1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SDNodeDbgValue.h"
16#include "SelectionDAGBuilder.h"
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/PostOrderIterator.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/Analysis/ValueTracking.h"
23#include "llvm/Constants.h"
24#include "llvm/CallingConv.h"
25#include "llvm/DebugInfo.h"
26#include "llvm/DerivedTypes.h"
27#include "llvm/Function.h"
28#include "llvm/GlobalVariable.h"
29#include "llvm/InlineAsm.h"
30#include "llvm/Instructions.h"
31#include "llvm/Intrinsics.h"
32#include "llvm/IntrinsicInst.h"
33#include "llvm/LLVMContext.h"
34#include "llvm/Module.h"
35#include "llvm/CodeGen/Analysis.h"
36#include "llvm/CodeGen/FastISel.h"
37#include "llvm/CodeGen/FunctionLoweringInfo.h"
38#include "llvm/CodeGen/GCStrategy.h"
39#include "llvm/CodeGen/GCMetadata.h"
40#include "llvm/CodeGen/MachineFunction.h"
41#include "llvm/CodeGen/MachineFrameInfo.h"
42#include "llvm/CodeGen/MachineInstrBuilder.h"
43#include "llvm/CodeGen/MachineJumpTableInfo.h"
44#include "llvm/CodeGen/MachineModuleInfo.h"
45#include "llvm/CodeGen/MachineRegisterInfo.h"
46#include "llvm/CodeGen/SelectionDAG.h"
47#include "llvm/Target/TargetData.h"
48#include "llvm/Target/TargetFrameLowering.h"
49#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Target/TargetIntrinsicInfo.h"
51#include "llvm/Target/TargetLibraryInfo.h"
52#include "llvm/Target/TargetLowering.h"
53#include "llvm/Target/TargetOptions.h"
54#include "llvm/Support/CommandLine.h"
55#include "llvm/Support/IntegersSubsetMapping.h"
56#include "llvm/Support/Debug.h"
57#include "llvm/Support/ErrorHandling.h"
58#include "llvm/Support/MathExtras.h"
59#include "llvm/Support/raw_ostream.h"
60#include <algorithm>
61using namespace llvm;
62
63/// LimitFloatPrecision - Generate low-precision inline sequences for
64/// some float libcalls (6, 8 or 12 bits).
65static unsigned LimitFloatPrecision;
66
67static cl::opt<unsigned, true>
68LimitFPPrecision("limit-float-precision",
69                 cl::desc("Generate low-precision inline sequences "
70                          "for some float libcalls"),
71                 cl::location(LimitFloatPrecision),
72                 cl::init(0));
73
74// Limit the width of DAG chains. This is important in general to prevent
75// prevent DAG-based analysis from blowing up. For example, alias analysis and
76// load clustering may not complete in reasonable time. It is difficult to
77// recognize and avoid this situation within each individual analysis, and
78// future analyses are likely to have the same behavior. Limiting DAG width is
79// the safe approach, and will be especially important with global DAGs.
80//
81// MaxParallelChains default is arbitrarily high to avoid affecting
82// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
83// sequence over this should have been converted to llvm.memcpy by the
84// frontend. It easy to induce this behavior with .ll code such as:
85// %buffer = alloca [4096 x i8]
86// %data = load [4096 x i8]* %argPtr
87// store [4096 x i8] %data, [4096 x i8]* %buffer
88static const unsigned MaxParallelChains = 64;
89
90static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
91                                      const SDValue *Parts, unsigned NumParts,
92                                      EVT PartVT, EVT ValueVT, const Value *V);
93
94/// getCopyFromParts - Create a value that contains the specified legal parts
95/// combined into the value they represent.  If the parts combine to a type
96/// larger then ValueVT then AssertOp can be used to specify whether the extra
97/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
98/// (ISD::AssertSext).
99static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
100                                const SDValue *Parts,
101                                unsigned NumParts, EVT PartVT, EVT ValueVT,
102                                const Value *V,
103                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
104  if (ValueVT.isVector())
105    return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
106                                  PartVT, ValueVT, V);
107
108  assert(NumParts > 0 && "No parts to assemble!");
109  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
110  SDValue Val = Parts[0];
111
112  if (NumParts > 1) {
113    // Assemble the value from multiple parts.
114    if (ValueVT.isInteger()) {
115      unsigned PartBits = PartVT.getSizeInBits();
116      unsigned ValueBits = ValueVT.getSizeInBits();
117
118      // Assemble the power of 2 part.
119      unsigned RoundParts = NumParts & (NumParts - 1) ?
120        1 << Log2_32(NumParts) : NumParts;
121      unsigned RoundBits = PartBits * RoundParts;
122      EVT RoundVT = RoundBits == ValueBits ?
123        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
124      SDValue Lo, Hi;
125
126      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
127
128      if (RoundParts > 2) {
129        Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
130                              PartVT, HalfVT, V);
131        Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
132                              RoundParts / 2, PartVT, HalfVT, V);
133      } else {
134        Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
135        Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
136      }
137
138      if (TLI.isBigEndian())
139        std::swap(Lo, Hi);
140
141      Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
142
143      if (RoundParts < NumParts) {
144        // Assemble the trailing non-power-of-2 part.
145        unsigned OddParts = NumParts - RoundParts;
146        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
147        Hi = getCopyFromParts(DAG, DL,
148                              Parts + RoundParts, OddParts, PartVT, OddVT, V);
149
150        // Combine the round and odd parts.
151        Lo = Val;
152        if (TLI.isBigEndian())
153          std::swap(Lo, Hi);
154        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
155        Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
156        Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
157                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
158                                         TLI.getPointerTy()));
159        Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
160        Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
161      }
162    } else if (PartVT.isFloatingPoint()) {
163      // FP split into multiple FP parts (for ppcf128)
164      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
165             "Unexpected split");
166      SDValue Lo, Hi;
167      Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
168      Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
169      if (TLI.isBigEndian())
170        std::swap(Lo, Hi);
171      Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
172    } else {
173      // FP split into integer parts (soft fp)
174      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
175             !PartVT.isVector() && "Unexpected split");
176      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
177      Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
178    }
179  }
180
181  // There is now one part, held in Val.  Correct it to match ValueVT.
182  PartVT = Val.getValueType();
183
184  if (PartVT == ValueVT)
185    return Val;
186
187  if (PartVT.isInteger() && ValueVT.isInteger()) {
188    if (ValueVT.bitsLT(PartVT)) {
189      // For a truncate, see if we have any information to
190      // indicate whether the truncated bits will always be
191      // zero or sign-extension.
192      if (AssertOp != ISD::DELETED_NODE)
193        Val = DAG.getNode(AssertOp, DL, PartVT, Val,
194                          DAG.getValueType(ValueVT));
195      return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
196    }
197    return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
198  }
199
200  if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
201    // FP_ROUND's are always exact here.
202    if (ValueVT.bitsLT(Val.getValueType()))
203      return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
204                         DAG.getTargetConstant(1, TLI.getPointerTy()));
205
206    return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
207  }
208
209  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
210    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
211
212  llvm_unreachable("Unknown mismatch!");
213}
214
215/// getCopyFromPartsVector - Create a value that contains the specified legal
216/// parts combined into the value they represent.  If the parts combine to a
217/// type larger then ValueVT then AssertOp can be used to specify whether the
218/// extra bits are known to be zero (ISD::AssertZext) or sign extended from
219/// ValueVT (ISD::AssertSext).
220static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
221                                      const SDValue *Parts, unsigned NumParts,
222                                      EVT PartVT, EVT ValueVT, const Value *V) {
223  assert(ValueVT.isVector() && "Not a vector value");
224  assert(NumParts > 0 && "No parts to assemble!");
225  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
226  SDValue Val = Parts[0];
227
228  // Handle a multi-element vector.
229  if (NumParts > 1) {
230    EVT IntermediateVT, RegisterVT;
231    unsigned NumIntermediates;
232    unsigned NumRegs =
233    TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
234                               NumIntermediates, RegisterVT);
235    assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
236    NumParts = NumRegs; // Silence a compiler warning.
237    assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
238    assert(RegisterVT == Parts[0].getValueType() &&
239           "Part type doesn't match part!");
240
241    // Assemble the parts into intermediate operands.
242    SmallVector<SDValue, 8> Ops(NumIntermediates);
243    if (NumIntermediates == NumParts) {
244      // If the register was not expanded, truncate or copy the value,
245      // as appropriate.
246      for (unsigned i = 0; i != NumParts; ++i)
247        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
248                                  PartVT, IntermediateVT, V);
249    } else if (NumParts > 0) {
250      // If the intermediate type was expanded, build the intermediate
251      // operands from the parts.
252      assert(NumParts % NumIntermediates == 0 &&
253             "Must expand into a divisible number of parts!");
254      unsigned Factor = NumParts / NumIntermediates;
255      for (unsigned i = 0; i != NumIntermediates; ++i)
256        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
257                                  PartVT, IntermediateVT, V);
258    }
259
260    // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
261    // intermediate operands.
262    Val = DAG.getNode(IntermediateVT.isVector() ?
263                      ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
264                      ValueVT, &Ops[0], NumIntermediates);
265  }
266
267  // There is now one part, held in Val.  Correct it to match ValueVT.
268  PartVT = Val.getValueType();
269
270  if (PartVT == ValueVT)
271    return Val;
272
273  if (PartVT.isVector()) {
274    // If the element type of the source/dest vectors are the same, but the
275    // parts vector has more elements than the value vector, then we have a
276    // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
277    // elements we want.
278    if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
279      assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
280             "Cannot narrow, it would be a lossy transformation");
281      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
282                         DAG.getIntPtrConstant(0));
283    }
284
285    // Vector/Vector bitcast.
286    if (ValueVT.getSizeInBits() == PartVT.getSizeInBits())
287      return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
288
289    assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
290      "Cannot handle this kind of promotion");
291    // Promoted vector extract
292    bool Smaller = ValueVT.bitsLE(PartVT);
293    return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
294                       DL, ValueVT, Val);
295
296  }
297
298  // Trivial bitcast if the types are the same size and the destination
299  // vector type is legal.
300  if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() &&
301      TLI.isTypeLegal(ValueVT))
302    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
303
304  // Handle cases such as i8 -> <1 x i1>
305  if (ValueVT.getVectorNumElements() != 1) {
306    LLVMContext &Ctx = *DAG.getContext();
307    Twine ErrMsg("non-trivial scalar-to-vector conversion");
308    if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) {
309      if (const CallInst *CI = dyn_cast<CallInst>(I))
310        if (isa<InlineAsm>(CI->getCalledValue()))
311          ErrMsg = ErrMsg + ", possible invalid constraint for vector type";
312      Ctx.emitError(I, ErrMsg);
313    } else {
314      Ctx.emitError(ErrMsg);
315    }
316    report_fatal_error("Cannot handle scalar-to-vector conversion!");
317  }
318
319  if (ValueVT.getVectorNumElements() == 1 &&
320      ValueVT.getVectorElementType() != PartVT) {
321    bool Smaller = ValueVT.bitsLE(PartVT);
322    Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
323                       DL, ValueVT.getScalarType(), Val);
324  }
325
326  return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
327}
328
329static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
330                                 SDValue Val, SDValue *Parts, unsigned NumParts,
331                                 EVT PartVT, const Value *V);
332
333/// getCopyToParts - Create a series of nodes that contain the specified value
334/// split into legal parts.  If the parts contain more bits than Val, then, for
335/// integers, ExtendKind can be used to specify how to generate the extra bits.
336static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
337                           SDValue Val, SDValue *Parts, unsigned NumParts,
338                           EVT PartVT, const Value *V,
339                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
340  EVT ValueVT = Val.getValueType();
341
342  // Handle the vector case separately.
343  if (ValueVT.isVector())
344    return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
345
346  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
347  unsigned PartBits = PartVT.getSizeInBits();
348  unsigned OrigNumParts = NumParts;
349  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
350
351  if (NumParts == 0)
352    return;
353
354  assert(!ValueVT.isVector() && "Vector case handled elsewhere");
355  if (PartVT == ValueVT) {
356    assert(NumParts == 1 && "No-op copy with multiple parts!");
357    Parts[0] = Val;
358    return;
359  }
360
361  if (NumParts * PartBits > ValueVT.getSizeInBits()) {
362    // If the parts cover more bits than the value has, promote the value.
363    if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
364      assert(NumParts == 1 && "Do not know what to promote to!");
365      Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
366    } else {
367      assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
368             ValueVT.isInteger() &&
369             "Unknown mismatch!");
370      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
371      Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
372      if (PartVT == MVT::x86mmx)
373        Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
374    }
375  } else if (PartBits == ValueVT.getSizeInBits()) {
376    // Different types of the same size.
377    assert(NumParts == 1 && PartVT != ValueVT);
378    Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
379  } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
380    // If the parts cover less bits than value has, truncate the value.
381    assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
382           ValueVT.isInteger() &&
383           "Unknown mismatch!");
384    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
385    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
386    if (PartVT == MVT::x86mmx)
387      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
388  }
389
390  // The value may have changed - recompute ValueVT.
391  ValueVT = Val.getValueType();
392  assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
393         "Failed to tile the value with PartVT!");
394
395  if (NumParts == 1) {
396    if (PartVT != ValueVT) {
397      LLVMContext &Ctx = *DAG.getContext();
398      Twine ErrMsg("scalar-to-vector conversion failed");
399      if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) {
400        if (const CallInst *CI = dyn_cast<CallInst>(I))
401          if (isa<InlineAsm>(CI->getCalledValue()))
402            ErrMsg = ErrMsg + ", possible invalid constraint for vector type";
403        Ctx.emitError(I, ErrMsg);
404      } else {
405        Ctx.emitError(ErrMsg);
406      }
407    }
408
409    Parts[0] = Val;
410    return;
411  }
412
413  // Expand the value into multiple parts.
414  if (NumParts & (NumParts - 1)) {
415    // The number of parts is not a power of 2.  Split off and copy the tail.
416    assert(PartVT.isInteger() && ValueVT.isInteger() &&
417           "Do not know what to expand to!");
418    unsigned RoundParts = 1 << Log2_32(NumParts);
419    unsigned RoundBits = RoundParts * PartBits;
420    unsigned OddParts = NumParts - RoundParts;
421    SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
422                                 DAG.getIntPtrConstant(RoundBits));
423    getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
424
425    if (TLI.isBigEndian())
426      // The odd parts were reversed by getCopyToParts - unreverse them.
427      std::reverse(Parts + RoundParts, Parts + NumParts);
428
429    NumParts = RoundParts;
430    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
431    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
432  }
433
434  // The number of parts is a power of 2.  Repeatedly bisect the value using
435  // EXTRACT_ELEMENT.
436  Parts[0] = DAG.getNode(ISD::BITCAST, DL,
437                         EVT::getIntegerVT(*DAG.getContext(),
438                                           ValueVT.getSizeInBits()),
439                         Val);
440
441  for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
442    for (unsigned i = 0; i < NumParts; i += StepSize) {
443      unsigned ThisBits = StepSize * PartBits / 2;
444      EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
445      SDValue &Part0 = Parts[i];
446      SDValue &Part1 = Parts[i+StepSize/2];
447
448      Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
449                          ThisVT, Part0, DAG.getIntPtrConstant(1));
450      Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
451                          ThisVT, Part0, DAG.getIntPtrConstant(0));
452
453      if (ThisBits == PartBits && ThisVT != PartVT) {
454        Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
455        Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
456      }
457    }
458  }
459
460  if (TLI.isBigEndian())
461    std::reverse(Parts, Parts + OrigNumParts);
462}
463
464
465/// getCopyToPartsVector - Create a series of nodes that contain the specified
466/// value split into legal parts.
467static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
468                                 SDValue Val, SDValue *Parts, unsigned NumParts,
469                                 EVT PartVT, const Value *V) {
470  EVT ValueVT = Val.getValueType();
471  assert(ValueVT.isVector() && "Not a vector");
472  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
473
474  if (NumParts == 1) {
475    if (PartVT == ValueVT) {
476      // Nothing to do.
477    } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
478      // Bitconvert vector->vector case.
479      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
480    } else if (PartVT.isVector() &&
481               PartVT.getVectorElementType() == ValueVT.getVectorElementType() &&
482               PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
483      EVT ElementVT = PartVT.getVectorElementType();
484      // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
485      // undef elements.
486      SmallVector<SDValue, 16> Ops;
487      for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
488        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
489                                  ElementVT, Val, DAG.getIntPtrConstant(i)));
490
491      for (unsigned i = ValueVT.getVectorNumElements(),
492           e = PartVT.getVectorNumElements(); i != e; ++i)
493        Ops.push_back(DAG.getUNDEF(ElementVT));
494
495      Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
496
497      // FIXME: Use CONCAT for 2x -> 4x.
498
499      //SDValue UndefElts = DAG.getUNDEF(VectorTy);
500      //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
501    } else if (PartVT.isVector() &&
502               PartVT.getVectorElementType().bitsGE(
503                 ValueVT.getVectorElementType()) &&
504               PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
505
506      // Promoted vector extract
507      bool Smaller = PartVT.bitsLE(ValueVT);
508      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
509                        DL, PartVT, Val);
510    } else{
511      // Vector -> scalar conversion.
512      assert(ValueVT.getVectorNumElements() == 1 &&
513             "Only trivial vector-to-scalar conversions should get here!");
514      Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
515                        PartVT, Val, DAG.getIntPtrConstant(0));
516
517      bool Smaller = ValueVT.bitsLE(PartVT);
518      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
519                         DL, PartVT, Val);
520    }
521
522    Parts[0] = Val;
523    return;
524  }
525
526  // Handle a multi-element vector.
527  EVT IntermediateVT, RegisterVT;
528  unsigned NumIntermediates;
529  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
530                                                IntermediateVT,
531                                                NumIntermediates, RegisterVT);
532  unsigned NumElements = ValueVT.getVectorNumElements();
533
534  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
535  NumParts = NumRegs; // Silence a compiler warning.
536  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
537
538  // Split the vector into intermediate operands.
539  SmallVector<SDValue, 8> Ops(NumIntermediates);
540  for (unsigned i = 0; i != NumIntermediates; ++i) {
541    if (IntermediateVT.isVector())
542      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
543                           IntermediateVT, Val,
544                   DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
545    else
546      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
547                           IntermediateVT, Val, DAG.getIntPtrConstant(i));
548  }
549
550  // Split the intermediate operands into legal parts.
551  if (NumParts == NumIntermediates) {
552    // If the register was not expanded, promote or copy the value,
553    // as appropriate.
554    for (unsigned i = 0; i != NumParts; ++i)
555      getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
556  } else if (NumParts > 0) {
557    // If the intermediate type was expanded, split each the value into
558    // legal parts.
559    assert(NumParts % NumIntermediates == 0 &&
560           "Must expand into a divisible number of parts!");
561    unsigned Factor = NumParts / NumIntermediates;
562    for (unsigned i = 0; i != NumIntermediates; ++i)
563      getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
564  }
565}
566
567namespace {
568  /// RegsForValue - This struct represents the registers (physical or virtual)
569  /// that a particular set of values is assigned, and the type information
570  /// about the value. The most common situation is to represent one value at a
571  /// time, but struct or array values are handled element-wise as multiple
572  /// values.  The splitting of aggregates is performed recursively, so that we
573  /// never have aggregate-typed registers. The values at this point do not
574  /// necessarily have legal types, so each value may require one or more
575  /// registers of some legal type.
576  ///
577  struct RegsForValue {
578    /// ValueVTs - The value types of the values, which may not be legal, and
579    /// may need be promoted or synthesized from one or more registers.
580    ///
581    SmallVector<EVT, 4> ValueVTs;
582
583    /// RegVTs - The value types of the registers. This is the same size as
584    /// ValueVTs and it records, for each value, what the type of the assigned
585    /// register or registers are. (Individual values are never synthesized
586    /// from more than one type of register.)
587    ///
588    /// With virtual registers, the contents of RegVTs is redundant with TLI's
589    /// getRegisterType member function, however when with physical registers
590    /// it is necessary to have a separate record of the types.
591    ///
592    SmallVector<EVT, 4> RegVTs;
593
594    /// Regs - This list holds the registers assigned to the values.
595    /// Each legal or promoted value requires one register, and each
596    /// expanded value requires multiple registers.
597    ///
598    SmallVector<unsigned, 4> Regs;
599
600    RegsForValue() {}
601
602    RegsForValue(const SmallVector<unsigned, 4> &regs,
603                 EVT regvt, EVT valuevt)
604      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
605
606    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
607                 unsigned Reg, Type *Ty) {
608      ComputeValueVTs(tli, Ty, ValueVTs);
609
610      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
611        EVT ValueVT = ValueVTs[Value];
612        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
613        EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
614        for (unsigned i = 0; i != NumRegs; ++i)
615          Regs.push_back(Reg + i);
616        RegVTs.push_back(RegisterVT);
617        Reg += NumRegs;
618      }
619    }
620
621    /// areValueTypesLegal - Return true if types of all the values are legal.
622    bool areValueTypesLegal(const TargetLowering &TLI) {
623      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
624        EVT RegisterVT = RegVTs[Value];
625        if (!TLI.isTypeLegal(RegisterVT))
626          return false;
627      }
628      return true;
629    }
630
631    /// append - Add the specified values to this one.
632    void append(const RegsForValue &RHS) {
633      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
634      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
635      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
636    }
637
638    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
639    /// this value and returns the result as a ValueVTs value.  This uses
640    /// Chain/Flag as the input and updates them for the output Chain/Flag.
641    /// If the Flag pointer is NULL, no flag is used.
642    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
643                            DebugLoc dl,
644                            SDValue &Chain, SDValue *Flag,
645                            const Value *V = 0) const;
646
647    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
648    /// specified value into the registers specified by this object.  This uses
649    /// Chain/Flag as the input and updates them for the output Chain/Flag.
650    /// If the Flag pointer is NULL, no flag is used.
651    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
652                       SDValue &Chain, SDValue *Flag, const Value *V) const;
653
654    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
655    /// operand list.  This adds the code marker, matching input operand index
656    /// (if applicable), and includes the number of values added into it.
657    void AddInlineAsmOperands(unsigned Kind,
658                              bool HasMatching, unsigned MatchingIdx,
659                              SelectionDAG &DAG,
660                              std::vector<SDValue> &Ops) const;
661  };
662}
663
664/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
665/// this value and returns the result as a ValueVT value.  This uses
666/// Chain/Flag as the input and updates them for the output Chain/Flag.
667/// If the Flag pointer is NULL, no flag is used.
668SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
669                                      FunctionLoweringInfo &FuncInfo,
670                                      DebugLoc dl,
671                                      SDValue &Chain, SDValue *Flag,
672                                      const Value *V) const {
673  // A Value with type {} or [0 x %t] needs no registers.
674  if (ValueVTs.empty())
675    return SDValue();
676
677  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
678
679  // Assemble the legal parts into the final values.
680  SmallVector<SDValue, 4> Values(ValueVTs.size());
681  SmallVector<SDValue, 8> Parts;
682  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
683    // Copy the legal parts from the registers.
684    EVT ValueVT = ValueVTs[Value];
685    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
686    EVT RegisterVT = RegVTs[Value];
687
688    Parts.resize(NumRegs);
689    for (unsigned i = 0; i != NumRegs; ++i) {
690      SDValue P;
691      if (Flag == 0) {
692        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
693      } else {
694        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
695        *Flag = P.getValue(2);
696      }
697
698      Chain = P.getValue(1);
699      Parts[i] = P;
700
701      // If the source register was virtual and if we know something about it,
702      // add an assert node.
703      if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
704          !RegisterVT.isInteger() || RegisterVT.isVector())
705        continue;
706
707      const FunctionLoweringInfo::LiveOutInfo *LOI =
708        FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
709      if (!LOI)
710        continue;
711
712      unsigned RegSize = RegisterVT.getSizeInBits();
713      unsigned NumSignBits = LOI->NumSignBits;
714      unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
715
716      // FIXME: We capture more information than the dag can represent.  For
717      // now, just use the tightest assertzext/assertsext possible.
718      bool isSExt = true;
719      EVT FromVT(MVT::Other);
720      if (NumSignBits == RegSize)
721        isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
722      else if (NumZeroBits >= RegSize-1)
723        isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
724      else if (NumSignBits > RegSize-8)
725        isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
726      else if (NumZeroBits >= RegSize-8)
727        isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
728      else if (NumSignBits > RegSize-16)
729        isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
730      else if (NumZeroBits >= RegSize-16)
731        isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
732      else if (NumSignBits > RegSize-32)
733        isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
734      else if (NumZeroBits >= RegSize-32)
735        isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
736      else
737        continue;
738
739      // Add an assertion node.
740      assert(FromVT != MVT::Other);
741      Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
742                             RegisterVT, P, DAG.getValueType(FromVT));
743    }
744
745    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
746                                     NumRegs, RegisterVT, ValueVT, V);
747    Part += NumRegs;
748    Parts.clear();
749  }
750
751  return DAG.getNode(ISD::MERGE_VALUES, dl,
752                     DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
753                     &Values[0], ValueVTs.size());
754}
755
756/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
757/// specified value into the registers specified by this object.  This uses
758/// Chain/Flag as the input and updates them for the output Chain/Flag.
759/// If the Flag pointer is NULL, no flag is used.
760void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
761                                 SDValue &Chain, SDValue *Flag,
762                                 const Value *V) const {
763  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
764
765  // Get the list of the values's legal parts.
766  unsigned NumRegs = Regs.size();
767  SmallVector<SDValue, 8> Parts(NumRegs);
768  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
769    EVT ValueVT = ValueVTs[Value];
770    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
771    EVT RegisterVT = RegVTs[Value];
772
773    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
774                   &Parts[Part], NumParts, RegisterVT, V);
775    Part += NumParts;
776  }
777
778  // Copy the parts into the registers.
779  SmallVector<SDValue, 8> Chains(NumRegs);
780  for (unsigned i = 0; i != NumRegs; ++i) {
781    SDValue Part;
782    if (Flag == 0) {
783      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
784    } else {
785      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
786      *Flag = Part.getValue(1);
787    }
788
789    Chains[i] = Part.getValue(0);
790  }
791
792  if (NumRegs == 1 || Flag)
793    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
794    // flagged to it. That is the CopyToReg nodes and the user are considered
795    // a single scheduling unit. If we create a TokenFactor and return it as
796    // chain, then the TokenFactor is both a predecessor (operand) of the
797    // user as well as a successor (the TF operands are flagged to the user).
798    // c1, f1 = CopyToReg
799    // c2, f2 = CopyToReg
800    // c3     = TokenFactor c1, c2
801    // ...
802    //        = op c3, ..., f2
803    Chain = Chains[NumRegs-1];
804  else
805    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
806}
807
808/// AddInlineAsmOperands - Add this value to the specified inlineasm node
809/// operand list.  This adds the code marker and includes the number of
810/// values added into it.
811void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
812                                        unsigned MatchingIdx,
813                                        SelectionDAG &DAG,
814                                        std::vector<SDValue> &Ops) const {
815  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
816
817  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
818  if (HasMatching)
819    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
820  else if (!Regs.empty() &&
821           TargetRegisterInfo::isVirtualRegister(Regs.front())) {
822    // Put the register class of the virtual registers in the flag word.  That
823    // way, later passes can recompute register class constraints for inline
824    // assembly as well as normal instructions.
825    // Don't do this for tied operands that can use the regclass information
826    // from the def.
827    const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
828    const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
829    Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
830  }
831
832  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
833  Ops.push_back(Res);
834
835  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
836    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
837    EVT RegisterVT = RegVTs[Value];
838    for (unsigned i = 0; i != NumRegs; ++i) {
839      assert(Reg < Regs.size() && "Mismatch in # registers expected");
840      Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
841    }
842  }
843}
844
845void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
846                               const TargetLibraryInfo *li) {
847  AA = &aa;
848  GFI = gfi;
849  LibInfo = li;
850  TD = DAG.getTarget().getTargetData();
851  Context = DAG.getContext();
852  LPadToCallSiteMap.clear();
853}
854
855/// clear - Clear out the current SelectionDAG and the associated
856/// state and prepare this SelectionDAGBuilder object to be used
857/// for a new block. This doesn't clear out information about
858/// additional blocks that are needed to complete switch lowering
859/// or PHI node updating; that information is cleared out as it is
860/// consumed.
861void SelectionDAGBuilder::clear() {
862  NodeMap.clear();
863  UnusedArgNodeMap.clear();
864  PendingLoads.clear();
865  PendingExports.clear();
866  CurDebugLoc = DebugLoc();
867  HasTailCall = false;
868}
869
870/// clearDanglingDebugInfo - Clear the dangling debug information
871/// map. This function is separated from the clear so that debug
872/// information that is dangling in a basic block can be properly
873/// resolved in a different basic block. This allows the
874/// SelectionDAG to resolve dangling debug information attached
875/// to PHI nodes.
876void SelectionDAGBuilder::clearDanglingDebugInfo() {
877  DanglingDebugInfoMap.clear();
878}
879
880/// getRoot - Return the current virtual root of the Selection DAG,
881/// flushing any PendingLoad items. This must be done before emitting
882/// a store or any other node that may need to be ordered after any
883/// prior load instructions.
884///
885SDValue SelectionDAGBuilder::getRoot() {
886  if (PendingLoads.empty())
887    return DAG.getRoot();
888
889  if (PendingLoads.size() == 1) {
890    SDValue Root = PendingLoads[0];
891    DAG.setRoot(Root);
892    PendingLoads.clear();
893    return Root;
894  }
895
896  // Otherwise, we have to make a token factor node.
897  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
898                               &PendingLoads[0], PendingLoads.size());
899  PendingLoads.clear();
900  DAG.setRoot(Root);
901  return Root;
902}
903
904/// getControlRoot - Similar to getRoot, but instead of flushing all the
905/// PendingLoad items, flush all the PendingExports items. It is necessary
906/// to do this before emitting a terminator instruction.
907///
908SDValue SelectionDAGBuilder::getControlRoot() {
909  SDValue Root = DAG.getRoot();
910
911  if (PendingExports.empty())
912    return Root;
913
914  // Turn all of the CopyToReg chains into one factored node.
915  if (Root.getOpcode() != ISD::EntryToken) {
916    unsigned i = 0, e = PendingExports.size();
917    for (; i != e; ++i) {
918      assert(PendingExports[i].getNode()->getNumOperands() > 1);
919      if (PendingExports[i].getNode()->getOperand(0) == Root)
920        break;  // Don't add the root if we already indirectly depend on it.
921    }
922
923    if (i == e)
924      PendingExports.push_back(Root);
925  }
926
927  Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
928                     &PendingExports[0],
929                     PendingExports.size());
930  PendingExports.clear();
931  DAG.setRoot(Root);
932  return Root;
933}
934
935void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
936  if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
937  DAG.AssignOrdering(Node, SDNodeOrder);
938
939  for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
940    AssignOrderingToNode(Node->getOperand(I).getNode());
941}
942
943void SelectionDAGBuilder::visit(const Instruction &I) {
944  // Set up outgoing PHI node register values before emitting the terminator.
945  if (isa<TerminatorInst>(&I))
946    HandlePHINodesInSuccessorBlocks(I.getParent());
947
948  CurDebugLoc = I.getDebugLoc();
949
950  visit(I.getOpcode(), I);
951
952  if (!isa<TerminatorInst>(&I) && !HasTailCall)
953    CopyToExportRegsIfNeeded(&I);
954
955  CurDebugLoc = DebugLoc();
956}
957
958void SelectionDAGBuilder::visitPHI(const PHINode &) {
959  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
960}
961
962void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
963  // Note: this doesn't use InstVisitor, because it has to work with
964  // ConstantExpr's in addition to instructions.
965  switch (Opcode) {
966  default: llvm_unreachable("Unknown instruction type encountered!");
967    // Build the switch statement using the Instruction.def file.
968#define HANDLE_INST(NUM, OPCODE, CLASS) \
969    case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
970#include "llvm/Instruction.def"
971  }
972
973  // Assign the ordering to the freshly created DAG nodes.
974  if (NodeMap.count(&I)) {
975    ++SDNodeOrder;
976    AssignOrderingToNode(getValue(&I).getNode());
977  }
978}
979
980// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
981// generate the debug data structures now that we've seen its definition.
982void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
983                                                   SDValue Val) {
984  DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
985  if (DDI.getDI()) {
986    const DbgValueInst *DI = DDI.getDI();
987    DebugLoc dl = DDI.getdl();
988    unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
989    MDNode *Variable = DI->getVariable();
990    uint64_t Offset = DI->getOffset();
991    SDDbgValue *SDV;
992    if (Val.getNode()) {
993      if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
994        SDV = DAG.getDbgValue(Variable, Val.getNode(),
995                              Val.getResNo(), Offset, dl, DbgSDNodeOrder);
996        DAG.AddDbgValue(SDV, Val.getNode(), false);
997      }
998    } else
999      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
1000    DanglingDebugInfoMap[V] = DanglingDebugInfo();
1001  }
1002}
1003
1004/// getValue - Return an SDValue for the given Value.
1005SDValue SelectionDAGBuilder::getValue(const Value *V) {
1006  // If we already have an SDValue for this value, use it. It's important
1007  // to do this first, so that we don't create a CopyFromReg if we already
1008  // have a regular SDValue.
1009  SDValue &N = NodeMap[V];
1010  if (N.getNode()) return N;
1011
1012  // If there's a virtual register allocated and initialized for this
1013  // value, use it.
1014  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1015  if (It != FuncInfo.ValueMap.end()) {
1016    unsigned InReg = It->second;
1017    RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
1018    SDValue Chain = DAG.getEntryNode();
1019    N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL, V);
1020    resolveDanglingDebugInfo(V, N);
1021    return N;
1022  }
1023
1024  // Otherwise create a new SDValue and remember it.
1025  SDValue Val = getValueImpl(V);
1026  NodeMap[V] = Val;
1027  resolveDanglingDebugInfo(V, Val);
1028  return Val;
1029}
1030
1031/// getNonRegisterValue - Return an SDValue for the given Value, but
1032/// don't look in FuncInfo.ValueMap for a virtual register.
1033SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1034  // If we already have an SDValue for this value, use it.
1035  SDValue &N = NodeMap[V];
1036  if (N.getNode()) return N;
1037
1038  // Otherwise create a new SDValue and remember it.
1039  SDValue Val = getValueImpl(V);
1040  NodeMap[V] = Val;
1041  resolveDanglingDebugInfo(V, Val);
1042  return Val;
1043}
1044
1045/// getValueImpl - Helper function for getValue and getNonRegisterValue.
1046/// Create an SDValue for the given value.
1047SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1048  if (const Constant *C = dyn_cast<Constant>(V)) {
1049    EVT VT = TLI.getValueType(V->getType(), true);
1050
1051    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1052      return DAG.getConstant(*CI, VT);
1053
1054    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1055      return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
1056
1057    if (isa<ConstantPointerNull>(C))
1058      return DAG.getConstant(0, TLI.getPointerTy());
1059
1060    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1061      return DAG.getConstantFP(*CFP, VT);
1062
1063    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1064      return DAG.getUNDEF(VT);
1065
1066    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1067      visit(CE->getOpcode(), *CE);
1068      SDValue N1 = NodeMap[V];
1069      assert(N1.getNode() && "visit didn't populate the NodeMap!");
1070      return N1;
1071    }
1072
1073    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1074      SmallVector<SDValue, 4> Constants;
1075      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1076           OI != OE; ++OI) {
1077        SDNode *Val = getValue(*OI).getNode();
1078        // If the operand is an empty aggregate, there are no values.
1079        if (!Val) continue;
1080        // Add each leaf value from the operand to the Constants list
1081        // to form a flattened list of all the values.
1082        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1083          Constants.push_back(SDValue(Val, i));
1084      }
1085
1086      return DAG.getMergeValues(&Constants[0], Constants.size(),
1087                                getCurDebugLoc());
1088    }
1089
1090    if (const ConstantDataSequential *CDS =
1091          dyn_cast<ConstantDataSequential>(C)) {
1092      SmallVector<SDValue, 4> Ops;
1093      for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1094        SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1095        // Add each leaf value from the operand to the Constants list
1096        // to form a flattened list of all the values.
1097        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1098          Ops.push_back(SDValue(Val, i));
1099      }
1100
1101      if (isa<ArrayType>(CDS->getType()))
1102        return DAG.getMergeValues(&Ops[0], Ops.size(), getCurDebugLoc());
1103      return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1104                                      VT, &Ops[0], Ops.size());
1105    }
1106
1107    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1108      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1109             "Unknown struct or array constant!");
1110
1111      SmallVector<EVT, 4> ValueVTs;
1112      ComputeValueVTs(TLI, C->getType(), ValueVTs);
1113      unsigned NumElts = ValueVTs.size();
1114      if (NumElts == 0)
1115        return SDValue(); // empty struct
1116      SmallVector<SDValue, 4> Constants(NumElts);
1117      for (unsigned i = 0; i != NumElts; ++i) {
1118        EVT EltVT = ValueVTs[i];
1119        if (isa<UndefValue>(C))
1120          Constants[i] = DAG.getUNDEF(EltVT);
1121        else if (EltVT.isFloatingPoint())
1122          Constants[i] = DAG.getConstantFP(0, EltVT);
1123        else
1124          Constants[i] = DAG.getConstant(0, EltVT);
1125      }
1126
1127      return DAG.getMergeValues(&Constants[0], NumElts,
1128                                getCurDebugLoc());
1129    }
1130
1131    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1132      return DAG.getBlockAddress(BA, VT);
1133
1134    VectorType *VecTy = cast<VectorType>(V->getType());
1135    unsigned NumElements = VecTy->getNumElements();
1136
1137    // Now that we know the number and type of the elements, get that number of
1138    // elements into the Ops array based on what kind of constant it is.
1139    SmallVector<SDValue, 16> Ops;
1140    if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1141      for (unsigned i = 0; i != NumElements; ++i)
1142        Ops.push_back(getValue(CV->getOperand(i)));
1143    } else {
1144      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1145      EVT EltVT = TLI.getValueType(VecTy->getElementType());
1146
1147      SDValue Op;
1148      if (EltVT.isFloatingPoint())
1149        Op = DAG.getConstantFP(0, EltVT);
1150      else
1151        Op = DAG.getConstant(0, EltVT);
1152      Ops.assign(NumElements, Op);
1153    }
1154
1155    // Create a BUILD_VECTOR node.
1156    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
1157                                    VT, &Ops[0], Ops.size());
1158  }
1159
1160  // If this is a static alloca, generate it as the frameindex instead of
1161  // computation.
1162  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1163    DenseMap<const AllocaInst*, int>::iterator SI =
1164      FuncInfo.StaticAllocaMap.find(AI);
1165    if (SI != FuncInfo.StaticAllocaMap.end())
1166      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1167  }
1168
1169  // If this is an instruction which fast-isel has deferred, select it now.
1170  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1171    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1172    RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1173    SDValue Chain = DAG.getEntryNode();
1174    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL, V);
1175  }
1176
1177  llvm_unreachable("Can't get register for value!");
1178}
1179
1180void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1181  SDValue Chain = getControlRoot();
1182  SmallVector<ISD::OutputArg, 8> Outs;
1183  SmallVector<SDValue, 8> OutVals;
1184
1185  if (!FuncInfo.CanLowerReturn) {
1186    unsigned DemoteReg = FuncInfo.DemoteRegister;
1187    const Function *F = I.getParent()->getParent();
1188
1189    // Emit a store of the return value through the virtual register.
1190    // Leave Outs empty so that LowerReturn won't try to load return
1191    // registers the usual way.
1192    SmallVector<EVT, 1> PtrValueVTs;
1193    ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1194                    PtrValueVTs);
1195
1196    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1197    SDValue RetOp = getValue(I.getOperand(0));
1198
1199    SmallVector<EVT, 4> ValueVTs;
1200    SmallVector<uint64_t, 4> Offsets;
1201    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1202    unsigned NumValues = ValueVTs.size();
1203
1204    SmallVector<SDValue, 4> Chains(NumValues);
1205    for (unsigned i = 0; i != NumValues; ++i) {
1206      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
1207                                RetPtr.getValueType(), RetPtr,
1208                                DAG.getIntPtrConstant(Offsets[i]));
1209      Chains[i] =
1210        DAG.getStore(Chain, getCurDebugLoc(),
1211                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1212                     // FIXME: better loc info would be nice.
1213                     Add, MachinePointerInfo(), false, false, 0);
1214    }
1215
1216    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
1217                        MVT::Other, &Chains[0], NumValues);
1218  } else if (I.getNumOperands() != 0) {
1219    SmallVector<EVT, 4> ValueVTs;
1220    ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1221    unsigned NumValues = ValueVTs.size();
1222    if (NumValues) {
1223      SDValue RetOp = getValue(I.getOperand(0));
1224      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1225        EVT VT = ValueVTs[j];
1226
1227        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1228
1229        const Function *F = I.getParent()->getParent();
1230        if (F->paramHasAttr(0, Attribute::SExt))
1231          ExtendKind = ISD::SIGN_EXTEND;
1232        else if (F->paramHasAttr(0, Attribute::ZExt))
1233          ExtendKind = ISD::ZERO_EXTEND;
1234
1235        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1236          VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind);
1237
1238        unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1239        EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1240        SmallVector<SDValue, 4> Parts(NumParts);
1241        getCopyToParts(DAG, getCurDebugLoc(),
1242                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1243                       &Parts[0], NumParts, PartVT, &I, ExtendKind);
1244
1245        // 'inreg' on function refers to return value
1246        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1247        if (F->paramHasAttr(0, Attribute::InReg))
1248          Flags.setInReg();
1249
1250        // Propagate extension type if any
1251        if (ExtendKind == ISD::SIGN_EXTEND)
1252          Flags.setSExt();
1253        else if (ExtendKind == ISD::ZERO_EXTEND)
1254          Flags.setZExt();
1255
1256        for (unsigned i = 0; i < NumParts; ++i) {
1257          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1258                                        /*isfixed=*/true));
1259          OutVals.push_back(Parts[i]);
1260        }
1261      }
1262    }
1263  }
1264
1265  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1266  CallingConv::ID CallConv =
1267    DAG.getMachineFunction().getFunction()->getCallingConv();
1268  Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
1269                          Outs, OutVals, getCurDebugLoc(), DAG);
1270
1271  // Verify that the target's LowerReturn behaved as expected.
1272  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1273         "LowerReturn didn't return a valid chain!");
1274
1275  // Update the DAG with the new chain value resulting from return lowering.
1276  DAG.setRoot(Chain);
1277}
1278
1279/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1280/// created for it, emit nodes to copy the value into the virtual
1281/// registers.
1282void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1283  // Skip empty types
1284  if (V->getType()->isEmptyTy())
1285    return;
1286
1287  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1288  if (VMI != FuncInfo.ValueMap.end()) {
1289    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1290    CopyValueToVirtualRegister(V, VMI->second);
1291  }
1292}
1293
1294/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1295/// the current basic block, add it to ValueMap now so that we'll get a
1296/// CopyTo/FromReg.
1297void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1298  // No need to export constants.
1299  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1300
1301  // Already exported?
1302  if (FuncInfo.isExportedInst(V)) return;
1303
1304  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1305  CopyValueToVirtualRegister(V, Reg);
1306}
1307
1308bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1309                                                     const BasicBlock *FromBB) {
1310  // The operands of the setcc have to be in this block.  We don't know
1311  // how to export them from some other block.
1312  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1313    // Can export from current BB.
1314    if (VI->getParent() == FromBB)
1315      return true;
1316
1317    // Is already exported, noop.
1318    return FuncInfo.isExportedInst(V);
1319  }
1320
1321  // If this is an argument, we can export it if the BB is the entry block or
1322  // if it is already exported.
1323  if (isa<Argument>(V)) {
1324    if (FromBB == &FromBB->getParent()->getEntryBlock())
1325      return true;
1326
1327    // Otherwise, can only export this if it is already exported.
1328    return FuncInfo.isExportedInst(V);
1329  }
1330
1331  // Otherwise, constants can always be exported.
1332  return true;
1333}
1334
1335/// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1336uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src,
1337                                            const MachineBasicBlock *Dst) const {
1338  BranchProbabilityInfo *BPI = FuncInfo.BPI;
1339  if (!BPI)
1340    return 0;
1341  const BasicBlock *SrcBB = Src->getBasicBlock();
1342  const BasicBlock *DstBB = Dst->getBasicBlock();
1343  return BPI->getEdgeWeight(SrcBB, DstBB);
1344}
1345
1346void SelectionDAGBuilder::
1347addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
1348                       uint32_t Weight /* = 0 */) {
1349  if (!Weight)
1350    Weight = getEdgeWeight(Src, Dst);
1351  Src->addSuccessor(Dst, Weight);
1352}
1353
1354
1355static bool InBlock(const Value *V, const BasicBlock *BB) {
1356  if (const Instruction *I = dyn_cast<Instruction>(V))
1357    return I->getParent() == BB;
1358  return true;
1359}
1360
1361/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1362/// This function emits a branch and is used at the leaves of an OR or an
1363/// AND operator tree.
1364///
1365void
1366SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1367                                                  MachineBasicBlock *TBB,
1368                                                  MachineBasicBlock *FBB,
1369                                                  MachineBasicBlock *CurBB,
1370                                                  MachineBasicBlock *SwitchBB) {
1371  const BasicBlock *BB = CurBB->getBasicBlock();
1372
1373  // If the leaf of the tree is a comparison, merge the condition into
1374  // the caseblock.
1375  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1376    // The operands of the cmp have to be in this block.  We don't know
1377    // how to export them from some other block.  If this is the first block
1378    // of the sequence, no exporting is needed.
1379    if (CurBB == SwitchBB ||
1380        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1381         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1382      ISD::CondCode Condition;
1383      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1384        Condition = getICmpCondCode(IC->getPredicate());
1385      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1386        Condition = getFCmpCondCode(FC->getPredicate());
1387        if (TM.Options.NoNaNsFPMath)
1388          Condition = getFCmpCodeWithoutNaN(Condition);
1389      } else {
1390        Condition = ISD::SETEQ; // silence warning.
1391        llvm_unreachable("Unknown compare instruction");
1392      }
1393
1394      CaseBlock CB(Condition, BOp->getOperand(0),
1395                   BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1396      SwitchCases.push_back(CB);
1397      return;
1398    }
1399  }
1400
1401  // Create a CaseBlock record representing this branch.
1402  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1403               NULL, TBB, FBB, CurBB);
1404  SwitchCases.push_back(CB);
1405}
1406
1407/// FindMergedConditions - If Cond is an expression like
1408void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1409                                               MachineBasicBlock *TBB,
1410                                               MachineBasicBlock *FBB,
1411                                               MachineBasicBlock *CurBB,
1412                                               MachineBasicBlock *SwitchBB,
1413                                               unsigned Opc) {
1414  // If this node is not part of the or/and tree, emit it as a branch.
1415  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1416  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1417      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1418      BOp->getParent() != CurBB->getBasicBlock() ||
1419      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1420      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1421    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1422    return;
1423  }
1424
1425  //  Create TmpBB after CurBB.
1426  MachineFunction::iterator BBI = CurBB;
1427  MachineFunction &MF = DAG.getMachineFunction();
1428  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1429  CurBB->getParent()->insert(++BBI, TmpBB);
1430
1431  if (Opc == Instruction::Or) {
1432    // Codegen X | Y as:
1433    //   jmp_if_X TBB
1434    //   jmp TmpBB
1435    // TmpBB:
1436    //   jmp_if_Y TBB
1437    //   jmp FBB
1438    //
1439
1440    // Emit the LHS condition.
1441    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1442
1443    // Emit the RHS condition into TmpBB.
1444    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1445  } else {
1446    assert(Opc == Instruction::And && "Unknown merge op!");
1447    // Codegen X & Y as:
1448    //   jmp_if_X TmpBB
1449    //   jmp FBB
1450    // TmpBB:
1451    //   jmp_if_Y TBB
1452    //   jmp FBB
1453    //
1454    //  This requires creation of TmpBB after CurBB.
1455
1456    // Emit the LHS condition.
1457    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1458
1459    // Emit the RHS condition into TmpBB.
1460    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1461  }
1462}
1463
1464/// If the set of cases should be emitted as a series of branches, return true.
1465/// If we should emit this as a bunch of and/or'd together conditions, return
1466/// false.
1467bool
1468SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1469  if (Cases.size() != 2) return true;
1470
1471  // If this is two comparisons of the same values or'd or and'd together, they
1472  // will get folded into a single comparison, so don't emit two blocks.
1473  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1474       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1475      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1476       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1477    return false;
1478  }
1479
1480  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1481  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1482  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1483      Cases[0].CC == Cases[1].CC &&
1484      isa<Constant>(Cases[0].CmpRHS) &&
1485      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1486    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1487      return false;
1488    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1489      return false;
1490  }
1491
1492  return true;
1493}
1494
1495void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1496  MachineBasicBlock *BrMBB = FuncInfo.MBB;
1497
1498  // Update machine-CFG edges.
1499  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1500
1501  // Figure out which block is immediately after the current one.
1502  MachineBasicBlock *NextBlock = 0;
1503  MachineFunction::iterator BBI = BrMBB;
1504  if (++BBI != FuncInfo.MF->end())
1505    NextBlock = BBI;
1506
1507  if (I.isUnconditional()) {
1508    // Update machine-CFG edges.
1509    BrMBB->addSuccessor(Succ0MBB);
1510
1511    // If this is not a fall-through branch, emit the branch.
1512    if (Succ0MBB != NextBlock)
1513      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1514                              MVT::Other, getControlRoot(),
1515                              DAG.getBasicBlock(Succ0MBB)));
1516
1517    return;
1518  }
1519
1520  // If this condition is one of the special cases we handle, do special stuff
1521  // now.
1522  const Value *CondVal = I.getCondition();
1523  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1524
1525  // If this is a series of conditions that are or'd or and'd together, emit
1526  // this as a sequence of branches instead of setcc's with and/or operations.
1527  // As long as jumps are not expensive, this should improve performance.
1528  // For example, instead of something like:
1529  //     cmp A, B
1530  //     C = seteq
1531  //     cmp D, E
1532  //     F = setle
1533  //     or C, F
1534  //     jnz foo
1535  // Emit:
1536  //     cmp A, B
1537  //     je foo
1538  //     cmp D, E
1539  //     jle foo
1540  //
1541  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1542    if (!TLI.isJumpExpensive() &&
1543        BOp->hasOneUse() &&
1544        (BOp->getOpcode() == Instruction::And ||
1545         BOp->getOpcode() == Instruction::Or)) {
1546      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1547                           BOp->getOpcode());
1548      // If the compares in later blocks need to use values not currently
1549      // exported from this block, export them now.  This block should always
1550      // be the first entry.
1551      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1552
1553      // Allow some cases to be rejected.
1554      if (ShouldEmitAsBranches(SwitchCases)) {
1555        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1556          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1557          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1558        }
1559
1560        // Emit the branch for this block.
1561        visitSwitchCase(SwitchCases[0], BrMBB);
1562        SwitchCases.erase(SwitchCases.begin());
1563        return;
1564      }
1565
1566      // Okay, we decided not to do this, remove any inserted MBB's and clear
1567      // SwitchCases.
1568      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1569        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1570
1571      SwitchCases.clear();
1572    }
1573  }
1574
1575  // Create a CaseBlock record representing this branch.
1576  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1577               NULL, Succ0MBB, Succ1MBB, BrMBB);
1578
1579  // Use visitSwitchCase to actually insert the fast branch sequence for this
1580  // cond branch.
1581  visitSwitchCase(CB, BrMBB);
1582}
1583
1584/// visitSwitchCase - Emits the necessary code to represent a single node in
1585/// the binary search tree resulting from lowering a switch instruction.
1586void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1587                                          MachineBasicBlock *SwitchBB) {
1588  SDValue Cond;
1589  SDValue CondLHS = getValue(CB.CmpLHS);
1590  DebugLoc dl = getCurDebugLoc();
1591
1592  // Build the setcc now.
1593  if (CB.CmpMHS == NULL) {
1594    // Fold "(X == true)" to X and "(X == false)" to !X to
1595    // handle common cases produced by branch lowering.
1596    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1597        CB.CC == ISD::SETEQ)
1598      Cond = CondLHS;
1599    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1600             CB.CC == ISD::SETEQ) {
1601      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1602      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1603    } else
1604      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1605  } else {
1606    assert(CB.CC == ISD::SETCC_INVALID &&
1607           "Condition is undefined for to-the-range belonging check.");
1608
1609    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1610    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1611
1612    SDValue CmpOp = getValue(CB.CmpMHS);
1613    EVT VT = CmpOp.getValueType();
1614
1615    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(false)) {
1616      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1617                          ISD::SETULE);
1618    } else {
1619      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1620                                VT, CmpOp, DAG.getConstant(Low, VT));
1621      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1622                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1623    }
1624  }
1625
1626  // Update successor info
1627  addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
1628  // TrueBB and FalseBB are always different unless the incoming IR is
1629  // degenerate. This only happens when running llc on weird IR.
1630  if (CB.TrueBB != CB.FalseBB)
1631    addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
1632
1633  // Set NextBlock to be the MBB immediately after the current one, if any.
1634  // This is used to avoid emitting unnecessary branches to the next block.
1635  MachineBasicBlock *NextBlock = 0;
1636  MachineFunction::iterator BBI = SwitchBB;
1637  if (++BBI != FuncInfo.MF->end())
1638    NextBlock = BBI;
1639
1640  // If the lhs block is the next block, invert the condition so that we can
1641  // fall through to the lhs instead of the rhs block.
1642  if (CB.TrueBB == NextBlock) {
1643    std::swap(CB.TrueBB, CB.FalseBB);
1644    SDValue True = DAG.getConstant(1, Cond.getValueType());
1645    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1646  }
1647
1648  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1649                               MVT::Other, getControlRoot(), Cond,
1650                               DAG.getBasicBlock(CB.TrueBB));
1651
1652  // Insert the false branch. Do this even if it's a fall through branch,
1653  // this makes it easier to do DAG optimizations which require inverting
1654  // the branch condition.
1655  BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1656                       DAG.getBasicBlock(CB.FalseBB));
1657
1658  DAG.setRoot(BrCond);
1659}
1660
1661/// visitJumpTable - Emit JumpTable node in the current MBB
1662void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1663  // Emit the code for the jump table
1664  assert(JT.Reg != -1U && "Should lower JT Header first!");
1665  EVT PTy = TLI.getPointerTy();
1666  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1667                                     JT.Reg, PTy);
1668  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1669  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
1670                                    MVT::Other, Index.getValue(1),
1671                                    Table, Index);
1672  DAG.setRoot(BrJumpTable);
1673}
1674
1675/// visitJumpTableHeader - This function emits necessary code to produce index
1676/// in the JumpTable from switch case.
1677void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1678                                               JumpTableHeader &JTH,
1679                                               MachineBasicBlock *SwitchBB) {
1680  // Subtract the lowest switch case value from the value being switched on and
1681  // conditional branch to default mbb if the result is greater than the
1682  // difference between smallest and largest cases.
1683  SDValue SwitchOp = getValue(JTH.SValue);
1684  EVT VT = SwitchOp.getValueType();
1685  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1686                            DAG.getConstant(JTH.First, VT));
1687
1688  // The SDNode we just created, which holds the value being switched on minus
1689  // the smallest case value, needs to be copied to a virtual register so it
1690  // can be used as an index into the jump table in a subsequent basic block.
1691  // This value may be smaller or larger than the target's pointer type, and
1692  // therefore require extension or truncating.
1693  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
1694
1695  unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1696  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1697                                    JumpTableReg, SwitchOp);
1698  JT.Reg = JumpTableReg;
1699
1700  // Emit the range check for the jump table, and branch to the default block
1701  // for the switch statement if the value being switched on exceeds the largest
1702  // case in the switch.
1703  SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
1704                             TLI.getSetCCResultType(Sub.getValueType()), Sub,
1705                             DAG.getConstant(JTH.Last-JTH.First,VT),
1706                             ISD::SETUGT);
1707
1708  // Set NextBlock to be the MBB immediately after the current one, if any.
1709  // This is used to avoid emitting unnecessary branches to the next block.
1710  MachineBasicBlock *NextBlock = 0;
1711  MachineFunction::iterator BBI = SwitchBB;
1712
1713  if (++BBI != FuncInfo.MF->end())
1714    NextBlock = BBI;
1715
1716  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1717                               MVT::Other, CopyTo, CMP,
1718                               DAG.getBasicBlock(JT.Default));
1719
1720  if (JT.MBB != NextBlock)
1721    BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
1722                         DAG.getBasicBlock(JT.MBB));
1723
1724  DAG.setRoot(BrCond);
1725}
1726
1727/// visitBitTestHeader - This function emits necessary code to produce value
1728/// suitable for "bit tests"
1729void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1730                                             MachineBasicBlock *SwitchBB) {
1731  // Subtract the minimum value
1732  SDValue SwitchOp = getValue(B.SValue);
1733  EVT VT = SwitchOp.getValueType();
1734  SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
1735                            DAG.getConstant(B.First, VT));
1736
1737  // Check range
1738  SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
1739                                  TLI.getSetCCResultType(Sub.getValueType()),
1740                                  Sub, DAG.getConstant(B.Range, VT),
1741                                  ISD::SETUGT);
1742
1743  // Determine the type of the test operands.
1744  bool UsePtrType = false;
1745  if (!TLI.isTypeLegal(VT))
1746    UsePtrType = true;
1747  else {
1748    for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1749      if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
1750        // Switch table case range are encoded into series of masks.
1751        // Just use pointer type, it's guaranteed to fit.
1752        UsePtrType = true;
1753        break;
1754      }
1755  }
1756  if (UsePtrType) {
1757    VT = TLI.getPointerTy();
1758    Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT);
1759  }
1760
1761  B.RegVT = VT;
1762  B.Reg = FuncInfo.CreateReg(VT);
1763  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
1764                                    B.Reg, Sub);
1765
1766  // Set NextBlock to be the MBB immediately after the current one, if any.
1767  // This is used to avoid emitting unnecessary branches to the next block.
1768  MachineBasicBlock *NextBlock = 0;
1769  MachineFunction::iterator BBI = SwitchBB;
1770  if (++BBI != FuncInfo.MF->end())
1771    NextBlock = BBI;
1772
1773  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1774
1775  addSuccessorWithWeight(SwitchBB, B.Default);
1776  addSuccessorWithWeight(SwitchBB, MBB);
1777
1778  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1779                                MVT::Other, CopyTo, RangeCmp,
1780                                DAG.getBasicBlock(B.Default));
1781
1782  if (MBB != NextBlock)
1783    BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
1784                          DAG.getBasicBlock(MBB));
1785
1786  DAG.setRoot(BrRange);
1787}
1788
1789/// visitBitTestCase - this function produces one "bit test"
1790void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1791                                           MachineBasicBlock* NextMBB,
1792                                           uint32_t BranchWeightToNext,
1793                                           unsigned Reg,
1794                                           BitTestCase &B,
1795                                           MachineBasicBlock *SwitchBB) {
1796  EVT VT = BB.RegVT;
1797  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
1798                                       Reg, VT);
1799  SDValue Cmp;
1800  unsigned PopCount = CountPopulation_64(B.Mask);
1801  if (PopCount == 1) {
1802    // Testing for a single bit; just compare the shift count with what it
1803    // would need to be to shift a 1 bit in that position.
1804    Cmp = DAG.getSetCC(getCurDebugLoc(),
1805                       TLI.getSetCCResultType(VT),
1806                       ShiftOp,
1807                       DAG.getConstant(CountTrailingZeros_64(B.Mask), VT),
1808                       ISD::SETEQ);
1809  } else if (PopCount == BB.Range) {
1810    // There is only one zero bit in the range, test for it directly.
1811    Cmp = DAG.getSetCC(getCurDebugLoc(),
1812                       TLI.getSetCCResultType(VT),
1813                       ShiftOp,
1814                       DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
1815                       ISD::SETNE);
1816  } else {
1817    // Make desired shift
1818    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT,
1819                                    DAG.getConstant(1, VT), ShiftOp);
1820
1821    // Emit bit tests and jumps
1822    SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
1823                                VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1824    Cmp = DAG.getSetCC(getCurDebugLoc(),
1825                       TLI.getSetCCResultType(VT),
1826                       AndOp, DAG.getConstant(0, VT),
1827                       ISD::SETNE);
1828  }
1829
1830  // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight.
1831  addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight);
1832  // The branch weight from SwitchBB to NextMBB is BranchWeightToNext.
1833  addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext);
1834
1835  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
1836                              MVT::Other, getControlRoot(),
1837                              Cmp, DAG.getBasicBlock(B.TargetBB));
1838
1839  // Set NextBlock to be the MBB immediately after the current one, if any.
1840  // This is used to avoid emitting unnecessary branches to the next block.
1841  MachineBasicBlock *NextBlock = 0;
1842  MachineFunction::iterator BBI = SwitchBB;
1843  if (++BBI != FuncInfo.MF->end())
1844    NextBlock = BBI;
1845
1846  if (NextMBB != NextBlock)
1847    BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
1848                        DAG.getBasicBlock(NextMBB));
1849
1850  DAG.setRoot(BrAnd);
1851}
1852
1853void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1854  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1855
1856  // Retrieve successors.
1857  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1858  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1859
1860  const Value *Callee(I.getCalledValue());
1861  const Function *Fn = dyn_cast<Function>(Callee);
1862  if (isa<InlineAsm>(Callee))
1863    visitInlineAsm(&I);
1864  else if (Fn && Fn->isIntrinsic()) {
1865    assert(Fn->getIntrinsicID() == Intrinsic::donothing);
1866    // Ignore invokes to @llvm.donothing: jump directly to the next BB.
1867  } else
1868    LowerCallTo(&I, getValue(Callee), false, LandingPad);
1869
1870  // If the value of the invoke is used outside of its defining block, make it
1871  // available as a virtual register.
1872  CopyToExportRegsIfNeeded(&I);
1873
1874  // Update successor info
1875  addSuccessorWithWeight(InvokeMBB, Return);
1876  addSuccessorWithWeight(InvokeMBB, LandingPad);
1877
1878  // Drop into normal successor.
1879  DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
1880                          MVT::Other, getControlRoot(),
1881                          DAG.getBasicBlock(Return)));
1882}
1883
1884void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
1885  llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
1886}
1887
1888void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
1889  assert(FuncInfo.MBB->isLandingPad() &&
1890         "Call to landingpad not in landing pad!");
1891
1892  MachineBasicBlock *MBB = FuncInfo.MBB;
1893  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
1894  AddLandingPadInfo(LP, MMI, MBB);
1895
1896  // If there aren't registers to copy the values into (e.g., during SjLj
1897  // exceptions), then don't bother to create these DAG nodes.
1898  if (TLI.getExceptionPointerRegister() == 0 &&
1899      TLI.getExceptionSelectorRegister() == 0)
1900    return;
1901
1902  SmallVector<EVT, 2> ValueVTs;
1903  ComputeValueVTs(TLI, LP.getType(), ValueVTs);
1904
1905  // Insert the EXCEPTIONADDR instruction.
1906  assert(FuncInfo.MBB->isLandingPad() &&
1907         "Call to eh.exception not in landing pad!");
1908  SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1909  SDValue Ops[2];
1910  Ops[0] = DAG.getRoot();
1911  SDValue Op1 = DAG.getNode(ISD::EXCEPTIONADDR, getCurDebugLoc(), VTs, Ops, 1);
1912  SDValue Chain = Op1.getValue(1);
1913
1914  // Insert the EHSELECTION instruction.
1915  VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
1916  Ops[0] = Op1;
1917  Ops[1] = Chain;
1918  SDValue Op2 = DAG.getNode(ISD::EHSELECTION, getCurDebugLoc(), VTs, Ops, 2);
1919  Chain = Op2.getValue(1);
1920  Op2 = DAG.getSExtOrTrunc(Op2, getCurDebugLoc(), MVT::i32);
1921
1922  Ops[0] = Op1;
1923  Ops[1] = Op2;
1924  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
1925                            DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
1926                            &Ops[0], 2);
1927
1928  std::pair<SDValue, SDValue> RetPair = std::make_pair(Res, Chain);
1929  setValue(&LP, RetPair.first);
1930  DAG.setRoot(RetPair.second);
1931}
1932
1933/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1934/// small case ranges).
1935bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
1936                                                 CaseRecVector& WorkList,
1937                                                 const Value* SV,
1938                                                 MachineBasicBlock *Default,
1939                                                 MachineBasicBlock *SwitchBB) {
1940  // Size is the number of Cases represented by this range.
1941  size_t Size = CR.Range.second - CR.Range.first;
1942  if (Size > 3)
1943    return false;
1944
1945  // Get the MachineFunction which holds the current MBB.  This is used when
1946  // inserting any additional MBBs necessary to represent the switch.
1947  MachineFunction *CurMF = FuncInfo.MF;
1948
1949  // Figure out which block is immediately after the current one.
1950  MachineBasicBlock *NextBlock = 0;
1951  MachineFunction::iterator BBI = CR.CaseBB;
1952
1953  if (++BBI != FuncInfo.MF->end())
1954    NextBlock = BBI;
1955
1956  BranchProbabilityInfo *BPI = FuncInfo.BPI;
1957  // If any two of the cases has the same destination, and if one value
1958  // is the same as the other, but has one bit unset that the other has set,
1959  // use bit manipulation to do two compares at once.  For example:
1960  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1961  // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
1962  // TODO: Handle cases where CR.CaseBB != SwitchBB.
1963  if (Size == 2 && CR.CaseBB == SwitchBB) {
1964    Case &Small = *CR.Range.first;
1965    Case &Big = *(CR.Range.second-1);
1966
1967    if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
1968      const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
1969      const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
1970
1971      // Check that there is only one bit different.
1972      if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
1973          (SmallValue | BigValue) == BigValue) {
1974        // Isolate the common bit.
1975        APInt CommonBit = BigValue & ~SmallValue;
1976        assert((SmallValue | CommonBit) == BigValue &&
1977               CommonBit.countPopulation() == 1 && "Not a common bit?");
1978
1979        SDValue CondLHS = getValue(SV);
1980        EVT VT = CondLHS.getValueType();
1981        DebugLoc DL = getCurDebugLoc();
1982
1983        SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
1984                                 DAG.getConstant(CommonBit, VT));
1985        SDValue Cond = DAG.getSetCC(DL, MVT::i1,
1986                                    Or, DAG.getConstant(BigValue, VT),
1987                                    ISD::SETEQ);
1988
1989        // Update successor info.
1990        // Both Small and Big will jump to Small.BB, so we sum up the weights.
1991        addSuccessorWithWeight(SwitchBB, Small.BB,
1992                               Small.ExtraWeight + Big.ExtraWeight);
1993        addSuccessorWithWeight(SwitchBB, Default,
1994          // The default destination is the first successor in IR.
1995          BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0);
1996
1997        // Insert the true branch.
1998        SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
1999                                     getControlRoot(), Cond,
2000                                     DAG.getBasicBlock(Small.BB));
2001
2002        // Insert the false branch.
2003        BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
2004                             DAG.getBasicBlock(Default));
2005
2006        DAG.setRoot(BrCond);
2007        return true;
2008      }
2009    }
2010  }
2011
2012  // Order cases by weight so the most likely case will be checked first.
2013  uint32_t UnhandledWeights = 0;
2014  if (BPI) {
2015    for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) {
2016      uint32_t IWeight = I->ExtraWeight;
2017      UnhandledWeights += IWeight;
2018      for (CaseItr J = CR.Range.first; J < I; ++J) {
2019        uint32_t JWeight = J->ExtraWeight;
2020        if (IWeight > JWeight)
2021          std::swap(*I, *J);
2022      }
2023    }
2024  }
2025  // Rearrange the case blocks so that the last one falls through if possible.
2026  Case &BackCase = *(CR.Range.second-1);
2027  if (Size > 1 &&
2028      NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
2029    // The last case block won't fall through into 'NextBlock' if we emit the
2030    // branches in this order.  See if rearranging a case value would help.
2031    // We start at the bottom as it's the case with the least weight.
2032    for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I){
2033      if (I->BB == NextBlock) {
2034        std::swap(*I, BackCase);
2035        break;
2036      }
2037    }
2038  }
2039
2040  // Create a CaseBlock record representing a conditional branch to
2041  // the Case's target mbb if the value being switched on SV is equal
2042  // to C.
2043  MachineBasicBlock *CurBlock = CR.CaseBB;
2044  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2045    MachineBasicBlock *FallThrough;
2046    if (I != E-1) {
2047      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
2048      CurMF->insert(BBI, FallThrough);
2049
2050      // Put SV in a virtual register to make it available from the new blocks.
2051      ExportFromCurrentBlock(SV);
2052    } else {
2053      // If the last case doesn't match, go to the default block.
2054      FallThrough = Default;
2055    }
2056
2057    const Value *RHS, *LHS, *MHS;
2058    ISD::CondCode CC;
2059    if (I->High == I->Low) {
2060      // This is just small small case range :) containing exactly 1 case
2061      CC = ISD::SETEQ;
2062      LHS = SV; RHS = I->High; MHS = NULL;
2063    } else {
2064      CC = ISD::SETCC_INVALID;
2065      LHS = I->Low; MHS = SV; RHS = I->High;
2066    }
2067
2068    // The false weight should be sum of all un-handled cases.
2069    UnhandledWeights -= I->ExtraWeight;
2070    CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
2071                 /* me */ CurBlock,
2072                 /* trueweight */ I->ExtraWeight,
2073                 /* falseweight */ UnhandledWeights);
2074
2075    // If emitting the first comparison, just call visitSwitchCase to emit the
2076    // code into the current block.  Otherwise, push the CaseBlock onto the
2077    // vector to be later processed by SDISel, and insert the node's MBB
2078    // before the next MBB.
2079    if (CurBlock == SwitchBB)
2080      visitSwitchCase(CB, SwitchBB);
2081    else
2082      SwitchCases.push_back(CB);
2083
2084    CurBlock = FallThrough;
2085  }
2086
2087  return true;
2088}
2089
2090static inline bool areJTsAllowed(const TargetLowering &TLI) {
2091  return TLI.supportJumpTables() &&
2092          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
2093           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
2094}
2095
2096static APInt ComputeRange(const APInt &First, const APInt &Last) {
2097  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
2098  APInt LastExt = Last.zext(BitWidth), FirstExt = First.zext(BitWidth);
2099  return (LastExt - FirstExt + 1ULL);
2100}
2101
2102/// handleJTSwitchCase - Emit jumptable for current switch case range
2103bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR,
2104                                             CaseRecVector &WorkList,
2105                                             const Value *SV,
2106                                             MachineBasicBlock *Default,
2107                                             MachineBasicBlock *SwitchBB) {
2108  Case& FrontCase = *CR.Range.first;
2109  Case& BackCase  = *(CR.Range.second-1);
2110
2111  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2112  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2113
2114  APInt TSize(First.getBitWidth(), 0);
2115  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I)
2116    TSize += I->size();
2117
2118  if (!areJTsAllowed(TLI) || TSize.ult(TLI.getMinimumJumpTableEntries()))
2119    return false;
2120
2121  APInt Range = ComputeRange(First, Last);
2122  // The density is TSize / Range. Require at least 40%.
2123  // It should not be possible for IntTSize to saturate for sane code, but make
2124  // sure we handle Range saturation correctly.
2125  uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10);
2126  uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10);
2127  if (IntTSize * 10 < IntRange * 4)
2128    return false;
2129
2130  DEBUG(dbgs() << "Lowering jump table\n"
2131               << "First entry: " << First << ". Last entry: " << Last << '\n'
2132               << "Range: " << Range << ". Size: " << TSize << ".\n\n");
2133
2134  // Get the MachineFunction which holds the current MBB.  This is used when
2135  // inserting any additional MBBs necessary to represent the switch.
2136  MachineFunction *CurMF = FuncInfo.MF;
2137
2138  // Figure out which block is immediately after the current one.
2139  MachineFunction::iterator BBI = CR.CaseBB;
2140  ++BBI;
2141
2142  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2143
2144  // Create a new basic block to hold the code for loading the address
2145  // of the jump table, and jumping to it.  Update successor information;
2146  // we will either branch to the default case for the switch, or the jump
2147  // table.
2148  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2149  CurMF->insert(BBI, JumpTableBB);
2150
2151  addSuccessorWithWeight(CR.CaseBB, Default);
2152  addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2153
2154  // Build a vector of destination BBs, corresponding to each target
2155  // of the jump table. If the value of the jump table slot corresponds to
2156  // a case statement, push the case's BB onto the vector, otherwise, push
2157  // the default BB.
2158  std::vector<MachineBasicBlock*> DestBBs;
2159  APInt TEI = First;
2160  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2161    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2162    const APInt &High = cast<ConstantInt>(I->High)->getValue();
2163
2164    if (Low.ule(TEI) && TEI.ule(High)) {
2165      DestBBs.push_back(I->BB);
2166      if (TEI==High)
2167        ++I;
2168    } else {
2169      DestBBs.push_back(Default);
2170    }
2171  }
2172
2173  // Calculate weight for each unique destination in CR.
2174  DenseMap<MachineBasicBlock*, uint32_t> DestWeights;
2175  if (FuncInfo.BPI)
2176    for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2177      DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
2178          DestWeights.find(I->BB);
2179      if (Itr != DestWeights.end())
2180        Itr->second += I->ExtraWeight;
2181      else
2182        DestWeights[I->BB] = I->ExtraWeight;
2183    }
2184
2185  // Update successor info. Add one edge to each unique successor.
2186  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2187  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2188         E = DestBBs.end(); I != E; ++I) {
2189    if (!SuccsHandled[(*I)->getNumber()]) {
2190      SuccsHandled[(*I)->getNumber()] = true;
2191      DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
2192          DestWeights.find(*I);
2193      addSuccessorWithWeight(JumpTableBB, *I,
2194                             Itr != DestWeights.end() ? Itr->second : 0);
2195    }
2196  }
2197
2198  // Create a jump table index for this jump table.
2199  unsigned JTEncoding = TLI.getJumpTableEncoding();
2200  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2201                       ->createJumpTableIndex(DestBBs);
2202
2203  // Set the jump table information so that we can codegen it as a second
2204  // MachineBasicBlock
2205  JumpTable JT(-1U, JTI, JumpTableBB, Default);
2206  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2207  if (CR.CaseBB == SwitchBB)
2208    visitJumpTableHeader(JT, JTH, SwitchBB);
2209
2210  JTCases.push_back(JumpTableBlock(JTH, JT));
2211  return true;
2212}
2213
2214/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2215/// 2 subtrees.
2216bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2217                                                  CaseRecVector& WorkList,
2218                                                  const Value* SV,
2219                                                  MachineBasicBlock *Default,
2220                                                  MachineBasicBlock *SwitchBB) {
2221  // Get the MachineFunction which holds the current MBB.  This is used when
2222  // inserting any additional MBBs necessary to represent the switch.
2223  MachineFunction *CurMF = FuncInfo.MF;
2224
2225  // Figure out which block is immediately after the current one.
2226  MachineFunction::iterator BBI = CR.CaseBB;
2227  ++BBI;
2228
2229  Case& FrontCase = *CR.Range.first;
2230  Case& BackCase  = *(CR.Range.second-1);
2231  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2232
2233  // Size is the number of Cases represented by this range.
2234  unsigned Size = CR.Range.second - CR.Range.first;
2235
2236  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2237  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2238  double FMetric = 0;
2239  CaseItr Pivot = CR.Range.first + Size/2;
2240
2241  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2242  // (heuristically) allow us to emit JumpTable's later.
2243  APInt TSize(First.getBitWidth(), 0);
2244  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2245       I!=E; ++I)
2246    TSize += I->size();
2247
2248  APInt LSize = FrontCase.size();
2249  APInt RSize = TSize-LSize;
2250  DEBUG(dbgs() << "Selecting best pivot: \n"
2251               << "First: " << First << ", Last: " << Last <<'\n'
2252               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2253  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2254       J!=E; ++I, ++J) {
2255    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2256    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2257    APInt Range = ComputeRange(LEnd, RBegin);
2258    assert((Range - 2ULL).isNonNegative() &&
2259           "Invalid case distance");
2260    // Use volatile double here to avoid excess precision issues on some hosts,
2261    // e.g. that use 80-bit X87 registers.
2262    volatile double LDensity =
2263       (double)LSize.roundToDouble() /
2264                           (LEnd - First + 1ULL).roundToDouble();
2265    volatile double RDensity =
2266      (double)RSize.roundToDouble() /
2267                           (Last - RBegin + 1ULL).roundToDouble();
2268    double Metric = Range.logBase2()*(LDensity+RDensity);
2269    // Should always split in some non-trivial place
2270    DEBUG(dbgs() <<"=>Step\n"
2271                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2272                 << "LDensity: " << LDensity
2273                 << ", RDensity: " << RDensity << '\n'
2274                 << "Metric: " << Metric << '\n');
2275    if (FMetric < Metric) {
2276      Pivot = J;
2277      FMetric = Metric;
2278      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2279    }
2280
2281    LSize += J->size();
2282    RSize -= J->size();
2283  }
2284  if (areJTsAllowed(TLI)) {
2285    // If our case is dense we *really* should handle it earlier!
2286    assert((FMetric > 0) && "Should handle dense range earlier!");
2287  } else {
2288    Pivot = CR.Range.first + Size/2;
2289  }
2290
2291  CaseRange LHSR(CR.Range.first, Pivot);
2292  CaseRange RHSR(Pivot, CR.Range.second);
2293  const Constant *C = Pivot->Low;
2294  MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2295
2296  // We know that we branch to the LHS if the Value being switched on is
2297  // less than the Pivot value, C.  We use this to optimize our binary
2298  // tree a bit, by recognizing that if SV is greater than or equal to the
2299  // LHS's Case Value, and that Case Value is exactly one less than the
2300  // Pivot's Value, then we can branch directly to the LHS's Target,
2301  // rather than creating a leaf node for it.
2302  if ((LHSR.second - LHSR.first) == 1 &&
2303      LHSR.first->High == CR.GE &&
2304      cast<ConstantInt>(C)->getValue() ==
2305      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2306    TrueBB = LHSR.first->BB;
2307  } else {
2308    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2309    CurMF->insert(BBI, TrueBB);
2310    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2311
2312    // Put SV in a virtual register to make it available from the new blocks.
2313    ExportFromCurrentBlock(SV);
2314  }
2315
2316  // Similar to the optimization above, if the Value being switched on is
2317  // known to be less than the Constant CR.LT, and the current Case Value
2318  // is CR.LT - 1, then we can branch directly to the target block for
2319  // the current Case Value, rather than emitting a RHS leaf node for it.
2320  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2321      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2322      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2323    FalseBB = RHSR.first->BB;
2324  } else {
2325    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2326    CurMF->insert(BBI, FalseBB);
2327    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2328
2329    // Put SV in a virtual register to make it available from the new blocks.
2330    ExportFromCurrentBlock(SV);
2331  }
2332
2333  // Create a CaseBlock record representing a conditional branch to
2334  // the LHS node if the value being switched on SV is less than C.
2335  // Otherwise, branch to LHS.
2336  CaseBlock CB(ISD::SETULT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2337
2338  if (CR.CaseBB == SwitchBB)
2339    visitSwitchCase(CB, SwitchBB);
2340  else
2341    SwitchCases.push_back(CB);
2342
2343  return true;
2344}
2345
2346/// handleBitTestsSwitchCase - if current case range has few destination and
2347/// range span less, than machine word bitwidth, encode case range into series
2348/// of masks and emit bit tests with these masks.
2349bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2350                                                   CaseRecVector& WorkList,
2351                                                   const Value* SV,
2352                                                   MachineBasicBlock* Default,
2353                                                   MachineBasicBlock *SwitchBB){
2354  EVT PTy = TLI.getPointerTy();
2355  unsigned IntPtrBits = PTy.getSizeInBits();
2356
2357  Case& FrontCase = *CR.Range.first;
2358  Case& BackCase  = *(CR.Range.second-1);
2359
2360  // Get the MachineFunction which holds the current MBB.  This is used when
2361  // inserting any additional MBBs necessary to represent the switch.
2362  MachineFunction *CurMF = FuncInfo.MF;
2363
2364  // If target does not have legal shift left, do not emit bit tests at all.
2365  if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
2366    return false;
2367
2368  size_t numCmps = 0;
2369  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2370       I!=E; ++I) {
2371    // Single case counts one, case range - two.
2372    numCmps += (I->Low == I->High ? 1 : 2);
2373  }
2374
2375  // Count unique destinations
2376  SmallSet<MachineBasicBlock*, 4> Dests;
2377  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2378    Dests.insert(I->BB);
2379    if (Dests.size() > 3)
2380      // Don't bother the code below, if there are too much unique destinations
2381      return false;
2382  }
2383  DEBUG(dbgs() << "Total number of unique destinations: "
2384        << Dests.size() << '\n'
2385        << "Total number of comparisons: " << numCmps << '\n');
2386
2387  // Compute span of values.
2388  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2389  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2390  APInt cmpRange = maxValue - minValue;
2391
2392  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2393               << "Low bound: " << minValue << '\n'
2394               << "High bound: " << maxValue << '\n');
2395
2396  if (cmpRange.uge(IntPtrBits) ||
2397      (!(Dests.size() == 1 && numCmps >= 3) &&
2398       !(Dests.size() == 2 && numCmps >= 5) &&
2399       !(Dests.size() >= 3 && numCmps >= 6)))
2400    return false;
2401
2402  DEBUG(dbgs() << "Emitting bit tests\n");
2403  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2404
2405  // Optimize the case where all the case values fit in a
2406  // word without having to subtract minValue. In this case,
2407  // we can optimize away the subtraction.
2408  if (maxValue.ult(IntPtrBits)) {
2409    cmpRange = maxValue;
2410  } else {
2411    lowBound = minValue;
2412  }
2413
2414  CaseBitsVector CasesBits;
2415  unsigned i, count = 0;
2416
2417  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2418    MachineBasicBlock* Dest = I->BB;
2419    for (i = 0; i < count; ++i)
2420      if (Dest == CasesBits[i].BB)
2421        break;
2422
2423    if (i == count) {
2424      assert((count < 3) && "Too much destinations to test!");
2425      CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/));
2426      count++;
2427    }
2428
2429    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2430    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2431
2432    uint64_t lo = (lowValue - lowBound).getZExtValue();
2433    uint64_t hi = (highValue - lowBound).getZExtValue();
2434    CasesBits[i].ExtraWeight += I->ExtraWeight;
2435
2436    for (uint64_t j = lo; j <= hi; j++) {
2437      CasesBits[i].Mask |=  1ULL << j;
2438      CasesBits[i].Bits++;
2439    }
2440
2441  }
2442  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2443
2444  BitTestInfo BTC;
2445
2446  // Figure out which block is immediately after the current one.
2447  MachineFunction::iterator BBI = CR.CaseBB;
2448  ++BBI;
2449
2450  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2451
2452  DEBUG(dbgs() << "Cases:\n");
2453  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2454    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2455                 << ", Bits: " << CasesBits[i].Bits
2456                 << ", BB: " << CasesBits[i].BB << '\n');
2457
2458    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2459    CurMF->insert(BBI, CaseBB);
2460    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2461                              CaseBB,
2462                              CasesBits[i].BB, CasesBits[i].ExtraWeight));
2463
2464    // Put SV in a virtual register to make it available from the new blocks.
2465    ExportFromCurrentBlock(SV);
2466  }
2467
2468  BitTestBlock BTB(lowBound, cmpRange, SV,
2469                   -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2470                   CR.CaseBB, Default, BTC);
2471
2472  if (CR.CaseBB == SwitchBB)
2473    visitBitTestHeader(BTB, SwitchBB);
2474
2475  BitTestCases.push_back(BTB);
2476
2477  return true;
2478}
2479
2480/// Clusterify - Transform simple list of Cases into list of CaseRange's
2481size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2482                                       const SwitchInst& SI) {
2483
2484  /// Use a shorter form of declaration, and also
2485  /// show the we want to use CRSBuilder as Clusterifier.
2486  typedef IntegersSubsetMapping<MachineBasicBlock> Clusterifier;
2487
2488  Clusterifier TheClusterifier;
2489
2490  BranchProbabilityInfo *BPI = FuncInfo.BPI;
2491  // Start with "simple" cases
2492  for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
2493       i != e; ++i) {
2494    const BasicBlock *SuccBB = i.getCaseSuccessor();
2495    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
2496
2497    TheClusterifier.add(i.getCaseValueEx(), SMBB,
2498        BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0);
2499  }
2500
2501  TheClusterifier.optimize();
2502
2503  size_t numCmps = 0;
2504  for (Clusterifier::RangeIterator i = TheClusterifier.begin(),
2505       e = TheClusterifier.end(); i != e; ++i, ++numCmps) {
2506    Clusterifier::Cluster &C = *i;
2507    // Update edge weight for the cluster.
2508    unsigned W = C.first.Weight;
2509
2510    // FIXME: Currently work with ConstantInt based numbers.
2511    // Changing it to APInt based is a pretty heavy for this commit.
2512    Cases.push_back(Case(C.first.getLow().toConstantInt(),
2513                         C.first.getHigh().toConstantInt(), C.second, W));
2514
2515    if (C.first.getLow() != C.first.getHigh())
2516    // A range counts double, since it requires two compares.
2517    ++numCmps;
2518  }
2519
2520  return numCmps;
2521}
2522
2523void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2524                                           MachineBasicBlock *Last) {
2525  // Update JTCases.
2526  for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2527    if (JTCases[i].first.HeaderBB == First)
2528      JTCases[i].first.HeaderBB = Last;
2529
2530  // Update BitTestCases.
2531  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2532    if (BitTestCases[i].Parent == First)
2533      BitTestCases[i].Parent = Last;
2534}
2535
2536void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2537  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2538
2539  // Figure out which block is immediately after the current one.
2540  MachineBasicBlock *NextBlock = 0;
2541  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2542
2543  // If there is only the default destination, branch to it if it is not the
2544  // next basic block.  Otherwise, just fall through.
2545  if (!SI.getNumCases()) {
2546    // Update machine-CFG edges.
2547
2548    // If this is not a fall-through branch, emit the branch.
2549    SwitchMBB->addSuccessor(Default);
2550    if (Default != NextBlock)
2551      DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
2552                              MVT::Other, getControlRoot(),
2553                              DAG.getBasicBlock(Default)));
2554
2555    return;
2556  }
2557
2558  // If there are any non-default case statements, create a vector of Cases
2559  // representing each one, and sort the vector so that we can efficiently
2560  // create a binary search tree from them.
2561  CaseVector Cases;
2562  size_t numCmps = Clusterify(Cases, SI);
2563  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2564               << ". Total compares: " << numCmps << '\n');
2565  (void)numCmps;
2566
2567  // Get the Value to be switched on and default basic blocks, which will be
2568  // inserted into CaseBlock records, representing basic blocks in the binary
2569  // search tree.
2570  const Value *SV = SI.getCondition();
2571
2572  // Push the initial CaseRec onto the worklist
2573  CaseRecVector WorkList;
2574  WorkList.push_back(CaseRec(SwitchMBB,0,0,
2575                             CaseRange(Cases.begin(),Cases.end())));
2576
2577  while (!WorkList.empty()) {
2578    // Grab a record representing a case range to process off the worklist
2579    CaseRec CR = WorkList.back();
2580    WorkList.pop_back();
2581
2582    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2583      continue;
2584
2585    // If the range has few cases (two or less) emit a series of specific
2586    // tests.
2587    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2588      continue;
2589
2590    // If the switch has more than N blocks, and is at least 40% dense, and the
2591    // target supports indirect branches, then emit a jump table rather than
2592    // lowering the switch to a binary tree of conditional branches.
2593    // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries().
2594    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2595      continue;
2596
2597    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2598    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2599    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2600  }
2601}
2602
2603void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2604  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2605
2606  // Update machine-CFG edges with unique successors.
2607  SmallSet<BasicBlock*, 32> Done;
2608  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2609    BasicBlock *BB = I.getSuccessor(i);
2610    bool Inserted = Done.insert(BB);
2611    if (!Inserted)
2612        continue;
2613
2614    MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2615    addSuccessorWithWeight(IndirectBrMBB, Succ);
2616  }
2617
2618  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
2619                          MVT::Other, getControlRoot(),
2620                          getValue(I.getAddress())));
2621}
2622
2623void SelectionDAGBuilder::visitFSub(const User &I) {
2624  // -0.0 - X --> fneg
2625  Type *Ty = I.getType();
2626  if (isa<Constant>(I.getOperand(0)) &&
2627      I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2628    SDValue Op2 = getValue(I.getOperand(1));
2629    setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
2630                             Op2.getValueType(), Op2));
2631    return;
2632  }
2633
2634  visitBinary(I, ISD::FSUB);
2635}
2636
2637void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2638  SDValue Op1 = getValue(I.getOperand(0));
2639  SDValue Op2 = getValue(I.getOperand(1));
2640  setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
2641                           Op1.getValueType(), Op1, Op2));
2642}
2643
2644void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2645  SDValue Op1 = getValue(I.getOperand(0));
2646  SDValue Op2 = getValue(I.getOperand(1));
2647
2648  MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType());
2649
2650  // Coerce the shift amount to the right type if we can.
2651  if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2652    unsigned ShiftSize = ShiftTy.getSizeInBits();
2653    unsigned Op2Size = Op2.getValueType().getSizeInBits();
2654    DebugLoc DL = getCurDebugLoc();
2655
2656    // If the operand is smaller than the shift count type, promote it.
2657    if (ShiftSize > Op2Size)
2658      Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2659
2660    // If the operand is larger than the shift count type but the shift
2661    // count type has enough bits to represent any shift value, truncate
2662    // it now. This is a common case and it exposes the truncate to
2663    // optimization early.
2664    else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2665      Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2666    // Otherwise we'll need to temporarily settle for some other convenient
2667    // type.  Type legalization will make adjustments once the shiftee is split.
2668    else
2669      Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2670  }
2671
2672  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
2673                           Op1.getValueType(), Op1, Op2));
2674}
2675
2676void SelectionDAGBuilder::visitSDiv(const User &I) {
2677  SDValue Op1 = getValue(I.getOperand(0));
2678  SDValue Op2 = getValue(I.getOperand(1));
2679
2680  // Turn exact SDivs into multiplications.
2681  // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2682  // exact bit.
2683  if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2684      !isa<ConstantSDNode>(Op1) &&
2685      isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2686    setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG));
2687  else
2688    setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(),
2689                             Op1, Op2));
2690}
2691
2692void SelectionDAGBuilder::visitICmp(const User &I) {
2693  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2694  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2695    predicate = IC->getPredicate();
2696  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2697    predicate = ICmpInst::Predicate(IC->getPredicate());
2698  SDValue Op1 = getValue(I.getOperand(0));
2699  SDValue Op2 = getValue(I.getOperand(1));
2700  ISD::CondCode Opcode = getICmpCondCode(predicate);
2701
2702  EVT DestVT = TLI.getValueType(I.getType());
2703  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
2704}
2705
2706void SelectionDAGBuilder::visitFCmp(const User &I) {
2707  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2708  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2709    predicate = FC->getPredicate();
2710  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2711    predicate = FCmpInst::Predicate(FC->getPredicate());
2712  SDValue Op1 = getValue(I.getOperand(0));
2713  SDValue Op2 = getValue(I.getOperand(1));
2714  ISD::CondCode Condition = getFCmpCondCode(predicate);
2715  if (TM.Options.NoNaNsFPMath)
2716    Condition = getFCmpCodeWithoutNaN(Condition);
2717  EVT DestVT = TLI.getValueType(I.getType());
2718  setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
2719}
2720
2721void SelectionDAGBuilder::visitSelect(const User &I) {
2722  SmallVector<EVT, 4> ValueVTs;
2723  ComputeValueVTs(TLI, I.getType(), ValueVTs);
2724  unsigned NumValues = ValueVTs.size();
2725  if (NumValues == 0) return;
2726
2727  SmallVector<SDValue, 4> Values(NumValues);
2728  SDValue Cond     = getValue(I.getOperand(0));
2729  SDValue TrueVal  = getValue(I.getOperand(1));
2730  SDValue FalseVal = getValue(I.getOperand(2));
2731  ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2732    ISD::VSELECT : ISD::SELECT;
2733
2734  for (unsigned i = 0; i != NumValues; ++i)
2735    Values[i] = DAG.getNode(OpCode, getCurDebugLoc(),
2736                            TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2737                            Cond,
2738                            SDValue(TrueVal.getNode(),
2739                                    TrueVal.getResNo() + i),
2740                            SDValue(FalseVal.getNode(),
2741                                    FalseVal.getResNo() + i));
2742
2743  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
2744                           DAG.getVTList(&ValueVTs[0], NumValues),
2745                           &Values[0], NumValues));
2746}
2747
2748void SelectionDAGBuilder::visitTrunc(const User &I) {
2749  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2750  SDValue N = getValue(I.getOperand(0));
2751  EVT DestVT = TLI.getValueType(I.getType());
2752  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
2753}
2754
2755void SelectionDAGBuilder::visitZExt(const User &I) {
2756  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2757  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2758  SDValue N = getValue(I.getOperand(0));
2759  EVT DestVT = TLI.getValueType(I.getType());
2760  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
2761}
2762
2763void SelectionDAGBuilder::visitSExt(const User &I) {
2764  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2765  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2766  SDValue N = getValue(I.getOperand(0));
2767  EVT DestVT = TLI.getValueType(I.getType());
2768  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
2769}
2770
2771void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2772  // FPTrunc is never a no-op cast, no need to check
2773  SDValue N = getValue(I.getOperand(0));
2774  EVT DestVT = TLI.getValueType(I.getType());
2775  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
2776                           DestVT, N,
2777                           DAG.getTargetConstant(0, TLI.getPointerTy())));
2778}
2779
2780void SelectionDAGBuilder::visitFPExt(const User &I){
2781  // FPExt is never a no-op cast, no need to check
2782  SDValue N = getValue(I.getOperand(0));
2783  EVT DestVT = TLI.getValueType(I.getType());
2784  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
2785}
2786
2787void SelectionDAGBuilder::visitFPToUI(const User &I) {
2788  // FPToUI is never a no-op cast, no need to check
2789  SDValue N = getValue(I.getOperand(0));
2790  EVT DestVT = TLI.getValueType(I.getType());
2791  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
2792}
2793
2794void SelectionDAGBuilder::visitFPToSI(const User &I) {
2795  // FPToSI is never a no-op cast, no need to check
2796  SDValue N = getValue(I.getOperand(0));
2797  EVT DestVT = TLI.getValueType(I.getType());
2798  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
2799}
2800
2801void SelectionDAGBuilder::visitUIToFP(const User &I) {
2802  // UIToFP is never a no-op cast, no need to check
2803  SDValue N = getValue(I.getOperand(0));
2804  EVT DestVT = TLI.getValueType(I.getType());
2805  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
2806}
2807
2808void SelectionDAGBuilder::visitSIToFP(const User &I){
2809  // SIToFP is never a no-op cast, no need to check
2810  SDValue N = getValue(I.getOperand(0));
2811  EVT DestVT = TLI.getValueType(I.getType());
2812  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
2813}
2814
2815void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2816  // What to do depends on the size of the integer and the size of the pointer.
2817  // We can either truncate, zero extend, or no-op, accordingly.
2818  SDValue N = getValue(I.getOperand(0));
2819  EVT DestVT = TLI.getValueType(I.getType());
2820  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2821}
2822
2823void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2824  // What to do depends on the size of the integer and the size of the pointer.
2825  // We can either truncate, zero extend, or no-op, accordingly.
2826  SDValue N = getValue(I.getOperand(0));
2827  EVT DestVT = TLI.getValueType(I.getType());
2828  setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
2829}
2830
2831void SelectionDAGBuilder::visitBitCast(const User &I) {
2832  SDValue N = getValue(I.getOperand(0));
2833  EVT DestVT = TLI.getValueType(I.getType());
2834
2835  // BitCast assures us that source and destination are the same size so this is
2836  // either a BITCAST or a no-op.
2837  if (DestVT != N.getValueType())
2838    setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
2839                             DestVT, N)); // convert types.
2840  else
2841    setValue(&I, N);            // noop cast.
2842}
2843
2844void SelectionDAGBuilder::visitInsertElement(const User &I) {
2845  SDValue InVec = getValue(I.getOperand(0));
2846  SDValue InVal = getValue(I.getOperand(1));
2847  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2848                              TLI.getPointerTy(),
2849                              getValue(I.getOperand(2)));
2850  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
2851                           TLI.getValueType(I.getType()),
2852                           InVec, InVal, InIdx));
2853}
2854
2855void SelectionDAGBuilder::visitExtractElement(const User &I) {
2856  SDValue InVec = getValue(I.getOperand(0));
2857  SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
2858                              TLI.getPointerTy(),
2859                              getValue(I.getOperand(1)));
2860  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
2861                           TLI.getValueType(I.getType()), InVec, InIdx));
2862}
2863
2864// Utility for visitShuffleVector - Return true if every element in Mask,
2865// beginning from position Pos and ending in Pos+Size, falls within the
2866// specified sequential range [L, L+Pos). or is undef.
2867static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
2868                                unsigned Pos, unsigned Size, int Low) {
2869  for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
2870    if (Mask[i] >= 0 && Mask[i] != Low)
2871      return false;
2872  return true;
2873}
2874
2875void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2876  SDValue Src1 = getValue(I.getOperand(0));
2877  SDValue Src2 = getValue(I.getOperand(1));
2878
2879  SmallVector<int, 8> Mask;
2880  ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
2881  unsigned MaskNumElts = Mask.size();
2882
2883  EVT VT = TLI.getValueType(I.getType());
2884  EVT SrcVT = Src1.getValueType();
2885  unsigned SrcNumElts = SrcVT.getVectorNumElements();
2886
2887  if (SrcNumElts == MaskNumElts) {
2888    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2889                                      &Mask[0]));
2890    return;
2891  }
2892
2893  // Normalize the shuffle vector since mask and vector length don't match.
2894  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2895    // Mask is longer than the source vectors and is a multiple of the source
2896    // vectors.  We can use concatenate vector to make the mask and vectors
2897    // lengths match.
2898    if (SrcNumElts*2 == MaskNumElts) {
2899      // First check for Src1 in low and Src2 in high
2900      if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
2901          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
2902        // The shuffle is concatenating two vectors together.
2903        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2904                                 VT, Src1, Src2));
2905        return;
2906      }
2907      // Then check for Src2 in low and Src1 in high
2908      if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
2909          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
2910        // The shuffle is concatenating two vectors together.
2911        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
2912                                 VT, Src2, Src1));
2913        return;
2914      }
2915    }
2916
2917    // Pad both vectors with undefs to make them the same length as the mask.
2918    unsigned NumConcat = MaskNumElts / SrcNumElts;
2919    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2920    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2921    SDValue UndefVal = DAG.getUNDEF(SrcVT);
2922
2923    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2924    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2925    MOps1[0] = Src1;
2926    MOps2[0] = Src2;
2927
2928    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2929                                                  getCurDebugLoc(), VT,
2930                                                  &MOps1[0], NumConcat);
2931    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2932                                                  getCurDebugLoc(), VT,
2933                                                  &MOps2[0], NumConcat);
2934
2935    // Readjust mask for new input vector length.
2936    SmallVector<int, 8> MappedOps;
2937    for (unsigned i = 0; i != MaskNumElts; ++i) {
2938      int Idx = Mask[i];
2939      if (Idx >= (int)SrcNumElts)
2940        Idx -= SrcNumElts - MaskNumElts;
2941      MappedOps.push_back(Idx);
2942    }
2943
2944    setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
2945                                      &MappedOps[0]));
2946    return;
2947  }
2948
2949  if (SrcNumElts > MaskNumElts) {
2950    // Analyze the access pattern of the vector to see if we can extract
2951    // two subvectors and do the shuffle. The analysis is done by calculating
2952    // the range of elements the mask access on both vectors.
2953    int MinRange[2] = { static_cast<int>(SrcNumElts),
2954                        static_cast<int>(SrcNumElts)};
2955    int MaxRange[2] = {-1, -1};
2956
2957    for (unsigned i = 0; i != MaskNumElts; ++i) {
2958      int Idx = Mask[i];
2959      unsigned Input = 0;
2960      if (Idx < 0)
2961        continue;
2962
2963      if (Idx >= (int)SrcNumElts) {
2964        Input = 1;
2965        Idx -= SrcNumElts;
2966      }
2967      if (Idx > MaxRange[Input])
2968        MaxRange[Input] = Idx;
2969      if (Idx < MinRange[Input])
2970        MinRange[Input] = Idx;
2971    }
2972
2973    // Check if the access is smaller than the vector size and can we find
2974    // a reasonable extract index.
2975    int RangeUse[2] = { -1, -1 };  // 0 = Unused, 1 = Extract, -1 = Can not
2976                                   // Extract.
2977    int StartIdx[2];  // StartIdx to extract from
2978    for (unsigned Input = 0; Input < 2; ++Input) {
2979      if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
2980        RangeUse[Input] = 0; // Unused
2981        StartIdx[Input] = 0;
2982        continue;
2983      }
2984
2985      // Find a good start index that is a multiple of the mask length. Then
2986      // see if the rest of the elements are in range.
2987      StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2988      if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2989          StartIdx[Input] + MaskNumElts <= SrcNumElts)
2990        RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2991    }
2992
2993    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2994      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2995      return;
2996    }
2997    if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
2998      // Extract appropriate subvector and generate a vector shuffle
2999      for (unsigned Input = 0; Input < 2; ++Input) {
3000        SDValue &Src = Input == 0 ? Src1 : Src2;
3001        if (RangeUse[Input] == 0)
3002          Src = DAG.getUNDEF(VT);
3003        else
3004          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
3005                            Src, DAG.getIntPtrConstant(StartIdx[Input]));
3006      }
3007
3008      // Calculate new mask.
3009      SmallVector<int, 8> MappedOps;
3010      for (unsigned i = 0; i != MaskNumElts; ++i) {
3011        int Idx = Mask[i];
3012        if (Idx >= 0) {
3013          if (Idx < (int)SrcNumElts)
3014            Idx -= StartIdx[0];
3015          else
3016            Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3017        }
3018        MappedOps.push_back(Idx);
3019      }
3020
3021      setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
3022                                        &MappedOps[0]));
3023      return;
3024    }
3025  }
3026
3027  // We can't use either concat vectors or extract subvectors so fall back to
3028  // replacing the shuffle with extract and build vector.
3029  // to insert and build vector.
3030  EVT EltVT = VT.getVectorElementType();
3031  EVT PtrVT = TLI.getPointerTy();
3032  SmallVector<SDValue,8> Ops;
3033  for (unsigned i = 0; i != MaskNumElts; ++i) {
3034    int Idx = Mask[i];
3035    SDValue Res;
3036
3037    if (Idx < 0) {
3038      Res = DAG.getUNDEF(EltVT);
3039    } else {
3040      SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3041      if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3042
3043      Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
3044                        EltVT, Src, DAG.getConstant(Idx, PtrVT));
3045    }
3046
3047    Ops.push_back(Res);
3048  }
3049
3050  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
3051                           VT, &Ops[0], Ops.size()));
3052}
3053
3054void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3055  const Value *Op0 = I.getOperand(0);
3056  const Value *Op1 = I.getOperand(1);
3057  Type *AggTy = I.getType();
3058  Type *ValTy = Op1->getType();
3059  bool IntoUndef = isa<UndefValue>(Op0);
3060  bool FromUndef = isa<UndefValue>(Op1);
3061
3062  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3063
3064  SmallVector<EVT, 4> AggValueVTs;
3065  ComputeValueVTs(TLI, AggTy, AggValueVTs);
3066  SmallVector<EVT, 4> ValValueVTs;
3067  ComputeValueVTs(TLI, ValTy, ValValueVTs);
3068
3069  unsigned NumAggValues = AggValueVTs.size();
3070  unsigned NumValValues = ValValueVTs.size();
3071  SmallVector<SDValue, 4> Values(NumAggValues);
3072
3073  SDValue Agg = getValue(Op0);
3074  unsigned i = 0;
3075  // Copy the beginning value(s) from the original aggregate.
3076  for (; i != LinearIndex; ++i)
3077    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3078                SDValue(Agg.getNode(), Agg.getResNo() + i);
3079  // Copy values from the inserted value(s).
3080  if (NumValValues) {
3081    SDValue Val = getValue(Op1);
3082    for (; i != LinearIndex + NumValValues; ++i)
3083      Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3084                  SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3085  }
3086  // Copy remaining value(s) from the original aggregate.
3087  for (; i != NumAggValues; ++i)
3088    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3089                SDValue(Agg.getNode(), Agg.getResNo() + i);
3090
3091  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3092                           DAG.getVTList(&AggValueVTs[0], NumAggValues),
3093                           &Values[0], NumAggValues));
3094}
3095
3096void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3097  const Value *Op0 = I.getOperand(0);
3098  Type *AggTy = Op0->getType();
3099  Type *ValTy = I.getType();
3100  bool OutOfUndef = isa<UndefValue>(Op0);
3101
3102  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3103
3104  SmallVector<EVT, 4> ValValueVTs;
3105  ComputeValueVTs(TLI, ValTy, ValValueVTs);
3106
3107  unsigned NumValValues = ValValueVTs.size();
3108
3109  // Ignore a extractvalue that produces an empty object
3110  if (!NumValValues) {
3111    setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3112    return;
3113  }
3114
3115  SmallVector<SDValue, 4> Values(NumValValues);
3116
3117  SDValue Agg = getValue(Op0);
3118  // Copy out the selected value(s).
3119  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3120    Values[i - LinearIndex] =
3121      OutOfUndef ?
3122        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3123        SDValue(Agg.getNode(), Agg.getResNo() + i);
3124
3125  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3126                           DAG.getVTList(&ValValueVTs[0], NumValValues),
3127                           &Values[0], NumValValues));
3128}
3129
3130void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3131  SDValue N = getValue(I.getOperand(0));
3132  // Note that the pointer operand may be a vector of pointers. Take the scalar
3133  // element which holds a pointer.
3134  Type *Ty = I.getOperand(0)->getType()->getScalarType();
3135
3136  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
3137       OI != E; ++OI) {
3138    const Value *Idx = *OI;
3139    if (StructType *StTy = dyn_cast<StructType>(Ty)) {
3140      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
3141      if (Field) {
3142        // N = N + Offset
3143        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
3144        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3145                        DAG.getIntPtrConstant(Offset));
3146      }
3147
3148      Ty = StTy->getElementType(Field);
3149    } else {
3150      Ty = cast<SequentialType>(Ty)->getElementType();
3151
3152      // If this is a constant subscript, handle it quickly.
3153      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3154        if (CI->isZero()) continue;
3155        uint64_t Offs =
3156            TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
3157        SDValue OffsVal;
3158        EVT PTy = TLI.getPointerTy();
3159        unsigned PtrBits = PTy.getSizeInBits();
3160        if (PtrBits < 64)
3161          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
3162                                TLI.getPointerTy(),
3163                                DAG.getConstant(Offs, MVT::i64));
3164        else
3165          OffsVal = DAG.getIntPtrConstant(Offs);
3166
3167        N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
3168                        OffsVal);
3169        continue;
3170      }
3171
3172      // N = N + Idx * ElementSize;
3173      APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
3174                                TD->getTypeAllocSize(Ty));
3175      SDValue IdxN = getValue(Idx);
3176
3177      // If the index is smaller or larger than intptr_t, truncate or extend
3178      // it.
3179      IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
3180
3181      // If this is a multiply by a power of two, turn it into a shl
3182      // immediately.  This is a very common case.
3183      if (ElementSize != 1) {
3184        if (ElementSize.isPowerOf2()) {
3185          unsigned Amt = ElementSize.logBase2();
3186          IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
3187                             N.getValueType(), IdxN,
3188                             DAG.getConstant(Amt, IdxN.getValueType()));
3189        } else {
3190          SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy());
3191          IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
3192                             N.getValueType(), IdxN, Scale);
3193        }
3194      }
3195
3196      N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3197                      N.getValueType(), N, IdxN);
3198    }
3199  }
3200
3201  setValue(&I, N);
3202}
3203
3204void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3205  // If this is a fixed sized alloca in the entry block of the function,
3206  // allocate it statically on the stack.
3207  if (FuncInfo.StaticAllocaMap.count(&I))
3208    return;   // getValue will auto-populate this.
3209
3210  Type *Ty = I.getAllocatedType();
3211  uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
3212  unsigned Align =
3213    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
3214             I.getAlignment());
3215
3216  SDValue AllocSize = getValue(I.getArraySize());
3217
3218  EVT IntPtr = TLI.getPointerTy();
3219  if (AllocSize.getValueType() != IntPtr)
3220    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
3221
3222  AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
3223                          AllocSize,
3224                          DAG.getConstant(TySize, IntPtr));
3225
3226  // Handle alignment.  If the requested alignment is less than or equal to
3227  // the stack alignment, ignore it.  If the size is greater than or equal to
3228  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3229  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
3230  if (Align <= StackAlign)
3231    Align = 0;
3232
3233  // Round the size of the allocation up to the stack alignment size
3234  // by add SA-1 to the size.
3235  AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3236                          AllocSize.getValueType(), AllocSize,
3237                          DAG.getIntPtrConstant(StackAlign-1));
3238
3239  // Mask out the low bits for alignment purposes.
3240  AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
3241                          AllocSize.getValueType(), AllocSize,
3242                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3243
3244  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3245  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3246  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
3247                            VTs, Ops, 3);
3248  setValue(&I, DSA);
3249  DAG.setRoot(DSA.getValue(1));
3250
3251  // Inform the Frame Information that we have just allocated a variable-sized
3252  // object.
3253  FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
3254}
3255
3256void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3257  if (I.isAtomic())
3258    return visitAtomicLoad(I);
3259
3260  const Value *SV = I.getOperand(0);
3261  SDValue Ptr = getValue(SV);
3262
3263  Type *Ty = I.getType();
3264
3265  bool isVolatile = I.isVolatile();
3266  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3267  bool isInvariant = I.getMetadata("invariant.load") != 0;
3268  unsigned Alignment = I.getAlignment();
3269  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3270  const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3271
3272  SmallVector<EVT, 4> ValueVTs;
3273  SmallVector<uint64_t, 4> Offsets;
3274  ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3275  unsigned NumValues = ValueVTs.size();
3276  if (NumValues == 0)
3277    return;
3278
3279  SDValue Root;
3280  bool ConstantMemory = false;
3281  if (I.isVolatile() || NumValues > MaxParallelChains)
3282    // Serialize volatile loads with other side effects.
3283    Root = getRoot();
3284  else if (AA->pointsToConstantMemory(
3285             AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3286    // Do not serialize (non-volatile) loads of constant memory with anything.
3287    Root = DAG.getEntryNode();
3288    ConstantMemory = true;
3289  } else {
3290    // Do not serialize non-volatile loads against each other.
3291    Root = DAG.getRoot();
3292  }
3293
3294  SmallVector<SDValue, 4> Values(NumValues);
3295  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3296                                          NumValues));
3297  EVT PtrVT = Ptr.getValueType();
3298  unsigned ChainI = 0;
3299  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3300    // Serializing loads here may result in excessive register pressure, and
3301    // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3302    // could recover a bit by hoisting nodes upward in the chain by recognizing
3303    // they are side-effect free or do not alias. The optimizer should really
3304    // avoid this case by converting large object/array copies to llvm.memcpy
3305    // (MaxParallelChains should always remain as failsafe).
3306    if (ChainI == MaxParallelChains) {
3307      assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3308      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3309                                  MVT::Other, &Chains[0], ChainI);
3310      Root = Chain;
3311      ChainI = 0;
3312    }
3313    SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
3314                            PtrVT, Ptr,
3315                            DAG.getConstant(Offsets[i], PtrVT));
3316    SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
3317                            A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3318                            isNonTemporal, isInvariant, Alignment, TBAAInfo,
3319                            Ranges);
3320
3321    Values[i] = L;
3322    Chains[ChainI] = L.getValue(1);
3323  }
3324
3325  if (!ConstantMemory) {
3326    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3327                                MVT::Other, &Chains[0], ChainI);
3328    if (isVolatile)
3329      DAG.setRoot(Chain);
3330    else
3331      PendingLoads.push_back(Chain);
3332  }
3333
3334  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
3335                           DAG.getVTList(&ValueVTs[0], NumValues),
3336                           &Values[0], NumValues));
3337}
3338
3339void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3340  if (I.isAtomic())
3341    return visitAtomicStore(I);
3342
3343  const Value *SrcV = I.getOperand(0);
3344  const Value *PtrV = I.getOperand(1);
3345
3346  SmallVector<EVT, 4> ValueVTs;
3347  SmallVector<uint64_t, 4> Offsets;
3348  ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
3349  unsigned NumValues = ValueVTs.size();
3350  if (NumValues == 0)
3351    return;
3352
3353  // Get the lowered operands. Note that we do this after
3354  // checking if NumResults is zero, because with zero results
3355  // the operands won't have values in the map.
3356  SDValue Src = getValue(SrcV);
3357  SDValue Ptr = getValue(PtrV);
3358
3359  SDValue Root = getRoot();
3360  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3361                                          NumValues));
3362  EVT PtrVT = Ptr.getValueType();
3363  bool isVolatile = I.isVolatile();
3364  bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3365  unsigned Alignment = I.getAlignment();
3366  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3367
3368  unsigned ChainI = 0;
3369  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3370    // See visitLoad comments.
3371    if (ChainI == MaxParallelChains) {
3372      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3373                                  MVT::Other, &Chains[0], ChainI);
3374      Root = Chain;
3375      ChainI = 0;
3376    }
3377    SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
3378                              DAG.getConstant(Offsets[i], PtrVT));
3379    SDValue St = DAG.getStore(Root, getCurDebugLoc(),
3380                              SDValue(Src.getNode(), Src.getResNo() + i),
3381                              Add, MachinePointerInfo(PtrV, Offsets[i]),
3382                              isVolatile, isNonTemporal, Alignment, TBAAInfo);
3383    Chains[ChainI] = St;
3384  }
3385
3386  SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
3387                                  MVT::Other, &Chains[0], ChainI);
3388  ++SDNodeOrder;
3389  AssignOrderingToNode(StoreNode.getNode());
3390  DAG.setRoot(StoreNode);
3391}
3392
3393static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order,
3394                                    SynchronizationScope Scope,
3395                                    bool Before, DebugLoc dl,
3396                                    SelectionDAG &DAG,
3397                                    const TargetLowering &TLI) {
3398  // Fence, if necessary
3399  if (Before) {
3400    if (Order == AcquireRelease || Order == SequentiallyConsistent)
3401      Order = Release;
3402    else if (Order == Acquire || Order == Monotonic)
3403      return Chain;
3404  } else {
3405    if (Order == AcquireRelease)
3406      Order = Acquire;
3407    else if (Order == Release || Order == Monotonic)
3408      return Chain;
3409  }
3410  SDValue Ops[3];
3411  Ops[0] = Chain;
3412  Ops[1] = DAG.getConstant(Order, TLI.getPointerTy());
3413  Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy());
3414  return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3);
3415}
3416
3417void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3418  DebugLoc dl = getCurDebugLoc();
3419  AtomicOrdering Order = I.getOrdering();
3420  SynchronizationScope Scope = I.getSynchScope();
3421
3422  SDValue InChain = getRoot();
3423
3424  if (TLI.getInsertFencesForAtomic())
3425    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3426                                   DAG, TLI);
3427
3428  SDValue L =
3429    DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
3430                  getValue(I.getCompareOperand()).getValueType().getSimpleVT(),
3431                  InChain,
3432                  getValue(I.getPointerOperand()),
3433                  getValue(I.getCompareOperand()),
3434                  getValue(I.getNewValOperand()),
3435                  MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */,
3436                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3437                  Scope);
3438
3439  SDValue OutChain = L.getValue(1);
3440
3441  if (TLI.getInsertFencesForAtomic())
3442    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3443                                    DAG, TLI);
3444
3445  setValue(&I, L);
3446  DAG.setRoot(OutChain);
3447}
3448
3449void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3450  DebugLoc dl = getCurDebugLoc();
3451  ISD::NodeType NT;
3452  switch (I.getOperation()) {
3453  default: llvm_unreachable("Unknown atomicrmw operation");
3454  case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3455  case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3456  case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3457  case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3458  case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3459  case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3460  case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3461  case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3462  case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3463  case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3464  case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3465  }
3466  AtomicOrdering Order = I.getOrdering();
3467  SynchronizationScope Scope = I.getSynchScope();
3468
3469  SDValue InChain = getRoot();
3470
3471  if (TLI.getInsertFencesForAtomic())
3472    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3473                                   DAG, TLI);
3474
3475  SDValue L =
3476    DAG.getAtomic(NT, dl,
3477                  getValue(I.getValOperand()).getValueType().getSimpleVT(),
3478                  InChain,
3479                  getValue(I.getPointerOperand()),
3480                  getValue(I.getValOperand()),
3481                  I.getPointerOperand(), 0 /* Alignment */,
3482                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3483                  Scope);
3484
3485  SDValue OutChain = L.getValue(1);
3486
3487  if (TLI.getInsertFencesForAtomic())
3488    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3489                                    DAG, TLI);
3490
3491  setValue(&I, L);
3492  DAG.setRoot(OutChain);
3493}
3494
3495void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3496  DebugLoc dl = getCurDebugLoc();
3497  SDValue Ops[3];
3498  Ops[0] = getRoot();
3499  Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy());
3500  Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy());
3501  DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3));
3502}
3503
3504void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3505  DebugLoc dl = getCurDebugLoc();
3506  AtomicOrdering Order = I.getOrdering();
3507  SynchronizationScope Scope = I.getSynchScope();
3508
3509  SDValue InChain = getRoot();
3510
3511  EVT VT = TLI.getValueType(I.getType());
3512
3513  if (I.getAlignment() * 8 < VT.getSizeInBits())
3514    report_fatal_error("Cannot generate unaligned atomic load");
3515
3516  SDValue L =
3517    DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3518                  getValue(I.getPointerOperand()),
3519                  I.getPointerOperand(), I.getAlignment(),
3520                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3521                  Scope);
3522
3523  SDValue OutChain = L.getValue(1);
3524
3525  if (TLI.getInsertFencesForAtomic())
3526    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3527                                    DAG, TLI);
3528
3529  setValue(&I, L);
3530  DAG.setRoot(OutChain);
3531}
3532
3533void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3534  DebugLoc dl = getCurDebugLoc();
3535
3536  AtomicOrdering Order = I.getOrdering();
3537  SynchronizationScope Scope = I.getSynchScope();
3538
3539  SDValue InChain = getRoot();
3540
3541  EVT VT = TLI.getValueType(I.getValueOperand()->getType());
3542
3543  if (I.getAlignment() * 8 < VT.getSizeInBits())
3544    report_fatal_error("Cannot generate unaligned atomic store");
3545
3546  if (TLI.getInsertFencesForAtomic())
3547    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3548                                   DAG, TLI);
3549
3550  SDValue OutChain =
3551    DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3552                  InChain,
3553                  getValue(I.getPointerOperand()),
3554                  getValue(I.getValueOperand()),
3555                  I.getPointerOperand(), I.getAlignment(),
3556                  TLI.getInsertFencesForAtomic() ? Monotonic : Order,
3557                  Scope);
3558
3559  if (TLI.getInsertFencesForAtomic())
3560    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3561                                    DAG, TLI);
3562
3563  DAG.setRoot(OutChain);
3564}
3565
3566/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3567/// node.
3568void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3569                                               unsigned Intrinsic) {
3570  bool HasChain = !I.doesNotAccessMemory();
3571  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3572
3573  // Build the operand list.
3574  SmallVector<SDValue, 8> Ops;
3575  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3576    if (OnlyLoad) {
3577      // We don't need to serialize loads against other loads.
3578      Ops.push_back(DAG.getRoot());
3579    } else {
3580      Ops.push_back(getRoot());
3581    }
3582  }
3583
3584  // Info is set by getTgtMemInstrinsic
3585  TargetLowering::IntrinsicInfo Info;
3586  bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3587
3588  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3589  if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3590      Info.opc == ISD::INTRINSIC_W_CHAIN)
3591    Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy()));
3592
3593  // Add all operands of the call to the operand list.
3594  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3595    SDValue Op = getValue(I.getArgOperand(i));
3596    Ops.push_back(Op);
3597  }
3598
3599  SmallVector<EVT, 4> ValueVTs;
3600  ComputeValueVTs(TLI, I.getType(), ValueVTs);
3601
3602  if (HasChain)
3603    ValueVTs.push_back(MVT::Other);
3604
3605  SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3606
3607  // Create the node.
3608  SDValue Result;
3609  if (IsTgtIntrinsic) {
3610    // This is target intrinsic that touches memory
3611    Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
3612                                     VTs, &Ops[0], Ops.size(),
3613                                     Info.memVT,
3614                                   MachinePointerInfo(Info.ptrVal, Info.offset),
3615                                     Info.align, Info.vol,
3616                                     Info.readMem, Info.writeMem);
3617  } else if (!HasChain) {
3618    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
3619                         VTs, &Ops[0], Ops.size());
3620  } else if (!I.getType()->isVoidTy()) {
3621    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
3622                         VTs, &Ops[0], Ops.size());
3623  } else {
3624    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
3625                         VTs, &Ops[0], Ops.size());
3626  }
3627
3628  if (HasChain) {
3629    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3630    if (OnlyLoad)
3631      PendingLoads.push_back(Chain);
3632    else
3633      DAG.setRoot(Chain);
3634  }
3635
3636  if (!I.getType()->isVoidTy()) {
3637    if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3638      EVT VT = TLI.getValueType(PTy);
3639      Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result);
3640    }
3641
3642    setValue(&I, Result);
3643  } else {
3644    // Assign order to result here. If the intrinsic does not produce a result,
3645    // it won't be mapped to a SDNode and visit() will not assign it an order
3646    // number.
3647    ++SDNodeOrder;
3648    AssignOrderingToNode(Result.getNode());
3649  }
3650}
3651
3652/// GetSignificand - Get the significand and build it into a floating-point
3653/// number with exponent of 1:
3654///
3655///   Op = (Op & 0x007fffff) | 0x3f800000;
3656///
3657/// where Op is the hexidecimal representation of floating point value.
3658static SDValue
3659GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
3660  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3661                           DAG.getConstant(0x007fffff, MVT::i32));
3662  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3663                           DAG.getConstant(0x3f800000, MVT::i32));
3664  return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3665}
3666
3667/// GetExponent - Get the exponent:
3668///
3669///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3670///
3671/// where Op is the hexidecimal representation of floating point value.
3672static SDValue
3673GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3674            DebugLoc dl) {
3675  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3676                           DAG.getConstant(0x7f800000, MVT::i32));
3677  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3678                           DAG.getConstant(23, TLI.getPointerTy()));
3679  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3680                           DAG.getConstant(127, MVT::i32));
3681  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3682}
3683
3684/// getF32Constant - Get 32-bit floating point constant.
3685static SDValue
3686getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3687  return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
3688}
3689
3690/// visitExp - Lower an exp intrinsic. Handles the special sequences for
3691/// limited-precision mode.
3692void
3693SelectionDAGBuilder::visitExp(const CallInst &I) {
3694  SDValue result;
3695  DebugLoc dl = getCurDebugLoc();
3696
3697  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3698      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3699    SDValue Op = getValue(I.getArgOperand(0));
3700
3701    // Put the exponent in the right bit position for later addition to the
3702    // final result:
3703    //
3704    //   #define LOG2OFe 1.4426950f
3705    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3706    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3707                             getF32Constant(DAG, 0x3fb8aa3b));
3708    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3709
3710    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3711    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3712    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3713
3714    //   IntegerPartOfX <<= 23;
3715    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3716                                 DAG.getConstant(23, TLI.getPointerTy()));
3717
3718    if (LimitFloatPrecision <= 6) {
3719      // For floating-point precision of 6:
3720      //
3721      //   TwoToFractionalPartOfX =
3722      //     0.997535578f +
3723      //       (0.735607626f + 0.252464424f * x) * x;
3724      //
3725      // error 0.0144103317, which is 6 bits
3726      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3727                               getF32Constant(DAG, 0x3e814304));
3728      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3729                               getF32Constant(DAG, 0x3f3c50c8));
3730      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3731      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3732                               getF32Constant(DAG, 0x3f7f5e7e));
3733      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5);
3734
3735      // Add the exponent into the result in integer domain.
3736      SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3737                               TwoToFracPartOfX, IntegerPartOfX);
3738
3739      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6);
3740    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3741      // For floating-point precision of 12:
3742      //
3743      //   TwoToFractionalPartOfX =
3744      //     0.999892986f +
3745      //       (0.696457318f +
3746      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3747      //
3748      // 0.000107046256 error, which is 13 to 14 bits
3749      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3750                               getF32Constant(DAG, 0x3da235e3));
3751      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3752                               getF32Constant(DAG, 0x3e65b8f3));
3753      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3754      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3755                               getF32Constant(DAG, 0x3f324b07));
3756      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3757      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3758                               getF32Constant(DAG, 0x3f7ff8fd));
3759      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7);
3760
3761      // Add the exponent into the result in integer domain.
3762      SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3763                               TwoToFracPartOfX, IntegerPartOfX);
3764
3765      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8);
3766    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3767      // For floating-point precision of 18:
3768      //
3769      //   TwoToFractionalPartOfX =
3770      //     0.999999982f +
3771      //       (0.693148872f +
3772      //         (0.240227044f +
3773      //           (0.554906021e-1f +
3774      //             (0.961591928e-2f +
3775      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3776      //
3777      // error 2.47208000*10^(-7), which is better than 18 bits
3778      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3779                               getF32Constant(DAG, 0x3924b03e));
3780      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3781                               getF32Constant(DAG, 0x3ab24b87));
3782      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3783      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3784                               getF32Constant(DAG, 0x3c1d8c17));
3785      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3786      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3787                               getF32Constant(DAG, 0x3d634a1d));
3788      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3789      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3790                               getF32Constant(DAG, 0x3e75fe14));
3791      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3792      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3793                                getF32Constant(DAG, 0x3f317234));
3794      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3795      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3796                                getF32Constant(DAG, 0x3f800000));
3797      SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,
3798                                             MVT::i32, t13);
3799
3800      // Add the exponent into the result in integer domain.
3801      SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3802                                TwoToFracPartOfX, IntegerPartOfX);
3803
3804      result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14);
3805    }
3806  } else {
3807    // No special expansion.
3808    result = DAG.getNode(ISD::FEXP, dl,
3809                         getValue(I.getArgOperand(0)).getValueType(),
3810                         getValue(I.getArgOperand(0)));
3811  }
3812
3813  setValue(&I, result);
3814}
3815
3816/// visitLog - Lower a log intrinsic. Handles the special sequences for
3817/// limited-precision mode.
3818void
3819SelectionDAGBuilder::visitLog(const CallInst &I) {
3820  SDValue result;
3821  DebugLoc dl = getCurDebugLoc();
3822
3823  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3824      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3825    SDValue Op = getValue(I.getArgOperand(0));
3826    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3827
3828    // Scale the exponent by log(2) [0.69314718f].
3829    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3830    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3831                                        getF32Constant(DAG, 0x3f317218));
3832
3833    // Get the significand and build it into a floating-point number with
3834    // exponent of 1.
3835    SDValue X = GetSignificand(DAG, Op1, dl);
3836
3837    if (LimitFloatPrecision <= 6) {
3838      // For floating-point precision of 6:
3839      //
3840      //   LogofMantissa =
3841      //     -1.1609546f +
3842      //       (1.4034025f - 0.23903021f * x) * x;
3843      //
3844      // error 0.0034276066, which is better than 8 bits
3845      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3846                               getF32Constant(DAG, 0xbe74c456));
3847      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3848                               getF32Constant(DAG, 0x3fb3a2b1));
3849      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3850      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3851                                          getF32Constant(DAG, 0x3f949a29));
3852
3853      result = DAG.getNode(ISD::FADD, dl,
3854                           MVT::f32, LogOfExponent, LogOfMantissa);
3855    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3856      // For floating-point precision of 12:
3857      //
3858      //   LogOfMantissa =
3859      //     -1.7417939f +
3860      //       (2.8212026f +
3861      //         (-1.4699568f +
3862      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3863      //
3864      // error 0.000061011436, which is 14 bits
3865      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3866                               getF32Constant(DAG, 0xbd67b6d6));
3867      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3868                               getF32Constant(DAG, 0x3ee4f4b8));
3869      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3870      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3871                               getF32Constant(DAG, 0x3fbc278b));
3872      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3873      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3874                               getF32Constant(DAG, 0x40348e95));
3875      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3876      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3877                                          getF32Constant(DAG, 0x3fdef31a));
3878
3879      result = DAG.getNode(ISD::FADD, dl,
3880                           MVT::f32, LogOfExponent, LogOfMantissa);
3881    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3882      // For floating-point precision of 18:
3883      //
3884      //   LogOfMantissa =
3885      //     -2.1072184f +
3886      //       (4.2372794f +
3887      //         (-3.7029485f +
3888      //           (2.2781945f +
3889      //             (-0.87823314f +
3890      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3891      //
3892      // error 0.0000023660568, which is better than 18 bits
3893      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3894                               getF32Constant(DAG, 0xbc91e5ac));
3895      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3896                               getF32Constant(DAG, 0x3e4350aa));
3897      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3898      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3899                               getF32Constant(DAG, 0x3f60d3e3));
3900      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3901      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3902                               getF32Constant(DAG, 0x4011cdf0));
3903      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3904      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3905                               getF32Constant(DAG, 0x406cfd1c));
3906      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3907      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3908                               getF32Constant(DAG, 0x408797cb));
3909      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3910      SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3911                                          getF32Constant(DAG, 0x4006dcab));
3912
3913      result = DAG.getNode(ISD::FADD, dl,
3914                           MVT::f32, LogOfExponent, LogOfMantissa);
3915    }
3916  } else {
3917    // No special expansion.
3918    result = DAG.getNode(ISD::FLOG, dl,
3919                         getValue(I.getArgOperand(0)).getValueType(),
3920                         getValue(I.getArgOperand(0)));
3921  }
3922
3923  setValue(&I, result);
3924}
3925
3926/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3927/// limited-precision mode.
3928void
3929SelectionDAGBuilder::visitLog2(const CallInst &I) {
3930  SDValue result;
3931  DebugLoc dl = getCurDebugLoc();
3932
3933  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
3934      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3935    SDValue Op = getValue(I.getArgOperand(0));
3936    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3937
3938    // Get the exponent.
3939    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3940
3941    // Get the significand and build it into a floating-point number with
3942    // exponent of 1.
3943    SDValue X = GetSignificand(DAG, Op1, dl);
3944
3945    // Different possible minimax approximations of significand in
3946    // floating-point for various degrees of accuracy over [1,2].
3947    if (LimitFloatPrecision <= 6) {
3948      // For floating-point precision of 6:
3949      //
3950      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3951      //
3952      // error 0.0049451742, which is more than 7 bits
3953      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3954                               getF32Constant(DAG, 0xbeb08fe0));
3955      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3956                               getF32Constant(DAG, 0x40019463));
3957      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3958      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3959                                           getF32Constant(DAG, 0x3fd6633d));
3960
3961      result = DAG.getNode(ISD::FADD, dl,
3962                           MVT::f32, LogOfExponent, Log2ofMantissa);
3963    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3964      // For floating-point precision of 12:
3965      //
3966      //   Log2ofMantissa =
3967      //     -2.51285454f +
3968      //       (4.07009056f +
3969      //         (-2.12067489f +
3970      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3971      //
3972      // error 0.0000876136000, which is better than 13 bits
3973      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3974                               getF32Constant(DAG, 0xbda7262e));
3975      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3976                               getF32Constant(DAG, 0x3f25280b));
3977      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3978      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3979                               getF32Constant(DAG, 0x4007b923));
3980      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3981      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3982                               getF32Constant(DAG, 0x40823e2f));
3983      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3984      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3985                                           getF32Constant(DAG, 0x4020d29c));
3986
3987      result = DAG.getNode(ISD::FADD, dl,
3988                           MVT::f32, LogOfExponent, Log2ofMantissa);
3989    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3990      // For floating-point precision of 18:
3991      //
3992      //   Log2ofMantissa =
3993      //     -3.0400495f +
3994      //       (6.1129976f +
3995      //         (-5.3420409f +
3996      //           (3.2865683f +
3997      //             (-1.2669343f +
3998      //               (0.27515199f -
3999      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4000      //
4001      // error 0.0000018516, which is better than 18 bits
4002      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4003                               getF32Constant(DAG, 0xbcd2769e));
4004      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4005                               getF32Constant(DAG, 0x3e8ce0b9));
4006      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4007      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4008                               getF32Constant(DAG, 0x3fa22ae7));
4009      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4010      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4011                               getF32Constant(DAG, 0x40525723));
4012      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4013      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4014                               getF32Constant(DAG, 0x40aaf200));
4015      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4016      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4017                               getF32Constant(DAG, 0x40c39dad));
4018      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4019      SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4020                                           getF32Constant(DAG, 0x4042902c));
4021
4022      result = DAG.getNode(ISD::FADD, dl,
4023                           MVT::f32, LogOfExponent, Log2ofMantissa);
4024    }
4025  } else {
4026    // No special expansion.
4027    result = DAG.getNode(ISD::FLOG2, dl,
4028                         getValue(I.getArgOperand(0)).getValueType(),
4029                         getValue(I.getArgOperand(0)));
4030  }
4031
4032  setValue(&I, result);
4033}
4034
4035/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
4036/// limited-precision mode.
4037void
4038SelectionDAGBuilder::visitLog10(const CallInst &I) {
4039  SDValue result;
4040  DebugLoc dl = getCurDebugLoc();
4041
4042  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
4043      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4044    SDValue Op = getValue(I.getArgOperand(0));
4045    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4046
4047    // Scale the exponent by log10(2) [0.30102999f].
4048    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4049    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4050                                        getF32Constant(DAG, 0x3e9a209a));
4051
4052    // Get the significand and build it into a floating-point number with
4053    // exponent of 1.
4054    SDValue X = GetSignificand(DAG, Op1, dl);
4055
4056    if (LimitFloatPrecision <= 6) {
4057      // For floating-point precision of 6:
4058      //
4059      //   Log10ofMantissa =
4060      //     -0.50419619f +
4061      //       (0.60948995f - 0.10380950f * x) * x;
4062      //
4063      // error 0.0014886165, which is 6 bits
4064      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4065                               getF32Constant(DAG, 0xbdd49a13));
4066      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4067                               getF32Constant(DAG, 0x3f1c0789));
4068      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4069      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4070                                            getF32Constant(DAG, 0x3f011300));
4071
4072      result = DAG.getNode(ISD::FADD, dl,
4073                           MVT::f32, LogOfExponent, Log10ofMantissa);
4074    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4075      // For floating-point precision of 12:
4076      //
4077      //   Log10ofMantissa =
4078      //     -0.64831180f +
4079      //       (0.91751397f +
4080      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4081      //
4082      // error 0.00019228036, which is better than 12 bits
4083      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4084                               getF32Constant(DAG, 0x3d431f31));
4085      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4086                               getF32Constant(DAG, 0x3ea21fb2));
4087      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4088      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4089                               getF32Constant(DAG, 0x3f6ae232));
4090      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4091      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4092                                            getF32Constant(DAG, 0x3f25f7c3));
4093
4094      result = DAG.getNode(ISD::FADD, dl,
4095                           MVT::f32, LogOfExponent, Log10ofMantissa);
4096    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4097      // For floating-point precision of 18:
4098      //
4099      //   Log10ofMantissa =
4100      //     -0.84299375f +
4101      //       (1.5327582f +
4102      //         (-1.0688956f +
4103      //           (0.49102474f +
4104      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4105      //
4106      // error 0.0000037995730, which is better than 18 bits
4107      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4108                               getF32Constant(DAG, 0x3c5d51ce));
4109      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4110                               getF32Constant(DAG, 0x3e00685a));
4111      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4112      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4113                               getF32Constant(DAG, 0x3efb6798));
4114      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4115      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4116                               getF32Constant(DAG, 0x3f88d192));
4117      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4118      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4119                               getF32Constant(DAG, 0x3fc4316c));
4120      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4121      SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4122                                            getF32Constant(DAG, 0x3f57ce70));
4123
4124      result = DAG.getNode(ISD::FADD, dl,
4125                           MVT::f32, LogOfExponent, Log10ofMantissa);
4126    }
4127  } else {
4128    // No special expansion.
4129    result = DAG.getNode(ISD::FLOG10, dl,
4130                         getValue(I.getArgOperand(0)).getValueType(),
4131                         getValue(I.getArgOperand(0)));
4132  }
4133
4134  setValue(&I, result);
4135}
4136
4137/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4138/// limited-precision mode.
4139void
4140SelectionDAGBuilder::visitExp2(const CallInst &I) {
4141  SDValue result;
4142  DebugLoc dl = getCurDebugLoc();
4143
4144  if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 &&
4145      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4146    SDValue Op = getValue(I.getArgOperand(0));
4147
4148    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
4149
4150    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4151    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4152    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
4153
4154    //   IntegerPartOfX <<= 23;
4155    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4156                                 DAG.getConstant(23, TLI.getPointerTy()));
4157
4158    if (LimitFloatPrecision <= 6) {
4159      // For floating-point precision of 6:
4160      //
4161      //   TwoToFractionalPartOfX =
4162      //     0.997535578f +
4163      //       (0.735607626f + 0.252464424f * x) * x;
4164      //
4165      // error 0.0144103317, which is 6 bits
4166      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4167                               getF32Constant(DAG, 0x3e814304));
4168      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4169                               getF32Constant(DAG, 0x3f3c50c8));
4170      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4171      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4172                               getF32Constant(DAG, 0x3f7f5e7e));
4173      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
4174      SDValue TwoToFractionalPartOfX =
4175        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
4176
4177      result = DAG.getNode(ISD::BITCAST, dl,
4178                           MVT::f32, TwoToFractionalPartOfX);
4179    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4180      // For floating-point precision of 12:
4181      //
4182      //   TwoToFractionalPartOfX =
4183      //     0.999892986f +
4184      //       (0.696457318f +
4185      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4186      //
4187      // error 0.000107046256, which is 13 to 14 bits
4188      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4189                               getF32Constant(DAG, 0x3da235e3));
4190      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4191                               getF32Constant(DAG, 0x3e65b8f3));
4192      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4193      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4194                               getF32Constant(DAG, 0x3f324b07));
4195      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4196      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4197                               getF32Constant(DAG, 0x3f7ff8fd));
4198      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
4199      SDValue TwoToFractionalPartOfX =
4200        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4201
4202      result = DAG.getNode(ISD::BITCAST, dl,
4203                           MVT::f32, TwoToFractionalPartOfX);
4204    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4205      // For floating-point precision of 18:
4206      //
4207      //   TwoToFractionalPartOfX =
4208      //     0.999999982f +
4209      //       (0.693148872f +
4210      //         (0.240227044f +
4211      //           (0.554906021e-1f +
4212      //             (0.961591928e-2f +
4213      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4214      // error 2.47208000*10^(-7), which is better than 18 bits
4215      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4216                               getF32Constant(DAG, 0x3924b03e));
4217      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4218                               getF32Constant(DAG, 0x3ab24b87));
4219      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4220      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4221                               getF32Constant(DAG, 0x3c1d8c17));
4222      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4223      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4224                               getF32Constant(DAG, 0x3d634a1d));
4225      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4226      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4227                               getF32Constant(DAG, 0x3e75fe14));
4228      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4229      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4230                                getF32Constant(DAG, 0x3f317234));
4231      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4232      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4233                                getF32Constant(DAG, 0x3f800000));
4234      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
4235      SDValue TwoToFractionalPartOfX =
4236        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4237
4238      result = DAG.getNode(ISD::BITCAST, dl,
4239                           MVT::f32, TwoToFractionalPartOfX);
4240    }
4241  } else {
4242    // No special expansion.
4243    result = DAG.getNode(ISD::FEXP2, dl,
4244                         getValue(I.getArgOperand(0)).getValueType(),
4245                         getValue(I.getArgOperand(0)));
4246  }
4247
4248  setValue(&I, result);
4249}
4250
4251/// visitPow - Lower a pow intrinsic. Handles the special sequences for
4252/// limited-precision mode with x == 10.0f.
4253void
4254SelectionDAGBuilder::visitPow(const CallInst &I) {
4255  SDValue result;
4256  const Value *Val = I.getArgOperand(0);
4257  DebugLoc dl = getCurDebugLoc();
4258  bool IsExp10 = false;
4259
4260  if (getValue(Val).getValueType() == MVT::f32 &&
4261      getValue(I.getArgOperand(1)).getValueType() == MVT::f32 &&
4262      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4263    if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
4264      if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
4265        APFloat Ten(10.0f);
4266        IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
4267      }
4268    }
4269  }
4270
4271  if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4272    SDValue Op = getValue(I.getArgOperand(1));
4273
4274    // Put the exponent in the right bit position for later addition to the
4275    // final result:
4276    //
4277    //   #define LOG2OF10 3.3219281f
4278    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
4279    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4280                             getF32Constant(DAG, 0x40549a78));
4281    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4282
4283    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4284    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4285    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4286
4287    //   IntegerPartOfX <<= 23;
4288    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4289                                 DAG.getConstant(23, TLI.getPointerTy()));
4290
4291    if (LimitFloatPrecision <= 6) {
4292      // For floating-point precision of 6:
4293      //
4294      //   twoToFractionalPartOfX =
4295      //     0.997535578f +
4296      //       (0.735607626f + 0.252464424f * x) * x;
4297      //
4298      // error 0.0144103317, which is 6 bits
4299      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4300                               getF32Constant(DAG, 0x3e814304));
4301      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4302                               getF32Constant(DAG, 0x3f3c50c8));
4303      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4304      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4305                               getF32Constant(DAG, 0x3f7f5e7e));
4306      SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5);
4307      SDValue TwoToFractionalPartOfX =
4308        DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX);
4309
4310      result = DAG.getNode(ISD::BITCAST, dl,
4311                           MVT::f32, TwoToFractionalPartOfX);
4312    } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
4313      // For floating-point precision of 12:
4314      //
4315      //   TwoToFractionalPartOfX =
4316      //     0.999892986f +
4317      //       (0.696457318f +
4318      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4319      //
4320      // error 0.000107046256, which is 13 to 14 bits
4321      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4322                               getF32Constant(DAG, 0x3da235e3));
4323      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4324                               getF32Constant(DAG, 0x3e65b8f3));
4325      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4326      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4327                               getF32Constant(DAG, 0x3f324b07));
4328      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4329      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4330                               getF32Constant(DAG, 0x3f7ff8fd));
4331      SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7);
4332      SDValue TwoToFractionalPartOfX =
4333        DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX);
4334
4335      result = DAG.getNode(ISD::BITCAST, dl,
4336                           MVT::f32, TwoToFractionalPartOfX);
4337    } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
4338      // For floating-point precision of 18:
4339      //
4340      //   TwoToFractionalPartOfX =
4341      //     0.999999982f +
4342      //       (0.693148872f +
4343      //         (0.240227044f +
4344      //           (0.554906021e-1f +
4345      //             (0.961591928e-2f +
4346      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4347      // error 2.47208000*10^(-7), which is better than 18 bits
4348      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4349                               getF32Constant(DAG, 0x3924b03e));
4350      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4351                               getF32Constant(DAG, 0x3ab24b87));
4352      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4353      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4354                               getF32Constant(DAG, 0x3c1d8c17));
4355      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4356      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4357                               getF32Constant(DAG, 0x3d634a1d));
4358      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4359      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4360                               getF32Constant(DAG, 0x3e75fe14));
4361      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4362      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4363                                getF32Constant(DAG, 0x3f317234));
4364      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4365      SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4366                                getF32Constant(DAG, 0x3f800000));
4367      SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13);
4368      SDValue TwoToFractionalPartOfX =
4369        DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX);
4370
4371      result = DAG.getNode(ISD::BITCAST, dl,
4372                           MVT::f32, TwoToFractionalPartOfX);
4373    }
4374  } else {
4375    // No special expansion.
4376    result = DAG.getNode(ISD::FPOW, dl,
4377                         getValue(I.getArgOperand(0)).getValueType(),
4378                         getValue(I.getArgOperand(0)),
4379                         getValue(I.getArgOperand(1)));
4380  }
4381
4382  setValue(&I, result);
4383}
4384
4385
4386/// ExpandPowI - Expand a llvm.powi intrinsic.
4387static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
4388                          SelectionDAG &DAG) {
4389  // If RHS is a constant, we can expand this out to a multiplication tree,
4390  // otherwise we end up lowering to a call to __powidf2 (for example).  When
4391  // optimizing for size, we only want to do this if the expansion would produce
4392  // a small number of multiplies, otherwise we do the full expansion.
4393  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4394    // Get the exponent as a positive value.
4395    unsigned Val = RHSC->getSExtValue();
4396    if ((int)Val < 0) Val = -Val;
4397
4398    // powi(x, 0) -> 1.0
4399    if (Val == 0)
4400      return DAG.getConstantFP(1.0, LHS.getValueType());
4401
4402    const Function *F = DAG.getMachineFunction().getFunction();
4403    if (!F->getFnAttributes().hasOptimizeForSizeAttr() ||
4404        // If optimizing for size, don't insert too many multiplies.  This
4405        // inserts up to 5 multiplies.
4406        CountPopulation_32(Val)+Log2_32(Val) < 7) {
4407      // We use the simple binary decomposition method to generate the multiply
4408      // sequence.  There are more optimal ways to do this (for example,
4409      // powi(x,15) generates one more multiply than it should), but this has
4410      // the benefit of being both really simple and much better than a libcall.
4411      SDValue Res;  // Logically starts equal to 1.0
4412      SDValue CurSquare = LHS;
4413      while (Val) {
4414        if (Val & 1) {
4415          if (Res.getNode())
4416            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4417          else
4418            Res = CurSquare;  // 1.0*CurSquare.
4419        }
4420
4421        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4422                                CurSquare, CurSquare);
4423        Val >>= 1;
4424      }
4425
4426      // If the original was negative, invert the result, producing 1/(x*x*x).
4427      if (RHSC->getSExtValue() < 0)
4428        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4429                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4430      return Res;
4431    }
4432  }
4433
4434  // Otherwise, expand to a libcall.
4435  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4436}
4437
4438// getTruncatedArgReg - Find underlying register used for an truncated
4439// argument.
4440static unsigned getTruncatedArgReg(const SDValue &N) {
4441  if (N.getOpcode() != ISD::TRUNCATE)
4442    return 0;
4443
4444  const SDValue &Ext = N.getOperand(0);
4445  if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){
4446    const SDValue &CFR = Ext.getOperand(0);
4447    if (CFR.getOpcode() == ISD::CopyFromReg)
4448      return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4449    if (CFR.getOpcode() == ISD::TRUNCATE)
4450      return getTruncatedArgReg(CFR);
4451  }
4452  return 0;
4453}
4454
4455/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4456/// argument, create the corresponding DBG_VALUE machine instruction for it now.
4457/// At the end of instruction selection, they will be inserted to the entry BB.
4458bool
4459SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4460                                              int64_t Offset,
4461                                              const SDValue &N) {
4462  const Argument *Arg = dyn_cast<Argument>(V);
4463  if (!Arg)
4464    return false;
4465
4466  MachineFunction &MF = DAG.getMachineFunction();
4467  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4468  const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4469
4470  // Ignore inlined function arguments here.
4471  DIVariable DV(Variable);
4472  if (DV.isInlinedFnArgument(MF.getFunction()))
4473    return false;
4474
4475  unsigned Reg = 0;
4476  // Some arguments' frame index is recorded during argument lowering.
4477  Offset = FuncInfo.getArgumentFrameIndex(Arg);
4478  if (Offset)
4479    Reg = TRI->getFrameRegister(MF);
4480
4481  if (!Reg && N.getNode()) {
4482    if (N.getOpcode() == ISD::CopyFromReg)
4483      Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4484    else
4485      Reg = getTruncatedArgReg(N);
4486    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4487      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4488      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4489      if (PR)
4490        Reg = PR;
4491    }
4492  }
4493
4494  if (!Reg) {
4495    // Check if ValueMap has reg number.
4496    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4497    if (VMI != FuncInfo.ValueMap.end())
4498      Reg = VMI->second;
4499  }
4500
4501  if (!Reg && N.getNode()) {
4502    // Check if frame index is available.
4503    if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4504      if (FrameIndexSDNode *FINode =
4505          dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
4506        Reg = TRI->getFrameRegister(MF);
4507        Offset = FINode->getIndex();
4508      }
4509  }
4510
4511  if (!Reg)
4512    return false;
4513
4514  MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
4515                                    TII->get(TargetOpcode::DBG_VALUE))
4516    .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
4517  FuncInfo.ArgDbgValues.push_back(&*MIB);
4518  return true;
4519}
4520
4521// VisualStudio defines setjmp as _setjmp
4522#if defined(_MSC_VER) && defined(setjmp) && \
4523                         !defined(setjmp_undefined_for_msvc)
4524#  pragma push_macro("setjmp")
4525#  undef setjmp
4526#  define setjmp_undefined_for_msvc
4527#endif
4528
4529/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4530/// we want to emit this as a call to a named external function, return the name
4531/// otherwise lower it and return null.
4532const char *
4533SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4534  DebugLoc dl = getCurDebugLoc();
4535  SDValue Res;
4536
4537  switch (Intrinsic) {
4538  default:
4539    // By default, turn this into a target intrinsic node.
4540    visitTargetIntrinsic(I, Intrinsic);
4541    return 0;
4542  case Intrinsic::vastart:  visitVAStart(I); return 0;
4543  case Intrinsic::vaend:    visitVAEnd(I); return 0;
4544  case Intrinsic::vacopy:   visitVACopy(I); return 0;
4545  case Intrinsic::returnaddress:
4546    setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
4547                             getValue(I.getArgOperand(0))));
4548    return 0;
4549  case Intrinsic::frameaddress:
4550    setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
4551                             getValue(I.getArgOperand(0))));
4552    return 0;
4553  case Intrinsic::setjmp:
4554    return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
4555  case Intrinsic::longjmp:
4556    return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
4557  case Intrinsic::memcpy: {
4558    // Assert for address < 256 since we support only user defined address
4559    // spaces.
4560    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4561           < 256 &&
4562           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4563           < 256 &&
4564           "Unknown address space");
4565    SDValue Op1 = getValue(I.getArgOperand(0));
4566    SDValue Op2 = getValue(I.getArgOperand(1));
4567    SDValue Op3 = getValue(I.getArgOperand(2));
4568    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4569    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4570    DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
4571                              MachinePointerInfo(I.getArgOperand(0)),
4572                              MachinePointerInfo(I.getArgOperand(1))));
4573    return 0;
4574  }
4575  case Intrinsic::memset: {
4576    // Assert for address < 256 since we support only user defined address
4577    // spaces.
4578    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4579           < 256 &&
4580           "Unknown address space");
4581    SDValue Op1 = getValue(I.getArgOperand(0));
4582    SDValue Op2 = getValue(I.getArgOperand(1));
4583    SDValue Op3 = getValue(I.getArgOperand(2));
4584    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4585    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4586    DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4587                              MachinePointerInfo(I.getArgOperand(0))));
4588    return 0;
4589  }
4590  case Intrinsic::memmove: {
4591    // Assert for address < 256 since we support only user defined address
4592    // spaces.
4593    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4594           < 256 &&
4595           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4596           < 256 &&
4597           "Unknown address space");
4598    SDValue Op1 = getValue(I.getArgOperand(0));
4599    SDValue Op2 = getValue(I.getArgOperand(1));
4600    SDValue Op3 = getValue(I.getArgOperand(2));
4601    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4602    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4603    DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
4604                               MachinePointerInfo(I.getArgOperand(0)),
4605                               MachinePointerInfo(I.getArgOperand(1))));
4606    return 0;
4607  }
4608  case Intrinsic::dbg_declare: {
4609    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4610    MDNode *Variable = DI.getVariable();
4611    const Value *Address = DI.getAddress();
4612    if (!Address || !DIVariable(Variable).Verify()) {
4613      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4614      return 0;
4615    }
4616
4617    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4618    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4619    // absolute, but not relative, values are different depending on whether
4620    // debug info exists.
4621    ++SDNodeOrder;
4622
4623    // Check if address has undef value.
4624    if (isa<UndefValue>(Address) ||
4625        (Address->use_empty() && !isa<Argument>(Address))) {
4626      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4627      return 0;
4628    }
4629
4630    SDValue &N = NodeMap[Address];
4631    if (!N.getNode() && isa<Argument>(Address))
4632      // Check unused arguments map.
4633      N = UnusedArgNodeMap[Address];
4634    SDDbgValue *SDV;
4635    if (N.getNode()) {
4636      if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4637        Address = BCI->getOperand(0);
4638      // Parameters are handled specially.
4639      bool isParameter =
4640        (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable ||
4641         isa<Argument>(Address));
4642
4643      const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4644
4645      if (isParameter && !AI) {
4646        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4647        if (FINode)
4648          // Byval parameter.  We have a frame index at this point.
4649          SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4650                                0, dl, SDNodeOrder);
4651        else {
4652          // Address is an argument, so try to emit its dbg value using
4653          // virtual register info from the FuncInfo.ValueMap.
4654          EmitFuncArgumentDbgValue(Address, Variable, 0, N);
4655          return 0;
4656        }
4657      } else if (AI)
4658        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4659                              0, dl, SDNodeOrder);
4660      else {
4661        // Can't do anything with other non-AI cases yet.
4662        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4663        DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t");
4664        DEBUG(Address->dump());
4665        return 0;
4666      }
4667      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4668    } else {
4669      // If Address is an argument then try to emit its dbg value using
4670      // virtual register info from the FuncInfo.ValueMap.
4671      if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4672        // If variable is pinned by a alloca in dominating bb then
4673        // use StaticAllocaMap.
4674        if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4675          if (AI->getParent() != DI.getParent()) {
4676            DenseMap<const AllocaInst*, int>::iterator SI =
4677              FuncInfo.StaticAllocaMap.find(AI);
4678            if (SI != FuncInfo.StaticAllocaMap.end()) {
4679              SDV = DAG.getDbgValue(Variable, SI->second,
4680                                    0, dl, SDNodeOrder);
4681              DAG.AddDbgValue(SDV, 0, false);
4682              return 0;
4683            }
4684          }
4685        }
4686        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4687      }
4688    }
4689    return 0;
4690  }
4691  case Intrinsic::dbg_value: {
4692    const DbgValueInst &DI = cast<DbgValueInst>(I);
4693    if (!DIVariable(DI.getVariable()).Verify())
4694      return 0;
4695
4696    MDNode *Variable = DI.getVariable();
4697    uint64_t Offset = DI.getOffset();
4698    const Value *V = DI.getValue();
4699    if (!V)
4700      return 0;
4701
4702    // Build an entry in DbgOrdering.  Debug info input nodes get an SDNodeOrder
4703    // but do not always have a corresponding SDNode built.  The SDNodeOrder
4704    // absolute, but not relative, values are different depending on whether
4705    // debug info exists.
4706    ++SDNodeOrder;
4707    SDDbgValue *SDV;
4708    if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4709      SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4710      DAG.AddDbgValue(SDV, 0, false);
4711    } else {
4712      // Do not use getValue() in here; we don't want to generate code at
4713      // this point if it hasn't been done yet.
4714      SDValue N = NodeMap[V];
4715      if (!N.getNode() && isa<Argument>(V))
4716        // Check unused arguments map.
4717        N = UnusedArgNodeMap[V];
4718      if (N.getNode()) {
4719        if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4720          SDV = DAG.getDbgValue(Variable, N.getNode(),
4721                                N.getResNo(), Offset, dl, SDNodeOrder);
4722          DAG.AddDbgValue(SDV, N.getNode(), false);
4723        }
4724      } else if (!V->use_empty() ) {
4725        // Do not call getValue(V) yet, as we don't want to generate code.
4726        // Remember it for later.
4727        DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4728        DanglingDebugInfoMap[V] = DDI;
4729      } else {
4730        // We may expand this to cover more cases.  One case where we have no
4731        // data available is an unreferenced parameter.
4732        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4733      }
4734    }
4735
4736    // Build a debug info table entry.
4737    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4738      V = BCI->getOperand(0);
4739    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4740    // Don't handle byval struct arguments or VLAs, for example.
4741    if (!AI) {
4742      DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
4743      DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
4744      return 0;
4745    }
4746    DenseMap<const AllocaInst*, int>::iterator SI =
4747      FuncInfo.StaticAllocaMap.find(AI);
4748    if (SI == FuncInfo.StaticAllocaMap.end())
4749      return 0; // VLAs.
4750    int FI = SI->second;
4751
4752    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4753    if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4754      MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4755    return 0;
4756  }
4757
4758  case Intrinsic::eh_typeid_for: {
4759    // Find the type id for the given typeinfo.
4760    GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4761    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4762    Res = DAG.getConstant(TypeID, MVT::i32);
4763    setValue(&I, Res);
4764    return 0;
4765  }
4766
4767  case Intrinsic::eh_return_i32:
4768  case Intrinsic::eh_return_i64:
4769    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4770    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
4771                            MVT::Other,
4772                            getControlRoot(),
4773                            getValue(I.getArgOperand(0)),
4774                            getValue(I.getArgOperand(1))));
4775    return 0;
4776  case Intrinsic::eh_unwind_init:
4777    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4778    return 0;
4779  case Intrinsic::eh_dwarf_cfa: {
4780    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
4781                                        TLI.getPointerTy());
4782    SDValue Offset = DAG.getNode(ISD::ADD, dl,
4783                                 TLI.getPointerTy(),
4784                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
4785                                             TLI.getPointerTy()),
4786                                 CfaArg);
4787    SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
4788                             TLI.getPointerTy(),
4789                             DAG.getConstant(0, TLI.getPointerTy()));
4790    setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
4791                             FA, Offset));
4792    return 0;
4793  }
4794  case Intrinsic::eh_sjlj_callsite: {
4795    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4796    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4797    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4798    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4799
4800    MMI.setCurrentCallSite(CI->getZExtValue());
4801    return 0;
4802  }
4803  case Intrinsic::eh_sjlj_functioncontext: {
4804    // Get and store the index of the function context.
4805    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4806    AllocaInst *FnCtx =
4807      cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4808    int FI = FuncInfo.StaticAllocaMap[FnCtx];
4809    MFI->setFunctionContextIndex(FI);
4810    return 0;
4811  }
4812  case Intrinsic::eh_sjlj_setjmp: {
4813    SDValue Ops[2];
4814    Ops[0] = getRoot();
4815    Ops[1] = getValue(I.getArgOperand(0));
4816    SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, dl,
4817                             DAG.getVTList(MVT::i32, MVT::Other),
4818                             Ops, 2);
4819    setValue(&I, Op.getValue(0));
4820    DAG.setRoot(Op.getValue(1));
4821    return 0;
4822  }
4823  case Intrinsic::eh_sjlj_longjmp: {
4824    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
4825                            getRoot(), getValue(I.getArgOperand(0))));
4826    return 0;
4827  }
4828
4829  case Intrinsic::x86_mmx_pslli_w:
4830  case Intrinsic::x86_mmx_pslli_d:
4831  case Intrinsic::x86_mmx_pslli_q:
4832  case Intrinsic::x86_mmx_psrli_w:
4833  case Intrinsic::x86_mmx_psrli_d:
4834  case Intrinsic::x86_mmx_psrli_q:
4835  case Intrinsic::x86_mmx_psrai_w:
4836  case Intrinsic::x86_mmx_psrai_d: {
4837    SDValue ShAmt = getValue(I.getArgOperand(1));
4838    if (isa<ConstantSDNode>(ShAmt)) {
4839      visitTargetIntrinsic(I, Intrinsic);
4840      return 0;
4841    }
4842    unsigned NewIntrinsic = 0;
4843    EVT ShAmtVT = MVT::v2i32;
4844    switch (Intrinsic) {
4845    case Intrinsic::x86_mmx_pslli_w:
4846      NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4847      break;
4848    case Intrinsic::x86_mmx_pslli_d:
4849      NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4850      break;
4851    case Intrinsic::x86_mmx_pslli_q:
4852      NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4853      break;
4854    case Intrinsic::x86_mmx_psrli_w:
4855      NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4856      break;
4857    case Intrinsic::x86_mmx_psrli_d:
4858      NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4859      break;
4860    case Intrinsic::x86_mmx_psrli_q:
4861      NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4862      break;
4863    case Intrinsic::x86_mmx_psrai_w:
4864      NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4865      break;
4866    case Intrinsic::x86_mmx_psrai_d:
4867      NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4868      break;
4869    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4870    }
4871
4872    // The vector shift intrinsics with scalars uses 32b shift amounts but
4873    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4874    // to be zero.
4875    // We must do this early because v2i32 is not a legal type.
4876    DebugLoc dl = getCurDebugLoc();
4877    SDValue ShOps[2];
4878    ShOps[0] = ShAmt;
4879    ShOps[1] = DAG.getConstant(0, MVT::i32);
4880    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
4881    EVT DestVT = TLI.getValueType(I.getType());
4882    ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt);
4883    Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
4884                       DAG.getConstant(NewIntrinsic, MVT::i32),
4885                       getValue(I.getArgOperand(0)), ShAmt);
4886    setValue(&I, Res);
4887    return 0;
4888  }
4889  case Intrinsic::x86_avx_vinsertf128_pd_256:
4890  case Intrinsic::x86_avx_vinsertf128_ps_256:
4891  case Intrinsic::x86_avx_vinsertf128_si_256:
4892  case Intrinsic::x86_avx2_vinserti128: {
4893    DebugLoc dl = getCurDebugLoc();
4894    EVT DestVT = TLI.getValueType(I.getType());
4895    EVT ElVT = TLI.getValueType(I.getArgOperand(1)->getType());
4896    uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) *
4897                   ElVT.getVectorNumElements();
4898    Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, DestVT,
4899                      getValue(I.getArgOperand(0)),
4900                      getValue(I.getArgOperand(1)),
4901                      DAG.getIntPtrConstant(Idx));
4902    setValue(&I, Res);
4903    return 0;
4904  }
4905  case Intrinsic::x86_avx_vextractf128_pd_256:
4906  case Intrinsic::x86_avx_vextractf128_ps_256:
4907  case Intrinsic::x86_avx_vextractf128_si_256:
4908  case Intrinsic::x86_avx2_vextracti128: {
4909    DebugLoc dl = getCurDebugLoc();
4910    EVT DestVT = TLI.getValueType(I.getType());
4911    uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) *
4912                   DestVT.getVectorNumElements();
4913    Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT,
4914                      getValue(I.getArgOperand(0)),
4915                      DAG.getIntPtrConstant(Idx));
4916    setValue(&I, Res);
4917    return 0;
4918  }
4919  case Intrinsic::convertff:
4920  case Intrinsic::convertfsi:
4921  case Intrinsic::convertfui:
4922  case Intrinsic::convertsif:
4923  case Intrinsic::convertuif:
4924  case Intrinsic::convertss:
4925  case Intrinsic::convertsu:
4926  case Intrinsic::convertus:
4927  case Intrinsic::convertuu: {
4928    ISD::CvtCode Code = ISD::CVT_INVALID;
4929    switch (Intrinsic) {
4930    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4931    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4932    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4933    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4934    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4935    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4936    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4937    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4938    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4939    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4940    }
4941    EVT DestVT = TLI.getValueType(I.getType());
4942    const Value *Op1 = I.getArgOperand(0);
4943    Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1),
4944                               DAG.getValueType(DestVT),
4945                               DAG.getValueType(getValue(Op1).getValueType()),
4946                               getValue(I.getArgOperand(1)),
4947                               getValue(I.getArgOperand(2)),
4948                               Code);
4949    setValue(&I, Res);
4950    return 0;
4951  }
4952  case Intrinsic::sqrt:
4953    setValue(&I, DAG.getNode(ISD::FSQRT, dl,
4954                             getValue(I.getArgOperand(0)).getValueType(),
4955                             getValue(I.getArgOperand(0))));
4956    return 0;
4957  case Intrinsic::powi:
4958    setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
4959                            getValue(I.getArgOperand(1)), DAG));
4960    return 0;
4961  case Intrinsic::sin:
4962    setValue(&I, DAG.getNode(ISD::FSIN, dl,
4963                             getValue(I.getArgOperand(0)).getValueType(),
4964                             getValue(I.getArgOperand(0))));
4965    return 0;
4966  case Intrinsic::cos:
4967    setValue(&I, DAG.getNode(ISD::FCOS, dl,
4968                             getValue(I.getArgOperand(0)).getValueType(),
4969                             getValue(I.getArgOperand(0))));
4970    return 0;
4971  case Intrinsic::log:
4972    visitLog(I);
4973    return 0;
4974  case Intrinsic::log2:
4975    visitLog2(I);
4976    return 0;
4977  case Intrinsic::log10:
4978    visitLog10(I);
4979    return 0;
4980  case Intrinsic::exp:
4981    visitExp(I);
4982    return 0;
4983  case Intrinsic::exp2:
4984    visitExp2(I);
4985    return 0;
4986  case Intrinsic::pow:
4987    visitPow(I);
4988    return 0;
4989  case Intrinsic::fabs:
4990    setValue(&I, DAG.getNode(ISD::FABS, dl,
4991                             getValue(I.getArgOperand(0)).getValueType(),
4992                             getValue(I.getArgOperand(0))));
4993    return 0;
4994  case Intrinsic::floor:
4995    setValue(&I, DAG.getNode(ISD::FFLOOR, dl,
4996                             getValue(I.getArgOperand(0)).getValueType(),
4997                             getValue(I.getArgOperand(0))));
4998    return 0;
4999  case Intrinsic::fma:
5000    setValue(&I, DAG.getNode(ISD::FMA, dl,
5001                             getValue(I.getArgOperand(0)).getValueType(),
5002                             getValue(I.getArgOperand(0)),
5003                             getValue(I.getArgOperand(1)),
5004                             getValue(I.getArgOperand(2))));
5005    return 0;
5006  case Intrinsic::fmuladd: {
5007    EVT VT = TLI.getValueType(I.getType());
5008    if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
5009        TLI.isOperationLegal(ISD::FMA, VT) &&
5010        TLI.isFMAFasterThanMulAndAdd(VT)){
5011      setValue(&I, DAG.getNode(ISD::FMA, dl,
5012                               getValue(I.getArgOperand(0)).getValueType(),
5013                               getValue(I.getArgOperand(0)),
5014                               getValue(I.getArgOperand(1)),
5015                               getValue(I.getArgOperand(2))));
5016    } else {
5017      SDValue Mul = DAG.getNode(ISD::FMUL, dl,
5018                                getValue(I.getArgOperand(0)).getValueType(),
5019                                getValue(I.getArgOperand(0)),
5020                                getValue(I.getArgOperand(1)));
5021      SDValue Add = DAG.getNode(ISD::FADD, dl,
5022                                getValue(I.getArgOperand(0)).getValueType(),
5023                                Mul,
5024                                getValue(I.getArgOperand(2)));
5025      setValue(&I, Add);
5026    }
5027    return 0;
5028  }
5029  case Intrinsic::convert_to_fp16:
5030    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
5031                             MVT::i16, getValue(I.getArgOperand(0))));
5032    return 0;
5033  case Intrinsic::convert_from_fp16:
5034    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
5035                             MVT::f32, getValue(I.getArgOperand(0))));
5036    return 0;
5037  case Intrinsic::pcmarker: {
5038    SDValue Tmp = getValue(I.getArgOperand(0));
5039    DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
5040    return 0;
5041  }
5042  case Intrinsic::readcyclecounter: {
5043    SDValue Op = getRoot();
5044    Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
5045                      DAG.getVTList(MVT::i64, MVT::Other),
5046                      &Op, 1);
5047    setValue(&I, Res);
5048    DAG.setRoot(Res.getValue(1));
5049    return 0;
5050  }
5051  case Intrinsic::bswap:
5052    setValue(&I, DAG.getNode(ISD::BSWAP, dl,
5053                             getValue(I.getArgOperand(0)).getValueType(),
5054                             getValue(I.getArgOperand(0))));
5055    return 0;
5056  case Intrinsic::cttz: {
5057    SDValue Arg = getValue(I.getArgOperand(0));
5058    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5059    EVT Ty = Arg.getValueType();
5060    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
5061                             dl, Ty, Arg));
5062    return 0;
5063  }
5064  case Intrinsic::ctlz: {
5065    SDValue Arg = getValue(I.getArgOperand(0));
5066    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5067    EVT Ty = Arg.getValueType();
5068    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
5069                             dl, Ty, Arg));
5070    return 0;
5071  }
5072  case Intrinsic::ctpop: {
5073    SDValue Arg = getValue(I.getArgOperand(0));
5074    EVT Ty = Arg.getValueType();
5075    setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
5076    return 0;
5077  }
5078  case Intrinsic::stacksave: {
5079    SDValue Op = getRoot();
5080    Res = DAG.getNode(ISD::STACKSAVE, dl,
5081                      DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
5082    setValue(&I, Res);
5083    DAG.setRoot(Res.getValue(1));
5084    return 0;
5085  }
5086  case Intrinsic::stackrestore: {
5087    Res = getValue(I.getArgOperand(0));
5088    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
5089    return 0;
5090  }
5091  case Intrinsic::stackprotector: {
5092    // Emit code into the DAG to store the stack guard onto the stack.
5093    MachineFunction &MF = DAG.getMachineFunction();
5094    MachineFrameInfo *MFI = MF.getFrameInfo();
5095    EVT PtrTy = TLI.getPointerTy();
5096
5097    SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
5098    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5099
5100    int FI = FuncInfo.StaticAllocaMap[Slot];
5101    MFI->setStackProtectorIndex(FI);
5102
5103    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5104
5105    // Store the stack protector onto the stack.
5106    Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN,
5107                       MachinePointerInfo::getFixedStack(FI),
5108                       true, false, 0);
5109    setValue(&I, Res);
5110    DAG.setRoot(Res);
5111    return 0;
5112  }
5113  case Intrinsic::objectsize: {
5114    // If we don't know by now, we're never going to know.
5115    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5116
5117    assert(CI && "Non-constant type in __builtin_object_size?");
5118
5119    SDValue Arg = getValue(I.getCalledValue());
5120    EVT Ty = Arg.getValueType();
5121
5122    if (CI->isZero())
5123      Res = DAG.getConstant(-1ULL, Ty);
5124    else
5125      Res = DAG.getConstant(0, Ty);
5126
5127    setValue(&I, Res);
5128    return 0;
5129  }
5130  case Intrinsic::var_annotation:
5131    // Discard annotate attributes
5132    return 0;
5133
5134  case Intrinsic::init_trampoline: {
5135    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5136
5137    SDValue Ops[6];
5138    Ops[0] = getRoot();
5139    Ops[1] = getValue(I.getArgOperand(0));
5140    Ops[2] = getValue(I.getArgOperand(1));
5141    Ops[3] = getValue(I.getArgOperand(2));
5142    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5143    Ops[5] = DAG.getSrcValue(F);
5144
5145    Res = DAG.getNode(ISD::INIT_TRAMPOLINE, dl, MVT::Other, Ops, 6);
5146
5147    DAG.setRoot(Res);
5148    return 0;
5149  }
5150  case Intrinsic::adjust_trampoline: {
5151    setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, dl,
5152                             TLI.getPointerTy(),
5153                             getValue(I.getArgOperand(0))));
5154    return 0;
5155  }
5156  case Intrinsic::gcroot:
5157    if (GFI) {
5158      const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5159      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5160
5161      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5162      GFI->addStackRoot(FI->getIndex(), TypeMap);
5163    }
5164    return 0;
5165  case Intrinsic::gcread:
5166  case Intrinsic::gcwrite:
5167    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5168  case Intrinsic::flt_rounds:
5169    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
5170    return 0;
5171
5172  case Intrinsic::expect: {
5173    // Just replace __builtin_expect(exp, c) with EXP.
5174    setValue(&I, getValue(I.getArgOperand(0)));
5175    return 0;
5176  }
5177
5178  case Intrinsic::debugtrap:
5179  case Intrinsic::trap: {
5180    StringRef TrapFuncName = TM.Options.getTrapFunctionName();
5181    if (TrapFuncName.empty()) {
5182      ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5183        ISD::TRAP : ISD::DEBUGTRAP;
5184      DAG.setRoot(DAG.getNode(Op, dl,MVT::Other, getRoot()));
5185      return 0;
5186    }
5187    TargetLowering::ArgListTy Args;
5188    TargetLowering::
5189    CallLoweringInfo CLI(getRoot(), I.getType(),
5190                 false, false, false, false, 0, CallingConv::C,
5191                 /*isTailCall=*/false,
5192                 /*doesNotRet=*/false, /*isReturnValueUsed=*/true,
5193                 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()),
5194                 Args, DAG, getCurDebugLoc());
5195    std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5196    DAG.setRoot(Result.second);
5197    return 0;
5198  }
5199
5200  case Intrinsic::uadd_with_overflow:
5201  case Intrinsic::sadd_with_overflow:
5202  case Intrinsic::usub_with_overflow:
5203  case Intrinsic::ssub_with_overflow:
5204  case Intrinsic::umul_with_overflow:
5205  case Intrinsic::smul_with_overflow: {
5206    ISD::NodeType Op;
5207    switch (Intrinsic) {
5208    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5209    case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5210    case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5211    case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5212    case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5213    case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5214    case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5215    }
5216    SDValue Op1 = getValue(I.getArgOperand(0));
5217    SDValue Op2 = getValue(I.getArgOperand(1));
5218
5219    SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5220    setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2));
5221    return 0;
5222  }
5223  case Intrinsic::prefetch: {
5224    SDValue Ops[5];
5225    unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5226    Ops[0] = getRoot();
5227    Ops[1] = getValue(I.getArgOperand(0));
5228    Ops[2] = getValue(I.getArgOperand(1));
5229    Ops[3] = getValue(I.getArgOperand(2));
5230    Ops[4] = getValue(I.getArgOperand(3));
5231    DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl,
5232                                        DAG.getVTList(MVT::Other),
5233                                        &Ops[0], 5,
5234                                        EVT::getIntegerVT(*Context, 8),
5235                                        MachinePointerInfo(I.getArgOperand(0)),
5236                                        0, /* align */
5237                                        false, /* volatile */
5238                                        rw==0, /* read */
5239                                        rw==1)); /* write */
5240    return 0;
5241  }
5242  case Intrinsic::lifetime_start:
5243  case Intrinsic::lifetime_end: {
5244    bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5245    // Stack coloring is not enabled in O0, discard region information.
5246    if (TM.getOptLevel() == CodeGenOpt::None)
5247      return 0;
5248
5249    SmallVector<Value *, 4> Allocas;
5250    GetUnderlyingObjects(I.getArgOperand(1), Allocas, TD);
5251
5252    for (SmallVector<Value*, 4>::iterator Object = Allocas.begin(),
5253         E = Allocas.end(); Object != E; ++Object) {
5254      AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5255
5256      // Could not find an Alloca.
5257      if (!LifetimeObject)
5258        continue;
5259
5260      int FI = FuncInfo.StaticAllocaMap[LifetimeObject];
5261
5262      SDValue Ops[2];
5263      Ops[0] = getRoot();
5264      Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true);
5265      unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5266
5267      Res = DAG.getNode(Opcode, dl, MVT::Other, Ops, 2);
5268      DAG.setRoot(Res);
5269    }
5270  }
5271  case Intrinsic::invariant_start:
5272    // Discard region information.
5273    setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
5274    return 0;
5275  case Intrinsic::invariant_end:
5276    // Discard region information.
5277    return 0;
5278  case Intrinsic::donothing:
5279    // ignore
5280    return 0;
5281  }
5282}
5283
5284void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5285                                      bool isTailCall,
5286                                      MachineBasicBlock *LandingPad) {
5287  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5288  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5289  Type *RetTy = FTy->getReturnType();
5290  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5291  MCSymbol *BeginLabel = 0;
5292
5293  TargetLowering::ArgListTy Args;
5294  TargetLowering::ArgListEntry Entry;
5295  Args.reserve(CS.arg_size());
5296
5297  // Check whether the function can return without sret-demotion.
5298  SmallVector<ISD::OutputArg, 4> Outs;
5299  GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
5300                Outs, TLI);
5301
5302  bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
5303                                           DAG.getMachineFunction(),
5304                                           FTy->isVarArg(), Outs,
5305                                           FTy->getContext());
5306
5307  SDValue DemoteStackSlot;
5308  int DemoteStackIdx = -100;
5309
5310  if (!CanLowerReturn) {
5311    uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(
5312                      FTy->getReturnType());
5313    unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(
5314                      FTy->getReturnType());
5315    MachineFunction &MF = DAG.getMachineFunction();
5316    DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5317    Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
5318
5319    DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
5320    Entry.Node = DemoteStackSlot;
5321    Entry.Ty = StackSlotPtrType;
5322    Entry.isSExt = false;
5323    Entry.isZExt = false;
5324    Entry.isInReg = false;
5325    Entry.isSRet = true;
5326    Entry.isNest = false;
5327    Entry.isByVal = false;
5328    Entry.Alignment = Align;
5329    Args.push_back(Entry);
5330    RetTy = Type::getVoidTy(FTy->getContext());
5331  }
5332
5333  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5334       i != e; ++i) {
5335    const Value *V = *i;
5336
5337    // Skip empty types
5338    if (V->getType()->isEmptyTy())
5339      continue;
5340
5341    SDValue ArgNode = getValue(V);
5342    Entry.Node = ArgNode; Entry.Ty = V->getType();
5343
5344    unsigned attrInd = i - CS.arg_begin() + 1;
5345    Entry.isSExt  = CS.paramHasAttr(attrInd, Attribute::SExt);
5346    Entry.isZExt  = CS.paramHasAttr(attrInd, Attribute::ZExt);
5347    Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
5348    Entry.isSRet  = CS.paramHasAttr(attrInd, Attribute::StructRet);
5349    Entry.isNest  = CS.paramHasAttr(attrInd, Attribute::Nest);
5350    Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
5351    Entry.Alignment = CS.getParamAlignment(attrInd);
5352    Args.push_back(Entry);
5353  }
5354
5355  if (LandingPad) {
5356    // Insert a label before the invoke call to mark the try range.  This can be
5357    // used to detect deletion of the invoke via the MachineModuleInfo.
5358    BeginLabel = MMI.getContext().CreateTempSymbol();
5359
5360    // For SjLj, keep track of which landing pads go with which invokes
5361    // so as to maintain the ordering of pads in the LSDA.
5362    unsigned CallSiteIndex = MMI.getCurrentCallSite();
5363    if (CallSiteIndex) {
5364      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5365      LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex);
5366
5367      // Now that the call site is handled, stop tracking it.
5368      MMI.setCurrentCallSite(0);
5369    }
5370
5371    // Both PendingLoads and PendingExports must be flushed here;
5372    // this call might not return.
5373    (void)getRoot();
5374    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
5375  }
5376
5377  // Check if target-independent constraints permit a tail call here.
5378  // Target-dependent constraints are checked within TLI.LowerCallTo.
5379  if (isTailCall &&
5380      !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
5381    isTailCall = false;
5382
5383  // If there's a possibility that fast-isel has already selected some amount
5384  // of the current basic block, don't emit a tail call.
5385  if (isTailCall && TM.Options.EnableFastISel)
5386    isTailCall = false;
5387
5388  TargetLowering::
5389  CallLoweringInfo CLI(getRoot(), RetTy, FTy, isTailCall, Callee, Args, DAG,
5390                       getCurDebugLoc(), CS);
5391  std::pair<SDValue,SDValue> Result = TLI.LowerCallTo(CLI);
5392  assert((isTailCall || Result.second.getNode()) &&
5393         "Non-null chain expected with non-tail call!");
5394  assert((Result.second.getNode() || !Result.first.getNode()) &&
5395         "Null value expected with tail call!");
5396  if (Result.first.getNode()) {
5397    setValue(CS.getInstruction(), Result.first);
5398  } else if (!CanLowerReturn && Result.second.getNode()) {
5399    // The instruction result is the result of loading from the
5400    // hidden sret parameter.
5401    SmallVector<EVT, 1> PVTs;
5402    Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
5403
5404    ComputeValueVTs(TLI, PtrRetTy, PVTs);
5405    assert(PVTs.size() == 1 && "Pointers should fit in one register");
5406    EVT PtrVT = PVTs[0];
5407
5408    SmallVector<EVT, 4> RetTys;
5409    SmallVector<uint64_t, 4> Offsets;
5410    RetTy = FTy->getReturnType();
5411    ComputeValueVTs(TLI, RetTy, RetTys, &Offsets);
5412
5413    unsigned NumValues = RetTys.size();
5414    SmallVector<SDValue, 4> Values(NumValues);
5415    SmallVector<SDValue, 4> Chains(NumValues);
5416
5417    for (unsigned i = 0; i < NumValues; ++i) {
5418      SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
5419                                DemoteStackSlot,
5420                                DAG.getConstant(Offsets[i], PtrVT));
5421      SDValue L = DAG.getLoad(RetTys[i], getCurDebugLoc(), Result.second, Add,
5422                  MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
5423                              false, false, false, 1);
5424      Values[i] = L;
5425      Chains[i] = L.getValue(1);
5426    }
5427
5428    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
5429                                MVT::Other, &Chains[0], NumValues);
5430    PendingLoads.push_back(Chain);
5431
5432    setValue(CS.getInstruction(),
5433             DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
5434                         DAG.getVTList(&RetTys[0], RetTys.size()),
5435                         &Values[0], Values.size()));
5436  }
5437
5438  // Assign order to nodes here. If the call does not produce a result, it won't
5439  // be mapped to a SDNode and visit() will not assign it an order number.
5440  if (!Result.second.getNode()) {
5441    // As a special case, a null chain means that a tail call has been emitted and
5442    // the DAG root is already updated.
5443    HasTailCall = true;
5444    ++SDNodeOrder;
5445    AssignOrderingToNode(DAG.getRoot().getNode());
5446  } else {
5447    DAG.setRoot(Result.second);
5448    ++SDNodeOrder;
5449    AssignOrderingToNode(Result.second.getNode());
5450  }
5451
5452  if (LandingPad) {
5453    // Insert a label at the end of the invoke call to mark the try range.  This
5454    // can be used to detect deletion of the invoke via the MachineModuleInfo.
5455    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5456    DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
5457
5458    // Inform MachineModuleInfo of range.
5459    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5460  }
5461}
5462
5463/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5464/// value is equal or not-equal to zero.
5465static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5466  for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
5467       UI != E; ++UI) {
5468    if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
5469      if (IC->isEquality())
5470        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5471          if (C->isNullValue())
5472            continue;
5473    // Unknown instruction.
5474    return false;
5475  }
5476  return true;
5477}
5478
5479static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5480                             Type *LoadTy,
5481                             SelectionDAGBuilder &Builder) {
5482
5483  // Check to see if this load can be trivially constant folded, e.g. if the
5484  // input is from a string literal.
5485  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5486    // Cast pointer to the type we really want to load.
5487    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5488                                         PointerType::getUnqual(LoadTy));
5489
5490    if (const Constant *LoadCst =
5491          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5492                                       Builder.TD))
5493      return Builder.getValue(LoadCst);
5494  }
5495
5496  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5497  // still constant memory, the input chain can be the entry node.
5498  SDValue Root;
5499  bool ConstantMemory = false;
5500
5501  // Do not serialize (non-volatile) loads of constant memory with anything.
5502  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5503    Root = Builder.DAG.getEntryNode();
5504    ConstantMemory = true;
5505  } else {
5506    // Do not serialize non-volatile loads against each other.
5507    Root = Builder.DAG.getRoot();
5508  }
5509
5510  SDValue Ptr = Builder.getValue(PtrVal);
5511  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
5512                                        Ptr, MachinePointerInfo(PtrVal),
5513                                        false /*volatile*/,
5514                                        false /*nontemporal*/,
5515                                        false /*isinvariant*/, 1 /* align=1 */);
5516
5517  if (!ConstantMemory)
5518    Builder.PendingLoads.push_back(LoadVal.getValue(1));
5519  return LoadVal;
5520}
5521
5522
5523/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5524/// If so, return true and lower it, otherwise return false and it will be
5525/// lowered like a normal call.
5526bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5527  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5528  if (I.getNumArgOperands() != 3)
5529    return false;
5530
5531  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5532  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5533      !I.getArgOperand(2)->getType()->isIntegerTy() ||
5534      !I.getType()->isIntegerTy())
5535    return false;
5536
5537  const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
5538
5539  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5540  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5541  if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
5542    bool ActuallyDoIt = true;
5543    MVT LoadVT;
5544    Type *LoadTy;
5545    switch (Size->getZExtValue()) {
5546    default:
5547      LoadVT = MVT::Other;
5548      LoadTy = 0;
5549      ActuallyDoIt = false;
5550      break;
5551    case 2:
5552      LoadVT = MVT::i16;
5553      LoadTy = Type::getInt16Ty(Size->getContext());
5554      break;
5555    case 4:
5556      LoadVT = MVT::i32;
5557      LoadTy = Type::getInt32Ty(Size->getContext());
5558      break;
5559    case 8:
5560      LoadVT = MVT::i64;
5561      LoadTy = Type::getInt64Ty(Size->getContext());
5562      break;
5563        /*
5564    case 16:
5565      LoadVT = MVT::v4i32;
5566      LoadTy = Type::getInt32Ty(Size->getContext());
5567      LoadTy = VectorType::get(LoadTy, 4);
5568      break;
5569         */
5570    }
5571
5572    // This turns into unaligned loads.  We only do this if the target natively
5573    // supports the MVT we'll be loading or if it is small enough (<= 4) that
5574    // we'll only produce a small number of byte loads.
5575
5576    // Require that we can find a legal MVT, and only do this if the target
5577    // supports unaligned loads of that type.  Expanding into byte loads would
5578    // bloat the code.
5579    if (ActuallyDoIt && Size->getZExtValue() > 4) {
5580      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5581      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5582      if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
5583        ActuallyDoIt = false;
5584    }
5585
5586    if (ActuallyDoIt) {
5587      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5588      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5589
5590      SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
5591                                 ISD::SETNE);
5592      EVT CallVT = TLI.getValueType(I.getType(), true);
5593      setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
5594      return true;
5595    }
5596  }
5597
5598
5599  return false;
5600}
5601
5602/// visitUnaryFloatCall - If a call instruction is a unary floating-point
5603/// operation (as expected), translate it to an SDNode with the specified opcode
5604/// and return true.
5605bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
5606                                              unsigned Opcode) {
5607  // Sanity check that it really is a unary floating-point call.
5608  if (I.getNumArgOperands() != 1 ||
5609      !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
5610      I.getType() != I.getArgOperand(0)->getType() ||
5611      !I.onlyReadsMemory())
5612    return false;
5613
5614  SDValue Tmp = getValue(I.getArgOperand(0));
5615  setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), Tmp.getValueType(), Tmp));
5616  return true;
5617}
5618
5619void SelectionDAGBuilder::visitCall(const CallInst &I) {
5620  // Handle inline assembly differently.
5621  if (isa<InlineAsm>(I.getCalledValue())) {
5622    visitInlineAsm(&I);
5623    return;
5624  }
5625
5626  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5627  ComputeUsesVAFloatArgument(I, &MMI);
5628
5629  const char *RenameFn = 0;
5630  if (Function *F = I.getCalledFunction()) {
5631    if (F->isDeclaration()) {
5632      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5633        if (unsigned IID = II->getIntrinsicID(F)) {
5634          RenameFn = visitIntrinsicCall(I, IID);
5635          if (!RenameFn)
5636            return;
5637        }
5638      }
5639      if (unsigned IID = F->getIntrinsicID()) {
5640        RenameFn = visitIntrinsicCall(I, IID);
5641        if (!RenameFn)
5642          return;
5643      }
5644    }
5645
5646    // Check for well-known libc/libm calls.  If the function is internal, it
5647    // can't be a library call.
5648    LibFunc::Func Func;
5649    if (!F->hasLocalLinkage() && F->hasName() &&
5650        LibInfo->getLibFunc(F->getName(), Func) &&
5651        LibInfo->hasOptimizedCodeGen(Func)) {
5652      switch (Func) {
5653      default: break;
5654      case LibFunc::copysign:
5655      case LibFunc::copysignf:
5656      case LibFunc::copysignl:
5657        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5658            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5659            I.getType() == I.getArgOperand(0)->getType() &&
5660            I.getType() == I.getArgOperand(1)->getType() &&
5661            I.onlyReadsMemory()) {
5662          SDValue LHS = getValue(I.getArgOperand(0));
5663          SDValue RHS = getValue(I.getArgOperand(1));
5664          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
5665                                   LHS.getValueType(), LHS, RHS));
5666          return;
5667        }
5668        break;
5669      case LibFunc::fabs:
5670      case LibFunc::fabsf:
5671      case LibFunc::fabsl:
5672        if (visitUnaryFloatCall(I, ISD::FABS))
5673          return;
5674        break;
5675      case LibFunc::sin:
5676      case LibFunc::sinf:
5677      case LibFunc::sinl:
5678        if (visitUnaryFloatCall(I, ISD::FSIN))
5679          return;
5680        break;
5681      case LibFunc::cos:
5682      case LibFunc::cosf:
5683      case LibFunc::cosl:
5684        if (visitUnaryFloatCall(I, ISD::FCOS))
5685          return;
5686        break;
5687      case LibFunc::sqrt:
5688      case LibFunc::sqrtf:
5689      case LibFunc::sqrtl:
5690        if (visitUnaryFloatCall(I, ISD::FSQRT))
5691          return;
5692        break;
5693      case LibFunc::floor:
5694      case LibFunc::floorf:
5695      case LibFunc::floorl:
5696        if (visitUnaryFloatCall(I, ISD::FFLOOR))
5697          return;
5698        break;
5699      case LibFunc::nearbyint:
5700      case LibFunc::nearbyintf:
5701      case LibFunc::nearbyintl:
5702        if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
5703          return;
5704        break;
5705      case LibFunc::ceil:
5706      case LibFunc::ceilf:
5707      case LibFunc::ceill:
5708        if (visitUnaryFloatCall(I, ISD::FCEIL))
5709          return;
5710        break;
5711      case LibFunc::rint:
5712      case LibFunc::rintf:
5713      case LibFunc::rintl:
5714        if (visitUnaryFloatCall(I, ISD::FRINT))
5715          return;
5716        break;
5717      case LibFunc::trunc:
5718      case LibFunc::truncf:
5719      case LibFunc::truncl:
5720        if (visitUnaryFloatCall(I, ISD::FTRUNC))
5721          return;
5722        break;
5723      case LibFunc::log2:
5724      case LibFunc::log2f:
5725      case LibFunc::log2l:
5726        if (visitUnaryFloatCall(I, ISD::FLOG2))
5727          return;
5728        break;
5729      case LibFunc::exp2:
5730      case LibFunc::exp2f:
5731      case LibFunc::exp2l:
5732        if (visitUnaryFloatCall(I, ISD::FEXP2))
5733          return;
5734        break;
5735      case LibFunc::memcmp:
5736        if (visitMemCmpCall(I))
5737          return;
5738        break;
5739      }
5740    }
5741  }
5742
5743  SDValue Callee;
5744  if (!RenameFn)
5745    Callee = getValue(I.getCalledValue());
5746  else
5747    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
5748
5749  // Check if we can potentially perform a tail call. More detailed checking is
5750  // be done within LowerCallTo, after more information about the call is known.
5751  LowerCallTo(&I, Callee, I.isTailCall());
5752}
5753
5754namespace {
5755
5756/// AsmOperandInfo - This contains information for each constraint that we are
5757/// lowering.
5758class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5759public:
5760  /// CallOperand - If this is the result output operand or a clobber
5761  /// this is null, otherwise it is the incoming operand to the CallInst.
5762  /// This gets modified as the asm is processed.
5763  SDValue CallOperand;
5764
5765  /// AssignedRegs - If this is a register or register class operand, this
5766  /// contains the set of register corresponding to the operand.
5767  RegsForValue AssignedRegs;
5768
5769  explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5770    : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
5771  }
5772
5773  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5774  /// corresponds to.  If there is no Value* for this operand, it returns
5775  /// MVT::Other.
5776  EVT getCallOperandValEVT(LLVMContext &Context,
5777                           const TargetLowering &TLI,
5778                           const TargetData *TD) const {
5779    if (CallOperandVal == 0) return MVT::Other;
5780
5781    if (isa<BasicBlock>(CallOperandVal))
5782      return TLI.getPointerTy();
5783
5784    llvm::Type *OpTy = CallOperandVal->getType();
5785
5786    // FIXME: code duplicated from TargetLowering::ParseConstraints().
5787    // If this is an indirect operand, the operand is a pointer to the
5788    // accessed type.
5789    if (isIndirect) {
5790      llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
5791      if (!PtrTy)
5792        report_fatal_error("Indirect operand for inline asm not a pointer!");
5793      OpTy = PtrTy->getElementType();
5794    }
5795
5796    // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5797    if (StructType *STy = dyn_cast<StructType>(OpTy))
5798      if (STy->getNumElements() == 1)
5799        OpTy = STy->getElementType(0);
5800
5801    // If OpTy is not a single value, it may be a struct/union that we
5802    // can tile with integers.
5803    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5804      unsigned BitSize = TD->getTypeSizeInBits(OpTy);
5805      switch (BitSize) {
5806      default: break;
5807      case 1:
5808      case 8:
5809      case 16:
5810      case 32:
5811      case 64:
5812      case 128:
5813        OpTy = IntegerType::get(Context, BitSize);
5814        break;
5815      }
5816    }
5817
5818    return TLI.getValueType(OpTy, true);
5819  }
5820};
5821
5822typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
5823
5824} // end anonymous namespace
5825
5826/// GetRegistersForValue - Assign registers (virtual or physical) for the
5827/// specified operand.  We prefer to assign virtual registers, to allow the
5828/// register allocator to handle the assignment process.  However, if the asm
5829/// uses features that we can't model on machineinstrs, we have SDISel do the
5830/// allocation.  This produces generally horrible, but correct, code.
5831///
5832///   OpInfo describes the operand.
5833///
5834static void GetRegistersForValue(SelectionDAG &DAG,
5835                                 const TargetLowering &TLI,
5836                                 DebugLoc DL,
5837                                 SDISelAsmOperandInfo &OpInfo) {
5838  LLVMContext &Context = *DAG.getContext();
5839
5840  MachineFunction &MF = DAG.getMachineFunction();
5841  SmallVector<unsigned, 4> Regs;
5842
5843  // If this is a constraint for a single physreg, or a constraint for a
5844  // register class, find it.
5845  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
5846    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
5847                                     OpInfo.ConstraintVT);
5848
5849  unsigned NumRegs = 1;
5850  if (OpInfo.ConstraintVT != MVT::Other) {
5851    // If this is a FP input in an integer register (or visa versa) insert a bit
5852    // cast of the input value.  More generally, handle any case where the input
5853    // value disagrees with the register class we plan to stick this in.
5854    if (OpInfo.Type == InlineAsm::isInput &&
5855        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
5856      // Try to convert to the first EVT that the reg class contains.  If the
5857      // types are identical size, use a bitcast to convert (e.g. two differing
5858      // vector types).
5859      EVT RegVT = *PhysReg.second->vt_begin();
5860      if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
5861        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5862                                         RegVT, OpInfo.CallOperand);
5863        OpInfo.ConstraintVT = RegVT;
5864      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
5865        // If the input is a FP value and we want it in FP registers, do a
5866        // bitcast to the corresponding integer type.  This turns an f64 value
5867        // into i64, which can be passed with two i32 values on a 32-bit
5868        // machine.
5869        RegVT = EVT::getIntegerVT(Context,
5870                                  OpInfo.ConstraintVT.getSizeInBits());
5871        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
5872                                         RegVT, OpInfo.CallOperand);
5873        OpInfo.ConstraintVT = RegVT;
5874      }
5875    }
5876
5877    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
5878  }
5879
5880  EVT RegVT;
5881  EVT ValueVT = OpInfo.ConstraintVT;
5882
5883  // If this is a constraint for a specific physical register, like {r17},
5884  // assign it now.
5885  if (unsigned AssignedReg = PhysReg.first) {
5886    const TargetRegisterClass *RC = PhysReg.second;
5887    if (OpInfo.ConstraintVT == MVT::Other)
5888      ValueVT = *RC->vt_begin();
5889
5890    // Get the actual register value type.  This is important, because the user
5891    // may have asked for (e.g.) the AX register in i32 type.  We need to
5892    // remember that AX is actually i16 to get the right extension.
5893    RegVT = *RC->vt_begin();
5894
5895    // This is a explicit reference to a physical register.
5896    Regs.push_back(AssignedReg);
5897
5898    // If this is an expanded reference, add the rest of the regs to Regs.
5899    if (NumRegs != 1) {
5900      TargetRegisterClass::iterator I = RC->begin();
5901      for (; *I != AssignedReg; ++I)
5902        assert(I != RC->end() && "Didn't find reg!");
5903
5904      // Already added the first reg.
5905      --NumRegs; ++I;
5906      for (; NumRegs; --NumRegs, ++I) {
5907        assert(I != RC->end() && "Ran out of registers to allocate!");
5908        Regs.push_back(*I);
5909      }
5910    }
5911
5912    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5913    return;
5914  }
5915
5916  // Otherwise, if this was a reference to an LLVM register class, create vregs
5917  // for this reference.
5918  if (const TargetRegisterClass *RC = PhysReg.second) {
5919    RegVT = *RC->vt_begin();
5920    if (OpInfo.ConstraintVT == MVT::Other)
5921      ValueVT = RegVT;
5922
5923    // Create the appropriate number of virtual registers.
5924    MachineRegisterInfo &RegInfo = MF.getRegInfo();
5925    for (; NumRegs; --NumRegs)
5926      Regs.push_back(RegInfo.createVirtualRegister(RC));
5927
5928    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
5929    return;
5930  }
5931
5932  // Otherwise, we couldn't allocate enough registers for this.
5933}
5934
5935/// visitInlineAsm - Handle a call to an InlineAsm object.
5936///
5937void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
5938  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
5939
5940  /// ConstraintOperands - Information about all of the constraints.
5941  SDISelAsmOperandInfoVector ConstraintOperands;
5942
5943  TargetLowering::AsmOperandInfoVector
5944    TargetConstraints = TLI.ParseConstraints(CS);
5945
5946  bool hasMemory = false;
5947
5948  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
5949  unsigned ResNo = 0;   // ResNo - The result number of the next output.
5950  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5951    ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
5952    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
5953
5954    EVT OpVT = MVT::Other;
5955
5956    // Compute the value type for each operand.
5957    switch (OpInfo.Type) {
5958    case InlineAsm::isOutput:
5959      // Indirect outputs just consume an argument.
5960      if (OpInfo.isIndirect) {
5961        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5962        break;
5963      }
5964
5965      // The return value of the call is this value.  As such, there is no
5966      // corresponding argument.
5967      assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
5968      if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
5969        OpVT = TLI.getValueType(STy->getElementType(ResNo));
5970      } else {
5971        assert(ResNo == 0 && "Asm only has one result!");
5972        OpVT = TLI.getValueType(CS.getType());
5973      }
5974      ++ResNo;
5975      break;
5976    case InlineAsm::isInput:
5977      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
5978      break;
5979    case InlineAsm::isClobber:
5980      // Nothing to do.
5981      break;
5982    }
5983
5984    // If this is an input or an indirect output, process the call argument.
5985    // BasicBlocks are labels, currently appearing only in asm's.
5986    if (OpInfo.CallOperandVal) {
5987      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
5988        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
5989      } else {
5990        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
5991      }
5992
5993      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
5994    }
5995
5996    OpInfo.ConstraintVT = OpVT;
5997
5998    // Indirect operand accesses access memory.
5999    if (OpInfo.isIndirect)
6000      hasMemory = true;
6001    else {
6002      for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
6003        TargetLowering::ConstraintType
6004          CType = TLI.getConstraintType(OpInfo.Codes[j]);
6005        if (CType == TargetLowering::C_Memory) {
6006          hasMemory = true;
6007          break;
6008        }
6009      }
6010    }
6011  }
6012
6013  SDValue Chain, Flag;
6014
6015  // We won't need to flush pending loads if this asm doesn't touch
6016  // memory and is nonvolatile.
6017  if (hasMemory || IA->hasSideEffects())
6018    Chain = getRoot();
6019  else
6020    Chain = DAG.getRoot();
6021
6022  // Second pass over the constraints: compute which constraint option to use
6023  // and assign registers to constraints that want a specific physreg.
6024  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6025    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6026
6027    // If this is an output operand with a matching input operand, look up the
6028    // matching input. If their types mismatch, e.g. one is an integer, the
6029    // other is floating point, or their sizes are different, flag it as an
6030    // error.
6031    if (OpInfo.hasMatchingInput()) {
6032      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
6033
6034      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
6035        std::pair<unsigned, const TargetRegisterClass*> MatchRC =
6036          TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
6037                                           OpInfo.ConstraintVT);
6038        std::pair<unsigned, const TargetRegisterClass*> InputRC =
6039          TLI.getRegForInlineAsmConstraint(Input.ConstraintCode,
6040                                           Input.ConstraintVT);
6041        if ((OpInfo.ConstraintVT.isInteger() !=
6042             Input.ConstraintVT.isInteger()) ||
6043            (MatchRC.second != InputRC.second)) {
6044          report_fatal_error("Unsupported asm: input constraint"
6045                             " with a matching output constraint of"
6046                             " incompatible type!");
6047        }
6048        Input.ConstraintVT = OpInfo.ConstraintVT;
6049      }
6050    }
6051
6052    // Compute the constraint code and ConstraintType to use.
6053    TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
6054
6055    // If this is a memory input, and if the operand is not indirect, do what we
6056    // need to to provide an address for the memory input.
6057    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6058        !OpInfo.isIndirect) {
6059      assert((OpInfo.isMultipleAlternative ||
6060              (OpInfo.Type == InlineAsm::isInput)) &&
6061             "Can only indirectify direct input operands!");
6062
6063      // Memory operands really want the address of the value.  If we don't have
6064      // an indirect input, put it in the constpool if we can, otherwise spill
6065      // it to a stack slot.
6066      // TODO: This isn't quite right. We need to handle these according to
6067      // the addressing mode that the constraint wants. Also, this may take
6068      // an additional register for the computation and we don't want that
6069      // either.
6070
6071      // If the operand is a float, integer, or vector constant, spill to a
6072      // constant pool entry to get its address.
6073      const Value *OpVal = OpInfo.CallOperandVal;
6074      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
6075          isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
6076        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
6077                                                 TLI.getPointerTy());
6078      } else {
6079        // Otherwise, create a stack slot and emit a store to it before the
6080        // asm.
6081        Type *Ty = OpVal->getType();
6082        uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
6083        unsigned Align  = TLI.getTargetData()->getPrefTypeAlignment(Ty);
6084        MachineFunction &MF = DAG.getMachineFunction();
6085        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
6086        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
6087        Chain = DAG.getStore(Chain, getCurDebugLoc(),
6088                             OpInfo.CallOperand, StackSlot,
6089                             MachinePointerInfo::getFixedStack(SSFI),
6090                             false, false, 0);
6091        OpInfo.CallOperand = StackSlot;
6092      }
6093
6094      // There is no longer a Value* corresponding to this operand.
6095      OpInfo.CallOperandVal = 0;
6096
6097      // It is now an indirect operand.
6098      OpInfo.isIndirect = true;
6099    }
6100
6101    // If this constraint is for a specific register, allocate it before
6102    // anything else.
6103    if (OpInfo.ConstraintType == TargetLowering::C_Register)
6104      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo);
6105  }
6106
6107  // Second pass - Loop over all of the operands, assigning virtual or physregs
6108  // to register class operands.
6109  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6110    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6111
6112    // C_Register operands have already been allocated, Other/Memory don't need
6113    // to be.
6114    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6115      GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo);
6116  }
6117
6118  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6119  std::vector<SDValue> AsmNodeOperands;
6120  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6121  AsmNodeOperands.push_back(
6122          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
6123                                      TLI.getPointerTy()));
6124
6125  // If we have a !srcloc metadata node associated with it, we want to attach
6126  // this to the ultimately generated inline asm machineinstr.  To do this, we
6127  // pass in the third operand as this (potentially null) inline asm MDNode.
6128  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6129  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6130
6131  // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6132  // bits as operand 3.
6133  unsigned ExtraInfo = 0;
6134  if (IA->hasSideEffects())
6135    ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6136  if (IA->isAlignStack())
6137    ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6138  // Set the asm dialect.
6139  ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
6140
6141  // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
6142  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6143    TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
6144
6145    // Compute the constraint code and ConstraintType to use.
6146    TLI.ComputeConstraintToUse(OpInfo, SDValue());
6147
6148    // Ideally, we would only check against memory constraints.  However, the
6149    // meaning of an other constraint can be target-specific and we can't easily
6150    // reason about it.  Therefore, be conservative and set MayLoad/MayStore
6151    // for other constriants as well.
6152    if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
6153        OpInfo.ConstraintType == TargetLowering::C_Other) {
6154      if (OpInfo.Type == InlineAsm::isInput)
6155        ExtraInfo |= InlineAsm::Extra_MayLoad;
6156      else if (OpInfo.Type == InlineAsm::isOutput)
6157        ExtraInfo |= InlineAsm::Extra_MayStore;
6158    }
6159  }
6160
6161  AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
6162                                                  TLI.getPointerTy()));
6163
6164  // Loop over all of the inputs, copying the operand values into the
6165  // appropriate registers and processing the output regs.
6166  RegsForValue RetValRegs;
6167
6168  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6169  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6170
6171  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6172    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6173
6174    switch (OpInfo.Type) {
6175    case InlineAsm::isOutput: {
6176      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6177          OpInfo.ConstraintType != TargetLowering::C_Register) {
6178        // Memory output, or 'other' output (e.g. 'X' constraint).
6179        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6180
6181        // Add information to the INLINEASM node to know about this output.
6182        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6183        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
6184                                                        TLI.getPointerTy()));
6185        AsmNodeOperands.push_back(OpInfo.CallOperand);
6186        break;
6187      }
6188
6189      // Otherwise, this is a register or register class output.
6190
6191      // Copy the output from the appropriate register.  Find a register that
6192      // we can use.
6193      if (OpInfo.AssignedRegs.Regs.empty()) {
6194        LLVMContext &Ctx = *DAG.getContext();
6195        Ctx.emitError(CS.getInstruction(),
6196                      "couldn't allocate output register for constraint '" +
6197                           Twine(OpInfo.ConstraintCode) + "'");
6198        break;
6199      }
6200
6201      // If this is an indirect operand, store through the pointer after the
6202      // asm.
6203      if (OpInfo.isIndirect) {
6204        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6205                                                      OpInfo.CallOperandVal));
6206      } else {
6207        // This is the result value of the call.
6208        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6209        // Concatenate this output onto the outputs list.
6210        RetValRegs.append(OpInfo.AssignedRegs);
6211      }
6212
6213      // Add information to the INLINEASM node to know that this register is
6214      // set.
6215      OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
6216                                           InlineAsm::Kind_RegDefEarlyClobber :
6217                                               InlineAsm::Kind_RegDef,
6218                                               false,
6219                                               0,
6220                                               DAG,
6221                                               AsmNodeOperands);
6222      break;
6223    }
6224    case InlineAsm::isInput: {
6225      SDValue InOperandVal = OpInfo.CallOperand;
6226
6227      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6228        // If this is required to match an output register we have already set,
6229        // just use its register.
6230        unsigned OperandNo = OpInfo.getMatchedOperand();
6231
6232        // Scan until we find the definition we already emitted of this operand.
6233        // When we find it, create a RegsForValue operand.
6234        unsigned CurOp = InlineAsm::Op_FirstOperand;
6235        for (; OperandNo; --OperandNo) {
6236          // Advance to the next operand.
6237          unsigned OpFlag =
6238            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6239          assert((InlineAsm::isRegDefKind(OpFlag) ||
6240                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6241                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6242          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6243        }
6244
6245        unsigned OpFlag =
6246          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6247        if (InlineAsm::isRegDefKind(OpFlag) ||
6248            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6249          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6250          if (OpInfo.isIndirect) {
6251            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6252            LLVMContext &Ctx = *DAG.getContext();
6253            Ctx.emitError(CS.getInstruction(),  "inline asm not supported yet:"
6254                          " don't know how to handle tied "
6255                          "indirect register inputs");
6256          }
6257
6258          RegsForValue MatchedRegs;
6259          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6260          EVT RegVT = AsmNodeOperands[CurOp+1].getValueType();
6261          MatchedRegs.RegVTs.push_back(RegVT);
6262          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6263          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6264               i != e; ++i)
6265            MatchedRegs.Regs.push_back
6266              (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
6267
6268          // Use the produced MatchedRegs object to
6269          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6270                                    Chain, &Flag, CS.getInstruction());
6271          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6272                                           true, OpInfo.getMatchedOperand(),
6273                                           DAG, AsmNodeOperands);
6274          break;
6275        }
6276
6277        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6278        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6279               "Unexpected number of operands");
6280        // Add information to the INLINEASM node to know about this input.
6281        // See InlineAsm.h isUseOperandTiedToDef.
6282        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6283                                                    OpInfo.getMatchedOperand());
6284        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
6285                                                        TLI.getPointerTy()));
6286        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6287        break;
6288      }
6289
6290      // Treat indirect 'X' constraint as memory.
6291      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6292          OpInfo.isIndirect)
6293        OpInfo.ConstraintType = TargetLowering::C_Memory;
6294
6295      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6296        std::vector<SDValue> Ops;
6297        TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6298                                         Ops, DAG);
6299        if (Ops.empty()) {
6300          LLVMContext &Ctx = *DAG.getContext();
6301          Ctx.emitError(CS.getInstruction(),
6302                        "invalid operand for inline asm constraint '" +
6303                        Twine(OpInfo.ConstraintCode) + "'");
6304          break;
6305        }
6306
6307        // Add information to the INLINEASM node to know about this input.
6308        unsigned ResOpType =
6309          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6310        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6311                                                        TLI.getPointerTy()));
6312        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6313        break;
6314      }
6315
6316      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6317        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6318        assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
6319               "Memory operands expect pointer values");
6320
6321        // Add information to the INLINEASM node to know about this input.
6322        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6323        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6324                                                        TLI.getPointerTy()));
6325        AsmNodeOperands.push_back(InOperandVal);
6326        break;
6327      }
6328
6329      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6330              OpInfo.ConstraintType == TargetLowering::C_Register) &&
6331             "Unknown constraint type!");
6332
6333      // TODO: Support this.
6334      if (OpInfo.isIndirect) {
6335        LLVMContext &Ctx = *DAG.getContext();
6336        Ctx.emitError(CS.getInstruction(),
6337                      "Don't know how to handle indirect register inputs yet "
6338                      "for constraint '" + Twine(OpInfo.ConstraintCode) + "'");
6339        break;
6340      }
6341
6342      // Copy the input into the appropriate registers.
6343      if (OpInfo.AssignedRegs.Regs.empty()) {
6344        LLVMContext &Ctx = *DAG.getContext();
6345        Ctx.emitError(CS.getInstruction(),
6346                      "couldn't allocate input reg for constraint '" +
6347                           Twine(OpInfo.ConstraintCode) + "'");
6348        break;
6349      }
6350
6351      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
6352                                        Chain, &Flag, CS.getInstruction());
6353
6354      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6355                                               DAG, AsmNodeOperands);
6356      break;
6357    }
6358    case InlineAsm::isClobber: {
6359      // Add the clobbered value to the operand list, so that the register
6360      // allocator is aware that the physreg got clobbered.
6361      if (!OpInfo.AssignedRegs.Regs.empty())
6362        OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6363                                                 false, 0, DAG,
6364                                                 AsmNodeOperands);
6365      break;
6366    }
6367    }
6368  }
6369
6370  // Finish up input operands.  Set the input chain and add the flag last.
6371  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6372  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6373
6374  Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
6375                      DAG.getVTList(MVT::Other, MVT::Glue),
6376                      &AsmNodeOperands[0], AsmNodeOperands.size());
6377  Flag = Chain.getValue(1);
6378
6379  // If this asm returns a register value, copy the result from that register
6380  // and set it as the value of the call.
6381  if (!RetValRegs.Regs.empty()) {
6382    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6383                                             Chain, &Flag, CS.getInstruction());
6384
6385    // FIXME: Why don't we do this for inline asms with MRVs?
6386    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6387      EVT ResultType = TLI.getValueType(CS.getType());
6388
6389      // If any of the results of the inline asm is a vector, it may have the
6390      // wrong width/num elts.  This can happen for register classes that can
6391      // contain multiple different value types.  The preg or vreg allocated may
6392      // not have the same VT as was expected.  Convert it to the right type
6393      // with bit_convert.
6394      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6395        Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
6396                          ResultType, Val);
6397
6398      } else if (ResultType != Val.getValueType() &&
6399                 ResultType.isInteger() && Val.getValueType().isInteger()) {
6400        // If a result value was tied to an input value, the computed result may
6401        // have a wider width than the expected result.  Extract the relevant
6402        // portion.
6403        Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
6404      }
6405
6406      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6407    }
6408
6409    setValue(CS.getInstruction(), Val);
6410    // Don't need to use this as a chain in this case.
6411    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6412      return;
6413  }
6414
6415  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6416
6417  // Process indirect outputs, first output all of the flagged copies out of
6418  // physregs.
6419  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6420    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6421    const Value *Ptr = IndirectStoresToEmit[i].second;
6422    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
6423                                             Chain, &Flag, IA);
6424    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6425  }
6426
6427  // Emit the non-flagged stores from the physregs.
6428  SmallVector<SDValue, 8> OutChains;
6429  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6430    SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
6431                               StoresToEmit[i].first,
6432                               getValue(StoresToEmit[i].second),
6433                               MachinePointerInfo(StoresToEmit[i].second),
6434                               false, false, 0);
6435    OutChains.push_back(Val);
6436  }
6437
6438  if (!OutChains.empty())
6439    Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
6440                        &OutChains[0], OutChains.size());
6441
6442  DAG.setRoot(Chain);
6443}
6444
6445void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6446  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
6447                          MVT::Other, getRoot(),
6448                          getValue(I.getArgOperand(0)),
6449                          DAG.getSrcValue(I.getArgOperand(0))));
6450}
6451
6452void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6453  const TargetData &TD = *TLI.getTargetData();
6454  SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
6455                           getRoot(), getValue(I.getOperand(0)),
6456                           DAG.getSrcValue(I.getOperand(0)),
6457                           TD.getABITypeAlignment(I.getType()));
6458  setValue(&I, V);
6459  DAG.setRoot(V.getValue(1));
6460}
6461
6462void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6463  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
6464                          MVT::Other, getRoot(),
6465                          getValue(I.getArgOperand(0)),
6466                          DAG.getSrcValue(I.getArgOperand(0))));
6467}
6468
6469void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6470  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
6471                          MVT::Other, getRoot(),
6472                          getValue(I.getArgOperand(0)),
6473                          getValue(I.getArgOperand(1)),
6474                          DAG.getSrcValue(I.getArgOperand(0)),
6475                          DAG.getSrcValue(I.getArgOperand(1))));
6476}
6477
6478/// TargetLowering::LowerCallTo - This is the default LowerCallTo
6479/// implementation, which just calls LowerCall.
6480/// FIXME: When all targets are
6481/// migrated to using LowerCall, this hook should be integrated into SDISel.
6482std::pair<SDValue, SDValue>
6483TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
6484  // Handle all of the outgoing arguments.
6485  CLI.Outs.clear();
6486  CLI.OutVals.clear();
6487  ArgListTy &Args = CLI.Args;
6488  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6489    SmallVector<EVT, 4> ValueVTs;
6490    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6491    for (unsigned Value = 0, NumValues = ValueVTs.size();
6492         Value != NumValues; ++Value) {
6493      EVT VT = ValueVTs[Value];
6494      Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
6495      SDValue Op = SDValue(Args[i].Node.getNode(),
6496                           Args[i].Node.getResNo() + Value);
6497      ISD::ArgFlagsTy Flags;
6498      unsigned OriginalAlignment =
6499        getTargetData()->getABITypeAlignment(ArgTy);
6500
6501      if (Args[i].isZExt)
6502        Flags.setZExt();
6503      if (Args[i].isSExt)
6504        Flags.setSExt();
6505      if (Args[i].isInReg)
6506        Flags.setInReg();
6507      if (Args[i].isSRet)
6508        Flags.setSRet();
6509      if (Args[i].isByVal) {
6510        Flags.setByVal();
6511        PointerType *Ty = cast<PointerType>(Args[i].Ty);
6512        Type *ElementTy = Ty->getElementType();
6513        Flags.setByValSize(getTargetData()->getTypeAllocSize(ElementTy));
6514        // For ByVal, alignment should come from FE.  BE will guess if this
6515        // info is not there but there are cases it cannot get right.
6516        unsigned FrameAlign;
6517        if (Args[i].Alignment)
6518          FrameAlign = Args[i].Alignment;
6519        else
6520          FrameAlign = getByValTypeAlignment(ElementTy);
6521        Flags.setByValAlign(FrameAlign);
6522      }
6523      if (Args[i].isNest)
6524        Flags.setNest();
6525      Flags.setOrigAlign(OriginalAlignment);
6526
6527      EVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
6528      unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
6529      SmallVector<SDValue, 4> Parts(NumParts);
6530      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6531
6532      if (Args[i].isSExt)
6533        ExtendKind = ISD::SIGN_EXTEND;
6534      else if (Args[i].isZExt)
6535        ExtendKind = ISD::ZERO_EXTEND;
6536
6537      getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts,
6538                     PartVT, CLI.CS ? CLI.CS->getInstruction() : 0, ExtendKind);
6539
6540      for (unsigned j = 0; j != NumParts; ++j) {
6541        // if it isn't first piece, alignment must be 1
6542        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6543                               i < CLI.NumFixedArgs);
6544        if (NumParts > 1 && j == 0)
6545          MyFlags.Flags.setSplit();
6546        else if (j != 0)
6547          MyFlags.Flags.setOrigAlign(1);
6548
6549        CLI.Outs.push_back(MyFlags);
6550        CLI.OutVals.push_back(Parts[j]);
6551      }
6552    }
6553  }
6554
6555  // Handle the incoming return values from the call.
6556  CLI.Ins.clear();
6557  SmallVector<EVT, 4> RetTys;
6558  ComputeValueVTs(*this, CLI.RetTy, RetTys);
6559  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6560    EVT VT = RetTys[I];
6561    EVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
6562    unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
6563    for (unsigned i = 0; i != NumRegs; ++i) {
6564      ISD::InputArg MyFlags;
6565      MyFlags.VT = RegisterVT.getSimpleVT();
6566      MyFlags.Used = CLI.IsReturnValueUsed;
6567      if (CLI.RetSExt)
6568        MyFlags.Flags.setSExt();
6569      if (CLI.RetZExt)
6570        MyFlags.Flags.setZExt();
6571      if (CLI.IsInReg)
6572        MyFlags.Flags.setInReg();
6573      CLI.Ins.push_back(MyFlags);
6574    }
6575  }
6576
6577  SmallVector<SDValue, 4> InVals;
6578  CLI.Chain = LowerCall(CLI, InVals);
6579
6580  // Verify that the target's LowerCall behaved as expected.
6581  assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
6582         "LowerCall didn't return a valid chain!");
6583  assert((!CLI.IsTailCall || InVals.empty()) &&
6584         "LowerCall emitted a return value for a tail call!");
6585  assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
6586         "LowerCall didn't emit the correct number of values!");
6587
6588  // For a tail call, the return value is merely live-out and there aren't
6589  // any nodes in the DAG representing it. Return a special value to
6590  // indicate that a tail call has been emitted and no more Instructions
6591  // should be processed in the current block.
6592  if (CLI.IsTailCall) {
6593    CLI.DAG.setRoot(CLI.Chain);
6594    return std::make_pair(SDValue(), SDValue());
6595  }
6596
6597  DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
6598          assert(InVals[i].getNode() &&
6599                 "LowerCall emitted a null value!");
6600          assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
6601                 "LowerCall emitted a value with the wrong type!");
6602        });
6603
6604  // Collect the legal value parts into potentially illegal values
6605  // that correspond to the original function's return values.
6606  ISD::NodeType AssertOp = ISD::DELETED_NODE;
6607  if (CLI.RetSExt)
6608    AssertOp = ISD::AssertSext;
6609  else if (CLI.RetZExt)
6610    AssertOp = ISD::AssertZext;
6611  SmallVector<SDValue, 4> ReturnValues;
6612  unsigned CurReg = 0;
6613  for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6614    EVT VT = RetTys[I];
6615    EVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
6616    unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
6617
6618    ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
6619                                            NumRegs, RegisterVT, VT, NULL,
6620                                            AssertOp));
6621    CurReg += NumRegs;
6622  }
6623
6624  // For a function returning void, there is no return value. We can't create
6625  // such a node, so we just return a null return value in that case. In
6626  // that case, nothing will actually look at the value.
6627  if (ReturnValues.empty())
6628    return std::make_pair(SDValue(), CLI.Chain);
6629
6630  SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
6631                                CLI.DAG.getVTList(&RetTys[0], RetTys.size()),
6632                            &ReturnValues[0], ReturnValues.size());
6633  return std::make_pair(Res, CLI.Chain);
6634}
6635
6636void TargetLowering::LowerOperationWrapper(SDNode *N,
6637                                           SmallVectorImpl<SDValue> &Results,
6638                                           SelectionDAG &DAG) const {
6639  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6640  if (Res.getNode())
6641    Results.push_back(Res);
6642}
6643
6644SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6645  llvm_unreachable("LowerOperation not implemented for this target!");
6646}
6647
6648void
6649SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6650  SDValue Op = getNonRegisterValue(V);
6651  assert((Op.getOpcode() != ISD::CopyFromReg ||
6652          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6653         "Copy from a reg to the same reg!");
6654  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6655
6656  RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
6657  SDValue Chain = DAG.getEntryNode();
6658  RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0, V);
6659  PendingExports.push_back(Chain);
6660}
6661
6662#include "llvm/CodeGen/SelectionDAGISel.h"
6663
6664/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
6665/// entry block, return true.  This includes arguments used by switches, since
6666/// the switch may expand into multiple basic blocks.
6667static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
6668  // With FastISel active, we may be splitting blocks, so force creation
6669  // of virtual registers for all non-dead arguments.
6670  if (FastISel)
6671    return A->use_empty();
6672
6673  const BasicBlock *Entry = A->getParent()->begin();
6674  for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
6675       UI != E; ++UI) {
6676    const User *U = *UI;
6677    if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
6678      return false;  // Use not in entry block.
6679  }
6680  return true;
6681}
6682
6683void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
6684  // If this is the entry block, emit arguments.
6685  const Function &F = *LLVMBB->getParent();
6686  SelectionDAG &DAG = SDB->DAG;
6687  DebugLoc dl = SDB->getCurDebugLoc();
6688  const TargetData *TD = TLI.getTargetData();
6689  SmallVector<ISD::InputArg, 16> Ins;
6690
6691  // Check whether the function can return without sret-demotion.
6692  SmallVector<ISD::OutputArg, 4> Outs;
6693  GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
6694                Outs, TLI);
6695
6696  if (!FuncInfo->CanLowerReturn) {
6697    // Put in an sret pointer parameter before all the other parameters.
6698    SmallVector<EVT, 1> ValueVTs;
6699    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6700
6701    // NOTE: Assuming that a pointer will never break down to more than one VT
6702    // or one register.
6703    ISD::ArgFlagsTy Flags;
6704    Flags.setSRet();
6705    EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
6706    ISD::InputArg RetArg(Flags, RegisterVT, true, 0, 0);
6707    Ins.push_back(RetArg);
6708  }
6709
6710  // Set up the incoming argument description vector.
6711  unsigned Idx = 1;
6712  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6713       I != E; ++I, ++Idx) {
6714    SmallVector<EVT, 4> ValueVTs;
6715    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6716    bool isArgValueUsed = !I->use_empty();
6717    for (unsigned Value = 0, NumValues = ValueVTs.size();
6718         Value != NumValues; ++Value) {
6719      EVT VT = ValueVTs[Value];
6720      Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6721      ISD::ArgFlagsTy Flags;
6722      unsigned OriginalAlignment =
6723        TD->getABITypeAlignment(ArgTy);
6724
6725      if (F.paramHasAttr(Idx, Attribute::ZExt))
6726        Flags.setZExt();
6727      if (F.paramHasAttr(Idx, Attribute::SExt))
6728        Flags.setSExt();
6729      if (F.paramHasAttr(Idx, Attribute::InReg))
6730        Flags.setInReg();
6731      if (F.paramHasAttr(Idx, Attribute::StructRet))
6732        Flags.setSRet();
6733      if (F.paramHasAttr(Idx, Attribute::ByVal)) {
6734        Flags.setByVal();
6735        PointerType *Ty = cast<PointerType>(I->getType());
6736        Type *ElementTy = Ty->getElementType();
6737        Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
6738        // For ByVal, alignment should be passed from FE.  BE will guess if
6739        // this info is not there but there are cases it cannot get right.
6740        unsigned FrameAlign;
6741        if (F.getParamAlignment(Idx))
6742          FrameAlign = F.getParamAlignment(Idx);
6743        else
6744          FrameAlign = TLI.getByValTypeAlignment(ElementTy);
6745        Flags.setByValAlign(FrameAlign);
6746      }
6747      if (F.paramHasAttr(Idx, Attribute::Nest))
6748        Flags.setNest();
6749      Flags.setOrigAlign(OriginalAlignment);
6750
6751      EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6752      unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6753      for (unsigned i = 0; i != NumRegs; ++i) {
6754        ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed,
6755                              Idx-1, i*RegisterVT.getStoreSize());
6756        if (NumRegs > 1 && i == 0)
6757          MyFlags.Flags.setSplit();
6758        // if it isn't first piece, alignment must be 1
6759        else if (i > 0)
6760          MyFlags.Flags.setOrigAlign(1);
6761        Ins.push_back(MyFlags);
6762      }
6763    }
6764  }
6765
6766  // Call the target to set up the argument values.
6767  SmallVector<SDValue, 8> InVals;
6768  SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
6769                                             F.isVarArg(), Ins,
6770                                             dl, DAG, InVals);
6771
6772  // Verify that the target's LowerFormalArguments behaved as expected.
6773  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
6774         "LowerFormalArguments didn't return a valid chain!");
6775  assert(InVals.size() == Ins.size() &&
6776         "LowerFormalArguments didn't emit the correct number of values!");
6777  DEBUG({
6778      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
6779        assert(InVals[i].getNode() &&
6780               "LowerFormalArguments emitted a null value!");
6781        assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
6782               "LowerFormalArguments emitted a value with the wrong type!");
6783      }
6784    });
6785
6786  // Update the DAG with the new chain value resulting from argument lowering.
6787  DAG.setRoot(NewRoot);
6788
6789  // Set up the argument values.
6790  unsigned i = 0;
6791  Idx = 1;
6792  if (!FuncInfo->CanLowerReturn) {
6793    // Create a virtual register for the sret pointer, and put in a copy
6794    // from the sret argument into it.
6795    SmallVector<EVT, 1> ValueVTs;
6796    ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
6797    EVT VT = ValueVTs[0];
6798    EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6799    ISD::NodeType AssertOp = ISD::DELETED_NODE;
6800    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
6801                                        RegVT, VT, NULL, AssertOp);
6802
6803    MachineFunction& MF = SDB->DAG.getMachineFunction();
6804    MachineRegisterInfo& RegInfo = MF.getRegInfo();
6805    unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
6806    FuncInfo->DemoteRegister = SRetReg;
6807    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
6808                                    SRetReg, ArgValue);
6809    DAG.setRoot(NewRoot);
6810
6811    // i indexes lowered arguments.  Bump it past the hidden sret argument.
6812    // Idx indexes LLVM arguments.  Don't touch it.
6813    ++i;
6814  }
6815
6816  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
6817      ++I, ++Idx) {
6818    SmallVector<SDValue, 4> ArgValues;
6819    SmallVector<EVT, 4> ValueVTs;
6820    ComputeValueVTs(TLI, I->getType(), ValueVTs);
6821    unsigned NumValues = ValueVTs.size();
6822
6823    // If this argument is unused then remember its value. It is used to generate
6824    // debugging information.
6825    if (I->use_empty() && NumValues)
6826      SDB->setUnusedArgValue(I, InVals[i]);
6827
6828    for (unsigned Val = 0; Val != NumValues; ++Val) {
6829      EVT VT = ValueVTs[Val];
6830      EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
6831      unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
6832
6833      if (!I->use_empty()) {
6834        ISD::NodeType AssertOp = ISD::DELETED_NODE;
6835        if (F.paramHasAttr(Idx, Attribute::SExt))
6836          AssertOp = ISD::AssertSext;
6837        else if (F.paramHasAttr(Idx, Attribute::ZExt))
6838          AssertOp = ISD::AssertZext;
6839
6840        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
6841                                             NumParts, PartVT, VT,
6842                                             NULL, AssertOp));
6843      }
6844
6845      i += NumParts;
6846    }
6847
6848    // We don't need to do anything else for unused arguments.
6849    if (ArgValues.empty())
6850      continue;
6851
6852    // Note down frame index.
6853    if (FrameIndexSDNode *FI =
6854        dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
6855      FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6856
6857    SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
6858                                     SDB->getCurDebugLoc());
6859
6860    SDB->setValue(I, Res);
6861    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
6862      if (LoadSDNode *LNode =
6863          dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
6864        if (FrameIndexSDNode *FI =
6865            dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
6866        FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
6867    }
6868
6869    // If this argument is live outside of the entry block, insert a copy from
6870    // wherever we got it to the vreg that other BB's will reference it as.
6871    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
6872      // If we can, though, try to skip creating an unnecessary vreg.
6873      // FIXME: This isn't very clean... it would be nice to make this more
6874      // general.  It's also subtly incompatible with the hacks FastISel
6875      // uses with vregs.
6876      unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
6877      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
6878        FuncInfo->ValueMap[I] = Reg;
6879        continue;
6880      }
6881    }
6882    if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) {
6883      FuncInfo->InitializeRegForValue(I);
6884      SDB->CopyToExportRegsIfNeeded(I);
6885    }
6886  }
6887
6888  assert(i == InVals.size() && "Argument register count mismatch!");
6889
6890  // Finally, if the target has anything special to do, allow it to do so.
6891  // FIXME: this should insert code into the DAG!
6892  EmitFunctionEntryCode();
6893}
6894
6895/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
6896/// ensure constants are generated when needed.  Remember the virtual registers
6897/// that need to be added to the Machine PHI nodes as input.  We cannot just
6898/// directly add them, because expansion might result in multiple MBB's for one
6899/// BB.  As such, the start of the BB might correspond to a different MBB than
6900/// the end.
6901///
6902void
6903SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
6904  const TerminatorInst *TI = LLVMBB->getTerminator();
6905
6906  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
6907
6908  // Check successor nodes' PHI nodes that expect a constant to be available
6909  // from this block.
6910  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
6911    const BasicBlock *SuccBB = TI->getSuccessor(succ);
6912    if (!isa<PHINode>(SuccBB->begin())) continue;
6913    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
6914
6915    // If this terminator has multiple identical successors (common for
6916    // switches), only handle each succ once.
6917    if (!SuccsHandled.insert(SuccMBB)) continue;
6918
6919    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
6920
6921    // At this point we know that there is a 1-1 correspondence between LLVM PHI
6922    // nodes and Machine PHI nodes, but the incoming operands have not been
6923    // emitted yet.
6924    for (BasicBlock::const_iterator I = SuccBB->begin();
6925         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
6926      // Ignore dead phi's.
6927      if (PN->use_empty()) continue;
6928
6929      // Skip empty types
6930      if (PN->getType()->isEmptyTy())
6931        continue;
6932
6933      unsigned Reg;
6934      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
6935
6936      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
6937        unsigned &RegOut = ConstantsOut[C];
6938        if (RegOut == 0) {
6939          RegOut = FuncInfo.CreateRegs(C->getType());
6940          CopyValueToVirtualRegister(C, RegOut);
6941        }
6942        Reg = RegOut;
6943      } else {
6944        DenseMap<const Value *, unsigned>::iterator I =
6945          FuncInfo.ValueMap.find(PHIOp);
6946        if (I != FuncInfo.ValueMap.end())
6947          Reg = I->second;
6948        else {
6949          assert(isa<AllocaInst>(PHIOp) &&
6950                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
6951                 "Didn't codegen value into a register!??");
6952          Reg = FuncInfo.CreateRegs(PHIOp->getType());
6953          CopyValueToVirtualRegister(PHIOp, Reg);
6954        }
6955      }
6956
6957      // Remember that this register needs to added to the machine PHI node as
6958      // the input for this MBB.
6959      SmallVector<EVT, 4> ValueVTs;
6960      ComputeValueVTs(TLI, PN->getType(), ValueVTs);
6961      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
6962        EVT VT = ValueVTs[vti];
6963        unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
6964        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
6965          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
6966        Reg += NumRegisters;
6967      }
6968    }
6969  }
6970  ConstantsOut.clear();
6971}
6972