1//===----- LegalizeIntegerTypes.cpp - Legalization of integer types -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements integer type expansion and promotion for LegalizeTypes.
11// Promotion is the act of changing a computation in an illegal type into a
12// computation in a larger type.  For example, implementing i8 arithmetic in an
13// i32 register (often needed on powerpc).
14// Expansion is the act of changing a computation in an illegal type into a
15// computation in two identical registers of a smaller type.  For example,
16// implementing i64 arithmetic in two i32 registers (often needed on 32-bit
17// targets).
18//
19//===----------------------------------------------------------------------===//
20
21#include "LegalizeTypes.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/Support/ErrorHandling.h"
24#include "llvm/Support/raw_ostream.h"
25using namespace llvm;
26
27//===----------------------------------------------------------------------===//
28//  Integer Result Promotion
29//===----------------------------------------------------------------------===//
30
31/// PromoteIntegerResult - This method is called when a result of a node is
32/// found to be in need of promotion to a larger type.  At this point, the node
33/// may also have invalid operands or may have other results that need
34/// expansion, we just know that (at least) one result needs promotion.
35void DAGTypeLegalizer::PromoteIntegerResult(SDNode *N, unsigned ResNo) {
36  DEBUG(dbgs() << "Promote integer result: "; N->dump(&DAG); dbgs() << "\n");
37  SDValue Res = SDValue();
38
39  // See if the target wants to custom expand this node.
40  if (CustomLowerNode(N, N->getValueType(ResNo), true))
41    return;
42
43  switch (N->getOpcode()) {
44  default:
45#ifndef NDEBUG
46    dbgs() << "PromoteIntegerResult #" << ResNo << ": ";
47    N->dump(&DAG); dbgs() << "\n";
48#endif
49    llvm_unreachable("Do not know how to promote this operator!");
50  case ISD::MERGE_VALUES:Res = PromoteIntRes_MERGE_VALUES(N, ResNo); break;
51  case ISD::AssertSext:  Res = PromoteIntRes_AssertSext(N); break;
52  case ISD::AssertZext:  Res = PromoteIntRes_AssertZext(N); break;
53  case ISD::BITCAST:     Res = PromoteIntRes_BITCAST(N); break;
54  case ISD::BSWAP:       Res = PromoteIntRes_BSWAP(N); break;
55  case ISD::BUILD_PAIR:  Res = PromoteIntRes_BUILD_PAIR(N); break;
56  case ISD::Constant:    Res = PromoteIntRes_Constant(N); break;
57  case ISD::CONVERT_RNDSAT:
58                         Res = PromoteIntRes_CONVERT_RNDSAT(N); break;
59  case ISD::CTLZ_ZERO_UNDEF:
60  case ISD::CTLZ:        Res = PromoteIntRes_CTLZ(N); break;
61  case ISD::CTPOP:       Res = PromoteIntRes_CTPOP(N); break;
62  case ISD::CTTZ_ZERO_UNDEF:
63  case ISD::CTTZ:        Res = PromoteIntRes_CTTZ(N); break;
64  case ISD::EXTRACT_VECTOR_ELT:
65                         Res = PromoteIntRes_EXTRACT_VECTOR_ELT(N); break;
66  case ISD::LOAD:        Res = PromoteIntRes_LOAD(cast<LoadSDNode>(N));break;
67  case ISD::SELECT:      Res = PromoteIntRes_SELECT(N); break;
68  case ISD::VSELECT:     Res = PromoteIntRes_VSELECT(N); break;
69  case ISD::SELECT_CC:   Res = PromoteIntRes_SELECT_CC(N); break;
70  case ISD::SETCC:       Res = PromoteIntRes_SETCC(N); break;
71  case ISD::SHL:         Res = PromoteIntRes_SHL(N); break;
72  case ISD::SIGN_EXTEND_INREG:
73                         Res = PromoteIntRes_SIGN_EXTEND_INREG(N); break;
74  case ISD::SRA:         Res = PromoteIntRes_SRA(N); break;
75  case ISD::SRL:         Res = PromoteIntRes_SRL(N); break;
76  case ISD::TRUNCATE:    Res = PromoteIntRes_TRUNCATE(N); break;
77  case ISD::UNDEF:       Res = PromoteIntRes_UNDEF(N); break;
78  case ISD::VAARG:       Res = PromoteIntRes_VAARG(N); break;
79
80  case ISD::EXTRACT_SUBVECTOR:
81                         Res = PromoteIntRes_EXTRACT_SUBVECTOR(N); break;
82  case ISD::VECTOR_SHUFFLE:
83                         Res = PromoteIntRes_VECTOR_SHUFFLE(N); break;
84  case ISD::INSERT_VECTOR_ELT:
85                         Res = PromoteIntRes_INSERT_VECTOR_ELT(N); break;
86  case ISD::BUILD_VECTOR:
87                         Res = PromoteIntRes_BUILD_VECTOR(N); break;
88  case ISD::SCALAR_TO_VECTOR:
89                         Res = PromoteIntRes_SCALAR_TO_VECTOR(N); break;
90  case ISD::CONCAT_VECTORS:
91                         Res = PromoteIntRes_CONCAT_VECTORS(N); break;
92
93  case ISD::SIGN_EXTEND:
94  case ISD::ZERO_EXTEND:
95  case ISD::ANY_EXTEND:  Res = PromoteIntRes_INT_EXTEND(N); break;
96
97  case ISD::FP_TO_SINT:
98  case ISD::FP_TO_UINT:  Res = PromoteIntRes_FP_TO_XINT(N); break;
99
100  case ISD::FP32_TO_FP16:Res = PromoteIntRes_FP32_TO_FP16(N); break;
101
102  case ISD::AND:
103  case ISD::OR:
104  case ISD::XOR:
105  case ISD::ADD:
106  case ISD::SUB:
107  case ISD::MUL:         Res = PromoteIntRes_SimpleIntBinOp(N); break;
108
109  case ISD::SDIV:
110  case ISD::SREM:        Res = PromoteIntRes_SDIV(N); break;
111
112  case ISD::UDIV:
113  case ISD::UREM:        Res = PromoteIntRes_UDIV(N); break;
114
115  case ISD::SADDO:
116  case ISD::SSUBO:       Res = PromoteIntRes_SADDSUBO(N, ResNo); break;
117  case ISD::UADDO:
118  case ISD::USUBO:       Res = PromoteIntRes_UADDSUBO(N, ResNo); break;
119  case ISD::SMULO:
120  case ISD::UMULO:       Res = PromoteIntRes_XMULO(N, ResNo); break;
121
122  case ISD::ATOMIC_LOAD:
123    Res = PromoteIntRes_Atomic0(cast<AtomicSDNode>(N)); break;
124
125  case ISD::ATOMIC_LOAD_ADD:
126  case ISD::ATOMIC_LOAD_SUB:
127  case ISD::ATOMIC_LOAD_AND:
128  case ISD::ATOMIC_LOAD_OR:
129  case ISD::ATOMIC_LOAD_XOR:
130  case ISD::ATOMIC_LOAD_NAND:
131  case ISD::ATOMIC_LOAD_MIN:
132  case ISD::ATOMIC_LOAD_MAX:
133  case ISD::ATOMIC_LOAD_UMIN:
134  case ISD::ATOMIC_LOAD_UMAX:
135  case ISD::ATOMIC_SWAP:
136    Res = PromoteIntRes_Atomic1(cast<AtomicSDNode>(N)); break;
137
138  case ISD::ATOMIC_CMP_SWAP:
139    Res = PromoteIntRes_Atomic2(cast<AtomicSDNode>(N)); break;
140  }
141
142  // If the result is null then the sub-method took care of registering it.
143  if (Res.getNode())
144    SetPromotedInteger(SDValue(N, ResNo), Res);
145}
146
147SDValue DAGTypeLegalizer::PromoteIntRes_MERGE_VALUES(SDNode *N,
148                                                     unsigned ResNo) {
149  SDValue Op = DisintegrateMERGE_VALUES(N, ResNo);
150  return GetPromotedInteger(Op);
151}
152
153SDValue DAGTypeLegalizer::PromoteIntRes_AssertSext(SDNode *N) {
154  // Sign-extend the new bits, and continue the assertion.
155  SDValue Op = SExtPromotedInteger(N->getOperand(0));
156  return DAG.getNode(ISD::AssertSext, N->getDebugLoc(),
157                     Op.getValueType(), Op, N->getOperand(1));
158}
159
160SDValue DAGTypeLegalizer::PromoteIntRes_AssertZext(SDNode *N) {
161  // Zero the new bits, and continue the assertion.
162  SDValue Op = ZExtPromotedInteger(N->getOperand(0));
163  return DAG.getNode(ISD::AssertZext, N->getDebugLoc(),
164                     Op.getValueType(), Op, N->getOperand(1));
165}
166
167SDValue DAGTypeLegalizer::PromoteIntRes_Atomic0(AtomicSDNode *N) {
168  EVT ResVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
169  SDValue Res = DAG.getAtomic(N->getOpcode(), N->getDebugLoc(),
170                              N->getMemoryVT(), ResVT,
171                              N->getChain(), N->getBasePtr(),
172                              N->getMemOperand(), N->getOrdering(),
173                              N->getSynchScope());
174  // Legalized the chain result - switch anything that used the old chain to
175  // use the new one.
176  ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
177  return Res;
178}
179
180SDValue DAGTypeLegalizer::PromoteIntRes_Atomic1(AtomicSDNode *N) {
181  SDValue Op2 = GetPromotedInteger(N->getOperand(2));
182  SDValue Res = DAG.getAtomic(N->getOpcode(), N->getDebugLoc(),
183                              N->getMemoryVT(),
184                              N->getChain(), N->getBasePtr(),
185                              Op2, N->getMemOperand(), N->getOrdering(),
186                              N->getSynchScope());
187  // Legalized the chain result - switch anything that used the old chain to
188  // use the new one.
189  ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
190  return Res;
191}
192
193SDValue DAGTypeLegalizer::PromoteIntRes_Atomic2(AtomicSDNode *N) {
194  SDValue Op2 = GetPromotedInteger(N->getOperand(2));
195  SDValue Op3 = GetPromotedInteger(N->getOperand(3));
196  SDValue Res = DAG.getAtomic(N->getOpcode(), N->getDebugLoc(),
197                              N->getMemoryVT(), N->getChain(), N->getBasePtr(),
198                              Op2, Op3, N->getMemOperand(), N->getOrdering(),
199                              N->getSynchScope());
200  // Legalized the chain result - switch anything that used the old chain to
201  // use the new one.
202  ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
203  return Res;
204}
205
206SDValue DAGTypeLegalizer::PromoteIntRes_BITCAST(SDNode *N) {
207  SDValue InOp = N->getOperand(0);
208  EVT InVT = InOp.getValueType();
209  EVT NInVT = TLI.getTypeToTransformTo(*DAG.getContext(), InVT);
210  EVT OutVT = N->getValueType(0);
211  EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
212  DebugLoc dl = N->getDebugLoc();
213
214  switch (getTypeAction(InVT)) {
215  case TargetLowering::TypeLegal:
216    break;
217  case TargetLowering::TypePromoteInteger:
218    if (NOutVT.bitsEq(NInVT) && !NOutVT.isVector() && !NInVT.isVector())
219      // The input promotes to the same size.  Convert the promoted value.
220      return DAG.getNode(ISD::BITCAST, dl, NOutVT, GetPromotedInteger(InOp));
221    break;
222  case TargetLowering::TypeSoftenFloat:
223    // Promote the integer operand by hand.
224    return DAG.getNode(ISD::ANY_EXTEND, dl, NOutVT, GetSoftenedFloat(InOp));
225  case TargetLowering::TypeExpandInteger:
226  case TargetLowering::TypeExpandFloat:
227    break;
228  case TargetLowering::TypeScalarizeVector:
229    // Convert the element to an integer and promote it by hand.
230    if (!NOutVT.isVector())
231      return DAG.getNode(ISD::ANY_EXTEND, dl, NOutVT,
232                         BitConvertToInteger(GetScalarizedVector(InOp)));
233    break;
234  case TargetLowering::TypeSplitVector: {
235    // For example, i32 = BITCAST v2i16 on alpha.  Convert the split
236    // pieces of the input into integers and reassemble in the final type.
237    SDValue Lo, Hi;
238    GetSplitVector(N->getOperand(0), Lo, Hi);
239    Lo = BitConvertToInteger(Lo);
240    Hi = BitConvertToInteger(Hi);
241
242    if (TLI.isBigEndian())
243      std::swap(Lo, Hi);
244
245    InOp = DAG.getNode(ISD::ANY_EXTEND, dl,
246                       EVT::getIntegerVT(*DAG.getContext(),
247                                         NOutVT.getSizeInBits()),
248                       JoinIntegers(Lo, Hi));
249    return DAG.getNode(ISD::BITCAST, dl, NOutVT, InOp);
250  }
251  case TargetLowering::TypeWidenVector:
252    // The input is widened to the same size. Convert to the widened value.
253    // Make sure that the outgoing value is not a vector, because this would
254    // make us bitcast between two vectors which are legalized in different ways.
255    if (NOutVT.bitsEq(NInVT) && !NOutVT.isVector())
256      return DAG.getNode(ISD::BITCAST, dl, NOutVT, GetWidenedVector(InOp));
257  }
258
259  return DAG.getNode(ISD::ANY_EXTEND, dl, NOutVT,
260                     CreateStackStoreLoad(InOp, OutVT));
261}
262
263SDValue DAGTypeLegalizer::PromoteIntRes_BSWAP(SDNode *N) {
264  SDValue Op = GetPromotedInteger(N->getOperand(0));
265  EVT OVT = N->getValueType(0);
266  EVT NVT = Op.getValueType();
267  DebugLoc dl = N->getDebugLoc();
268
269  unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
270  return DAG.getNode(ISD::SRL, dl, NVT, DAG.getNode(ISD::BSWAP, dl, NVT, Op),
271                     DAG.getConstant(DiffBits, TLI.getPointerTy()));
272}
273
274SDValue DAGTypeLegalizer::PromoteIntRes_BUILD_PAIR(SDNode *N) {
275  // The pair element type may be legal, or may not promote to the same type as
276  // the result, for example i14 = BUILD_PAIR (i7, i7).  Handle all cases.
277  return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(),
278                     TLI.getTypeToTransformTo(*DAG.getContext(),
279                     N->getValueType(0)), JoinIntegers(N->getOperand(0),
280                     N->getOperand(1)));
281}
282
283SDValue DAGTypeLegalizer::PromoteIntRes_Constant(SDNode *N) {
284  EVT VT = N->getValueType(0);
285  // FIXME there is no actual debug info here
286  DebugLoc dl = N->getDebugLoc();
287  // Zero extend things like i1, sign extend everything else.  It shouldn't
288  // matter in theory which one we pick, but this tends to give better code?
289  unsigned Opc = VT.isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
290  SDValue Result = DAG.getNode(Opc, dl,
291                               TLI.getTypeToTransformTo(*DAG.getContext(), VT),
292                               SDValue(N, 0));
293  assert(isa<ConstantSDNode>(Result) && "Didn't constant fold ext?");
294  return Result;
295}
296
297SDValue DAGTypeLegalizer::PromoteIntRes_CONVERT_RNDSAT(SDNode *N) {
298  ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(N)->getCvtCode();
299  assert ((CvtCode == ISD::CVT_SS || CvtCode == ISD::CVT_SU ||
300           CvtCode == ISD::CVT_US || CvtCode == ISD::CVT_UU ||
301           CvtCode == ISD::CVT_SF || CvtCode == ISD::CVT_UF) &&
302          "can only promote integers");
303  EVT OutVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
304  return DAG.getConvertRndSat(OutVT, N->getDebugLoc(), N->getOperand(0),
305                              N->getOperand(1), N->getOperand(2),
306                              N->getOperand(3), N->getOperand(4), CvtCode);
307}
308
309SDValue DAGTypeLegalizer::PromoteIntRes_CTLZ(SDNode *N) {
310  // Zero extend to the promoted type and do the count there.
311  SDValue Op = ZExtPromotedInteger(N->getOperand(0));
312  DebugLoc dl = N->getDebugLoc();
313  EVT OVT = N->getValueType(0);
314  EVT NVT = Op.getValueType();
315  Op = DAG.getNode(N->getOpcode(), dl, NVT, Op);
316  // Subtract off the extra leading bits in the bigger type.
317  return DAG.getNode(ISD::SUB, dl, NVT, Op,
318                     DAG.getConstant(NVT.getSizeInBits() -
319                                     OVT.getSizeInBits(), NVT));
320}
321
322SDValue DAGTypeLegalizer::PromoteIntRes_CTPOP(SDNode *N) {
323  // Zero extend to the promoted type and do the count there.
324  SDValue Op = ZExtPromotedInteger(N->getOperand(0));
325  return DAG.getNode(ISD::CTPOP, N->getDebugLoc(), Op.getValueType(), Op);
326}
327
328SDValue DAGTypeLegalizer::PromoteIntRes_CTTZ(SDNode *N) {
329  SDValue Op = GetPromotedInteger(N->getOperand(0));
330  EVT OVT = N->getValueType(0);
331  EVT NVT = Op.getValueType();
332  DebugLoc dl = N->getDebugLoc();
333  if (N->getOpcode() == ISD::CTTZ) {
334    // The count is the same in the promoted type except if the original
335    // value was zero.  This can be handled by setting the bit just off
336    // the top of the original type.
337    APInt TopBit(NVT.getSizeInBits(), 0);
338    TopBit.setBit(OVT.getSizeInBits());
339    Op = DAG.getNode(ISD::OR, dl, NVT, Op, DAG.getConstant(TopBit, NVT));
340  }
341  return DAG.getNode(N->getOpcode(), dl, NVT, Op);
342}
343
344SDValue DAGTypeLegalizer::PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N) {
345  DebugLoc dl = N->getDebugLoc();
346  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
347  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NVT, N->getOperand(0),
348                     N->getOperand(1));
349}
350
351SDValue DAGTypeLegalizer::PromoteIntRes_FP_TO_XINT(SDNode *N) {
352  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
353  unsigned NewOpc = N->getOpcode();
354  DebugLoc dl = N->getDebugLoc();
355
356  // If we're promoting a UINT to a larger size and the larger FP_TO_UINT is
357  // not Legal, check to see if we can use FP_TO_SINT instead.  (If both UINT
358  // and SINT conversions are Custom, there is no way to tell which is
359  // preferable. We choose SINT because that's the right thing on PPC.)
360  if (N->getOpcode() == ISD::FP_TO_UINT &&
361      !TLI.isOperationLegal(ISD::FP_TO_UINT, NVT) &&
362      TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT))
363    NewOpc = ISD::FP_TO_SINT;
364
365  SDValue Res = DAG.getNode(NewOpc, dl, NVT, N->getOperand(0));
366
367  // Assert that the converted value fits in the original type.  If it doesn't
368  // (eg: because the value being converted is too big), then the result of the
369  // original operation was undefined anyway, so the assert is still correct.
370  return DAG.getNode(N->getOpcode() == ISD::FP_TO_UINT ?
371                     ISD::AssertZext : ISD::AssertSext, dl, NVT, Res,
372                     DAG.getValueType(N->getValueType(0).getScalarType()));
373}
374
375SDValue DAGTypeLegalizer::PromoteIntRes_FP32_TO_FP16(SDNode *N) {
376  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
377  DebugLoc dl = N->getDebugLoc();
378
379  SDValue Res = DAG.getNode(N->getOpcode(), dl, NVT, N->getOperand(0));
380
381  return DAG.getNode(ISD::AssertZext, dl,
382                     NVT, Res, DAG.getValueType(N->getValueType(0)));
383}
384
385SDValue DAGTypeLegalizer::PromoteIntRes_INT_EXTEND(SDNode *N) {
386  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
387  DebugLoc dl = N->getDebugLoc();
388
389  if (getTypeAction(N->getOperand(0).getValueType())
390      == TargetLowering::TypePromoteInteger) {
391    SDValue Res = GetPromotedInteger(N->getOperand(0));
392    assert(Res.getValueType().bitsLE(NVT) && "Extension doesn't make sense!");
393
394    // If the result and operand types are the same after promotion, simplify
395    // to an in-register extension.
396    if (NVT == Res.getValueType()) {
397      // The high bits are not guaranteed to be anything.  Insert an extend.
398      if (N->getOpcode() == ISD::SIGN_EXTEND)
399        return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Res,
400                           DAG.getValueType(N->getOperand(0).getValueType()));
401      if (N->getOpcode() == ISD::ZERO_EXTEND)
402        return DAG.getZeroExtendInReg(Res, dl,
403                      N->getOperand(0).getValueType().getScalarType());
404      assert(N->getOpcode() == ISD::ANY_EXTEND && "Unknown integer extension!");
405      return Res;
406    }
407  }
408
409  // Otherwise, just extend the original operand all the way to the larger type.
410  return DAG.getNode(N->getOpcode(), dl, NVT, N->getOperand(0));
411}
412
413SDValue DAGTypeLegalizer::PromoteIntRes_LOAD(LoadSDNode *N) {
414  assert(ISD::isUNINDEXEDLoad(N) && "Indexed load during type legalization!");
415  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
416  ISD::LoadExtType ExtType =
417    ISD::isNON_EXTLoad(N) ? ISD::EXTLOAD : N->getExtensionType();
418  DebugLoc dl = N->getDebugLoc();
419  SDValue Res = DAG.getExtLoad(ExtType, dl, NVT, N->getChain(), N->getBasePtr(),
420                               N->getPointerInfo(),
421                               N->getMemoryVT(), N->isVolatile(),
422                               N->isNonTemporal(), N->getAlignment());
423
424  // Legalized the chain result - switch anything that used the old chain to
425  // use the new one.
426  ReplaceValueWith(SDValue(N, 1), Res.getValue(1));
427  return Res;
428}
429
430/// Promote the overflow flag of an overflowing arithmetic node.
431SDValue DAGTypeLegalizer::PromoteIntRes_Overflow(SDNode *N) {
432  // Simply change the return type of the boolean result.
433  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(1));
434  EVT ValueVTs[] = { N->getValueType(0), NVT };
435  SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
436  SDValue Res = DAG.getNode(N->getOpcode(), N->getDebugLoc(),
437                            DAG.getVTList(ValueVTs, 2), Ops, 2);
438
439  // Modified the sum result - switch anything that used the old sum to use
440  // the new one.
441  ReplaceValueWith(SDValue(N, 0), Res);
442
443  return SDValue(Res.getNode(), 1);
444}
445
446SDValue DAGTypeLegalizer::PromoteIntRes_SADDSUBO(SDNode *N, unsigned ResNo) {
447  if (ResNo == 1)
448    return PromoteIntRes_Overflow(N);
449
450  // The operation overflowed iff the result in the larger type is not the
451  // sign extension of its truncation to the original type.
452  SDValue LHS = SExtPromotedInteger(N->getOperand(0));
453  SDValue RHS = SExtPromotedInteger(N->getOperand(1));
454  EVT OVT = N->getOperand(0).getValueType();
455  EVT NVT = LHS.getValueType();
456  DebugLoc dl = N->getDebugLoc();
457
458  // Do the arithmetic in the larger type.
459  unsigned Opcode = N->getOpcode() == ISD::SADDO ? ISD::ADD : ISD::SUB;
460  SDValue Res = DAG.getNode(Opcode, dl, NVT, LHS, RHS);
461
462  // Calculate the overflow flag: sign extend the arithmetic result from
463  // the original type.
464  SDValue Ofl = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NVT, Res,
465                            DAG.getValueType(OVT));
466  // Overflowed if and only if this is not equal to Res.
467  Ofl = DAG.getSetCC(dl, N->getValueType(1), Ofl, Res, ISD::SETNE);
468
469  // Use the calculated overflow everywhere.
470  ReplaceValueWith(SDValue(N, 1), Ofl);
471
472  return Res;
473}
474
475SDValue DAGTypeLegalizer::PromoteIntRes_SDIV(SDNode *N) {
476  // Sign extend the input.
477  SDValue LHS = SExtPromotedInteger(N->getOperand(0));
478  SDValue RHS = SExtPromotedInteger(N->getOperand(1));
479  return DAG.getNode(N->getOpcode(), N->getDebugLoc(),
480                     LHS.getValueType(), LHS, RHS);
481}
482
483SDValue DAGTypeLegalizer::PromoteIntRes_SELECT(SDNode *N) {
484  SDValue LHS = GetPromotedInteger(N->getOperand(1));
485  SDValue RHS = GetPromotedInteger(N->getOperand(2));
486  return DAG.getNode(ISD::SELECT, N->getDebugLoc(),
487                     LHS.getValueType(), N->getOperand(0),LHS,RHS);
488}
489
490SDValue DAGTypeLegalizer::PromoteIntRes_VSELECT(SDNode *N) {
491  SDValue Mask = N->getOperand(0);
492  EVT OpTy = N->getOperand(1).getValueType();
493
494  // Promote all the way up to the canonical SetCC type.
495  Mask = PromoteTargetBoolean(Mask, TLI.getSetCCResultType(OpTy));
496  SDValue LHS = GetPromotedInteger(N->getOperand(1));
497  SDValue RHS = GetPromotedInteger(N->getOperand(2));
498  return DAG.getNode(ISD::VSELECT, N->getDebugLoc(),
499                     LHS.getValueType(), Mask, LHS, RHS);
500}
501
502SDValue DAGTypeLegalizer::PromoteIntRes_SELECT_CC(SDNode *N) {
503  SDValue LHS = GetPromotedInteger(N->getOperand(2));
504  SDValue RHS = GetPromotedInteger(N->getOperand(3));
505  return DAG.getNode(ISD::SELECT_CC, N->getDebugLoc(),
506                     LHS.getValueType(), N->getOperand(0),
507                     N->getOperand(1), LHS, RHS, N->getOperand(4));
508}
509
510SDValue DAGTypeLegalizer::PromoteIntRes_SETCC(SDNode *N) {
511  EVT SVT = TLI.getSetCCResultType(N->getOperand(0).getValueType());
512
513  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
514
515  // Only use the result of getSetCCResultType if it is legal,
516  // otherwise just use the promoted result type (NVT).
517  if (!TLI.isTypeLegal(SVT))
518      SVT = NVT;
519
520  DebugLoc dl = N->getDebugLoc();
521  assert(SVT.isVector() == N->getOperand(0).getValueType().isVector() &&
522         "Vector compare must return a vector result!");
523
524  // Get the SETCC result using the canonical SETCC type.
525  SDValue SetCC = DAG.getNode(N->getOpcode(), dl, SVT, N->getOperand(0),
526                              N->getOperand(1), N->getOperand(2));
527
528  assert(NVT.bitsLE(SVT) && "Integer type overpromoted?");
529  // Convert to the expected type.
530  return DAG.getNode(ISD::TRUNCATE, dl, NVT, SetCC);
531}
532
533SDValue DAGTypeLegalizer::PromoteIntRes_SHL(SDNode *N) {
534  return DAG.getNode(ISD::SHL, N->getDebugLoc(),
535                TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0)),
536                     GetPromotedInteger(N->getOperand(0)), N->getOperand(1));
537}
538
539SDValue DAGTypeLegalizer::PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N) {
540  SDValue Op = GetPromotedInteger(N->getOperand(0));
541  return DAG.getNode(ISD::SIGN_EXTEND_INREG, N->getDebugLoc(),
542                     Op.getValueType(), Op, N->getOperand(1));
543}
544
545SDValue DAGTypeLegalizer::PromoteIntRes_SimpleIntBinOp(SDNode *N) {
546  // The input may have strange things in the top bits of the registers, but
547  // these operations don't care.  They may have weird bits going out, but
548  // that too is okay if they are integer operations.
549  SDValue LHS = GetPromotedInteger(N->getOperand(0));
550  SDValue RHS = GetPromotedInteger(N->getOperand(1));
551  return DAG.getNode(N->getOpcode(), N->getDebugLoc(),
552                    LHS.getValueType(), LHS, RHS);
553}
554
555SDValue DAGTypeLegalizer::PromoteIntRes_SRA(SDNode *N) {
556  // The input value must be properly sign extended.
557  SDValue Res = SExtPromotedInteger(N->getOperand(0));
558  return DAG.getNode(ISD::SRA, N->getDebugLoc(),
559                     Res.getValueType(), Res, N->getOperand(1));
560}
561
562SDValue DAGTypeLegalizer::PromoteIntRes_SRL(SDNode *N) {
563  // The input value must be properly zero extended.
564  EVT VT = N->getValueType(0);
565  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
566  SDValue Res = ZExtPromotedInteger(N->getOperand(0));
567  return DAG.getNode(ISD::SRL, N->getDebugLoc(), NVT, Res, N->getOperand(1));
568}
569
570SDValue DAGTypeLegalizer::PromoteIntRes_TRUNCATE(SDNode *N) {
571  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
572  SDValue Res;
573  SDValue InOp = N->getOperand(0);
574  DebugLoc dl = N->getDebugLoc();
575
576  switch (getTypeAction(InOp.getValueType())) {
577  default: llvm_unreachable("Unknown type action!");
578  case TargetLowering::TypeLegal:
579  case TargetLowering::TypeExpandInteger:
580    Res = InOp;
581    break;
582  case TargetLowering::TypePromoteInteger:
583    Res = GetPromotedInteger(InOp);
584    break;
585  case TargetLowering::TypeSplitVector:
586    EVT InVT = InOp.getValueType();
587    assert(InVT.isVector() && "Cannot split scalar types");
588    unsigned NumElts = InVT.getVectorNumElements();
589    assert(NumElts == NVT.getVectorNumElements() &&
590           "Dst and Src must have the same number of elements");
591    assert(isPowerOf2_32(NumElts) &&
592           "Promoted vector type must be a power of two");
593
594    SDValue EOp1, EOp2;
595    GetSplitVector(InOp, EOp1, EOp2);
596
597    EVT HalfNVT = EVT::getVectorVT(*DAG.getContext(), NVT.getScalarType(),
598                                   NumElts/2);
599    EOp1 = DAG.getNode(ISD::TRUNCATE, dl, HalfNVT, EOp1);
600    EOp2 = DAG.getNode(ISD::TRUNCATE, dl, HalfNVT, EOp2);
601
602    return DAG.getNode(ISD::CONCAT_VECTORS, dl, NVT, EOp1, EOp2);
603  }
604
605  // Truncate to NVT instead of VT
606  return DAG.getNode(ISD::TRUNCATE, dl, NVT, Res);
607}
608
609SDValue DAGTypeLegalizer::PromoteIntRes_UADDSUBO(SDNode *N, unsigned ResNo) {
610  if (ResNo == 1)
611    return PromoteIntRes_Overflow(N);
612
613  // The operation overflowed iff the result in the larger type is not the
614  // zero extension of its truncation to the original type.
615  SDValue LHS = ZExtPromotedInteger(N->getOperand(0));
616  SDValue RHS = ZExtPromotedInteger(N->getOperand(1));
617  EVT OVT = N->getOperand(0).getValueType();
618  EVT NVT = LHS.getValueType();
619  DebugLoc dl = N->getDebugLoc();
620
621  // Do the arithmetic in the larger type.
622  unsigned Opcode = N->getOpcode() == ISD::UADDO ? ISD::ADD : ISD::SUB;
623  SDValue Res = DAG.getNode(Opcode, dl, NVT, LHS, RHS);
624
625  // Calculate the overflow flag: zero extend the arithmetic result from
626  // the original type.
627  SDValue Ofl = DAG.getZeroExtendInReg(Res, dl, OVT);
628  // Overflowed if and only if this is not equal to Res.
629  Ofl = DAG.getSetCC(dl, N->getValueType(1), Ofl, Res, ISD::SETNE);
630
631  // Use the calculated overflow everywhere.
632  ReplaceValueWith(SDValue(N, 1), Ofl);
633
634  return Res;
635}
636
637SDValue DAGTypeLegalizer::PromoteIntRes_XMULO(SDNode *N, unsigned ResNo) {
638  // Promote the overflow bit trivially.
639  if (ResNo == 1)
640    return PromoteIntRes_Overflow(N);
641
642  SDValue LHS = N->getOperand(0), RHS = N->getOperand(1);
643  DebugLoc DL = N->getDebugLoc();
644  EVT SmallVT = LHS.getValueType();
645
646  // To determine if the result overflowed in a larger type, we extend the
647  // input to the larger type, do the multiply (checking if it overflows),
648  // then also check the high bits of the result to see if overflow happened
649  // there.
650  if (N->getOpcode() == ISD::SMULO) {
651    LHS = SExtPromotedInteger(LHS);
652    RHS = SExtPromotedInteger(RHS);
653  } else {
654    LHS = ZExtPromotedInteger(LHS);
655    RHS = ZExtPromotedInteger(RHS);
656  }
657  SDVTList VTs = DAG.getVTList(LHS.getValueType(), N->getValueType(1));
658  SDValue Mul = DAG.getNode(N->getOpcode(), DL, VTs, LHS, RHS);
659
660  // Overflow occurred if it occurred in the larger type, or if the high part
661  // of the result does not zero/sign-extend the low part.  Check this second
662  // possibility first.
663  SDValue Overflow;
664  if (N->getOpcode() == ISD::UMULO) {
665    // Unsigned overflow occurred if the high part is non-zero.
666    SDValue Hi = DAG.getNode(ISD::SRL, DL, Mul.getValueType(), Mul,
667                             DAG.getIntPtrConstant(SmallVT.getSizeInBits()));
668    Overflow = DAG.getSetCC(DL, N->getValueType(1), Hi,
669                            DAG.getConstant(0, Hi.getValueType()), ISD::SETNE);
670  } else {
671    // Signed overflow occurred if the high part does not sign extend the low.
672    SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Mul.getValueType(),
673                               Mul, DAG.getValueType(SmallVT));
674    Overflow = DAG.getSetCC(DL, N->getValueType(1), SExt, Mul, ISD::SETNE);
675  }
676
677  // The only other way for overflow to occur is if the multiplication in the
678  // larger type itself overflowed.
679  Overflow = DAG.getNode(ISD::OR, DL, N->getValueType(1), Overflow,
680                         SDValue(Mul.getNode(), 1));
681
682  // Use the calculated overflow everywhere.
683  ReplaceValueWith(SDValue(N, 1), Overflow);
684  return Mul;
685}
686
687SDValue DAGTypeLegalizer::PromoteIntRes_UDIV(SDNode *N) {
688  // Zero extend the input.
689  SDValue LHS = ZExtPromotedInteger(N->getOperand(0));
690  SDValue RHS = ZExtPromotedInteger(N->getOperand(1));
691  return DAG.getNode(N->getOpcode(), N->getDebugLoc(),
692                     LHS.getValueType(), LHS, RHS);
693}
694
695SDValue DAGTypeLegalizer::PromoteIntRes_UNDEF(SDNode *N) {
696  return DAG.getUNDEF(TLI.getTypeToTransformTo(*DAG.getContext(),
697                                               N->getValueType(0)));
698}
699
700SDValue DAGTypeLegalizer::PromoteIntRes_VAARG(SDNode *N) {
701  SDValue Chain = N->getOperand(0); // Get the chain.
702  SDValue Ptr = N->getOperand(1); // Get the pointer.
703  EVT VT = N->getValueType(0);
704  DebugLoc dl = N->getDebugLoc();
705
706  EVT RegVT = TLI.getRegisterType(*DAG.getContext(), VT);
707  unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), VT);
708  // The argument is passed as NumRegs registers of type RegVT.
709
710  SmallVector<SDValue, 8> Parts(NumRegs);
711  for (unsigned i = 0; i < NumRegs; ++i) {
712    Parts[i] = DAG.getVAArg(RegVT, dl, Chain, Ptr, N->getOperand(2),
713                            N->getConstantOperandVal(3));
714    Chain = Parts[i].getValue(1);
715  }
716
717  // Handle endianness of the load.
718  if (TLI.isBigEndian())
719    std::reverse(Parts.begin(), Parts.end());
720
721  // Assemble the parts in the promoted type.
722  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
723  SDValue Res = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Parts[0]);
724  for (unsigned i = 1; i < NumRegs; ++i) {
725    SDValue Part = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Parts[i]);
726    // Shift it to the right position and "or" it in.
727    Part = DAG.getNode(ISD::SHL, dl, NVT, Part,
728                       DAG.getConstant(i * RegVT.getSizeInBits(),
729                                       TLI.getPointerTy()));
730    Res = DAG.getNode(ISD::OR, dl, NVT, Res, Part);
731  }
732
733  // Modified the chain result - switch anything that used the old chain to
734  // use the new one.
735  ReplaceValueWith(SDValue(N, 1), Chain);
736
737  return Res;
738}
739
740//===----------------------------------------------------------------------===//
741//  Integer Operand Promotion
742//===----------------------------------------------------------------------===//
743
744/// PromoteIntegerOperand - This method is called when the specified operand of
745/// the specified node is found to need promotion.  At this point, all of the
746/// result types of the node are known to be legal, but other operands of the
747/// node may need promotion or expansion as well as the specified one.
748bool DAGTypeLegalizer::PromoteIntegerOperand(SDNode *N, unsigned OpNo) {
749  DEBUG(dbgs() << "Promote integer operand: "; N->dump(&DAG); dbgs() << "\n");
750  SDValue Res = SDValue();
751
752  if (CustomLowerNode(N, N->getOperand(OpNo).getValueType(), false))
753    return false;
754
755  switch (N->getOpcode()) {
756    default:
757  #ifndef NDEBUG
758    dbgs() << "PromoteIntegerOperand Op #" << OpNo << ": ";
759    N->dump(&DAG); dbgs() << "\n";
760  #endif
761    llvm_unreachable("Do not know how to promote this operator's operand!");
762
763  case ISD::ANY_EXTEND:   Res = PromoteIntOp_ANY_EXTEND(N); break;
764  case ISD::ATOMIC_STORE:
765    Res = PromoteIntOp_ATOMIC_STORE(cast<AtomicSDNode>(N));
766    break;
767  case ISD::BITCAST:      Res = PromoteIntOp_BITCAST(N); break;
768  case ISD::BR_CC:        Res = PromoteIntOp_BR_CC(N, OpNo); break;
769  case ISD::BRCOND:       Res = PromoteIntOp_BRCOND(N, OpNo); break;
770  case ISD::BUILD_PAIR:   Res = PromoteIntOp_BUILD_PAIR(N); break;
771  case ISD::BUILD_VECTOR: Res = PromoteIntOp_BUILD_VECTOR(N); break;
772  case ISD::CONCAT_VECTORS: Res = PromoteIntOp_CONCAT_VECTORS(N); break;
773  case ISD::EXTRACT_VECTOR_ELT: Res = PromoteIntOp_EXTRACT_VECTOR_ELT(N); break;
774  case ISD::CONVERT_RNDSAT:
775                          Res = PromoteIntOp_CONVERT_RNDSAT(N); break;
776  case ISD::INSERT_VECTOR_ELT:
777                          Res = PromoteIntOp_INSERT_VECTOR_ELT(N, OpNo);break;
778  case ISD::MEMBARRIER:   Res = PromoteIntOp_MEMBARRIER(N); break;
779  case ISD::SCALAR_TO_VECTOR:
780                          Res = PromoteIntOp_SCALAR_TO_VECTOR(N); break;
781  case ISD::VSELECT:
782  case ISD::SELECT:       Res = PromoteIntOp_SELECT(N, OpNo); break;
783  case ISD::SELECT_CC:    Res = PromoteIntOp_SELECT_CC(N, OpNo); break;
784  case ISD::SETCC:        Res = PromoteIntOp_SETCC(N, OpNo); break;
785  case ISD::SIGN_EXTEND:  Res = PromoteIntOp_SIGN_EXTEND(N); break;
786  case ISD::SINT_TO_FP:   Res = PromoteIntOp_SINT_TO_FP(N); break;
787  case ISD::STORE:        Res = PromoteIntOp_STORE(cast<StoreSDNode>(N),
788                                                   OpNo); break;
789  case ISD::TRUNCATE:     Res = PromoteIntOp_TRUNCATE(N); break;
790  case ISD::FP16_TO_FP32:
791  case ISD::UINT_TO_FP:   Res = PromoteIntOp_UINT_TO_FP(N); break;
792  case ISD::ZERO_EXTEND:  Res = PromoteIntOp_ZERO_EXTEND(N); break;
793
794  case ISD::SHL:
795  case ISD::SRA:
796  case ISD::SRL:
797  case ISD::ROTL:
798  case ISD::ROTR: Res = PromoteIntOp_Shift(N); break;
799  }
800
801  // If the result is null, the sub-method took care of registering results etc.
802  if (!Res.getNode()) return false;
803
804  // If the result is N, the sub-method updated N in place.  Tell the legalizer
805  // core about this.
806  if (Res.getNode() == N)
807    return true;
808
809  assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
810         "Invalid operand expansion");
811
812  ReplaceValueWith(SDValue(N, 0), Res);
813  return false;
814}
815
816/// PromoteSetCCOperands - Promote the operands of a comparison.  This code is
817/// shared among BR_CC, SELECT_CC, and SETCC handlers.
818void DAGTypeLegalizer::PromoteSetCCOperands(SDValue &NewLHS,SDValue &NewRHS,
819                                            ISD::CondCode CCCode) {
820  // We have to insert explicit sign or zero extends.  Note that we could
821  // insert sign extends for ALL conditions, but zero extend is cheaper on
822  // many machines (an AND instead of two shifts), so prefer it.
823  switch (CCCode) {
824  default: llvm_unreachable("Unknown integer comparison!");
825  case ISD::SETEQ:
826  case ISD::SETNE:
827  case ISD::SETUGE:
828  case ISD::SETUGT:
829  case ISD::SETULE:
830  case ISD::SETULT:
831    // ALL of these operations will work if we either sign or zero extend
832    // the operands (including the unsigned comparisons!).  Zero extend is
833    // usually a simpler/cheaper operation, so prefer it.
834    NewLHS = ZExtPromotedInteger(NewLHS);
835    NewRHS = ZExtPromotedInteger(NewRHS);
836    break;
837  case ISD::SETGE:
838  case ISD::SETGT:
839  case ISD::SETLT:
840  case ISD::SETLE:
841    NewLHS = SExtPromotedInteger(NewLHS);
842    NewRHS = SExtPromotedInteger(NewRHS);
843    break;
844  }
845}
846
847SDValue DAGTypeLegalizer::PromoteIntOp_ANY_EXTEND(SDNode *N) {
848  SDValue Op = GetPromotedInteger(N->getOperand(0));
849  return DAG.getNode(ISD::ANY_EXTEND, N->getDebugLoc(), N->getValueType(0), Op);
850}
851
852SDValue DAGTypeLegalizer::PromoteIntOp_ATOMIC_STORE(AtomicSDNode *N) {
853  SDValue Op2 = GetPromotedInteger(N->getOperand(2));
854  return DAG.getAtomic(N->getOpcode(), N->getDebugLoc(), N->getMemoryVT(),
855                       N->getChain(), N->getBasePtr(), Op2, N->getMemOperand(),
856                       N->getOrdering(), N->getSynchScope());
857}
858
859SDValue DAGTypeLegalizer::PromoteIntOp_BITCAST(SDNode *N) {
860  // This should only occur in unusual situations like bitcasting to an
861  // x86_fp80, so just turn it into a store+load
862  return CreateStackStoreLoad(N->getOperand(0), N->getValueType(0));
863}
864
865SDValue DAGTypeLegalizer::PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo) {
866  assert(OpNo == 2 && "Don't know how to promote this operand!");
867
868  SDValue LHS = N->getOperand(2);
869  SDValue RHS = N->getOperand(3);
870  PromoteSetCCOperands(LHS, RHS, cast<CondCodeSDNode>(N->getOperand(1))->get());
871
872  // The chain (Op#0), CC (#1) and basic block destination (Op#4) are always
873  // legal types.
874  return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
875                                N->getOperand(1), LHS, RHS, N->getOperand(4)),
876                 0);
877}
878
879SDValue DAGTypeLegalizer::PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo) {
880  assert(OpNo == 1 && "only know how to promote condition");
881
882  // Promote all the way up to the canonical SetCC type.
883  EVT SVT = TLI.getSetCCResultType(MVT::Other);
884  SDValue Cond = PromoteTargetBoolean(N->getOperand(1), SVT);
885
886  // The chain (Op#0) and basic block destination (Op#2) are always legal types.
887  return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0), Cond,
888                                        N->getOperand(2)), 0);
889}
890
891SDValue DAGTypeLegalizer::PromoteIntOp_BUILD_PAIR(SDNode *N) {
892  // Since the result type is legal, the operands must promote to it.
893  EVT OVT = N->getOperand(0).getValueType();
894  SDValue Lo = ZExtPromotedInteger(N->getOperand(0));
895  SDValue Hi = GetPromotedInteger(N->getOperand(1));
896  assert(Lo.getValueType() == N->getValueType(0) && "Operand over promoted?");
897  DebugLoc dl = N->getDebugLoc();
898
899  Hi = DAG.getNode(ISD::SHL, dl, N->getValueType(0), Hi,
900                   DAG.getConstant(OVT.getSizeInBits(), TLI.getPointerTy()));
901  return DAG.getNode(ISD::OR, dl, N->getValueType(0), Lo, Hi);
902}
903
904SDValue DAGTypeLegalizer::PromoteIntOp_BUILD_VECTOR(SDNode *N) {
905  // The vector type is legal but the element type is not.  This implies
906  // that the vector is a power-of-two in length and that the element
907  // type does not have a strange size (eg: it is not i1).
908  EVT VecVT = N->getValueType(0);
909  unsigned NumElts = VecVT.getVectorNumElements();
910  assert(!(NumElts & 1) && "Legal vector of one illegal element?");
911
912  // Promote the inserted value.  The type does not need to match the
913  // vector element type.  Check that any extra bits introduced will be
914  // truncated away.
915  assert(N->getOperand(0).getValueType().getSizeInBits() >=
916         N->getValueType(0).getVectorElementType().getSizeInBits() &&
917         "Type of inserted value narrower than vector element type!");
918
919  SmallVector<SDValue, 16> NewOps;
920  for (unsigned i = 0; i < NumElts; ++i)
921    NewOps.push_back(GetPromotedInteger(N->getOperand(i)));
922
923  return SDValue(DAG.UpdateNodeOperands(N, &NewOps[0], NumElts), 0);
924}
925
926SDValue DAGTypeLegalizer::PromoteIntOp_CONVERT_RNDSAT(SDNode *N) {
927  ISD::CvtCode CvtCode = cast<CvtRndSatSDNode>(N)->getCvtCode();
928  assert ((CvtCode == ISD::CVT_SS || CvtCode == ISD::CVT_SU ||
929           CvtCode == ISD::CVT_US || CvtCode == ISD::CVT_UU ||
930           CvtCode == ISD::CVT_FS || CvtCode == ISD::CVT_FU) &&
931           "can only promote integer arguments");
932  SDValue InOp = GetPromotedInteger(N->getOperand(0));
933  return DAG.getConvertRndSat(N->getValueType(0), N->getDebugLoc(), InOp,
934                              N->getOperand(1), N->getOperand(2),
935                              N->getOperand(3), N->getOperand(4), CvtCode);
936}
937
938SDValue DAGTypeLegalizer::PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N,
939                                                         unsigned OpNo) {
940  if (OpNo == 1) {
941    // Promote the inserted value.  This is valid because the type does not
942    // have to match the vector element type.
943
944    // Check that any extra bits introduced will be truncated away.
945    assert(N->getOperand(1).getValueType().getSizeInBits() >=
946           N->getValueType(0).getVectorElementType().getSizeInBits() &&
947           "Type of inserted value narrower than vector element type!");
948    return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
949                                  GetPromotedInteger(N->getOperand(1)),
950                                  N->getOperand(2)),
951                   0);
952  }
953
954  assert(OpNo == 2 && "Different operand and result vector types?");
955
956  // Promote the index.
957  SDValue Idx = ZExtPromotedInteger(N->getOperand(2));
958  return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
959                                N->getOperand(1), Idx), 0);
960}
961
962SDValue DAGTypeLegalizer::PromoteIntOp_MEMBARRIER(SDNode *N) {
963  SDValue NewOps[6];
964  DebugLoc dl = N->getDebugLoc();
965  NewOps[0] = N->getOperand(0);
966  for (unsigned i = 1; i < array_lengthof(NewOps); ++i) {
967    SDValue Flag = GetPromotedInteger(N->getOperand(i));
968    NewOps[i] = DAG.getZeroExtendInReg(Flag, dl, MVT::i1);
969  }
970  return SDValue(DAG.UpdateNodeOperands(N, NewOps, array_lengthof(NewOps)), 0);
971}
972
973SDValue DAGTypeLegalizer::PromoteIntOp_SCALAR_TO_VECTOR(SDNode *N) {
974  // Integer SCALAR_TO_VECTOR operands are implicitly truncated, so just promote
975  // the operand in place.
976  return SDValue(DAG.UpdateNodeOperands(N,
977                                GetPromotedInteger(N->getOperand(0))), 0);
978}
979
980SDValue DAGTypeLegalizer::PromoteIntOp_SELECT(SDNode *N, unsigned OpNo) {
981  assert(OpNo == 0 && "Only know how to promote the condition!");
982  SDValue Cond = N->getOperand(0);
983  EVT OpTy = N->getOperand(1).getValueType();
984
985  // Promote all the way up to the canonical SetCC type.
986  EVT SVT = TLI.getSetCCResultType(N->getOpcode() == ISD::SELECT ?
987                                   OpTy.getScalarType() : OpTy);
988  Cond = PromoteTargetBoolean(Cond, SVT);
989
990  return SDValue(DAG.UpdateNodeOperands(N, Cond, N->getOperand(1),
991                                        N->getOperand(2)), 0);
992}
993
994SDValue DAGTypeLegalizer::PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo) {
995  assert(OpNo == 0 && "Don't know how to promote this operand!");
996
997  SDValue LHS = N->getOperand(0);
998  SDValue RHS = N->getOperand(1);
999  PromoteSetCCOperands(LHS, RHS, cast<CondCodeSDNode>(N->getOperand(4))->get());
1000
1001  // The CC (#4) and the possible return values (#2 and #3) have legal types.
1002  return SDValue(DAG.UpdateNodeOperands(N, LHS, RHS, N->getOperand(2),
1003                                N->getOperand(3), N->getOperand(4)), 0);
1004}
1005
1006SDValue DAGTypeLegalizer::PromoteIntOp_SETCC(SDNode *N, unsigned OpNo) {
1007  assert(OpNo == 0 && "Don't know how to promote this operand!");
1008
1009  SDValue LHS = N->getOperand(0);
1010  SDValue RHS = N->getOperand(1);
1011  PromoteSetCCOperands(LHS, RHS, cast<CondCodeSDNode>(N->getOperand(2))->get());
1012
1013  // The CC (#2) is always legal.
1014  return SDValue(DAG.UpdateNodeOperands(N, LHS, RHS, N->getOperand(2)), 0);
1015}
1016
1017SDValue DAGTypeLegalizer::PromoteIntOp_Shift(SDNode *N) {
1018  return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
1019                                ZExtPromotedInteger(N->getOperand(1))), 0);
1020}
1021
1022SDValue DAGTypeLegalizer::PromoteIntOp_SIGN_EXTEND(SDNode *N) {
1023  SDValue Op = GetPromotedInteger(N->getOperand(0));
1024  DebugLoc dl = N->getDebugLoc();
1025  Op = DAG.getNode(ISD::ANY_EXTEND, dl, N->getValueType(0), Op);
1026  return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Op.getValueType(),
1027                     Op, DAG.getValueType(N->getOperand(0).getValueType()));
1028}
1029
1030SDValue DAGTypeLegalizer::PromoteIntOp_SINT_TO_FP(SDNode *N) {
1031  return SDValue(DAG.UpdateNodeOperands(N,
1032                                SExtPromotedInteger(N->getOperand(0))), 0);
1033}
1034
1035SDValue DAGTypeLegalizer::PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo){
1036  assert(ISD::isUNINDEXEDStore(N) && "Indexed store during type legalization!");
1037  SDValue Ch = N->getChain(), Ptr = N->getBasePtr();
1038  unsigned Alignment = N->getAlignment();
1039  bool isVolatile = N->isVolatile();
1040  bool isNonTemporal = N->isNonTemporal();
1041  DebugLoc dl = N->getDebugLoc();
1042
1043  SDValue Val = GetPromotedInteger(N->getValue());  // Get promoted value.
1044
1045  // Truncate the value and store the result.
1046  return DAG.getTruncStore(Ch, dl, Val, Ptr, N->getPointerInfo(),
1047                           N->getMemoryVT(),
1048                           isVolatile, isNonTemporal, Alignment);
1049}
1050
1051SDValue DAGTypeLegalizer::PromoteIntOp_TRUNCATE(SDNode *N) {
1052  SDValue Op = GetPromotedInteger(N->getOperand(0));
1053  return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), N->getValueType(0), Op);
1054}
1055
1056SDValue DAGTypeLegalizer::PromoteIntOp_UINT_TO_FP(SDNode *N) {
1057  return SDValue(DAG.UpdateNodeOperands(N,
1058                                ZExtPromotedInteger(N->getOperand(0))), 0);
1059}
1060
1061SDValue DAGTypeLegalizer::PromoteIntOp_ZERO_EXTEND(SDNode *N) {
1062  DebugLoc dl = N->getDebugLoc();
1063  SDValue Op = GetPromotedInteger(N->getOperand(0));
1064  Op = DAG.getNode(ISD::ANY_EXTEND, dl, N->getValueType(0), Op);
1065  return DAG.getZeroExtendInReg(Op, dl,
1066                                N->getOperand(0).getValueType().getScalarType());
1067}
1068
1069
1070//===----------------------------------------------------------------------===//
1071//  Integer Result Expansion
1072//===----------------------------------------------------------------------===//
1073
1074/// ExpandIntegerResult - This method is called when the specified result of the
1075/// specified node is found to need expansion.  At this point, the node may also
1076/// have invalid operands or may have other results that need promotion, we just
1077/// know that (at least) one result needs expansion.
1078void DAGTypeLegalizer::ExpandIntegerResult(SDNode *N, unsigned ResNo) {
1079  DEBUG(dbgs() << "Expand integer result: "; N->dump(&DAG); dbgs() << "\n");
1080  SDValue Lo, Hi;
1081  Lo = Hi = SDValue();
1082
1083  // See if the target wants to custom expand this node.
1084  if (CustomLowerNode(N, N->getValueType(ResNo), true))
1085    return;
1086
1087  switch (N->getOpcode()) {
1088  default:
1089#ifndef NDEBUG
1090    dbgs() << "ExpandIntegerResult #" << ResNo << ": ";
1091    N->dump(&DAG); dbgs() << "\n";
1092#endif
1093    llvm_unreachable("Do not know how to expand the result of this operator!");
1094
1095  case ISD::MERGE_VALUES: SplitRes_MERGE_VALUES(N, ResNo, Lo, Hi); break;
1096  case ISD::SELECT:       SplitRes_SELECT(N, Lo, Hi); break;
1097  case ISD::SELECT_CC:    SplitRes_SELECT_CC(N, Lo, Hi); break;
1098  case ISD::UNDEF:        SplitRes_UNDEF(N, Lo, Hi); break;
1099
1100  case ISD::BITCAST:            ExpandRes_BITCAST(N, Lo, Hi); break;
1101  case ISD::BUILD_PAIR:         ExpandRes_BUILD_PAIR(N, Lo, Hi); break;
1102  case ISD::EXTRACT_ELEMENT:    ExpandRes_EXTRACT_ELEMENT(N, Lo, Hi); break;
1103  case ISD::EXTRACT_VECTOR_ELT: ExpandRes_EXTRACT_VECTOR_ELT(N, Lo, Hi); break;
1104  case ISD::VAARG:              ExpandRes_VAARG(N, Lo, Hi); break;
1105
1106  case ISD::ANY_EXTEND:  ExpandIntRes_ANY_EXTEND(N, Lo, Hi); break;
1107  case ISD::AssertSext:  ExpandIntRes_AssertSext(N, Lo, Hi); break;
1108  case ISD::AssertZext:  ExpandIntRes_AssertZext(N, Lo, Hi); break;
1109  case ISD::BSWAP:       ExpandIntRes_BSWAP(N, Lo, Hi); break;
1110  case ISD::Constant:    ExpandIntRes_Constant(N, Lo, Hi); break;
1111  case ISD::CTLZ_ZERO_UNDEF:
1112  case ISD::CTLZ:        ExpandIntRes_CTLZ(N, Lo, Hi); break;
1113  case ISD::CTPOP:       ExpandIntRes_CTPOP(N, Lo, Hi); break;
1114  case ISD::CTTZ_ZERO_UNDEF:
1115  case ISD::CTTZ:        ExpandIntRes_CTTZ(N, Lo, Hi); break;
1116  case ISD::FP_TO_SINT:  ExpandIntRes_FP_TO_SINT(N, Lo, Hi); break;
1117  case ISD::FP_TO_UINT:  ExpandIntRes_FP_TO_UINT(N, Lo, Hi); break;
1118  case ISD::LOAD:        ExpandIntRes_LOAD(cast<LoadSDNode>(N), Lo, Hi); break;
1119  case ISD::MUL:         ExpandIntRes_MUL(N, Lo, Hi); break;
1120  case ISD::SDIV:        ExpandIntRes_SDIV(N, Lo, Hi); break;
1121  case ISD::SIGN_EXTEND: ExpandIntRes_SIGN_EXTEND(N, Lo, Hi); break;
1122  case ISD::SIGN_EXTEND_INREG: ExpandIntRes_SIGN_EXTEND_INREG(N, Lo, Hi); break;
1123  case ISD::SREM:        ExpandIntRes_SREM(N, Lo, Hi); break;
1124  case ISD::TRUNCATE:    ExpandIntRes_TRUNCATE(N, Lo, Hi); break;
1125  case ISD::UDIV:        ExpandIntRes_UDIV(N, Lo, Hi); break;
1126  case ISD::UREM:        ExpandIntRes_UREM(N, Lo, Hi); break;
1127  case ISD::ZERO_EXTEND: ExpandIntRes_ZERO_EXTEND(N, Lo, Hi); break;
1128  case ISD::ATOMIC_LOAD: ExpandIntRes_ATOMIC_LOAD(N, Lo, Hi); break;
1129
1130  case ISD::ATOMIC_LOAD_ADD:
1131  case ISD::ATOMIC_LOAD_SUB:
1132  case ISD::ATOMIC_LOAD_AND:
1133  case ISD::ATOMIC_LOAD_OR:
1134  case ISD::ATOMIC_LOAD_XOR:
1135  case ISD::ATOMIC_LOAD_NAND:
1136  case ISD::ATOMIC_LOAD_MIN:
1137  case ISD::ATOMIC_LOAD_MAX:
1138  case ISD::ATOMIC_LOAD_UMIN:
1139  case ISD::ATOMIC_LOAD_UMAX:
1140  case ISD::ATOMIC_SWAP: {
1141    std::pair<SDValue, SDValue> Tmp = ExpandAtomic(N);
1142    SplitInteger(Tmp.first, Lo, Hi);
1143    ReplaceValueWith(SDValue(N, 1), Tmp.second);
1144    break;
1145  }
1146
1147  case ISD::AND:
1148  case ISD::OR:
1149  case ISD::XOR: ExpandIntRes_Logical(N, Lo, Hi); break;
1150
1151  case ISD::ADD:
1152  case ISD::SUB: ExpandIntRes_ADDSUB(N, Lo, Hi); break;
1153
1154  case ISD::ADDC:
1155  case ISD::SUBC: ExpandIntRes_ADDSUBC(N, Lo, Hi); break;
1156
1157  case ISD::ADDE:
1158  case ISD::SUBE: ExpandIntRes_ADDSUBE(N, Lo, Hi); break;
1159
1160  case ISD::SHL:
1161  case ISD::SRA:
1162  case ISD::SRL: ExpandIntRes_Shift(N, Lo, Hi); break;
1163
1164  case ISD::SADDO:
1165  case ISD::SSUBO: ExpandIntRes_SADDSUBO(N, Lo, Hi); break;
1166  case ISD::UADDO:
1167  case ISD::USUBO: ExpandIntRes_UADDSUBO(N, Lo, Hi); break;
1168  case ISD::UMULO:
1169  case ISD::SMULO: ExpandIntRes_XMULO(N, Lo, Hi); break;
1170  }
1171
1172  // If Lo/Hi is null, the sub-method took care of registering results etc.
1173  if (Lo.getNode())
1174    SetExpandedInteger(SDValue(N, ResNo), Lo, Hi);
1175}
1176
1177/// Lower an atomic node to the appropriate builtin call.
1178std::pair <SDValue, SDValue> DAGTypeLegalizer::ExpandAtomic(SDNode *Node) {
1179  unsigned Opc = Node->getOpcode();
1180  MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
1181  RTLIB::Libcall LC;
1182
1183  switch (Opc) {
1184  default:
1185    llvm_unreachable("Unhandled atomic intrinsic Expand!");
1186  case ISD::ATOMIC_SWAP:
1187    switch (VT.SimpleTy) {
1188    default: llvm_unreachable("Unexpected value type for atomic!");
1189    case MVT::i8:  LC = RTLIB::SYNC_LOCK_TEST_AND_SET_1; break;
1190    case MVT::i16: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_2; break;
1191    case MVT::i32: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_4; break;
1192    case MVT::i64: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_8; break;
1193    }
1194    break;
1195  case ISD::ATOMIC_CMP_SWAP:
1196    switch (VT.SimpleTy) {
1197    default: llvm_unreachable("Unexpected value type for atomic!");
1198    case MVT::i8:  LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1; break;
1199    case MVT::i16: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2; break;
1200    case MVT::i32: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4; break;
1201    case MVT::i64: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8; break;
1202    }
1203    break;
1204  case ISD::ATOMIC_LOAD_ADD:
1205    switch (VT.SimpleTy) {
1206    default: llvm_unreachable("Unexpected value type for atomic!");
1207    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_ADD_1; break;
1208    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_ADD_2; break;
1209    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_ADD_4; break;
1210    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_ADD_8; break;
1211    }
1212    break;
1213  case ISD::ATOMIC_LOAD_SUB:
1214    switch (VT.SimpleTy) {
1215    default: llvm_unreachable("Unexpected value type for atomic!");
1216    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_SUB_1; break;
1217    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_SUB_2; break;
1218    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_SUB_4; break;
1219    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_SUB_8; break;
1220    }
1221    break;
1222  case ISD::ATOMIC_LOAD_AND:
1223    switch (VT.SimpleTy) {
1224    default: llvm_unreachable("Unexpected value type for atomic!");
1225    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_AND_1; break;
1226    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_AND_2; break;
1227    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_AND_4; break;
1228    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_AND_8; break;
1229    }
1230    break;
1231  case ISD::ATOMIC_LOAD_OR:
1232    switch (VT.SimpleTy) {
1233    default: llvm_unreachable("Unexpected value type for atomic!");
1234    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_OR_1; break;
1235    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_OR_2; break;
1236    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_OR_4; break;
1237    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_OR_8; break;
1238    }
1239    break;
1240  case ISD::ATOMIC_LOAD_XOR:
1241    switch (VT.SimpleTy) {
1242    default: llvm_unreachable("Unexpected value type for atomic!");
1243    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_XOR_1; break;
1244    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_XOR_2; break;
1245    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_XOR_4; break;
1246    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_XOR_8; break;
1247    }
1248    break;
1249  case ISD::ATOMIC_LOAD_NAND:
1250    switch (VT.SimpleTy) {
1251    default: llvm_unreachable("Unexpected value type for atomic!");
1252    case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_NAND_1; break;
1253    case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_NAND_2; break;
1254    case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_NAND_4; break;
1255    case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_NAND_8; break;
1256    }
1257    break;
1258  }
1259
1260  return ExpandChainLibCall(LC, Node, false);
1261}
1262
1263/// ExpandShiftByConstant - N is a shift by a value that needs to be expanded,
1264/// and the shift amount is a constant 'Amt'.  Expand the operation.
1265void DAGTypeLegalizer::ExpandShiftByConstant(SDNode *N, unsigned Amt,
1266                                             SDValue &Lo, SDValue &Hi) {
1267  DebugLoc DL = N->getDebugLoc();
1268  // Expand the incoming operand to be shifted, so that we have its parts
1269  SDValue InL, InH;
1270  GetExpandedInteger(N->getOperand(0), InL, InH);
1271
1272  EVT NVT = InL.getValueType();
1273  unsigned VTBits = N->getValueType(0).getSizeInBits();
1274  unsigned NVTBits = NVT.getSizeInBits();
1275  EVT ShTy = N->getOperand(1).getValueType();
1276
1277  if (N->getOpcode() == ISD::SHL) {
1278    if (Amt > VTBits) {
1279      Lo = Hi = DAG.getConstant(0, NVT);
1280    } else if (Amt > NVTBits) {
1281      Lo = DAG.getConstant(0, NVT);
1282      Hi = DAG.getNode(ISD::SHL, DL,
1283                       NVT, InL, DAG.getConstant(Amt-NVTBits, ShTy));
1284    } else if (Amt == NVTBits) {
1285      Lo = DAG.getConstant(0, NVT);
1286      Hi = InL;
1287    } else if (Amt == 1 &&
1288               TLI.isOperationLegalOrCustom(ISD::ADDC,
1289                              TLI.getTypeToExpandTo(*DAG.getContext(), NVT))) {
1290      // Emit this X << 1 as X+X.
1291      SDVTList VTList = DAG.getVTList(NVT, MVT::Glue);
1292      SDValue LoOps[2] = { InL, InL };
1293      Lo = DAG.getNode(ISD::ADDC, DL, VTList, LoOps, 2);
1294      SDValue HiOps[3] = { InH, InH, Lo.getValue(1) };
1295      Hi = DAG.getNode(ISD::ADDE, DL, VTList, HiOps, 3);
1296    } else {
1297      Lo = DAG.getNode(ISD::SHL, DL, NVT, InL, DAG.getConstant(Amt, ShTy));
1298      Hi = DAG.getNode(ISD::OR, DL, NVT,
1299                       DAG.getNode(ISD::SHL, DL, NVT, InH,
1300                                   DAG.getConstant(Amt, ShTy)),
1301                       DAG.getNode(ISD::SRL, DL, NVT, InL,
1302                                   DAG.getConstant(NVTBits-Amt, ShTy)));
1303    }
1304    return;
1305  }
1306
1307  if (N->getOpcode() == ISD::SRL) {
1308    if (Amt > VTBits) {
1309      Lo = DAG.getConstant(0, NVT);
1310      Hi = DAG.getConstant(0, NVT);
1311    } else if (Amt > NVTBits) {
1312      Lo = DAG.getNode(ISD::SRL, DL,
1313                       NVT, InH, DAG.getConstant(Amt-NVTBits,ShTy));
1314      Hi = DAG.getConstant(0, NVT);
1315    } else if (Amt == NVTBits) {
1316      Lo = InH;
1317      Hi = DAG.getConstant(0, NVT);
1318    } else {
1319      Lo = DAG.getNode(ISD::OR, DL, NVT,
1320                       DAG.getNode(ISD::SRL, DL, NVT, InL,
1321                                   DAG.getConstant(Amt, ShTy)),
1322                       DAG.getNode(ISD::SHL, DL, NVT, InH,
1323                                   DAG.getConstant(NVTBits-Amt, ShTy)));
1324      Hi = DAG.getNode(ISD::SRL, DL, NVT, InH, DAG.getConstant(Amt, ShTy));
1325    }
1326    return;
1327  }
1328
1329  assert(N->getOpcode() == ISD::SRA && "Unknown shift!");
1330  if (Amt > VTBits) {
1331    Hi = Lo = DAG.getNode(ISD::SRA, DL, NVT, InH,
1332                          DAG.getConstant(NVTBits-1, ShTy));
1333  } else if (Amt > NVTBits) {
1334    Lo = DAG.getNode(ISD::SRA, DL, NVT, InH,
1335                     DAG.getConstant(Amt-NVTBits, ShTy));
1336    Hi = DAG.getNode(ISD::SRA, DL, NVT, InH,
1337                     DAG.getConstant(NVTBits-1, ShTy));
1338  } else if (Amt == NVTBits) {
1339    Lo = InH;
1340    Hi = DAG.getNode(ISD::SRA, DL, NVT, InH,
1341                     DAG.getConstant(NVTBits-1, ShTy));
1342  } else {
1343    Lo = DAG.getNode(ISD::OR, DL, NVT,
1344                     DAG.getNode(ISD::SRL, DL, NVT, InL,
1345                                 DAG.getConstant(Amt, ShTy)),
1346                     DAG.getNode(ISD::SHL, DL, NVT, InH,
1347                                 DAG.getConstant(NVTBits-Amt, ShTy)));
1348    Hi = DAG.getNode(ISD::SRA, DL, NVT, InH, DAG.getConstant(Amt, ShTy));
1349  }
1350}
1351
1352/// ExpandShiftWithKnownAmountBit - Try to determine whether we can simplify
1353/// this shift based on knowledge of the high bit of the shift amount.  If we
1354/// can tell this, we know that it is >= 32 or < 32, without knowing the actual
1355/// shift amount.
1356bool DAGTypeLegalizer::
1357ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi) {
1358  SDValue Amt = N->getOperand(1);
1359  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1360  EVT ShTy = Amt.getValueType();
1361  unsigned ShBits = ShTy.getScalarType().getSizeInBits();
1362  unsigned NVTBits = NVT.getScalarType().getSizeInBits();
1363  assert(isPowerOf2_32(NVTBits) &&
1364         "Expanded integer type size not a power of two!");
1365  DebugLoc dl = N->getDebugLoc();
1366
1367  APInt HighBitMask = APInt::getHighBitsSet(ShBits, ShBits - Log2_32(NVTBits));
1368  APInt KnownZero, KnownOne;
1369  DAG.ComputeMaskedBits(N->getOperand(1), KnownZero, KnownOne);
1370
1371  // If we don't know anything about the high bits, exit.
1372  if (((KnownZero|KnownOne) & HighBitMask) == 0)
1373    return false;
1374
1375  // Get the incoming operand to be shifted.
1376  SDValue InL, InH;
1377  GetExpandedInteger(N->getOperand(0), InL, InH);
1378
1379  // If we know that any of the high bits of the shift amount are one, then we
1380  // can do this as a couple of simple shifts.
1381  if (KnownOne.intersects(HighBitMask)) {
1382    // Mask out the high bit, which we know is set.
1383    Amt = DAG.getNode(ISD::AND, dl, ShTy, Amt,
1384                      DAG.getConstant(~HighBitMask, ShTy));
1385
1386    switch (N->getOpcode()) {
1387    default: llvm_unreachable("Unknown shift");
1388    case ISD::SHL:
1389      Lo = DAG.getConstant(0, NVT);              // Low part is zero.
1390      Hi = DAG.getNode(ISD::SHL, dl, NVT, InL, Amt); // High part from Lo part.
1391      return true;
1392    case ISD::SRL:
1393      Hi = DAG.getConstant(0, NVT);              // Hi part is zero.
1394      Lo = DAG.getNode(ISD::SRL, dl, NVT, InH, Amt); // Lo part from Hi part.
1395      return true;
1396    case ISD::SRA:
1397      Hi = DAG.getNode(ISD::SRA, dl, NVT, InH,       // Sign extend high part.
1398                       DAG.getConstant(NVTBits-1, ShTy));
1399      Lo = DAG.getNode(ISD::SRA, dl, NVT, InH, Amt); // Lo part from Hi part.
1400      return true;
1401    }
1402  }
1403
1404  // If we know that all of the high bits of the shift amount are zero, then we
1405  // can do this as a couple of simple shifts.
1406  if ((KnownZero & HighBitMask) == HighBitMask) {
1407    // Calculate 31-x. 31 is used instead of 32 to avoid creating an undefined
1408    // shift if x is zero.  We can use XOR here because x is known to be smaller
1409    // than 32.
1410    SDValue Amt2 = DAG.getNode(ISD::XOR, dl, ShTy, Amt,
1411                               DAG.getConstant(NVTBits-1, ShTy));
1412
1413    unsigned Op1, Op2;
1414    switch (N->getOpcode()) {
1415    default: llvm_unreachable("Unknown shift");
1416    case ISD::SHL:  Op1 = ISD::SHL; Op2 = ISD::SRL; break;
1417    case ISD::SRL:
1418    case ISD::SRA:  Op1 = ISD::SRL; Op2 = ISD::SHL; break;
1419    }
1420
1421    // When shifting right the arithmetic for Lo and Hi is swapped.
1422    if (N->getOpcode() != ISD::SHL)
1423      std::swap(InL, InH);
1424
1425    // Use a little trick to get the bits that move from Lo to Hi. First
1426    // shift by one bit.
1427    SDValue Sh1 = DAG.getNode(Op2, dl, NVT, InL, DAG.getConstant(1, ShTy));
1428    // Then compute the remaining shift with amount-1.
1429    SDValue Sh2 = DAG.getNode(Op2, dl, NVT, Sh1, Amt2);
1430
1431    Lo = DAG.getNode(N->getOpcode(), dl, NVT, InL, Amt);
1432    Hi = DAG.getNode(ISD::OR, dl, NVT, DAG.getNode(Op1, dl, NVT, InH, Amt),Sh2);
1433
1434    if (N->getOpcode() != ISD::SHL)
1435      std::swap(Hi, Lo);
1436    return true;
1437  }
1438
1439  return false;
1440}
1441
1442/// ExpandShiftWithUnknownAmountBit - Fully general expansion of integer shift
1443/// of any size.
1444bool DAGTypeLegalizer::
1445ExpandShiftWithUnknownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi) {
1446  SDValue Amt = N->getOperand(1);
1447  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1448  EVT ShTy = Amt.getValueType();
1449  unsigned NVTBits = NVT.getSizeInBits();
1450  assert(isPowerOf2_32(NVTBits) &&
1451         "Expanded integer type size not a power of two!");
1452  DebugLoc dl = N->getDebugLoc();
1453
1454  // Get the incoming operand to be shifted.
1455  SDValue InL, InH;
1456  GetExpandedInteger(N->getOperand(0), InL, InH);
1457
1458  SDValue NVBitsNode = DAG.getConstant(NVTBits, ShTy);
1459  SDValue AmtExcess = DAG.getNode(ISD::SUB, dl, ShTy, Amt, NVBitsNode);
1460  SDValue AmtLack = DAG.getNode(ISD::SUB, dl, ShTy, NVBitsNode, Amt);
1461  SDValue isShort = DAG.getSetCC(dl, TLI.getSetCCResultType(ShTy),
1462                                 Amt, NVBitsNode, ISD::SETULT);
1463
1464  SDValue LoS, HiS, LoL, HiL;
1465  switch (N->getOpcode()) {
1466  default: llvm_unreachable("Unknown shift");
1467  case ISD::SHL:
1468    // Short: ShAmt < NVTBits
1469    LoS = DAG.getNode(ISD::SHL, dl, NVT, InL, Amt);
1470    HiS = DAG.getNode(ISD::OR, dl, NVT,
1471                      DAG.getNode(ISD::SHL, dl, NVT, InH, Amt),
1472    // FIXME: If Amt is zero, the following shift generates an undefined result
1473    // on some architectures.
1474                      DAG.getNode(ISD::SRL, dl, NVT, InL, AmtLack));
1475
1476    // Long: ShAmt >= NVTBits
1477    LoL = DAG.getConstant(0, NVT);                        // Lo part is zero.
1478    HiL = DAG.getNode(ISD::SHL, dl, NVT, InL, AmtExcess); // Hi from Lo part.
1479
1480    Lo = DAG.getNode(ISD::SELECT, dl, NVT, isShort, LoS, LoL);
1481    Hi = DAG.getNode(ISD::SELECT, dl, NVT, isShort, HiS, HiL);
1482    return true;
1483  case ISD::SRL:
1484    // Short: ShAmt < NVTBits
1485    HiS = DAG.getNode(ISD::SRL, dl, NVT, InH, Amt);
1486    LoS = DAG.getNode(ISD::OR, dl, NVT,
1487                      DAG.getNode(ISD::SRL, dl, NVT, InL, Amt),
1488    // FIXME: If Amt is zero, the following shift generates an undefined result
1489    // on some architectures.
1490                      DAG.getNode(ISD::SHL, dl, NVT, InH, AmtLack));
1491
1492    // Long: ShAmt >= NVTBits
1493    HiL = DAG.getConstant(0, NVT);                        // Hi part is zero.
1494    LoL = DAG.getNode(ISD::SRL, dl, NVT, InH, AmtExcess); // Lo from Hi part.
1495
1496    Lo = DAG.getNode(ISD::SELECT, dl, NVT, isShort, LoS, LoL);
1497    Hi = DAG.getNode(ISD::SELECT, dl, NVT, isShort, HiS, HiL);
1498    return true;
1499  case ISD::SRA:
1500    // Short: ShAmt < NVTBits
1501    HiS = DAG.getNode(ISD::SRA, dl, NVT, InH, Amt);
1502    LoS = DAG.getNode(ISD::OR, dl, NVT,
1503                      DAG.getNode(ISD::SRL, dl, NVT, InL, Amt),
1504    // FIXME: If Amt is zero, the following shift generates an undefined result
1505    // on some architectures.
1506                      DAG.getNode(ISD::SHL, dl, NVT, InH, AmtLack));
1507
1508    // Long: ShAmt >= NVTBits
1509    HiL = DAG.getNode(ISD::SRA, dl, NVT, InH,             // Sign of Hi part.
1510                      DAG.getConstant(NVTBits-1, ShTy));
1511    LoL = DAG.getNode(ISD::SRA, dl, NVT, InH, AmtExcess); // Lo from Hi part.
1512
1513    Lo = DAG.getNode(ISD::SELECT, dl, NVT, isShort, LoS, LoL);
1514    Hi = DAG.getNode(ISD::SELECT, dl, NVT, isShort, HiS, HiL);
1515    return true;
1516  }
1517}
1518
1519void DAGTypeLegalizer::ExpandIntRes_ADDSUB(SDNode *N,
1520                                           SDValue &Lo, SDValue &Hi) {
1521  DebugLoc dl = N->getDebugLoc();
1522  // Expand the subcomponents.
1523  SDValue LHSL, LHSH, RHSL, RHSH;
1524  GetExpandedInteger(N->getOperand(0), LHSL, LHSH);
1525  GetExpandedInteger(N->getOperand(1), RHSL, RHSH);
1526
1527  EVT NVT = LHSL.getValueType();
1528  SDValue LoOps[2] = { LHSL, RHSL };
1529  SDValue HiOps[3] = { LHSH, RHSH };
1530
1531  // Do not generate ADDC/ADDE or SUBC/SUBE if the target does not support
1532  // them.  TODO: Teach operation legalization how to expand unsupported
1533  // ADDC/ADDE/SUBC/SUBE.  The problem is that these operations generate
1534  // a carry of type MVT::Glue, but there doesn't seem to be any way to
1535  // generate a value of this type in the expanded code sequence.
1536  bool hasCarry =
1537    TLI.isOperationLegalOrCustom(N->getOpcode() == ISD::ADD ?
1538                                   ISD::ADDC : ISD::SUBC,
1539                                 TLI.getTypeToExpandTo(*DAG.getContext(), NVT));
1540
1541  if (hasCarry) {
1542    SDVTList VTList = DAG.getVTList(NVT, MVT::Glue);
1543    if (N->getOpcode() == ISD::ADD) {
1544      Lo = DAG.getNode(ISD::ADDC, dl, VTList, LoOps, 2);
1545      HiOps[2] = Lo.getValue(1);
1546      Hi = DAG.getNode(ISD::ADDE, dl, VTList, HiOps, 3);
1547    } else {
1548      Lo = DAG.getNode(ISD::SUBC, dl, VTList, LoOps, 2);
1549      HiOps[2] = Lo.getValue(1);
1550      Hi = DAG.getNode(ISD::SUBE, dl, VTList, HiOps, 3);
1551    }
1552    return;
1553  }
1554
1555  if (N->getOpcode() == ISD::ADD) {
1556    Lo = DAG.getNode(ISD::ADD, dl, NVT, LoOps, 2);
1557    Hi = DAG.getNode(ISD::ADD, dl, NVT, HiOps, 2);
1558    SDValue Cmp1 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT), Lo, LoOps[0],
1559                                ISD::SETULT);
1560    SDValue Carry1 = DAG.getNode(ISD::SELECT, dl, NVT, Cmp1,
1561                                 DAG.getConstant(1, NVT),
1562                                 DAG.getConstant(0, NVT));
1563    SDValue Cmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT), Lo, LoOps[1],
1564                                ISD::SETULT);
1565    SDValue Carry2 = DAG.getNode(ISD::SELECT, dl, NVT, Cmp2,
1566                                 DAG.getConstant(1, NVT), Carry1);
1567    Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, Carry2);
1568  } else {
1569    Lo = DAG.getNode(ISD::SUB, dl, NVT, LoOps, 2);
1570    Hi = DAG.getNode(ISD::SUB, dl, NVT, HiOps, 2);
1571    SDValue Cmp =
1572      DAG.getSetCC(dl, TLI.getSetCCResultType(LoOps[0].getValueType()),
1573                   LoOps[0], LoOps[1], ISD::SETULT);
1574    SDValue Borrow = DAG.getNode(ISD::SELECT, dl, NVT, Cmp,
1575                                 DAG.getConstant(1, NVT),
1576                                 DAG.getConstant(0, NVT));
1577    Hi = DAG.getNode(ISD::SUB, dl, NVT, Hi, Borrow);
1578  }
1579}
1580
1581void DAGTypeLegalizer::ExpandIntRes_ADDSUBC(SDNode *N,
1582                                            SDValue &Lo, SDValue &Hi) {
1583  // Expand the subcomponents.
1584  SDValue LHSL, LHSH, RHSL, RHSH;
1585  DebugLoc dl = N->getDebugLoc();
1586  GetExpandedInteger(N->getOperand(0), LHSL, LHSH);
1587  GetExpandedInteger(N->getOperand(1), RHSL, RHSH);
1588  SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Glue);
1589  SDValue LoOps[2] = { LHSL, RHSL };
1590  SDValue HiOps[3] = { LHSH, RHSH };
1591
1592  if (N->getOpcode() == ISD::ADDC) {
1593    Lo = DAG.getNode(ISD::ADDC, dl, VTList, LoOps, 2);
1594    HiOps[2] = Lo.getValue(1);
1595    Hi = DAG.getNode(ISD::ADDE, dl, VTList, HiOps, 3);
1596  } else {
1597    Lo = DAG.getNode(ISD::SUBC, dl, VTList, LoOps, 2);
1598    HiOps[2] = Lo.getValue(1);
1599    Hi = DAG.getNode(ISD::SUBE, dl, VTList, HiOps, 3);
1600  }
1601
1602  // Legalized the flag result - switch anything that used the old flag to
1603  // use the new one.
1604  ReplaceValueWith(SDValue(N, 1), Hi.getValue(1));
1605}
1606
1607void DAGTypeLegalizer::ExpandIntRes_ADDSUBE(SDNode *N,
1608                                            SDValue &Lo, SDValue &Hi) {
1609  // Expand the subcomponents.
1610  SDValue LHSL, LHSH, RHSL, RHSH;
1611  DebugLoc dl = N->getDebugLoc();
1612  GetExpandedInteger(N->getOperand(0), LHSL, LHSH);
1613  GetExpandedInteger(N->getOperand(1), RHSL, RHSH);
1614  SDVTList VTList = DAG.getVTList(LHSL.getValueType(), MVT::Glue);
1615  SDValue LoOps[3] = { LHSL, RHSL, N->getOperand(2) };
1616  SDValue HiOps[3] = { LHSH, RHSH };
1617
1618  Lo = DAG.getNode(N->getOpcode(), dl, VTList, LoOps, 3);
1619  HiOps[2] = Lo.getValue(1);
1620  Hi = DAG.getNode(N->getOpcode(), dl, VTList, HiOps, 3);
1621
1622  // Legalized the flag result - switch anything that used the old flag to
1623  // use the new one.
1624  ReplaceValueWith(SDValue(N, 1), Hi.getValue(1));
1625}
1626
1627void DAGTypeLegalizer::ExpandIntRes_MERGE_VALUES(SDNode *N, unsigned ResNo,
1628                                                 SDValue &Lo, SDValue &Hi) {
1629  SDValue Res = DisintegrateMERGE_VALUES(N, ResNo);
1630  SplitInteger(Res, Lo, Hi);
1631}
1632
1633void DAGTypeLegalizer::ExpandIntRes_ANY_EXTEND(SDNode *N,
1634                                               SDValue &Lo, SDValue &Hi) {
1635  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1636  DebugLoc dl = N->getDebugLoc();
1637  SDValue Op = N->getOperand(0);
1638  if (Op.getValueType().bitsLE(NVT)) {
1639    // The low part is any extension of the input (which degenerates to a copy).
1640    Lo = DAG.getNode(ISD::ANY_EXTEND, dl, NVT, Op);
1641    Hi = DAG.getUNDEF(NVT);   // The high part is undefined.
1642  } else {
1643    // For example, extension of an i48 to an i64.  The operand type necessarily
1644    // promotes to the result type, so will end up being expanded too.
1645    assert(getTypeAction(Op.getValueType()) ==
1646           TargetLowering::TypePromoteInteger &&
1647           "Only know how to promote this result!");
1648    SDValue Res = GetPromotedInteger(Op);
1649    assert(Res.getValueType() == N->getValueType(0) &&
1650           "Operand over promoted?");
1651    // Split the promoted operand.  This will simplify when it is expanded.
1652    SplitInteger(Res, Lo, Hi);
1653  }
1654}
1655
1656void DAGTypeLegalizer::ExpandIntRes_AssertSext(SDNode *N,
1657                                               SDValue &Lo, SDValue &Hi) {
1658  DebugLoc dl = N->getDebugLoc();
1659  GetExpandedInteger(N->getOperand(0), Lo, Hi);
1660  EVT NVT = Lo.getValueType();
1661  EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
1662  unsigned NVTBits = NVT.getSizeInBits();
1663  unsigned EVTBits = EVT.getSizeInBits();
1664
1665  if (NVTBits < EVTBits) {
1666    Hi = DAG.getNode(ISD::AssertSext, dl, NVT, Hi,
1667                     DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(),
1668                                                        EVTBits - NVTBits)));
1669  } else {
1670    Lo = DAG.getNode(ISD::AssertSext, dl, NVT, Lo, DAG.getValueType(EVT));
1671    // The high part replicates the sign bit of Lo, make it explicit.
1672    Hi = DAG.getNode(ISD::SRA, dl, NVT, Lo,
1673                     DAG.getConstant(NVTBits-1, TLI.getPointerTy()));
1674  }
1675}
1676
1677void DAGTypeLegalizer::ExpandIntRes_AssertZext(SDNode *N,
1678                                               SDValue &Lo, SDValue &Hi) {
1679  DebugLoc dl = N->getDebugLoc();
1680  GetExpandedInteger(N->getOperand(0), Lo, Hi);
1681  EVT NVT = Lo.getValueType();
1682  EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
1683  unsigned NVTBits = NVT.getSizeInBits();
1684  unsigned EVTBits = EVT.getSizeInBits();
1685
1686  if (NVTBits < EVTBits) {
1687    Hi = DAG.getNode(ISD::AssertZext, dl, NVT, Hi,
1688                     DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(),
1689                                                        EVTBits - NVTBits)));
1690  } else {
1691    Lo = DAG.getNode(ISD::AssertZext, dl, NVT, Lo, DAG.getValueType(EVT));
1692    // The high part must be zero, make it explicit.
1693    Hi = DAG.getConstant(0, NVT);
1694  }
1695}
1696
1697void DAGTypeLegalizer::ExpandIntRes_BSWAP(SDNode *N,
1698                                          SDValue &Lo, SDValue &Hi) {
1699  DebugLoc dl = N->getDebugLoc();
1700  GetExpandedInteger(N->getOperand(0), Hi, Lo);  // Note swapped operands.
1701  Lo = DAG.getNode(ISD::BSWAP, dl, Lo.getValueType(), Lo);
1702  Hi = DAG.getNode(ISD::BSWAP, dl, Hi.getValueType(), Hi);
1703}
1704
1705void DAGTypeLegalizer::ExpandIntRes_Constant(SDNode *N,
1706                                             SDValue &Lo, SDValue &Hi) {
1707  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
1708  unsigned NBitWidth = NVT.getSizeInBits();
1709  const APInt &Cst = cast<ConstantSDNode>(N)->getAPIntValue();
1710  Lo = DAG.getConstant(Cst.trunc(NBitWidth), NVT);
1711  Hi = DAG.getConstant(Cst.lshr(NBitWidth).trunc(NBitWidth), NVT);
1712}
1713
1714void DAGTypeLegalizer::ExpandIntRes_CTLZ(SDNode *N,
1715                                         SDValue &Lo, SDValue &Hi) {
1716  DebugLoc dl = N->getDebugLoc();
1717  // ctlz (HiLo) -> Hi != 0 ? ctlz(Hi) : (ctlz(Lo)+32)
1718  GetExpandedInteger(N->getOperand(0), Lo, Hi);
1719  EVT NVT = Lo.getValueType();
1720
1721  SDValue HiNotZero = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT), Hi,
1722                                   DAG.getConstant(0, NVT), ISD::SETNE);
1723
1724  SDValue LoLZ = DAG.getNode(N->getOpcode(), dl, NVT, Lo);
1725  SDValue HiLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, NVT, Hi);
1726
1727  Lo = DAG.getNode(ISD::SELECT, dl, NVT, HiNotZero, HiLZ,
1728                   DAG.getNode(ISD::ADD, dl, NVT, LoLZ,
1729                               DAG.getConstant(NVT.getSizeInBits(), NVT)));
1730  Hi = DAG.getConstant(0, NVT);
1731}
1732
1733void DAGTypeLegalizer::ExpandIntRes_CTPOP(SDNode *N,
1734                                          SDValue &Lo, SDValue &Hi) {
1735  DebugLoc dl = N->getDebugLoc();
1736  // ctpop(HiLo) -> ctpop(Hi)+ctpop(Lo)
1737  GetExpandedInteger(N->getOperand(0), Lo, Hi);
1738  EVT NVT = Lo.getValueType();
1739  Lo = DAG.getNode(ISD::ADD, dl, NVT, DAG.getNode(ISD::CTPOP, dl, NVT, Lo),
1740                   DAG.getNode(ISD::CTPOP, dl, NVT, Hi));
1741  Hi = DAG.getConstant(0, NVT);
1742}
1743
1744void DAGTypeLegalizer::ExpandIntRes_CTTZ(SDNode *N,
1745                                         SDValue &Lo, SDValue &Hi) {
1746  DebugLoc dl = N->getDebugLoc();
1747  // cttz (HiLo) -> Lo != 0 ? cttz(Lo) : (cttz(Hi)+32)
1748  GetExpandedInteger(N->getOperand(0), Lo, Hi);
1749  EVT NVT = Lo.getValueType();
1750
1751  SDValue LoNotZero = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT), Lo,
1752                                   DAG.getConstant(0, NVT), ISD::SETNE);
1753
1754  SDValue LoLZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, NVT, Lo);
1755  SDValue HiLZ = DAG.getNode(N->getOpcode(), dl, NVT, Hi);
1756
1757  Lo = DAG.getNode(ISD::SELECT, dl, NVT, LoNotZero, LoLZ,
1758                   DAG.getNode(ISD::ADD, dl, NVT, HiLZ,
1759                               DAG.getConstant(NVT.getSizeInBits(), NVT)));
1760  Hi = DAG.getConstant(0, NVT);
1761}
1762
1763void DAGTypeLegalizer::ExpandIntRes_FP_TO_SINT(SDNode *N, SDValue &Lo,
1764                                               SDValue &Hi) {
1765  DebugLoc dl = N->getDebugLoc();
1766  EVT VT = N->getValueType(0);
1767  SDValue Op = N->getOperand(0);
1768  RTLIB::Libcall LC = RTLIB::getFPTOSINT(Op.getValueType(), VT);
1769  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected fp-to-sint conversion!");
1770  SplitInteger(MakeLibCall(LC, VT, &Op, 1, true/*irrelevant*/, dl), Lo, Hi);
1771}
1772
1773void DAGTypeLegalizer::ExpandIntRes_FP_TO_UINT(SDNode *N, SDValue &Lo,
1774                                               SDValue &Hi) {
1775  DebugLoc dl = N->getDebugLoc();
1776  EVT VT = N->getValueType(0);
1777  SDValue Op = N->getOperand(0);
1778  RTLIB::Libcall LC = RTLIB::getFPTOUINT(Op.getValueType(), VT);
1779  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected fp-to-uint conversion!");
1780  SplitInteger(MakeLibCall(LC, VT, &Op, 1, false/*irrelevant*/, dl), Lo, Hi);
1781}
1782
1783void DAGTypeLegalizer::ExpandIntRes_LOAD(LoadSDNode *N,
1784                                         SDValue &Lo, SDValue &Hi) {
1785  if (ISD::isNormalLoad(N)) {
1786    ExpandRes_NormalLoad(N, Lo, Hi);
1787    return;
1788  }
1789
1790  assert(ISD::isUNINDEXEDLoad(N) && "Indexed load during type legalization!");
1791
1792  EVT VT = N->getValueType(0);
1793  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
1794  SDValue Ch  = N->getChain();
1795  SDValue Ptr = N->getBasePtr();
1796  ISD::LoadExtType ExtType = N->getExtensionType();
1797  unsigned Alignment = N->getAlignment();
1798  bool isVolatile = N->isVolatile();
1799  bool isNonTemporal = N->isNonTemporal();
1800  bool isInvariant = N->isInvariant();
1801  DebugLoc dl = N->getDebugLoc();
1802
1803  assert(NVT.isByteSized() && "Expanded type not byte sized!");
1804
1805  if (N->getMemoryVT().bitsLE(NVT)) {
1806    EVT MemVT = N->getMemoryVT();
1807
1808    Lo = DAG.getExtLoad(ExtType, dl, NVT, Ch, Ptr, N->getPointerInfo(),
1809                        MemVT, isVolatile, isNonTemporal, Alignment);
1810
1811    // Remember the chain.
1812    Ch = Lo.getValue(1);
1813
1814    if (ExtType == ISD::SEXTLOAD) {
1815      // The high part is obtained by SRA'ing all but one of the bits of the
1816      // lo part.
1817      unsigned LoSize = Lo.getValueType().getSizeInBits();
1818      Hi = DAG.getNode(ISD::SRA, dl, NVT, Lo,
1819                       DAG.getConstant(LoSize-1, TLI.getPointerTy()));
1820    } else if (ExtType == ISD::ZEXTLOAD) {
1821      // The high part is just a zero.
1822      Hi = DAG.getConstant(0, NVT);
1823    } else {
1824      assert(ExtType == ISD::EXTLOAD && "Unknown extload!");
1825      // The high part is undefined.
1826      Hi = DAG.getUNDEF(NVT);
1827    }
1828  } else if (TLI.isLittleEndian()) {
1829    // Little-endian - low bits are at low addresses.
1830    Lo = DAG.getLoad(NVT, dl, Ch, Ptr, N->getPointerInfo(),
1831                     isVolatile, isNonTemporal, isInvariant, Alignment);
1832
1833    unsigned ExcessBits =
1834      N->getMemoryVT().getSizeInBits() - NVT.getSizeInBits();
1835    EVT NEVT = EVT::getIntegerVT(*DAG.getContext(), ExcessBits);
1836
1837    // Increment the pointer to the other half.
1838    unsigned IncrementSize = NVT.getSizeInBits()/8;
1839    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
1840                      DAG.getIntPtrConstant(IncrementSize));
1841    Hi = DAG.getExtLoad(ExtType, dl, NVT, Ch, Ptr,
1842                        N->getPointerInfo().getWithOffset(IncrementSize), NEVT,
1843                        isVolatile, isNonTemporal,
1844                        MinAlign(Alignment, IncrementSize));
1845
1846    // Build a factor node to remember that this load is independent of the
1847    // other one.
1848    Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1849                     Hi.getValue(1));
1850  } else {
1851    // Big-endian - high bits are at low addresses.  Favor aligned loads at
1852    // the cost of some bit-fiddling.
1853    EVT MemVT = N->getMemoryVT();
1854    unsigned EBytes = MemVT.getStoreSize();
1855    unsigned IncrementSize = NVT.getSizeInBits()/8;
1856    unsigned ExcessBits = (EBytes - IncrementSize)*8;
1857
1858    // Load both the high bits and maybe some of the low bits.
1859    Hi = DAG.getExtLoad(ExtType, dl, NVT, Ch, Ptr, N->getPointerInfo(),
1860                        EVT::getIntegerVT(*DAG.getContext(),
1861                                          MemVT.getSizeInBits() - ExcessBits),
1862                        isVolatile, isNonTemporal, Alignment);
1863
1864    // Increment the pointer to the other half.
1865    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
1866                      DAG.getIntPtrConstant(IncrementSize));
1867    // Load the rest of the low bits.
1868    Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, NVT, Ch, Ptr,
1869                        N->getPointerInfo().getWithOffset(IncrementSize),
1870                        EVT::getIntegerVT(*DAG.getContext(), ExcessBits),
1871                        isVolatile, isNonTemporal,
1872                        MinAlign(Alignment, IncrementSize));
1873
1874    // Build a factor node to remember that this load is independent of the
1875    // other one.
1876    Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1877                     Hi.getValue(1));
1878
1879    if (ExcessBits < NVT.getSizeInBits()) {
1880      // Transfer low bits from the bottom of Hi to the top of Lo.
1881      Lo = DAG.getNode(ISD::OR, dl, NVT, Lo,
1882                       DAG.getNode(ISD::SHL, dl, NVT, Hi,
1883                                   DAG.getConstant(ExcessBits,
1884                                                   TLI.getPointerTy())));
1885      // Move high bits to the right position in Hi.
1886      Hi = DAG.getNode(ExtType == ISD::SEXTLOAD ? ISD::SRA : ISD::SRL, dl,
1887                       NVT, Hi,
1888                       DAG.getConstant(NVT.getSizeInBits() - ExcessBits,
1889                                       TLI.getPointerTy()));
1890    }
1891  }
1892
1893  // Legalized the chain result - switch anything that used the old chain to
1894  // use the new one.
1895  ReplaceValueWith(SDValue(N, 1), Ch);
1896}
1897
1898void DAGTypeLegalizer::ExpandIntRes_Logical(SDNode *N,
1899                                            SDValue &Lo, SDValue &Hi) {
1900  DebugLoc dl = N->getDebugLoc();
1901  SDValue LL, LH, RL, RH;
1902  GetExpandedInteger(N->getOperand(0), LL, LH);
1903  GetExpandedInteger(N->getOperand(1), RL, RH);
1904  Lo = DAG.getNode(N->getOpcode(), dl, LL.getValueType(), LL, RL);
1905  Hi = DAG.getNode(N->getOpcode(), dl, LL.getValueType(), LH, RH);
1906}
1907
1908void DAGTypeLegalizer::ExpandIntRes_MUL(SDNode *N,
1909                                        SDValue &Lo, SDValue &Hi) {
1910  EVT VT = N->getValueType(0);
1911  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
1912  DebugLoc dl = N->getDebugLoc();
1913
1914  bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, NVT);
1915  bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, NVT);
1916  bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, NVT);
1917  bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, NVT);
1918  if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) {
1919    SDValue LL, LH, RL, RH;
1920    GetExpandedInteger(N->getOperand(0), LL, LH);
1921    GetExpandedInteger(N->getOperand(1), RL, RH);
1922    unsigned OuterBitSize = VT.getSizeInBits();
1923    unsigned InnerBitSize = NVT.getSizeInBits();
1924    unsigned LHSSB = DAG.ComputeNumSignBits(N->getOperand(0));
1925    unsigned RHSSB = DAG.ComputeNumSignBits(N->getOperand(1));
1926
1927    APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
1928    if (DAG.MaskedValueIsZero(N->getOperand(0), HighMask) &&
1929        DAG.MaskedValueIsZero(N->getOperand(1), HighMask)) {
1930      // The inputs are both zero-extended.
1931      if (HasUMUL_LOHI) {
1932        // We can emit a umul_lohi.
1933        Lo = DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(NVT, NVT), LL, RL);
1934        Hi = SDValue(Lo.getNode(), 1);
1935        return;
1936      }
1937      if (HasMULHU) {
1938        // We can emit a mulhu+mul.
1939        Lo = DAG.getNode(ISD::MUL, dl, NVT, LL, RL);
1940        Hi = DAG.getNode(ISD::MULHU, dl, NVT, LL, RL);
1941        return;
1942      }
1943    }
1944    if (LHSSB > InnerBitSize && RHSSB > InnerBitSize) {
1945      // The input values are both sign-extended.
1946      if (HasSMUL_LOHI) {
1947        // We can emit a smul_lohi.
1948        Lo = DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(NVT, NVT), LL, RL);
1949        Hi = SDValue(Lo.getNode(), 1);
1950        return;
1951      }
1952      if (HasMULHS) {
1953        // We can emit a mulhs+mul.
1954        Lo = DAG.getNode(ISD::MUL, dl, NVT, LL, RL);
1955        Hi = DAG.getNode(ISD::MULHS, dl, NVT, LL, RL);
1956        return;
1957      }
1958    }
1959    if (HasUMUL_LOHI) {
1960      // Lo,Hi = umul LHS, RHS.
1961      SDValue UMulLOHI = DAG.getNode(ISD::UMUL_LOHI, dl,
1962                                       DAG.getVTList(NVT, NVT), LL, RL);
1963      Lo = UMulLOHI;
1964      Hi = UMulLOHI.getValue(1);
1965      RH = DAG.getNode(ISD::MUL, dl, NVT, LL, RH);
1966      LH = DAG.getNode(ISD::MUL, dl, NVT, LH, RL);
1967      Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, RH);
1968      Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, LH);
1969      return;
1970    }
1971    if (HasMULHU) {
1972      Lo = DAG.getNode(ISD::MUL, dl, NVT, LL, RL);
1973      Hi = DAG.getNode(ISD::MULHU, dl, NVT, LL, RL);
1974      RH = DAG.getNode(ISD::MUL, dl, NVT, LL, RH);
1975      LH = DAG.getNode(ISD::MUL, dl, NVT, LH, RL);
1976      Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, RH);
1977      Hi = DAG.getNode(ISD::ADD, dl, NVT, Hi, LH);
1978      return;
1979    }
1980  }
1981
1982  // If nothing else, we can make a libcall.
1983  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1984  if (VT == MVT::i16)
1985    LC = RTLIB::MUL_I16;
1986  else if (VT == MVT::i32)
1987    LC = RTLIB::MUL_I32;
1988  else if (VT == MVT::i64)
1989    LC = RTLIB::MUL_I64;
1990  else if (VT == MVT::i128)
1991    LC = RTLIB::MUL_I128;
1992  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported MUL!");
1993
1994  SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
1995  SplitInteger(MakeLibCall(LC, VT, Ops, 2, true/*irrelevant*/, dl), Lo, Hi);
1996}
1997
1998void DAGTypeLegalizer::ExpandIntRes_SADDSUBO(SDNode *Node,
1999                                             SDValue &Lo, SDValue &Hi) {
2000  SDValue LHS = Node->getOperand(0);
2001  SDValue RHS = Node->getOperand(1);
2002  DebugLoc dl = Node->getDebugLoc();
2003
2004  // Expand the result by simply replacing it with the equivalent
2005  // non-overflow-checking operation.
2006  SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
2007                            ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2008                            LHS, RHS);
2009  SplitInteger(Sum, Lo, Hi);
2010
2011  // Compute the overflow.
2012  //
2013  //   LHSSign -> LHS >= 0
2014  //   RHSSign -> RHS >= 0
2015  //   SumSign -> Sum >= 0
2016  //
2017  //   Add:
2018  //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
2019  //   Sub:
2020  //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
2021  //
2022  EVT OType = Node->getValueType(1);
2023  SDValue Zero = DAG.getConstant(0, LHS.getValueType());
2024
2025  SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
2026  SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
2027  SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
2028                                    Node->getOpcode() == ISD::SADDO ?
2029                                    ISD::SETEQ : ISD::SETNE);
2030
2031  SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
2032  SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
2033
2034  SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
2035
2036  // Use the calculated overflow everywhere.
2037  ReplaceValueWith(SDValue(Node, 1), Cmp);
2038}
2039
2040void DAGTypeLegalizer::ExpandIntRes_SDIV(SDNode *N,
2041                                         SDValue &Lo, SDValue &Hi) {
2042  EVT VT = N->getValueType(0);
2043  DebugLoc dl = N->getDebugLoc();
2044
2045  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
2046  if (VT == MVT::i16)
2047    LC = RTLIB::SDIV_I16;
2048  else if (VT == MVT::i32)
2049    LC = RTLIB::SDIV_I32;
2050  else if (VT == MVT::i64)
2051    LC = RTLIB::SDIV_I64;
2052  else if (VT == MVT::i128)
2053    LC = RTLIB::SDIV_I128;
2054  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
2055
2056  SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
2057  SplitInteger(MakeLibCall(LC, VT, Ops, 2, true, dl), Lo, Hi);
2058}
2059
2060void DAGTypeLegalizer::ExpandIntRes_Shift(SDNode *N,
2061                                          SDValue &Lo, SDValue &Hi) {
2062  EVT VT = N->getValueType(0);
2063  DebugLoc dl = N->getDebugLoc();
2064
2065  // If we can emit an efficient shift operation, do so now.  Check to see if
2066  // the RHS is a constant.
2067  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))
2068    return ExpandShiftByConstant(N, CN->getZExtValue(), Lo, Hi);
2069
2070  // If we can determine that the high bit of the shift is zero or one, even if
2071  // the low bits are variable, emit this shift in an optimized form.
2072  if (ExpandShiftWithKnownAmountBit(N, Lo, Hi))
2073    return;
2074
2075  // If this target supports shift_PARTS, use it.  First, map to the _PARTS opc.
2076  unsigned PartsOpc;
2077  if (N->getOpcode() == ISD::SHL) {
2078    PartsOpc = ISD::SHL_PARTS;
2079  } else if (N->getOpcode() == ISD::SRL) {
2080    PartsOpc = ISD::SRL_PARTS;
2081  } else {
2082    assert(N->getOpcode() == ISD::SRA && "Unknown shift!");
2083    PartsOpc = ISD::SRA_PARTS;
2084  }
2085
2086  // Next check to see if the target supports this SHL_PARTS operation or if it
2087  // will custom expand it.
2088  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
2089  TargetLowering::LegalizeAction Action = TLI.getOperationAction(PartsOpc, NVT);
2090  if ((Action == TargetLowering::Legal && TLI.isTypeLegal(NVT)) ||
2091      Action == TargetLowering::Custom) {
2092    // Expand the subcomponents.
2093    SDValue LHSL, LHSH;
2094    GetExpandedInteger(N->getOperand(0), LHSL, LHSH);
2095
2096    SDValue Ops[] = { LHSL, LHSH, N->getOperand(1) };
2097    EVT VT = LHSL.getValueType();
2098    Lo = DAG.getNode(PartsOpc, dl, DAG.getVTList(VT, VT), Ops, 3);
2099    Hi = Lo.getValue(1);
2100    return;
2101  }
2102
2103  // Otherwise, emit a libcall.
2104  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
2105  bool isSigned;
2106  if (N->getOpcode() == ISD::SHL) {
2107    isSigned = false; /*sign irrelevant*/
2108    if (VT == MVT::i16)
2109      LC = RTLIB::SHL_I16;
2110    else if (VT == MVT::i32)
2111      LC = RTLIB::SHL_I32;
2112    else if (VT == MVT::i64)
2113      LC = RTLIB::SHL_I64;
2114    else if (VT == MVT::i128)
2115      LC = RTLIB::SHL_I128;
2116  } else if (N->getOpcode() == ISD::SRL) {
2117    isSigned = false;
2118    if (VT == MVT::i16)
2119      LC = RTLIB::SRL_I16;
2120    else if (VT == MVT::i32)
2121      LC = RTLIB::SRL_I32;
2122    else if (VT == MVT::i64)
2123      LC = RTLIB::SRL_I64;
2124    else if (VT == MVT::i128)
2125      LC = RTLIB::SRL_I128;
2126  } else {
2127    assert(N->getOpcode() == ISD::SRA && "Unknown shift!");
2128    isSigned = true;
2129    if (VT == MVT::i16)
2130      LC = RTLIB::SRA_I16;
2131    else if (VT == MVT::i32)
2132      LC = RTLIB::SRA_I32;
2133    else if (VT == MVT::i64)
2134      LC = RTLIB::SRA_I64;
2135    else if (VT == MVT::i128)
2136      LC = RTLIB::SRA_I128;
2137  }
2138
2139  if (LC != RTLIB::UNKNOWN_LIBCALL && TLI.getLibcallName(LC)) {
2140    SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
2141    SplitInteger(MakeLibCall(LC, VT, Ops, 2, isSigned, dl), Lo, Hi);
2142    return;
2143  }
2144
2145  if (!ExpandShiftWithUnknownAmountBit(N, Lo, Hi))
2146    llvm_unreachable("Unsupported shift!");
2147}
2148
2149void DAGTypeLegalizer::ExpandIntRes_SIGN_EXTEND(SDNode *N,
2150                                                SDValue &Lo, SDValue &Hi) {
2151  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2152  DebugLoc dl = N->getDebugLoc();
2153  SDValue Op = N->getOperand(0);
2154  if (Op.getValueType().bitsLE(NVT)) {
2155    // The low part is sign extension of the input (degenerates to a copy).
2156    Lo = DAG.getNode(ISD::SIGN_EXTEND, dl, NVT, N->getOperand(0));
2157    // The high part is obtained by SRA'ing all but one of the bits of low part.
2158    unsigned LoSize = NVT.getSizeInBits();
2159    Hi = DAG.getNode(ISD::SRA, dl, NVT, Lo,
2160                     DAG.getConstant(LoSize-1, TLI.getPointerTy()));
2161  } else {
2162    // For example, extension of an i48 to an i64.  The operand type necessarily
2163    // promotes to the result type, so will end up being expanded too.
2164    assert(getTypeAction(Op.getValueType()) ==
2165           TargetLowering::TypePromoteInteger &&
2166           "Only know how to promote this result!");
2167    SDValue Res = GetPromotedInteger(Op);
2168    assert(Res.getValueType() == N->getValueType(0) &&
2169           "Operand over promoted?");
2170    // Split the promoted operand.  This will simplify when it is expanded.
2171    SplitInteger(Res, Lo, Hi);
2172    unsigned ExcessBits =
2173      Op.getValueType().getSizeInBits() - NVT.getSizeInBits();
2174    Hi = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Hi.getValueType(), Hi,
2175                     DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(),
2176                                                        ExcessBits)));
2177  }
2178}
2179
2180void DAGTypeLegalizer::
2181ExpandIntRes_SIGN_EXTEND_INREG(SDNode *N, SDValue &Lo, SDValue &Hi) {
2182  DebugLoc dl = N->getDebugLoc();
2183  GetExpandedInteger(N->getOperand(0), Lo, Hi);
2184  EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
2185
2186  if (EVT.bitsLE(Lo.getValueType())) {
2187    // sext_inreg the low part if needed.
2188    Lo = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Lo.getValueType(), Lo,
2189                     N->getOperand(1));
2190
2191    // The high part gets the sign extension from the lo-part.  This handles
2192    // things like sextinreg V:i64 from i8.
2193    Hi = DAG.getNode(ISD::SRA, dl, Hi.getValueType(), Lo,
2194                     DAG.getConstant(Hi.getValueType().getSizeInBits()-1,
2195                                     TLI.getPointerTy()));
2196  } else {
2197    // For example, extension of an i48 to an i64.  Leave the low part alone,
2198    // sext_inreg the high part.
2199    unsigned ExcessBits =
2200      EVT.getSizeInBits() - Lo.getValueType().getSizeInBits();
2201    Hi = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Hi.getValueType(), Hi,
2202                     DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(),
2203                                                        ExcessBits)));
2204  }
2205}
2206
2207void DAGTypeLegalizer::ExpandIntRes_SREM(SDNode *N,
2208                                         SDValue &Lo, SDValue &Hi) {
2209  EVT VT = N->getValueType(0);
2210  DebugLoc dl = N->getDebugLoc();
2211
2212  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
2213  if (VT == MVT::i16)
2214    LC = RTLIB::SREM_I16;
2215  else if (VT == MVT::i32)
2216    LC = RTLIB::SREM_I32;
2217  else if (VT == MVT::i64)
2218    LC = RTLIB::SREM_I64;
2219  else if (VT == MVT::i128)
2220    LC = RTLIB::SREM_I128;
2221  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
2222
2223  SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
2224  SplitInteger(MakeLibCall(LC, VT, Ops, 2, true, dl), Lo, Hi);
2225}
2226
2227void DAGTypeLegalizer::ExpandIntRes_TRUNCATE(SDNode *N,
2228                                             SDValue &Lo, SDValue &Hi) {
2229  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2230  DebugLoc dl = N->getDebugLoc();
2231  Lo = DAG.getNode(ISD::TRUNCATE, dl, NVT, N->getOperand(0));
2232  Hi = DAG.getNode(ISD::SRL, dl,
2233                   N->getOperand(0).getValueType(), N->getOperand(0),
2234                   DAG.getConstant(NVT.getSizeInBits(), TLI.getPointerTy()));
2235  Hi = DAG.getNode(ISD::TRUNCATE, dl, NVT, Hi);
2236}
2237
2238void DAGTypeLegalizer::ExpandIntRes_UADDSUBO(SDNode *N,
2239                                             SDValue &Lo, SDValue &Hi) {
2240  SDValue LHS = N->getOperand(0);
2241  SDValue RHS = N->getOperand(1);
2242  DebugLoc dl = N->getDebugLoc();
2243
2244  // Expand the result by simply replacing it with the equivalent
2245  // non-overflow-checking operation.
2246  SDValue Sum = DAG.getNode(N->getOpcode() == ISD::UADDO ?
2247                            ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
2248                            LHS, RHS);
2249  SplitInteger(Sum, Lo, Hi);
2250
2251  // Calculate the overflow: addition overflows iff a + b < a, and subtraction
2252  // overflows iff a - b > a.
2253  SDValue Ofl = DAG.getSetCC(dl, N->getValueType(1), Sum, LHS,
2254                             N->getOpcode () == ISD::UADDO ?
2255                             ISD::SETULT : ISD::SETUGT);
2256
2257  // Use the calculated overflow everywhere.
2258  ReplaceValueWith(SDValue(N, 1), Ofl);
2259}
2260
2261void DAGTypeLegalizer::ExpandIntRes_XMULO(SDNode *N,
2262                                          SDValue &Lo, SDValue &Hi) {
2263  EVT VT = N->getValueType(0);
2264  DebugLoc dl = N->getDebugLoc();
2265
2266  // A divide for UMULO should be faster than a function call.
2267  if (N->getOpcode() == ISD::UMULO) {
2268    SDValue LHS = N->getOperand(0), RHS = N->getOperand(1);
2269
2270    SDValue MUL = DAG.getNode(ISD::MUL, dl, LHS.getValueType(), LHS, RHS);
2271    SplitInteger(MUL, Lo, Hi);
2272
2273    // A divide for UMULO will be faster than a function call. Select to
2274    // make sure we aren't using 0.
2275    SDValue isZero = DAG.getSetCC(dl, TLI.getSetCCResultType(VT),
2276                                  RHS, DAG.getConstant(0, VT), ISD::SETEQ);
2277    SDValue NotZero = DAG.getNode(ISD::SELECT, dl, VT, isZero,
2278                                  DAG.getConstant(1, VT), RHS);
2279    SDValue DIV = DAG.getNode(ISD::UDIV, dl, VT, MUL, NotZero);
2280    SDValue Overflow = DAG.getSetCC(dl, N->getValueType(1), DIV, LHS,
2281                                    ISD::SETNE);
2282    Overflow = DAG.getNode(ISD::SELECT, dl, N->getValueType(1), isZero,
2283                           DAG.getConstant(0, N->getValueType(1)),
2284                           Overflow);
2285    ReplaceValueWith(SDValue(N, 1), Overflow);
2286    return;
2287  }
2288
2289  Type *RetTy = VT.getTypeForEVT(*DAG.getContext());
2290  EVT PtrVT = TLI.getPointerTy();
2291  Type *PtrTy = PtrVT.getTypeForEVT(*DAG.getContext());
2292
2293  // Replace this with a libcall that will check overflow.
2294  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
2295  if (VT == MVT::i32)
2296    LC = RTLIB::MULO_I32;
2297  else if (VT == MVT::i64)
2298    LC = RTLIB::MULO_I64;
2299  else if (VT == MVT::i128)
2300    LC = RTLIB::MULO_I128;
2301  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported XMULO!");
2302
2303  SDValue Temp = DAG.CreateStackTemporary(PtrVT);
2304  // Temporary for the overflow value, default it to zero.
2305  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl,
2306                               DAG.getConstant(0, PtrVT), Temp,
2307                               MachinePointerInfo(), false, false, 0);
2308
2309  TargetLowering::ArgListTy Args;
2310  TargetLowering::ArgListEntry Entry;
2311  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2312    EVT ArgVT = N->getOperand(i).getValueType();
2313    Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2314    Entry.Node = N->getOperand(i);
2315    Entry.Ty = ArgTy;
2316    Entry.isSExt = true;
2317    Entry.isZExt = false;
2318    Args.push_back(Entry);
2319  }
2320
2321  // Also pass the address of the overflow check.
2322  Entry.Node = Temp;
2323  Entry.Ty = PtrTy->getPointerTo();
2324  Entry.isSExt = true;
2325  Entry.isZExt = false;
2326  Args.push_back(Entry);
2327
2328  SDValue Func = DAG.getExternalSymbol(TLI.getLibcallName(LC), PtrVT);
2329  TargetLowering::
2330  CallLoweringInfo CLI(Chain, RetTy, true, false, false, false,
2331                       0, TLI.getLibcallCallingConv(LC),
2332                       /*isTailCall=*/false,
2333                       /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
2334                       Func, Args, DAG, dl);
2335  std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2336
2337  SplitInteger(CallInfo.first, Lo, Hi);
2338  SDValue Temp2 = DAG.getLoad(PtrVT, dl, CallInfo.second, Temp,
2339                              MachinePointerInfo(), false, false, false, 0);
2340  SDValue Ofl = DAG.getSetCC(dl, N->getValueType(1), Temp2,
2341                             DAG.getConstant(0, PtrVT),
2342                             ISD::SETNE);
2343  // Use the overflow from the libcall everywhere.
2344  ReplaceValueWith(SDValue(N, 1), Ofl);
2345}
2346
2347void DAGTypeLegalizer::ExpandIntRes_UDIV(SDNode *N,
2348                                         SDValue &Lo, SDValue &Hi) {
2349  EVT VT = N->getValueType(0);
2350  DebugLoc dl = N->getDebugLoc();
2351
2352  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
2353  if (VT == MVT::i16)
2354    LC = RTLIB::UDIV_I16;
2355  else if (VT == MVT::i32)
2356    LC = RTLIB::UDIV_I32;
2357  else if (VT == MVT::i64)
2358    LC = RTLIB::UDIV_I64;
2359  else if (VT == MVT::i128)
2360    LC = RTLIB::UDIV_I128;
2361  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported UDIV!");
2362
2363  SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
2364  SplitInteger(MakeLibCall(LC, VT, Ops, 2, false, dl), Lo, Hi);
2365}
2366
2367void DAGTypeLegalizer::ExpandIntRes_UREM(SDNode *N,
2368                                         SDValue &Lo, SDValue &Hi) {
2369  EVT VT = N->getValueType(0);
2370  DebugLoc dl = N->getDebugLoc();
2371
2372  RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
2373  if (VT == MVT::i16)
2374    LC = RTLIB::UREM_I16;
2375  else if (VT == MVT::i32)
2376    LC = RTLIB::UREM_I32;
2377  else if (VT == MVT::i64)
2378    LC = RTLIB::UREM_I64;
2379  else if (VT == MVT::i128)
2380    LC = RTLIB::UREM_I128;
2381  assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported UREM!");
2382
2383  SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
2384  SplitInteger(MakeLibCall(LC, VT, Ops, 2, false, dl), Lo, Hi);
2385}
2386
2387void DAGTypeLegalizer::ExpandIntRes_ZERO_EXTEND(SDNode *N,
2388                                                SDValue &Lo, SDValue &Hi) {
2389  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), N->getValueType(0));
2390  DebugLoc dl = N->getDebugLoc();
2391  SDValue Op = N->getOperand(0);
2392  if (Op.getValueType().bitsLE(NVT)) {
2393    // The low part is zero extension of the input (degenerates to a copy).
2394    Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, N->getOperand(0));
2395    Hi = DAG.getConstant(0, NVT);   // The high part is just a zero.
2396  } else {
2397    // For example, extension of an i48 to an i64.  The operand type necessarily
2398    // promotes to the result type, so will end up being expanded too.
2399    assert(getTypeAction(Op.getValueType()) ==
2400           TargetLowering::TypePromoteInteger &&
2401           "Only know how to promote this result!");
2402    SDValue Res = GetPromotedInteger(Op);
2403    assert(Res.getValueType() == N->getValueType(0) &&
2404           "Operand over promoted?");
2405    // Split the promoted operand.  This will simplify when it is expanded.
2406    SplitInteger(Res, Lo, Hi);
2407    unsigned ExcessBits =
2408      Op.getValueType().getSizeInBits() - NVT.getSizeInBits();
2409    Hi = DAG.getZeroExtendInReg(Hi, dl,
2410                                EVT::getIntegerVT(*DAG.getContext(),
2411                                                  ExcessBits));
2412  }
2413}
2414
2415void DAGTypeLegalizer::ExpandIntRes_ATOMIC_LOAD(SDNode *N,
2416                                                SDValue &Lo, SDValue &Hi) {
2417  DebugLoc dl = N->getDebugLoc();
2418  EVT VT = cast<AtomicSDNode>(N)->getMemoryVT();
2419  SDValue Zero = DAG.getConstant(0, VT);
2420  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
2421                               N->getOperand(0),
2422                               N->getOperand(1), Zero, Zero,
2423                               cast<AtomicSDNode>(N)->getMemOperand(),
2424                               cast<AtomicSDNode>(N)->getOrdering(),
2425                               cast<AtomicSDNode>(N)->getSynchScope());
2426  ReplaceValueWith(SDValue(N, 0), Swap.getValue(0));
2427  ReplaceValueWith(SDValue(N, 1), Swap.getValue(1));
2428}
2429
2430//===----------------------------------------------------------------------===//
2431//  Integer Operand Expansion
2432//===----------------------------------------------------------------------===//
2433
2434/// ExpandIntegerOperand - This method is called when the specified operand of
2435/// the specified node is found to need expansion.  At this point, all of the
2436/// result types of the node are known to be legal, but other operands of the
2437/// node may need promotion or expansion as well as the specified one.
2438bool DAGTypeLegalizer::ExpandIntegerOperand(SDNode *N, unsigned OpNo) {
2439  DEBUG(dbgs() << "Expand integer operand: "; N->dump(&DAG); dbgs() << "\n");
2440  SDValue Res = SDValue();
2441
2442  if (CustomLowerNode(N, N->getOperand(OpNo).getValueType(), false))
2443    return false;
2444
2445  switch (N->getOpcode()) {
2446  default:
2447  #ifndef NDEBUG
2448    dbgs() << "ExpandIntegerOperand Op #" << OpNo << ": ";
2449    N->dump(&DAG); dbgs() << "\n";
2450  #endif
2451    llvm_unreachable("Do not know how to expand this operator's operand!");
2452
2453  case ISD::BITCAST:           Res = ExpandOp_BITCAST(N); break;
2454  case ISD::BR_CC:             Res = ExpandIntOp_BR_CC(N); break;
2455  case ISD::BUILD_VECTOR:      Res = ExpandOp_BUILD_VECTOR(N); break;
2456  case ISD::EXTRACT_ELEMENT:   Res = ExpandOp_EXTRACT_ELEMENT(N); break;
2457  case ISD::INSERT_VECTOR_ELT: Res = ExpandOp_INSERT_VECTOR_ELT(N); break;
2458  case ISD::SCALAR_TO_VECTOR:  Res = ExpandOp_SCALAR_TO_VECTOR(N); break;
2459  case ISD::SELECT_CC:         Res = ExpandIntOp_SELECT_CC(N); break;
2460  case ISD::SETCC:             Res = ExpandIntOp_SETCC(N); break;
2461  case ISD::SINT_TO_FP:        Res = ExpandIntOp_SINT_TO_FP(N); break;
2462  case ISD::STORE:   Res = ExpandIntOp_STORE(cast<StoreSDNode>(N), OpNo); break;
2463  case ISD::TRUNCATE:          Res = ExpandIntOp_TRUNCATE(N); break;
2464  case ISD::UINT_TO_FP:        Res = ExpandIntOp_UINT_TO_FP(N); break;
2465
2466  case ISD::SHL:
2467  case ISD::SRA:
2468  case ISD::SRL:
2469  case ISD::ROTL:
2470  case ISD::ROTR:              Res = ExpandIntOp_Shift(N); break;
2471  case ISD::RETURNADDR:
2472  case ISD::FRAMEADDR:         Res = ExpandIntOp_RETURNADDR(N); break;
2473
2474  case ISD::ATOMIC_STORE:      Res = ExpandIntOp_ATOMIC_STORE(N); break;
2475  }
2476
2477  // If the result is null, the sub-method took care of registering results etc.
2478  if (!Res.getNode()) return false;
2479
2480  // If the result is N, the sub-method updated N in place.  Tell the legalizer
2481  // core about this.
2482  if (Res.getNode() == N)
2483    return true;
2484
2485  assert(Res.getValueType() == N->getValueType(0) && N->getNumValues() == 1 &&
2486         "Invalid operand expansion");
2487
2488  ReplaceValueWith(SDValue(N, 0), Res);
2489  return false;
2490}
2491
2492/// IntegerExpandSetCCOperands - Expand the operands of a comparison.  This code
2493/// is shared among BR_CC, SELECT_CC, and SETCC handlers.
2494void DAGTypeLegalizer::IntegerExpandSetCCOperands(SDValue &NewLHS,
2495                                                  SDValue &NewRHS,
2496                                                  ISD::CondCode &CCCode,
2497                                                  DebugLoc dl) {
2498  SDValue LHSLo, LHSHi, RHSLo, RHSHi;
2499  GetExpandedInteger(NewLHS, LHSLo, LHSHi);
2500  GetExpandedInteger(NewRHS, RHSLo, RHSHi);
2501
2502  if (CCCode == ISD::SETEQ || CCCode == ISD::SETNE) {
2503    if (RHSLo == RHSHi) {
2504      if (ConstantSDNode *RHSCST = dyn_cast<ConstantSDNode>(RHSLo)) {
2505        if (RHSCST->isAllOnesValue()) {
2506          // Equality comparison to -1.
2507          NewLHS = DAG.getNode(ISD::AND, dl,
2508                               LHSLo.getValueType(), LHSLo, LHSHi);
2509          NewRHS = RHSLo;
2510          return;
2511        }
2512      }
2513    }
2514
2515    NewLHS = DAG.getNode(ISD::XOR, dl, LHSLo.getValueType(), LHSLo, RHSLo);
2516    NewRHS = DAG.getNode(ISD::XOR, dl, LHSLo.getValueType(), LHSHi, RHSHi);
2517    NewLHS = DAG.getNode(ISD::OR, dl, NewLHS.getValueType(), NewLHS, NewRHS);
2518    NewRHS = DAG.getConstant(0, NewLHS.getValueType());
2519    return;
2520  }
2521
2522  // If this is a comparison of the sign bit, just look at the top part.
2523  // X > -1,  x < 0
2524  if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(NewRHS))
2525    if ((CCCode == ISD::SETLT && CST->isNullValue()) ||     // X < 0
2526        (CCCode == ISD::SETGT && CST->isAllOnesValue())) {  // X > -1
2527      NewLHS = LHSHi;
2528      NewRHS = RHSHi;
2529      return;
2530    }
2531
2532  // FIXME: This generated code sucks.
2533  ISD::CondCode LowCC;
2534  switch (CCCode) {
2535  default: llvm_unreachable("Unknown integer setcc!");
2536  case ISD::SETLT:
2537  case ISD::SETULT: LowCC = ISD::SETULT; break;
2538  case ISD::SETGT:
2539  case ISD::SETUGT: LowCC = ISD::SETUGT; break;
2540  case ISD::SETLE:
2541  case ISD::SETULE: LowCC = ISD::SETULE; break;
2542  case ISD::SETGE:
2543  case ISD::SETUGE: LowCC = ISD::SETUGE; break;
2544  }
2545
2546  // Tmp1 = lo(op1) < lo(op2)   // Always unsigned comparison
2547  // Tmp2 = hi(op1) < hi(op2)   // Signedness depends on operands
2548  // dest = hi(op1) == hi(op2) ? Tmp1 : Tmp2;
2549
2550  // NOTE: on targets without efficient SELECT of bools, we can always use
2551  // this identity: (B1 ? B2 : B3) --> (B1 & B2)|(!B1&B3)
2552  TargetLowering::DAGCombinerInfo DagCombineInfo(DAG, false, true, true, NULL);
2553  SDValue Tmp1, Tmp2;
2554  Tmp1 = TLI.SimplifySetCC(TLI.getSetCCResultType(LHSLo.getValueType()),
2555                           LHSLo, RHSLo, LowCC, false, DagCombineInfo, dl);
2556  if (!Tmp1.getNode())
2557    Tmp1 = DAG.getSetCC(dl, TLI.getSetCCResultType(LHSLo.getValueType()),
2558                        LHSLo, RHSLo, LowCC);
2559  Tmp2 = TLI.SimplifySetCC(TLI.getSetCCResultType(LHSHi.getValueType()),
2560                           LHSHi, RHSHi, CCCode, false, DagCombineInfo, dl);
2561  if (!Tmp2.getNode())
2562    Tmp2 = DAG.getNode(ISD::SETCC, dl,
2563                       TLI.getSetCCResultType(LHSHi.getValueType()),
2564                       LHSHi, RHSHi, DAG.getCondCode(CCCode));
2565
2566  ConstantSDNode *Tmp1C = dyn_cast<ConstantSDNode>(Tmp1.getNode());
2567  ConstantSDNode *Tmp2C = dyn_cast<ConstantSDNode>(Tmp2.getNode());
2568  if ((Tmp1C && Tmp1C->isNullValue()) ||
2569      (Tmp2C && Tmp2C->isNullValue() &&
2570       (CCCode == ISD::SETLE || CCCode == ISD::SETGE ||
2571        CCCode == ISD::SETUGE || CCCode == ISD::SETULE)) ||
2572      (Tmp2C && Tmp2C->getAPIntValue() == 1 &&
2573       (CCCode == ISD::SETLT || CCCode == ISD::SETGT ||
2574        CCCode == ISD::SETUGT || CCCode == ISD::SETULT))) {
2575    // low part is known false, returns high part.
2576    // For LE / GE, if high part is known false, ignore the low part.
2577    // For LT / GT, if high part is known true, ignore the low part.
2578    NewLHS = Tmp2;
2579    NewRHS = SDValue();
2580    return;
2581  }
2582
2583  NewLHS = TLI.SimplifySetCC(TLI.getSetCCResultType(LHSHi.getValueType()),
2584                             LHSHi, RHSHi, ISD::SETEQ, false,
2585                             DagCombineInfo, dl);
2586  if (!NewLHS.getNode())
2587    NewLHS = DAG.getSetCC(dl, TLI.getSetCCResultType(LHSHi.getValueType()),
2588                          LHSHi, RHSHi, ISD::SETEQ);
2589  NewLHS = DAG.getNode(ISD::SELECT, dl, Tmp1.getValueType(),
2590                       NewLHS, Tmp1, Tmp2);
2591  NewRHS = SDValue();
2592}
2593
2594SDValue DAGTypeLegalizer::ExpandIntOp_BR_CC(SDNode *N) {
2595  SDValue NewLHS = N->getOperand(2), NewRHS = N->getOperand(3);
2596  ISD::CondCode CCCode = cast<CondCodeSDNode>(N->getOperand(1))->get();
2597  IntegerExpandSetCCOperands(NewLHS, NewRHS, CCCode, N->getDebugLoc());
2598
2599  // If ExpandSetCCOperands returned a scalar, we need to compare the result
2600  // against zero to select between true and false values.
2601  if (NewRHS.getNode() == 0) {
2602    NewRHS = DAG.getConstant(0, NewLHS.getValueType());
2603    CCCode = ISD::SETNE;
2604  }
2605
2606  // Update N to have the operands specified.
2607  return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0),
2608                                DAG.getCondCode(CCCode), NewLHS, NewRHS,
2609                                N->getOperand(4)), 0);
2610}
2611
2612SDValue DAGTypeLegalizer::ExpandIntOp_SELECT_CC(SDNode *N) {
2613  SDValue NewLHS = N->getOperand(0), NewRHS = N->getOperand(1);
2614  ISD::CondCode CCCode = cast<CondCodeSDNode>(N->getOperand(4))->get();
2615  IntegerExpandSetCCOperands(NewLHS, NewRHS, CCCode, N->getDebugLoc());
2616
2617  // If ExpandSetCCOperands returned a scalar, we need to compare the result
2618  // against zero to select between true and false values.
2619  if (NewRHS.getNode() == 0) {
2620    NewRHS = DAG.getConstant(0, NewLHS.getValueType());
2621    CCCode = ISD::SETNE;
2622  }
2623
2624  // Update N to have the operands specified.
2625  return SDValue(DAG.UpdateNodeOperands(N, NewLHS, NewRHS,
2626                                N->getOperand(2), N->getOperand(3),
2627                                DAG.getCondCode(CCCode)), 0);
2628}
2629
2630SDValue DAGTypeLegalizer::ExpandIntOp_SETCC(SDNode *N) {
2631  SDValue NewLHS = N->getOperand(0), NewRHS = N->getOperand(1);
2632  ISD::CondCode CCCode = cast<CondCodeSDNode>(N->getOperand(2))->get();
2633  IntegerExpandSetCCOperands(NewLHS, NewRHS, CCCode, N->getDebugLoc());
2634
2635  // If ExpandSetCCOperands returned a scalar, use it.
2636  if (NewRHS.getNode() == 0) {
2637    assert(NewLHS.getValueType() == N->getValueType(0) &&
2638           "Unexpected setcc expansion!");
2639    return NewLHS;
2640  }
2641
2642  // Otherwise, update N to have the operands specified.
2643  return SDValue(DAG.UpdateNodeOperands(N, NewLHS, NewRHS,
2644                                DAG.getCondCode(CCCode)), 0);
2645}
2646
2647SDValue DAGTypeLegalizer::ExpandIntOp_Shift(SDNode *N) {
2648  // The value being shifted is legal, but the shift amount is too big.
2649  // It follows that either the result of the shift is undefined, or the
2650  // upper half of the shift amount is zero.  Just use the lower half.
2651  SDValue Lo, Hi;
2652  GetExpandedInteger(N->getOperand(1), Lo, Hi);
2653  return SDValue(DAG.UpdateNodeOperands(N, N->getOperand(0), Lo), 0);
2654}
2655
2656SDValue DAGTypeLegalizer::ExpandIntOp_RETURNADDR(SDNode *N) {
2657  // The argument of RETURNADDR / FRAMEADDR builtin is 32 bit contant.  This
2658  // surely makes pretty nice problems on 8/16 bit targets. Just truncate this
2659  // constant to valid type.
2660  SDValue Lo, Hi;
2661  GetExpandedInteger(N->getOperand(0), Lo, Hi);
2662  return SDValue(DAG.UpdateNodeOperands(N, Lo), 0);
2663}
2664
2665SDValue DAGTypeLegalizer::ExpandIntOp_SINT_TO_FP(SDNode *N) {
2666  SDValue Op = N->getOperand(0);
2667  EVT DstVT = N->getValueType(0);
2668  RTLIB::Libcall LC = RTLIB::getSINTTOFP(Op.getValueType(), DstVT);
2669  assert(LC != RTLIB::UNKNOWN_LIBCALL &&
2670         "Don't know how to expand this SINT_TO_FP!");
2671  return MakeLibCall(LC, DstVT, &Op, 1, true, N->getDebugLoc());
2672}
2673
2674SDValue DAGTypeLegalizer::ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo) {
2675  if (ISD::isNormalStore(N))
2676    return ExpandOp_NormalStore(N, OpNo);
2677
2678  assert(ISD::isUNINDEXEDStore(N) && "Indexed store during type legalization!");
2679  assert(OpNo == 1 && "Can only expand the stored value so far");
2680
2681  EVT VT = N->getOperand(1).getValueType();
2682  EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
2683  SDValue Ch  = N->getChain();
2684  SDValue Ptr = N->getBasePtr();
2685  unsigned Alignment = N->getAlignment();
2686  bool isVolatile = N->isVolatile();
2687  bool isNonTemporal = N->isNonTemporal();
2688  DebugLoc dl = N->getDebugLoc();
2689  SDValue Lo, Hi;
2690
2691  assert(NVT.isByteSized() && "Expanded type not byte sized!");
2692
2693  if (N->getMemoryVT().bitsLE(NVT)) {
2694    GetExpandedInteger(N->getValue(), Lo, Hi);
2695    return DAG.getTruncStore(Ch, dl, Lo, Ptr, N->getPointerInfo(),
2696                             N->getMemoryVT(), isVolatile, isNonTemporal,
2697                             Alignment);
2698  }
2699
2700  if (TLI.isLittleEndian()) {
2701    // Little-endian - low bits are at low addresses.
2702    GetExpandedInteger(N->getValue(), Lo, Hi);
2703
2704    Lo = DAG.getStore(Ch, dl, Lo, Ptr, N->getPointerInfo(),
2705                      isVolatile, isNonTemporal, Alignment);
2706
2707    unsigned ExcessBits =
2708      N->getMemoryVT().getSizeInBits() - NVT.getSizeInBits();
2709    EVT NEVT = EVT::getIntegerVT(*DAG.getContext(), ExcessBits);
2710
2711    // Increment the pointer to the other half.
2712    unsigned IncrementSize = NVT.getSizeInBits()/8;
2713    Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
2714                      DAG.getIntPtrConstant(IncrementSize));
2715    Hi = DAG.getTruncStore(Ch, dl, Hi, Ptr,
2716                           N->getPointerInfo().getWithOffset(IncrementSize),
2717                           NEVT, isVolatile, isNonTemporal,
2718                           MinAlign(Alignment, IncrementSize));
2719    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
2720  }
2721
2722  // Big-endian - high bits are at low addresses.  Favor aligned stores at
2723  // the cost of some bit-fiddling.
2724  GetExpandedInteger(N->getValue(), Lo, Hi);
2725
2726  EVT ExtVT = N->getMemoryVT();
2727  unsigned EBytes = ExtVT.getStoreSize();
2728  unsigned IncrementSize = NVT.getSizeInBits()/8;
2729  unsigned ExcessBits = (EBytes - IncrementSize)*8;
2730  EVT HiVT = EVT::getIntegerVT(*DAG.getContext(),
2731                               ExtVT.getSizeInBits() - ExcessBits);
2732
2733  if (ExcessBits < NVT.getSizeInBits()) {
2734    // Transfer high bits from the top of Lo to the bottom of Hi.
2735    Hi = DAG.getNode(ISD::SHL, dl, NVT, Hi,
2736                     DAG.getConstant(NVT.getSizeInBits() - ExcessBits,
2737                                     TLI.getPointerTy()));
2738    Hi = DAG.getNode(ISD::OR, dl, NVT, Hi,
2739                     DAG.getNode(ISD::SRL, dl, NVT, Lo,
2740                                 DAG.getConstant(ExcessBits,
2741                                                 TLI.getPointerTy())));
2742  }
2743
2744  // Store both the high bits and maybe some of the low bits.
2745  Hi = DAG.getTruncStore(Ch, dl, Hi, Ptr, N->getPointerInfo(),
2746                         HiVT, isVolatile, isNonTemporal, Alignment);
2747
2748  // Increment the pointer to the other half.
2749  Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
2750                    DAG.getIntPtrConstant(IncrementSize));
2751  // Store the lowest ExcessBits bits in the second half.
2752  Lo = DAG.getTruncStore(Ch, dl, Lo, Ptr,
2753                         N->getPointerInfo().getWithOffset(IncrementSize),
2754                         EVT::getIntegerVT(*DAG.getContext(), ExcessBits),
2755                         isVolatile, isNonTemporal,
2756                         MinAlign(Alignment, IncrementSize));
2757  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
2758}
2759
2760SDValue DAGTypeLegalizer::ExpandIntOp_TRUNCATE(SDNode *N) {
2761  SDValue InL, InH;
2762  GetExpandedInteger(N->getOperand(0), InL, InH);
2763  // Just truncate the low part of the source.
2764  return DAG.getNode(ISD::TRUNCATE, N->getDebugLoc(), N->getValueType(0), InL);
2765}
2766
2767static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
2768  switch (VT.getSimpleVT().SimpleTy) {
2769  default: llvm_unreachable("Unknown FP format");
2770  case MVT::f32:     return &APFloat::IEEEsingle;
2771  case MVT::f64:     return &APFloat::IEEEdouble;
2772  case MVT::f80:     return &APFloat::x87DoubleExtended;
2773  case MVT::f128:    return &APFloat::IEEEquad;
2774  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
2775  }
2776}
2777
2778SDValue DAGTypeLegalizer::ExpandIntOp_UINT_TO_FP(SDNode *N) {
2779  SDValue Op = N->getOperand(0);
2780  EVT SrcVT = Op.getValueType();
2781  EVT DstVT = N->getValueType(0);
2782  DebugLoc dl = N->getDebugLoc();
2783
2784  // The following optimization is valid only if every value in SrcVT (when
2785  // treated as signed) is representable in DstVT.  Check that the mantissa
2786  // size of DstVT is >= than the number of bits in SrcVT -1.
2787  const fltSemantics *sem = EVTToAPFloatSemantics(DstVT);
2788  if (APFloat::semanticsPrecision(*sem) >= SrcVT.getSizeInBits()-1 &&
2789      TLI.getOperationAction(ISD::SINT_TO_FP, SrcVT) == TargetLowering::Custom){
2790    // Do a signed conversion then adjust the result.
2791    SDValue SignedConv = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Op);
2792    SignedConv = TLI.LowerOperation(SignedConv, DAG);
2793
2794    // The result of the signed conversion needs adjusting if the 'sign bit' of
2795    // the incoming integer was set.  To handle this, we dynamically test to see
2796    // if it is set, and, if so, add a fudge factor.
2797
2798    const uint64_t F32TwoE32  = 0x4F800000ULL;
2799    const uint64_t F32TwoE64  = 0x5F800000ULL;
2800    const uint64_t F32TwoE128 = 0x7F800000ULL;
2801
2802    APInt FF(32, 0);
2803    if (SrcVT == MVT::i32)
2804      FF = APInt(32, F32TwoE32);
2805    else if (SrcVT == MVT::i64)
2806      FF = APInt(32, F32TwoE64);
2807    else if (SrcVT == MVT::i128)
2808      FF = APInt(32, F32TwoE128);
2809    else
2810      llvm_unreachable("Unsupported UINT_TO_FP!");
2811
2812    // Check whether the sign bit is set.
2813    SDValue Lo, Hi;
2814    GetExpandedInteger(Op, Lo, Hi);
2815    SDValue SignSet = DAG.getSetCC(dl,
2816                                   TLI.getSetCCResultType(Hi.getValueType()),
2817                                   Hi, DAG.getConstant(0, Hi.getValueType()),
2818                                   ISD::SETLT);
2819
2820    // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
2821    SDValue FudgePtr = DAG.getConstantPool(
2822                               ConstantInt::get(*DAG.getContext(), FF.zext(64)),
2823                                           TLI.getPointerTy());
2824
2825    // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
2826    SDValue Zero = DAG.getIntPtrConstant(0);
2827    SDValue Four = DAG.getIntPtrConstant(4);
2828    if (TLI.isBigEndian()) std::swap(Zero, Four);
2829    SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
2830                                 Zero, Four);
2831    unsigned Alignment = cast<ConstantPoolSDNode>(FudgePtr)->getAlignment();
2832    FudgePtr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), FudgePtr, Offset);
2833    Alignment = std::min(Alignment, 4u);
2834
2835    // Load the value out, extending it from f32 to the destination float type.
2836    // FIXME: Avoid the extend by constructing the right constant pool?
2837    SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, DstVT, DAG.getEntryNode(),
2838                                   FudgePtr,
2839                                   MachinePointerInfo::getConstantPool(),
2840                                   MVT::f32,
2841                                   false, false, Alignment);
2842    return DAG.getNode(ISD::FADD, dl, DstVT, SignedConv, Fudge);
2843  }
2844
2845  // Otherwise, use a libcall.
2846  RTLIB::Libcall LC = RTLIB::getUINTTOFP(SrcVT, DstVT);
2847  assert(LC != RTLIB::UNKNOWN_LIBCALL &&
2848         "Don't know how to expand this UINT_TO_FP!");
2849  return MakeLibCall(LC, DstVT, &Op, 1, true, dl);
2850}
2851
2852SDValue DAGTypeLegalizer::ExpandIntOp_ATOMIC_STORE(SDNode *N) {
2853  DebugLoc dl = N->getDebugLoc();
2854  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
2855                               cast<AtomicSDNode>(N)->getMemoryVT(),
2856                               N->getOperand(0),
2857                               N->getOperand(1), N->getOperand(2),
2858                               cast<AtomicSDNode>(N)->getMemOperand(),
2859                               cast<AtomicSDNode>(N)->getOrdering(),
2860                               cast<AtomicSDNode>(N)->getSynchScope());
2861  return Swap.getValue(1);
2862}
2863
2864
2865SDValue DAGTypeLegalizer::PromoteIntRes_EXTRACT_SUBVECTOR(SDNode *N) {
2866  SDValue InOp0 = N->getOperand(0);
2867  EVT InVT = InOp0.getValueType();
2868
2869  EVT OutVT = N->getValueType(0);
2870  EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
2871  assert(NOutVT.isVector() && "This type must be promoted to a vector type");
2872  unsigned OutNumElems = OutVT.getVectorNumElements();
2873  EVT NOutVTElem = NOutVT.getVectorElementType();
2874
2875  DebugLoc dl = N->getDebugLoc();
2876  SDValue BaseIdx = N->getOperand(1);
2877
2878  SmallVector<SDValue, 8> Ops;
2879  Ops.reserve(OutNumElems);
2880  for (unsigned i = 0; i != OutNumElems; ++i) {
2881
2882    // Extract the element from the original vector.
2883    SDValue Index = DAG.getNode(ISD::ADD, dl, BaseIdx.getValueType(),
2884      BaseIdx, DAG.getIntPtrConstant(i));
2885    SDValue Ext = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
2886      InVT.getVectorElementType(), N->getOperand(0), Index);
2887
2888    SDValue Op = DAG.getNode(ISD::ANY_EXTEND, dl, NOutVTElem, Ext);
2889    // Insert the converted element to the new vector.
2890    Ops.push_back(Op);
2891  }
2892
2893  return DAG.getNode(ISD::BUILD_VECTOR, dl, NOutVT, &Ops[0], Ops.size());
2894}
2895
2896
2897SDValue DAGTypeLegalizer::PromoteIntRes_VECTOR_SHUFFLE(SDNode *N) {
2898  ShuffleVectorSDNode *SV = cast<ShuffleVectorSDNode>(N);
2899  EVT VT = N->getValueType(0);
2900  DebugLoc dl = N->getDebugLoc();
2901
2902  unsigned NumElts = VT.getVectorNumElements();
2903  SmallVector<int, 8> NewMask;
2904  for (unsigned i = 0; i != NumElts; ++i) {
2905    NewMask.push_back(SV->getMaskElt(i));
2906  }
2907
2908  SDValue V0 = GetPromotedInteger(N->getOperand(0));
2909  SDValue V1 = GetPromotedInteger(N->getOperand(1));
2910  EVT OutVT = V0.getValueType();
2911
2912  return DAG.getVectorShuffle(OutVT, dl, V0, V1, &NewMask[0]);
2913}
2914
2915
2916SDValue DAGTypeLegalizer::PromoteIntRes_BUILD_VECTOR(SDNode *N) {
2917  EVT OutVT = N->getValueType(0);
2918  EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
2919  assert(NOutVT.isVector() && "This type must be promoted to a vector type");
2920  unsigned NumElems = N->getNumOperands();
2921  EVT NOutVTElem = NOutVT.getVectorElementType();
2922
2923  DebugLoc dl = N->getDebugLoc();
2924
2925  SmallVector<SDValue, 8> Ops;
2926  Ops.reserve(NumElems);
2927  for (unsigned i = 0; i != NumElems; ++i) {
2928    SDValue Op = DAG.getNode(ISD::ANY_EXTEND, dl, NOutVTElem, N->getOperand(i));
2929    Ops.push_back(Op);
2930  }
2931
2932  return DAG.getNode(ISD::BUILD_VECTOR, dl, NOutVT, &Ops[0], Ops.size());
2933}
2934
2935SDValue DAGTypeLegalizer::PromoteIntRes_SCALAR_TO_VECTOR(SDNode *N) {
2936
2937  DebugLoc dl = N->getDebugLoc();
2938
2939  assert(!N->getOperand(0).getValueType().isVector() &&
2940         "Input must be a scalar");
2941
2942  EVT OutVT = N->getValueType(0);
2943  EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
2944  assert(NOutVT.isVector() && "This type must be promoted to a vector type");
2945  EVT NOutVTElem = NOutVT.getVectorElementType();
2946
2947  SDValue Op = DAG.getNode(ISD::ANY_EXTEND, dl, NOutVTElem, N->getOperand(0));
2948
2949  return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, NOutVT, Op);
2950}
2951
2952SDValue DAGTypeLegalizer::PromoteIntRes_CONCAT_VECTORS(SDNode *N) {
2953  DebugLoc dl = N->getDebugLoc();
2954
2955  EVT OutVT = N->getValueType(0);
2956  EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
2957  assert(NOutVT.isVector() && "This type must be promoted to a vector type");
2958
2959  EVT InElemTy = OutVT.getVectorElementType();
2960  EVT OutElemTy = NOutVT.getVectorElementType();
2961
2962  unsigned NumElem = N->getOperand(0).getValueType().getVectorNumElements();
2963  unsigned NumOutElem = NOutVT.getVectorNumElements();
2964  unsigned NumOperands = N->getNumOperands();
2965  assert(NumElem * NumOperands == NumOutElem &&
2966         "Unexpected number of elements");
2967
2968  // Take the elements from the first vector.
2969  SmallVector<SDValue, 8> Ops(NumOutElem);
2970  for (unsigned i = 0; i < NumOperands; ++i) {
2971    SDValue Op = N->getOperand(i);
2972    for (unsigned j = 0; j < NumElem; ++j) {
2973      SDValue Ext = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
2974                                InElemTy, Op, DAG.getIntPtrConstant(j));
2975      Ops[i * NumElem + j] = DAG.getNode(ISD::ANY_EXTEND, dl, OutElemTy, Ext);
2976    }
2977  }
2978
2979  return DAG.getNode(ISD::BUILD_VECTOR, dl, NOutVT, &Ops[0], Ops.size());
2980}
2981
2982SDValue DAGTypeLegalizer::PromoteIntRes_INSERT_VECTOR_ELT(SDNode *N) {
2983  EVT OutVT = N->getValueType(0);
2984  EVT NOutVT = TLI.getTypeToTransformTo(*DAG.getContext(), OutVT);
2985  assert(NOutVT.isVector() && "This type must be promoted to a vector type");
2986
2987  EVT NOutVTElem = NOutVT.getVectorElementType();
2988
2989  DebugLoc dl = N->getDebugLoc();
2990  SDValue V0 = GetPromotedInteger(N->getOperand(0));
2991
2992  SDValue ConvElem = DAG.getNode(ISD::ANY_EXTEND, dl,
2993    NOutVTElem, N->getOperand(1));
2994  return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, NOutVT,
2995    V0, ConvElem, N->getOperand(2));
2996}
2997
2998SDValue DAGTypeLegalizer::PromoteIntOp_EXTRACT_VECTOR_ELT(SDNode *N) {
2999  DebugLoc dl = N->getDebugLoc();
3000  SDValue V0 = GetPromotedInteger(N->getOperand(0));
3001  SDValue V1 = N->getOperand(1);
3002  SDValue Ext = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
3003    V0->getValueType(0).getScalarType(), V0, V1);
3004
3005  // EXTRACT_VECTOR_ELT can return types which are wider than the incoming
3006  // element types. If this is the case then we need to expand the outgoing
3007  // value and not truncate it.
3008  return DAG.getAnyExtOrTrunc(Ext, dl, N->getValueType(0));
3009}
3010
3011SDValue DAGTypeLegalizer::PromoteIntOp_CONCAT_VECTORS(SDNode *N) {
3012  DebugLoc dl = N->getDebugLoc();
3013  unsigned NumElems = N->getNumOperands();
3014
3015  EVT RetSclrTy = N->getValueType(0).getVectorElementType();
3016
3017  SmallVector<SDValue, 8> NewOps;
3018  NewOps.reserve(NumElems);
3019
3020  // For each incoming vector
3021  for (unsigned VecIdx = 0; VecIdx != NumElems; ++VecIdx) {
3022    SDValue Incoming = GetPromotedInteger(N->getOperand(VecIdx));
3023    EVT SclrTy = Incoming->getValueType(0).getVectorElementType();
3024    unsigned NumElem = Incoming->getValueType(0).getVectorNumElements();
3025
3026    for (unsigned i=0; i<NumElem; ++i) {
3027      // Extract element from incoming vector
3028      SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SclrTy,
3029      Incoming, DAG.getIntPtrConstant(i));
3030      SDValue Tr = DAG.getNode(ISD::TRUNCATE, dl, RetSclrTy, Ex);
3031      NewOps.push_back(Tr);
3032    }
3033  }
3034
3035  return DAG.getNode(ISD::BUILD_VECTOR, dl,  N->getValueType(0),
3036    &NewOps[0], NewOps.size());
3037  }
3038