return IP;
4192}
4193
4194/// AdjustInsertPositionForExpand - Determine an input position which will be
4195/// dominated by the operands and which will dominate the result.
4196BasicBlock::iterator
4197LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
4198                                           const LSRFixup &LF,
4199                                           const LSRUse &LU,
4200                                           SCEVExpander &Rewriter) const {
4201  // Collect some instructions which must be dominated by the
4202  // expanding replacement. These must be dominated by any operands that
4203  // will be required in the expansion.
4204  SmallVector<Instruction *, 4> Inputs;
4205  if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
4206    Inputs.push_back(I);
4207  if (LU.Kind == LSRUse::ICmpZero)
4208    if (Instruction *I =
4209          dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
4210      Inputs.push_back(I);
4211  if (LF.PostIncLoops.count(L)) {
4212    if (LF.isUseFullyOutsideLoop(L))
4213      Inputs.push_back(L->getLoopLatch()->getTerminator());
4214    else
4215      Inputs.push_back(IVIncInsertPos);
4216  }
4217  // The expansion must also be dominated by the increment positions of any
4218  // loops it for which it is using post-inc mode.
4219  for (PostIncLoopSet::const_iterator I = LF.PostIncLoops.begin(),
4220       E = LF.PostIncLoops.end(); I != E; ++I) {
4221    const Loop *PIL = *I;
4222    if (PIL == L) continue;
4223
4224    // Be dominated by the loop exit.
4225    SmallVector<BasicBlock *, 4> ExitingBlocks;
4226    PIL->getExitingBlocks(ExitingBlocks);
4227    if (!ExitingBlocks.empty()) {
4228      BasicBlock *BB = ExitingBlocks[0];
4229      for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
4230        BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
4231      Inputs.push_back(BB->getTerminator());
4232    }
4233  }
4234
4235  assert(!isa<PHINode>(LowestIP) && !isa<LandingPadInst>(LowestIP)
4236         && !isa<DbgInfoIntrinsic>(LowestIP) &&
4237         "Insertion point must be a normal instruction");
4238
4239  // Then, climb up the immediate dominator tree as far as we can go while
4240  // still being dominated by the input positions.
4241  BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
4242
4243  // Don't insert instructions before PHI nodes.
4244  while (isa<PHINode>(IP)) ++IP;
4245
4246  // Ignore landingpad instructions.
4247  while (isa<LandingPadInst>(IP)) ++IP;
4248
4249  // Ignore debug intrinsics.
4250  while (isa<DbgInfoIntrinsic>(IP)) ++IP;
4251
4252  // Set IP below instructions recently inserted by SCEVExpander. This keeps the
4253  // IP consistent across expansions and allows the previously inserted
4254  // instructions to be reused by subsequent expansion.
4255  while (Rewriter.isInsertedInstruction(IP) && IP != LowestIP) ++IP;
4256
4257  return IP;
4258}
4259
4260/// Expand - Emit instructions for the leading candidate expression for this
4261/// LSRUse (this is called "expanding").
4262Value *LSRInstance::Expand(const LSRFixup &LF,
4263                           const Formula &F,
4264                           BasicBlock::iterator IP,
4265                           SCEVExpander &Rewriter,
4266                           SmallVectorImpl<WeakVH> &DeadInsts) const {
4267  const LSRUse &LU = Uses[LF.LUIdx];
4268
4269  // Determine an input position which will be dominated by the operands and
4270  // which will dominate the result.
4271  IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
4272
4273  // Inform the Rewriter if we have a post-increment use, so that it can
4274  // perform an advantageous expansion.
4275  Rewriter.setPostInc(LF.PostIncLoops);
4276
4277  // This is the type that the user actually needs.
4278  Type *OpTy = LF.OperandValToReplace->getType();
4279  // This will be the type that we'll initially expand to.
4280  Type *Ty = F.getType();
4281  if (!Ty)
4282    // No type known; just expand directly to the ultimate type.
4283    Ty = OpTy;
4284  else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
4285    // Expand directly to the ultimate type if it's the right size.
4286    Ty = OpTy;
4287  // This is the type to do integer arithmetic in.
4288  Type *IntTy = SE.getEffectiveSCEVType(Ty);
4289
4290  // Build up a list of operands to add together to form the full base.
4291  SmallVector<const SCEV *, 8> Ops;
4292
4293  // Expand the BaseRegs portion.
4294  for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(),
4295       E = F.BaseRegs.end(); I != E; ++I) {
4296    const SCEV *Reg = *I;
4297    assert(!Reg->isZero() && "Zero allocated in a base register!");
4298
4299    // If we're expanding for a post-inc user, make the post-inc adjustment.
4300    PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
4301    Reg = TransformForPostIncUse(Denormalize, Reg,
4302                                 LF.UserInst, LF.OperandValToReplace,
4303                                 Loops, SE, DT);
4304
4305    Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, 0, IP)));
4306  }
4307
4308  // Expand the ScaledReg portion.
4309  Value *ICmpScaledV = 0;
4310  if (F.AM.Scale != 0) {
4311    const SCEV *ScaledS = F.ScaledReg;
4312
4313    // If we're expanding for a post-inc user, make the post-inc adjustment.
4314    PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
4315    ScaledS = TransformForPostIncUse(Denormalize, ScaledS,
4316                                     LF.UserInst, LF.OperandValToReplace,
4317                                     Loops, SE, DT);
4318
4319    if (LU.Kind == LSRUse::ICmpZero) {
4320      // An interesting way of "folding" with an icmp is to use a negated
4321      // scale, which we'll implement by inserting it into the other operand
4322      // of the icmp.
4323      assert(F.AM.Scale == -1 &&
4324             "The only scale supported by ICmpZero uses is -1!");
4325      ICmpScaledV = Rewriter.expandCodeFor(ScaledS, 0, IP);
4326    } else {
4327      // Otherwise just expand the scaled register and an explicit scale,
4328      // which is expected to be matched as part of the address.
4329
4330      // Flush the operand list to suppress SCEVExpander hoisting address modes.
4331      if (!Ops.empty() && LU.Kind == LSRUse::Address) {
4332        Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
4333        Ops.clear();
4334        Ops.push_back(SE.getUnknown(FullV));
4335      }
4336      ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, 0, IP));
4337      ScaledS = SE.getMulExpr(ScaledS,
4338                              SE.getConstant(ScaledS->getType(), F.AM.Scale));
4339      Ops.push_back(ScaledS);
4340    }
4341  }
4342
4343  // Expand the GV portion.
4344  if (F.AM.BaseGV) {
4345    // Flush the operand list to suppress SCEVExpander hoisting.
4346    if (!Ops.empty()) {
4347      Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
4348      Ops.clear();
4349      Ops.push_back(SE.getUnknown(FullV));
4350    }
4351    Ops.push_back(SE.getUnknown(F.AM.BaseGV));
4352  }
4353
4354  // Flush the operand list to suppress SCEVExpander hoisting of both folded and
4355  // unfolded offsets. LSR assumes they both live next to their uses.
4356  if (!Ops.empty()) {
4357    Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP);
4358    Ops.clear();
4359    Ops.push_back(SE.getUnknown(FullV));
4360  }
4361
4362  // Expand the immediate portion.
4363  int64_t Offset = (uint64_t)F.AM.BaseOffs + LF.Offset;
4364  if (Offset != 0) {
4365    if (LU.Kind == LSRUse::ICmpZero) {
4366      // The other interesting way of "folding" with an ICmpZero is to use a
4367      // negated immediate.
4368      if (!ICmpScaledV)
4369        ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
4370      else {
4371        Ops.push_back(SE.getUnknown(ICmpScaledV));
4372        ICmpScaledV = ConstantInt::get(IntTy, Offset);
4373      }
4374    } else {
4375      // Just add the immediate values. These again are expected to be matched
4376      // as part of the address.
4377      Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
4378    }
4379  }
4380
4381  // Expand the unfolded offset portion.
4382  int64_t UnfoldedOffset = F.UnfoldedOffset;
4383  if (UnfoldedOffset != 0) {
4384    // Just add the immediate values.
4385    Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
4386                                                       UnfoldedOffset)));
4387  }
4388
4389  // Emit instructions summing all the operands.
4390  const SCEV *FullS = Ops.empty() ?
4391                      SE.getConstant(IntTy, 0) :
4392                      SE.getAddExpr(Ops);
4393  Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP);
4394
4395  // We're done expanding now, so reset the rewriter.
4396  Rewriter.clearPostInc();
4397
4398  // An ICmpZero Formula represents an ICmp which we're handling as a
4399  // comparison against zero. Now that we've expanded an expression for that
4400  // form, update the ICmp's other operand.
4401  if (LU.Kind == LSRUse::ICmpZero) {
4402    ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
4403    DeadInsts.push_back(CI->getOperand(1));
4404    assert(!F.AM.BaseGV && "ICmp does not support folding a global value and "
4405                           "a scale at the same time!");
4406    if (F.AM.Scale == -1) {
4407      if (ICmpScaledV->getType() != OpTy) {
4408        Instruction *Cast =
4409          CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
4410                                                   OpTy, false),
4411                           ICmpScaledV, OpTy, "tmp", CI);
4412        ICmpScaledV = Cast;
4413      }
4414      CI->setOperand(1, ICmpScaledV);
4415    } else {
4416      assert(F.AM.Scale == 0 &&
4417             "ICmp does not support folding a global value and "
4418             "a scale at the same time!");
4419      Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
4420                                           -(uint64_t)Offset);
4421      if (C->getType() != OpTy)
4422        C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4423                                                          OpTy, false),
4424                                  C, OpTy);
4425
4426      CI->setOperand(1, C);
4427    }
4428  }
4429
4430  return FullV;
4431}
4432
4433/// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use
4434/// of their operands effectively happens in their predecessor blocks, so the
4435/// expression may need to be expanded in multiple places.
4436void LSRInstance::RewriteForPHI(PHINode *PN,
4437                                const LSRFixup &LF,
4438                                const Formula &F,
4439                                SCEVExpander &Rewriter,
4440                                SmallVectorImpl<WeakVH> &DeadInsts,
4441                                Pass *P) const {
4442  DenseMap<BasicBlock *, Value *> Inserted;
4443  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
4444    if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
4445      BasicBlock *BB = PN->getIncomingBlock(i);
4446
4447      // If this is a critical edge, split the edge so that we do not insert
4448      // the code on all predecessor/successor paths.  We do this unless this
4449      // is the canonical backedge for this loop, which complicates post-inc
4450      // users.
4451      if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
4452          !isa<IndirectBrInst>(BB->getTerminator())) {
4453        BasicBlock *Parent = PN->getParent();
4454        Loop *PNLoop = LI.getLoopFor(Parent);
4455        if (!PNLoop || Parent != PNLoop->getHeader()) {
4456          // Split the critical edge.
4457          BasicBlock *NewBB = 0;
4458          if (!Parent->isLandingPad()) {
4459            NewBB = SplitCriticalEdge(BB, Parent, P,
4460                                      /*MergeIdenticalEdges=*/true,
4461                                      /*DontDeleteUselessPhis=*/true);
4462          } else {
4463            SmallVector<BasicBlock*, 2> NewBBs;
4464            SplitLandingPadPredecessors(Parent, BB, "", "", P, NewBBs);
4465            NewBB = NewBBs[0];
4466          }
4467          // If NewBB==NULL, then SplitCriticalEdge refused to split because all
4468          // phi predecessors are identical. The simple thing to do is skip
4469          // splitting in this case rather than complicate the API.
4470          if (NewBB) {
4471            // If PN is outside of the loop and BB is in the loop, we want to
4472            // move the block to be immediately before the PHI block, not
4473            // immediately after BB.
4474            if (L->contains(BB) && !L->contains(PN))
4475              NewBB->moveBefore(PN->getParent());
4476
4477            // Splitting the edge can reduce the number of PHI entries we have.
4478            e = PN->getNumIncomingValues();
4479            BB = NewBB;
4480            i = PN->getBasicBlockIndex(BB);
4481          }
4482        }
4483      }
4484
4485      std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
4486        Inserted.insert(std::make_pair(BB, static_cast<Value *>(0)));
4487      if (!Pair.second)
4488        PN->setIncomingValue(i, Pair.first->second);
4489      else {
4490        Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts);
4491
4492        // If this is reuse-by-noop-cast, insert the noop cast.
4493        Type *OpTy = LF.OperandValToReplace->getType();
4494        if (FullV->getType() != OpTy)
4495          FullV =
4496            CastInst::Create(CastInst::getCastOpcode(FullV, false,
4497                                                     OpTy, false),
4498                             FullV, LF.OperandValToReplace->getType(),
4499                             "tmp", BB->getTerminator());
4500
4501        PN->setIncomingValue(i, FullV);
4502        Pair.first->second = FullV;
4503      }
4504    }
4505}
4506
4507/// Rewrite - Emit instructions for the leading candidate expression for this
4508/// LSRUse (this is called "expanding"), and update the UserInst to reference
4509/// the newly expanded value.
4510void LSRInstance::Rewrite(const LSRFixup &LF,
4511                          const Formula &F,
4512                          SCEVExpander &Rewriter,
4513                          SmallVectorImpl<WeakVH> &DeadInsts,
4514                          Pass *P) const {
4515  // First, find an insertion point that dominates UserInst. For PHI nodes,
4516  // find the nearest block which dominates all the relevant uses.
4517  if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
4518    RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P);
4519  } else {
4520    Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts);
4521
4522    // If this is reuse-by-noop-cast, insert the noop cast.
4523    Type *OpTy = LF.OperandValToReplace->getType();
4524    if (FullV->getType() != OpTy) {
4525      Instruction *Cast =
4526        CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
4527                         FullV, OpTy, "tmp", LF.UserInst);
4528      FullV = Cast;
4529    }
4530
4531    // Update the user. ICmpZero is handled specially here (for now) because
4532    // Expand may have updated one of the operands of the icmp already, and
4533    // its new value may happen to be equal to LF.OperandValToReplace, in
4534    // which case doing replaceUsesOfWith leads to replacing both operands
4535    // with the same value. TODO: Reorganize this.
4536    if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero)
4537      LF.UserInst->setOperand(0, FullV);
4538    else
4539      LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
4540  }
4541
4542  DeadInsts.push_back(LF.OperandValToReplace);
4543}
4544
4545/// ImplementSolution - Rewrite all the fixup locations with new values,
4546/// following the chosen solution.
4547void
4548LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
4549                               Pass *P) {
4550  // Keep track of instructions we may have made dead, so that
4551  // we can remove them after we are done working.
4552  SmallVector<WeakVH, 16> DeadInsts;
4553
4554  SCEVExpander Rewriter(SE, "lsr");
4555#ifndef NDEBUG
4556  Rewriter.setDebugType(DEBUG_TYPE);
4557#endif
4558  Rewriter.disableCanonicalMode();
4559  Rewriter.enableLSRMode();
4560  Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
4561
4562  // Mark phi nodes that terminate chains so the expander tries to reuse them.
4563  for (SmallVectorImpl<IVChain>::const_iterator ChainI = IVChainVec.begin(),
4564         ChainE = IVChainVec.end(); ChainI != ChainE; ++ChainI) {
4565    if (PHINode *PN = dyn_cast<PHINode>(ChainI->tailUserInst()))
4566      Rewriter.setChainedPhi(PN);
4567  }
4568
4569  // Expand the new value definitions and update the users.
4570  for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
4571       E = Fixups.end(); I != E; ++I) {
4572    const LSRFixup &Fixup = *I;
4573
4574    Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts, P);
4575
4576    Changed = true;
4577  }
4578
4579  for (SmallVectorImpl<IVChain>::const_iterator ChainI = IVChainVec.begin(),
4580         ChainE = IVChainVec.end(); ChainI != ChainE; ++ChainI) {
4581    GenerateIVChain(*ChainI, Rewriter, DeadInsts);
4582    Changed = true;
4583  }
4584  // Clean up after ourselves. This must be done before deleting any
4585  // instructions.
4586  Rewriter.clear();
4587
4588  Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
4589}
4590
4591LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P)
4592  : IU(P->getAnalysis<IVUsers>()),
4593    SE(P->getAnalysis<ScalarEvolution>()),
4594    DT(P->getAnalysis<DominatorTree>()),
4595    LI(P->getAnalysis<LoopInfo>()),
4596    TLI(tli), L(l), Changed(false), IVIncInsertPos(0) {
4597
4598  // If LoopSimplify form is not available, stay out of trouble.
4599  if (!L->isLoopSimplifyForm())
4600    return;
4601
4602  // If there's no interesting work to be done, bail early.
4603  if (IU.empty()) return;
4604
4605  // If there's too much analysis to be done, bail early. We won't be able to
4606  // model the problem anyway.
4607  unsigned NumUsers = 0;
4608  for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) {
4609    if (++NumUsers > MaxIVUsers) {
4610      DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << *L
4611            << "\n");
4612      return;
4613    }
4614  }
4615
4616#ifndef NDEBUG
4617  // All dominating loops must have preheaders, or SCEVExpander may not be able
4618  // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
4619  //
4620  // IVUsers analysis should only create users that are dominated by simple loop
4621  // headers. Since this loop should dominate all of its users, its user list
4622  // should be empty if this loop itself is not within a simple loop nest.
4623  for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
4624       Rung; Rung = Rung->getIDom()) {
4625    BasicBlock *BB = Rung->getBlock();
4626    const Loop *DomLoop = LI.getLoopFor(BB);
4627    if (DomLoop && DomLoop->getHeader() == BB) {
4628      assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
4629    }
4630  }
4631#endif // DEBUG
4632
4633  DEBUG(dbgs() << "\nLSR on loop ";
4634        WriteAsOperand(dbgs(), L->getHeader(), /*PrintType=*/false);
4635        dbgs() << ":\n");
4636
4637  // First, perform some low-level loop optimizations.
4638  OptimizeShadowIV();
4639  OptimizeLoopTermCond();
4640
4641  // If loop preparation eliminates all interesting IV users, bail.
4642  if (IU.empty()) return;
4643
4644  // Skip nested loops until we can model them better with formulae.
4645  if (!L->empty()) {
4646    DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
4647    return;
4648  }
4649
4650  // Start collecting data and preparing for the solver.
4651  CollectChains();
4652  CollectInterestingTypesAndFactors();
4653  CollectFixupsAndInitialFormulae();
4654  CollectLoopInvariantFixupsAndFormulae();
4655
4656  assert(!Uses.empty() && "IVUsers reported at least one use");
4657  DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
4658        print_uses(dbgs()));
4659
4660  // Now use the reuse data to generate a bunch of interesting ways
4661  // to formulate the values needed for the uses.
4662  GenerateAllReuseFormulae();
4663
4664  FilterOutUndesirableDedicatedRegisters();
4665  NarrowSearchSpaceUsingHeuristics();
4666
4667  SmallVector<const Formula *, 8> Solution;
4668  Solve(Solution);
4669
4670  // Release memory that is no longer needed.
4671  Factors.clear();
4672  Types.clear();
4673  RegUses.clear();
4674
4675  if (Solution.empty())
4676    return;
4677
4678#ifndef NDEBUG
4679  // Formulae should be legal.
4680  for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
4681       E = Uses.end(); I != E; ++I) {
4682     const LSRUse &LU = *I;
4683     for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
4684          JE = LU.Formulae.end(); J != JE; ++J)
4685        assert(isLegalUse(J->AM, LU.MinOffset, LU.MaxOffset,
4686                          LU.Kind, LU.AccessTy, TLI) &&
4687               "Illegal formula generated!");
4688  };
4689#endif
4690
4691  // Now that we've decided what we want, make it so.
4692  ImplementSolution(Solution, P);
4693}
4694
4695void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
4696  if (Factors.empty() && Types.empty()) return;
4697
4698  OS << "LSR has identified the following interesting factors and types: ";
4699  bool First = true;
4700
4701  for (SmallSetVector<int64_t, 8>::const_iterator
4702       I = Factors.begin(), E = Factors.end(); I != E; ++I) {
4703    if (!First) OS << ", ";
4704    First = false;
4705    OS << '*' << *I;
4706  }
4707
4708  for (SmallSetVector<Type *, 4>::const_iterator
4709       I = Types.begin(), E = Types.end(); I != E; ++I) {
4710    if (!First) OS << ", ";
4711    First = false;
4712    OS << '(' << **I << ')';
4713  }
4714  OS << '\n';
4715}
4716
4717void LSRInstance::print_fixups(raw_ostream &OS) const {
4718  OS << "LSR is examining the following fixup sites:\n";
4719  for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(),
4720       E = Fixups.end(); I != E; ++I) {
4721    dbgs() << "  ";
4722    I->print(OS);
4723    OS << '\n';
4724  }
4725}
4726
4727void LSRInstance::print_uses(raw_ostream &OS) const {
4728  OS << "LSR is examining the following uses:\n";
4729  for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(),
4730       E = Uses.end(); I != E; ++I) {
4731    const LSRUse &LU = *I;
4732    dbgs() << "  ";
4733    LU.print(OS);
4734    OS << '\n';
4735    for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(),
4736         JE = LU.Formulae.end(); J != JE; ++J) {
4737      OS << "    ";
4738      J->print(OS);
4739      OS << '\n';
4740    }
4741  }
4742}
4743
4744void LSRInstance::print(raw_ostream &OS) const {
4745  print_factors_and_types(OS);
4746  print_fixups(OS);
4747  print_uses(OS);
4748}
4749
4750#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4751void LSRInstance::dump() const {
4752  print(errs()); errs() << '\n';
4753}
4754#endif
4755
4756namespace {
4757
4758class LoopStrengthReduce : public LoopPass {
4759  /// TLI - Keep a pointer of a TargetLowering to consult for determining
4760  /// transformation profitability.
4761  const TargetLowering *const TLI;
4762
4763public:
4764  static char ID; // Pass ID, replacement for typeid
4765  explicit LoopStrengthReduce(const TargetLowering *tli = 0);
4766
4767private:
4768  bool runOnLoop(Loop *L, LPPassManager &LPM);
4769  void getAnalysisUsage(AnalysisUsage &AU) const;
4770};
4771
4772}
4773
4774char LoopStrengthReduce::ID = 0;
4775INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
4776                "Loop Strength Reduction", false, false)
4777INITIALIZE_PASS_DEPENDENCY(DominatorTree)
4778INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
4779INITIALIZE_PASS_DEPENDENCY(IVUsers)
4780INITIALIZE_PASS_DEPENDENCY(LoopInfo)
4781INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
4782INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
4783                "Loop Strength Reduction", false, false)
4784
4785
4786Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) {
4787  return new LoopStrengthReduce(TLI);
4788}
4789
4790LoopStrengthReduce::LoopStrengthReduce(const TargetLowering *tli)
4791  : LoopPass(ID), TLI(tli) {
4792    initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
4793  }
4794
4795void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
4796  // We split critical edges, so we change the CFG.  However, we do update
4797  // many analyses if they are around.
4798  AU.addPreservedID(LoopSimplifyID);
4799
4800  AU.addRequired<LoopInfo>();
4801  AU.addPreserved<LoopInfo>();
4802  AU.addRequiredID(LoopSimplifyID);
4803  AU.addRequired<DominatorTree>();
4804  AU.addPreserved<DominatorTree>();
4805  AU.addRequired<ScalarEvolution>();
4806  AU.addPreserved<ScalarEvolution>();
4807  // Requiring LoopSimplify a second time here prevents IVUsers from running
4808  // twice, since LoopSimplify was invalidated by running ScalarEvolution.
4809  AU.addRequiredID(LoopSimplifyID);
4810  AU.addRequired<IVUsers>();
4811  AU.addPreserved<IVUsers>();
4812}
4813
4814bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
4815  bool Changed = false;
4816
4817  // Run the main LSR transformation.
4818  Changed |= LSRInstance(TLI, L, this).getChanged();
4819
4820  // Remove any extra phis created by processing inner loops.
4821  Changed |= DeleteDeadPHIs(L->getHeader());
4822  if (EnablePhiElim) {
4823    SmallVector<WeakVH, 16> DeadInsts;
4824    SCEVExpander Rewriter(getAnalysis<ScalarEvolution>(), "lsr");
4825#ifndef NDEBUG
4826    Rewriter.setDebugType(DEBUG_TYPE);
4827#endif
4828    unsigned numFolded = Rewriter.
4829      replaceCongruentIVs(L, &getAnalysis<DominatorTree>(), DeadInsts, TLI);
4830    if (numFolded) {
4831      Changed = true;
4832      DeleteTriviallyDeadInstructions(DeadInsts);
4833      DeleteDeadPHIs(L->getHeader());
4834    }
4835  }
4836  return Changed;
4837}
4838