1//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// InstructionCombining - Combine instructions to form fewer, simple
11// instructions.  This pass does not modify the CFG.  This pass is where
12// algebraic simplification happens.
13//
14// This pass combines things like:
15//    %Y = add i32 %X, 1
16//    %Z = add i32 %Y, 1
17// into:
18//    %Z = add i32 %X, 2
19//
20// This is a simple worklist driven algorithm.
21//
22// This pass guarantees that the following canonicalizations are performed on
23// the program:
24//    1. If a binary operator has a constant operand, it is moved to the RHS
25//    2. Bitwise operators with constant operands are always grouped so that
26//       shifts are performed first, then or's, then and's, then xor's.
27//    3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28//    4. All cmp instructions on boolean values are replaced with logical ops
29//    5. add X, X is represented as (X*2) => (X << 1)
30//    6. Multiplies with a power-of-two constant argument are transformed into
31//       shifts.
32//   ... etc.
33//
34//===----------------------------------------------------------------------===//
35
36#define DEBUG_TYPE "instcombine"
37#include "llvm/Transforms/Scalar.h"
38#include "InstCombine.h"
39#include "llvm/IntrinsicInst.h"
40#include "llvm/Analysis/ConstantFolding.h"
41#include "llvm/Analysis/InstructionSimplify.h"
42#include "llvm/Analysis/MemoryBuiltins.h"
43#include "llvm/Target/TargetData.h"
44#include "llvm/Target/TargetLibraryInfo.h"
45#include "llvm/Transforms/Utils/Local.h"
46#include "llvm/Support/CFG.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/GetElementPtrTypeIterator.h"
49#include "llvm/Support/PatternMatch.h"
50#include "llvm/Support/ValueHandle.h"
51#include "llvm/ADT/SmallPtrSet.h"
52#include "llvm/ADT/Statistic.h"
53#include "llvm/ADT/StringSwitch.h"
54#include "llvm-c/Initialization.h"
55#include <algorithm>
56#include <climits>
57using namespace llvm;
58using namespace llvm::PatternMatch;
59
60STATISTIC(NumCombined , "Number of insts combined");
61STATISTIC(NumConstProp, "Number of constant folds");
62STATISTIC(NumDeadInst , "Number of dead inst eliminated");
63STATISTIC(NumSunkInst , "Number of instructions sunk");
64STATISTIC(NumExpand,    "Number of expansions");
65STATISTIC(NumFactor   , "Number of factorizations");
66STATISTIC(NumReassoc  , "Number of reassociations");
67
68// Initialization Routines
69void llvm::initializeInstCombine(PassRegistry &Registry) {
70  initializeInstCombinerPass(Registry);
71}
72
73void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
74  initializeInstCombine(*unwrap(R));
75}
76
77char InstCombiner::ID = 0;
78INITIALIZE_PASS_BEGIN(InstCombiner, "instcombine",
79                "Combine redundant instructions", false, false)
80INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
81INITIALIZE_PASS_END(InstCombiner, "instcombine",
82                "Combine redundant instructions", false, false)
83
84void InstCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
85  AU.setPreservesCFG();
86  AU.addRequired<TargetLibraryInfo>();
87}
88
89
90Value *InstCombiner::EmitGEPOffset(User *GEP) {
91  return llvm::EmitGEPOffset(Builder, *getTargetData(), GEP);
92}
93
94/// ShouldChangeType - Return true if it is desirable to convert a computation
95/// from 'From' to 'To'.  We don't want to convert from a legal to an illegal
96/// type for example, or from a smaller to a larger illegal type.
97bool InstCombiner::ShouldChangeType(Type *From, Type *To) const {
98  assert(From->isIntegerTy() && To->isIntegerTy());
99
100  // If we don't have TD, we don't know if the source/dest are legal.
101  if (!TD) return false;
102
103  unsigned FromWidth = From->getPrimitiveSizeInBits();
104  unsigned ToWidth = To->getPrimitiveSizeInBits();
105  bool FromLegal = TD->isLegalInteger(FromWidth);
106  bool ToLegal = TD->isLegalInteger(ToWidth);
107
108  // If this is a legal integer from type, and the result would be an illegal
109  // type, don't do the transformation.
110  if (FromLegal && !ToLegal)
111    return false;
112
113  // Otherwise, if both are illegal, do not increase the size of the result. We
114  // do allow things like i160 -> i64, but not i64 -> i160.
115  if (!FromLegal && !ToLegal && ToWidth > FromWidth)
116    return false;
117
118  return true;
119}
120
121// Return true, if No Signed Wrap should be maintained for I.
122// The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
123// where both B and C should be ConstantInts, results in a constant that does
124// not overflow. This function only handles the Add and Sub opcodes. For
125// all other opcodes, the function conservatively returns false.
126static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
127  OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
128  if (!OBO || !OBO->hasNoSignedWrap()) {
129    return false;
130  }
131
132  // We reason about Add and Sub Only.
133  Instruction::BinaryOps Opcode = I.getOpcode();
134  if (Opcode != Instruction::Add &&
135      Opcode != Instruction::Sub) {
136    return false;
137  }
138
139  ConstantInt *CB = dyn_cast<ConstantInt>(B);
140  ConstantInt *CC = dyn_cast<ConstantInt>(C);
141
142  if (!CB || !CC) {
143    return false;
144  }
145
146  const APInt &BVal = CB->getValue();
147  const APInt &CVal = CC->getValue();
148  bool Overflow = false;
149
150  if (Opcode == Instruction::Add) {
151    BVal.sadd_ov(CVal, Overflow);
152  } else {
153    BVal.ssub_ov(CVal, Overflow);
154  }
155
156  return !Overflow;
157}
158
159/// SimplifyAssociativeOrCommutative - This performs a few simplifications for
160/// operators which are associative or commutative:
161//
162//  Commutative operators:
163//
164//  1. Order operands such that they are listed from right (least complex) to
165//     left (most complex).  This puts constants before unary operators before
166//     binary operators.
167//
168//  Associative operators:
169//
170//  2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
171//  3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
172//
173//  Associative and commutative operators:
174//
175//  4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
176//  5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
177//  6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
178//     if C1 and C2 are constants.
179//
180bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
181  Instruction::BinaryOps Opcode = I.getOpcode();
182  bool Changed = false;
183
184  do {
185    // Order operands such that they are listed from right (least complex) to
186    // left (most complex).  This puts constants before unary operators before
187    // binary operators.
188    if (I.isCommutative() && getComplexity(I.getOperand(0)) <
189        getComplexity(I.getOperand(1)))
190      Changed = !I.swapOperands();
191
192    BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
193    BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
194
195    if (I.isAssociative()) {
196      // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
197      if (Op0 && Op0->getOpcode() == Opcode) {
198        Value *A = Op0->getOperand(0);
199        Value *B = Op0->getOperand(1);
200        Value *C = I.getOperand(1);
201
202        // Does "B op C" simplify?
203        if (Value *V = SimplifyBinOp(Opcode, B, C, TD)) {
204          // It simplifies to V.  Form "A op V".
205          I.setOperand(0, A);
206          I.setOperand(1, V);
207          // Conservatively clear the optional flags, since they may not be
208          // preserved by the reassociation.
209          if (MaintainNoSignedWrap(I, B, C) &&
210              (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) {
211            // Note: this is only valid because SimplifyBinOp doesn't look at
212            // the operands to Op0.
213            I.clearSubclassOptionalData();
214            I.setHasNoSignedWrap(true);
215          } else {
216            I.clearSubclassOptionalData();
217          }
218
219          Changed = true;
220          ++NumReassoc;
221          continue;
222        }
223      }
224
225      // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
226      if (Op1 && Op1->getOpcode() == Opcode) {
227        Value *A = I.getOperand(0);
228        Value *B = Op1->getOperand(0);
229        Value *C = Op1->getOperand(1);
230
231        // Does "A op B" simplify?
232        if (Value *V = SimplifyBinOp(Opcode, A, B, TD)) {
233          // It simplifies to V.  Form "V op C".
234          I.setOperand(0, V);
235          I.setOperand(1, C);
236          // Conservatively clear the optional flags, since they may not be
237          // preserved by the reassociation.
238          I.clearSubclassOptionalData();
239          Changed = true;
240          ++NumReassoc;
241          continue;
242        }
243      }
244    }
245
246    if (I.isAssociative() && I.isCommutative()) {
247      // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
248      if (Op0 && Op0->getOpcode() == Opcode) {
249        Value *A = Op0->getOperand(0);
250        Value *B = Op0->getOperand(1);
251        Value *C = I.getOperand(1);
252
253        // Does "C op A" simplify?
254        if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) {
255          // It simplifies to V.  Form "V op B".
256          I.setOperand(0, V);
257          I.setOperand(1, B);
258          // Conservatively clear the optional flags, since they may not be
259          // preserved by the reassociation.
260          I.clearSubclassOptionalData();
261          Changed = true;
262          ++NumReassoc;
263          continue;
264        }
265      }
266
267      // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
268      if (Op1 && Op1->getOpcode() == Opcode) {
269        Value *A = I.getOperand(0);
270        Value *B = Op1->getOperand(0);
271        Value *C = Op1->getOperand(1);
272
273        // Does "C op A" simplify?
274        if (Value *V = SimplifyBinOp(Opcode, C, A, TD)) {
275          // It simplifies to V.  Form "B op V".
276          I.setOperand(0, B);
277          I.setOperand(1, V);
278          // Conservatively clear the optional flags, since they may not be
279          // preserved by the reassociation.
280          I.clearSubclassOptionalData();
281          Changed = true;
282          ++NumReassoc;
283          continue;
284        }
285      }
286
287      // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
288      // if C1 and C2 are constants.
289      if (Op0 && Op1 &&
290          Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
291          isa<Constant>(Op0->getOperand(1)) &&
292          isa<Constant>(Op1->getOperand(1)) &&
293          Op0->hasOneUse() && Op1->hasOneUse()) {
294        Value *A = Op0->getOperand(0);
295        Constant *C1 = cast<Constant>(Op0->getOperand(1));
296        Value *B = Op1->getOperand(0);
297        Constant *C2 = cast<Constant>(Op1->getOperand(1));
298
299        Constant *Folded = ConstantExpr::get(Opcode, C1, C2);
300        BinaryOperator *New = BinaryOperator::Create(Opcode, A, B);
301        InsertNewInstWith(New, I);
302        New->takeName(Op1);
303        I.setOperand(0, New);
304        I.setOperand(1, Folded);
305        // Conservatively clear the optional flags, since they may not be
306        // preserved by the reassociation.
307        I.clearSubclassOptionalData();
308
309        Changed = true;
310        continue;
311      }
312    }
313
314    // No further simplifications.
315    return Changed;
316  } while (1);
317}
318
319/// LeftDistributesOverRight - Whether "X LOp (Y ROp Z)" is always equal to
320/// "(X LOp Y) ROp (X LOp Z)".
321static bool LeftDistributesOverRight(Instruction::BinaryOps LOp,
322                                     Instruction::BinaryOps ROp) {
323  switch (LOp) {
324  default:
325    return false;
326
327  case Instruction::And:
328    // And distributes over Or and Xor.
329    switch (ROp) {
330    default:
331      return false;
332    case Instruction::Or:
333    case Instruction::Xor:
334      return true;
335    }
336
337  case Instruction::Mul:
338    // Multiplication distributes over addition and subtraction.
339    switch (ROp) {
340    default:
341      return false;
342    case Instruction::Add:
343    case Instruction::Sub:
344      return true;
345    }
346
347  case Instruction::Or:
348    // Or distributes over And.
349    switch (ROp) {
350    default:
351      return false;
352    case Instruction::And:
353      return true;
354    }
355  }
356}
357
358/// RightDistributesOverLeft - Whether "(X LOp Y) ROp Z" is always equal to
359/// "(X ROp Z) LOp (Y ROp Z)".
360static bool RightDistributesOverLeft(Instruction::BinaryOps LOp,
361                                     Instruction::BinaryOps ROp) {
362  if (Instruction::isCommutative(ROp))
363    return LeftDistributesOverRight(ROp, LOp);
364  // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
365  // but this requires knowing that the addition does not overflow and other
366  // such subtleties.
367  return false;
368}
369
370/// SimplifyUsingDistributiveLaws - This tries to simplify binary operations
371/// which some other binary operation distributes over either by factorizing
372/// out common terms (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this
373/// results in simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is
374/// a win).  Returns the simplified value, or null if it didn't simplify.
375Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
376  Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
377  BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
378  BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
379  Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); // op
380
381  // Factorization.
382  if (Op0 && Op1 && Op0->getOpcode() == Op1->getOpcode()) {
383    // The instruction has the form "(A op' B) op (C op' D)".  Try to factorize
384    // a common term.
385    Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
386    Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);
387    Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
388
389    // Does "X op' Y" always equal "Y op' X"?
390    bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
391
392    // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
393    if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode))
394      // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
395      // commutative case, "(A op' B) op (C op' A)"?
396      if (A == C || (InnerCommutative && A == D)) {
397        if (A != C)
398          std::swap(C, D);
399        // Consider forming "A op' (B op D)".
400        // If "B op D" simplifies then it can be formed with no cost.
401        Value *V = SimplifyBinOp(TopLevelOpcode, B, D, TD);
402        // If "B op D" doesn't simplify then only go on if both of the existing
403        // operations "A op' B" and "C op' D" will be zapped as no longer used.
404        if (!V && Op0->hasOneUse() && Op1->hasOneUse())
405          V = Builder->CreateBinOp(TopLevelOpcode, B, D, Op1->getName());
406        if (V) {
407          ++NumFactor;
408          V = Builder->CreateBinOp(InnerOpcode, A, V);
409          V->takeName(&I);
410          return V;
411        }
412      }
413
414    // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
415    if (RightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
416      // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
417      // commutative case, "(A op' B) op (B op' D)"?
418      if (B == D || (InnerCommutative && B == C)) {
419        if (B != D)
420          std::swap(C, D);
421        // Consider forming "(A op C) op' B".
422        // If "A op C" simplifies then it can be formed with no cost.
423        Value *V = SimplifyBinOp(TopLevelOpcode, A, C, TD);
424        // If "A op C" doesn't simplify then only go on if both of the existing
425        // operations "A op' B" and "C op' D" will be zapped as no longer used.
426        if (!V && Op0->hasOneUse() && Op1->hasOneUse())
427          V = Builder->CreateBinOp(TopLevelOpcode, A, C, Op0->getName());
428        if (V) {
429          ++NumFactor;
430          V = Builder->CreateBinOp(InnerOpcode, V, B);
431          V->takeName(&I);
432          return V;
433        }
434      }
435  }
436
437  // Expansion.
438  if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
439    // The instruction has the form "(A op' B) op C".  See if expanding it out
440    // to "(A op C) op' (B op C)" results in simplifications.
441    Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
442    Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
443
444    // Do "A op C" and "B op C" both simplify?
445    if (Value *L = SimplifyBinOp(TopLevelOpcode, A, C, TD))
446      if (Value *R = SimplifyBinOp(TopLevelOpcode, B, C, TD)) {
447        // They do! Return "L op' R".
448        ++NumExpand;
449        // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
450        if ((L == A && R == B) ||
451            (Instruction::isCommutative(InnerOpcode) && L == B && R == A))
452          return Op0;
453        // Otherwise return "L op' R" if it simplifies.
454        if (Value *V = SimplifyBinOp(InnerOpcode, L, R, TD))
455          return V;
456        // Otherwise, create a new instruction.
457        C = Builder->CreateBinOp(InnerOpcode, L, R);
458        C->takeName(&I);
459        return C;
460      }
461  }
462
463  if (Op1 && LeftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
464    // The instruction has the form "A op (B op' C)".  See if expanding it out
465    // to "(A op B) op' (A op C)" results in simplifications.
466    Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
467    Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
468
469    // Do "A op B" and "A op C" both simplify?
470    if (Value *L = SimplifyBinOp(TopLevelOpcode, A, B, TD))
471      if (Value *R = SimplifyBinOp(TopLevelOpcode, A, C, TD)) {
472        // They do! Return "L op' R".
473        ++NumExpand;
474        // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
475        if ((L == B && R == C) ||
476            (Instruction::isCommutative(InnerOpcode) && L == C && R == B))
477          return Op1;
478        // Otherwise return "L op' R" if it simplifies.
479        if (Value *V = SimplifyBinOp(InnerOpcode, L, R, TD))
480          return V;
481        // Otherwise, create a new instruction.
482        A = Builder->CreateBinOp(InnerOpcode, L, R);
483        A->takeName(&I);
484        return A;
485      }
486  }
487
488  return 0;
489}
490
491// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
492// if the LHS is a constant zero (which is the 'negate' form).
493//
494Value *InstCombiner::dyn_castNegVal(Value *V) const {
495  if (BinaryOperator::isNeg(V))
496    return BinaryOperator::getNegArgument(V);
497
498  // Constants can be considered to be negated values if they can be folded.
499  if (ConstantInt *C = dyn_cast<ConstantInt>(V))
500    return ConstantExpr::getNeg(C);
501
502  if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
503    if (C->getType()->getElementType()->isIntegerTy())
504      return ConstantExpr::getNeg(C);
505
506  return 0;
507}
508
509// dyn_castFNegVal - Given a 'fsub' instruction, return the RHS of the
510// instruction if the LHS is a constant negative zero (which is the 'negate'
511// form).
512//
513Value *InstCombiner::dyn_castFNegVal(Value *V) const {
514  if (BinaryOperator::isFNeg(V))
515    return BinaryOperator::getFNegArgument(V);
516
517  // Constants can be considered to be negated values if they can be folded.
518  if (ConstantFP *C = dyn_cast<ConstantFP>(V))
519    return ConstantExpr::getFNeg(C);
520
521  if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
522    if (C->getType()->getElementType()->isFloatingPointTy())
523      return ConstantExpr::getFNeg(C);
524
525  return 0;
526}
527
528static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
529                                             InstCombiner *IC) {
530  if (CastInst *CI = dyn_cast<CastInst>(&I)) {
531    return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType());
532  }
533
534  // Figure out if the constant is the left or the right argument.
535  bool ConstIsRHS = isa<Constant>(I.getOperand(1));
536  Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
537
538  if (Constant *SOC = dyn_cast<Constant>(SO)) {
539    if (ConstIsRHS)
540      return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
541    return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
542  }
543
544  Value *Op0 = SO, *Op1 = ConstOperand;
545  if (!ConstIsRHS)
546    std::swap(Op0, Op1);
547
548  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
549    return IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1,
550                                    SO->getName()+".op");
551  if (ICmpInst *CI = dyn_cast<ICmpInst>(&I))
552    return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
553                                   SO->getName()+".cmp");
554  if (FCmpInst *CI = dyn_cast<FCmpInst>(&I))
555    return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
556                                   SO->getName()+".cmp");
557  llvm_unreachable("Unknown binary instruction type!");
558}
559
560// FoldOpIntoSelect - Given an instruction with a select as one operand and a
561// constant as the other operand, try to fold the binary operator into the
562// select arguments.  This also works for Cast instructions, which obviously do
563// not have a second operand.
564Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
565  // Don't modify shared select instructions
566  if (!SI->hasOneUse()) return 0;
567  Value *TV = SI->getOperand(1);
568  Value *FV = SI->getOperand(2);
569
570  if (isa<Constant>(TV) || isa<Constant>(FV)) {
571    // Bool selects with constant operands can be folded to logical ops.
572    if (SI->getType()->isIntegerTy(1)) return 0;
573
574    // If it's a bitcast involving vectors, make sure it has the same number of
575    // elements on both sides.
576    if (BitCastInst *BC = dyn_cast<BitCastInst>(&Op)) {
577      VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
578      VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
579
580      // Verify that either both or neither are vectors.
581      if ((SrcTy == NULL) != (DestTy == NULL)) return 0;
582      // If vectors, verify that they have the same number of elements.
583      if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
584        return 0;
585    }
586
587    Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this);
588    Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this);
589
590    return SelectInst::Create(SI->getCondition(),
591                              SelectTrueVal, SelectFalseVal);
592  }
593  return 0;
594}
595
596
597/// FoldOpIntoPhi - Given a binary operator, cast instruction, or select which
598/// has a PHI node as operand #0, see if we can fold the instruction into the
599/// PHI (which is only possible if all operands to the PHI are constants).
600///
601Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
602  PHINode *PN = cast<PHINode>(I.getOperand(0));
603  unsigned NumPHIValues = PN->getNumIncomingValues();
604  if (NumPHIValues == 0)
605    return 0;
606
607  // We normally only transform phis with a single use.  However, if a PHI has
608  // multiple uses and they are all the same operation, we can fold *all* of the
609  // uses into the PHI.
610  if (!PN->hasOneUse()) {
611    // Walk the use list for the instruction, comparing them to I.
612    for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
613         UI != E; ++UI) {
614      Instruction *User = cast<Instruction>(*UI);
615      if (User != &I && !I.isIdenticalTo(User))
616        return 0;
617    }
618    // Otherwise, we can replace *all* users with the new PHI we form.
619  }
620
621  // Check to see if all of the operands of the PHI are simple constants
622  // (constantint/constantfp/undef).  If there is one non-constant value,
623  // remember the BB it is in.  If there is more than one or if *it* is a PHI,
624  // bail out.  We don't do arbitrary constant expressions here because moving
625  // their computation can be expensive without a cost model.
626  BasicBlock *NonConstBB = 0;
627  for (unsigned i = 0; i != NumPHIValues; ++i) {
628    Value *InVal = PN->getIncomingValue(i);
629    if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal))
630      continue;
631
632    if (isa<PHINode>(InVal)) return 0;  // Itself a phi.
633    if (NonConstBB) return 0;  // More than one non-const value.
634
635    NonConstBB = PN->getIncomingBlock(i);
636
637    // If the InVal is an invoke at the end of the pred block, then we can't
638    // insert a computation after it without breaking the edge.
639    if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
640      if (II->getParent() == NonConstBB)
641        return 0;
642
643    // If the incoming non-constant value is in I's block, we will remove one
644    // instruction, but insert another equivalent one, leading to infinite
645    // instcombine.
646    if (NonConstBB == I.getParent())
647      return 0;
648  }
649
650  // If there is exactly one non-constant value, we can insert a copy of the
651  // operation in that block.  However, if this is a critical edge, we would be
652  // inserting the computation one some other paths (e.g. inside a loop).  Only
653  // do this if the pred block is unconditionally branching into the phi block.
654  if (NonConstBB != 0) {
655    BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
656    if (!BI || !BI->isUnconditional()) return 0;
657  }
658
659  // Okay, we can do the transformation: create the new PHI node.
660  PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
661  InsertNewInstBefore(NewPN, *PN);
662  NewPN->takeName(PN);
663
664  // If we are going to have to insert a new computation, do so right before the
665  // predecessors terminator.
666  if (NonConstBB)
667    Builder->SetInsertPoint(NonConstBB->getTerminator());
668
669  // Next, add all of the operands to the PHI.
670  if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
671    // We only currently try to fold the condition of a select when it is a phi,
672    // not the true/false values.
673    Value *TrueV = SI->getTrueValue();
674    Value *FalseV = SI->getFalseValue();
675    BasicBlock *PhiTransBB = PN->getParent();
676    for (unsigned i = 0; i != NumPHIValues; ++i) {
677      BasicBlock *ThisBB = PN->getIncomingBlock(i);
678      Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
679      Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
680      Value *InV = 0;
681      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
682        InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
683      else
684        InV = Builder->CreateSelect(PN->getIncomingValue(i),
685                                    TrueVInPred, FalseVInPred, "phitmp");
686      NewPN->addIncoming(InV, ThisBB);
687    }
688  } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
689    Constant *C = cast<Constant>(I.getOperand(1));
690    for (unsigned i = 0; i != NumPHIValues; ++i) {
691      Value *InV = 0;
692      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
693        InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
694      else if (isa<ICmpInst>(CI))
695        InV = Builder->CreateICmp(CI->getPredicate(), PN->getIncomingValue(i),
696                                  C, "phitmp");
697      else
698        InV = Builder->CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i),
699                                  C, "phitmp");
700      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
701    }
702  } else if (I.getNumOperands() == 2) {
703    Constant *C = cast<Constant>(I.getOperand(1));
704    for (unsigned i = 0; i != NumPHIValues; ++i) {
705      Value *InV = 0;
706      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
707        InV = ConstantExpr::get(I.getOpcode(), InC, C);
708      else
709        InV = Builder->CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
710                                   PN->getIncomingValue(i), C, "phitmp");
711      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
712    }
713  } else {
714    CastInst *CI = cast<CastInst>(&I);
715    Type *RetTy = CI->getType();
716    for (unsigned i = 0; i != NumPHIValues; ++i) {
717      Value *InV;
718      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
719        InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
720      else
721        InV = Builder->CreateCast(CI->getOpcode(),
722                                PN->getIncomingValue(i), I.getType(), "phitmp");
723      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
724    }
725  }
726
727  for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end();
728       UI != E; ) {
729    Instruction *User = cast<Instruction>(*UI++);
730    if (User == &I) continue;
731    ReplaceInstUsesWith(*User, NewPN);
732    EraseInstFromFunction(*User);
733  }
734  return ReplaceInstUsesWith(I, NewPN);
735}
736
737/// FindElementAtOffset - Given a type and a constant offset, determine whether
738/// or not there is a sequence of GEP indices into the type that will land us at
739/// the specified offset.  If so, fill them into NewIndices and return the
740/// resultant element type, otherwise return null.
741Type *InstCombiner::FindElementAtOffset(Type *Ty, int64_t Offset,
742                                          SmallVectorImpl<Value*> &NewIndices) {
743  if (!TD) return 0;
744  if (!Ty->isSized()) return 0;
745
746  // Start with the index over the outer type.  Note that the type size
747  // might be zero (even if the offset isn't zero) if the indexed type
748  // is something like [0 x {int, int}]
749  Type *IntPtrTy = TD->getIntPtrType(Ty->getContext());
750  int64_t FirstIdx = 0;
751  if (int64_t TySize = TD->getTypeAllocSize(Ty)) {
752    FirstIdx = Offset/TySize;
753    Offset -= FirstIdx*TySize;
754
755    // Handle hosts where % returns negative instead of values [0..TySize).
756    if (Offset < 0) {
757      --FirstIdx;
758      Offset += TySize;
759      assert(Offset >= 0);
760    }
761    assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
762  }
763
764  NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
765
766  // Index into the types.  If we fail, set OrigBase to null.
767  while (Offset) {
768    // Indexing into tail padding between struct/array elements.
769    if (uint64_t(Offset*8) >= TD->getTypeSizeInBits(Ty))
770      return 0;
771
772    if (StructType *STy = dyn_cast<StructType>(Ty)) {
773      const StructLayout *SL = TD->getStructLayout(STy);
774      assert(Offset < (int64_t)SL->getSizeInBytes() &&
775             "Offset must stay within the indexed type");
776
777      unsigned Elt = SL->getElementContainingOffset(Offset);
778      NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
779                                            Elt));
780
781      Offset -= SL->getElementOffset(Elt);
782      Ty = STy->getElementType(Elt);
783    } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
784      uint64_t EltSize = TD->getTypeAllocSize(AT->getElementType());
785      assert(EltSize && "Cannot index into a zero-sized array");
786      NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
787      Offset %= EltSize;
788      Ty = AT->getElementType();
789    } else {
790      // Otherwise, we can't index into the middle of this atomic type, bail.
791      return 0;
792    }
793  }
794
795  return Ty;
796}
797
798static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
799  // If this GEP has only 0 indices, it is the same pointer as
800  // Src. If Src is not a trivial GEP too, don't combine
801  // the indices.
802  if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
803      !Src.hasOneUse())
804    return false;
805  return true;
806}
807
808Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
809  SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
810
811  if (Value *V = SimplifyGEPInst(Ops, TD))
812    return ReplaceInstUsesWith(GEP, V);
813
814  Value *PtrOp = GEP.getOperand(0);
815
816  // Eliminate unneeded casts for indices, and replace indices which displace
817  // by multiples of a zero size type with zero.
818  if (TD) {
819    bool MadeChange = false;
820    Type *IntPtrTy = TD->getIntPtrType(GEP.getContext());
821
822    gep_type_iterator GTI = gep_type_begin(GEP);
823    for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end();
824         I != E; ++I, ++GTI) {
825      // Skip indices into struct types.
826      SequentialType *SeqTy = dyn_cast<SequentialType>(*GTI);
827      if (!SeqTy) continue;
828
829      // If the element type has zero size then any index over it is equivalent
830      // to an index of zero, so replace it with zero if it is not zero already.
831      if (SeqTy->getElementType()->isSized() &&
832          TD->getTypeAllocSize(SeqTy->getElementType()) == 0)
833        if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) {
834          *I = Constant::getNullValue(IntPtrTy);
835          MadeChange = true;
836        }
837
838      Type *IndexTy = (*I)->getType();
839      if (IndexTy != IntPtrTy && !IndexTy->isVectorTy()) {
840        // If we are using a wider index than needed for this platform, shrink
841        // it to what we need.  If narrower, sign-extend it to what we need.
842        // This explicit cast can make subsequent optimizations more obvious.
843        *I = Builder->CreateIntCast(*I, IntPtrTy, true);
844        MadeChange = true;
845      }
846    }
847    if (MadeChange) return &GEP;
848  }
849
850  // Combine Indices - If the source pointer to this getelementptr instruction
851  // is a getelementptr instruction, combine the indices of the two
852  // getelementptr instructions into a single instruction.
853  //
854  if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) {
855    if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
856      return 0;
857
858    // Note that if our source is a gep chain itself that we wait for that
859    // chain to be resolved before we perform this transformation.  This
860    // avoids us creating a TON of code in some cases.
861    if (GEPOperator *SrcGEP =
862          dyn_cast<GEPOperator>(Src->getOperand(0)))
863      if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
864        return 0;   // Wait until our source is folded to completion.
865
866    SmallVector<Value*, 8> Indices;
867
868    // Find out whether the last index in the source GEP is a sequential idx.
869    bool EndsWithSequential = false;
870    for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
871         I != E; ++I)
872      EndsWithSequential = !(*I)->isStructTy();
873
874    // Can we combine the two pointer arithmetics offsets?
875    if (EndsWithSequential) {
876      // Replace: gep (gep %P, long B), long A, ...
877      // With:    T = long A+B; gep %P, T, ...
878      //
879      Value *Sum;
880      Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
881      Value *GO1 = GEP.getOperand(1);
882      if (SO1 == Constant::getNullValue(SO1->getType())) {
883        Sum = GO1;
884      } else if (GO1 == Constant::getNullValue(GO1->getType())) {
885        Sum = SO1;
886      } else {
887        // If they aren't the same type, then the input hasn't been processed
888        // by the loop above yet (which canonicalizes sequential index types to
889        // intptr_t).  Just avoid transforming this until the input has been
890        // normalized.
891        if (SO1->getType() != GO1->getType())
892          return 0;
893        Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
894      }
895
896      // Update the GEP in place if possible.
897      if (Src->getNumOperands() == 2) {
898        GEP.setOperand(0, Src->getOperand(0));
899        GEP.setOperand(1, Sum);
900        return &GEP;
901      }
902      Indices.append(Src->op_begin()+1, Src->op_end()-1);
903      Indices.push_back(Sum);
904      Indices.append(GEP.op_begin()+2, GEP.op_end());
905    } else if (isa<Constant>(*GEP.idx_begin()) &&
906               cast<Constant>(*GEP.idx_begin())->isNullValue() &&
907               Src->getNumOperands() != 1) {
908      // Otherwise we can do the fold if the first index of the GEP is a zero
909      Indices.append(Src->op_begin()+1, Src->op_end());
910      Indices.append(GEP.idx_begin()+1, GEP.idx_end());
911    }
912
913    if (!Indices.empty())
914      return (GEP.isInBounds() && Src->isInBounds()) ?
915        GetElementPtrInst::CreateInBounds(Src->getOperand(0), Indices,
916                                          GEP.getName()) :
917        GetElementPtrInst::Create(Src->getOperand(0), Indices, GEP.getName());
918  }
919
920  // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
921  Value *StrippedPtr = PtrOp->stripPointerCasts();
922  PointerType *StrippedPtrTy = dyn_cast<PointerType>(StrippedPtr->getType());
923
924  // We do not handle pointer-vector geps here.
925  if (!StrippedPtrTy)
926    return 0;
927
928  if (StrippedPtr != PtrOp &&
929    StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) {
930
931    bool HasZeroPointerIndex = false;
932    if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
933      HasZeroPointerIndex = C->isZero();
934
935    // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
936    // into     : GEP [10 x i8]* X, i32 0, ...
937    //
938    // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
939    //           into     : GEP i8* X, ...
940    //
941    // This occurs when the program declares an array extern like "int X[];"
942    if (HasZeroPointerIndex) {
943      PointerType *CPTy = cast<PointerType>(PtrOp->getType());
944      if (ArrayType *CATy =
945          dyn_cast<ArrayType>(CPTy->getElementType())) {
946        // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
947        if (CATy->getElementType() == StrippedPtrTy->getElementType()) {
948          // -> GEP i8* X, ...
949          SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
950          GetElementPtrInst *Res =
951            GetElementPtrInst::Create(StrippedPtr, Idx, GEP.getName());
952          Res->setIsInBounds(GEP.isInBounds());
953          return Res;
954        }
955
956        if (ArrayType *XATy =
957              dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){
958          // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
959          if (CATy->getElementType() == XATy->getElementType()) {
960            // -> GEP [10 x i8]* X, i32 0, ...
961            // At this point, we know that the cast source type is a pointer
962            // to an array of the same type as the destination pointer
963            // array.  Because the array type is never stepped over (there
964            // is a leading zero) we can fold the cast into this GEP.
965            GEP.setOperand(0, StrippedPtr);
966            return &GEP;
967          }
968        }
969      }
970    } else if (GEP.getNumOperands() == 2) {
971      // Transform things like:
972      // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
973      // into:  %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
974      Type *SrcElTy = StrippedPtrTy->getElementType();
975      Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
976      if (TD && SrcElTy->isArrayTy() &&
977          TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
978          TD->getTypeAllocSize(ResElTy)) {
979        Value *Idx[2];
980        Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext()));
981        Idx[1] = GEP.getOperand(1);
982        Value *NewGEP = GEP.isInBounds() ?
983          Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()) :
984          Builder->CreateGEP(StrippedPtr, Idx, GEP.getName());
985        // V and GEP are both pointer types --> BitCast
986        return new BitCastInst(NewGEP, GEP.getType());
987      }
988
989      // Transform things like:
990      // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
991      //   (where tmp = 8*tmp2) into:
992      // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
993
994      if (TD && SrcElTy->isArrayTy() && ResElTy->isIntegerTy(8)) {
995        uint64_t ArrayEltSize =
996            TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType());
997
998        // Check to see if "tmp" is a scale by a multiple of ArrayEltSize.  We
999        // allow either a mul, shift, or constant here.
1000        Value *NewIdx = 0;
1001        ConstantInt *Scale = 0;
1002        if (ArrayEltSize == 1) {
1003          NewIdx = GEP.getOperand(1);
1004          Scale = ConstantInt::get(cast<IntegerType>(NewIdx->getType()), 1);
1005        } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) {
1006          NewIdx = ConstantInt::get(CI->getType(), 1);
1007          Scale = CI;
1008        } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){
1009          if (Inst->getOpcode() == Instruction::Shl &&
1010              isa<ConstantInt>(Inst->getOperand(1))) {
1011            ConstantInt *ShAmt = cast<ConstantInt>(Inst->getOperand(1));
1012            uint32_t ShAmtVal = ShAmt->getLimitedValue(64);
1013            Scale = ConstantInt::get(cast<IntegerType>(Inst->getType()),
1014                                     1ULL << ShAmtVal);
1015            NewIdx = Inst->getOperand(0);
1016          } else if (Inst->getOpcode() == Instruction::Mul &&
1017                     isa<ConstantInt>(Inst->getOperand(1))) {
1018            Scale = cast<ConstantInt>(Inst->getOperand(1));
1019            NewIdx = Inst->getOperand(0);
1020          }
1021        }
1022
1023        // If the index will be to exactly the right offset with the scale taken
1024        // out, perform the transformation. Note, we don't know whether Scale is
1025        // signed or not. We'll use unsigned version of division/modulo
1026        // operation after making sure Scale doesn't have the sign bit set.
1027        if (ArrayEltSize && Scale && Scale->getSExtValue() >= 0LL &&
1028            Scale->getZExtValue() % ArrayEltSize == 0) {
1029          Scale = ConstantInt::get(Scale->getType(),
1030                                   Scale->getZExtValue() / ArrayEltSize);
1031          if (Scale->getZExtValue() != 1) {
1032            Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(),
1033                                                       false /*ZExt*/);
1034            NewIdx = Builder->CreateMul(NewIdx, C, "idxscale");
1035          }
1036
1037          // Insert the new GEP instruction.
1038          Value *Idx[2];
1039          Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext()));
1040          Idx[1] = NewIdx;
1041          Value *NewGEP = GEP.isInBounds() ?
1042            Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()):
1043            Builder->CreateGEP(StrippedPtr, Idx, GEP.getName());
1044          // The NewGEP must be pointer typed, so must the old one -> BitCast
1045          return new BitCastInst(NewGEP, GEP.getType());
1046        }
1047      }
1048    }
1049  }
1050
1051  /// See if we can simplify:
1052  ///   X = bitcast A* to B*
1053  ///   Y = gep X, <...constant indices...>
1054  /// into a gep of the original struct.  This is important for SROA and alias
1055  /// analysis of unions.  If "A" is also a bitcast, wait for A/X to be merged.
1056  if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
1057    if (TD &&
1058        !isa<BitCastInst>(BCI->getOperand(0)) && GEP.hasAllConstantIndices() &&
1059        StrippedPtrTy->getAddressSpace() == GEP.getPointerAddressSpace()) {
1060
1061      // Determine how much the GEP moves the pointer.
1062      SmallVector<Value*, 8> Ops(GEP.idx_begin(), GEP.idx_end());
1063      int64_t Offset = TD->getIndexedOffset(GEP.getPointerOperandType(), Ops);
1064
1065      // If this GEP instruction doesn't move the pointer, just replace the GEP
1066      // with a bitcast of the real input to the dest type.
1067      if (Offset == 0) {
1068        // If the bitcast is of an allocation, and the allocation will be
1069        // converted to match the type of the cast, don't touch this.
1070        if (isa<AllocaInst>(BCI->getOperand(0)) ||
1071            isAllocationFn(BCI->getOperand(0), TLI)) {
1072          // See if the bitcast simplifies, if so, don't nuke this GEP yet.
1073          if (Instruction *I = visitBitCast(*BCI)) {
1074            if (I != BCI) {
1075              I->takeName(BCI);
1076              BCI->getParent()->getInstList().insert(BCI, I);
1077              ReplaceInstUsesWith(*BCI, I);
1078            }
1079            return &GEP;
1080          }
1081        }
1082        return new BitCastInst(BCI->getOperand(0), GEP.getType());
1083      }
1084
1085      // Otherwise, if the offset is non-zero, we need to find out if there is a
1086      // field at Offset in 'A's type.  If so, we can pull the cast through the
1087      // GEP.
1088      SmallVector<Value*, 8> NewIndices;
1089      Type *InTy =
1090        cast<PointerType>(BCI->getOperand(0)->getType())->getElementType();
1091      if (FindElementAtOffset(InTy, Offset, NewIndices)) {
1092        Value *NGEP = GEP.isInBounds() ?
1093          Builder->CreateInBoundsGEP(BCI->getOperand(0), NewIndices) :
1094          Builder->CreateGEP(BCI->getOperand(0), NewIndices);
1095
1096        if (NGEP->getType() == GEP.getType())
1097          return ReplaceInstUsesWith(GEP, NGEP);
1098        NGEP->takeName(&GEP);
1099        return new BitCastInst(NGEP, GEP.getType());
1100      }
1101    }
1102  }
1103
1104  return 0;
1105}
1106
1107
1108
1109static bool
1110isAllocSiteRemovable(Instruction *AI, SmallVectorImpl<WeakVH> &Users,
1111                     const TargetLibraryInfo *TLI) {
1112  SmallVector<Instruction*, 4> Worklist;
1113  Worklist.push_back(AI);
1114
1115  do {
1116    Instruction *PI = Worklist.pop_back_val();
1117    for (Value::use_iterator UI = PI->use_begin(), UE = PI->use_end(); UI != UE;
1118         ++UI) {
1119      Instruction *I = cast<Instruction>(*UI);
1120      switch (I->getOpcode()) {
1121      default:
1122        // Give up the moment we see something we can't handle.
1123        return false;
1124
1125      case Instruction::BitCast:
1126      case Instruction::GetElementPtr:
1127        Users.push_back(I);
1128        Worklist.push_back(I);
1129        continue;
1130
1131      case Instruction::ICmp: {
1132        ICmpInst *ICI = cast<ICmpInst>(I);
1133        // We can fold eq/ne comparisons with null to false/true, respectively.
1134        if (!ICI->isEquality() || !isa<ConstantPointerNull>(ICI->getOperand(1)))
1135          return false;
1136        Users.push_back(I);
1137        continue;
1138      }
1139
1140      case Instruction::Call:
1141        // Ignore no-op and store intrinsics.
1142        if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1143          switch (II->getIntrinsicID()) {
1144          default:
1145            return false;
1146
1147          case Intrinsic::memmove:
1148          case Intrinsic::memcpy:
1149          case Intrinsic::memset: {
1150            MemIntrinsic *MI = cast<MemIntrinsic>(II);
1151            if (MI->isVolatile() || MI->getRawDest() != PI)
1152              return false;
1153          }
1154          // fall through
1155          case Intrinsic::dbg_declare:
1156          case Intrinsic::dbg_value:
1157          case Intrinsic::invariant_start:
1158          case Intrinsic::invariant_end:
1159          case Intrinsic::lifetime_start:
1160          case Intrinsic::lifetime_end:
1161          case Intrinsic::objectsize:
1162            Users.push_back(I);
1163            continue;
1164          }
1165        }
1166
1167        if (isFreeCall(I, TLI)) {
1168          Users.push_back(I);
1169          continue;
1170        }
1171        return false;
1172
1173      case Instruction::Store: {
1174        StoreInst *SI = cast<StoreInst>(I);
1175        if (SI->isVolatile() || SI->getPointerOperand() != PI)
1176          return false;
1177        Users.push_back(I);
1178        continue;
1179      }
1180      }
1181      llvm_unreachable("missing a return?");
1182    }
1183  } while (!Worklist.empty());
1184  return true;
1185}
1186
1187Instruction *InstCombiner::visitAllocSite(Instruction &MI) {
1188  // If we have a malloc call which is only used in any amount of comparisons
1189  // to null and free calls, delete the calls and replace the comparisons with
1190  // true or false as appropriate.
1191  SmallVector<WeakVH, 64> Users;
1192  if (isAllocSiteRemovable(&MI, Users, TLI)) {
1193    for (unsigned i = 0, e = Users.size(); i != e; ++i) {
1194      Instruction *I = cast_or_null<Instruction>(&*Users[i]);
1195      if (!I) continue;
1196
1197      if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
1198        ReplaceInstUsesWith(*C,
1199                            ConstantInt::get(Type::getInt1Ty(C->getContext()),
1200                                             C->isFalseWhenEqual()));
1201      } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) {
1202        ReplaceInstUsesWith(*I, UndefValue::get(I->getType()));
1203      } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1204        if (II->getIntrinsicID() == Intrinsic::objectsize) {
1205          ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1));
1206          uint64_t DontKnow = CI->isZero() ? -1ULL : 0;
1207          ReplaceInstUsesWith(*I, ConstantInt::get(I->getType(), DontKnow));
1208        }
1209      }
1210      EraseInstFromFunction(*I);
1211    }
1212
1213    if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
1214      // Replace invoke with a NOP intrinsic to maintain the original CFG
1215      Module *M = II->getParent()->getParent()->getParent();
1216      Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
1217      InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
1218                         ArrayRef<Value *>(), "", II->getParent());
1219    }
1220    return EraseInstFromFunction(MI);
1221  }
1222  return 0;
1223}
1224
1225
1226
1227Instruction *InstCombiner::visitFree(CallInst &FI) {
1228  Value *Op = FI.getArgOperand(0);
1229
1230  // free undef -> unreachable.
1231  if (isa<UndefValue>(Op)) {
1232    // Insert a new store to null because we cannot modify the CFG here.
1233    Builder->CreateStore(ConstantInt::getTrue(FI.getContext()),
1234                         UndefValue::get(Type::getInt1PtrTy(FI.getContext())));
1235    return EraseInstFromFunction(FI);
1236  }
1237
1238  // If we have 'free null' delete the instruction.  This can happen in stl code
1239  // when lots of inlining happens.
1240  if (isa<ConstantPointerNull>(Op))
1241    return EraseInstFromFunction(FI);
1242
1243  return 0;
1244}
1245
1246
1247
1248Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
1249  // Change br (not X), label True, label False to: br X, label False, True
1250  Value *X = 0;
1251  BasicBlock *TrueDest;
1252  BasicBlock *FalseDest;
1253  if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
1254      !isa<Constant>(X)) {
1255    // Swap Destinations and condition...
1256    BI.setCondition(X);
1257    BI.swapSuccessors();
1258    return &BI;
1259  }
1260
1261  // Cannonicalize fcmp_one -> fcmp_oeq
1262  FCmpInst::Predicate FPred; Value *Y;
1263  if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
1264                             TrueDest, FalseDest)) &&
1265      BI.getCondition()->hasOneUse())
1266    if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
1267        FPred == FCmpInst::FCMP_OGE) {
1268      FCmpInst *Cond = cast<FCmpInst>(BI.getCondition());
1269      Cond->setPredicate(FCmpInst::getInversePredicate(FPred));
1270
1271      // Swap Destinations and condition.
1272      BI.swapSuccessors();
1273      Worklist.Add(Cond);
1274      return &BI;
1275    }
1276
1277  // Cannonicalize icmp_ne -> icmp_eq
1278  ICmpInst::Predicate IPred;
1279  if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
1280                      TrueDest, FalseDest)) &&
1281      BI.getCondition()->hasOneUse())
1282    if (IPred == ICmpInst::ICMP_NE  || IPred == ICmpInst::ICMP_ULE ||
1283        IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
1284        IPred == ICmpInst::ICMP_SGE) {
1285      ICmpInst *Cond = cast<ICmpInst>(BI.getCondition());
1286      Cond->setPredicate(ICmpInst::getInversePredicate(IPred));
1287      // Swap Destinations and condition.
1288      BI.swapSuccessors();
1289      Worklist.Add(Cond);
1290      return &BI;
1291    }
1292
1293  return 0;
1294}
1295
1296Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
1297  Value *Cond = SI.getCondition();
1298  if (Instruction *I = dyn_cast<Instruction>(Cond)) {
1299    if (I->getOpcode() == Instruction::Add)
1300      if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
1301        // change 'switch (X+4) case 1:' into 'switch (X) case -3'
1302        // Skip the first item since that's the default case.
1303        for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end();
1304             i != e; ++i) {
1305          ConstantInt* CaseVal = i.getCaseValue();
1306          Constant* NewCaseVal = ConstantExpr::getSub(cast<Constant>(CaseVal),
1307                                                      AddRHS);
1308          assert(isa<ConstantInt>(NewCaseVal) &&
1309                 "Result of expression should be constant");
1310          i.setValue(cast<ConstantInt>(NewCaseVal));
1311        }
1312        SI.setCondition(I->getOperand(0));
1313        Worklist.Add(I);
1314        return &SI;
1315      }
1316  }
1317  return 0;
1318}
1319
1320Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
1321  Value *Agg = EV.getAggregateOperand();
1322
1323  if (!EV.hasIndices())
1324    return ReplaceInstUsesWith(EV, Agg);
1325
1326  if (Constant *C = dyn_cast<Constant>(Agg)) {
1327    if (Constant *C2 = C->getAggregateElement(*EV.idx_begin())) {
1328      if (EV.getNumIndices() == 0)
1329        return ReplaceInstUsesWith(EV, C2);
1330      // Extract the remaining indices out of the constant indexed by the
1331      // first index
1332      return ExtractValueInst::Create(C2, EV.getIndices().slice(1));
1333    }
1334    return 0; // Can't handle other constants
1335  }
1336
1337  if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
1338    // We're extracting from an insertvalue instruction, compare the indices
1339    const unsigned *exti, *exte, *insi, *inse;
1340    for (exti = EV.idx_begin(), insi = IV->idx_begin(),
1341         exte = EV.idx_end(), inse = IV->idx_end();
1342         exti != exte && insi != inse;
1343         ++exti, ++insi) {
1344      if (*insi != *exti)
1345        // The insert and extract both reference distinctly different elements.
1346        // This means the extract is not influenced by the insert, and we can
1347        // replace the aggregate operand of the extract with the aggregate
1348        // operand of the insert. i.e., replace
1349        // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
1350        // %E = extractvalue { i32, { i32 } } %I, 0
1351        // with
1352        // %E = extractvalue { i32, { i32 } } %A, 0
1353        return ExtractValueInst::Create(IV->getAggregateOperand(),
1354                                        EV.getIndices());
1355    }
1356    if (exti == exte && insi == inse)
1357      // Both iterators are at the end: Index lists are identical. Replace
1358      // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
1359      // %C = extractvalue { i32, { i32 } } %B, 1, 0
1360      // with "i32 42"
1361      return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand());
1362    if (exti == exte) {
1363      // The extract list is a prefix of the insert list. i.e. replace
1364      // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
1365      // %E = extractvalue { i32, { i32 } } %I, 1
1366      // with
1367      // %X = extractvalue { i32, { i32 } } %A, 1
1368      // %E = insertvalue { i32 } %X, i32 42, 0
1369      // by switching the order of the insert and extract (though the
1370      // insertvalue should be left in, since it may have other uses).
1371      Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(),
1372                                                 EV.getIndices());
1373      return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
1374                                     makeArrayRef(insi, inse));
1375    }
1376    if (insi == inse)
1377      // The insert list is a prefix of the extract list
1378      // We can simply remove the common indices from the extract and make it
1379      // operate on the inserted value instead of the insertvalue result.
1380      // i.e., replace
1381      // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
1382      // %E = extractvalue { i32, { i32 } } %I, 1, 0
1383      // with
1384      // %E extractvalue { i32 } { i32 42 }, 0
1385      return ExtractValueInst::Create(IV->getInsertedValueOperand(),
1386                                      makeArrayRef(exti, exte));
1387  }
1388  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) {
1389    // We're extracting from an intrinsic, see if we're the only user, which
1390    // allows us to simplify multiple result intrinsics to simpler things that
1391    // just get one value.
1392    if (II->hasOneUse()) {
1393      // Check if we're grabbing the overflow bit or the result of a 'with
1394      // overflow' intrinsic.  If it's the latter we can remove the intrinsic
1395      // and replace it with a traditional binary instruction.
1396      switch (II->getIntrinsicID()) {
1397      case Intrinsic::uadd_with_overflow:
1398      case Intrinsic::sadd_with_overflow:
1399        if (*EV.idx_begin() == 0) {  // Normal result.
1400          Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
1401          ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
1402          EraseInstFromFunction(*II);
1403          return BinaryOperator::CreateAdd(LHS, RHS);
1404        }
1405
1406        // If the normal result of the add is dead, and the RHS is a constant,
1407        // we can transform this into a range comparison.
1408        // overflow = uadd a, -4  -->  overflow = icmp ugt a, 3
1409        if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow)
1410          if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1)))
1411            return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0),
1412                                ConstantExpr::getNot(CI));
1413        break;
1414      case Intrinsic::usub_with_overflow:
1415      case Intrinsic::ssub_with_overflow:
1416        if (*EV.idx_begin() == 0) {  // Normal result.
1417          Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
1418          ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
1419          EraseInstFromFunction(*II);
1420          return BinaryOperator::CreateSub(LHS, RHS);
1421        }
1422        break;
1423      case Intrinsic::umul_with_overflow:
1424      case Intrinsic::smul_with_overflow:
1425        if (*EV.idx_begin() == 0) {  // Normal result.
1426          Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
1427          ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
1428          EraseInstFromFunction(*II);
1429          return BinaryOperator::CreateMul(LHS, RHS);
1430        }
1431        break;
1432      default:
1433        break;
1434      }
1435    }
1436  }
1437  if (LoadInst *L = dyn_cast<LoadInst>(Agg))
1438    // If the (non-volatile) load only has one use, we can rewrite this to a
1439    // load from a GEP. This reduces the size of the load.
1440    // FIXME: If a load is used only by extractvalue instructions then this
1441    //        could be done regardless of having multiple uses.
1442    if (L->isSimple() && L->hasOneUse()) {
1443      // extractvalue has integer indices, getelementptr has Value*s. Convert.
1444      SmallVector<Value*, 4> Indices;
1445      // Prefix an i32 0 since we need the first element.
1446      Indices.push_back(Builder->getInt32(0));
1447      for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
1448            I != E; ++I)
1449        Indices.push_back(Builder->getInt32(*I));
1450
1451      // We need to insert these at the location of the old load, not at that of
1452      // the extractvalue.
1453      Builder->SetInsertPoint(L->getParent(), L);
1454      Value *GEP = Builder->CreateInBoundsGEP(L->getPointerOperand(), Indices);
1455      // Returning the load directly will cause the main loop to insert it in
1456      // the wrong spot, so use ReplaceInstUsesWith().
1457      return ReplaceInstUsesWith(EV, Builder->CreateLoad(GEP));
1458    }
1459  // We could simplify extracts from other values. Note that nested extracts may
1460  // already be simplified implicitly by the above: extract (extract (insert) )
1461  // will be translated into extract ( insert ( extract ) ) first and then just
1462  // the value inserted, if appropriate. Similarly for extracts from single-use
1463  // loads: extract (extract (load)) will be translated to extract (load (gep))
1464  // and if again single-use then via load (gep (gep)) to load (gep).
1465  // However, double extracts from e.g. function arguments or return values
1466  // aren't handled yet.
1467  return 0;
1468}
1469
1470enum Personality_Type {
1471  Unknown_Personality,
1472  GNU_Ada_Personality,
1473  GNU_CXX_Personality,
1474  GNU_ObjC_Personality
1475};
1476
1477/// RecognizePersonality - See if the given exception handling personality
1478/// function is one that we understand.  If so, return a description of it;
1479/// otherwise return Unknown_Personality.
1480static Personality_Type RecognizePersonality(Value *Pers) {
1481  Function *F = dyn_cast<Function>(Pers->stripPointerCasts());
1482  if (!F)
1483    return Unknown_Personality;
1484  return StringSwitch<Personality_Type>(F->getName())
1485    .Case("__gnat_eh_personality", GNU_Ada_Personality)
1486    .Case("__gxx_personality_v0",  GNU_CXX_Personality)
1487    .Case("__objc_personality_v0", GNU_ObjC_Personality)
1488    .Default(Unknown_Personality);
1489}
1490
1491/// isCatchAll - Return 'true' if the given typeinfo will match anything.
1492static bool isCatchAll(Personality_Type Personality, Constant *TypeInfo) {
1493  switch (Personality) {
1494  case Unknown_Personality:
1495    return false;
1496  case GNU_Ada_Personality:
1497    // While __gnat_all_others_value will match any Ada exception, it doesn't
1498    // match foreign exceptions (or didn't, before gcc-4.7).
1499    return false;
1500  case GNU_CXX_Personality:
1501  case GNU_ObjC_Personality:
1502    return TypeInfo->isNullValue();
1503  }
1504  llvm_unreachable("Unknown personality!");
1505}
1506
1507static bool shorter_filter(const Value *LHS, const Value *RHS) {
1508  return
1509    cast<ArrayType>(LHS->getType())->getNumElements()
1510  <
1511    cast<ArrayType>(RHS->getType())->getNumElements();
1512}
1513
1514Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) {
1515  // The logic here should be correct for any real-world personality function.
1516  // However if that turns out not to be true, the offending logic can always
1517  // be conditioned on the personality function, like the catch-all logic is.
1518  Personality_Type Personality = RecognizePersonality(LI.getPersonalityFn());
1519
1520  // Simplify the list of clauses, eg by removing repeated catch clauses
1521  // (these are often created by inlining).
1522  bool MakeNewInstruction = false; // If true, recreate using the following:
1523  SmallVector<Value *, 16> NewClauses; // - Clauses for the new instruction;
1524  bool CleanupFlag = LI.isCleanup();   // - The new instruction is a cleanup.
1525
1526  SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
1527  for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
1528    bool isLastClause = i + 1 == e;
1529    if (LI.isCatch(i)) {
1530      // A catch clause.
1531      Value *CatchClause = LI.getClause(i);
1532      Constant *TypeInfo = cast<Constant>(CatchClause->stripPointerCasts());
1533
1534      // If we already saw this clause, there is no point in having a second
1535      // copy of it.
1536      if (AlreadyCaught.insert(TypeInfo)) {
1537        // This catch clause was not already seen.
1538        NewClauses.push_back(CatchClause);
1539      } else {
1540        // Repeated catch clause - drop the redundant copy.
1541        MakeNewInstruction = true;
1542      }
1543
1544      // If this is a catch-all then there is no point in keeping any following
1545      // clauses or marking the landingpad as having a cleanup.
1546      if (isCatchAll(Personality, TypeInfo)) {
1547        if (!isLastClause)
1548          MakeNewInstruction = true;
1549        CleanupFlag = false;
1550        break;
1551      }
1552    } else {
1553      // A filter clause.  If any of the filter elements were already caught
1554      // then they can be dropped from the filter.  It is tempting to try to
1555      // exploit the filter further by saying that any typeinfo that does not
1556      // occur in the filter can't be caught later (and thus can be dropped).
1557      // However this would be wrong, since typeinfos can match without being
1558      // equal (for example if one represents a C++ class, and the other some
1559      // class derived from it).
1560      assert(LI.isFilter(i) && "Unsupported landingpad clause!");
1561      Value *FilterClause = LI.getClause(i);
1562      ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
1563      unsigned NumTypeInfos = FilterType->getNumElements();
1564
1565      // An empty filter catches everything, so there is no point in keeping any
1566      // following clauses or marking the landingpad as having a cleanup.  By
1567      // dealing with this case here the following code is made a bit simpler.
1568      if (!NumTypeInfos) {
1569        NewClauses.push_back(FilterClause);
1570        if (!isLastClause)
1571          MakeNewInstruction = true;
1572        CleanupFlag = false;
1573        break;
1574      }
1575
1576      bool MakeNewFilter = false; // If true, make a new filter.
1577      SmallVector<Constant *, 16> NewFilterElts; // New elements.
1578      if (isa<ConstantAggregateZero>(FilterClause)) {
1579        // Not an empty filter - it contains at least one null typeinfo.
1580        assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
1581        Constant *TypeInfo =
1582          Constant::getNullValue(FilterType->getElementType());
1583        // If this typeinfo is a catch-all then the filter can never match.
1584        if (isCatchAll(Personality, TypeInfo)) {
1585          // Throw the filter away.
1586          MakeNewInstruction = true;
1587          continue;
1588        }
1589
1590        // There is no point in having multiple copies of this typeinfo, so
1591        // discard all but the first copy if there is more than one.
1592        NewFilterElts.push_back(TypeInfo);
1593        if (NumTypeInfos > 1)
1594          MakeNewFilter = true;
1595      } else {
1596        ConstantArray *Filter = cast<ConstantArray>(FilterClause);
1597        SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
1598        NewFilterElts.reserve(NumTypeInfos);
1599
1600        // Remove any filter elements that were already caught or that already
1601        // occurred in the filter.  While there, see if any of the elements are
1602        // catch-alls.  If so, the filter can be discarded.
1603        bool SawCatchAll = false;
1604        for (unsigned j = 0; j != NumTypeInfos; ++j) {
1605          Value *Elt = Filter->getOperand(j);
1606          Constant *TypeInfo = cast<Constant>(Elt->stripPointerCasts());
1607          if (isCatchAll(Personality, TypeInfo)) {
1608            // This element is a catch-all.  Bail out, noting this fact.
1609            SawCatchAll = true;
1610            break;
1611          }
1612          if (AlreadyCaught.count(TypeInfo))
1613            // Already caught by an earlier clause, so having it in the filter
1614            // is pointless.
1615            continue;
1616          // There is no point in having multiple copies of the same typeinfo in
1617          // a filter, so only add it if we didn't already.
1618          if (SeenInFilter.insert(TypeInfo))
1619            NewFilterElts.push_back(cast<Constant>(Elt));
1620        }
1621        // A filter containing a catch-all cannot match anything by definition.
1622        if (SawCatchAll) {
1623          // Throw the filter away.
1624          MakeNewInstruction = true;
1625          continue;
1626        }
1627
1628        // If we dropped something from the filter, make a new one.
1629        if (NewFilterElts.size() < NumTypeInfos)
1630          MakeNewFilter = true;
1631      }
1632      if (MakeNewFilter) {
1633        FilterType = ArrayType::get(FilterType->getElementType(),
1634                                    NewFilterElts.size());
1635        FilterClause = ConstantArray::get(FilterType, NewFilterElts);
1636        MakeNewInstruction = true;
1637      }
1638
1639      NewClauses.push_back(FilterClause);
1640
1641      // If the new filter is empty then it will catch everything so there is
1642      // no point in keeping any following clauses or marking the landingpad
1643      // as having a cleanup.  The case of the original filter being empty was
1644      // already handled above.
1645      if (MakeNewFilter && !NewFilterElts.size()) {
1646        assert(MakeNewInstruction && "New filter but not a new instruction!");
1647        CleanupFlag = false;
1648        break;
1649      }
1650    }
1651  }
1652
1653  // If several filters occur in a row then reorder them so that the shortest
1654  // filters come first (those with the smallest number of elements).  This is
1655  // advantageous because shorter filters are more likely to match, speeding up
1656  // unwinding, but mostly because it increases the effectiveness of the other
1657  // filter optimizations below.
1658  for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
1659    unsigned j;
1660    // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
1661    for (j = i; j != e; ++j)
1662      if (!isa<ArrayType>(NewClauses[j]->getType()))
1663        break;
1664
1665    // Check whether the filters are already sorted by length.  We need to know
1666    // if sorting them is actually going to do anything so that we only make a
1667    // new landingpad instruction if it does.
1668    for (unsigned k = i; k + 1 < j; ++k)
1669      if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
1670        // Not sorted, so sort the filters now.  Doing an unstable sort would be
1671        // correct too but reordering filters pointlessly might confuse users.
1672        std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
1673                         shorter_filter);
1674        MakeNewInstruction = true;
1675        break;
1676      }
1677
1678    // Look for the next batch of filters.
1679    i = j + 1;
1680  }
1681
1682  // If typeinfos matched if and only if equal, then the elements of a filter L
1683  // that occurs later than a filter F could be replaced by the intersection of
1684  // the elements of F and L.  In reality two typeinfos can match without being
1685  // equal (for example if one represents a C++ class, and the other some class
1686  // derived from it) so it would be wrong to perform this transform in general.
1687  // However the transform is correct and useful if F is a subset of L.  In that
1688  // case L can be replaced by F, and thus removed altogether since repeating a
1689  // filter is pointless.  So here we look at all pairs of filters F and L where
1690  // L follows F in the list of clauses, and remove L if every element of F is
1691  // an element of L.  This can occur when inlining C++ functions with exception
1692  // specifications.
1693  for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
1694    // Examine each filter in turn.
1695    Value *Filter = NewClauses[i];
1696    ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
1697    if (!FTy)
1698      // Not a filter - skip it.
1699      continue;
1700    unsigned FElts = FTy->getNumElements();
1701    // Examine each filter following this one.  Doing this backwards means that
1702    // we don't have to worry about filters disappearing under us when removed.
1703    for (unsigned j = NewClauses.size() - 1; j != i; --j) {
1704      Value *LFilter = NewClauses[j];
1705      ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
1706      if (!LTy)
1707        // Not a filter - skip it.
1708        continue;
1709      // If Filter is a subset of LFilter, i.e. every element of Filter is also
1710      // an element of LFilter, then discard LFilter.
1711      SmallVector<Value *, 16>::iterator J = NewClauses.begin() + j;
1712      // If Filter is empty then it is a subset of LFilter.
1713      if (!FElts) {
1714        // Discard LFilter.
1715        NewClauses.erase(J);
1716        MakeNewInstruction = true;
1717        // Move on to the next filter.
1718        continue;
1719      }
1720      unsigned LElts = LTy->getNumElements();
1721      // If Filter is longer than LFilter then it cannot be a subset of it.
1722      if (FElts > LElts)
1723        // Move on to the next filter.
1724        continue;
1725      // At this point we know that LFilter has at least one element.
1726      if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
1727        // Filter is a subset of LFilter iff Filter contains only zeros (as we
1728        // already know that Filter is not longer than LFilter).
1729        if (isa<ConstantAggregateZero>(Filter)) {
1730          assert(FElts <= LElts && "Should have handled this case earlier!");
1731          // Discard LFilter.
1732          NewClauses.erase(J);
1733          MakeNewInstruction = true;
1734        }
1735        // Move on to the next filter.
1736        continue;
1737      }
1738      ConstantArray *LArray = cast<ConstantArray>(LFilter);
1739      if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
1740        // Since Filter is non-empty and contains only zeros, it is a subset of
1741        // LFilter iff LFilter contains a zero.
1742        assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
1743        for (unsigned l = 0; l != LElts; ++l)
1744          if (LArray->getOperand(l)->isNullValue()) {
1745            // LFilter contains a zero - discard it.
1746            NewClauses.erase(J);
1747            MakeNewInstruction = true;
1748            break;
1749          }
1750        // Move on to the next filter.
1751        continue;
1752      }
1753      // At this point we know that both filters are ConstantArrays.  Loop over
1754      // operands to see whether every element of Filter is also an element of
1755      // LFilter.  Since filters tend to be short this is probably faster than
1756      // using a method that scales nicely.
1757      ConstantArray *FArray = cast<ConstantArray>(Filter);
1758      bool AllFound = true;
1759      for (unsigned f = 0; f != FElts; ++f) {
1760        Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
1761        AllFound = false;
1762        for (unsigned l = 0; l != LElts; ++l) {
1763          Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
1764          if (LTypeInfo == FTypeInfo) {
1765            AllFound = true;
1766            break;
1767          }
1768        }
1769        if (!AllFound)
1770          break;
1771      }
1772      if (AllFound) {
1773        // Discard LFilter.
1774        NewClauses.erase(J);
1775        MakeNewInstruction = true;
1776      }
1777      // Move on to the next filter.
1778    }
1779  }
1780
1781  // If we changed any of the clauses, replace the old landingpad instruction
1782  // with a new one.
1783  if (MakeNewInstruction) {
1784    LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
1785                                                 LI.getPersonalityFn(),
1786                                                 NewClauses.size());
1787    for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
1788      NLI->addClause(NewClauses[i]);
1789    // A landing pad with no clauses must have the cleanup flag set.  It is
1790    // theoretically possible, though highly unlikely, that we eliminated all
1791    // clauses.  If so, force the cleanup flag to true.
1792    if (NewClauses.empty())
1793      CleanupFlag = true;
1794    NLI->setCleanup(CleanupFlag);
1795    return NLI;
1796  }
1797
1798  // Even if none of the clauses changed, we may nonetheless have understood
1799  // that the cleanup flag is pointless.  Clear it if so.
1800  if (LI.isCleanup() != CleanupFlag) {
1801    assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
1802    LI.setCleanup(CleanupFlag);
1803    return &LI;
1804  }
1805
1806  return 0;
1807}
1808
1809
1810
1811
1812/// TryToSinkInstruction - Try to move the specified instruction from its
1813/// current block into the beginning of DestBlock, which can only happen if it's
1814/// safe to move the instruction past all of the instructions between it and the
1815/// end of its block.
1816static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
1817  assert(I->hasOneUse() && "Invariants didn't hold!");
1818
1819  // Cannot move control-flow-involving, volatile loads, vaarg, etc.
1820  if (isa<PHINode>(I) || isa<LandingPadInst>(I) || I->mayHaveSideEffects() ||
1821      isa<TerminatorInst>(I))
1822    return false;
1823
1824  // Do not sink alloca instructions out of the entry block.
1825  if (isa<AllocaInst>(I) && I->getParent() ==
1826        &DestBlock->getParent()->getEntryBlock())
1827    return false;
1828
1829  // We can only sink load instructions if there is nothing between the load and
1830  // the end of block that could change the value.
1831  if (I->mayReadFromMemory()) {
1832    for (BasicBlock::iterator Scan = I, E = I->getParent()->end();
1833         Scan != E; ++Scan)
1834      if (Scan->mayWriteToMemory())
1835        return false;
1836  }
1837
1838  BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
1839  I->moveBefore(InsertPos);
1840  ++NumSunkInst;
1841  return true;
1842}
1843
1844
1845/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
1846/// all reachable code to the worklist.
1847///
1848/// This has a couple of tricks to make the code faster and more powerful.  In
1849/// particular, we constant fold and DCE instructions as we go, to avoid adding
1850/// them to the worklist (this significantly speeds up instcombine on code where
1851/// many instructions are dead or constant).  Additionally, if we find a branch
1852/// whose condition is a known constant, we only visit the reachable successors.
1853///
1854static bool AddReachableCodeToWorklist(BasicBlock *BB,
1855                                       SmallPtrSet<BasicBlock*, 64> &Visited,
1856                                       InstCombiner &IC,
1857                                       const TargetData *TD,
1858                                       const TargetLibraryInfo *TLI) {
1859  bool MadeIRChange = false;
1860  SmallVector<BasicBlock*, 256> Worklist;
1861  Worklist.push_back(BB);
1862
1863  SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
1864  DenseMap<ConstantExpr*, Constant*> FoldedConstants;
1865
1866  do {
1867    BB = Worklist.pop_back_val();
1868
1869    // We have now visited this block!  If we've already been here, ignore it.
1870    if (!Visited.insert(BB)) continue;
1871
1872    for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
1873      Instruction *Inst = BBI++;
1874
1875      // DCE instruction if trivially dead.
1876      if (isInstructionTriviallyDead(Inst, TLI)) {
1877        ++NumDeadInst;
1878        DEBUG(errs() << "IC: DCE: " << *Inst << '\n');
1879        Inst->eraseFromParent();
1880        continue;
1881      }
1882
1883      // ConstantProp instruction if trivially constant.
1884      if (!Inst->use_empty() && isa<Constant>(Inst->getOperand(0)))
1885        if (Constant *C = ConstantFoldInstruction(Inst, TD, TLI)) {
1886          DEBUG(errs() << "IC: ConstFold to: " << *C << " from: "
1887                       << *Inst << '\n');
1888          Inst->replaceAllUsesWith(C);
1889          ++NumConstProp;
1890          Inst->eraseFromParent();
1891          continue;
1892        }
1893
1894      if (TD) {
1895        // See if we can constant fold its operands.
1896        for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end();
1897             i != e; ++i) {
1898          ConstantExpr *CE = dyn_cast<ConstantExpr>(i);
1899          if (CE == 0) continue;
1900
1901          Constant*& FoldRes = FoldedConstants[CE];
1902          if (!FoldRes)
1903            FoldRes = ConstantFoldConstantExpression(CE, TD, TLI);
1904          if (!FoldRes)
1905            FoldRes = CE;
1906
1907          if (FoldRes != CE) {
1908            *i = FoldRes;
1909            MadeIRChange = true;
1910          }
1911        }
1912      }
1913
1914      InstrsForInstCombineWorklist.push_back(Inst);
1915    }
1916
1917    // Recursively visit successors.  If this is a branch or switch on a
1918    // constant, only visit the reachable successor.
1919    TerminatorInst *TI = BB->getTerminator();
1920    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1921      if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
1922        bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
1923        BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
1924        Worklist.push_back(ReachableBB);
1925        continue;
1926      }
1927    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1928      if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
1929        // See if this is an explicit destination.
1930        for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
1931             i != e; ++i)
1932          if (i.getCaseValue() == Cond) {
1933            BasicBlock *ReachableBB = i.getCaseSuccessor();
1934            Worklist.push_back(ReachableBB);
1935            continue;
1936          }
1937
1938        // Otherwise it is the default destination.
1939        Worklist.push_back(SI->getDefaultDest());
1940        continue;
1941      }
1942    }
1943
1944    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
1945      Worklist.push_back(TI->getSuccessor(i));
1946  } while (!Worklist.empty());
1947
1948  // Once we've found all of the instructions to add to instcombine's worklist,
1949  // add them in reverse order.  This way instcombine will visit from the top
1950  // of the function down.  This jives well with the way that it adds all uses
1951  // of instructions to the worklist after doing a transformation, thus avoiding
1952  // some N^2 behavior in pathological cases.
1953  IC.Worklist.AddInitialGroup(&InstrsForInstCombineWorklist[0],
1954                              InstrsForInstCombineWorklist.size());
1955
1956  return MadeIRChange;
1957}
1958
1959bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
1960  MadeIRChange = false;
1961
1962  DEBUG(errs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
1963               << F.getName() << "\n");
1964
1965  {
1966    // Do a depth-first traversal of the function, populate the worklist with
1967    // the reachable instructions.  Ignore blocks that are not reachable.  Keep
1968    // track of which blocks we visit.
1969    SmallPtrSet<BasicBlock*, 64> Visited;
1970    MadeIRChange |= AddReachableCodeToWorklist(F.begin(), Visited, *this, TD,
1971                                               TLI);
1972
1973    // Do a quick scan over the function.  If we find any blocks that are
1974    // unreachable, remove any instructions inside of them.  This prevents
1975    // the instcombine code from having to deal with some bad special cases.
1976    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1977      if (Visited.count(BB)) continue;
1978
1979      // Delete the instructions backwards, as it has a reduced likelihood of
1980      // having to update as many def-use and use-def chains.
1981      Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
1982      while (EndInst != BB->begin()) {
1983        // Delete the next to last instruction.
1984        BasicBlock::iterator I = EndInst;
1985        Instruction *Inst = --I;
1986        if (!Inst->use_empty())
1987          Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
1988        if (isa<LandingPadInst>(Inst)) {
1989          EndInst = Inst;
1990          continue;
1991        }
1992        if (!isa<DbgInfoIntrinsic>(Inst)) {
1993          ++NumDeadInst;
1994          MadeIRChange = true;
1995        }
1996        Inst->eraseFromParent();
1997      }
1998    }
1999  }
2000
2001  while (!Worklist.isEmpty()) {
2002    Instruction *I = Worklist.RemoveOne();
2003    if (I == 0) continue;  // skip null values.
2004
2005    // Check to see if we can DCE the instruction.
2006    if (isInstructionTriviallyDead(I, TLI)) {
2007      DEBUG(errs() << "IC: DCE: " << *I << '\n');
2008      EraseInstFromFunction(*I);
2009      ++NumDeadInst;
2010      MadeIRChange = true;
2011      continue;
2012    }
2013
2014    // Instruction isn't dead, see if we can constant propagate it.
2015    if (!I->use_empty() && isa<Constant>(I->getOperand(0)))
2016      if (Constant *C = ConstantFoldInstruction(I, TD, TLI)) {
2017        DEBUG(errs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n');
2018
2019        // Add operands to the worklist.
2020        ReplaceInstUsesWith(*I, C);
2021        ++NumConstProp;
2022        EraseInstFromFunction(*I);
2023        MadeIRChange = true;
2024        continue;
2025      }
2026
2027    // See if we can trivially sink this instruction to a successor basic block.
2028    if (I->hasOneUse()) {
2029      BasicBlock *BB = I->getParent();
2030      Instruction *UserInst = cast<Instruction>(I->use_back());
2031      BasicBlock *UserParent;
2032
2033      // Get the block the use occurs in.
2034      if (PHINode *PN = dyn_cast<PHINode>(UserInst))
2035        UserParent = PN->getIncomingBlock(I->use_begin().getUse());
2036      else
2037        UserParent = UserInst->getParent();
2038
2039      if (UserParent != BB) {
2040        bool UserIsSuccessor = false;
2041        // See if the user is one of our successors.
2042        for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
2043          if (*SI == UserParent) {
2044            UserIsSuccessor = true;
2045            break;
2046          }
2047
2048        // If the user is one of our immediate successors, and if that successor
2049        // only has us as a predecessors (we'd have to split the critical edge
2050        // otherwise), we can keep going.
2051        if (UserIsSuccessor && UserParent->getSinglePredecessor())
2052          // Okay, the CFG is simple enough, try to sink this instruction.
2053          MadeIRChange |= TryToSinkInstruction(I, UserParent);
2054      }
2055    }
2056
2057    // Now that we have an instruction, try combining it to simplify it.
2058    Builder->SetInsertPoint(I->getParent(), I);
2059    Builder->SetCurrentDebugLocation(I->getDebugLoc());
2060
2061#ifndef NDEBUG
2062    std::string OrigI;
2063#endif
2064    DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
2065    DEBUG(errs() << "IC: Visiting: " << OrigI << '\n');
2066
2067    if (Instruction *Result = visit(*I)) {
2068      ++NumCombined;
2069      // Should we replace the old instruction with a new one?
2070      if (Result != I) {
2071        DEBUG(errs() << "IC: Old = " << *I << '\n'
2072                     << "    New = " << *Result << '\n');
2073
2074        if (!I->getDebugLoc().isUnknown())
2075          Result->setDebugLoc(I->getDebugLoc());
2076        // Everything uses the new instruction now.
2077        I->replaceAllUsesWith(Result);
2078
2079        // Move the name to the new instruction first.
2080        Result->takeName(I);
2081
2082        // Push the new instruction and any users onto the worklist.
2083        Worklist.Add(Result);
2084        Worklist.AddUsersToWorkList(*Result);
2085
2086        // Insert the new instruction into the basic block...
2087        BasicBlock *InstParent = I->getParent();
2088        BasicBlock::iterator InsertPos = I;
2089
2090        // If we replace a PHI with something that isn't a PHI, fix up the
2091        // insertion point.
2092        if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos))
2093          InsertPos = InstParent->getFirstInsertionPt();
2094
2095        InstParent->getInstList().insert(InsertPos, Result);
2096
2097        EraseInstFromFunction(*I);
2098      } else {
2099#ifndef NDEBUG
2100        DEBUG(errs() << "IC: Mod = " << OrigI << '\n'
2101                     << "    New = " << *I << '\n');
2102#endif
2103
2104        // If the instruction was modified, it's possible that it is now dead.
2105        // if so, remove it.
2106        if (isInstructionTriviallyDead(I, TLI)) {
2107          EraseInstFromFunction(*I);
2108        } else {
2109          Worklist.Add(I);
2110          Worklist.AddUsersToWorkList(*I);
2111        }
2112      }
2113      MadeIRChange = true;
2114    }
2115  }
2116
2117  Worklist.Zap();
2118  return MadeIRChange;
2119}
2120
2121
2122bool InstCombiner::runOnFunction(Function &F) {
2123  TD = getAnalysisIfAvailable<TargetData>();
2124  TLI = &getAnalysis<TargetLibraryInfo>();
2125
2126  /// Builder - This is an IRBuilder that automatically inserts new
2127  /// instructions into the worklist when they are created.
2128  IRBuilder<true, TargetFolder, InstCombineIRInserter>
2129    TheBuilder(F.getContext(), TargetFolder(TD),
2130               InstCombineIRInserter(Worklist));
2131  Builder = &TheBuilder;
2132
2133  bool EverMadeChange = false;
2134
2135  // Lower dbg.declare intrinsics otherwise their value may be clobbered
2136  // by instcombiner.
2137  EverMadeChange = LowerDbgDeclare(F);
2138
2139  // Iterate while there is work to do.
2140  unsigned Iteration = 0;
2141  while (DoOneIteration(F, Iteration++))
2142    EverMadeChange = true;
2143
2144  Builder = 0;
2145  return EverMadeChange;
2146}
2147
2148FunctionPass *llvm::createInstructionCombiningPass() {
2149  return new InstCombiner();
2150}
2151