1//===-- llvm/Target/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes how to lower LLVM code to machine code.  This has two
11// main components:
12//
13//  1. Which ValueTypes are natively supported by the target.
14//  2. Which operations are supported for supported ValueTypes.
15//  3. Cost thresholds for alternative implementations of certain operations.
16//
17// In addition it has a few other components, like information about FP
18// immediates.
19//
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_TARGET_TARGETLOWERING_H
23#define LLVM_TARGET_TARGETLOWERING_H
24
25#include "llvm/CallingConv.h"
26#include "llvm/InlineAsm.h"
27#include "llvm/Attributes.h"
28#include "llvm/ADT/DenseMap.h"
29#include "llvm/Support/CallSite.h"
30#include "llvm/CodeGen/SelectionDAGNodes.h"
31#include "llvm/CodeGen/RuntimeLibcalls.h"
32#include "llvm/Support/DebugLoc.h"
33#include "llvm/Target/TargetCallingConv.h"
34#include "llvm/Target/TargetMachine.h"
35#include <climits>
36#include <map>
37#include <vector>
38
39namespace llvm {
40  class CallInst;
41  class CCState;
42  class FastISel;
43  class FunctionLoweringInfo;
44  class ImmutableCallSite;
45  class IntrinsicInst;
46  class MachineBasicBlock;
47  class MachineFunction;
48  class MachineInstr;
49  class MachineJumpTableInfo;
50  class MCContext;
51  class MCExpr;
52  template<typename T> class SmallVectorImpl;
53  class TargetData;
54  class TargetRegisterClass;
55  class TargetLibraryInfo;
56  class TargetLoweringObjectFile;
57  class Value;
58
59  namespace Sched {
60    enum Preference {
61      None,             // No preference
62      Source,           // Follow source order.
63      RegPressure,      // Scheduling for lowest register pressure.
64      Hybrid,           // Scheduling for both latency and register pressure.
65      ILP,              // Scheduling for ILP in low register pressure mode.
66      VLIW              // Scheduling for VLIW targets.
67    };
68  }
69
70
71//===----------------------------------------------------------------------===//
72/// TargetLowering - This class defines information used to lower LLVM code to
73/// legal SelectionDAG operators that the target instruction selector can accept
74/// natively.
75///
76/// This class also defines callbacks that targets must implement to lower
77/// target-specific constructs to SelectionDAG operators.
78///
79class TargetLowering {
80  TargetLowering(const TargetLowering&) LLVM_DELETED_FUNCTION;
81  void operator=(const TargetLowering&) LLVM_DELETED_FUNCTION;
82public:
83  /// LegalizeAction - This enum indicates whether operations are valid for a
84  /// target, and if not, what action should be used to make them valid.
85  enum LegalizeAction {
86    Legal,      // The target natively supports this operation.
87    Promote,    // This operation should be executed in a larger type.
88    Expand,     // Try to expand this to other ops, otherwise use a libcall.
89    Custom      // Use the LowerOperation hook to implement custom lowering.
90  };
91
92  /// LegalizeTypeAction - This enum indicates whether a types are legal for a
93  /// target, and if not, what action should be used to make them valid.
94  enum LegalizeTypeAction {
95    TypeLegal,           // The target natively supports this type.
96    TypePromoteInteger,  // Replace this integer with a larger one.
97    TypeExpandInteger,   // Split this integer into two of half the size.
98    TypeSoftenFloat,     // Convert this float to a same size integer type.
99    TypeExpandFloat,     // Split this float into two of half the size.
100    TypeScalarizeVector, // Replace this one-element vector with its element.
101    TypeSplitVector,     // Split this vector into two of half the size.
102    TypeWidenVector      // This vector should be widened into a larger vector.
103  };
104
105  enum BooleanContent { // How the target represents true/false values.
106    UndefinedBooleanContent,    // Only bit 0 counts, the rest can hold garbage.
107    ZeroOrOneBooleanContent,        // All bits zero except for bit 0.
108    ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
109  };
110
111  enum SelectSupportKind {
112    ScalarValSelect,      // The target supports scalar selects (ex: cmov).
113    ScalarCondVectorVal,  // The target supports selects with a scalar condition
114                          // and vector values (ex: cmov).
115    VectorMaskSelect      // The target supports vector selects with a vector
116                          // mask (ex: x86 blends).
117  };
118
119  static ISD::NodeType getExtendForContent(BooleanContent Content) {
120    switch (Content) {
121    case UndefinedBooleanContent:
122      // Extend by adding rubbish bits.
123      return ISD::ANY_EXTEND;
124    case ZeroOrOneBooleanContent:
125      // Extend by adding zero bits.
126      return ISD::ZERO_EXTEND;
127    case ZeroOrNegativeOneBooleanContent:
128      // Extend by copying the sign bit.
129      return ISD::SIGN_EXTEND;
130    }
131    llvm_unreachable("Invalid content kind");
132  }
133
134  /// NOTE: The constructor takes ownership of TLOF.
135  explicit TargetLowering(const TargetMachine &TM,
136                          const TargetLoweringObjectFile *TLOF);
137  virtual ~TargetLowering();
138
139  const TargetMachine &getTargetMachine() const { return TM; }
140  const TargetData *getTargetData() const { return TD; }
141  const TargetLoweringObjectFile &getObjFileLowering() const { return TLOF; }
142
143  bool isBigEndian() const { return !IsLittleEndian; }
144  bool isLittleEndian() const { return IsLittleEndian; }
145  MVT getPointerTy() const { return PointerTy; }
146  virtual MVT getShiftAmountTy(EVT LHSTy) const;
147
148  /// isSelectExpensive - Return true if the select operation is expensive for
149  /// this target.
150  bool isSelectExpensive() const { return SelectIsExpensive; }
151
152  virtual bool isSelectSupported(SelectSupportKind kind) const { return true; }
153
154  /// isIntDivCheap() - Return true if integer divide is usually cheaper than
155  /// a sequence of several shifts, adds, and multiplies for this target.
156  bool isIntDivCheap() const { return IntDivIsCheap; }
157
158  /// isSlowDivBypassed - Returns true if target has indicated at least one
159  /// type should be bypassed.
160  bool isSlowDivBypassed() const { return !BypassSlowDivTypes.empty(); }
161
162  /// getBypassSlowDivTypes - Returns map of slow types for division or
163  /// remainder with corresponding fast types
164  const DenseMap<Type *, Type *> &getBypassSlowDivTypes() const {
165    return BypassSlowDivTypes;
166  }
167
168  /// isPow2DivCheap() - Return true if pow2 div is cheaper than a chain of
169  /// srl/add/sra.
170  bool isPow2DivCheap() const { return Pow2DivIsCheap; }
171
172  /// isJumpExpensive() - Return true if Flow Control is an expensive operation
173  /// that should be avoided.
174  bool isJumpExpensive() const { return JumpIsExpensive; }
175
176  /// isPredictableSelectExpensive - Return true if selects are only cheaper
177  /// than branches if the branch is unlikely to be predicted right.
178  bool isPredictableSelectExpensive() const {
179    return predictableSelectIsExpensive;
180  }
181
182  /// getSetCCResultType - Return the ValueType of the result of SETCC
183  /// operations.  Also used to obtain the target's preferred type for
184  /// the condition operand of SELECT and BRCOND nodes.  In the case of
185  /// BRCOND the argument passed is MVT::Other since there are no other
186  /// operands to get a type hint from.
187  virtual EVT getSetCCResultType(EVT VT) const;
188
189  /// getCmpLibcallReturnType - Return the ValueType for comparison
190  /// libcalls. Comparions libcalls include floating point comparion calls,
191  /// and Ordered/Unordered check calls on floating point numbers.
192  virtual
193  MVT::SimpleValueType getCmpLibcallReturnType() const;
194
195  /// getBooleanContents - For targets without i1 registers, this gives the
196  /// nature of the high-bits of boolean values held in types wider than i1.
197  /// "Boolean values" are special true/false values produced by nodes like
198  /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
199  /// Not to be confused with general values promoted from i1.
200  /// Some cpus distinguish between vectors of boolean and scalars; the isVec
201  /// parameter selects between the two kinds.  For example on X86 a scalar
202  /// boolean should be zero extended from i1, while the elements of a vector
203  /// of booleans should be sign extended from i1.
204  BooleanContent getBooleanContents(bool isVec) const {
205    return isVec ? BooleanVectorContents : BooleanContents;
206  }
207
208  /// getSchedulingPreference - Return target scheduling preference.
209  Sched::Preference getSchedulingPreference() const {
210    return SchedPreferenceInfo;
211  }
212
213  /// getSchedulingPreference - Some scheduler, e.g. hybrid, can switch to
214  /// different scheduling heuristics for different nodes. This function returns
215  /// the preference (or none) for the given node.
216  virtual Sched::Preference getSchedulingPreference(SDNode *) const {
217    return Sched::None;
218  }
219
220  /// getRegClassFor - Return the register class that should be used for the
221  /// specified value type.
222  virtual const TargetRegisterClass *getRegClassFor(EVT VT) const {
223    assert(VT.isSimple() && "getRegClassFor called on illegal type!");
224    const TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy];
225    assert(RC && "This value type is not natively supported!");
226    return RC;
227  }
228
229  /// getRepRegClassFor - Return the 'representative' register class for the
230  /// specified value type. The 'representative' register class is the largest
231  /// legal super-reg register class for the register class of the value type.
232  /// For example, on i386 the rep register class for i8, i16, and i32 are GR32;
233  /// while the rep register class is GR64 on x86_64.
234  virtual const TargetRegisterClass *getRepRegClassFor(EVT VT) const {
235    assert(VT.isSimple() && "getRepRegClassFor called on illegal type!");
236    const TargetRegisterClass *RC = RepRegClassForVT[VT.getSimpleVT().SimpleTy];
237    return RC;
238  }
239
240  /// getRepRegClassCostFor - Return the cost of the 'representative' register
241  /// class for the specified value type.
242  virtual uint8_t getRepRegClassCostFor(EVT VT) const {
243    assert(VT.isSimple() && "getRepRegClassCostFor called on illegal type!");
244    return RepRegClassCostForVT[VT.getSimpleVT().SimpleTy];
245  }
246
247  /// isTypeLegal - Return true if the target has native support for the
248  /// specified value type.  This means that it has a register that directly
249  /// holds it without promotions or expansions.
250  bool isTypeLegal(EVT VT) const {
251    assert(!VT.isSimple() ||
252           (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
253    return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != 0;
254  }
255
256  class ValueTypeActionImpl {
257    /// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum
258    /// that indicates how instruction selection should deal with the type.
259    uint8_t ValueTypeActions[MVT::LAST_VALUETYPE];
260
261  public:
262    ValueTypeActionImpl() {
263      std::fill(ValueTypeActions, array_endof(ValueTypeActions), 0);
264    }
265
266    LegalizeTypeAction getTypeAction(MVT VT) const {
267      return (LegalizeTypeAction)ValueTypeActions[VT.SimpleTy];
268    }
269
270    void setTypeAction(EVT VT, LegalizeTypeAction Action) {
271      unsigned I = VT.getSimpleVT().SimpleTy;
272      ValueTypeActions[I] = Action;
273    }
274  };
275
276  const ValueTypeActionImpl &getValueTypeActions() const {
277    return ValueTypeActions;
278  }
279
280  /// getTypeAction - Return how we should legalize values of this type, either
281  /// it is already legal (return 'Legal') or we need to promote it to a larger
282  /// type (return 'Promote'), or we need to expand it into multiple registers
283  /// of smaller integer type (return 'Expand').  'Custom' is not an option.
284  LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const {
285    return getTypeConversion(Context, VT).first;
286  }
287  LegalizeTypeAction getTypeAction(MVT VT) const {
288    return ValueTypeActions.getTypeAction(VT);
289  }
290
291  /// getTypeToTransformTo - For types supported by the target, this is an
292  /// identity function.  For types that must be promoted to larger types, this
293  /// returns the larger type to promote to.  For integer types that are larger
294  /// than the largest integer register, this contains one step in the expansion
295  /// to get to the smaller register. For illegal floating point types, this
296  /// returns the integer type to transform to.
297  EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
298    return getTypeConversion(Context, VT).second;
299  }
300
301  /// getTypeToExpandTo - For types supported by the target, this is an
302  /// identity function.  For types that must be expanded (i.e. integer types
303  /// that are larger than the largest integer register or illegal floating
304  /// point types), this returns the largest legal type it will be expanded to.
305  EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
306    assert(!VT.isVector());
307    while (true) {
308      switch (getTypeAction(Context, VT)) {
309      case TypeLegal:
310        return VT;
311      case TypeExpandInteger:
312        VT = getTypeToTransformTo(Context, VT);
313        break;
314      default:
315        llvm_unreachable("Type is not legal nor is it to be expanded!");
316      }
317    }
318  }
319
320  /// getVectorTypeBreakdown - Vector types are broken down into some number of
321  /// legal first class types.  For example, EVT::v8f32 maps to 2 EVT::v4f32
322  /// with Altivec or SSE1, or 8 promoted EVT::f64 values with the X86 FP stack.
323  /// Similarly, EVT::v2i64 turns into 4 EVT::i32 values with both PPC and X86.
324  ///
325  /// This method returns the number of registers needed, and the VT for each
326  /// register.  It also returns the VT and quantity of the intermediate values
327  /// before they are promoted/expanded.
328  ///
329  unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
330                                  EVT &IntermediateVT,
331                                  unsigned &NumIntermediates,
332                                  EVT &RegisterVT) const;
333
334  /// getTgtMemIntrinsic: Given an intrinsic, checks if on the target the
335  /// intrinsic will need to map to a MemIntrinsicNode (touches memory). If
336  /// this is the case, it returns true and store the intrinsic
337  /// information into the IntrinsicInfo that was passed to the function.
338  struct IntrinsicInfo {
339    unsigned     opc;         // target opcode
340    EVT          memVT;       // memory VT
341    const Value* ptrVal;      // value representing memory location
342    int          offset;      // offset off of ptrVal
343    unsigned     align;       // alignment
344    bool         vol;         // is volatile?
345    bool         readMem;     // reads memory?
346    bool         writeMem;    // writes memory?
347  };
348
349  virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &,
350                                  unsigned /*Intrinsic*/) const {
351    return false;
352  }
353
354  /// isFPImmLegal - Returns true if the target can instruction select the
355  /// specified FP immediate natively. If false, the legalizer will materialize
356  /// the FP immediate as a load from a constant pool.
357  virtual bool isFPImmLegal(const APFloat &/*Imm*/, EVT /*VT*/) const {
358    return false;
359  }
360
361  /// isShuffleMaskLegal - Targets can use this to indicate that they only
362  /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
363  /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
364  /// are assumed to be legal.
365  virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
366                                  EVT /*VT*/) const {
367    return true;
368  }
369
370  /// canOpTrap - Returns true if the operation can trap for the value type.
371  /// VT must be a legal type. By default, we optimistically assume most
372  /// operations don't trap except for divide and remainder.
373  virtual bool canOpTrap(unsigned Op, EVT VT) const;
374
375  /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
376  /// used by Targets can use this to indicate if there is a suitable
377  /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
378  /// pool entry.
379  virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &/*Mask*/,
380                                      EVT /*VT*/) const {
381    return false;
382  }
383
384  /// getOperationAction - Return how this operation should be treated: either
385  /// it is legal, needs to be promoted to a larger size, needs to be
386  /// expanded to some other code sequence, or the target has a custom expander
387  /// for it.
388  LegalizeAction getOperationAction(unsigned Op, EVT VT) const {
389    if (VT.isExtended()) return Expand;
390    // If a target-specific SDNode requires legalization, require the target
391    // to provide custom legalization for it.
392    if (Op > array_lengthof(OpActions[0])) return Custom;
393    unsigned I = (unsigned) VT.getSimpleVT().SimpleTy;
394    return (LegalizeAction)OpActions[I][Op];
395  }
396
397  /// isOperationLegalOrCustom - Return true if the specified operation is
398  /// legal on this target or can be made legal with custom lowering. This
399  /// is used to help guide high-level lowering decisions.
400  bool isOperationLegalOrCustom(unsigned Op, EVT VT) const {
401    return (VT == MVT::Other || isTypeLegal(VT)) &&
402      (getOperationAction(Op, VT) == Legal ||
403       getOperationAction(Op, VT) == Custom);
404  }
405
406  /// isOperationLegal - Return true if the specified operation is legal on this
407  /// target.
408  bool isOperationLegal(unsigned Op, EVT VT) const {
409    return (VT == MVT::Other || isTypeLegal(VT)) &&
410           getOperationAction(Op, VT) == Legal;
411  }
412
413  /// getLoadExtAction - Return how this load with extension should be treated:
414  /// either it is legal, needs to be promoted to a larger size, needs to be
415  /// expanded to some other code sequence, or the target has a custom expander
416  /// for it.
417  LegalizeAction getLoadExtAction(unsigned ExtType, EVT VT) const {
418    assert(ExtType < ISD::LAST_LOADEXT_TYPE &&
419           VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
420           "Table isn't big enough!");
421    return (LegalizeAction)LoadExtActions[VT.getSimpleVT().SimpleTy][ExtType];
422  }
423
424  /// isLoadExtLegal - Return true if the specified load with extension is legal
425  /// on this target.
426  bool isLoadExtLegal(unsigned ExtType, EVT VT) const {
427    return VT.isSimple() && getLoadExtAction(ExtType, VT) == Legal;
428  }
429
430  /// getTruncStoreAction - Return how this store with truncation should be
431  /// treated: either it is legal, needs to be promoted to a larger size, needs
432  /// to be expanded to some other code sequence, or the target has a custom
433  /// expander for it.
434  LegalizeAction getTruncStoreAction(EVT ValVT, EVT MemVT) const {
435    assert(ValVT.getSimpleVT() < MVT::LAST_VALUETYPE &&
436           MemVT.getSimpleVT() < MVT::LAST_VALUETYPE &&
437           "Table isn't big enough!");
438    return (LegalizeAction)TruncStoreActions[ValVT.getSimpleVT().SimpleTy]
439                                            [MemVT.getSimpleVT().SimpleTy];
440  }
441
442  /// isTruncStoreLegal - Return true if the specified store with truncation is
443  /// legal on this target.
444  bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
445    return isTypeLegal(ValVT) && MemVT.isSimple() &&
446           getTruncStoreAction(ValVT, MemVT) == Legal;
447  }
448
449  /// getIndexedLoadAction - Return how the indexed load should be treated:
450  /// either it is legal, needs to be promoted to a larger size, needs to be
451  /// expanded to some other code sequence, or the target has a custom expander
452  /// for it.
453  LegalizeAction
454  getIndexedLoadAction(unsigned IdxMode, EVT VT) const {
455    assert(IdxMode < ISD::LAST_INDEXED_MODE &&
456           VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
457           "Table isn't big enough!");
458    unsigned Ty = (unsigned)VT.getSimpleVT().SimpleTy;
459    return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] & 0xf0) >> 4);
460  }
461
462  /// isIndexedLoadLegal - Return true if the specified indexed load is legal
463  /// on this target.
464  bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
465    return VT.isSimple() &&
466      (getIndexedLoadAction(IdxMode, VT) == Legal ||
467       getIndexedLoadAction(IdxMode, VT) == Custom);
468  }
469
470  /// getIndexedStoreAction - Return how the indexed store should be treated:
471  /// either it is legal, needs to be promoted to a larger size, needs to be
472  /// expanded to some other code sequence, or the target has a custom expander
473  /// for it.
474  LegalizeAction
475  getIndexedStoreAction(unsigned IdxMode, EVT VT) const {
476    assert(IdxMode < ISD::LAST_INDEXED_MODE &&
477           VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
478           "Table isn't big enough!");
479    unsigned Ty = (unsigned)VT.getSimpleVT().SimpleTy;
480    return (LegalizeAction)(IndexedModeActions[Ty][IdxMode] & 0x0f);
481  }
482
483  /// isIndexedStoreLegal - Return true if the specified indexed load is legal
484  /// on this target.
485  bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
486    return VT.isSimple() &&
487      (getIndexedStoreAction(IdxMode, VT) == Legal ||
488       getIndexedStoreAction(IdxMode, VT) == Custom);
489  }
490
491  /// getCondCodeAction - Return how the condition code should be treated:
492  /// either it is legal, needs to be expanded to some other code sequence,
493  /// or the target has a custom expander for it.
494  LegalizeAction
495  getCondCodeAction(ISD::CondCode CC, EVT VT) const {
496    assert((unsigned)CC < array_lengthof(CondCodeActions) &&
497           (unsigned)VT.getSimpleVT().SimpleTy < sizeof(CondCodeActions[0])*4 &&
498           "Table isn't big enough!");
499    /// The lower 5 bits of the SimpleTy index into Nth 2bit set from the 64bit
500    /// value and the upper 27 bits index into the second dimension of the
501    /// array to select what 64bit value to use.
502    LegalizeAction Action = (LegalizeAction)
503      ((CondCodeActions[CC][VT.getSimpleVT().SimpleTy >> 5]
504        >> (2*(VT.getSimpleVT().SimpleTy & 0x1F))) & 3);
505    assert(Action != Promote && "Can't promote condition code!");
506    return Action;
507  }
508
509  /// isCondCodeLegal - Return true if the specified condition code is legal
510  /// on this target.
511  bool isCondCodeLegal(ISD::CondCode CC, EVT VT) const {
512    return getCondCodeAction(CC, VT) == Legal ||
513           getCondCodeAction(CC, VT) == Custom;
514  }
515
516
517  /// getTypeToPromoteTo - If the action for this operation is to promote, this
518  /// method returns the ValueType to promote to.
519  EVT getTypeToPromoteTo(unsigned Op, EVT VT) const {
520    assert(getOperationAction(Op, VT) == Promote &&
521           "This operation isn't promoted!");
522
523    // See if this has an explicit type specified.
524    std::map<std::pair<unsigned, MVT::SimpleValueType>,
525             MVT::SimpleValueType>::const_iterator PTTI =
526      PromoteToType.find(std::make_pair(Op, VT.getSimpleVT().SimpleTy));
527    if (PTTI != PromoteToType.end()) return PTTI->second;
528
529    assert((VT.isInteger() || VT.isFloatingPoint()) &&
530           "Cannot autopromote this type, add it with AddPromotedToType.");
531
532    EVT NVT = VT;
533    do {
534      NVT = (MVT::SimpleValueType)(NVT.getSimpleVT().SimpleTy+1);
535      assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
536             "Didn't find type to promote to!");
537    } while (!isTypeLegal(NVT) ||
538              getOperationAction(Op, NVT) == Promote);
539    return NVT;
540  }
541
542  /// getValueType - Return the EVT corresponding to this LLVM type.
543  /// This is fixed by the LLVM operations except for the pointer size.  If
544  /// AllowUnknown is true, this will return MVT::Other for types with no EVT
545  /// counterpart (e.g. structs), otherwise it will assert.
546  EVT getValueType(Type *Ty, bool AllowUnknown = false) const {
547    // Lower scalar pointers to native pointer types.
548    if (Ty->isPointerTy()) return PointerTy;
549
550    if (Ty->isVectorTy()) {
551      VectorType *VTy = cast<VectorType>(Ty);
552      Type *Elm = VTy->getElementType();
553      // Lower vectors of pointers to native pointer types.
554      if (Elm->isPointerTy())
555        Elm = EVT(PointerTy).getTypeForEVT(Ty->getContext());
556      return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(Elm, false),
557                       VTy->getNumElements());
558    }
559    return EVT::getEVT(Ty, AllowUnknown);
560  }
561
562
563  /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
564  /// function arguments in the caller parameter area.  This is the actual
565  /// alignment, not its logarithm.
566  virtual unsigned getByValTypeAlignment(Type *Ty) const;
567
568  /// getRegisterType - Return the type of registers that this ValueType will
569  /// eventually require.
570  EVT getRegisterType(MVT VT) const {
571    assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT));
572    return RegisterTypeForVT[VT.SimpleTy];
573  }
574
575  /// getRegisterType - Return the type of registers that this ValueType will
576  /// eventually require.
577  EVT getRegisterType(LLVMContext &Context, EVT VT) const {
578    if (VT.isSimple()) {
579      assert((unsigned)VT.getSimpleVT().SimpleTy <
580                array_lengthof(RegisterTypeForVT));
581      return RegisterTypeForVT[VT.getSimpleVT().SimpleTy];
582    }
583    if (VT.isVector()) {
584      EVT VT1, RegisterVT;
585      unsigned NumIntermediates;
586      (void)getVectorTypeBreakdown(Context, VT, VT1,
587                                   NumIntermediates, RegisterVT);
588      return RegisterVT;
589    }
590    if (VT.isInteger()) {
591      return getRegisterType(Context, getTypeToTransformTo(Context, VT));
592    }
593    llvm_unreachable("Unsupported extended type!");
594  }
595
596  /// getNumRegisters - Return the number of registers that this ValueType will
597  /// eventually require.  This is one for any types promoted to live in larger
598  /// registers, but may be more than one for types (like i64) that are split
599  /// into pieces.  For types like i140, which are first promoted then expanded,
600  /// it is the number of registers needed to hold all the bits of the original
601  /// type.  For an i140 on a 32 bit machine this means 5 registers.
602  unsigned getNumRegisters(LLVMContext &Context, EVT VT) const {
603    if (VT.isSimple()) {
604      assert((unsigned)VT.getSimpleVT().SimpleTy <
605                array_lengthof(NumRegistersForVT));
606      return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
607    }
608    if (VT.isVector()) {
609      EVT VT1, VT2;
610      unsigned NumIntermediates;
611      return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
612    }
613    if (VT.isInteger()) {
614      unsigned BitWidth = VT.getSizeInBits();
615      unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
616      return (BitWidth + RegWidth - 1) / RegWidth;
617    }
618    llvm_unreachable("Unsupported extended type!");
619  }
620
621  /// ShouldShrinkFPConstant - If true, then instruction selection should
622  /// seek to shrink the FP constant of the specified type to a smaller type
623  /// in order to save space and / or reduce runtime.
624  virtual bool ShouldShrinkFPConstant(EVT) const { return true; }
625
626  /// hasTargetDAGCombine - If true, the target has custom DAG combine
627  /// transformations that it can perform for the specified node.
628  bool hasTargetDAGCombine(ISD::NodeType NT) const {
629    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
630    return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
631  }
632
633  /// This function returns the maximum number of store operations permitted
634  /// to replace a call to llvm.memset. The value is set by the target at the
635  /// performance threshold for such a replacement. If OptSize is true,
636  /// return the limit for functions that have OptSize attribute.
637  /// @brief Get maximum # of store operations permitted for llvm.memset
638  unsigned getMaxStoresPerMemset(bool OptSize) const {
639    return OptSize ? maxStoresPerMemsetOptSize : maxStoresPerMemset;
640  }
641
642  /// This function returns the maximum number of store operations permitted
643  /// to replace a call to llvm.memcpy. The value is set by the target at the
644  /// performance threshold for such a replacement. If OptSize is true,
645  /// return the limit for functions that have OptSize attribute.
646  /// @brief Get maximum # of store operations permitted for llvm.memcpy
647  unsigned getMaxStoresPerMemcpy(bool OptSize) const {
648    return OptSize ? maxStoresPerMemcpyOptSize : maxStoresPerMemcpy;
649  }
650
651  /// This function returns the maximum number of store operations permitted
652  /// to replace a call to llvm.memmove. The value is set by the target at the
653  /// performance threshold for such a replacement. If OptSize is true,
654  /// return the limit for functions that have OptSize attribute.
655  /// @brief Get maximum # of store operations permitted for llvm.memmove
656  unsigned getMaxStoresPerMemmove(bool OptSize) const {
657    return OptSize ? maxStoresPerMemmoveOptSize : maxStoresPerMemmove;
658  }
659
660  /// This function returns true if the target allows unaligned memory accesses.
661  /// of the specified type. This is used, for example, in situations where an
662  /// array copy/move/set is  converted to a sequence of store operations. It's
663  /// use helps to ensure that such replacements don't generate code that causes
664  /// an alignment error  (trap) on the target machine.
665  /// @brief Determine if the target supports unaligned memory accesses.
666  virtual bool allowsUnalignedMemoryAccesses(EVT) const {
667    return false;
668  }
669
670  /// This function returns true if the target would benefit from code placement
671  /// optimization.
672  /// @brief Determine if the target should perform code placement optimization.
673  bool shouldOptimizeCodePlacement() const {
674    return benefitFromCodePlacementOpt;
675  }
676
677  /// getOptimalMemOpType - Returns the target specific optimal type for load
678  /// and store operations as a result of memset, memcpy, and memmove
679  /// lowering. If DstAlign is zero that means it's safe to destination
680  /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
681  /// means there isn't a need to check it against alignment requirement,
682  /// probably because the source does not need to be loaded. If
683  /// 'IsZeroVal' is true, that means it's safe to return a
684  /// non-scalar-integer type, e.g. empty string source, constant, or loaded
685  /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
686  /// constant so it does not need to be loaded.
687  /// It returns EVT::Other if the type should be determined using generic
688  /// target-independent logic.
689  virtual EVT getOptimalMemOpType(uint64_t /*Size*/,
690                                  unsigned /*DstAlign*/, unsigned /*SrcAlign*/,
691                                  bool /*IsZeroVal*/,
692                                  bool /*MemcpyStrSrc*/,
693                                  MachineFunction &/*MF*/) const {
694    return MVT::Other;
695  }
696
697  /// usesUnderscoreSetJmp - Determine if we should use _setjmp or setjmp
698  /// to implement llvm.setjmp.
699  bool usesUnderscoreSetJmp() const {
700    return UseUnderscoreSetJmp;
701  }
702
703  /// usesUnderscoreLongJmp - Determine if we should use _longjmp or longjmp
704  /// to implement llvm.longjmp.
705  bool usesUnderscoreLongJmp() const {
706    return UseUnderscoreLongJmp;
707  }
708
709  /// supportJumpTables - return whether the target can generate code for
710  /// jump tables.
711  bool supportJumpTables() const {
712    return SupportJumpTables;
713  }
714
715  /// getMinimumJumpTableEntries - return integer threshold on number of
716  /// blocks to use jump tables rather than if sequence.
717  int getMinimumJumpTableEntries() const {
718    return MinimumJumpTableEntries;
719  }
720
721  /// getStackPointerRegisterToSaveRestore - If a physical register, this
722  /// specifies the register that llvm.savestack/llvm.restorestack should save
723  /// and restore.
724  unsigned getStackPointerRegisterToSaveRestore() const {
725    return StackPointerRegisterToSaveRestore;
726  }
727
728  /// getExceptionPointerRegister - If a physical register, this returns
729  /// the register that receives the exception address on entry to a landing
730  /// pad.
731  unsigned getExceptionPointerRegister() const {
732    return ExceptionPointerRegister;
733  }
734
735  /// getExceptionSelectorRegister - If a physical register, this returns
736  /// the register that receives the exception typeid on entry to a landing
737  /// pad.
738  unsigned getExceptionSelectorRegister() const {
739    return ExceptionSelectorRegister;
740  }
741
742  /// getJumpBufSize - returns the target's jmp_buf size in bytes (if never
743  /// set, the default is 200)
744  unsigned getJumpBufSize() const {
745    return JumpBufSize;
746  }
747
748  /// getJumpBufAlignment - returns the target's jmp_buf alignment in bytes
749  /// (if never set, the default is 0)
750  unsigned getJumpBufAlignment() const {
751    return JumpBufAlignment;
752  }
753
754  /// getMinStackArgumentAlignment - return the minimum stack alignment of an
755  /// argument.
756  unsigned getMinStackArgumentAlignment() const {
757    return MinStackArgumentAlignment;
758  }
759
760  /// getMinFunctionAlignment - return the minimum function alignment.
761  ///
762  unsigned getMinFunctionAlignment() const {
763    return MinFunctionAlignment;
764  }
765
766  /// getPrefFunctionAlignment - return the preferred function alignment.
767  ///
768  unsigned getPrefFunctionAlignment() const {
769    return PrefFunctionAlignment;
770  }
771
772  /// getPrefLoopAlignment - return the preferred loop alignment.
773  ///
774  unsigned getPrefLoopAlignment() const {
775    return PrefLoopAlignment;
776  }
777
778  /// getShouldFoldAtomicFences - return whether the combiner should fold
779  /// fence MEMBARRIER instructions into the atomic intrinsic instructions.
780  ///
781  bool getShouldFoldAtomicFences() const {
782    return ShouldFoldAtomicFences;
783  }
784
785  /// getInsertFencesFor - return whether the DAG builder should automatically
786  /// insert fences and reduce ordering for atomics.
787  ///
788  bool getInsertFencesForAtomic() const {
789    return InsertFencesForAtomic;
790  }
791
792  /// getPreIndexedAddressParts - returns true by value, base pointer and
793  /// offset pointer and addressing mode by reference if the node's address
794  /// can be legally represented as pre-indexed load / store address.
795  virtual bool getPreIndexedAddressParts(SDNode * /*N*/, SDValue &/*Base*/,
796                                         SDValue &/*Offset*/,
797                                         ISD::MemIndexedMode &/*AM*/,
798                                         SelectionDAG &/*DAG*/) const {
799    return false;
800  }
801
802  /// getPostIndexedAddressParts - returns true by value, base pointer and
803  /// offset pointer and addressing mode by reference if this node can be
804  /// combined with a load / store to form a post-indexed load / store.
805  virtual bool getPostIndexedAddressParts(SDNode * /*N*/, SDNode * /*Op*/,
806                                          SDValue &/*Base*/, SDValue &/*Offset*/,
807                                          ISD::MemIndexedMode &/*AM*/,
808                                          SelectionDAG &/*DAG*/) const {
809    return false;
810  }
811
812  /// getJumpTableEncoding - Return the entry encoding for a jump table in the
813  /// current function.  The returned value is a member of the
814  /// MachineJumpTableInfo::JTEntryKind enum.
815  virtual unsigned getJumpTableEncoding() const;
816
817  virtual const MCExpr *
818  LowerCustomJumpTableEntry(const MachineJumpTableInfo * /*MJTI*/,
819                            const MachineBasicBlock * /*MBB*/, unsigned /*uid*/,
820                            MCContext &/*Ctx*/) const {
821    llvm_unreachable("Need to implement this hook if target has custom JTIs");
822  }
823
824  /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
825  /// jumptable.
826  virtual SDValue getPICJumpTableRelocBase(SDValue Table,
827                                           SelectionDAG &DAG) const;
828
829  /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
830  /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
831  /// MCExpr.
832  virtual const MCExpr *
833  getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
834                               unsigned JTI, MCContext &Ctx) const;
835
836  /// isOffsetFoldingLegal - Return true if folding a constant offset
837  /// with the given GlobalAddress is legal.  It is frequently not legal in
838  /// PIC relocation models.
839  virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
840
841  /// getStackCookieLocation - Return true if the target stores stack
842  /// protector cookies at a fixed offset in some non-standard address
843  /// space, and populates the address space and offset as
844  /// appropriate.
845  virtual bool getStackCookieLocation(unsigned &/*AddressSpace*/,
846                                      unsigned &/*Offset*/) const {
847    return false;
848  }
849
850  /// getMaximalGlobalOffset - Returns the maximal possible offset which can be
851  /// used for loads / stores from the global.
852  virtual unsigned getMaximalGlobalOffset() const {
853    return 0;
854  }
855
856  //===--------------------------------------------------------------------===//
857  // TargetLowering Optimization Methods
858  //
859
860  /// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
861  /// SDValues for returning information from TargetLowering to its clients
862  /// that want to combine
863  struct TargetLoweringOpt {
864    SelectionDAG &DAG;
865    bool LegalTys;
866    bool LegalOps;
867    SDValue Old;
868    SDValue New;
869
870    explicit TargetLoweringOpt(SelectionDAG &InDAG,
871                               bool LT, bool LO) :
872      DAG(InDAG), LegalTys(LT), LegalOps(LO) {}
873
874    bool LegalTypes() const { return LegalTys; }
875    bool LegalOperations() const { return LegalOps; }
876
877    bool CombineTo(SDValue O, SDValue N) {
878      Old = O;
879      New = N;
880      return true;
881    }
882
883    /// ShrinkDemandedConstant - Check to see if the specified operand of the
884    /// specified instruction is a constant integer.  If so, check to see if
885    /// there are any bits set in the constant that are not demanded.  If so,
886    /// shrink the constant and return true.
887    bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
888
889    /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
890    /// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
891    /// cast, but it could be generalized for targets with other types of
892    /// implicit widening casts.
893    bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
894                          DebugLoc dl);
895  };
896
897  /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
898  /// DemandedMask bits of the result of Op are ever used downstream.  If we can
899  /// use this information to simplify Op, create a new simplified DAG node and
900  /// return true, returning the original and new nodes in Old and New.
901  /// Otherwise, analyze the expression and return a mask of KnownOne and
902  /// KnownZero bits for the expression (used to simplify the caller).
903  /// The KnownZero/One bits may only be accurate for those bits in the
904  /// DemandedMask.
905  bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask,
906                            APInt &KnownZero, APInt &KnownOne,
907                            TargetLoweringOpt &TLO, unsigned Depth = 0) const;
908
909  /// computeMaskedBitsForTargetNode - Determine which of the bits specified in
910  /// Mask are known to be either zero or one and return them in the
911  /// KnownZero/KnownOne bitsets.
912  virtual void computeMaskedBitsForTargetNode(const SDValue Op,
913                                              APInt &KnownZero,
914                                              APInt &KnownOne,
915                                              const SelectionDAG &DAG,
916                                              unsigned Depth = 0) const;
917
918  /// ComputeNumSignBitsForTargetNode - This method can be implemented by
919  /// targets that want to expose additional information about sign bits to the
920  /// DAG Combiner.
921  virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
922                                                   unsigned Depth = 0) const;
923
924  struct DAGCombinerInfo {
925    void *DC;  // The DAG Combiner object.
926    bool BeforeLegalize;
927    bool BeforeLegalizeOps;
928    bool CalledByLegalizer;
929  public:
930    SelectionDAG &DAG;
931
932    DAGCombinerInfo(SelectionDAG &dag, bool bl, bool blo, bool cl, void *dc)
933      : DC(dc), BeforeLegalize(bl), BeforeLegalizeOps(blo),
934        CalledByLegalizer(cl), DAG(dag) {}
935
936    bool isBeforeLegalize() const { return BeforeLegalize; }
937    bool isBeforeLegalizeOps() const { return BeforeLegalizeOps; }
938    bool isCalledByLegalizer() const { return CalledByLegalizer; }
939
940    void AddToWorklist(SDNode *N);
941    void RemoveFromWorklist(SDNode *N);
942    SDValue CombineTo(SDNode *N, const std::vector<SDValue> &To,
943                      bool AddTo = true);
944    SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
945    SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
946
947    void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO);
948  };
949
950  /// SimplifySetCC - Try to simplify a setcc built with the specified operands
951  /// and cc. If it is unable to simplify it, return a null SDValue.
952  SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
953                          ISD::CondCode Cond, bool foldBooleans,
954                          DAGCombinerInfo &DCI, DebugLoc dl) const;
955
956  /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
957  /// node is a GlobalAddress + offset.
958  virtual bool
959  isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
960
961  /// PerformDAGCombine - This method will be invoked for all target nodes and
962  /// for any target-independent nodes that the target has registered with
963  /// invoke it for.
964  ///
965  /// The semantics are as follows:
966  /// Return Value:
967  ///   SDValue.Val == 0   - No change was made
968  ///   SDValue.Val == N   - N was replaced, is dead, and is already handled.
969  ///   otherwise          - N should be replaced by the returned Operand.
970  ///
971  /// In addition, methods provided by DAGCombinerInfo may be used to perform
972  /// more complex transformations.
973  ///
974  virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
975
976  /// isTypeDesirableForOp - Return true if the target has native support for
977  /// the specified value type and it is 'desirable' to use the type for the
978  /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
979  /// instruction encodings are longer and some i16 instructions are slow.
980  virtual bool isTypeDesirableForOp(unsigned /*Opc*/, EVT VT) const {
981    // By default, assume all legal types are desirable.
982    return isTypeLegal(VT);
983  }
984
985  /// isDesirableToPromoteOp - Return true if it is profitable for dag combiner
986  /// to transform a floating point op of specified opcode to a equivalent op of
987  /// an integer type. e.g. f32 load -> i32 load can be profitable on ARM.
988  virtual bool isDesirableToTransformToIntegerOp(unsigned /*Opc*/,
989                                                 EVT /*VT*/) const {
990    return false;
991  }
992
993  /// IsDesirableToPromoteOp - This method query the target whether it is
994  /// beneficial for dag combiner to promote the specified node. If true, it
995  /// should return the desired promotion type by reference.
996  virtual bool IsDesirableToPromoteOp(SDValue /*Op*/, EVT &/*PVT*/) const {
997    return false;
998  }
999
1000  //===--------------------------------------------------------------------===//
1001  // TargetLowering Configuration Methods - These methods should be invoked by
1002  // the derived class constructor to configure this object for the target.
1003  //
1004
1005protected:
1006  /// setBooleanContents - Specify how the target extends the result of a
1007  /// boolean value from i1 to a wider type.  See getBooleanContents.
1008  void setBooleanContents(BooleanContent Ty) { BooleanContents = Ty; }
1009  /// setBooleanVectorContents - Specify how the target extends the result
1010  /// of a vector boolean value from a vector of i1 to a wider type.  See
1011  /// getBooleanContents.
1012  void setBooleanVectorContents(BooleanContent Ty) {
1013    BooleanVectorContents = Ty;
1014  }
1015
1016  /// setSchedulingPreference - Specify the target scheduling preference.
1017  void setSchedulingPreference(Sched::Preference Pref) {
1018    SchedPreferenceInfo = Pref;
1019  }
1020
1021  /// setUseUnderscoreSetJmp - Indicate whether this target prefers to
1022  /// use _setjmp to implement llvm.setjmp or the non _ version.
1023  /// Defaults to false.
1024  void setUseUnderscoreSetJmp(bool Val) {
1025    UseUnderscoreSetJmp = Val;
1026  }
1027
1028  /// setUseUnderscoreLongJmp - Indicate whether this target prefers to
1029  /// use _longjmp to implement llvm.longjmp or the non _ version.
1030  /// Defaults to false.
1031  void setUseUnderscoreLongJmp(bool Val) {
1032    UseUnderscoreLongJmp = Val;
1033  }
1034
1035  /// setSupportJumpTables - Indicate whether the target can generate code for
1036  /// jump tables.
1037  void setSupportJumpTables(bool Val) {
1038    SupportJumpTables = Val;
1039  }
1040
1041  /// setMinimumJumpTableEntries - Indicate the number of blocks to generate
1042  /// jump tables rather than if sequence.
1043  void setMinimumJumpTableEntries(int Val) {
1044    MinimumJumpTableEntries = Val;
1045  }
1046
1047  /// setStackPointerRegisterToSaveRestore - If set to a physical register, this
1048  /// specifies the register that llvm.savestack/llvm.restorestack should save
1049  /// and restore.
1050  void setStackPointerRegisterToSaveRestore(unsigned R) {
1051    StackPointerRegisterToSaveRestore = R;
1052  }
1053
1054  /// setExceptionPointerRegister - If set to a physical register, this sets
1055  /// the register that receives the exception address on entry to a landing
1056  /// pad.
1057  void setExceptionPointerRegister(unsigned R) {
1058    ExceptionPointerRegister = R;
1059  }
1060
1061  /// setExceptionSelectorRegister - If set to a physical register, this sets
1062  /// the register that receives the exception typeid on entry to a landing
1063  /// pad.
1064  void setExceptionSelectorRegister(unsigned R) {
1065    ExceptionSelectorRegister = R;
1066  }
1067
1068  /// SelectIsExpensive - Tells the code generator not to expand operations
1069  /// into sequences that use the select operations if possible.
1070  void setSelectIsExpensive(bool isExpensive = true) {
1071    SelectIsExpensive = isExpensive;
1072  }
1073
1074  /// JumpIsExpensive - Tells the code generator not to expand sequence of
1075  /// operations into a separate sequences that increases the amount of
1076  /// flow control.
1077  void setJumpIsExpensive(bool isExpensive = true) {
1078    JumpIsExpensive = isExpensive;
1079  }
1080
1081  /// setIntDivIsCheap - Tells the code generator that integer divide is
1082  /// expensive, and if possible, should be replaced by an alternate sequence
1083  /// of instructions not containing an integer divide.
1084  void setIntDivIsCheap(bool isCheap = true) { IntDivIsCheap = isCheap; }
1085
1086  /// addBypassSlowDivType - Tells the code generator which types to bypass.
1087  void addBypassSlowDivType(Type *slow_type, Type *fast_type) {
1088    BypassSlowDivTypes[slow_type] = fast_type;
1089  }
1090
1091  /// setPow2DivIsCheap - Tells the code generator that it shouldn't generate
1092  /// srl/add/sra for a signed divide by power of two, and let the target handle
1093  /// it.
1094  void setPow2DivIsCheap(bool isCheap = true) { Pow2DivIsCheap = isCheap; }
1095
1096  /// addRegisterClass - Add the specified register class as an available
1097  /// regclass for the specified value type.  This indicates the selector can
1098  /// handle values of that class natively.
1099  void addRegisterClass(EVT VT, const TargetRegisterClass *RC) {
1100    assert((unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT));
1101    AvailableRegClasses.push_back(std::make_pair(VT, RC));
1102    RegClassForVT[VT.getSimpleVT().SimpleTy] = RC;
1103  }
1104
1105  /// findRepresentativeClass - Return the largest legal super-reg register class
1106  /// of the register class for the specified type and its associated "cost".
1107  virtual std::pair<const TargetRegisterClass*, uint8_t>
1108  findRepresentativeClass(EVT VT) const;
1109
1110  /// computeRegisterProperties - Once all of the register classes are added,
1111  /// this allows us to compute derived properties we expose.
1112  void computeRegisterProperties();
1113
1114  /// setOperationAction - Indicate that the specified operation does not work
1115  /// with the specified type and indicate what to do about it.
1116  void setOperationAction(unsigned Op, MVT VT,
1117                          LegalizeAction Action) {
1118    assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!");
1119    OpActions[(unsigned)VT.SimpleTy][Op] = (uint8_t)Action;
1120  }
1121
1122  /// setLoadExtAction - Indicate that the specified load with extension does
1123  /// not work with the specified type and indicate what to do about it.
1124  void setLoadExtAction(unsigned ExtType, MVT VT,
1125                        LegalizeAction Action) {
1126    assert(ExtType < ISD::LAST_LOADEXT_TYPE && VT < MVT::LAST_VALUETYPE &&
1127           "Table isn't big enough!");
1128    LoadExtActions[VT.SimpleTy][ExtType] = (uint8_t)Action;
1129  }
1130
1131  /// setTruncStoreAction - Indicate that the specified truncating store does
1132  /// not work with the specified type and indicate what to do about it.
1133  void setTruncStoreAction(MVT ValVT, MVT MemVT,
1134                           LegalizeAction Action) {
1135    assert(ValVT < MVT::LAST_VALUETYPE && MemVT < MVT::LAST_VALUETYPE &&
1136           "Table isn't big enough!");
1137    TruncStoreActions[ValVT.SimpleTy][MemVT.SimpleTy] = (uint8_t)Action;
1138  }
1139
1140  /// setIndexedLoadAction - Indicate that the specified indexed load does or
1141  /// does not work with the specified type and indicate what to do abort
1142  /// it. NOTE: All indexed mode loads are initialized to Expand in
1143  /// TargetLowering.cpp
1144  void setIndexedLoadAction(unsigned IdxMode, MVT VT,
1145                            LegalizeAction Action) {
1146    assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE &&
1147           (unsigned)Action < 0xf && "Table isn't big enough!");
1148    // Load action are kept in the upper half.
1149    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0xf0;
1150    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action) <<4;
1151  }
1152
1153  /// setIndexedStoreAction - Indicate that the specified indexed store does or
1154  /// does not work with the specified type and indicate what to do about
1155  /// it. NOTE: All indexed mode stores are initialized to Expand in
1156  /// TargetLowering.cpp
1157  void setIndexedStoreAction(unsigned IdxMode, MVT VT,
1158                             LegalizeAction Action) {
1159    assert(VT < MVT::LAST_VALUETYPE && IdxMode < ISD::LAST_INDEXED_MODE &&
1160           (unsigned)Action < 0xf && "Table isn't big enough!");
1161    // Store action are kept in the lower half.
1162    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0x0f;
1163    IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action);
1164  }
1165
1166  /// setCondCodeAction - Indicate that the specified condition code is or isn't
1167  /// supported on the target and indicate what to do about it.
1168  void setCondCodeAction(ISD::CondCode CC, MVT VT,
1169                         LegalizeAction Action) {
1170    assert(VT < MVT::LAST_VALUETYPE &&
1171           (unsigned)CC < array_lengthof(CondCodeActions) &&
1172           "Table isn't big enough!");
1173    /// The lower 5 bits of the SimpleTy index into Nth 2bit set from the 64bit
1174    /// value and the upper 27 bits index into the second dimension of the
1175    /// array to select what 64bit value to use.
1176    CondCodeActions[(unsigned)CC][VT.SimpleTy >> 5]
1177      &= ~(uint64_t(3UL)  << (VT.SimpleTy & 0x1F)*2);
1178    CondCodeActions[(unsigned)CC][VT.SimpleTy >> 5]
1179      |= (uint64_t)Action << (VT.SimpleTy & 0x1F)*2;
1180  }
1181
1182  /// AddPromotedToType - If Opc/OrigVT is specified as being promoted, the
1183  /// promotion code defaults to trying a larger integer/fp until it can find
1184  /// one that works.  If that default is insufficient, this method can be used
1185  /// by the target to override the default.
1186  void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
1187    PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
1188  }
1189
1190  /// setTargetDAGCombine - Targets should invoke this method for each target
1191  /// independent node that they want to provide a custom DAG combiner for by
1192  /// implementing the PerformDAGCombine virtual method.
1193  void setTargetDAGCombine(ISD::NodeType NT) {
1194    assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray));
1195    TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7);
1196  }
1197
1198  /// setJumpBufSize - Set the target's required jmp_buf buffer size (in
1199  /// bytes); default is 200
1200  void setJumpBufSize(unsigned Size) {
1201    JumpBufSize = Size;
1202  }
1203
1204  /// setJumpBufAlignment - Set the target's required jmp_buf buffer
1205  /// alignment (in bytes); default is 0
1206  void setJumpBufAlignment(unsigned Align) {
1207    JumpBufAlignment = Align;
1208  }
1209
1210  /// setMinFunctionAlignment - Set the target's minimum function alignment (in
1211  /// log2(bytes))
1212  void setMinFunctionAlignment(unsigned Align) {
1213    MinFunctionAlignment = Align;
1214  }
1215
1216  /// setPrefFunctionAlignment - Set the target's preferred function alignment.
1217  /// This should be set if there is a performance benefit to
1218  /// higher-than-minimum alignment (in log2(bytes))
1219  void setPrefFunctionAlignment(unsigned Align) {
1220    PrefFunctionAlignment = Align;
1221  }
1222
1223  /// setPrefLoopAlignment - Set the target's preferred loop alignment. Default
1224  /// alignment is zero, it means the target does not care about loop alignment.
1225  /// The alignment is specified in log2(bytes).
1226  void setPrefLoopAlignment(unsigned Align) {
1227    PrefLoopAlignment = Align;
1228  }
1229
1230  /// setMinStackArgumentAlignment - Set the minimum stack alignment of an
1231  /// argument (in log2(bytes)).
1232  void setMinStackArgumentAlignment(unsigned Align) {
1233    MinStackArgumentAlignment = Align;
1234  }
1235
1236  /// setShouldFoldAtomicFences - Set if the target's implementation of the
1237  /// atomic operation intrinsics includes locking. Default is false.
1238  void setShouldFoldAtomicFences(bool fold) {
1239    ShouldFoldAtomicFences = fold;
1240  }
1241
1242  /// setInsertFencesForAtomic - Set if the DAG builder should
1243  /// automatically insert fences and reduce the order of atomic memory
1244  /// operations to Monotonic.
1245  void setInsertFencesForAtomic(bool fence) {
1246    InsertFencesForAtomic = fence;
1247  }
1248
1249public:
1250  //===--------------------------------------------------------------------===//
1251  // Lowering methods - These methods must be implemented by targets so that
1252  // the SelectionDAGLowering code knows how to lower these.
1253  //
1254
1255  /// LowerFormalArguments - This hook must be implemented to lower the
1256  /// incoming (formal) arguments, described by the Ins array, into the
1257  /// specified DAG. The implementation should fill in the InVals array
1258  /// with legal-type argument values, and return the resulting token
1259  /// chain value.
1260  ///
1261  virtual SDValue
1262    LowerFormalArguments(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
1263                         bool /*isVarArg*/,
1264                         const SmallVectorImpl<ISD::InputArg> &/*Ins*/,
1265                         DebugLoc /*dl*/, SelectionDAG &/*DAG*/,
1266                         SmallVectorImpl<SDValue> &/*InVals*/) const {
1267    llvm_unreachable("Not Implemented");
1268  }
1269
1270  struct ArgListEntry {
1271    SDValue Node;
1272    Type* Ty;
1273    bool isSExt  : 1;
1274    bool isZExt  : 1;
1275    bool isInReg : 1;
1276    bool isSRet  : 1;
1277    bool isNest  : 1;
1278    bool isByVal : 1;
1279    uint16_t Alignment;
1280
1281    ArgListEntry() : isSExt(false), isZExt(false), isInReg(false),
1282      isSRet(false), isNest(false), isByVal(false), Alignment(0) { }
1283  };
1284  typedef std::vector<ArgListEntry> ArgListTy;
1285
1286  /// CallLoweringInfo - This structure contains all information that is
1287  /// necessary for lowering calls. It is passed to TLI::LowerCallTo when the
1288  /// SelectionDAG builder needs to lower a call, and targets will see this
1289  /// struct in their LowerCall implementation.
1290  struct CallLoweringInfo {
1291    SDValue Chain;
1292    Type *RetTy;
1293    bool RetSExt           : 1;
1294    bool RetZExt           : 1;
1295    bool IsVarArg          : 1;
1296    bool IsInReg           : 1;
1297    bool DoesNotReturn     : 1;
1298    bool IsReturnValueUsed : 1;
1299
1300    // IsTailCall should be modified by implementations of
1301    // TargetLowering::LowerCall that perform tail call conversions.
1302    bool IsTailCall;
1303
1304    unsigned NumFixedArgs;
1305    CallingConv::ID CallConv;
1306    SDValue Callee;
1307    ArgListTy &Args;
1308    SelectionDAG &DAG;
1309    DebugLoc DL;
1310    ImmutableCallSite *CS;
1311    SmallVector<ISD::OutputArg, 32> Outs;
1312    SmallVector<SDValue, 32> OutVals;
1313    SmallVector<ISD::InputArg, 32> Ins;
1314
1315
1316    /// CallLoweringInfo - Constructs a call lowering context based on the
1317    /// ImmutableCallSite \p cs.
1318    CallLoweringInfo(SDValue chain, Type *retTy,
1319                     FunctionType *FTy, bool isTailCall, SDValue callee,
1320                     ArgListTy &args, SelectionDAG &dag, DebugLoc dl,
1321                     ImmutableCallSite &cs)
1322    : Chain(chain), RetTy(retTy), RetSExt(cs.paramHasAttr(0, Attribute::SExt)),
1323      RetZExt(cs.paramHasAttr(0, Attribute::ZExt)), IsVarArg(FTy->isVarArg()),
1324      IsInReg(cs.paramHasAttr(0, Attribute::InReg)),
1325      DoesNotReturn(cs.doesNotReturn()),
1326      IsReturnValueUsed(!cs.getInstruction()->use_empty()),
1327      IsTailCall(isTailCall), NumFixedArgs(FTy->getNumParams()),
1328      CallConv(cs.getCallingConv()), Callee(callee), Args(args), DAG(dag),
1329      DL(dl), CS(&cs) {}
1330
1331    /// CallLoweringInfo - Constructs a call lowering context based on the
1332    /// provided call information.
1333    CallLoweringInfo(SDValue chain, Type *retTy, bool retSExt, bool retZExt,
1334                     bool isVarArg, bool isInReg, unsigned numFixedArgs,
1335                     CallingConv::ID callConv, bool isTailCall,
1336                     bool doesNotReturn, bool isReturnValueUsed, SDValue callee,
1337                     ArgListTy &args, SelectionDAG &dag, DebugLoc dl)
1338    : Chain(chain), RetTy(retTy), RetSExt(retSExt), RetZExt(retZExt),
1339      IsVarArg(isVarArg), IsInReg(isInReg), DoesNotReturn(doesNotReturn),
1340      IsReturnValueUsed(isReturnValueUsed), IsTailCall(isTailCall),
1341      NumFixedArgs(numFixedArgs), CallConv(callConv), Callee(callee),
1342      Args(args), DAG(dag), DL(dl), CS(NULL) {}
1343  };
1344
1345  /// LowerCallTo - This function lowers an abstract call to a function into an
1346  /// actual call.  This returns a pair of operands.  The first element is the
1347  /// return value for the function (if RetTy is not VoidTy).  The second
1348  /// element is the outgoing token chain. It calls LowerCall to do the actual
1349  /// lowering.
1350  std::pair<SDValue, SDValue> LowerCallTo(CallLoweringInfo &CLI) const;
1351
1352  /// LowerCall - This hook must be implemented to lower calls into the
1353  /// the specified DAG. The outgoing arguments to the call are described
1354  /// by the Outs array, and the values to be returned by the call are
1355  /// described by the Ins array. The implementation should fill in the
1356  /// InVals array with legal-type return values from the call, and return
1357  /// the resulting token chain value.
1358  virtual SDValue
1359    LowerCall(CallLoweringInfo &/*CLI*/,
1360              SmallVectorImpl<SDValue> &/*InVals*/) const {
1361    llvm_unreachable("Not Implemented");
1362  }
1363
1364  /// HandleByVal - Target-specific cleanup for formal ByVal parameters.
1365  virtual void HandleByVal(CCState *, unsigned &) const {}
1366
1367  /// CanLowerReturn - This hook should be implemented to check whether the
1368  /// return values described by the Outs array can fit into the return
1369  /// registers.  If false is returned, an sret-demotion is performed.
1370  ///
1371  virtual bool CanLowerReturn(CallingConv::ID /*CallConv*/,
1372                              MachineFunction &/*MF*/, bool /*isVarArg*/,
1373               const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
1374               LLVMContext &/*Context*/) const
1375  {
1376    // Return true by default to get preexisting behavior.
1377    return true;
1378  }
1379
1380  /// LowerReturn - This hook must be implemented to lower outgoing
1381  /// return values, described by the Outs array, into the specified
1382  /// DAG. The implementation should return the resulting token chain
1383  /// value.
1384  ///
1385  virtual SDValue
1386    LowerReturn(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
1387                bool /*isVarArg*/,
1388                const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
1389                const SmallVectorImpl<SDValue> &/*OutVals*/,
1390                DebugLoc /*dl*/, SelectionDAG &/*DAG*/) const {
1391    llvm_unreachable("Not Implemented");
1392  }
1393
1394  /// isUsedByReturnOnly - Return true if result of the specified node is used
1395  /// by a return node only. It also compute and return the input chain for the
1396  /// tail call.
1397  /// This is used to determine whether it is possible
1398  /// to codegen a libcall as tail call at legalization time.
1399  virtual bool isUsedByReturnOnly(SDNode *, SDValue &Chain) const {
1400    return false;
1401  }
1402
1403  /// mayBeEmittedAsTailCall - Return true if the target may be able emit the
1404  /// call instruction as a tail call. This is used by optimization passes to
1405  /// determine if it's profitable to duplicate return instructions to enable
1406  /// tailcall optimization.
1407  virtual bool mayBeEmittedAsTailCall(CallInst *) const {
1408    return false;
1409  }
1410
1411  /// getTypeForExtArgOrReturn - Return the type that should be used to zero or
1412  /// sign extend a zeroext/signext integer argument or return value.
1413  /// FIXME: Most C calling convention requires the return type to be promoted,
1414  /// but this is not true all the time, e.g. i1 on x86-64. It is also not
1415  /// necessary for non-C calling conventions. The frontend should handle this
1416  /// and include all of the necessary information.
1417  virtual EVT getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1418                                       ISD::NodeType /*ExtendKind*/) const {
1419    EVT MinVT = getRegisterType(Context, MVT::i32);
1420    return VT.bitsLT(MinVT) ? MinVT : VT;
1421  }
1422
1423  /// LowerOperationWrapper - This callback is invoked by the type legalizer
1424  /// to legalize nodes with an illegal operand type but legal result types.
1425  /// It replaces the LowerOperation callback in the type Legalizer.
1426  /// The reason we can not do away with LowerOperation entirely is that
1427  /// LegalizeDAG isn't yet ready to use this callback.
1428  /// TODO: Consider merging with ReplaceNodeResults.
1429
1430  /// The target places new result values for the node in Results (their number
1431  /// and types must exactly match those of the original return values of
1432  /// the node), or leaves Results empty, which indicates that the node is not
1433  /// to be custom lowered after all.
1434  /// The default implementation calls LowerOperation.
1435  virtual void LowerOperationWrapper(SDNode *N,
1436                                     SmallVectorImpl<SDValue> &Results,
1437                                     SelectionDAG &DAG) const;
1438
1439  /// LowerOperation - This callback is invoked for operations that are
1440  /// unsupported by the target, which are registered to use 'custom' lowering,
1441  /// and whose defined values are all legal.
1442  /// If the target has no operations that require custom lowering, it need not
1443  /// implement this.  The default implementation of this aborts.
1444  virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
1445
1446  /// ReplaceNodeResults - This callback is invoked when a node result type is
1447  /// illegal for the target, and the operation was registered to use 'custom'
1448  /// lowering for that result type.  The target places new result values for
1449  /// the node in Results (their number and types must exactly match those of
1450  /// the original return values of the node), or leaves Results empty, which
1451  /// indicates that the node is not to be custom lowered after all.
1452  ///
1453  /// If the target has no operations that require custom lowering, it need not
1454  /// implement this.  The default implementation aborts.
1455  virtual void ReplaceNodeResults(SDNode * /*N*/,
1456                                  SmallVectorImpl<SDValue> &/*Results*/,
1457                                  SelectionDAG &/*DAG*/) const {
1458    llvm_unreachable("ReplaceNodeResults not implemented for this target!");
1459  }
1460
1461  /// getTargetNodeName() - This method returns the name of a target specific
1462  /// DAG node.
1463  virtual const char *getTargetNodeName(unsigned Opcode) const;
1464
1465  /// createFastISel - This method returns a target specific FastISel object,
1466  /// or null if the target does not support "fast" ISel.
1467  virtual FastISel *createFastISel(FunctionLoweringInfo &,
1468                                   const TargetLibraryInfo *) const {
1469    return 0;
1470  }
1471
1472  //===--------------------------------------------------------------------===//
1473  // Inline Asm Support hooks
1474  //
1475
1476  /// ExpandInlineAsm - This hook allows the target to expand an inline asm
1477  /// call to be explicit llvm code if it wants to.  This is useful for
1478  /// turning simple inline asms into LLVM intrinsics, which gives the
1479  /// compiler more information about the behavior of the code.
1480  virtual bool ExpandInlineAsm(CallInst *) const {
1481    return false;
1482  }
1483
1484  enum ConstraintType {
1485    C_Register,            // Constraint represents specific register(s).
1486    C_RegisterClass,       // Constraint represents any of register(s) in class.
1487    C_Memory,              // Memory constraint.
1488    C_Other,               // Something else.
1489    C_Unknown              // Unsupported constraint.
1490  };
1491
1492  enum ConstraintWeight {
1493    // Generic weights.
1494    CW_Invalid  = -1,     // No match.
1495    CW_Okay     = 0,      // Acceptable.
1496    CW_Good     = 1,      // Good weight.
1497    CW_Better   = 2,      // Better weight.
1498    CW_Best     = 3,      // Best weight.
1499
1500    // Well-known weights.
1501    CW_SpecificReg  = CW_Okay,    // Specific register operands.
1502    CW_Register     = CW_Good,    // Register operands.
1503    CW_Memory       = CW_Better,  // Memory operands.
1504    CW_Constant     = CW_Best,    // Constant operand.
1505    CW_Default      = CW_Okay     // Default or don't know type.
1506  };
1507
1508  /// AsmOperandInfo - This contains information for each constraint that we are
1509  /// lowering.
1510  struct AsmOperandInfo : public InlineAsm::ConstraintInfo {
1511    /// ConstraintCode - This contains the actual string for the code, like "m".
1512    /// TargetLowering picks the 'best' code from ConstraintInfo::Codes that
1513    /// most closely matches the operand.
1514    std::string ConstraintCode;
1515
1516    /// ConstraintType - Information about the constraint code, e.g. Register,
1517    /// RegisterClass, Memory, Other, Unknown.
1518    TargetLowering::ConstraintType ConstraintType;
1519
1520    /// CallOperandval - If this is the result output operand or a
1521    /// clobber, this is null, otherwise it is the incoming operand to the
1522    /// CallInst.  This gets modified as the asm is processed.
1523    Value *CallOperandVal;
1524
1525    /// ConstraintVT - The ValueType for the operand value.
1526    EVT ConstraintVT;
1527
1528    /// isMatchingInputConstraint - Return true of this is an input operand that
1529    /// is a matching constraint like "4".
1530    bool isMatchingInputConstraint() const;
1531
1532    /// getMatchedOperand - If this is an input matching constraint, this method
1533    /// returns the output operand it matches.
1534    unsigned getMatchedOperand() const;
1535
1536    /// Copy constructor for copying from an AsmOperandInfo.
1537    AsmOperandInfo(const AsmOperandInfo &info)
1538      : InlineAsm::ConstraintInfo(info),
1539        ConstraintCode(info.ConstraintCode),
1540        ConstraintType(info.ConstraintType),
1541        CallOperandVal(info.CallOperandVal),
1542        ConstraintVT(info.ConstraintVT) {
1543    }
1544
1545    /// Copy constructor for copying from a ConstraintInfo.
1546    AsmOperandInfo(const InlineAsm::ConstraintInfo &info)
1547      : InlineAsm::ConstraintInfo(info),
1548        ConstraintType(TargetLowering::C_Unknown),
1549        CallOperandVal(0), ConstraintVT(MVT::Other) {
1550    }
1551  };
1552
1553  typedef std::vector<AsmOperandInfo> AsmOperandInfoVector;
1554
1555  /// ParseConstraints - Split up the constraint string from the inline
1556  /// assembly value into the specific constraints and their prefixes,
1557  /// and also tie in the associated operand values.
1558  /// If this returns an empty vector, and if the constraint string itself
1559  /// isn't empty, there was an error parsing.
1560  virtual AsmOperandInfoVector ParseConstraints(ImmutableCallSite CS) const;
1561
1562  /// Examine constraint type and operand type and determine a weight value.
1563  /// The operand object must already have been set up with the operand type.
1564  virtual ConstraintWeight getMultipleConstraintMatchWeight(
1565      AsmOperandInfo &info, int maIndex) const;
1566
1567  /// Examine constraint string and operand type and determine a weight value.
1568  /// The operand object must already have been set up with the operand type.
1569  virtual ConstraintWeight getSingleConstraintMatchWeight(
1570      AsmOperandInfo &info, const char *constraint) const;
1571
1572  /// ComputeConstraintToUse - Determines the constraint code and constraint
1573  /// type to use for the specific AsmOperandInfo, setting
1574  /// OpInfo.ConstraintCode and OpInfo.ConstraintType.  If the actual operand
1575  /// being passed in is available, it can be passed in as Op, otherwise an
1576  /// empty SDValue can be passed.
1577  virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
1578                                      SDValue Op,
1579                                      SelectionDAG *DAG = 0) const;
1580
1581  /// getConstraintType - Given a constraint, return the type of constraint it
1582  /// is for this target.
1583  virtual ConstraintType getConstraintType(const std::string &Constraint) const;
1584
1585  /// getRegForInlineAsmConstraint - Given a physical register constraint (e.g.
1586  /// {edx}), return the register number and the register class for the
1587  /// register.
1588  ///
1589  /// Given a register class constraint, like 'r', if this corresponds directly
1590  /// to an LLVM register class, return a register of 0 and the register class
1591  /// pointer.
1592  ///
1593  /// This should only be used for C_Register constraints.  On error,
1594  /// this returns a register number of 0 and a null register class pointer..
1595  virtual std::pair<unsigned, const TargetRegisterClass*>
1596    getRegForInlineAsmConstraint(const std::string &Constraint,
1597                                 EVT VT) const;
1598
1599  /// LowerXConstraint - try to replace an X constraint, which matches anything,
1600  /// with another that has more specific requirements based on the type of the
1601  /// corresponding operand.  This returns null if there is no replacement to
1602  /// make.
1603  virtual const char *LowerXConstraint(EVT ConstraintVT) const;
1604
1605  /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1606  /// vector.  If it is invalid, don't add anything to Ops.
1607  virtual void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
1608                                            std::vector<SDValue> &Ops,
1609                                            SelectionDAG &DAG) const;
1610
1611  //===--------------------------------------------------------------------===//
1612  // Instruction Emitting Hooks
1613  //
1614
1615  // EmitInstrWithCustomInserter - This method should be implemented by targets
1616  // that mark instructions with the 'usesCustomInserter' flag.  These
1617  // instructions are special in various ways, which require special support to
1618  // insert.  The specified MachineInstr is created but not inserted into any
1619  // basic blocks, and this method is called to expand it into a sequence of
1620  // instructions, potentially also creating new basic blocks and control flow.
1621  virtual MachineBasicBlock *
1622    EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const;
1623
1624  /// AdjustInstrPostInstrSelection - This method should be implemented by
1625  /// targets that mark instructions with the 'hasPostISelHook' flag. These
1626  /// instructions must be adjusted after instruction selection by target hooks.
1627  /// e.g. To fill in optional defs for ARM 's' setting instructions.
1628  virtual void
1629  AdjustInstrPostInstrSelection(MachineInstr *MI, SDNode *Node) const;
1630
1631  //===--------------------------------------------------------------------===//
1632  // Addressing mode description hooks (used by LSR etc).
1633  //
1634
1635  /// AddrMode - This represents an addressing mode of:
1636  ///    BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
1637  /// If BaseGV is null,  there is no BaseGV.
1638  /// If BaseOffs is zero, there is no base offset.
1639  /// If HasBaseReg is false, there is no base register.
1640  /// If Scale is zero, there is no ScaleReg.  Scale of 1 indicates a reg with
1641  /// no scale.
1642  ///
1643  struct AddrMode {
1644    GlobalValue *BaseGV;
1645    int64_t      BaseOffs;
1646    bool         HasBaseReg;
1647    int64_t      Scale;
1648    AddrMode() : BaseGV(0), BaseOffs(0), HasBaseReg(false), Scale(0) {}
1649  };
1650
1651  /// GetAddrModeArguments - CodeGenPrepare sinks address calculations into the
1652  /// same BB as Load/Store instructions reading the address.  This allows as
1653  /// much computation as possible to be done in the address mode for that
1654  /// operand.  This hook lets targets also pass back when this should be done
1655  /// on intrinsics which load/store.
1656  virtual bool GetAddrModeArguments(IntrinsicInst *I,
1657                                    SmallVectorImpl<Value*> &Ops,
1658                                    Type *&AccessTy) const {
1659    return false;
1660  }
1661
1662  /// isLegalAddressingMode - Return true if the addressing mode represented by
1663  /// AM is legal for this target, for a load/store of the specified type.
1664  /// The type may be VoidTy, in which case only return true if the addressing
1665  /// mode is legal for a load/store of any legal type.
1666  /// TODO: Handle pre/postinc as well.
1667  virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const;
1668
1669  /// isLegalICmpImmediate - Return true if the specified immediate is legal
1670  /// icmp immediate, that is the target has icmp instructions which can compare
1671  /// a register against the immediate without having to materialize the
1672  /// immediate into a register.
1673  virtual bool isLegalICmpImmediate(int64_t) const {
1674    return true;
1675  }
1676
1677  /// isLegalAddImmediate - Return true if the specified immediate is legal
1678  /// add immediate, that is the target has add instructions which can add
1679  /// a register with the immediate without having to materialize the
1680  /// immediate into a register.
1681  virtual bool isLegalAddImmediate(int64_t) const {
1682    return true;
1683  }
1684
1685  /// isTruncateFree - Return true if it's free to truncate a value of
1686  /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
1687  /// register EAX to i16 by referencing its sub-register AX.
1688  virtual bool isTruncateFree(Type * /*Ty1*/, Type * /*Ty2*/) const {
1689    return false;
1690  }
1691
1692  virtual bool isTruncateFree(EVT /*VT1*/, EVT /*VT2*/) const {
1693    return false;
1694  }
1695
1696  /// isZExtFree - Return true if any actual instruction that defines a
1697  /// value of type Ty1 implicitly zero-extends the value to Ty2 in the result
1698  /// register. This does not necessarily include registers defined in
1699  /// unknown ways, such as incoming arguments, or copies from unknown
1700  /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
1701  /// does not necessarily apply to truncate instructions. e.g. on x86-64,
1702  /// all instructions that define 32-bit values implicit zero-extend the
1703  /// result out to 64 bits.
1704  virtual bool isZExtFree(Type * /*Ty1*/, Type * /*Ty2*/) const {
1705    return false;
1706  }
1707
1708  virtual bool isZExtFree(EVT /*VT1*/, EVT /*VT2*/) const {
1709    return false;
1710  }
1711
1712  /// isFNegFree - Return true if an fneg operation is free to the point where
1713  /// it is never worthwhile to replace it with a bitwise operation.
1714  virtual bool isFNegFree(EVT) const {
1715    return false;
1716  }
1717
1718  /// isFAbsFree - Return true if an fneg operation is free to the point where
1719  /// it is never worthwhile to replace it with a bitwise operation.
1720  virtual bool isFAbsFree(EVT) const {
1721    return false;
1722  }
1723
1724  /// isFMAFasterThanMulAndAdd - Return true if an FMA operation is faster than
1725  /// a pair of mul and add instructions. fmuladd intrinsics will be expanded to
1726  /// FMAs when this method returns true (and FMAs are legal), otherwise fmuladd
1727  /// is expanded to mul + add.
1728  virtual bool isFMAFasterThanMulAndAdd(EVT) const {
1729    return false;
1730  }
1731
1732  /// isNarrowingProfitable - Return true if it's profitable to narrow
1733  /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
1734  /// from i32 to i8 but not from i32 to i16.
1735  virtual bool isNarrowingProfitable(EVT /*VT1*/, EVT /*VT2*/) const {
1736    return false;
1737  }
1738
1739  //===--------------------------------------------------------------------===//
1740  // Div utility functions
1741  //
1742  SDValue BuildExactSDIV(SDValue Op1, SDValue Op2, DebugLoc dl,
1743                         SelectionDAG &DAG) const;
1744  SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
1745                      std::vector<SDNode*>* Created) const;
1746  SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
1747                      std::vector<SDNode*>* Created) const;
1748
1749
1750  //===--------------------------------------------------------------------===//
1751  // Runtime Library hooks
1752  //
1753
1754  /// setLibcallName - Rename the default libcall routine name for the specified
1755  /// libcall.
1756  void setLibcallName(RTLIB::Libcall Call, const char *Name) {
1757    LibcallRoutineNames[Call] = Name;
1758  }
1759
1760  /// getLibcallName - Get the libcall routine name for the specified libcall.
1761  ///
1762  const char *getLibcallName(RTLIB::Libcall Call) const {
1763    return LibcallRoutineNames[Call];
1764  }
1765
1766  /// setCmpLibcallCC - Override the default CondCode to be used to test the
1767  /// result of the comparison libcall against zero.
1768  void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) {
1769    CmpLibcallCCs[Call] = CC;
1770  }
1771
1772  /// getCmpLibcallCC - Get the CondCode that's to be used to test the result of
1773  /// the comparison libcall against zero.
1774  ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const {
1775    return CmpLibcallCCs[Call];
1776  }
1777
1778  /// setLibcallCallingConv - Set the CallingConv that should be used for the
1779  /// specified libcall.
1780  void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) {
1781    LibcallCallingConvs[Call] = CC;
1782  }
1783
1784  /// getLibcallCallingConv - Get the CallingConv that should be used for the
1785  /// specified libcall.
1786  CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const {
1787    return LibcallCallingConvs[Call];
1788  }
1789
1790private:
1791  const TargetMachine &TM;
1792  const TargetData *TD;
1793  const TargetLoweringObjectFile &TLOF;
1794
1795  /// PointerTy - The type to use for pointers, usually i32 or i64.
1796  ///
1797  MVT PointerTy;
1798
1799  /// IsLittleEndian - True if this is a little endian target.
1800  ///
1801  bool IsLittleEndian;
1802
1803  /// SelectIsExpensive - Tells the code generator not to expand operations
1804  /// into sequences that use the select operations if possible.
1805  bool SelectIsExpensive;
1806
1807  /// IntDivIsCheap - Tells the code generator not to expand integer divides by
1808  /// constants into a sequence of muls, adds, and shifts.  This is a hack until
1809  /// a real cost model is in place.  If we ever optimize for size, this will be
1810  /// set to true unconditionally.
1811  bool IntDivIsCheap;
1812
1813  /// BypassSlowDivTypes - Tells the code generator to bypass slow divide or
1814  /// remainder instructions. For example, SlowDivBypass[i32,u8] tells the code
1815  /// generator to bypass 32-bit signed integer div/rem with an 8-bit unsigned
1816  /// integer div/rem when the operands are positive and less than 256.
1817  DenseMap <Type *, Type *> BypassSlowDivTypes;
1818
1819  /// Pow2DivIsCheap - Tells the code generator that it shouldn't generate
1820  /// srl/add/sra for a signed divide by power of two, and let the target handle
1821  /// it.
1822  bool Pow2DivIsCheap;
1823
1824  /// JumpIsExpensive - Tells the code generator that it shouldn't generate
1825  /// extra flow control instructions and should attempt to combine flow
1826  /// control instructions via predication.
1827  bool JumpIsExpensive;
1828
1829  /// UseUnderscoreSetJmp - This target prefers to use _setjmp to implement
1830  /// llvm.setjmp.  Defaults to false.
1831  bool UseUnderscoreSetJmp;
1832
1833  /// UseUnderscoreLongJmp - This target prefers to use _longjmp to implement
1834  /// llvm.longjmp.  Defaults to false.
1835  bool UseUnderscoreLongJmp;
1836
1837  /// SupportJumpTables - Whether the target can generate code for jumptables.
1838  /// If it's not true, then each jumptable must be lowered into if-then-else's.
1839  bool SupportJumpTables;
1840
1841  /// MinimumJumpTableEntries - Number of blocks threshold to use jump tables.
1842  int MinimumJumpTableEntries;
1843
1844  /// BooleanContents - Information about the contents of the high-bits in
1845  /// boolean values held in a type wider than i1.  See getBooleanContents.
1846  BooleanContent BooleanContents;
1847  /// BooleanVectorContents - Information about the contents of the high-bits
1848  /// in boolean vector values when the element type is wider than i1.  See
1849  /// getBooleanContents.
1850  BooleanContent BooleanVectorContents;
1851
1852  /// SchedPreferenceInfo - The target scheduling preference: shortest possible
1853  /// total cycles or lowest register usage.
1854  Sched::Preference SchedPreferenceInfo;
1855
1856  /// JumpBufSize - The size, in bytes, of the target's jmp_buf buffers
1857  unsigned JumpBufSize;
1858
1859  /// JumpBufAlignment - The alignment, in bytes, of the target's jmp_buf
1860  /// buffers
1861  unsigned JumpBufAlignment;
1862
1863  /// MinStackArgumentAlignment - The minimum alignment that any argument
1864  /// on the stack needs to have.
1865  ///
1866  unsigned MinStackArgumentAlignment;
1867
1868  /// MinFunctionAlignment - The minimum function alignment (used when
1869  /// optimizing for size, and to prevent explicitly provided alignment
1870  /// from leading to incorrect code).
1871  ///
1872  unsigned MinFunctionAlignment;
1873
1874  /// PrefFunctionAlignment - The preferred function alignment (used when
1875  /// alignment unspecified and optimizing for speed).
1876  ///
1877  unsigned PrefFunctionAlignment;
1878
1879  /// PrefLoopAlignment - The preferred loop alignment.
1880  ///
1881  unsigned PrefLoopAlignment;
1882
1883  /// ShouldFoldAtomicFences - Whether fencing MEMBARRIER instructions should
1884  /// be folded into the enclosed atomic intrinsic instruction by the
1885  /// combiner.
1886  bool ShouldFoldAtomicFences;
1887
1888  /// InsertFencesForAtomic - Whether the DAG builder should automatically
1889  /// insert fences and reduce ordering for atomics.  (This will be set for
1890  /// for most architectures with weak memory ordering.)
1891  bool InsertFencesForAtomic;
1892
1893  /// StackPointerRegisterToSaveRestore - If set to a physical register, this
1894  /// specifies the register that llvm.savestack/llvm.restorestack should save
1895  /// and restore.
1896  unsigned StackPointerRegisterToSaveRestore;
1897
1898  /// ExceptionPointerRegister - If set to a physical register, this specifies
1899  /// the register that receives the exception address on entry to a landing
1900  /// pad.
1901  unsigned ExceptionPointerRegister;
1902
1903  /// ExceptionSelectorRegister - If set to a physical register, this specifies
1904  /// the register that receives the exception typeid on entry to a landing
1905  /// pad.
1906  unsigned ExceptionSelectorRegister;
1907
1908  /// RegClassForVT - This indicates the default register class to use for
1909  /// each ValueType the target supports natively.
1910  const TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE];
1911  unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE];
1912  EVT RegisterTypeForVT[MVT::LAST_VALUETYPE];
1913
1914  /// RepRegClassForVT - This indicates the "representative" register class to
1915  /// use for each ValueType the target supports natively. This information is
1916  /// used by the scheduler to track register pressure. By default, the
1917  /// representative register class is the largest legal super-reg register
1918  /// class of the register class of the specified type. e.g. On x86, i8, i16,
1919  /// and i32's representative class would be GR32.
1920  const TargetRegisterClass *RepRegClassForVT[MVT::LAST_VALUETYPE];
1921
1922  /// RepRegClassCostForVT - This indicates the "cost" of the "representative"
1923  /// register class for each ValueType. The cost is used by the scheduler to
1924  /// approximate register pressure.
1925  uint8_t RepRegClassCostForVT[MVT::LAST_VALUETYPE];
1926
1927  /// TransformToType - For any value types we are promoting or expanding, this
1928  /// contains the value type that we are changing to.  For Expanded types, this
1929  /// contains one step of the expand (e.g. i64 -> i32), even if there are
1930  /// multiple steps required (e.g. i64 -> i16).  For types natively supported
1931  /// by the system, this holds the same type (e.g. i32 -> i32).
1932  EVT TransformToType[MVT::LAST_VALUETYPE];
1933
1934  /// OpActions - For each operation and each value type, keep a LegalizeAction
1935  /// that indicates how instruction selection should deal with the operation.
1936  /// Most operations are Legal (aka, supported natively by the target), but
1937  /// operations that are not should be described.  Note that operations on
1938  /// non-legal value types are not described here.
1939  uint8_t OpActions[MVT::LAST_VALUETYPE][ISD::BUILTIN_OP_END];
1940
1941  /// LoadExtActions - For each load extension type and each value type,
1942  /// keep a LegalizeAction that indicates how instruction selection should deal
1943  /// with a load of a specific value type and extension type.
1944  uint8_t LoadExtActions[MVT::LAST_VALUETYPE][ISD::LAST_LOADEXT_TYPE];
1945
1946  /// TruncStoreActions - For each value type pair keep a LegalizeAction that
1947  /// indicates whether a truncating store of a specific value type and
1948  /// truncating type is legal.
1949  uint8_t TruncStoreActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE];
1950
1951  /// IndexedModeActions - For each indexed mode and each value type,
1952  /// keep a pair of LegalizeAction that indicates how instruction
1953  /// selection should deal with the load / store.  The first dimension is the
1954  /// value_type for the reference. The second dimension represents the various
1955  /// modes for load store.
1956  uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][ISD::LAST_INDEXED_MODE];
1957
1958  /// CondCodeActions - For each condition code (ISD::CondCode) keep a
1959  /// LegalizeAction that indicates how instruction selection should
1960  /// deal with the condition code.
1961  /// Because each CC action takes up 2 bits, we need to have the array size
1962  /// be large enough to fit all of the value types. This can be done by
1963  /// dividing the MVT::LAST_VALUETYPE by 32 and adding one.
1964  uint64_t CondCodeActions[ISD::SETCC_INVALID][(MVT::LAST_VALUETYPE / 32) + 1];
1965
1966  ValueTypeActionImpl ValueTypeActions;
1967
1968  typedef std::pair<LegalizeTypeAction, EVT> LegalizeKind;
1969
1970  LegalizeKind
1971  getTypeConversion(LLVMContext &Context, EVT VT) const {
1972    // If this is a simple type, use the ComputeRegisterProp mechanism.
1973    if (VT.isSimple()) {
1974      assert((unsigned)VT.getSimpleVT().SimpleTy <
1975             array_lengthof(TransformToType));
1976      EVT NVT = TransformToType[VT.getSimpleVT().SimpleTy];
1977      LegalizeTypeAction LA = ValueTypeActions.getTypeAction(VT.getSimpleVT());
1978
1979      assert(
1980        (!(NVT.isSimple() && LA != TypeLegal) ||
1981         ValueTypeActions.getTypeAction(NVT.getSimpleVT()) != TypePromoteInteger)
1982         && "Promote may not follow Expand or Promote");
1983
1984      return LegalizeKind(LA, NVT);
1985    }
1986
1987    // Handle Extended Scalar Types.
1988    if (!VT.isVector()) {
1989      assert(VT.isInteger() && "Float types must be simple");
1990      unsigned BitSize = VT.getSizeInBits();
1991      // First promote to a power-of-two size, then expand if necessary.
1992      if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
1993        EVT NVT = VT.getRoundIntegerType(Context);
1994        assert(NVT != VT && "Unable to round integer VT");
1995        LegalizeKind NextStep = getTypeConversion(Context, NVT);
1996        // Avoid multi-step promotion.
1997        if (NextStep.first == TypePromoteInteger) return NextStep;
1998        // Return rounded integer type.
1999        return LegalizeKind(TypePromoteInteger, NVT);
2000      }
2001
2002      return LegalizeKind(TypeExpandInteger,
2003                          EVT::getIntegerVT(Context, VT.getSizeInBits()/2));
2004    }
2005
2006    // Handle vector types.
2007    unsigned NumElts = VT.getVectorNumElements();
2008    EVT EltVT = VT.getVectorElementType();
2009
2010    // Vectors with only one element are always scalarized.
2011    if (NumElts == 1)
2012      return LegalizeKind(TypeScalarizeVector, EltVT);
2013
2014    // Try to widen vector elements until a legal type is found.
2015    if (EltVT.isInteger()) {
2016      // Vectors with a number of elements that is not a power of two are always
2017      // widened, for example <3 x float> -> <4 x float>.
2018      if (!VT.isPow2VectorType()) {
2019        NumElts = (unsigned)NextPowerOf2(NumElts);
2020        EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
2021        return LegalizeKind(TypeWidenVector, NVT);
2022      }
2023
2024      // Examine the element type.
2025      LegalizeKind LK = getTypeConversion(Context, EltVT);
2026
2027      // If type is to be expanded, split the vector.
2028      //  <4 x i140> -> <2 x i140>
2029      if (LK.first == TypeExpandInteger)
2030        return LegalizeKind(TypeSplitVector,
2031                            EVT::getVectorVT(Context, EltVT, NumElts / 2));
2032
2033      // Promote the integer element types until a legal vector type is found
2034      // or until the element integer type is too big. If a legal type was not
2035      // found, fallback to the usual mechanism of widening/splitting the
2036      // vector.
2037      while (1) {
2038        // Increase the bitwidth of the element to the next pow-of-two
2039        // (which is greater than 8 bits).
2040        EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits()
2041                                 ).getRoundIntegerType(Context);
2042
2043        // Stop trying when getting a non-simple element type.
2044        // Note that vector elements may be greater than legal vector element
2045        // types. Example: X86 XMM registers hold 64bit element on 32bit systems.
2046        if (!EltVT.isSimple()) break;
2047
2048        // Build a new vector type and check if it is legal.
2049        MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
2050        // Found a legal promoted vector type.
2051        if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
2052          return LegalizeKind(TypePromoteInteger,
2053                              EVT::getVectorVT(Context, EltVT, NumElts));
2054      }
2055    }
2056
2057    // Try to widen the vector until a legal type is found.
2058    // If there is no wider legal type, split the vector.
2059    while (1) {
2060      // Round up to the next power of 2.
2061      NumElts = (unsigned)NextPowerOf2(NumElts);
2062
2063      // If there is no simple vector type with this many elements then there
2064      // cannot be a larger legal vector type.  Note that this assumes that
2065      // there are no skipped intermediate vector types in the simple types.
2066      if (!EltVT.isSimple()) break;
2067      MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
2068      if (LargerVector == MVT()) break;
2069
2070      // If this type is legal then widen the vector.
2071      if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
2072        return LegalizeKind(TypeWidenVector, LargerVector);
2073    }
2074
2075    // Widen odd vectors to next power of two.
2076    if (!VT.isPow2VectorType()) {
2077      EVT NVT = VT.getPow2VectorType(Context);
2078      return LegalizeKind(TypeWidenVector, NVT);
2079    }
2080
2081    // Vectors with illegal element types are expanded.
2082    EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2);
2083    return LegalizeKind(TypeSplitVector, NVT);
2084  }
2085
2086  std::vector<std::pair<EVT, const TargetRegisterClass*> > AvailableRegClasses;
2087
2088  /// TargetDAGCombineArray - Targets can specify ISD nodes that they would
2089  /// like PerformDAGCombine callbacks for by calling setTargetDAGCombine(),
2090  /// which sets a bit in this array.
2091  unsigned char
2092  TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
2093
2094  /// PromoteToType - For operations that must be promoted to a specific type,
2095  /// this holds the destination type.  This map should be sparse, so don't hold
2096  /// it as an array.
2097  ///
2098  /// Targets add entries to this map with AddPromotedToType(..), clients access
2099  /// this with getTypeToPromoteTo(..).
2100  std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
2101    PromoteToType;
2102
2103  /// LibcallRoutineNames - Stores the name each libcall.
2104  ///
2105  const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL];
2106
2107  /// CmpLibcallCCs - The ISD::CondCode that should be used to test the result
2108  /// of each of the comparison libcall against zero.
2109  ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
2110
2111  /// LibcallCallingConvs - Stores the CallingConv that should be used for each
2112  /// libcall.
2113  CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
2114
2115protected:
2116  /// When lowering \@llvm.memset this field specifies the maximum number of
2117  /// store operations that may be substituted for the call to memset. Targets
2118  /// must set this value based on the cost threshold for that target. Targets
2119  /// should assume that the memset will be done using as many of the largest
2120  /// store operations first, followed by smaller ones, if necessary, per
2121  /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
2122  /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
2123  /// store.  This only applies to setting a constant array of a constant size.
2124  /// @brief Specify maximum number of store instructions per memset call.
2125  unsigned maxStoresPerMemset;
2126
2127  /// Maximum number of stores operations that may be substituted for the call
2128  /// to memset, used for functions with OptSize attribute.
2129  unsigned maxStoresPerMemsetOptSize;
2130
2131  /// When lowering \@llvm.memcpy this field specifies the maximum number of
2132  /// store operations that may be substituted for a call to memcpy. Targets
2133  /// must set this value based on the cost threshold for that target. Targets
2134  /// should assume that the memcpy will be done using as many of the largest
2135  /// store operations first, followed by smaller ones, if necessary, per
2136  /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
2137  /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
2138  /// and one 1-byte store. This only applies to copying a constant array of
2139  /// constant size.
2140  /// @brief Specify maximum bytes of store instructions per memcpy call.
2141  unsigned maxStoresPerMemcpy;
2142
2143  /// Maximum number of store operations that may be substituted for a call
2144  /// to memcpy, used for functions with OptSize attribute.
2145  unsigned maxStoresPerMemcpyOptSize;
2146
2147  /// When lowering \@llvm.memmove this field specifies the maximum number of
2148  /// store instructions that may be substituted for a call to memmove. Targets
2149  /// must set this value based on the cost threshold for that target. Targets
2150  /// should assume that the memmove will be done using as many of the largest
2151  /// store operations first, followed by smaller ones, if necessary, per
2152  /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
2153  /// with 8-bit alignment would result in nine 1-byte stores.  This only
2154  /// applies to copying a constant array of constant size.
2155  /// @brief Specify maximum bytes of store instructions per memmove call.
2156  unsigned maxStoresPerMemmove;
2157
2158  /// Maximum number of store instructions that may be substituted for a call
2159  /// to memmove, used for functions with OpSize attribute.
2160  unsigned maxStoresPerMemmoveOptSize;
2161
2162  /// This field specifies whether the target can benefit from code placement
2163  /// optimization.
2164  bool benefitFromCodePlacementOpt;
2165
2166  /// predictableSelectIsExpensive - Tells the code generator that select is
2167  /// more expensive than a branch if the branch is usually predicted right.
2168  bool predictableSelectIsExpensive;
2169
2170private:
2171  /// isLegalRC - Return true if the value types that can be represented by the
2172  /// specified register class are all legal.
2173  bool isLegalRC(const TargetRegisterClass *RC) const;
2174};
2175
2176/// GetReturnInfo - Given an LLVM IR type and return type attributes,
2177/// compute the return value EVTs and flags, and optionally also
2178/// the offsets, if the return value is being lowered to memory.
2179void GetReturnInfo(Type* ReturnType, Attributes attr,
2180                   SmallVectorImpl<ISD::OutputArg> &Outs,
2181                   const TargetLowering &TLI);
2182
2183} // end llvm namespace
2184
2185#endif
2186