1//===- InstCombineSelect.cpp ----------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitSelect function.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/Support/PatternMatch.h"
16#include "llvm/Analysis/ConstantFolding.h"
17#include "llvm/Analysis/InstructionSimplify.h"
18using namespace llvm;
19using namespace PatternMatch;
20
21/// MatchSelectPattern - Pattern match integer [SU]MIN, [SU]MAX, and ABS idioms,
22/// returning the kind and providing the out parameter results if we
23/// successfully match.
24static SelectPatternFlavor
25MatchSelectPattern(Value *V, Value *&LHS, Value *&RHS) {
26  SelectInst *SI = dyn_cast<SelectInst>(V);
27  if (SI == 0) return SPF_UNKNOWN;
28
29  ICmpInst *ICI = dyn_cast<ICmpInst>(SI->getCondition());
30  if (ICI == 0) return SPF_UNKNOWN;
31
32  LHS = ICI->getOperand(0);
33  RHS = ICI->getOperand(1);
34
35  // (icmp X, Y) ? X : Y
36  if (SI->getTrueValue() == ICI->getOperand(0) &&
37      SI->getFalseValue() == ICI->getOperand(1)) {
38    switch (ICI->getPredicate()) {
39    default: return SPF_UNKNOWN; // Equality.
40    case ICmpInst::ICMP_UGT:
41    case ICmpInst::ICMP_UGE: return SPF_UMAX;
42    case ICmpInst::ICMP_SGT:
43    case ICmpInst::ICMP_SGE: return SPF_SMAX;
44    case ICmpInst::ICMP_ULT:
45    case ICmpInst::ICMP_ULE: return SPF_UMIN;
46    case ICmpInst::ICMP_SLT:
47    case ICmpInst::ICMP_SLE: return SPF_SMIN;
48    }
49  }
50
51  // (icmp X, Y) ? Y : X
52  if (SI->getTrueValue() == ICI->getOperand(1) &&
53      SI->getFalseValue() == ICI->getOperand(0)) {
54    switch (ICI->getPredicate()) {
55      default: return SPF_UNKNOWN; // Equality.
56      case ICmpInst::ICMP_UGT:
57      case ICmpInst::ICMP_UGE: return SPF_UMIN;
58      case ICmpInst::ICMP_SGT:
59      case ICmpInst::ICMP_SGE: return SPF_SMIN;
60      case ICmpInst::ICMP_ULT:
61      case ICmpInst::ICMP_ULE: return SPF_UMAX;
62      case ICmpInst::ICMP_SLT:
63      case ICmpInst::ICMP_SLE: return SPF_SMAX;
64    }
65  }
66
67  // TODO: (X > 4) ? X : 5   -->  (X >= 5) ? X : 5  -->  MAX(X, 5)
68
69  return SPF_UNKNOWN;
70}
71
72
73/// GetSelectFoldableOperands - We want to turn code that looks like this:
74///   %C = or %A, %B
75///   %D = select %cond, %C, %A
76/// into:
77///   %C = select %cond, %B, 0
78///   %D = or %A, %C
79///
80/// Assuming that the specified instruction is an operand to the select, return
81/// a bitmask indicating which operands of this instruction are foldable if they
82/// equal the other incoming value of the select.
83///
84static unsigned GetSelectFoldableOperands(Instruction *I) {
85  switch (I->getOpcode()) {
86  case Instruction::Add:
87  case Instruction::Mul:
88  case Instruction::And:
89  case Instruction::Or:
90  case Instruction::Xor:
91    return 3;              // Can fold through either operand.
92  case Instruction::Sub:   // Can only fold on the amount subtracted.
93  case Instruction::Shl:   // Can only fold on the shift amount.
94  case Instruction::LShr:
95  case Instruction::AShr:
96    return 1;
97  default:
98    return 0;              // Cannot fold
99  }
100}
101
102/// GetSelectFoldableConstant - For the same transformation as the previous
103/// function, return the identity constant that goes into the select.
104static Constant *GetSelectFoldableConstant(Instruction *I) {
105  switch (I->getOpcode()) {
106  default: llvm_unreachable("This cannot happen!");
107  case Instruction::Add:
108  case Instruction::Sub:
109  case Instruction::Or:
110  case Instruction::Xor:
111  case Instruction::Shl:
112  case Instruction::LShr:
113  case Instruction::AShr:
114    return Constant::getNullValue(I->getType());
115  case Instruction::And:
116    return Constant::getAllOnesValue(I->getType());
117  case Instruction::Mul:
118    return ConstantInt::get(I->getType(), 1);
119  }
120}
121
122/// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
123/// have the same opcode and only one use each.  Try to simplify this.
124Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
125                                          Instruction *FI) {
126  if (TI->getNumOperands() == 1) {
127    // If this is a non-volatile load or a cast from the same type,
128    // merge.
129    if (TI->isCast()) {
130      if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType())
131        return 0;
132      // The select condition may be a vector. We may only change the operand
133      // type if the vector width remains the same (and matches the condition).
134      Type *CondTy = SI.getCondition()->getType();
135      if (CondTy->isVectorTy() && CondTy->getVectorNumElements() !=
136          FI->getOperand(0)->getType()->getVectorNumElements())
137        return 0;
138    } else {
139      return 0;  // unknown unary op.
140    }
141
142    // Fold this by inserting a select from the input values.
143    Value *NewSI = Builder->CreateSelect(SI.getCondition(), TI->getOperand(0),
144                                         FI->getOperand(0), SI.getName()+".v");
145    return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
146                            TI->getType());
147  }
148
149  // Only handle binary operators here.
150  if (!isa<BinaryOperator>(TI))
151    return 0;
152
153  // Figure out if the operations have any operands in common.
154  Value *MatchOp, *OtherOpT, *OtherOpF;
155  bool MatchIsOpZero;
156  if (TI->getOperand(0) == FI->getOperand(0)) {
157    MatchOp  = TI->getOperand(0);
158    OtherOpT = TI->getOperand(1);
159    OtherOpF = FI->getOperand(1);
160    MatchIsOpZero = true;
161  } else if (TI->getOperand(1) == FI->getOperand(1)) {
162    MatchOp  = TI->getOperand(1);
163    OtherOpT = TI->getOperand(0);
164    OtherOpF = FI->getOperand(0);
165    MatchIsOpZero = false;
166  } else if (!TI->isCommutative()) {
167    return 0;
168  } else if (TI->getOperand(0) == FI->getOperand(1)) {
169    MatchOp  = TI->getOperand(0);
170    OtherOpT = TI->getOperand(1);
171    OtherOpF = FI->getOperand(0);
172    MatchIsOpZero = true;
173  } else if (TI->getOperand(1) == FI->getOperand(0)) {
174    MatchOp  = TI->getOperand(1);
175    OtherOpT = TI->getOperand(0);
176    OtherOpF = FI->getOperand(1);
177    MatchIsOpZero = true;
178  } else {
179    return 0;
180  }
181
182  // If we reach here, they do have operations in common.
183  Value *NewSI = Builder->CreateSelect(SI.getCondition(), OtherOpT,
184                                       OtherOpF, SI.getName()+".v");
185
186  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
187    if (MatchIsOpZero)
188      return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI);
189    else
190      return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp);
191  }
192  llvm_unreachable("Shouldn't get here");
193}
194
195static bool isSelect01(Constant *C1, Constant *C2) {
196  ConstantInt *C1I = dyn_cast<ConstantInt>(C1);
197  if (!C1I)
198    return false;
199  ConstantInt *C2I = dyn_cast<ConstantInt>(C2);
200  if (!C2I)
201    return false;
202  if (!C1I->isZero() && !C2I->isZero()) // One side must be zero.
203    return false;
204  return C1I->isOne() || C1I->isAllOnesValue() ||
205         C2I->isOne() || C2I->isAllOnesValue();
206}
207
208/// FoldSelectIntoOp - Try fold the select into one of the operands to
209/// facilitate further optimization.
210Instruction *InstCombiner::FoldSelectIntoOp(SelectInst &SI, Value *TrueVal,
211                                            Value *FalseVal) {
212  // See the comment above GetSelectFoldableOperands for a description of the
213  // transformation we are doing here.
214  if (Instruction *TVI = dyn_cast<Instruction>(TrueVal)) {
215    if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
216        !isa<Constant>(FalseVal)) {
217      if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
218        unsigned OpToFold = 0;
219        if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
220          OpToFold = 1;
221        } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
222          OpToFold = 2;
223        }
224
225        if (OpToFold) {
226          Constant *C = GetSelectFoldableConstant(TVI);
227          Value *OOp = TVI->getOperand(2-OpToFold);
228          // Avoid creating select between 2 constants unless it's selecting
229          // between 0, 1 and -1.
230          if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
231            Value *NewSel = Builder->CreateSelect(SI.getCondition(), OOp, C);
232            NewSel->takeName(TVI);
233            BinaryOperator *TVI_BO = cast<BinaryOperator>(TVI);
234            BinaryOperator *BO = BinaryOperator::Create(TVI_BO->getOpcode(),
235                                                        FalseVal, NewSel);
236            if (isa<PossiblyExactOperator>(BO))
237              BO->setIsExact(TVI_BO->isExact());
238            if (isa<OverflowingBinaryOperator>(BO)) {
239              BO->setHasNoUnsignedWrap(TVI_BO->hasNoUnsignedWrap());
240              BO->setHasNoSignedWrap(TVI_BO->hasNoSignedWrap());
241            }
242            return BO;
243          }
244        }
245      }
246    }
247  }
248
249  if (Instruction *FVI = dyn_cast<Instruction>(FalseVal)) {
250    if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
251        !isa<Constant>(TrueVal)) {
252      if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
253        unsigned OpToFold = 0;
254        if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
255          OpToFold = 1;
256        } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
257          OpToFold = 2;
258        }
259
260        if (OpToFold) {
261          Constant *C = GetSelectFoldableConstant(FVI);
262          Value *OOp = FVI->getOperand(2-OpToFold);
263          // Avoid creating select between 2 constants unless it's selecting
264          // between 0, 1 and -1.
265          if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
266            Value *NewSel = Builder->CreateSelect(SI.getCondition(), C, OOp);
267            NewSel->takeName(FVI);
268            BinaryOperator *FVI_BO = cast<BinaryOperator>(FVI);
269            BinaryOperator *BO = BinaryOperator::Create(FVI_BO->getOpcode(),
270                                                        TrueVal, NewSel);
271            if (isa<PossiblyExactOperator>(BO))
272              BO->setIsExact(FVI_BO->isExact());
273            if (isa<OverflowingBinaryOperator>(BO)) {
274              BO->setHasNoUnsignedWrap(FVI_BO->hasNoUnsignedWrap());
275              BO->setHasNoSignedWrap(FVI_BO->hasNoSignedWrap());
276            }
277            return BO;
278          }
279        }
280      }
281    }
282  }
283
284  return 0;
285}
286
287/// SimplifyWithOpReplaced - See if V simplifies when its operand Op is
288/// replaced with RepOp.
289static Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
290                                     const TargetData *TD,
291                                     const TargetLibraryInfo *TLI) {
292  // Trivial replacement.
293  if (V == Op)
294    return RepOp;
295
296  Instruction *I = dyn_cast<Instruction>(V);
297  if (!I)
298    return 0;
299
300  // If this is a binary operator, try to simplify it with the replaced op.
301  if (BinaryOperator *B = dyn_cast<BinaryOperator>(I)) {
302    if (B->getOperand(0) == Op)
303      return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), TD, TLI);
304    if (B->getOperand(1) == Op)
305      return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, TD, TLI);
306  }
307
308  // Same for CmpInsts.
309  if (CmpInst *C = dyn_cast<CmpInst>(I)) {
310    if (C->getOperand(0) == Op)
311      return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), TD,
312                             TLI);
313    if (C->getOperand(1) == Op)
314      return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, TD,
315                             TLI);
316  }
317
318  // TODO: We could hand off more cases to instsimplify here.
319
320  // If all operands are constant after substituting Op for RepOp then we can
321  // constant fold the instruction.
322  if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) {
323    // Build a list of all constant operands.
324    SmallVector<Constant*, 8> ConstOps;
325    for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
326      if (I->getOperand(i) == Op)
327        ConstOps.push_back(CRepOp);
328      else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i)))
329        ConstOps.push_back(COp);
330      else
331        break;
332    }
333
334    // All operands were constants, fold it.
335    if (ConstOps.size() == I->getNumOperands()) {
336      if (CmpInst *C = dyn_cast<CmpInst>(I))
337        return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0],
338                                               ConstOps[1], TD, TLI);
339
340      if (LoadInst *LI = dyn_cast<LoadInst>(I))
341        if (!LI->isVolatile())
342          return ConstantFoldLoadFromConstPtr(ConstOps[0], TD);
343
344      return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
345                                      ConstOps, TD, TLI);
346    }
347  }
348
349  return 0;
350}
351
352/// visitSelectInstWithICmp - Visit a SelectInst that has an
353/// ICmpInst as its first operand.
354///
355Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI,
356                                                   ICmpInst *ICI) {
357  bool Changed = false;
358  ICmpInst::Predicate Pred = ICI->getPredicate();
359  Value *CmpLHS = ICI->getOperand(0);
360  Value *CmpRHS = ICI->getOperand(1);
361  Value *TrueVal = SI.getTrueValue();
362  Value *FalseVal = SI.getFalseValue();
363
364  // Check cases where the comparison is with a constant that
365  // can be adjusted to fit the min/max idiom. We may move or edit ICI
366  // here, so make sure the select is the only user.
367  if (ICI->hasOneUse())
368    if (ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS)) {
369      // X < MIN ? T : F  -->  F
370      if ((Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_ULT)
371          && CI->isMinValue(Pred == ICmpInst::ICMP_SLT))
372        return ReplaceInstUsesWith(SI, FalseVal);
373      // X > MAX ? T : F  -->  F
374      else if ((Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_UGT)
375               && CI->isMaxValue(Pred == ICmpInst::ICMP_SGT))
376        return ReplaceInstUsesWith(SI, FalseVal);
377      switch (Pred) {
378      default: break;
379      case ICmpInst::ICMP_ULT:
380      case ICmpInst::ICMP_SLT:
381      case ICmpInst::ICMP_UGT:
382      case ICmpInst::ICMP_SGT: {
383        // These transformations only work for selects over integers.
384        IntegerType *SelectTy = dyn_cast<IntegerType>(SI.getType());
385        if (!SelectTy)
386          break;
387
388        Constant *AdjustedRHS;
389        if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
390          AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() + 1);
391        else // (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
392          AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() - 1);
393
394        // X > C ? X : C+1  -->  X < C+1 ? C+1 : X
395        // X < C ? X : C-1  -->  X > C-1 ? C-1 : X
396        if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
397            (CmpLHS == FalseVal && AdjustedRHS == TrueVal))
398          ; // Nothing to do here. Values match without any sign/zero extension.
399
400        // Types do not match. Instead of calculating this with mixed types
401        // promote all to the larger type. This enables scalar evolution to
402        // analyze this expression.
403        else if (CmpRHS->getType()->getScalarSizeInBits()
404                 < SelectTy->getBitWidth()) {
405          Constant *sextRHS = ConstantExpr::getSExt(AdjustedRHS, SelectTy);
406
407          // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
408          // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
409          // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
410          // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
411          if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) &&
412                sextRHS == FalseVal) {
413            CmpLHS = TrueVal;
414            AdjustedRHS = sextRHS;
415          } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
416                     sextRHS == TrueVal) {
417            CmpLHS = FalseVal;
418            AdjustedRHS = sextRHS;
419          } else if (ICI->isUnsigned()) {
420            Constant *zextRHS = ConstantExpr::getZExt(AdjustedRHS, SelectTy);
421            // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
422            // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
423            // zext + signed compare cannot be changed:
424            //    0xff <s 0x00, but 0x00ff >s 0x0000
425            if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) &&
426                zextRHS == FalseVal) {
427              CmpLHS = TrueVal;
428              AdjustedRHS = zextRHS;
429            } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
430                       zextRHS == TrueVal) {
431              CmpLHS = FalseVal;
432              AdjustedRHS = zextRHS;
433            } else
434              break;
435          } else
436            break;
437        } else
438          break;
439
440        Pred = ICmpInst::getSwappedPredicate(Pred);
441        CmpRHS = AdjustedRHS;
442        std::swap(FalseVal, TrueVal);
443        ICI->setPredicate(Pred);
444        ICI->setOperand(0, CmpLHS);
445        ICI->setOperand(1, CmpRHS);
446        SI.setOperand(1, TrueVal);
447        SI.setOperand(2, FalseVal);
448
449        // Move ICI instruction right before the select instruction. Otherwise
450        // the sext/zext value may be defined after the ICI instruction uses it.
451        ICI->moveBefore(&SI);
452
453        Changed = true;
454        break;
455      }
456      }
457    }
458
459  // Transform (X >s -1) ? C1 : C2 --> ((X >>s 31) & (C2 - C1)) + C1
460  // and       (X <s  0) ? C2 : C1 --> ((X >>s 31) & (C2 - C1)) + C1
461  // FIXME: Type and constness constraints could be lifted, but we have to
462  //        watch code size carefully. We should consider xor instead of
463  //        sub/add when we decide to do that.
464  if (IntegerType *Ty = dyn_cast<IntegerType>(CmpLHS->getType())) {
465    if (TrueVal->getType() == Ty) {
466      if (ConstantInt *Cmp = dyn_cast<ConstantInt>(CmpRHS)) {
467        ConstantInt *C1 = NULL, *C2 = NULL;
468        if (Pred == ICmpInst::ICMP_SGT && Cmp->isAllOnesValue()) {
469          C1 = dyn_cast<ConstantInt>(TrueVal);
470          C2 = dyn_cast<ConstantInt>(FalseVal);
471        } else if (Pred == ICmpInst::ICMP_SLT && Cmp->isNullValue()) {
472          C1 = dyn_cast<ConstantInt>(FalseVal);
473          C2 = dyn_cast<ConstantInt>(TrueVal);
474        }
475        if (C1 && C2) {
476          // This shift results in either -1 or 0.
477          Value *AShr = Builder->CreateAShr(CmpLHS, Ty->getBitWidth()-1);
478
479          // Check if we can express the operation with a single or.
480          if (C2->isAllOnesValue())
481            return ReplaceInstUsesWith(SI, Builder->CreateOr(AShr, C1));
482
483          Value *And = Builder->CreateAnd(AShr, C2->getValue()-C1->getValue());
484          return ReplaceInstUsesWith(SI, Builder->CreateAdd(And, C1));
485        }
486      }
487    }
488  }
489
490  // If we have an equality comparison then we know the value in one of the
491  // arms of the select. See if substituting this value into the arm and
492  // simplifying the result yields the same value as the other arm.
493  if (Pred == ICmpInst::ICMP_EQ) {
494    if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, TD, TLI) == TrueVal ||
495        SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, TD, TLI) == TrueVal)
496      return ReplaceInstUsesWith(SI, FalseVal);
497    if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, TD, TLI) == FalseVal ||
498        SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, TD, TLI) == FalseVal)
499      return ReplaceInstUsesWith(SI, FalseVal);
500  } else if (Pred == ICmpInst::ICMP_NE) {
501    if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, TD, TLI) == FalseVal ||
502        SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, TD, TLI) == FalseVal)
503      return ReplaceInstUsesWith(SI, TrueVal);
504    if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, TD, TLI) == TrueVal ||
505        SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, TD, TLI) == TrueVal)
506      return ReplaceInstUsesWith(SI, TrueVal);
507  }
508
509  // NOTE: if we wanted to, this is where to detect integer MIN/MAX
510
511  if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) {
512    if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
513      // Transform (X == C) ? X : Y -> (X == C) ? C : Y
514      SI.setOperand(1, CmpRHS);
515      Changed = true;
516    } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
517      // Transform (X != C) ? Y : X -> (X != C) ? Y : C
518      SI.setOperand(2, CmpRHS);
519      Changed = true;
520    }
521  }
522
523  return Changed ? &SI : 0;
524}
525
526
527/// CanSelectOperandBeMappingIntoPredBlock - SI is a select whose condition is a
528/// PHI node (but the two may be in different blocks).  See if the true/false
529/// values (V) are live in all of the predecessor blocks of the PHI.  For
530/// example, cases like this cannot be mapped:
531///
532///   X = phi [ C1, BB1], [C2, BB2]
533///   Y = add
534///   Z = select X, Y, 0
535///
536/// because Y is not live in BB1/BB2.
537///
538static bool CanSelectOperandBeMappingIntoPredBlock(const Value *V,
539                                                   const SelectInst &SI) {
540  // If the value is a non-instruction value like a constant or argument, it
541  // can always be mapped.
542  const Instruction *I = dyn_cast<Instruction>(V);
543  if (I == 0) return true;
544
545  // If V is a PHI node defined in the same block as the condition PHI, we can
546  // map the arguments.
547  const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
548
549  if (const PHINode *VP = dyn_cast<PHINode>(I))
550    if (VP->getParent() == CondPHI->getParent())
551      return true;
552
553  // Otherwise, if the PHI and select are defined in the same block and if V is
554  // defined in a different block, then we can transform it.
555  if (SI.getParent() == CondPHI->getParent() &&
556      I->getParent() != CondPHI->getParent())
557    return true;
558
559  // Otherwise we have a 'hard' case and we can't tell without doing more
560  // detailed dominator based analysis, punt.
561  return false;
562}
563
564/// FoldSPFofSPF - We have an SPF (e.g. a min or max) of an SPF of the form:
565///   SPF2(SPF1(A, B), C)
566Instruction *InstCombiner::FoldSPFofSPF(Instruction *Inner,
567                                        SelectPatternFlavor SPF1,
568                                        Value *A, Value *B,
569                                        Instruction &Outer,
570                                        SelectPatternFlavor SPF2, Value *C) {
571  if (C == A || C == B) {
572    // MAX(MAX(A, B), B) -> MAX(A, B)
573    // MIN(MIN(a, b), a) -> MIN(a, b)
574    if (SPF1 == SPF2)
575      return ReplaceInstUsesWith(Outer, Inner);
576
577    // MAX(MIN(a, b), a) -> a
578    // MIN(MAX(a, b), a) -> a
579    if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
580        (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
581        (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
582        (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
583      return ReplaceInstUsesWith(Outer, C);
584  }
585
586  // TODO: MIN(MIN(A, 23), 97)
587  return 0;
588}
589
590
591/// foldSelectICmpAnd - If one of the constants is zero (we know they can't
592/// both be) and we have an icmp instruction with zero, and we have an 'and'
593/// with the non-constant value and a power of two we can turn the select
594/// into a shift on the result of the 'and'.
595static Value *foldSelectICmpAnd(const SelectInst &SI, ConstantInt *TrueVal,
596                                ConstantInt *FalseVal,
597                                InstCombiner::BuilderTy *Builder) {
598  const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition());
599  if (!IC || !IC->isEquality())
600    return 0;
601
602  if (!match(IC->getOperand(1), m_Zero()))
603    return 0;
604
605  ConstantInt *AndRHS;
606  Value *LHS = IC->getOperand(0);
607  if (LHS->getType() != SI.getType() ||
608      !match(LHS, m_And(m_Value(), m_ConstantInt(AndRHS))))
609    return 0;
610
611  // If both select arms are non-zero see if we have a select of the form
612  // 'x ? 2^n + C : C'. Then we can offset both arms by C, use the logic
613  // for 'x ? 2^n : 0' and fix the thing up at the end.
614  ConstantInt *Offset = 0;
615  if (!TrueVal->isZero() && !FalseVal->isZero()) {
616    if ((TrueVal->getValue() - FalseVal->getValue()).isPowerOf2())
617      Offset = FalseVal;
618    else if ((FalseVal->getValue() - TrueVal->getValue()).isPowerOf2())
619      Offset = TrueVal;
620    else
621      return 0;
622
623    // Adjust TrueVal and FalseVal to the offset.
624    TrueVal = ConstantInt::get(Builder->getContext(),
625                               TrueVal->getValue() - Offset->getValue());
626    FalseVal = ConstantInt::get(Builder->getContext(),
627                                FalseVal->getValue() - Offset->getValue());
628  }
629
630  // Make sure the mask in the 'and' and one of the select arms is a power of 2.
631  if (!AndRHS->getValue().isPowerOf2() ||
632      (!TrueVal->getValue().isPowerOf2() &&
633       !FalseVal->getValue().isPowerOf2()))
634    return 0;
635
636  // Determine which shift is needed to transform result of the 'and' into the
637  // desired result.
638  ConstantInt *ValC = !TrueVal->isZero() ? TrueVal : FalseVal;
639  unsigned ValZeros = ValC->getValue().logBase2();
640  unsigned AndZeros = AndRHS->getValue().logBase2();
641
642  Value *V = LHS;
643  if (ValZeros > AndZeros)
644    V = Builder->CreateShl(V, ValZeros - AndZeros);
645  else if (ValZeros < AndZeros)
646    V = Builder->CreateLShr(V, AndZeros - ValZeros);
647
648  // Okay, now we know that everything is set up, we just don't know whether we
649  // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
650  bool ShouldNotVal = !TrueVal->isZero();
651  ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
652  if (ShouldNotVal)
653    V = Builder->CreateXor(V, ValC);
654
655  // Apply an offset if needed.
656  if (Offset)
657    V = Builder->CreateAdd(V, Offset);
658  return V;
659}
660
661Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
662  Value *CondVal = SI.getCondition();
663  Value *TrueVal = SI.getTrueValue();
664  Value *FalseVal = SI.getFalseValue();
665
666  if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal, TD))
667    return ReplaceInstUsesWith(SI, V);
668
669  if (SI.getType()->isIntegerTy(1)) {
670    if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) {
671      if (C->getZExtValue()) {
672        // Change: A = select B, true, C --> A = or B, C
673        return BinaryOperator::CreateOr(CondVal, FalseVal);
674      }
675      // Change: A = select B, false, C --> A = and !B, C
676      Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
677      return BinaryOperator::CreateAnd(NotCond, FalseVal);
678    } else if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) {
679      if (C->getZExtValue() == false) {
680        // Change: A = select B, C, false --> A = and B, C
681        return BinaryOperator::CreateAnd(CondVal, TrueVal);
682      }
683      // Change: A = select B, C, true --> A = or !B, C
684      Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
685      return BinaryOperator::CreateOr(NotCond, TrueVal);
686    }
687
688    // select a, b, a  -> a&b
689    // select a, a, b  -> a|b
690    if (CondVal == TrueVal)
691      return BinaryOperator::CreateOr(CondVal, FalseVal);
692    else if (CondVal == FalseVal)
693      return BinaryOperator::CreateAnd(CondVal, TrueVal);
694
695    // select a, ~a, b -> (~a)&b
696    // select a, b, ~a -> (~a)|b
697    if (match(TrueVal, m_Not(m_Specific(CondVal))))
698      return BinaryOperator::CreateAnd(TrueVal, FalseVal);
699    else if (match(FalseVal, m_Not(m_Specific(CondVal))))
700      return BinaryOperator::CreateOr(TrueVal, FalseVal);
701  }
702
703  // Selecting between two integer constants?
704  if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
705    if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
706      // select C, 1, 0 -> zext C to int
707      if (FalseValC->isZero() && TrueValC->getValue() == 1)
708        return new ZExtInst(CondVal, SI.getType());
709
710      // select C, -1, 0 -> sext C to int
711      if (FalseValC->isZero() && TrueValC->isAllOnesValue())
712        return new SExtInst(CondVal, SI.getType());
713
714      // select C, 0, 1 -> zext !C to int
715      if (TrueValC->isZero() && FalseValC->getValue() == 1) {
716        Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
717        return new ZExtInst(NotCond, SI.getType());
718      }
719
720      // select C, 0, -1 -> sext !C to int
721      if (TrueValC->isZero() && FalseValC->isAllOnesValue()) {
722        Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName());
723        return new SExtInst(NotCond, SI.getType());
724      }
725
726      if (Value *V = foldSelectICmpAnd(SI, TrueValC, FalseValC, Builder))
727        return ReplaceInstUsesWith(SI, V);
728    }
729
730  // See if we are selecting two values based on a comparison of the two values.
731  if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
732    if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
733      // Transform (X == Y) ? X : Y  -> Y
734      if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
735        // This is not safe in general for floating point:
736        // consider X== -0, Y== +0.
737        // It becomes safe if either operand is a nonzero constant.
738        ConstantFP *CFPt, *CFPf;
739        if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
740              !CFPt->getValueAPF().isZero()) ||
741            ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
742             !CFPf->getValueAPF().isZero()))
743        return ReplaceInstUsesWith(SI, FalseVal);
744      }
745      // Transform (X une Y) ? X : Y  -> X
746      if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
747        // This is not safe in general for floating point:
748        // consider X== -0, Y== +0.
749        // It becomes safe if either operand is a nonzero constant.
750        ConstantFP *CFPt, *CFPf;
751        if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
752              !CFPt->getValueAPF().isZero()) ||
753            ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
754             !CFPf->getValueAPF().isZero()))
755        return ReplaceInstUsesWith(SI, TrueVal);
756      }
757      // NOTE: if we wanted to, this is where to detect MIN/MAX
758
759    } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
760      // Transform (X == Y) ? Y : X  -> X
761      if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
762        // This is not safe in general for floating point:
763        // consider X== -0, Y== +0.
764        // It becomes safe if either operand is a nonzero constant.
765        ConstantFP *CFPt, *CFPf;
766        if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
767              !CFPt->getValueAPF().isZero()) ||
768            ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
769             !CFPf->getValueAPF().isZero()))
770          return ReplaceInstUsesWith(SI, FalseVal);
771      }
772      // Transform (X une Y) ? Y : X  -> Y
773      if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
774        // This is not safe in general for floating point:
775        // consider X== -0, Y== +0.
776        // It becomes safe if either operand is a nonzero constant.
777        ConstantFP *CFPt, *CFPf;
778        if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
779              !CFPt->getValueAPF().isZero()) ||
780            ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
781             !CFPf->getValueAPF().isZero()))
782          return ReplaceInstUsesWith(SI, TrueVal);
783      }
784      // NOTE: if we wanted to, this is where to detect MIN/MAX
785    }
786    // NOTE: if we wanted to, this is where to detect ABS
787  }
788
789  // See if we are selecting two values based on a comparison of the two values.
790  if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
791    if (Instruction *Result = visitSelectInstWithICmp(SI, ICI))
792      return Result;
793
794  if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
795    if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
796      if (TI->hasOneUse() && FI->hasOneUse()) {
797        Instruction *AddOp = 0, *SubOp = 0;
798
799        // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
800        if (TI->getOpcode() == FI->getOpcode())
801          if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
802            return IV;
803
804        // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))).  This is
805        // even legal for FP.
806        if ((TI->getOpcode() == Instruction::Sub &&
807             FI->getOpcode() == Instruction::Add) ||
808            (TI->getOpcode() == Instruction::FSub &&
809             FI->getOpcode() == Instruction::FAdd)) {
810          AddOp = FI; SubOp = TI;
811        } else if ((FI->getOpcode() == Instruction::Sub &&
812                    TI->getOpcode() == Instruction::Add) ||
813                   (FI->getOpcode() == Instruction::FSub &&
814                    TI->getOpcode() == Instruction::FAdd)) {
815          AddOp = TI; SubOp = FI;
816        }
817
818        if (AddOp) {
819          Value *OtherAddOp = 0;
820          if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
821            OtherAddOp = AddOp->getOperand(1);
822          } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
823            OtherAddOp = AddOp->getOperand(0);
824          }
825
826          if (OtherAddOp) {
827            // So at this point we know we have (Y -> OtherAddOp):
828            //        select C, (add X, Y), (sub X, Z)
829            Value *NegVal;  // Compute -Z
830            if (SI.getType()->isFPOrFPVectorTy()) {
831              NegVal = Builder->CreateFNeg(SubOp->getOperand(1));
832            } else {
833              NegVal = Builder->CreateNeg(SubOp->getOperand(1));
834            }
835
836            Value *NewTrueOp = OtherAddOp;
837            Value *NewFalseOp = NegVal;
838            if (AddOp != TI)
839              std::swap(NewTrueOp, NewFalseOp);
840            Value *NewSel =
841              Builder->CreateSelect(CondVal, NewTrueOp,
842                                    NewFalseOp, SI.getName() + ".p");
843
844            if (SI.getType()->isFPOrFPVectorTy())
845              return BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
846            else
847              return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
848          }
849        }
850      }
851
852  // See if we can fold the select into one of our operands.
853  if (SI.getType()->isIntegerTy()) {
854    if (Instruction *FoldI = FoldSelectIntoOp(SI, TrueVal, FalseVal))
855      return FoldI;
856
857    // MAX(MAX(a, b), a) -> MAX(a, b)
858    // MIN(MIN(a, b), a) -> MIN(a, b)
859    // MAX(MIN(a, b), a) -> a
860    // MIN(MAX(a, b), a) -> a
861    Value *LHS, *RHS, *LHS2, *RHS2;
862    if (SelectPatternFlavor SPF = MatchSelectPattern(&SI, LHS, RHS)) {
863      if (SelectPatternFlavor SPF2 = MatchSelectPattern(LHS, LHS2, RHS2))
864        if (Instruction *R = FoldSPFofSPF(cast<Instruction>(LHS),SPF2,LHS2,RHS2,
865                                          SI, SPF, RHS))
866          return R;
867      if (SelectPatternFlavor SPF2 = MatchSelectPattern(RHS, LHS2, RHS2))
868        if (Instruction *R = FoldSPFofSPF(cast<Instruction>(RHS),SPF2,LHS2,RHS2,
869                                          SI, SPF, LHS))
870          return R;
871    }
872
873    // TODO.
874    // ABS(-X) -> ABS(X)
875    // ABS(ABS(X)) -> ABS(X)
876  }
877
878  // See if we can fold the select into a phi node if the condition is a select.
879  if (isa<PHINode>(SI.getCondition()))
880    // The true/false values have to be live in the PHI predecessor's blocks.
881    if (CanSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
882        CanSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
883      if (Instruction *NV = FoldOpIntoPhi(SI))
884        return NV;
885
886  if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
887    if (TrueSI->getCondition() == CondVal) {
888      if (SI.getTrueValue() == TrueSI->getTrueValue())
889        return 0;
890      SI.setOperand(1, TrueSI->getTrueValue());
891      return &SI;
892    }
893  }
894  if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
895    if (FalseSI->getCondition() == CondVal) {
896      if (SI.getFalseValue() == FalseSI->getFalseValue())
897        return 0;
898      SI.setOperand(2, FalseSI->getFalseValue());
899      return &SI;
900    }
901  }
902
903  if (BinaryOperator::isNot(CondVal)) {
904    SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
905    SI.setOperand(1, FalseVal);
906    SI.setOperand(2, TrueVal);
907    return &SI;
908  }
909
910  if (VectorType *VecTy = dyn_cast<VectorType>(SI.getType())) {
911    unsigned VWidth = VecTy->getNumElements();
912    APInt UndefElts(VWidth, 0);
913    APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
914    if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) {
915      if (V != &SI)
916        return ReplaceInstUsesWith(SI, V);
917      return &SI;
918    }
919
920    if (ConstantVector *CV = dyn_cast<ConstantVector>(CondVal)) {
921      // Form a shufflevector instruction.
922      SmallVector<Constant *, 8> Mask(VWidth);
923      Type *Int32Ty = Type::getInt32Ty(CV->getContext());
924      for (unsigned i = 0; i != VWidth; ++i) {
925        Constant *Elem = cast<Constant>(CV->getOperand(i));
926        if (ConstantInt *E = dyn_cast<ConstantInt>(Elem))
927          Mask[i] = ConstantInt::get(Int32Ty, i + (E->isZero() ? VWidth : 0));
928        else if (isa<UndefValue>(Elem))
929          Mask[i] = UndefValue::get(Int32Ty);
930        else
931          return 0;
932      }
933      Constant *MaskVal = ConstantVector::get(Mask);
934      Value *V = Builder->CreateShuffleVector(TrueVal, FalseVal, MaskVal);
935      return ReplaceInstUsesWith(SI, V);
936    }
937
938    if (isa<ConstantAggregateZero>(CondVal)) {
939      return ReplaceInstUsesWith(SI, FalseVal);
940    }
941  }
942
943  return 0;
944}
945