1/* Extended regular expression matching and search library,
2   version 0.12.
3   (Implements POSIX draft P1003.2/D11.2, except for some of the
4   internationalization features.)
5   Copyright (C) 1993-1999, 2000, 2001 Free Software Foundation, Inc.
6
7   This program is free software; you can redistribute it and/or modify
8   it under the terms of the GNU General Public License as published by
9   the Free Software Foundation; either version 2, or (at your option)
10   any later version.
11
12   This program is distributed in the hope that it will be useful,
13   but WITHOUT ANY WARRANTY; without even the implied warranty of
14   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15   GNU General Public License for more details.
16
17   You should have received a copy of the GNU General Public License
18   along with this program; if not, write to the Free Software Foundation,
19   Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
20
21/* AIX requires this to be the first thing in the file. */
22#if defined _AIX && !defined REGEX_MALLOC
23  #pragma alloca
24#endif
25
26#undef	_GNU_SOURCE
27#define _GNU_SOURCE
28
29#ifdef HAVE_CONFIG_H
30# include <config.h>
31#endif
32
33#ifndef PARAMS
34# if defined __GNUC__ || (defined __STDC__ && __STDC__)
35#  define PARAMS(args) args
36# else
37#  define PARAMS(args) ()
38# endif  /* GCC.  */
39#endif  /* Not PARAMS.  */
40
41#ifndef INSIDE_RECURSION
42
43# if defined STDC_HEADERS && !defined emacs
44#  include <stddef.h>
45# else
46/* We need this for `regex.h', and perhaps for the Emacs include files.  */
47#  include <sys/types.h>
48# endif
49
50# define WIDE_CHAR_SUPPORT (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC)
51
52/* For platform which support the ISO C amendement 1 functionality we
53   support user defined character classes.  */
54# if defined _LIBC || WIDE_CHAR_SUPPORT
55/* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>.  */
56#  include <wchar.h>
57#  include <wctype.h>
58# endif
59
60# ifdef _LIBC
61/* We have to keep the namespace clean.  */
62#  define regfree(preg) __regfree (preg)
63#  define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
64#  define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
65#  define regerror(errcode, preg, errbuf, errbuf_size) \
66	__regerror(errcode, preg, errbuf, errbuf_size)
67#  define re_set_registers(bu, re, nu, st, en) \
68	__re_set_registers (bu, re, nu, st, en)
69#  define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
70	__re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
71#  define re_match(bufp, string, size, pos, regs) \
72	__re_match (bufp, string, size, pos, regs)
73#  define re_search(bufp, string, size, startpos, range, regs) \
74	__re_search (bufp, string, size, startpos, range, regs)
75#  define re_compile_pattern(pattern, length, bufp) \
76	__re_compile_pattern (pattern, length, bufp)
77#  define re_set_syntax(syntax) __re_set_syntax (syntax)
78#  define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
79	__re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
80#  define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
81
82#  define btowc __btowc
83#  define iswctype __iswctype
84#  define mbrtowc __mbrtowc
85#  define wcslen __wcslen
86#  define wcscoll __wcscoll
87#  define wcrtomb __wcrtomb
88
89/* We are also using some library internals.  */
90#  include <locale/localeinfo.h>
91#  include <locale/elem-hash.h>
92#  include <langinfo.h>
93#  include <locale/coll-lookup.h>
94# endif
95
96/* This is for other GNU distributions with internationalized messages.  */
97# if (HAVE_LIBINTL_H && ENABLE_NLS) || defined _LIBC
98#  include <libintl.h>
99#  ifdef _LIBC
100#   undef gettext
101#   define gettext(msgid) __dcgettext ("libc", msgid, LC_MESSAGES)
102#  endif
103# else
104#  define gettext(msgid) (msgid)
105# endif
106
107# ifndef gettext_noop
108/* This define is so xgettext can find the internationalizable
109   strings.  */
110#  define gettext_noop(String) String
111# endif
112
113/* Support for bounded pointers.  */
114# if !defined _LIBC && !defined __BOUNDED_POINTERS__
115#  define __bounded	/* nothing */
116#  define __unbounded	/* nothing */
117#  define __ptrvalue	/* nothing */
118# endif
119
120/* The `emacs' switch turns on certain matching commands
121   that make sense only in Emacs. */
122# ifdef emacs
123
124#  include "lisp.h"
125#  include "buffer.h"
126#  include "syntax.h"
127
128# else  /* not emacs */
129
130/* If we are not linking with Emacs proper,
131   we can't use the relocating allocator
132   even if config.h says that we can.  */
133#  undef REL_ALLOC
134
135#  if defined STDC_HEADERS || defined _LIBC
136#   include <stdlib.h>
137#  else
138char *malloc ();
139char *realloc ();
140#  endif
141
142/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
143   If nothing else has been done, use the method below.  */
144#  ifdef INHIBIT_STRING_HEADER
145#   if !(defined HAVE_BZERO && defined HAVE_BCOPY)
146#    if !defined bzero && !defined bcopy
147#     undef INHIBIT_STRING_HEADER
148#    endif
149#   endif
150#  endif
151
152/* This is the normal way of making sure we have a bcopy and a bzero.
153   This is used in most programs--a few other programs avoid this
154   by defining INHIBIT_STRING_HEADER.  */
155#  ifndef INHIBIT_STRING_HEADER
156#   if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
157#    include <string.h>
158#    ifndef bzero
159#     ifndef _LIBC
160#      define bzero(s, n)	(memset (s, '\0', n), (s))
161#     else
162#      define bzero(s, n)	__bzero (s, n)
163#     endif
164#    endif
165#   else
166#    include <strings.h>
167#    ifndef memcmp
168#     define memcmp(s1, s2, n)	bcmp (s1, s2, n)
169#    endif
170#    ifndef memcpy
171#     define memcpy(d, s, n)	(bcopy (s, d, n), (d))
172#    endif
173#   endif
174#  endif
175
176/* Define the syntax stuff for \<, \>, etc.  */
177
178/* This must be nonzero for the wordchar and notwordchar pattern
179   commands in re_match_2.  */
180#  ifndef Sword
181#   define Sword 1
182#  endif
183
184#  ifdef SWITCH_ENUM_BUG
185#   define SWITCH_ENUM_CAST(x) ((int)(x))
186#  else
187#   define SWITCH_ENUM_CAST(x) (x)
188#  endif
189
190# endif /* not emacs */
191
192# if defined _LIBC || HAVE_LIMITS_H
193#  include <limits.h>
194# endif
195
196# ifndef MB_LEN_MAX
197#  define MB_LEN_MAX 1
198# endif
199
200/* Get the interface, including the syntax bits.  */
201# include <regex.h>
202
203/* isalpha etc. are used for the character classes.  */
204# include <ctype.h>
205
206/* Jim Meyering writes:
207
208   "... Some ctype macros are valid only for character codes that
209   isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
210   using /bin/cc or gcc but without giving an ansi option).  So, all
211   ctype uses should be through macros like ISPRINT...  If
212   STDC_HEADERS is defined, then autoconf has verified that the ctype
213   macros don't need to be guarded with references to isascii. ...
214   Defining isascii to 1 should let any compiler worth its salt
215   eliminate the && through constant folding."
216   Solaris defines some of these symbols so we must undefine them first.  */
217
218# if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
219#  define IN_CTYPE_DOMAIN(c) 1
220# else
221#  define IN_CTYPE_DOMAIN(c) isascii(c)
222# endif
223
224# ifdef isblank
225#  define ISBLANK(c) (IN_CTYPE_DOMAIN (c) && isblank (c))
226# else
227#  define ISBLANK(c) ((c) == ' ' || (c) == '\t')
228# endif
229# ifdef isgraph
230#  define ISGRAPH(c) (IN_CTYPE_DOMAIN (c) && isgraph (c))
231# else
232#  define ISGRAPH(c) (IN_CTYPE_DOMAIN (c) && isprint (c) && !isspace (c))
233# endif
234
235# undef ISPRINT
236# define ISPRINT(c) (IN_CTYPE_DOMAIN (c) && isprint (c))
237# define ISDIGIT(c) (IN_CTYPE_DOMAIN (c) && isdigit (c))
238# define ISALNUM(c) (IN_CTYPE_DOMAIN (c) && isalnum (c))
239# define ISALPHA(c) (IN_CTYPE_DOMAIN (c) && isalpha (c))
240# define ISCNTRL(c) (IN_CTYPE_DOMAIN (c) && iscntrl (c))
241# define ISLOWER(c) (IN_CTYPE_DOMAIN (c) && islower (c))
242# define ISPUNCT(c) (IN_CTYPE_DOMAIN (c) && ispunct (c))
243# define ISSPACE(c) (IN_CTYPE_DOMAIN (c) && isspace (c))
244# define ISUPPER(c) (IN_CTYPE_DOMAIN (c) && isupper (c))
245# define ISXDIGIT(c) (IN_CTYPE_DOMAIN (c) && isxdigit (c))
246
247# ifdef _tolower
248#  define TOLOWER(c) _tolower(c)
249# else
250#  define TOLOWER(c) tolower(c)
251# endif
252
253# ifndef NULL
254#  define NULL (void *)0
255# endif
256
257/* We remove any previous definition of `SIGN_EXTEND_CHAR',
258   since ours (we hope) works properly with all combinations of
259   machines, compilers, `char' and `unsigned char' argument types.
260   (Per Bothner suggested the basic approach.)  */
261# undef SIGN_EXTEND_CHAR
262# if __STDC__
263#  define SIGN_EXTEND_CHAR(c) ((signed char) (c))
264# else  /* not __STDC__ */
265/* As in Harbison and Steele.  */
266#  define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
267# endif
268
269# ifndef emacs
270/* How many characters in the character set.  */
271#  define CHAR_SET_SIZE 256
272
273#  ifdef SYNTAX_TABLE
274
275extern char *re_syntax_table;
276
277#  else /* not SYNTAX_TABLE */
278
279static char re_syntax_table[CHAR_SET_SIZE];
280
281static void init_syntax_once PARAMS ((void));
282
283static void
284init_syntax_once ()
285{
286   register int c;
287   static int done = 0;
288
289   if (done)
290     return;
291   bzero (re_syntax_table, sizeof re_syntax_table);
292
293   for (c = 0; c < CHAR_SET_SIZE; ++c)
294     if (ISALNUM (c))
295	re_syntax_table[c] = Sword;
296
297   re_syntax_table['_'] = Sword;
298
299   done = 1;
300}
301
302#  endif /* not SYNTAX_TABLE */
303
304#  define SYNTAX(c) re_syntax_table[(unsigned char) (c)]
305
306# endif /* emacs */
307
308/* Should we use malloc or alloca?  If REGEX_MALLOC is not defined, we
309   use `alloca' instead of `malloc'.  This is because using malloc in
310   re_search* or re_match* could cause memory leaks when C-g is used in
311   Emacs; also, malloc is slower and causes storage fragmentation.  On
312   the other hand, malloc is more portable, and easier to debug.
313
314   Because we sometimes use alloca, some routines have to be macros,
315   not functions -- `alloca'-allocated space disappears at the end of the
316   function it is called in.  */
317
318# ifdef REGEX_MALLOC
319
320#  define REGEX_ALLOCATE malloc
321#  define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
322#  define REGEX_FREE free
323
324# else /* not REGEX_MALLOC  */
325
326/* Emacs already defines alloca, sometimes.  */
327#  ifndef alloca
328
329/* Make alloca work the best possible way.  */
330#   ifdef __GNUC__
331#    define alloca __builtin_alloca
332#   else /* not __GNUC__ */
333#    if HAVE_ALLOCA_H
334#     include <alloca.h>
335#    endif /* HAVE_ALLOCA_H */
336#   endif /* not __GNUC__ */
337
338#  endif /* not alloca */
339
340#  define REGEX_ALLOCATE alloca
341
342/* Assumes a `char *destination' variable.  */
343#  define REGEX_REALLOCATE(source, osize, nsize)			\
344  (destination = (char *) alloca (nsize),				\
345   memcpy (destination, source, osize))
346
347/* No need to do anything to free, after alloca.  */
348#  define REGEX_FREE(arg) ((void)0) /* Do nothing!  But inhibit gcc warning.  */
349
350# endif /* not REGEX_MALLOC */
351
352/* Define how to allocate the failure stack.  */
353
354# if defined REL_ALLOC && defined REGEX_MALLOC
355
356#  define REGEX_ALLOCATE_STACK(size)				\
357  r_alloc (&failure_stack_ptr, (size))
358#  define REGEX_REALLOCATE_STACK(source, osize, nsize)		\
359  r_re_alloc (&failure_stack_ptr, (nsize))
360#  define REGEX_FREE_STACK(ptr)					\
361  r_alloc_free (&failure_stack_ptr)
362
363# else /* not using relocating allocator */
364
365#  ifdef REGEX_MALLOC
366
367#   define REGEX_ALLOCATE_STACK malloc
368#   define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
369#   define REGEX_FREE_STACK free
370
371#  else /* not REGEX_MALLOC */
372
373#   define REGEX_ALLOCATE_STACK alloca
374
375#   define REGEX_REALLOCATE_STACK(source, osize, nsize)			\
376   REGEX_REALLOCATE (source, osize, nsize)
377/* No need to explicitly free anything.  */
378#   define REGEX_FREE_STACK(arg)
379
380#  endif /* not REGEX_MALLOC */
381# endif /* not using relocating allocator */
382
383
384/* True if `size1' is non-NULL and PTR is pointing anywhere inside
385   `string1' or just past its end.  This works if PTR is NULL, which is
386   a good thing.  */
387# define FIRST_STRING_P(ptr) 					\
388  (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
389
390/* (Re)Allocate N items of type T using malloc, or fail.  */
391# define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
392# define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
393# define RETALLOC_IF(addr, n, t) \
394  if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
395# define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
396
397# define BYTEWIDTH 8 /* In bits.  */
398
399# define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
400
401# undef MAX
402# undef MIN
403# define MAX(a, b) ((a) > (b) ? (a) : (b))
404# define MIN(a, b) ((a) < (b) ? (a) : (b))
405
406typedef char boolean;
407# define false 0
408# define true 1
409
410static reg_errcode_t byte_regex_compile _RE_ARGS ((const char *pattern, size_t size,
411                                                   reg_syntax_t syntax,
412                                                   struct re_pattern_buffer *bufp));
413
414static int byte_re_match_2_internal PARAMS ((struct re_pattern_buffer *bufp,
415					     const char *string1, int size1,
416					     const char *string2, int size2,
417					     int pos,
418					     struct re_registers *regs,
419					     int stop));
420static int byte_re_search_2 PARAMS ((struct re_pattern_buffer *bufp,
421				     const char *string1, int size1,
422				     const char *string2, int size2,
423				     int startpos, int range,
424				     struct re_registers *regs, int stop));
425static int byte_re_compile_fastmap PARAMS ((struct re_pattern_buffer *bufp));
426
427#ifdef MBS_SUPPORT
428static reg_errcode_t wcs_regex_compile _RE_ARGS ((const char *pattern, size_t size,
429                                                   reg_syntax_t syntax,
430                                                   struct re_pattern_buffer *bufp));
431
432
433static int wcs_re_match_2_internal PARAMS ((struct re_pattern_buffer *bufp,
434					    const char *cstring1, int csize1,
435					    const char *cstring2, int csize2,
436					    int pos,
437					    struct re_registers *regs,
438					    int stop,
439					    wchar_t *string1, int size1,
440					    wchar_t *string2, int size2,
441					    int *mbs_offset1, int *mbs_offset2));
442static int wcs_re_search_2 PARAMS ((struct re_pattern_buffer *bufp,
443				    const char *string1, int size1,
444				    const char *string2, int size2,
445				    int startpos, int range,
446				    struct re_registers *regs, int stop));
447static int wcs_re_compile_fastmap PARAMS ((struct re_pattern_buffer *bufp));
448#endif
449
450/* These are the command codes that appear in compiled regular
451   expressions.  Some opcodes are followed by argument bytes.  A
452   command code can specify any interpretation whatsoever for its
453   arguments.  Zero bytes may appear in the compiled regular expression.  */
454
455typedef enum
456{
457  no_op = 0,
458
459  /* Succeed right away--no more backtracking.  */
460  succeed,
461
462        /* Followed by one byte giving n, then by n literal bytes.  */
463  exactn,
464
465# ifdef MBS_SUPPORT
466	/* Same as exactn, but contains binary data.  */
467  exactn_bin,
468# endif
469
470        /* Matches any (more or less) character.  */
471  anychar,
472
473        /* Matches any one char belonging to specified set.  First
474           following byte is number of bitmap bytes.  Then come bytes
475           for a bitmap saying which chars are in.  Bits in each byte
476           are ordered low-bit-first.  A character is in the set if its
477           bit is 1.  A character too large to have a bit in the map is
478           automatically not in the set.  */
479        /* ifdef MBS_SUPPORT, following element is length of character
480	   classes, length of collating symbols, length of equivalence
481	   classes, length of character ranges, and length of characters.
482	   Next, character class element, collating symbols elements,
483	   equivalence class elements, range elements, and character
484	   elements follow.
485	   See regex_compile function.  */
486  charset,
487
488        /* Same parameters as charset, but match any character that is
489           not one of those specified.  */
490  charset_not,
491
492        /* Start remembering the text that is matched, for storing in a
493           register.  Followed by one byte with the register number, in
494           the range 0 to one less than the pattern buffer's re_nsub
495           field.  Then followed by one byte with the number of groups
496           inner to this one.  (This last has to be part of the
497           start_memory only because we need it in the on_failure_jump
498           of re_match_2.)  */
499  start_memory,
500
501        /* Stop remembering the text that is matched and store it in a
502           memory register.  Followed by one byte with the register
503           number, in the range 0 to one less than `re_nsub' in the
504           pattern buffer, and one byte with the number of inner groups,
505           just like `start_memory'.  (We need the number of inner
506           groups here because we don't have any easy way of finding the
507           corresponding start_memory when we're at a stop_memory.)  */
508  stop_memory,
509
510        /* Match a duplicate of something remembered. Followed by one
511           byte containing the register number.  */
512  duplicate,
513
514        /* Fail unless at beginning of line.  */
515  begline,
516
517        /* Fail unless at end of line.  */
518  endline,
519
520        /* Succeeds if at beginning of buffer (if emacs) or at beginning
521           of string to be matched (if not).  */
522  begbuf,
523
524        /* Analogously, for end of buffer/string.  */
525  endbuf,
526
527        /* Followed by two byte relative address to which to jump.  */
528  jump,
529
530	/* Same as jump, but marks the end of an alternative.  */
531  jump_past_alt,
532
533        /* Followed by two-byte relative address of place to resume at
534           in case of failure.  */
535        /* ifdef MBS_SUPPORT, the size of address is 1.  */
536  on_failure_jump,
537
538        /* Like on_failure_jump, but pushes a placeholder instead of the
539           current string position when executed.  */
540  on_failure_keep_string_jump,
541
542        /* Throw away latest failure point and then jump to following
543           two-byte relative address.  */
544        /* ifdef MBS_SUPPORT, the size of address is 1.  */
545  pop_failure_jump,
546
547        /* Change to pop_failure_jump if know won't have to backtrack to
548           match; otherwise change to jump.  This is used to jump
549           back to the beginning of a repeat.  If what follows this jump
550           clearly won't match what the repeat does, such that we can be
551           sure that there is no use backtracking out of repetitions
552           already matched, then we change it to a pop_failure_jump.
553           Followed by two-byte address.  */
554        /* ifdef MBS_SUPPORT, the size of address is 1.  */
555  maybe_pop_jump,
556
557        /* Jump to following two-byte address, and push a dummy failure
558           point. This failure point will be thrown away if an attempt
559           is made to use it for a failure.  A `+' construct makes this
560           before the first repeat.  Also used as an intermediary kind
561           of jump when compiling an alternative.  */
562        /* ifdef MBS_SUPPORT, the size of address is 1.  */
563  dummy_failure_jump,
564
565	/* Push a dummy failure point and continue.  Used at the end of
566	   alternatives.  */
567  push_dummy_failure,
568
569        /* Followed by two-byte relative address and two-byte number n.
570           After matching N times, jump to the address upon failure.  */
571        /* ifdef MBS_SUPPORT, the size of address is 1.  */
572  succeed_n,
573
574        /* Followed by two-byte relative address, and two-byte number n.
575           Jump to the address N times, then fail.  */
576        /* ifdef MBS_SUPPORT, the size of address is 1.  */
577  jump_n,
578
579        /* Set the following two-byte relative address to the
580           subsequent two-byte number.  The address *includes* the two
581           bytes of number.  */
582        /* ifdef MBS_SUPPORT, the size of address is 1.  */
583  set_number_at,
584
585  wordchar,	/* Matches any word-constituent character.  */
586  notwordchar,	/* Matches any char that is not a word-constituent.  */
587
588  wordbeg,	/* Succeeds if at word beginning.  */
589  wordend,	/* Succeeds if at word end.  */
590
591  wordbound,	/* Succeeds if at a word boundary.  */
592  notwordbound	/* Succeeds if not at a word boundary.  */
593
594# ifdef emacs
595  ,before_dot,	/* Succeeds if before point.  */
596  at_dot,	/* Succeeds if at point.  */
597  after_dot,	/* Succeeds if after point.  */
598
599	/* Matches any character whose syntax is specified.  Followed by
600           a byte which contains a syntax code, e.g., Sword.  */
601  syntaxspec,
602
603	/* Matches any character whose syntax is not that specified.  */
604  notsyntaxspec
605# endif /* emacs */
606} re_opcode_t;
607#endif /* not INSIDE_RECURSION */
608
609
610#ifdef BYTE
611# define CHAR_T char
612# define UCHAR_T unsigned char
613# define COMPILED_BUFFER_VAR bufp->buffer
614# define OFFSET_ADDRESS_SIZE 2
615# define PREFIX(name) byte_##name
616# define ARG_PREFIX(name) name
617# define PUT_CHAR(c) putchar (c)
618#else
619# ifdef WCHAR
620#  define CHAR_T wchar_t
621#  define UCHAR_T wchar_t
622#  define COMPILED_BUFFER_VAR wc_buffer
623#  define OFFSET_ADDRESS_SIZE 1 /* the size which STORE_NUMBER macro use */
624#  define CHAR_CLASS_SIZE ((__alignof__(wctype_t)+sizeof(wctype_t))/sizeof(CHAR_T)+1)
625#  define PREFIX(name) wcs_##name
626#  define ARG_PREFIX(name) c##name
627/* Should we use wide stream??  */
628#  define PUT_CHAR(c) printf ("%C", c);
629#  define TRUE 1
630#  define FALSE 0
631# else
632#  ifdef MBS_SUPPORT
633#   define WCHAR
634#   define INSIDE_RECURSION
635#   include "regex.c"
636#   undef INSIDE_RECURSION
637#  endif
638#  define BYTE
639#  define INSIDE_RECURSION
640#  include "regex.c"
641#  undef INSIDE_RECURSION
642# endif
643#endif
644#include "unlocked-io.h"
645
646#ifdef INSIDE_RECURSION
647/* Common operations on the compiled pattern.  */
648
649/* Store NUMBER in two contiguous bytes starting at DESTINATION.  */
650/* ifdef MBS_SUPPORT, we store NUMBER in 1 element.  */
651
652# ifdef WCHAR
653#  define STORE_NUMBER(destination, number)				\
654  do {									\
655    *(destination) = (UCHAR_T)(number);				\
656  } while (0)
657# else /* BYTE */
658#  define STORE_NUMBER(destination, number)				\
659  do {									\
660    (destination)[0] = (number) & 0377;					\
661    (destination)[1] = (number) >> 8;					\
662  } while (0)
663# endif /* WCHAR */
664
665/* Same as STORE_NUMBER, except increment DESTINATION to
666   the byte after where the number is stored.  Therefore, DESTINATION
667   must be an lvalue.  */
668/* ifdef MBS_SUPPORT, we store NUMBER in 1 element.  */
669
670# define STORE_NUMBER_AND_INCR(destination, number)			\
671  do {									\
672    STORE_NUMBER (destination, number);					\
673    (destination) += OFFSET_ADDRESS_SIZE;				\
674  } while (0)
675
676/* Put into DESTINATION a number stored in two contiguous bytes starting
677   at SOURCE.  */
678/* ifdef MBS_SUPPORT, we store NUMBER in 1 element.  */
679
680# ifdef WCHAR
681#  define EXTRACT_NUMBER(destination, source)				\
682  do {									\
683    (destination) = *(source);						\
684  } while (0)
685# else /* BYTE */
686#  define EXTRACT_NUMBER(destination, source)				\
687  do {									\
688    (destination) = *(source) & 0377;					\
689    (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8;		\
690  } while (0)
691# endif
692
693# ifdef DEBUG
694static void PREFIX(extract_number) _RE_ARGS ((int *dest, UCHAR_T *source));
695static void
696PREFIX(extract_number) (dest, source)
697    int *dest;
698    UCHAR_T *source;
699{
700#  ifdef WCHAR
701  *dest = *source;
702#  else /* BYTE */
703  int temp = SIGN_EXTEND_CHAR (*(source + 1));
704  *dest = *source & 0377;
705  *dest += temp << 8;
706#  endif
707}
708
709#  ifndef EXTRACT_MACROS /* To debug the macros.  */
710#   undef EXTRACT_NUMBER
711#   define EXTRACT_NUMBER(dest, src) PREFIX(extract_number) (&dest, src)
712#  endif /* not EXTRACT_MACROS */
713
714# endif /* DEBUG */
715
716/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
717   SOURCE must be an lvalue.  */
718
719# define EXTRACT_NUMBER_AND_INCR(destination, source)			\
720  do {									\
721    EXTRACT_NUMBER (destination, source);				\
722    (source) += OFFSET_ADDRESS_SIZE; 					\
723  } while (0)
724
725# ifdef DEBUG
726static void PREFIX(extract_number_and_incr) _RE_ARGS ((int *destination,
727						       UCHAR_T **source));
728static void
729PREFIX(extract_number_and_incr) (destination, source)
730    int *destination;
731    UCHAR_T **source;
732{
733  PREFIX(extract_number) (destination, *source);
734  *source += OFFSET_ADDRESS_SIZE;
735}
736
737#  ifndef EXTRACT_MACROS
738#   undef EXTRACT_NUMBER_AND_INCR
739#   define EXTRACT_NUMBER_AND_INCR(dest, src) \
740  PREFIX(extract_number_and_incr) (&dest, &src)
741#  endif /* not EXTRACT_MACROS */
742
743# endif /* DEBUG */
744
745
746
747/* If DEBUG is defined, Regex prints many voluminous messages about what
748   it is doing (if the variable `debug' is nonzero).  If linked with the
749   main program in `iregex.c', you can enter patterns and strings
750   interactively.  And if linked with the main program in `main.c' and
751   the other test files, you can run the already-written tests.  */
752
753# ifdef DEBUG
754
755#  ifndef DEFINED_ONCE
756
757/* We use standard I/O for debugging.  */
758#   include <stdio.h>
759
760/* It is useful to test things that ``must'' be true when debugging.  */
761#   include <assert.h>
762
763static int debug;
764
765#   define DEBUG_STATEMENT(e) e
766#   define DEBUG_PRINT1(x) if (debug) printf (x)
767#   define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
768#   define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
769#   define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
770#  endif /* not DEFINED_ONCE */
771
772#  define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) 			\
773  if (debug) PREFIX(print_partial_compiled_pattern) (s, e)
774#  define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)		\
775  if (debug) PREFIX(print_double_string) (w, s1, sz1, s2, sz2)
776
777
778/* Print the fastmap in human-readable form.  */
779
780#  ifndef DEFINED_ONCE
781void
782print_fastmap (fastmap)
783    char *fastmap;
784{
785  unsigned was_a_range = 0;
786  unsigned i = 0;
787
788  while (i < (1 << BYTEWIDTH))
789    {
790      if (fastmap[i++])
791	{
792	  was_a_range = 0;
793          putchar (i - 1);
794          while (i < (1 << BYTEWIDTH)  &&  fastmap[i])
795            {
796              was_a_range = 1;
797              i++;
798            }
799	  if (was_a_range)
800            {
801              printf ("-");
802              putchar (i - 1);
803            }
804        }
805    }
806  putchar ('\n');
807}
808#  endif /* not DEFINED_ONCE */
809
810
811/* Print a compiled pattern string in human-readable form, starting at
812   the START pointer into it and ending just before the pointer END.  */
813
814void
815PREFIX(print_partial_compiled_pattern) (start, end)
816    UCHAR_T *start;
817    UCHAR_T *end;
818{
819  int mcnt, mcnt2;
820  UCHAR_T *p1;
821  UCHAR_T *p = start;
822  UCHAR_T *pend = end;
823
824  if (start == NULL)
825    {
826      printf ("(null)\n");
827      return;
828    }
829
830  /* Loop over pattern commands.  */
831  while (p < pend)
832    {
833#  ifdef _LIBC
834      printf ("%td:\t", p - start);
835#  else
836      printf ("%ld:\t", (long int) (p - start));
837#  endif
838
839      switch ((re_opcode_t) *p++)
840	{
841        case no_op:
842          printf ("/no_op");
843          break;
844
845	case exactn:
846	  mcnt = *p++;
847          printf ("/exactn/%d", mcnt);
848          do
849	    {
850              putchar ('/');
851	      PUT_CHAR (*p++);
852            }
853          while (--mcnt);
854          break;
855
856#  ifdef MBS_SUPPORT
857	case exactn_bin:
858	  mcnt = *p++;
859	  printf ("/exactn_bin/%d", mcnt);
860          do
861	    {
862	      printf("/%lx", (long int) *p++);
863            }
864          while (--mcnt);
865          break;
866#  endif /* MBS_SUPPORT */
867
868	case start_memory:
869          mcnt = *p++;
870          printf ("/start_memory/%d/%ld", mcnt, (long int) *p++);
871          break;
872
873	case stop_memory:
874          mcnt = *p++;
875	  printf ("/stop_memory/%d/%ld", mcnt, (long int) *p++);
876          break;
877
878	case duplicate:
879	  printf ("/duplicate/%ld", (long int) *p++);
880	  break;
881
882	case anychar:
883	  printf ("/anychar");
884	  break;
885
886	case charset:
887        case charset_not:
888          {
889#  ifdef WCHAR
890	    int i, length;
891	    wchar_t *workp = p;
892	    printf ("/charset [%s",
893	            (re_opcode_t) *(workp - 1) == charset_not ? "^" : "");
894	    p += 5;
895	    length = *workp++; /* the length of char_classes */
896	    for (i=0 ; i<length ; i++)
897	      printf("[:%lx:]", (long int) *p++);
898	    length = *workp++; /* the length of collating_symbol */
899	    for (i=0 ; i<length ;)
900	      {
901		printf("[.");
902		while(*p != 0)
903		  PUT_CHAR((i++,*p++));
904		i++,p++;
905		printf(".]");
906	      }
907	    length = *workp++; /* the length of equivalence_class */
908	    for (i=0 ; i<length ;)
909	      {
910		printf("[=");
911		while(*p != 0)
912		  PUT_CHAR((i++,*p++));
913		i++,p++;
914		printf("=]");
915	      }
916	    length = *workp++; /* the length of char_range */
917	    for (i=0 ; i<length ; i++)
918	      {
919		wchar_t range_start = *p++;
920		wchar_t range_end = *p++;
921		printf("%C-%C", range_start, range_end);
922	      }
923	    length = *workp++; /* the length of char */
924	    for (i=0 ; i<length ; i++)
925	      printf("%C", *p++);
926	    putchar (']');
927#  else
928            register int c, last = -100;
929	    register int in_range = 0;
930
931	    printf ("/charset [%s",
932	            (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
933
934            assert (p + *p < pend);
935
936            for (c = 0; c < 256; c++)
937	      if (c / 8 < *p
938		  && (p[1 + (c/8)] & (1 << (c % 8))))
939		{
940		  /* Are we starting a range?  */
941		  if (last + 1 == c && ! in_range)
942		    {
943		      putchar ('-');
944		      in_range = 1;
945		    }
946		  /* Have we broken a range?  */
947		  else if (last + 1 != c && in_range)
948              {
949		      putchar (last);
950		      in_range = 0;
951		    }
952
953		  if (! in_range)
954		    putchar (c);
955
956		  last = c;
957              }
958
959	    if (in_range)
960	      putchar (last);
961
962	    putchar (']');
963
964	    p += 1 + *p;
965#  endif /* WCHAR */
966	  }
967	  break;
968
969	case begline:
970	  printf ("/begline");
971          break;
972
973	case endline:
974          printf ("/endline");
975          break;
976
977	case on_failure_jump:
978          PREFIX(extract_number_and_incr) (&mcnt, &p);
979#  ifdef _LIBC
980  	  printf ("/on_failure_jump to %td", p + mcnt - start);
981#  else
982  	  printf ("/on_failure_jump to %ld", (long int) (p + mcnt - start));
983#  endif
984          break;
985
986	case on_failure_keep_string_jump:
987          PREFIX(extract_number_and_incr) (&mcnt, &p);
988#  ifdef _LIBC
989  	  printf ("/on_failure_keep_string_jump to %td", p + mcnt - start);
990#  else
991  	  printf ("/on_failure_keep_string_jump to %ld",
992		  (long int) (p + mcnt - start));
993#  endif
994          break;
995
996	case dummy_failure_jump:
997          PREFIX(extract_number_and_incr) (&mcnt, &p);
998#  ifdef _LIBC
999  	  printf ("/dummy_failure_jump to %td", p + mcnt - start);
1000#  else
1001  	  printf ("/dummy_failure_jump to %ld", (long int) (p + mcnt - start));
1002#  endif
1003          break;
1004
1005	case push_dummy_failure:
1006          printf ("/push_dummy_failure");
1007          break;
1008
1009        case maybe_pop_jump:
1010          PREFIX(extract_number_and_incr) (&mcnt, &p);
1011#  ifdef _LIBC
1012  	  printf ("/maybe_pop_jump to %td", p + mcnt - start);
1013#  else
1014  	  printf ("/maybe_pop_jump to %ld", (long int) (p + mcnt - start));
1015#  endif
1016	  break;
1017
1018        case pop_failure_jump:
1019	  PREFIX(extract_number_and_incr) (&mcnt, &p);
1020#  ifdef _LIBC
1021  	  printf ("/pop_failure_jump to %td", p + mcnt - start);
1022#  else
1023  	  printf ("/pop_failure_jump to %ld", (long int) (p + mcnt - start));
1024#  endif
1025	  break;
1026
1027        case jump_past_alt:
1028	  PREFIX(extract_number_and_incr) (&mcnt, &p);
1029#  ifdef _LIBC
1030  	  printf ("/jump_past_alt to %td", p + mcnt - start);
1031#  else
1032  	  printf ("/jump_past_alt to %ld", (long int) (p + mcnt - start));
1033#  endif
1034	  break;
1035
1036        case jump:
1037	  PREFIX(extract_number_and_incr) (&mcnt, &p);
1038#  ifdef _LIBC
1039  	  printf ("/jump to %td", p + mcnt - start);
1040#  else
1041  	  printf ("/jump to %ld", (long int) (p + mcnt - start));
1042#  endif
1043	  break;
1044
1045        case succeed_n:
1046          PREFIX(extract_number_and_incr) (&mcnt, &p);
1047	  p1 = p + mcnt;
1048          PREFIX(extract_number_and_incr) (&mcnt2, &p);
1049#  ifdef _LIBC
1050	  printf ("/succeed_n to %td, %d times", p1 - start, mcnt2);
1051#  else
1052	  printf ("/succeed_n to %ld, %d times",
1053		  (long int) (p1 - start), mcnt2);
1054#  endif
1055          break;
1056
1057        case jump_n:
1058          PREFIX(extract_number_and_incr) (&mcnt, &p);
1059	  p1 = p + mcnt;
1060          PREFIX(extract_number_and_incr) (&mcnt2, &p);
1061	  printf ("/jump_n to %d, %d times", p1 - start, mcnt2);
1062          break;
1063
1064        case set_number_at:
1065          PREFIX(extract_number_and_incr) (&mcnt, &p);
1066	  p1 = p + mcnt;
1067          PREFIX(extract_number_and_incr) (&mcnt2, &p);
1068#  ifdef _LIBC
1069	  printf ("/set_number_at location %td to %d", p1 - start, mcnt2);
1070#  else
1071	  printf ("/set_number_at location %ld to %d",
1072		  (long int) (p1 - start), mcnt2);
1073#  endif
1074          break;
1075
1076        case wordbound:
1077	  printf ("/wordbound");
1078	  break;
1079
1080	case notwordbound:
1081	  printf ("/notwordbound");
1082          break;
1083
1084	case wordbeg:
1085	  printf ("/wordbeg");
1086	  break;
1087
1088	case wordend:
1089	  printf ("/wordend");
1090	  break;
1091
1092#  ifdef emacs
1093	case before_dot:
1094	  printf ("/before_dot");
1095          break;
1096
1097	case at_dot:
1098	  printf ("/at_dot");
1099          break;
1100
1101	case after_dot:
1102	  printf ("/after_dot");
1103          break;
1104
1105	case syntaxspec:
1106          printf ("/syntaxspec");
1107	  mcnt = *p++;
1108	  printf ("/%d", mcnt);
1109          break;
1110
1111	case notsyntaxspec:
1112          printf ("/notsyntaxspec");
1113	  mcnt = *p++;
1114	  printf ("/%d", mcnt);
1115	  break;
1116#  endif /* emacs */
1117
1118	case wordchar:
1119	  printf ("/wordchar");
1120          break;
1121
1122	case notwordchar:
1123	  printf ("/notwordchar");
1124          break;
1125
1126	case begbuf:
1127	  printf ("/begbuf");
1128          break;
1129
1130	case endbuf:
1131	  printf ("/endbuf");
1132          break;
1133
1134        default:
1135          printf ("?%ld", (long int) *(p-1));
1136	}
1137
1138      putchar ('\n');
1139    }
1140
1141#  ifdef _LIBC
1142  printf ("%td:\tend of pattern.\n", p - start);
1143#  else
1144  printf ("%ld:\tend of pattern.\n", (long int) (p - start));
1145#  endif
1146}
1147
1148
1149void
1150PREFIX(print_compiled_pattern) (bufp)
1151    struct re_pattern_buffer *bufp;
1152{
1153  UCHAR_T *buffer = (UCHAR_T*) bufp->buffer;
1154
1155  PREFIX(print_partial_compiled_pattern) (buffer, buffer
1156				  + bufp->used / sizeof(UCHAR_T));
1157  printf ("%ld bytes used/%ld bytes allocated.\n",
1158	  bufp->used, bufp->allocated);
1159
1160  if (bufp->fastmap_accurate && bufp->fastmap)
1161    {
1162      printf ("fastmap: ");
1163      print_fastmap (bufp->fastmap);
1164    }
1165
1166#  ifdef _LIBC
1167  printf ("re_nsub: %Zd\t", bufp->re_nsub);
1168#  else
1169  printf ("re_nsub: %ld\t", (long int) bufp->re_nsub);
1170#  endif
1171  printf ("regs_alloc: %d\t", bufp->regs_allocated);
1172  printf ("can_be_null: %d\t", bufp->can_be_null);
1173  printf ("newline_anchor: %d\n", bufp->newline_anchor);
1174  printf ("no_sub: %d\t", bufp->no_sub);
1175  printf ("not_bol: %d\t", bufp->not_bol);
1176  printf ("not_eol: %d\t", bufp->not_eol);
1177  printf ("syntax: %lx\n", bufp->syntax);
1178  /* Perhaps we should print the translate table?  */
1179}
1180
1181
1182void
1183PREFIX(print_double_string) (where, string1, size1, string2, size2)
1184    const CHAR_T *where;
1185    const CHAR_T *string1;
1186    const CHAR_T *string2;
1187    int size1;
1188    int size2;
1189{
1190  int this_char;
1191
1192  if (where == NULL)
1193    printf ("(null)");
1194  else
1195    {
1196      int cnt;
1197
1198      if (FIRST_STRING_P (where))
1199        {
1200          for (this_char = where - string1; this_char < size1; this_char++)
1201	    PUT_CHAR (string1[this_char]);
1202
1203          where = string2;
1204        }
1205
1206      cnt = 0;
1207      for (this_char = where - string2; this_char < size2; this_char++)
1208	{
1209	  PUT_CHAR (string2[this_char]);
1210	  if (++cnt > 100)
1211	    {
1212	      fputs ("...", stdout);
1213	      break;
1214	    }
1215	}
1216    }
1217}
1218
1219#  ifndef DEFINED_ONCE
1220void
1221printchar (c)
1222     int c;
1223{
1224  putc (c, stderr);
1225}
1226#  endif
1227
1228# else /* not DEBUG */
1229
1230#  ifndef DEFINED_ONCE
1231#   undef assert
1232#   define assert(e)
1233
1234#   define DEBUG_STATEMENT(e)
1235#   define DEBUG_PRINT1(x)
1236#   define DEBUG_PRINT2(x1, x2)
1237#   define DEBUG_PRINT3(x1, x2, x3)
1238#   define DEBUG_PRINT4(x1, x2, x3, x4)
1239#  endif /* not DEFINED_ONCE */
1240#  define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1241#  define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1242
1243# endif /* not DEBUG */
1244
1245
1246
1247# ifdef WCHAR
1248/* This  convert a multibyte string to a wide character string.
1249   And write their correspondances to offset_buffer(see below)
1250   and write whether each wchar_t is binary data to is_binary.
1251   This assume invalid multibyte sequences as binary data.
1252   We assume offset_buffer and is_binary is already allocated
1253   enough space.  */
1254
1255static size_t convert_mbs_to_wcs (CHAR_T *dest, const unsigned char* src,
1256				  size_t len, int *offset_buffer,
1257				  char *is_binary);
1258static size_t
1259convert_mbs_to_wcs (dest, src, len, offset_buffer, is_binary)
1260     CHAR_T *dest;
1261     const unsigned char* src;
1262     size_t len; /* the length of multibyte string.  */
1263
1264     /* It hold correspondances between src(char string) and
1265	dest(wchar_t string) for optimization.
1266	e.g. src  = "xxxyzz"
1267             dest = {'X', 'Y', 'Z'}
1268	      (each "xxx", "y" and "zz" represent one multibyte character
1269	       corresponding to 'X', 'Y' and 'Z'.)
1270	  offset_buffer = {0, 0+3("xxx"), 0+3+1("y"), 0+3+1+2("zz")}
1271	  	        = {0, 3, 4, 6}
1272     */
1273     int *offset_buffer;
1274     char *is_binary;
1275{
1276  wchar_t *pdest = dest;
1277  const unsigned char *psrc = src;
1278  size_t wc_count = 0;
1279
1280  mbstate_t mbs;
1281  int i, consumed;
1282  size_t mb_remain = len;
1283  size_t mb_count = 0;
1284
1285  /* Initialize the conversion state.  */
1286  memset (&mbs, 0, sizeof (mbstate_t));
1287
1288  offset_buffer[0] = 0;
1289  for( ; mb_remain > 0 ; ++wc_count, ++pdest, mb_remain -= consumed,
1290	 psrc += consumed)
1291    {
1292      consumed = mbrtowc (pdest, psrc, mb_remain, &mbs);
1293
1294      if (consumed <= 0)
1295	/* failed to convert. maybe src contains binary data.
1296	   So we consume 1 byte manualy.  */
1297	{
1298	  *pdest = *psrc;
1299	  consumed = 1;
1300	  is_binary[wc_count] = TRUE;
1301	}
1302      else
1303	is_binary[wc_count] = FALSE;
1304      /* In sjis encoding, we use yen sign as escape character in
1305	 place of reverse solidus. So we convert 0x5c(yen sign in
1306	 sjis) to not 0xa5(yen sign in UCS2) but 0x5c(reverse
1307	 solidus in UCS2).  */
1308      if (consumed == 1 && (int) *psrc == 0x5c && (int) *pdest == 0xa5)
1309	*pdest = (wchar_t) *psrc;
1310
1311      offset_buffer[wc_count + 1] = mb_count += consumed;
1312    }
1313
1314  /* Fill remain of the buffer with sentinel.  */
1315  for (i = wc_count + 1 ; i <= len ; i++)
1316    offset_buffer[i] = mb_count + 1;
1317
1318  return wc_count;
1319}
1320
1321# endif /* WCHAR */
1322
1323#else /* not INSIDE_RECURSION */
1324
1325/* Set by `re_set_syntax' to the current regexp syntax to recognize.  Can
1326   also be assigned to arbitrarily: each pattern buffer stores its own
1327   syntax, so it can be changed between regex compilations.  */
1328/* This has no initializer because initialized variables in Emacs
1329   become read-only after dumping.  */
1330reg_syntax_t re_syntax_options;
1331
1332
1333/* Specify the precise syntax of regexps for compilation.  This provides
1334   for compatibility for various utilities which historically have
1335   different, incompatible syntaxes.
1336
1337   The argument SYNTAX is a bit mask comprised of the various bits
1338   defined in regex.h.  We return the old syntax.  */
1339
1340reg_syntax_t
1341re_set_syntax (syntax)
1342    reg_syntax_t syntax;
1343{
1344  reg_syntax_t ret = re_syntax_options;
1345
1346  re_syntax_options = syntax;
1347# ifdef DEBUG
1348  if (syntax & RE_DEBUG)
1349    debug = 1;
1350  else if (debug) /* was on but now is not */
1351    debug = 0;
1352# endif /* DEBUG */
1353  return ret;
1354}
1355# ifdef _LIBC
1356weak_alias (__re_set_syntax, re_set_syntax)
1357# endif
1358
1359/* This table gives an error message for each of the error codes listed
1360   in regex.h.  Obviously the order here has to be same as there.
1361   POSIX doesn't require that we do anything for REG_NOERROR,
1362   but why not be nice?  */
1363
1364static const char re_error_msgid[] =
1365  {
1366# define REG_NOERROR_IDX	0
1367    gettext_noop ("Success")	/* REG_NOERROR */
1368    "\0"
1369# define REG_NOMATCH_IDX (REG_NOERROR_IDX + sizeof "Success")
1370    gettext_noop ("No match")	/* REG_NOMATCH */
1371    "\0"
1372# define REG_BADPAT_IDX	(REG_NOMATCH_IDX + sizeof "No match")
1373    gettext_noop ("Invalid regular expression") /* REG_BADPAT */
1374    "\0"
1375# define REG_ECOLLATE_IDX (REG_BADPAT_IDX + sizeof "Invalid regular expression")
1376    gettext_noop ("Invalid collation character") /* REG_ECOLLATE */
1377    "\0"
1378# define REG_ECTYPE_IDX	(REG_ECOLLATE_IDX + sizeof "Invalid collation character")
1379    gettext_noop ("Invalid character class name") /* REG_ECTYPE */
1380    "\0"
1381# define REG_EESCAPE_IDX	(REG_ECTYPE_IDX + sizeof "Invalid character class name")
1382    gettext_noop ("Trailing backslash") /* REG_EESCAPE */
1383    "\0"
1384# define REG_ESUBREG_IDX	(REG_EESCAPE_IDX + sizeof "Trailing backslash")
1385    gettext_noop ("Invalid back reference") /* REG_ESUBREG */
1386    "\0"
1387# define REG_EBRACK_IDX	(REG_ESUBREG_IDX + sizeof "Invalid back reference")
1388    gettext_noop ("Unmatched [ or [^")	/* REG_EBRACK */
1389    "\0"
1390# define REG_EPAREN_IDX	(REG_EBRACK_IDX + sizeof "Unmatched [ or [^")
1391    gettext_noop ("Unmatched ( or \\(") /* REG_EPAREN */
1392    "\0"
1393# define REG_EBRACE_IDX	(REG_EPAREN_IDX + sizeof "Unmatched ( or \\(")
1394    gettext_noop ("Unmatched \\{") /* REG_EBRACE */
1395    "\0"
1396# define REG_BADBR_IDX	(REG_EBRACE_IDX + sizeof "Unmatched \\{")
1397    gettext_noop ("Invalid content of \\{\\}") /* REG_BADBR */
1398    "\0"
1399# define REG_ERANGE_IDX	(REG_BADBR_IDX + sizeof "Invalid content of \\{\\}")
1400    gettext_noop ("Invalid range end")	/* REG_ERANGE */
1401    "\0"
1402# define REG_ESPACE_IDX	(REG_ERANGE_IDX + sizeof "Invalid range end")
1403    gettext_noop ("Memory exhausted") /* REG_ESPACE */
1404    "\0"
1405# define REG_BADRPT_IDX	(REG_ESPACE_IDX + sizeof "Memory exhausted")
1406    gettext_noop ("Invalid preceding regular expression") /* REG_BADRPT */
1407    "\0"
1408# define REG_EEND_IDX	(REG_BADRPT_IDX + sizeof "Invalid preceding regular expression")
1409    gettext_noop ("Premature end of regular expression") /* REG_EEND */
1410    "\0"
1411# define REG_ESIZE_IDX	(REG_EEND_IDX + sizeof "Premature end of regular expression")
1412    gettext_noop ("Regular expression too big") /* REG_ESIZE */
1413    "\0"
1414# define REG_ERPAREN_IDX	(REG_ESIZE_IDX + sizeof "Regular expression too big")
1415    gettext_noop ("Unmatched ) or \\)") /* REG_ERPAREN */
1416  };
1417
1418static const size_t re_error_msgid_idx[] =
1419  {
1420    REG_NOERROR_IDX,
1421    REG_NOMATCH_IDX,
1422    REG_BADPAT_IDX,
1423    REG_ECOLLATE_IDX,
1424    REG_ECTYPE_IDX,
1425    REG_EESCAPE_IDX,
1426    REG_ESUBREG_IDX,
1427    REG_EBRACK_IDX,
1428    REG_EPAREN_IDX,
1429    REG_EBRACE_IDX,
1430    REG_BADBR_IDX,
1431    REG_ERANGE_IDX,
1432    REG_ESPACE_IDX,
1433    REG_BADRPT_IDX,
1434    REG_EEND_IDX,
1435    REG_ESIZE_IDX,
1436    REG_ERPAREN_IDX
1437  };
1438
1439#endif /* INSIDE_RECURSION */
1440
1441#ifndef DEFINED_ONCE
1442/* Avoiding alloca during matching, to placate r_alloc.  */
1443
1444/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1445   searching and matching functions should not call alloca.  On some
1446   systems, alloca is implemented in terms of malloc, and if we're
1447   using the relocating allocator routines, then malloc could cause a
1448   relocation, which might (if the strings being searched are in the
1449   ralloc heap) shift the data out from underneath the regexp
1450   routines.
1451
1452   Here's another reason to avoid allocation: Emacs
1453   processes input from X in a signal handler; processing X input may
1454   call malloc; if input arrives while a matching routine is calling
1455   malloc, then we're scrod.  But Emacs can't just block input while
1456   calling matching routines; then we don't notice interrupts when
1457   they come in.  So, Emacs blocks input around all regexp calls
1458   except the matching calls, which it leaves unprotected, in the
1459   faith that they will not malloc.  */
1460
1461/* Normally, this is fine.  */
1462# define MATCH_MAY_ALLOCATE
1463
1464/* When using GNU C, we are not REALLY using the C alloca, no matter
1465   what config.h may say.  So don't take precautions for it.  */
1466# ifdef __GNUC__
1467#  undef C_ALLOCA
1468# endif
1469
1470/* The match routines may not allocate if (1) they would do it with malloc
1471   and (2) it's not safe for them to use malloc.
1472   Note that if REL_ALLOC is defined, matching would not use malloc for the
1473   failure stack, but we would still use it for the register vectors;
1474   so REL_ALLOC should not affect this.  */
1475# if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1476#  undef MATCH_MAY_ALLOCATE
1477# endif
1478#endif /* not DEFINED_ONCE */
1479
1480#ifdef INSIDE_RECURSION
1481/* Failure stack declarations and macros; both re_compile_fastmap and
1482   re_match_2 use a failure stack.  These have to be macros because of
1483   REGEX_ALLOCATE_STACK.  */
1484
1485
1486/* Number of failure points for which to initially allocate space
1487   when matching.  If this number is exceeded, we allocate more
1488   space, so it is not a hard limit.  */
1489# ifndef INIT_FAILURE_ALLOC
1490#  define INIT_FAILURE_ALLOC 5
1491# endif
1492
1493/* Roughly the maximum number of failure points on the stack.  Would be
1494   exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1495   This is a variable only so users of regex can assign to it; we never
1496   change it ourselves.  */
1497
1498# ifdef INT_IS_16BIT
1499
1500#  ifndef DEFINED_ONCE
1501#   if defined MATCH_MAY_ALLOCATE
1502/* 4400 was enough to cause a crash on Alpha OSF/1,
1503   whose default stack limit is 2mb.  */
1504long int re_max_failures = 4000;
1505#   else
1506long int re_max_failures = 2000;
1507#   endif
1508#  endif
1509
1510union PREFIX(fail_stack_elt)
1511{
1512  UCHAR_T *pointer;
1513  long int integer;
1514};
1515
1516typedef union PREFIX(fail_stack_elt) PREFIX(fail_stack_elt_t);
1517
1518typedef struct
1519{
1520  PREFIX(fail_stack_elt_t) *stack;
1521  unsigned long int size;
1522  unsigned long int avail;		/* Offset of next open position.  */
1523} PREFIX(fail_stack_type);
1524
1525# else /* not INT_IS_16BIT */
1526
1527#  ifndef DEFINED_ONCE
1528#   if defined MATCH_MAY_ALLOCATE
1529/* 4400 was enough to cause a crash on Alpha OSF/1,
1530   whose default stack limit is 2mb.  */
1531int re_max_failures = 4000;
1532#   else
1533int re_max_failures = 2000;
1534#   endif
1535#  endif
1536
1537union PREFIX(fail_stack_elt)
1538{
1539  UCHAR_T *pointer;
1540  int integer;
1541};
1542
1543typedef union PREFIX(fail_stack_elt) PREFIX(fail_stack_elt_t);
1544
1545typedef struct
1546{
1547  PREFIX(fail_stack_elt_t) *stack;
1548  unsigned size;
1549  unsigned avail;			/* Offset of next open position.  */
1550} PREFIX(fail_stack_type);
1551
1552# endif /* INT_IS_16BIT */
1553
1554# ifndef DEFINED_ONCE
1555#  define FAIL_STACK_EMPTY()     (fail_stack.avail == 0)
1556#  define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1557#  define FAIL_STACK_FULL()      (fail_stack.avail == fail_stack.size)
1558# endif
1559
1560
1561/* Define macros to initialize and free the failure stack.
1562   Do `return -2' if the alloc fails.  */
1563
1564# ifdef MATCH_MAY_ALLOCATE
1565#  define INIT_FAIL_STACK()						\
1566  do {									\
1567    fail_stack.stack = (PREFIX(fail_stack_elt_t) *)		\
1568      REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (PREFIX(fail_stack_elt_t))); \
1569									\
1570    if (fail_stack.stack == NULL)				\
1571      return -2;							\
1572									\
1573    fail_stack.size = INIT_FAILURE_ALLOC;			\
1574    fail_stack.avail = 0;					\
1575  } while (0)
1576
1577#  define RESET_FAIL_STACK()  REGEX_FREE_STACK (fail_stack.stack)
1578# else
1579#  define INIT_FAIL_STACK()						\
1580  do {									\
1581    fail_stack.avail = 0;					\
1582  } while (0)
1583
1584#  define RESET_FAIL_STACK()
1585# endif
1586
1587
1588/* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1589
1590   Return 1 if succeeds, and 0 if either ran out of memory
1591   allocating space for it or it was already too large.
1592
1593   REGEX_REALLOCATE_STACK requires `destination' be declared.   */
1594
1595# define DOUBLE_FAIL_STACK(fail_stack)					\
1596  ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS)	\
1597   ? 0									\
1598   : ((fail_stack).stack = (PREFIX(fail_stack_elt_t) *)			\
1599        REGEX_REALLOCATE_STACK ((fail_stack).stack, 			\
1600          (fail_stack).size * sizeof (PREFIX(fail_stack_elt_t)),	\
1601          ((fail_stack).size << 1) * sizeof (PREFIX(fail_stack_elt_t))),\
1602									\
1603      (fail_stack).stack == NULL					\
1604      ? 0								\
1605      : ((fail_stack).size <<= 1, 					\
1606         1)))
1607
1608
1609/* Push pointer POINTER on FAIL_STACK.
1610   Return 1 if was able to do so and 0 if ran out of memory allocating
1611   space to do so.  */
1612# define PUSH_PATTERN_OP(POINTER, FAIL_STACK)				\
1613  ((FAIL_STACK_FULL ()							\
1614    && !DOUBLE_FAIL_STACK (FAIL_STACK))					\
1615   ? 0									\
1616   : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER,	\
1617      1))
1618
1619/* Push a pointer value onto the failure stack.
1620   Assumes the variable `fail_stack'.  Probably should only
1621   be called from within `PUSH_FAILURE_POINT'.  */
1622# define PUSH_FAILURE_POINTER(item)					\
1623  fail_stack.stack[fail_stack.avail++].pointer = (UCHAR_T *) (item)
1624
1625/* This pushes an integer-valued item onto the failure stack.
1626   Assumes the variable `fail_stack'.  Probably should only
1627   be called from within `PUSH_FAILURE_POINT'.  */
1628# define PUSH_FAILURE_INT(item)					\
1629  fail_stack.stack[fail_stack.avail++].integer = (item)
1630
1631/* Push a fail_stack_elt_t value onto the failure stack.
1632   Assumes the variable `fail_stack'.  Probably should only
1633   be called from within `PUSH_FAILURE_POINT'.  */
1634# define PUSH_FAILURE_ELT(item)					\
1635  fail_stack.stack[fail_stack.avail++] =  (item)
1636
1637/* These three POP... operations complement the three PUSH... operations.
1638   All assume that `fail_stack' is nonempty.  */
1639# define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1640# define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1641# define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1642
1643/* Used to omit pushing failure point id's when we're not debugging.  */
1644# ifdef DEBUG
1645#  define DEBUG_PUSH PUSH_FAILURE_INT
1646#  define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1647# else
1648#  define DEBUG_PUSH(item)
1649#  define DEBUG_POP(item_addr)
1650# endif
1651
1652
1653/* Push the information about the state we will need
1654   if we ever fail back to it.
1655
1656   Requires variables fail_stack, regstart, regend, reg_info, and
1657   num_regs_pushed be declared.  DOUBLE_FAIL_STACK requires `destination'
1658   be declared.
1659
1660   Does `return FAILURE_CODE' if runs out of memory.  */
1661
1662# define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code)	\
1663  do {									\
1664    char *destination;							\
1665    /* Must be int, so when we don't save any registers, the arithmetic	\
1666       of 0 + -1 isn't done as unsigned.  */				\
1667    /* Can't be int, since there is not a shred of a guarantee that int	\
1668       is wide enough to hold a value of something to which pointer can	\
1669       be assigned */							\
1670    active_reg_t this_reg;						\
1671    									\
1672    DEBUG_STATEMENT (failure_id++);					\
1673    DEBUG_STATEMENT (nfailure_points_pushed++);				\
1674    DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id);		\
1675    DEBUG_PRINT2 ("  Before push, next avail: %d\n", (fail_stack).avail);\
1676    DEBUG_PRINT2 ("                     size: %d\n", (fail_stack).size);\
1677									\
1678    DEBUG_PRINT2 ("  slots needed: %ld\n", NUM_FAILURE_ITEMS);		\
1679    DEBUG_PRINT2 ("     available: %d\n", REMAINING_AVAIL_SLOTS);	\
1680									\
1681    /* Ensure we have enough space allocated for what we will push.  */	\
1682    while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS)			\
1683      {									\
1684        if (!DOUBLE_FAIL_STACK (fail_stack))				\
1685          return failure_code;						\
1686									\
1687        DEBUG_PRINT2 ("\n  Doubled stack; size now: %d\n",		\
1688		       (fail_stack).size);				\
1689        DEBUG_PRINT2 ("  slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1690      }									\
1691									\
1692    /* Push the info, starting with the registers.  */			\
1693    DEBUG_PRINT1 ("\n");						\
1694									\
1695    if (1)								\
1696      for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1697	   this_reg++)							\
1698	{								\
1699	  DEBUG_PRINT2 ("  Pushing reg: %lu\n", this_reg);		\
1700	  DEBUG_STATEMENT (num_regs_pushed++);				\
1701									\
1702	  DEBUG_PRINT2 ("    start: %p\n", regstart[this_reg]);		\
1703	  PUSH_FAILURE_POINTER (regstart[this_reg]);			\
1704									\
1705	  DEBUG_PRINT2 ("    end: %p\n", regend[this_reg]);		\
1706	  PUSH_FAILURE_POINTER (regend[this_reg]);			\
1707									\
1708	  DEBUG_PRINT2 ("    info: %p\n      ",				\
1709			reg_info[this_reg].word.pointer);		\
1710	  DEBUG_PRINT2 (" match_null=%d",				\
1711			REG_MATCH_NULL_STRING_P (reg_info[this_reg]));	\
1712	  DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg]));	\
1713	  DEBUG_PRINT2 (" matched_something=%d",			\
1714			MATCHED_SOMETHING (reg_info[this_reg]));	\
1715	  DEBUG_PRINT2 (" ever_matched=%d",				\
1716			EVER_MATCHED_SOMETHING (reg_info[this_reg]));	\
1717	  DEBUG_PRINT1 ("\n");						\
1718	  PUSH_FAILURE_ELT (reg_info[this_reg].word);			\
1719	}								\
1720									\
1721    DEBUG_PRINT2 ("  Pushing  low active reg: %ld\n", lowest_active_reg);\
1722    PUSH_FAILURE_INT (lowest_active_reg);				\
1723									\
1724    DEBUG_PRINT2 ("  Pushing high active reg: %ld\n", highest_active_reg);\
1725    PUSH_FAILURE_INT (highest_active_reg);				\
1726									\
1727    DEBUG_PRINT2 ("  Pushing pattern %p:\n", pattern_place);		\
1728    DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend);		\
1729    PUSH_FAILURE_POINTER (pattern_place);				\
1730									\
1731    DEBUG_PRINT2 ("  Pushing string %p: `", string_place);		\
1732    DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2,   \
1733				 size2);				\
1734    DEBUG_PRINT1 ("'\n");						\
1735    PUSH_FAILURE_POINTER (string_place);				\
1736									\
1737    DEBUG_PRINT2 ("  Pushing failure id: %u\n", failure_id);		\
1738    DEBUG_PUSH (failure_id);						\
1739  } while (0)
1740
1741# ifndef DEFINED_ONCE
1742/* This is the number of items that are pushed and popped on the stack
1743   for each register.  */
1744#  define NUM_REG_ITEMS  3
1745
1746/* Individual items aside from the registers.  */
1747#  ifdef DEBUG
1748#   define NUM_NONREG_ITEMS 5 /* Includes failure point id.  */
1749#  else
1750#   define NUM_NONREG_ITEMS 4
1751#  endif
1752
1753/* We push at most this many items on the stack.  */
1754/* We used to use (num_regs - 1), which is the number of registers
1755   this regexp will save; but that was changed to 5
1756   to avoid stack overflow for a regexp with lots of parens.  */
1757#  define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1758
1759/* We actually push this many items.  */
1760#  define NUM_FAILURE_ITEMS				\
1761  (((0							\
1762     ? 0 : highest_active_reg - lowest_active_reg + 1)	\
1763    * NUM_REG_ITEMS)					\
1764   + NUM_NONREG_ITEMS)
1765
1766/* How many items can still be added to the stack without overflowing it.  */
1767#  define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1768# endif /* not DEFINED_ONCE */
1769
1770
1771/* Pops what PUSH_FAIL_STACK pushes.
1772
1773   We restore into the parameters, all of which should be lvalues:
1774     STR -- the saved data position.
1775     PAT -- the saved pattern position.
1776     LOW_REG, HIGH_REG -- the highest and lowest active registers.
1777     REGSTART, REGEND -- arrays of string positions.
1778     REG_INFO -- array of information about each subexpression.
1779
1780   Also assumes the variables `fail_stack' and (if debugging), `bufp',
1781   `pend', `string1', `size1', `string2', and `size2'.  */
1782# define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1783{									\
1784  DEBUG_STATEMENT (unsigned failure_id;)				\
1785  active_reg_t this_reg;						\
1786  const UCHAR_T *string_temp;						\
1787									\
1788  assert (!FAIL_STACK_EMPTY ());					\
1789									\
1790  /* Remove failure points and point to how many regs pushed.  */	\
1791  DEBUG_PRINT1 ("POP_FAILURE_POINT:\n");				\
1792  DEBUG_PRINT2 ("  Before pop, next avail: %d\n", fail_stack.avail);	\
1793  DEBUG_PRINT2 ("                    size: %d\n", fail_stack.size);	\
1794									\
1795  assert (fail_stack.avail >= NUM_NONREG_ITEMS);			\
1796									\
1797  DEBUG_POP (&failure_id);						\
1798  DEBUG_PRINT2 ("  Popping failure id: %u\n", failure_id);		\
1799									\
1800  /* If the saved string location is NULL, it came from an		\
1801     on_failure_keep_string_jump opcode, and we want to throw away the	\
1802     saved NULL, thus retaining our current position in the string.  */	\
1803  string_temp = POP_FAILURE_POINTER ();					\
1804  if (string_temp != NULL)						\
1805    str = (const CHAR_T *) string_temp;					\
1806									\
1807  DEBUG_PRINT2 ("  Popping string %p: `", str);				\
1808  DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2);	\
1809  DEBUG_PRINT1 ("'\n");							\
1810									\
1811  pat = (UCHAR_T *) POP_FAILURE_POINTER ();				\
1812  DEBUG_PRINT2 ("  Popping pattern %p:\n", pat);			\
1813  DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend);			\
1814									\
1815  /* Restore register info.  */						\
1816  high_reg = (active_reg_t) POP_FAILURE_INT ();				\
1817  DEBUG_PRINT2 ("  Popping high active reg: %ld\n", high_reg);		\
1818									\
1819  low_reg = (active_reg_t) POP_FAILURE_INT ();				\
1820  DEBUG_PRINT2 ("  Popping  low active reg: %ld\n", low_reg);		\
1821									\
1822  if (1)								\
1823    for (this_reg = high_reg; this_reg >= low_reg; this_reg--)		\
1824      {									\
1825	DEBUG_PRINT2 ("    Popping reg: %ld\n", this_reg);		\
1826									\
1827	reg_info[this_reg].word = POP_FAILURE_ELT ();			\
1828	DEBUG_PRINT2 ("      info: %p\n",				\
1829		      reg_info[this_reg].word.pointer);			\
1830									\
1831	regend[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER ();	\
1832	DEBUG_PRINT2 ("      end: %p\n", regend[this_reg]);		\
1833									\
1834	regstart[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER ();	\
1835	DEBUG_PRINT2 ("      start: %p\n", regstart[this_reg]);		\
1836      }									\
1837  else									\
1838    {									\
1839      for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1840	{								\
1841	  reg_info[this_reg].word.integer = 0;				\
1842	  regend[this_reg] = 0;						\
1843	  regstart[this_reg] = 0;					\
1844	}								\
1845      highest_active_reg = high_reg;					\
1846    }									\
1847									\
1848  set_regs_matched_done = 0;						\
1849  DEBUG_STATEMENT (nfailure_points_popped++);				\
1850} /* POP_FAILURE_POINT */
1851
1852/* Structure for per-register (a.k.a. per-group) information.
1853   Other register information, such as the
1854   starting and ending positions (which are addresses), and the list of
1855   inner groups (which is a bits list) are maintained in separate
1856   variables.
1857
1858   We are making a (strictly speaking) nonportable assumption here: that
1859   the compiler will pack our bit fields into something that fits into
1860   the type of `word', i.e., is something that fits into one item on the
1861   failure stack.  */
1862
1863
1864/* Declarations and macros for re_match_2.  */
1865
1866typedef union
1867{
1868  PREFIX(fail_stack_elt_t) word;
1869  struct
1870  {
1871      /* This field is one if this group can match the empty string,
1872         zero if not.  If not yet determined,  `MATCH_NULL_UNSET_VALUE'.  */
1873# define MATCH_NULL_UNSET_VALUE 3
1874    unsigned match_null_string_p : 2;
1875    unsigned is_active : 1;
1876    unsigned matched_something : 1;
1877    unsigned ever_matched_something : 1;
1878  } bits;
1879} PREFIX(register_info_type);
1880
1881# ifndef DEFINED_ONCE
1882#  define REG_MATCH_NULL_STRING_P(R)  ((R).bits.match_null_string_p)
1883#  define IS_ACTIVE(R)  ((R).bits.is_active)
1884#  define MATCHED_SOMETHING(R)  ((R).bits.matched_something)
1885#  define EVER_MATCHED_SOMETHING(R)  ((R).bits.ever_matched_something)
1886
1887
1888/* Call this when have matched a real character; it sets `matched' flags
1889   for the subexpressions which we are currently inside.  Also records
1890   that those subexprs have matched.  */
1891#  define SET_REGS_MATCHED()						\
1892  do									\
1893    {									\
1894      if (!set_regs_matched_done)					\
1895	{								\
1896	  active_reg_t r;						\
1897	  set_regs_matched_done = 1;					\
1898	  for (r = lowest_active_reg; r <= highest_active_reg; r++)	\
1899	    {								\
1900	      MATCHED_SOMETHING (reg_info[r])				\
1901		= EVER_MATCHED_SOMETHING (reg_info[r])			\
1902		= 1;							\
1903	    }								\
1904	}								\
1905    }									\
1906  while (0)
1907# endif /* not DEFINED_ONCE */
1908
1909/* Registers are set to a sentinel when they haven't yet matched.  */
1910static CHAR_T PREFIX(reg_unset_dummy);
1911# define REG_UNSET_VALUE (&PREFIX(reg_unset_dummy))
1912# define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1913
1914/* Subroutine declarations and macros for regex_compile.  */
1915static void PREFIX(store_op1) _RE_ARGS ((re_opcode_t op, UCHAR_T *loc, int arg));
1916static void PREFIX(store_op2) _RE_ARGS ((re_opcode_t op, UCHAR_T *loc,
1917				 int arg1, int arg2));
1918static void PREFIX(insert_op1) _RE_ARGS ((re_opcode_t op, UCHAR_T *loc,
1919				  int arg, UCHAR_T *end));
1920static void PREFIX(insert_op2) _RE_ARGS ((re_opcode_t op, UCHAR_T *loc,
1921				  int arg1, int arg2, UCHAR_T *end));
1922static boolean PREFIX(at_begline_loc_p) _RE_ARGS ((const CHAR_T *pattern,
1923					   const CHAR_T *p,
1924					   reg_syntax_t syntax));
1925static boolean PREFIX(at_endline_loc_p) _RE_ARGS ((const CHAR_T *p,
1926					   const CHAR_T *pend,
1927					   reg_syntax_t syntax));
1928# ifdef WCHAR
1929static reg_errcode_t wcs_compile_range _RE_ARGS ((CHAR_T range_start,
1930						  const CHAR_T **p_ptr,
1931						  const CHAR_T *pend,
1932						  char *translate,
1933						  reg_syntax_t syntax,
1934						  UCHAR_T *b,
1935						  CHAR_T *char_set));
1936static void insert_space _RE_ARGS ((int num, CHAR_T *loc, CHAR_T *end));
1937# else /* BYTE */
1938static reg_errcode_t byte_compile_range _RE_ARGS ((unsigned int range_start,
1939						   const char **p_ptr,
1940						   const char *pend,
1941						   char *translate,
1942						   reg_syntax_t syntax,
1943						   unsigned char *b));
1944# endif /* WCHAR */
1945
1946/* Fetch the next character in the uncompiled pattern---translating it
1947   if necessary.  Also cast from a signed character in the constant
1948   string passed to us by the user to an unsigned char that we can use
1949   as an array index (in, e.g., `translate').  */
1950/* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1951   because it is impossible to allocate 4GB array for some encodings
1952   which have 4 byte character_set like UCS4.  */
1953# ifndef PATFETCH
1954#  ifdef WCHAR
1955#   define PATFETCH(c)							\
1956  do {if (p == pend) return REG_EEND;					\
1957    c = (UCHAR_T) *p++;							\
1958    if (translate && (c <= 0xff)) c = (UCHAR_T) translate[c];		\
1959  } while (0)
1960#  else /* BYTE */
1961#   define PATFETCH(c)							\
1962  do {if (p == pend) return REG_EEND;					\
1963    c = (unsigned char) *p++;						\
1964    if (translate) c = (unsigned char) translate[c];			\
1965  } while (0)
1966#  endif /* WCHAR */
1967# endif
1968
1969/* Fetch the next character in the uncompiled pattern, with no
1970   translation.  */
1971# define PATFETCH_RAW(c)						\
1972  do {if (p == pend) return REG_EEND;					\
1973    c = (UCHAR_T) *p++; 	       					\
1974  } while (0)
1975
1976/* Go backwards one character in the pattern.  */
1977# define PATUNFETCH p--
1978
1979
1980/* If `translate' is non-null, return translate[D], else just D.  We
1981   cast the subscript to translate because some data is declared as
1982   `char *', to avoid warnings when a string constant is passed.  But
1983   when we use a character as a subscript we must make it unsigned.  */
1984/* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1985   because it is impossible to allocate 4GB array for some encodings
1986   which have 4 byte character_set like UCS4.  */
1987
1988# ifndef TRANSLATE
1989#  ifdef WCHAR
1990#   define TRANSLATE(d) \
1991  ((translate && ((UCHAR_T) (d)) <= 0xff) \
1992   ? (char) translate[(unsigned char) (d)] : (d))
1993# else /* BYTE */
1994#   define TRANSLATE(d) \
1995  (translate ? (char) translate[(unsigned char) (d)] : (d))
1996#  endif /* WCHAR */
1997# endif
1998
1999
2000/* Macros for outputting the compiled pattern into `buffer'.  */
2001
2002/* If the buffer isn't allocated when it comes in, use this.  */
2003# define INIT_BUF_SIZE  (32 * sizeof(UCHAR_T))
2004
2005/* Make sure we have at least N more bytes of space in buffer.  */
2006# ifdef WCHAR
2007#  define GET_BUFFER_SPACE(n)						\
2008    while (((unsigned long)b - (unsigned long)COMPILED_BUFFER_VAR	\
2009            + (n)*sizeof(CHAR_T)) > bufp->allocated)			\
2010      EXTEND_BUFFER ()
2011# else /* BYTE */
2012#  define GET_BUFFER_SPACE(n)						\
2013    while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated)	\
2014      EXTEND_BUFFER ()
2015# endif /* WCHAR */
2016
2017/* Make sure we have one more byte of buffer space and then add C to it.  */
2018# define BUF_PUSH(c)							\
2019  do {									\
2020    GET_BUFFER_SPACE (1);						\
2021    *b++ = (UCHAR_T) (c);						\
2022  } while (0)
2023
2024
2025/* Ensure we have two more bytes of buffer space and then append C1 and C2.  */
2026# define BUF_PUSH_2(c1, c2)						\
2027  do {									\
2028    GET_BUFFER_SPACE (2);						\
2029    *b++ = (UCHAR_T) (c1);						\
2030    *b++ = (UCHAR_T) (c2);						\
2031  } while (0)
2032
2033
2034/* As with BUF_PUSH_2, except for three bytes.  */
2035# define BUF_PUSH_3(c1, c2, c3)						\
2036  do {									\
2037    GET_BUFFER_SPACE (3);						\
2038    *b++ = (UCHAR_T) (c1);						\
2039    *b++ = (UCHAR_T) (c2);						\
2040    *b++ = (UCHAR_T) (c3);						\
2041  } while (0)
2042
2043/* Store a jump with opcode OP at LOC to location TO.  We store a
2044   relative address offset by the three bytes the jump itself occupies.  */
2045# define STORE_JUMP(op, loc, to) \
2046 PREFIX(store_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)))
2047
2048/* Likewise, for a two-argument jump.  */
2049# define STORE_JUMP2(op, loc, to, arg) \
2050  PREFIX(store_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), arg)
2051
2052/* Like `STORE_JUMP', but for inserting.  Assume `b' is the buffer end.  */
2053# define INSERT_JUMP(op, loc, to) \
2054  PREFIX(insert_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), b)
2055
2056/* Like `STORE_JUMP2', but for inserting.  Assume `b' is the buffer end.  */
2057# define INSERT_JUMP2(op, loc, to, arg) \
2058  PREFIX(insert_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)),\
2059	      arg, b)
2060
2061/* This is not an arbitrary limit: the arguments which represent offsets
2062   into the pattern are two bytes long.  So if 2^16 bytes turns out to
2063   be too small, many things would have to change.  */
2064/* Any other compiler which, like MSC, has allocation limit below 2^16
2065   bytes will have to use approach similar to what was done below for
2066   MSC and drop MAX_BUF_SIZE a bit.  Otherwise you may end up
2067   reallocating to 0 bytes.  Such thing is not going to work too well.
2068   You have been warned!!  */
2069# ifndef DEFINED_ONCE
2070#  if defined _MSC_VER  && !defined WIN32
2071/* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
2072   The REALLOC define eliminates a flurry of conversion warnings,
2073   but is not required. */
2074#   define MAX_BUF_SIZE  65500L
2075#   define REALLOC(p,s) realloc ((p), (size_t) (s))
2076#  else
2077#   define MAX_BUF_SIZE (1L << 16)
2078#   define REALLOC(p,s) realloc ((p), (s))
2079#  endif
2080
2081/* Extend the buffer by twice its current size via realloc and
2082   reset the pointers that pointed into the old block to point to the
2083   correct places in the new one.  If extending the buffer results in it
2084   being larger than MAX_BUF_SIZE, then flag memory exhausted.  */
2085#  if __BOUNDED_POINTERS__
2086#   define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
2087#   define MOVE_BUFFER_POINTER(P) \
2088  (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
2089#   define ELSE_EXTEND_BUFFER_HIGH_BOUND	\
2090  else						\
2091    {						\
2092      SET_HIGH_BOUND (b);			\
2093      SET_HIGH_BOUND (begalt);			\
2094      if (fixup_alt_jump)			\
2095	SET_HIGH_BOUND (fixup_alt_jump);	\
2096      if (laststart)				\
2097	SET_HIGH_BOUND (laststart);		\
2098      if (pending_exact)			\
2099	SET_HIGH_BOUND (pending_exact);		\
2100    }
2101#  else
2102#   define MOVE_BUFFER_POINTER(P) (P) += incr
2103#   define ELSE_EXTEND_BUFFER_HIGH_BOUND
2104#  endif
2105# endif /* not DEFINED_ONCE */
2106
2107# ifdef WCHAR
2108#  define EXTEND_BUFFER()						\
2109  do {									\
2110    UCHAR_T *old_buffer = COMPILED_BUFFER_VAR;				\
2111    int wchar_count;							\
2112    if (bufp->allocated + sizeof(UCHAR_T) > MAX_BUF_SIZE)		\
2113      return REG_ESIZE;							\
2114    bufp->allocated <<= 1;						\
2115    if (bufp->allocated > MAX_BUF_SIZE)					\
2116      bufp->allocated = MAX_BUF_SIZE;					\
2117    /* How many characters the new buffer can have?  */			\
2118    wchar_count = bufp->allocated / sizeof(UCHAR_T);			\
2119    if (wchar_count == 0) wchar_count = 1;				\
2120    /* Truncate the buffer to CHAR_T align.  */			\
2121    bufp->allocated = wchar_count * sizeof(UCHAR_T);			\
2122    RETALLOC (COMPILED_BUFFER_VAR, wchar_count, UCHAR_T);		\
2123    bufp->buffer = (char*)COMPILED_BUFFER_VAR;				\
2124    if (COMPILED_BUFFER_VAR == NULL)					\
2125      return REG_ESPACE;						\
2126    /* If the buffer moved, move all the pointers into it.  */		\
2127    if (old_buffer != COMPILED_BUFFER_VAR)				\
2128      {									\
2129	int incr = COMPILED_BUFFER_VAR - old_buffer;			\
2130	MOVE_BUFFER_POINTER (b);					\
2131	MOVE_BUFFER_POINTER (begalt);					\
2132	if (fixup_alt_jump)						\
2133	  MOVE_BUFFER_POINTER (fixup_alt_jump);				\
2134	if (laststart)							\
2135	  MOVE_BUFFER_POINTER (laststart);				\
2136	if (pending_exact)						\
2137	  MOVE_BUFFER_POINTER (pending_exact);				\
2138      }									\
2139    ELSE_EXTEND_BUFFER_HIGH_BOUND					\
2140  } while (0)
2141# else /* BYTE */
2142#  define EXTEND_BUFFER()						\
2143  do {									\
2144    UCHAR_T *old_buffer = COMPILED_BUFFER_VAR;				\
2145    if (bufp->allocated == MAX_BUF_SIZE)				\
2146      return REG_ESIZE;							\
2147    bufp->allocated <<= 1;						\
2148    if (bufp->allocated > MAX_BUF_SIZE)					\
2149      bufp->allocated = MAX_BUF_SIZE;					\
2150    bufp->buffer = (UCHAR_T *) REALLOC (COMPILED_BUFFER_VAR,		\
2151						bufp->allocated);	\
2152    if (COMPILED_BUFFER_VAR == NULL)					\
2153      return REG_ESPACE;						\
2154    /* If the buffer moved, move all the pointers into it.  */		\
2155    if (old_buffer != COMPILED_BUFFER_VAR)				\
2156      {									\
2157	int incr = COMPILED_BUFFER_VAR - old_buffer;			\
2158	MOVE_BUFFER_POINTER (b);					\
2159	MOVE_BUFFER_POINTER (begalt);					\
2160	if (fixup_alt_jump)						\
2161	  MOVE_BUFFER_POINTER (fixup_alt_jump);				\
2162	if (laststart)							\
2163	  MOVE_BUFFER_POINTER (laststart);				\
2164	if (pending_exact)						\
2165	  MOVE_BUFFER_POINTER (pending_exact);				\
2166      }									\
2167    ELSE_EXTEND_BUFFER_HIGH_BOUND					\
2168  } while (0)
2169# endif /* WCHAR */
2170
2171# ifndef DEFINED_ONCE
2172/* Since we have one byte reserved for the register number argument to
2173   {start,stop}_memory, the maximum number of groups we can report
2174   things about is what fits in that byte.  */
2175#  define MAX_REGNUM 255
2176
2177/* But patterns can have more than `MAX_REGNUM' registers.  We just
2178   ignore the excess.  */
2179typedef unsigned regnum_t;
2180
2181
2182/* Macros for the compile stack.  */
2183
2184/* Since offsets can go either forwards or backwards, this type needs to
2185   be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1.  */
2186/* int may be not enough when sizeof(int) == 2.  */
2187typedef long pattern_offset_t;
2188
2189typedef struct
2190{
2191  pattern_offset_t begalt_offset;
2192  pattern_offset_t fixup_alt_jump;
2193  pattern_offset_t inner_group_offset;
2194  pattern_offset_t laststart_offset;
2195  regnum_t regnum;
2196} compile_stack_elt_t;
2197
2198
2199typedef struct
2200{
2201  compile_stack_elt_t *stack;
2202  unsigned size;
2203  unsigned avail;			/* Offset of next open position.  */
2204} compile_stack_type;
2205
2206
2207#  define INIT_COMPILE_STACK_SIZE 32
2208
2209#  define COMPILE_STACK_EMPTY  (compile_stack.avail == 0)
2210#  define COMPILE_STACK_FULL  (compile_stack.avail == compile_stack.size)
2211
2212/* The next available element.  */
2213#  define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
2214
2215# endif /* not DEFINED_ONCE */
2216
2217/* Set the bit for character C in a list.  */
2218# ifndef DEFINED_ONCE
2219#  define SET_LIST_BIT(c)                               \
2220  (b[((unsigned char) (c)) / BYTEWIDTH]               \
2221   |= 1 << (((unsigned char) c) % BYTEWIDTH))
2222# endif /* DEFINED_ONCE */
2223
2224/* Get the next unsigned number in the uncompiled pattern.  */
2225# define GET_UNSIGNED_NUMBER(num) \
2226  {									\
2227    while (p != pend)							\
2228      {									\
2229	PATFETCH (c);							\
2230	if (c < '0' || c > '9')						\
2231	  break;							\
2232	if (num <= RE_DUP_MAX)						\
2233	  {								\
2234	    if (num < 0)						\
2235	      num = 0;							\
2236	    num = num * 10 + c - '0';					\
2237	  }								\
2238      }									\
2239  }
2240
2241# ifndef DEFINED_ONCE
2242#  if defined _LIBC || WIDE_CHAR_SUPPORT
2243/* The GNU C library provides support for user-defined character classes
2244   and the functions from ISO C amendement 1.  */
2245#   ifdef CHARCLASS_NAME_MAX
2246#    define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
2247#   else
2248/* This shouldn't happen but some implementation might still have this
2249   problem.  Use a reasonable default value.  */
2250#    define CHAR_CLASS_MAX_LENGTH 256
2251#   endif
2252
2253#   ifdef _LIBC
2254#    define IS_CHAR_CLASS(string) __wctype (string)
2255#   else
2256#    define IS_CHAR_CLASS(string) wctype (string)
2257#   endif
2258#  else
2259#   define CHAR_CLASS_MAX_LENGTH  6 /* Namely, `xdigit'.  */
2260
2261#   define IS_CHAR_CLASS(string)					\
2262   (STREQ (string, "alpha") || STREQ (string, "upper")			\
2263    || STREQ (string, "lower") || STREQ (string, "digit")		\
2264    || STREQ (string, "alnum") || STREQ (string, "xdigit")		\
2265    || STREQ (string, "space") || STREQ (string, "print")		\
2266    || STREQ (string, "punct") || STREQ (string, "graph")		\
2267    || STREQ (string, "cntrl") || STREQ (string, "blank"))
2268#  endif
2269# endif /* DEFINED_ONCE */
2270
2271# ifndef MATCH_MAY_ALLOCATE
2272
2273/* If we cannot allocate large objects within re_match_2_internal,
2274   we make the fail stack and register vectors global.
2275   The fail stack, we grow to the maximum size when a regexp
2276   is compiled.
2277   The register vectors, we adjust in size each time we
2278   compile a regexp, according to the number of registers it needs.  */
2279
2280static PREFIX(fail_stack_type) fail_stack;
2281
2282/* Size with which the following vectors are currently allocated.
2283   That is so we can make them bigger as needed,
2284   but never make them smaller.  */
2285#  ifdef DEFINED_ONCE
2286static int regs_allocated_size;
2287
2288static const char **     regstart, **     regend;
2289static const char ** old_regstart, ** old_regend;
2290static const char **best_regstart, **best_regend;
2291static const char **reg_dummy;
2292#  endif /* DEFINED_ONCE */
2293
2294static PREFIX(register_info_type) *PREFIX(reg_info);
2295static PREFIX(register_info_type) *PREFIX(reg_info_dummy);
2296
2297/* Make the register vectors big enough for NUM_REGS registers,
2298   but don't make them smaller.  */
2299
2300static void
2301PREFIX(regex_grow_registers) (num_regs)
2302     int num_regs;
2303{
2304  if (num_regs > regs_allocated_size)
2305    {
2306      RETALLOC_IF (regstart,	 num_regs, const char *);
2307      RETALLOC_IF (regend,	 num_regs, const char *);
2308      RETALLOC_IF (old_regstart, num_regs, const char *);
2309      RETALLOC_IF (old_regend,	 num_regs, const char *);
2310      RETALLOC_IF (best_regstart, num_regs, const char *);
2311      RETALLOC_IF (best_regend,	 num_regs, const char *);
2312      RETALLOC_IF (PREFIX(reg_info), num_regs, PREFIX(register_info_type));
2313      RETALLOC_IF (reg_dummy,	 num_regs, const char *);
2314      RETALLOC_IF (PREFIX(reg_info_dummy), num_regs, PREFIX(register_info_type));
2315
2316      regs_allocated_size = num_regs;
2317    }
2318}
2319
2320# endif /* not MATCH_MAY_ALLOCATE */
2321
2322# ifndef DEFINED_ONCE
2323static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
2324						 compile_stack,
2325						 regnum_t regnum));
2326# endif /* not DEFINED_ONCE */
2327
2328/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2329   Returns one of error codes defined in `regex.h', or zero for success.
2330
2331   Assumes the `allocated' (and perhaps `buffer') and `translate'
2332   fields are set in BUFP on entry.
2333
2334   If it succeeds, results are put in BUFP (if it returns an error, the
2335   contents of BUFP are undefined):
2336     `buffer' is the compiled pattern;
2337     `syntax' is set to SYNTAX;
2338     `used' is set to the length of the compiled pattern;
2339     `fastmap_accurate' is zero;
2340     `re_nsub' is the number of subexpressions in PATTERN;
2341     `not_bol' and `not_eol' are zero;
2342
2343   The `fastmap' and `newline_anchor' fields are neither
2344   examined nor set.  */
2345
2346/* Return, freeing storage we allocated.  */
2347# ifdef WCHAR
2348#  define FREE_STACK_RETURN(value)		\
2349  return (free(pattern), free(mbs_offset), free(is_binary), free (compile_stack.stack), value)
2350# else
2351#  define FREE_STACK_RETURN(value)		\
2352  return (free (compile_stack.stack), value)
2353# endif /* WCHAR */
2354
2355static reg_errcode_t
2356PREFIX(regex_compile) (ARG_PREFIX(pattern), ARG_PREFIX(size), syntax, bufp)
2357     const char *ARG_PREFIX(pattern);
2358     size_t ARG_PREFIX(size);
2359     reg_syntax_t syntax;
2360     struct re_pattern_buffer *bufp;
2361{
2362  /* We fetch characters from PATTERN here.  Even though PATTERN is
2363     `char *' (i.e., signed), we declare these variables as unsigned, so
2364     they can be reliably used as array indices.  */
2365  register UCHAR_T c, c1;
2366
2367#ifdef WCHAR
2368  /* A temporary space to keep wchar_t pattern and compiled pattern.  */
2369  CHAR_T *pattern, *COMPILED_BUFFER_VAR;
2370  size_t size;
2371  /* offset buffer for optimization. See convert_mbs_to_wc.  */
2372  int *mbs_offset = NULL;
2373  /* It hold whether each wchar_t is binary data or not.  */
2374  char *is_binary = NULL;
2375  /* A flag whether exactn is handling binary data or not.  */
2376  char is_exactn_bin = FALSE;
2377#endif /* WCHAR */
2378
2379  /* A random temporary spot in PATTERN.  */
2380  const CHAR_T *p1;
2381
2382  /* Points to the end of the buffer, where we should append.  */
2383  register UCHAR_T *b;
2384
2385  /* Keeps track of unclosed groups.  */
2386  compile_stack_type compile_stack;
2387
2388  /* Points to the current (ending) position in the pattern.  */
2389#ifdef WCHAR
2390  const CHAR_T *p;
2391  const CHAR_T *pend;
2392#else /* BYTE */
2393  const CHAR_T *p = pattern;
2394  const CHAR_T *pend = pattern + size;
2395#endif /* WCHAR */
2396
2397  /* How to translate the characters in the pattern.  */
2398  RE_TRANSLATE_TYPE translate = bufp->translate;
2399
2400  /* Address of the count-byte of the most recently inserted `exactn'
2401     command.  This makes it possible to tell if a new exact-match
2402     character can be added to that command or if the character requires
2403     a new `exactn' command.  */
2404  UCHAR_T *pending_exact = 0;
2405
2406  /* Address of start of the most recently finished expression.
2407     This tells, e.g., postfix * where to find the start of its
2408     operand.  Reset at the beginning of groups and alternatives.  */
2409  UCHAR_T *laststart = 0;
2410
2411  /* Address of beginning of regexp, or inside of last group.  */
2412  UCHAR_T *begalt;
2413
2414  /* Address of the place where a forward jump should go to the end of
2415     the containing expression.  Each alternative of an `or' -- except the
2416     last -- ends with a forward jump of this sort.  */
2417  UCHAR_T *fixup_alt_jump = 0;
2418
2419  /* Counts open-groups as they are encountered.  Remembered for the
2420     matching close-group on the compile stack, so the same register
2421     number is put in the stop_memory as the start_memory.  */
2422  regnum_t regnum = 0;
2423
2424#ifdef WCHAR
2425  /* Initialize the wchar_t PATTERN and offset_buffer.  */
2426  p = pend = pattern = TALLOC(csize + 1, CHAR_T);
2427  mbs_offset = TALLOC(csize + 1, int);
2428  is_binary = TALLOC(csize + 1, char);
2429  if (pattern == NULL || mbs_offset == NULL || is_binary == NULL)
2430    {
2431      free(pattern);
2432      free(mbs_offset);
2433      free(is_binary);
2434      return REG_ESPACE;
2435    }
2436  pattern[csize] = L'\0';	/* sentinel */
2437  size = convert_mbs_to_wcs(pattern, cpattern, csize, mbs_offset, is_binary);
2438  pend = p + size;
2439  if (size < 0)
2440    {
2441      free(pattern);
2442      free(mbs_offset);
2443      free(is_binary);
2444      return REG_BADPAT;
2445    }
2446#endif
2447
2448#ifdef DEBUG
2449  DEBUG_PRINT1 ("\nCompiling pattern: ");
2450  if (debug)
2451    {
2452      unsigned debug_count;
2453
2454      for (debug_count = 0; debug_count < size; debug_count++)
2455        PUT_CHAR (pattern[debug_count]);
2456      putchar ('\n');
2457    }
2458#endif /* DEBUG */
2459
2460  /* Initialize the compile stack.  */
2461  compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2462  if (compile_stack.stack == NULL)
2463    {
2464#ifdef WCHAR
2465      free(pattern);
2466      free(mbs_offset);
2467      free(is_binary);
2468#endif
2469      return REG_ESPACE;
2470    }
2471
2472  compile_stack.size = INIT_COMPILE_STACK_SIZE;
2473  compile_stack.avail = 0;
2474
2475  /* Initialize the pattern buffer.  */
2476  bufp->syntax = syntax;
2477  bufp->fastmap_accurate = 0;
2478  bufp->not_bol = bufp->not_eol = 0;
2479
2480  /* Set `used' to zero, so that if we return an error, the pattern
2481     printer (for debugging) will think there's no pattern.  We reset it
2482     at the end.  */
2483  bufp->used = 0;
2484
2485  /* Always count groups, whether or not bufp->no_sub is set.  */
2486  bufp->re_nsub = 0;
2487
2488#if !defined emacs && !defined SYNTAX_TABLE
2489  /* Initialize the syntax table.  */
2490   init_syntax_once ();
2491#endif
2492
2493  if (bufp->allocated == 0)
2494    {
2495      if (bufp->buffer)
2496	{ /* If zero allocated, but buffer is non-null, try to realloc
2497             enough space.  This loses if buffer's address is bogus, but
2498             that is the user's responsibility.  */
2499#ifdef WCHAR
2500	  /* Free bufp->buffer and allocate an array for wchar_t pattern
2501	     buffer.  */
2502          free(bufp->buffer);
2503          COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE/sizeof(UCHAR_T),
2504					UCHAR_T);
2505#else
2506          RETALLOC (COMPILED_BUFFER_VAR, INIT_BUF_SIZE, UCHAR_T);
2507#endif /* WCHAR */
2508        }
2509      else
2510        { /* Caller did not allocate a buffer.  Do it for them.  */
2511          COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE / sizeof(UCHAR_T),
2512					UCHAR_T);
2513        }
2514
2515      if (!COMPILED_BUFFER_VAR) FREE_STACK_RETURN (REG_ESPACE);
2516#ifdef WCHAR
2517      bufp->buffer = (char*)COMPILED_BUFFER_VAR;
2518#endif /* WCHAR */
2519      bufp->allocated = INIT_BUF_SIZE;
2520    }
2521#ifdef WCHAR
2522  else
2523    COMPILED_BUFFER_VAR = (UCHAR_T*) bufp->buffer;
2524#endif
2525
2526  begalt = b = COMPILED_BUFFER_VAR;
2527
2528  /* Loop through the uncompiled pattern until we're at the end.  */
2529  while (p != pend)
2530    {
2531      PATFETCH (c);
2532
2533      switch (c)
2534        {
2535        case '^':
2536          {
2537            if (   /* If at start of pattern, it's an operator.  */
2538                   p == pattern + 1
2539                   /* If context independent, it's an operator.  */
2540                || syntax & RE_CONTEXT_INDEP_ANCHORS
2541                   /* Otherwise, depends on what's come before.  */
2542                || PREFIX(at_begline_loc_p) (pattern, p, syntax))
2543              BUF_PUSH (begline);
2544            else
2545              goto normal_char;
2546          }
2547          break;
2548
2549
2550        case '$':
2551          {
2552            if (   /* If at end of pattern, it's an operator.  */
2553                   p == pend
2554                   /* If context independent, it's an operator.  */
2555                || syntax & RE_CONTEXT_INDEP_ANCHORS
2556                   /* Otherwise, depends on what's next.  */
2557                || PREFIX(at_endline_loc_p) (p, pend, syntax))
2558               BUF_PUSH (endline);
2559             else
2560               goto normal_char;
2561           }
2562           break;
2563
2564
2565	case '+':
2566        case '?':
2567          if ((syntax & RE_BK_PLUS_QM)
2568              || (syntax & RE_LIMITED_OPS))
2569            goto normal_char;
2570        handle_plus:
2571        case '*':
2572          /* If there is no previous pattern... */
2573          if (!laststart)
2574            {
2575              if (syntax & RE_CONTEXT_INVALID_OPS)
2576                FREE_STACK_RETURN (REG_BADRPT);
2577              else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2578                goto normal_char;
2579            }
2580
2581          {
2582            /* Are we optimizing this jump?  */
2583            boolean keep_string_p = false;
2584
2585            /* 1 means zero (many) matches is allowed.  */
2586            char zero_times_ok = 0, many_times_ok = 0;
2587
2588            /* If there is a sequence of repetition chars, collapse it
2589               down to just one (the right one).  We can't combine
2590               interval operators with these because of, e.g., `a{2}*',
2591               which should only match an even number of `a's.  */
2592
2593            for (;;)
2594              {
2595                zero_times_ok |= c != '+';
2596                many_times_ok |= c != '?';
2597
2598                if (p == pend)
2599                  break;
2600
2601                PATFETCH (c);
2602
2603                if (c == '*'
2604                    || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
2605                  ;
2606
2607                else if (syntax & RE_BK_PLUS_QM  &&  c == '\\')
2608                  {
2609                    if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2610
2611                    PATFETCH (c1);
2612                    if (!(c1 == '+' || c1 == '?'))
2613                      {
2614                        PATUNFETCH;
2615                        PATUNFETCH;
2616                        break;
2617                      }
2618
2619                    c = c1;
2620                  }
2621                else
2622                  {
2623                    PATUNFETCH;
2624                    break;
2625                  }
2626
2627                /* If we get here, we found another repeat character.  */
2628               }
2629
2630            /* Star, etc. applied to an empty pattern is equivalent
2631               to an empty pattern.  */
2632            if (!laststart)
2633              break;
2634
2635            /* Now we know whether or not zero matches is allowed
2636               and also whether or not two or more matches is allowed.  */
2637            if (many_times_ok)
2638              { /* More than one repetition is allowed, so put in at the
2639                   end a backward relative jump from `b' to before the next
2640                   jump we're going to put in below (which jumps from
2641                   laststart to after this jump).
2642
2643                   But if we are at the `*' in the exact sequence `.*\n',
2644                   insert an unconditional jump backwards to the .,
2645                   instead of the beginning of the loop.  This way we only
2646                   push a failure point once, instead of every time
2647                   through the loop.  */
2648                assert (p - 1 > pattern);
2649
2650                /* Allocate the space for the jump.  */
2651                GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2652
2653                /* We know we are not at the first character of the pattern,
2654                   because laststart was nonzero.  And we've already
2655                   incremented `p', by the way, to be the character after
2656                   the `*'.  Do we have to do something analogous here
2657                   for null bytes, because of RE_DOT_NOT_NULL?  */
2658                if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
2659		    && zero_times_ok
2660                    && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
2661                    && !(syntax & RE_DOT_NEWLINE))
2662                  { /* We have .*\n.  */
2663                    STORE_JUMP (jump, b, laststart);
2664                    keep_string_p = true;
2665                  }
2666                else
2667                  /* Anything else.  */
2668                  STORE_JUMP (maybe_pop_jump, b, laststart -
2669			      (1 + OFFSET_ADDRESS_SIZE));
2670
2671                /* We've added more stuff to the buffer.  */
2672                b += 1 + OFFSET_ADDRESS_SIZE;
2673              }
2674
2675            /* On failure, jump from laststart to b + 3, which will be the
2676               end of the buffer after this jump is inserted.  */
2677	    /* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE' instead of
2678	       'b + 3'.  */
2679            GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2680            INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2681                                       : on_failure_jump,
2682                         laststart, b + 1 + OFFSET_ADDRESS_SIZE);
2683            pending_exact = 0;
2684            b += 1 + OFFSET_ADDRESS_SIZE;
2685
2686            if (!zero_times_ok)
2687              {
2688                /* At least one repetition is required, so insert a
2689                   `dummy_failure_jump' before the initial
2690                   `on_failure_jump' instruction of the loop. This
2691                   effects a skip over that instruction the first time
2692                   we hit that loop.  */
2693                GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2694                INSERT_JUMP (dummy_failure_jump, laststart, laststart +
2695			     2 + 2 * OFFSET_ADDRESS_SIZE);
2696                b += 1 + OFFSET_ADDRESS_SIZE;
2697              }
2698            }
2699	  break;
2700
2701
2702	case '.':
2703          laststart = b;
2704          BUF_PUSH (anychar);
2705          break;
2706
2707
2708        case '[':
2709          {
2710            boolean had_char_class = false;
2711#ifdef WCHAR
2712	    CHAR_T range_start = 0xffffffff;
2713#else
2714	    unsigned int range_start = 0xffffffff;
2715#endif
2716            if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2717
2718#ifdef WCHAR
2719	    /* We assume a charset(_not) structure as a wchar_t array.
2720	       charset[0] = (re_opcode_t) charset(_not)
2721               charset[1] = l (= length of char_classes)
2722               charset[2] = m (= length of collating_symbols)
2723               charset[3] = n (= length of equivalence_classes)
2724	       charset[4] = o (= length of char_ranges)
2725	       charset[5] = p (= length of chars)
2726
2727               charset[6] = char_class (wctype_t)
2728               charset[6+CHAR_CLASS_SIZE] = char_class (wctype_t)
2729                         ...
2730               charset[l+5]  = char_class (wctype_t)
2731
2732               charset[l+6]  = collating_symbol (wchar_t)
2733                            ...
2734               charset[l+m+5]  = collating_symbol (wchar_t)
2735					ifdef _LIBC we use the index if
2736					_NL_COLLATE_SYMB_EXTRAMB instead of
2737					wchar_t string.
2738
2739               charset[l+m+6]  = equivalence_classes (wchar_t)
2740                              ...
2741               charset[l+m+n+5]  = equivalence_classes (wchar_t)
2742					ifdef _LIBC we use the index in
2743					_NL_COLLATE_WEIGHT instead of
2744					wchar_t string.
2745
2746	       charset[l+m+n+6] = range_start
2747	       charset[l+m+n+7] = range_end
2748	                       ...
2749	       charset[l+m+n+2o+4] = range_start
2750	       charset[l+m+n+2o+5] = range_end
2751					ifdef _LIBC we use the value looked up
2752					in _NL_COLLATE_COLLSEQ instead of
2753					wchar_t character.
2754
2755	       charset[l+m+n+2o+6] = char
2756	                          ...
2757	       charset[l+m+n+2o+p+5] = char
2758
2759	     */
2760
2761	    /* We need at least 6 spaces: the opcode, the length of
2762               char_classes, the length of collating_symbols, the length of
2763               equivalence_classes, the length of char_ranges, the length of
2764               chars.  */
2765	    GET_BUFFER_SPACE (6);
2766
2767	    /* Save b as laststart. And We use laststart as the pointer
2768	       to the first element of the charset here.
2769	       In other words, laststart[i] indicates charset[i].  */
2770            laststart = b;
2771
2772            /* We test `*p == '^' twice, instead of using an if
2773               statement, so we only need one BUF_PUSH.  */
2774            BUF_PUSH (*p == '^' ? charset_not : charset);
2775            if (*p == '^')
2776              p++;
2777
2778            /* Push the length of char_classes, the length of
2779               collating_symbols, the length of equivalence_classes, the
2780               length of char_ranges and the length of chars.  */
2781            BUF_PUSH_3 (0, 0, 0);
2782            BUF_PUSH_2 (0, 0);
2783
2784            /* Remember the first position in the bracket expression.  */
2785            p1 = p;
2786
2787            /* charset_not matches newline according to a syntax bit.  */
2788            if ((re_opcode_t) b[-6] == charset_not
2789                && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2790	      {
2791		BUF_PUSH('\n');
2792		laststart[5]++; /* Update the length of characters  */
2793	      }
2794
2795            /* Read in characters and ranges, setting map bits.  */
2796            for (;;)
2797              {
2798                if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2799
2800                PATFETCH (c);
2801
2802                /* \ might escape characters inside [...] and [^...].  */
2803                if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2804                  {
2805                    if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2806
2807                    PATFETCH (c1);
2808		    BUF_PUSH(c1);
2809		    laststart[5]++; /* Update the length of chars  */
2810		    range_start = c1;
2811                    continue;
2812                  }
2813
2814                /* Could be the end of the bracket expression.  If it's
2815                   not (i.e., when the bracket expression is `[]' so
2816                   far), the ']' character bit gets set way below.  */
2817                if (c == ']' && p != p1 + 1)
2818                  break;
2819
2820                /* Look ahead to see if it's a range when the last thing
2821                   was a character class.  */
2822                if (had_char_class && c == '-' && *p != ']')
2823                  FREE_STACK_RETURN (REG_ERANGE);
2824
2825                /* Look ahead to see if it's a range when the last thing
2826                   was a character: if this is a hyphen not at the
2827                   beginning or the end of a list, then it's the range
2828                   operator.  */
2829                if (c == '-'
2830                    && !(p - 2 >= pattern && p[-2] == '[')
2831                    && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
2832                    && *p != ']')
2833                  {
2834                    reg_errcode_t ret;
2835		    /* Allocate the space for range_start and range_end.  */
2836		    GET_BUFFER_SPACE (2);
2837		    /* Update the pointer to indicate end of buffer.  */
2838                    b += 2;
2839                    ret = wcs_compile_range (range_start, &p, pend, translate,
2840                                         syntax, b, laststart);
2841                    if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2842                    range_start = 0xffffffff;
2843                  }
2844                else if (p[0] == '-' && p[1] != ']')
2845                  { /* This handles ranges made up of characters only.  */
2846                    reg_errcode_t ret;
2847
2848		    /* Move past the `-'.  */
2849                    PATFETCH (c1);
2850		    /* Allocate the space for range_start and range_end.  */
2851		    GET_BUFFER_SPACE (2);
2852		    /* Update the pointer to indicate end of buffer.  */
2853                    b += 2;
2854                    ret = wcs_compile_range (c, &p, pend, translate, syntax, b,
2855                                         laststart);
2856                    if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2857		    range_start = 0xffffffff;
2858                  }
2859
2860                /* See if we're at the beginning of a possible character
2861                   class.  */
2862                else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2863                  { /* Leave room for the null.  */
2864                    char str[CHAR_CLASS_MAX_LENGTH + 1];
2865
2866                    PATFETCH (c);
2867                    c1 = 0;
2868
2869                    /* If pattern is `[[:'.  */
2870                    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2871
2872                    for (;;)
2873                      {
2874                        PATFETCH (c);
2875                        if ((c == ':' && *p == ']') || p == pend)
2876                          break;
2877			if (c1 < CHAR_CLASS_MAX_LENGTH)
2878			  str[c1++] = c;
2879			else
2880			  /* This is in any case an invalid class name.  */
2881			  str[0] = '\0';
2882                      }
2883                    str[c1] = '\0';
2884
2885                    /* If isn't a word bracketed by `[:' and `:]':
2886                       undo the ending character, the letters, and leave
2887                       the leading `:' and `[' (but store them as character).  */
2888                    if (c == ':' && *p == ']')
2889                      {
2890			wctype_t wt;
2891			uintptr_t alignedp;
2892
2893			/* Query the character class as wctype_t.  */
2894			wt = IS_CHAR_CLASS (str);
2895			if (wt == 0)
2896			  FREE_STACK_RETURN (REG_ECTYPE);
2897
2898                        /* Throw away the ] at the end of the character
2899                           class.  */
2900                        PATFETCH (c);
2901
2902                        if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2903
2904			/* Allocate the space for character class.  */
2905                        GET_BUFFER_SPACE(CHAR_CLASS_SIZE);
2906			/* Update the pointer to indicate end of buffer.  */
2907                        b += CHAR_CLASS_SIZE;
2908			/* Move data which follow character classes
2909			    not to violate the data.  */
2910                        insert_space(CHAR_CLASS_SIZE,
2911				     laststart + 6 + laststart[1],
2912				     b - 1);
2913			alignedp = ((uintptr_t)(laststart + 6 + laststart[1])
2914				    + __alignof__(wctype_t) - 1)
2915			  	    & ~(uintptr_t)(__alignof__(wctype_t) - 1);
2916			/* Store the character class.  */
2917                        *((wctype_t*)alignedp) = wt;
2918                        /* Update length of char_classes */
2919                        laststart[1] += CHAR_CLASS_SIZE;
2920
2921                        had_char_class = true;
2922                      }
2923                    else
2924                      {
2925                        c1++;
2926                        while (c1--)
2927                          PATUNFETCH;
2928                        BUF_PUSH ('[');
2929                        BUF_PUSH (':');
2930                        laststart[5] += 2; /* Update the length of characters  */
2931			range_start = ':';
2932                        had_char_class = false;
2933                      }
2934                  }
2935                else if (syntax & RE_CHAR_CLASSES && c == '[' && (*p == '='
2936							  || *p == '.'))
2937		  {
2938		    CHAR_T str[128];	/* Should be large enough.  */
2939		    CHAR_T delim = *p; /* '=' or '.'  */
2940# ifdef _LIBC
2941		    uint32_t nrules =
2942		      _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
2943# endif
2944		    PATFETCH (c);
2945		    c1 = 0;
2946
2947		    /* If pattern is `[[=' or '[[.'.  */
2948		    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2949
2950		    for (;;)
2951		      {
2952			PATFETCH (c);
2953			if ((c == delim && *p == ']') || p == pend)
2954			  break;
2955			if (c1 < sizeof (str) - 1)
2956			  str[c1++] = c;
2957			else
2958			  /* This is in any case an invalid class name.  */
2959			  str[0] = '\0';
2960                      }
2961		    str[c1] = '\0';
2962
2963		    if (c == delim && *p == ']' && str[0] != '\0')
2964		      {
2965                        unsigned int i, offset;
2966			/* If we have no collation data we use the default
2967			   collation in which each character is in a class
2968			   by itself.  It also means that ASCII is the
2969			   character set and therefore we cannot have character
2970			   with more than one byte in the multibyte
2971			   representation.  */
2972
2973                        /* If not defined _LIBC, we push the name and
2974			   `\0' for the sake of matching performance.  */
2975			int datasize = c1 + 1;
2976
2977# ifdef _LIBC
2978			int32_t idx = 0;
2979			if (nrules == 0)
2980# endif
2981			  {
2982			    if (c1 != 1)
2983			      FREE_STACK_RETURN (REG_ECOLLATE);
2984			  }
2985# ifdef _LIBC
2986			else
2987			  {
2988			    const int32_t *table;
2989			    const int32_t *weights;
2990			    const int32_t *extra;
2991			    const int32_t *indirect;
2992			    wint_t *cp;
2993
2994			    /* This #include defines a local function!  */
2995#  include <locale/weightwc.h>
2996
2997			    if(delim == '=')
2998			      {
2999				/* We push the index for equivalence class.  */
3000				cp = (wint_t*)str;
3001
3002				table = (const int32_t *)
3003				  _NL_CURRENT (LC_COLLATE,
3004					       _NL_COLLATE_TABLEWC);
3005				weights = (const int32_t *)
3006				  _NL_CURRENT (LC_COLLATE,
3007					       _NL_COLLATE_WEIGHTWC);
3008				extra = (const int32_t *)
3009				  _NL_CURRENT (LC_COLLATE,
3010					       _NL_COLLATE_EXTRAWC);
3011				indirect = (const int32_t *)
3012				  _NL_CURRENT (LC_COLLATE,
3013					       _NL_COLLATE_INDIRECTWC);
3014
3015				idx = findidx ((const wint_t**)&cp);
3016				if (idx == 0 || cp < (wint_t*) str + c1)
3017				  /* This is no valid character.  */
3018				  FREE_STACK_RETURN (REG_ECOLLATE);
3019
3020				str[0] = (wchar_t)idx;
3021			      }
3022			    else /* delim == '.' */
3023			      {
3024				/* We push collation sequence value
3025				   for collating symbol.  */
3026				int32_t table_size;
3027				const int32_t *symb_table;
3028				const unsigned char *extra;
3029				int32_t idx;
3030				int32_t elem;
3031				int32_t second;
3032				int32_t hash;
3033				char char_str[c1];
3034
3035				/* We have to convert the name to a single-byte
3036				   string.  This is possible since the names
3037				   consist of ASCII characters and the internal
3038				   representation is UCS4.  */
3039				for (i = 0; i < c1; ++i)
3040				  char_str[i] = str[i];
3041
3042				table_size =
3043				  _NL_CURRENT_WORD (LC_COLLATE,
3044						    _NL_COLLATE_SYMB_HASH_SIZEMB);
3045				symb_table = (const int32_t *)
3046				  _NL_CURRENT (LC_COLLATE,
3047					       _NL_COLLATE_SYMB_TABLEMB);
3048				extra = (const unsigned char *)
3049				  _NL_CURRENT (LC_COLLATE,
3050					       _NL_COLLATE_SYMB_EXTRAMB);
3051
3052				/* Locate the character in the hashing table.  */
3053				hash = elem_hash (char_str, c1);
3054
3055				idx = 0;
3056				elem = hash % table_size;
3057				second = hash % (table_size - 2);
3058				while (symb_table[2 * elem] != 0)
3059				  {
3060				    /* First compare the hashing value.  */
3061				    if (symb_table[2 * elem] == hash
3062					&& c1 == extra[symb_table[2 * elem + 1]]
3063					&& memcmp (char_str,
3064						   &extra[symb_table[2 * elem + 1]
3065							 + 1], c1) == 0)
3066				      {
3067					/* Yep, this is the entry.  */
3068					idx = symb_table[2 * elem + 1];
3069					idx += 1 + extra[idx];
3070					break;
3071				      }
3072
3073				    /* Next entry.  */
3074				    elem += second;
3075				  }
3076
3077				if (symb_table[2 * elem] != 0)
3078				  {
3079				    /* Compute the index of the byte sequence
3080				       in the table.  */
3081				    idx += 1 + extra[idx];
3082				    /* Adjust for the alignment.  */
3083				    idx = (idx + 3) & ~3;
3084
3085				    str[0] = (wchar_t) idx + 4;
3086				  }
3087				else if (symb_table[2 * elem] == 0 && c1 == 1)
3088				  {
3089				    /* No valid character.  Match it as a
3090				       single byte character.  */
3091				    had_char_class = false;
3092				    BUF_PUSH(str[0]);
3093				    /* Update the length of characters  */
3094				    laststart[5]++;
3095				    range_start = str[0];
3096
3097				    /* Throw away the ] at the end of the
3098				       collating symbol.  */
3099				    PATFETCH (c);
3100				    /* exit from the switch block.  */
3101				    continue;
3102				  }
3103				else
3104				  FREE_STACK_RETURN (REG_ECOLLATE);
3105			      }
3106			    datasize = 1;
3107			  }
3108# endif
3109                        /* Throw away the ] at the end of the equivalence
3110                           class (or collating symbol).  */
3111                        PATFETCH (c);
3112
3113			/* Allocate the space for the equivalence class
3114			   (or collating symbol) (and '\0' if needed).  */
3115                        GET_BUFFER_SPACE(datasize);
3116			/* Update the pointer to indicate end of buffer.  */
3117                        b += datasize;
3118
3119			if (delim == '=')
3120			  { /* equivalence class  */
3121			    /* Calculate the offset of char_ranges,
3122			       which is next to equivalence_classes.  */
3123			    offset = laststart[1] + laststart[2]
3124			      + laststart[3] +6;
3125			    /* Insert space.  */
3126			    insert_space(datasize, laststart + offset, b - 1);
3127
3128			    /* Write the equivalence_class and \0.  */
3129			    for (i = 0 ; i < datasize ; i++)
3130			      laststart[offset + i] = str[i];
3131
3132			    /* Update the length of equivalence_classes.  */
3133			    laststart[3] += datasize;
3134			    had_char_class = true;
3135			  }
3136			else /* delim == '.' */
3137			  { /* collating symbol  */
3138			    /* Calculate the offset of the equivalence_classes,
3139			       which is next to collating_symbols.  */
3140			    offset = laststart[1] + laststart[2] + 6;
3141			    /* Insert space and write the collationg_symbol
3142			       and \0.  */
3143			    insert_space(datasize, laststart + offset, b-1);
3144			    for (i = 0 ; i < datasize ; i++)
3145			      laststart[offset + i] = str[i];
3146
3147			    /* In re_match_2_internal if range_start < -1, we
3148			       assume -range_start is the offset of the
3149			       collating symbol which is specified as
3150			       the character of the range start.  So we assign
3151			       -(laststart[1] + laststart[2] + 6) to
3152			       range_start.  */
3153			    range_start = -(laststart[1] + laststart[2] + 6);
3154			    /* Update the length of collating_symbol.  */
3155			    laststart[2] += datasize;
3156			    had_char_class = false;
3157			  }
3158		      }
3159                    else
3160                      {
3161                        c1++;
3162                        while (c1--)
3163                          PATUNFETCH;
3164                        BUF_PUSH ('[');
3165                        BUF_PUSH (delim);
3166                        laststart[5] += 2; /* Update the length of characters  */
3167			range_start = delim;
3168                        had_char_class = false;
3169                      }
3170		  }
3171                else
3172                  {
3173                    had_char_class = false;
3174		    BUF_PUSH(c);
3175		    laststart[5]++;  /* Update the length of characters  */
3176		    range_start = c;
3177                  }
3178	      }
3179
3180#else /* BYTE */
3181            /* Ensure that we have enough space to push a charset: the
3182               opcode, the length count, and the bitset; 34 bytes in all.  */
3183	    GET_BUFFER_SPACE (34);
3184
3185            laststart = b;
3186
3187            /* We test `*p == '^' twice, instead of using an if
3188               statement, so we only need one BUF_PUSH.  */
3189            BUF_PUSH (*p == '^' ? charset_not : charset);
3190            if (*p == '^')
3191              p++;
3192
3193            /* Remember the first position in the bracket expression.  */
3194            p1 = p;
3195
3196            /* Push the number of bytes in the bitmap.  */
3197            BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
3198
3199            /* Clear the whole map.  */
3200            bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
3201
3202            /* charset_not matches newline according to a syntax bit.  */
3203            if ((re_opcode_t) b[-2] == charset_not
3204                && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
3205              SET_LIST_BIT ('\n');
3206
3207            /* Read in characters and ranges, setting map bits.  */
3208            for (;;)
3209              {
3210                if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3211
3212                PATFETCH (c);
3213
3214                /* \ might escape characters inside [...] and [^...].  */
3215                if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
3216                  {
3217                    if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3218
3219                    PATFETCH (c1);
3220                    SET_LIST_BIT (c1);
3221		    range_start = c1;
3222                    continue;
3223                  }
3224
3225                /* Could be the end of the bracket expression.  If it's
3226                   not (i.e., when the bracket expression is `[]' so
3227                   far), the ']' character bit gets set way below.  */
3228                if (c == ']' && p != p1 + 1)
3229                  break;
3230
3231                /* Look ahead to see if it's a range when the last thing
3232                   was a character class.  */
3233                if (had_char_class && c == '-' && *p != ']')
3234                  FREE_STACK_RETURN (REG_ERANGE);
3235
3236                /* Look ahead to see if it's a range when the last thing
3237                   was a character: if this is a hyphen not at the
3238                   beginning or the end of a list, then it's the range
3239                   operator.  */
3240                if (c == '-'
3241                    && !(p - 2 >= pattern && p[-2] == '[')
3242                    && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
3243                    && *p != ']')
3244                  {
3245                    reg_errcode_t ret
3246                      = byte_compile_range (range_start, &p, pend, translate,
3247					    syntax, b);
3248                    if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
3249		    range_start = 0xffffffff;
3250                  }
3251
3252                else if (p[0] == '-' && p[1] != ']')
3253                  { /* This handles ranges made up of characters only.  */
3254                    reg_errcode_t ret;
3255
3256		    /* Move past the `-'.  */
3257                    PATFETCH (c1);
3258
3259                    ret = byte_compile_range (c, &p, pend, translate, syntax, b);
3260                    if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
3261		    range_start = 0xffffffff;
3262                  }
3263
3264                /* See if we're at the beginning of a possible character
3265                   class.  */
3266
3267                else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
3268                  { /* Leave room for the null.  */
3269                    char str[CHAR_CLASS_MAX_LENGTH + 1];
3270
3271                    PATFETCH (c);
3272                    c1 = 0;
3273
3274                    /* If pattern is `[[:'.  */
3275                    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3276
3277                    for (;;)
3278                      {
3279                        PATFETCH (c);
3280                        if ((c == ':' && *p == ']') || p == pend)
3281                          break;
3282			if (c1 < CHAR_CLASS_MAX_LENGTH)
3283			  str[c1++] = c;
3284			else
3285			  /* This is in any case an invalid class name.  */
3286			  str[0] = '\0';
3287                      }
3288                    str[c1] = '\0';
3289
3290                    /* If isn't a word bracketed by `[:' and `:]':
3291                       undo the ending character, the letters, and leave
3292                       the leading `:' and `[' (but set bits for them).  */
3293                    if (c == ':' && *p == ']')
3294                      {
3295# if defined _LIBC || WIDE_CHAR_SUPPORT
3296                        boolean is_lower = STREQ (str, "lower");
3297                        boolean is_upper = STREQ (str, "upper");
3298			wctype_t wt;
3299                        int ch;
3300
3301			wt = IS_CHAR_CLASS (str);
3302			if (wt == 0)
3303			  FREE_STACK_RETURN (REG_ECTYPE);
3304
3305                        /* Throw away the ] at the end of the character
3306                           class.  */
3307                        PATFETCH (c);
3308
3309                        if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3310
3311                        for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
3312			  {
3313			    if (iswctype (btowc (ch), wt))
3314			      SET_LIST_BIT (ch);
3315
3316			    if (translate && (is_upper || is_lower)
3317				&& (ISUPPER (ch) || ISLOWER (ch)))
3318			      SET_LIST_BIT (ch);
3319			  }
3320
3321                        had_char_class = true;
3322# else
3323                        int ch;
3324                        boolean is_alnum = STREQ (str, "alnum");
3325                        boolean is_alpha = STREQ (str, "alpha");
3326                        boolean is_blank = STREQ (str, "blank");
3327                        boolean is_cntrl = STREQ (str, "cntrl");
3328                        boolean is_digit = STREQ (str, "digit");
3329                        boolean is_graph = STREQ (str, "graph");
3330                        boolean is_lower = STREQ (str, "lower");
3331                        boolean is_print = STREQ (str, "print");
3332                        boolean is_punct = STREQ (str, "punct");
3333                        boolean is_space = STREQ (str, "space");
3334                        boolean is_upper = STREQ (str, "upper");
3335                        boolean is_xdigit = STREQ (str, "xdigit");
3336
3337                        if (!IS_CHAR_CLASS (str))
3338			  FREE_STACK_RETURN (REG_ECTYPE);
3339
3340                        /* Throw away the ] at the end of the character
3341                           class.  */
3342                        PATFETCH (c);
3343
3344                        if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3345
3346                        for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
3347                          {
3348			    /* This was split into 3 if's to
3349			       avoid an arbitrary limit in some compiler.  */
3350                            if (   (is_alnum  && ISALNUM (ch))
3351                                || (is_alpha  && ISALPHA (ch))
3352                                || (is_blank  && ISBLANK (ch))
3353                                || (is_cntrl  && ISCNTRL (ch)))
3354			      SET_LIST_BIT (ch);
3355			    if (   (is_digit  && ISDIGIT (ch))
3356                                || (is_graph  && ISGRAPH (ch))
3357                                || (is_lower  && ISLOWER (ch))
3358                                || (is_print  && ISPRINT (ch)))
3359			      SET_LIST_BIT (ch);
3360			    if (   (is_punct  && ISPUNCT (ch))
3361                                || (is_space  && ISSPACE (ch))
3362                                || (is_upper  && ISUPPER (ch))
3363                                || (is_xdigit && ISXDIGIT (ch)))
3364			      SET_LIST_BIT (ch);
3365			    if (   translate && (is_upper || is_lower)
3366				&& (ISUPPER (ch) || ISLOWER (ch)))
3367			      SET_LIST_BIT (ch);
3368                          }
3369                        had_char_class = true;
3370# endif	/* libc || wctype.h */
3371                      }
3372                    else
3373                      {
3374                        c1++;
3375                        while (c1--)
3376                          PATUNFETCH;
3377                        SET_LIST_BIT ('[');
3378                        SET_LIST_BIT (':');
3379			range_start = ':';
3380                        had_char_class = false;
3381                      }
3382                  }
3383                else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == '=')
3384		  {
3385		    unsigned char str[MB_LEN_MAX + 1];
3386# ifdef _LIBC
3387		    uint32_t nrules =
3388		      _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
3389# endif
3390
3391		    PATFETCH (c);
3392		    c1 = 0;
3393
3394		    /* If pattern is `[[='.  */
3395		    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3396
3397		    for (;;)
3398		      {
3399			PATFETCH (c);
3400			if ((c == '=' && *p == ']') || p == pend)
3401			  break;
3402			if (c1 < MB_LEN_MAX)
3403			  str[c1++] = c;
3404			else
3405			  /* This is in any case an invalid class name.  */
3406			  str[0] = '\0';
3407                      }
3408		    str[c1] = '\0';
3409
3410		    if (c == '=' && *p == ']' && str[0] != '\0')
3411		      {
3412			/* If we have no collation data we use the default
3413			   collation in which each character is in a class
3414			   by itself.  It also means that ASCII is the
3415			   character set and therefore we cannot have character
3416			   with more than one byte in the multibyte
3417			   representation.  */
3418# ifdef _LIBC
3419			if (nrules == 0)
3420# endif
3421			  {
3422			    if (c1 != 1)
3423			      FREE_STACK_RETURN (REG_ECOLLATE);
3424
3425			    /* Throw away the ] at the end of the equivalence
3426			       class.  */
3427			    PATFETCH (c);
3428
3429			    /* Set the bit for the character.  */
3430			    SET_LIST_BIT (str[0]);
3431			  }
3432# ifdef _LIBC
3433			else
3434			  {
3435			    /* Try to match the byte sequence in `str' against
3436			       those known to the collate implementation.
3437			       First find out whether the bytes in `str' are
3438			       actually from exactly one character.  */
3439			    const int32_t *table;
3440			    const unsigned char *weights;
3441			    const unsigned char *extra;
3442			    const int32_t *indirect;
3443			    int32_t idx;
3444			    const unsigned char *cp = str;
3445			    int ch;
3446
3447			    /* This #include defines a local function!  */
3448#  include <locale/weight.h>
3449
3450			    table = (const int32_t *)
3451			      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB);
3452			    weights = (const unsigned char *)
3453			      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTMB);
3454			    extra = (const unsigned char *)
3455			      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAMB);
3456			    indirect = (const int32_t *)
3457			      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTMB);
3458
3459			    idx = findidx (&cp);
3460			    if (idx == 0 || cp < str + c1)
3461			      /* This is no valid character.  */
3462			      FREE_STACK_RETURN (REG_ECOLLATE);
3463
3464			    /* Throw away the ] at the end of the equivalence
3465			       class.  */
3466			    PATFETCH (c);
3467
3468			    /* Now we have to go throught the whole table
3469			       and find all characters which have the same
3470			       first level weight.
3471
3472			       XXX Note that this is not entirely correct.
3473			       we would have to match multibyte sequences
3474			       but this is not possible with the current
3475			       implementation.  */
3476			    for (ch = 1; ch < 256; ++ch)
3477			      /* XXX This test would have to be changed if we
3478				 would allow matching multibyte sequences.  */
3479			      if (table[ch] > 0)
3480				{
3481				  int32_t idx2 = table[ch];
3482				  size_t len = weights[idx2];
3483
3484				  /* Test whether the lenghts match.  */
3485				  if (weights[idx] == len)
3486				    {
3487				      /* They do.  New compare the bytes of
3488					 the weight.  */
3489				      size_t cnt = 0;
3490
3491				      while (cnt < len
3492					     && (weights[idx + 1 + cnt]
3493						 == weights[idx2 + 1 + cnt]))
3494					++cnt;
3495
3496				      if (cnt == len)
3497					/* They match.  Mark the character as
3498					   acceptable.  */
3499					SET_LIST_BIT (ch);
3500				    }
3501				}
3502			  }
3503# endif
3504			had_char_class = true;
3505		      }
3506                    else
3507                      {
3508                        c1++;
3509                        while (c1--)
3510                          PATUNFETCH;
3511                        SET_LIST_BIT ('[');
3512                        SET_LIST_BIT ('=');
3513			range_start = '=';
3514                        had_char_class = false;
3515                      }
3516		  }
3517                else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == '.')
3518		  {
3519		    unsigned char str[128];	/* Should be large enough.  */
3520# ifdef _LIBC
3521		    uint32_t nrules =
3522		      _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
3523# endif
3524
3525		    PATFETCH (c);
3526		    c1 = 0;
3527
3528		    /* If pattern is `[[.'.  */
3529		    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3530
3531		    for (;;)
3532		      {
3533			PATFETCH (c);
3534			if ((c == '.' && *p == ']') || p == pend)
3535			  break;
3536			if (c1 < sizeof (str))
3537			  str[c1++] = c;
3538			else
3539			  /* This is in any case an invalid class name.  */
3540			  str[0] = '\0';
3541                      }
3542		    str[c1] = '\0';
3543
3544		    if (c == '.' && *p == ']' && str[0] != '\0')
3545		      {
3546			/* If we have no collation data we use the default
3547			   collation in which each character is the name
3548			   for its own class which contains only the one
3549			   character.  It also means that ASCII is the
3550			   character set and therefore we cannot have character
3551			   with more than one byte in the multibyte
3552			   representation.  */
3553# ifdef _LIBC
3554			if (nrules == 0)
3555# endif
3556			  {
3557			    if (c1 != 1)
3558			      FREE_STACK_RETURN (REG_ECOLLATE);
3559
3560			    /* Throw away the ] at the end of the equivalence
3561			       class.  */
3562			    PATFETCH (c);
3563
3564			    /* Set the bit for the character.  */
3565			    SET_LIST_BIT (str[0]);
3566			    range_start = ((const unsigned char *) str)[0];
3567			  }
3568# ifdef _LIBC
3569			else
3570			  {
3571			    /* Try to match the byte sequence in `str' against
3572			       those known to the collate implementation.
3573			       First find out whether the bytes in `str' are
3574			       actually from exactly one character.  */
3575			    int32_t table_size;
3576			    const int32_t *symb_table;
3577			    const unsigned char *extra;
3578			    int32_t idx;
3579			    int32_t elem;
3580			    int32_t second;
3581			    int32_t hash;
3582
3583			    table_size =
3584			      _NL_CURRENT_WORD (LC_COLLATE,
3585						_NL_COLLATE_SYMB_HASH_SIZEMB);
3586			    symb_table = (const int32_t *)
3587			      _NL_CURRENT (LC_COLLATE,
3588					   _NL_COLLATE_SYMB_TABLEMB);
3589			    extra = (const unsigned char *)
3590			      _NL_CURRENT (LC_COLLATE,
3591					   _NL_COLLATE_SYMB_EXTRAMB);
3592
3593			    /* Locate the character in the hashing table.  */
3594			    hash = elem_hash (str, c1);
3595
3596			    idx = 0;
3597			    elem = hash % table_size;
3598			    second = hash % (table_size - 2);
3599			    while (symb_table[2 * elem] != 0)
3600			      {
3601				/* First compare the hashing value.  */
3602				if (symb_table[2 * elem] == hash
3603				    && c1 == extra[symb_table[2 * elem + 1]]
3604				    && memcmp (str,
3605					       &extra[symb_table[2 * elem + 1]
3606						     + 1],
3607					       c1) == 0)
3608				  {
3609				    /* Yep, this is the entry.  */
3610				    idx = symb_table[2 * elem + 1];
3611				    idx += 1 + extra[idx];
3612				    break;
3613				  }
3614
3615				/* Next entry.  */
3616				elem += second;
3617			      }
3618
3619			    if (symb_table[2 * elem] == 0)
3620			      /* This is no valid character.  */
3621			      FREE_STACK_RETURN (REG_ECOLLATE);
3622
3623			    /* Throw away the ] at the end of the equivalence
3624			       class.  */
3625			    PATFETCH (c);
3626
3627			    /* Now add the multibyte character(s) we found
3628			       to the accept list.
3629
3630			       XXX Note that this is not entirely correct.
3631			       we would have to match multibyte sequences
3632			       but this is not possible with the current
3633			       implementation.  Also, we have to match
3634			       collating symbols, which expand to more than
3635			       one file, as a whole and not allow the
3636			       individual bytes.  */
3637			    c1 = extra[idx++];
3638			    if (c1 == 1)
3639			      range_start = extra[idx];
3640			    while (c1-- > 0)
3641			      {
3642				SET_LIST_BIT (extra[idx]);
3643				++idx;
3644			      }
3645			  }
3646# endif
3647			had_char_class = false;
3648		      }
3649                    else
3650                      {
3651                        c1++;
3652                        while (c1--)
3653                          PATUNFETCH;
3654                        SET_LIST_BIT ('[');
3655                        SET_LIST_BIT ('.');
3656			range_start = '.';
3657                        had_char_class = false;
3658                      }
3659		  }
3660                else
3661                  {
3662                    had_char_class = false;
3663                    SET_LIST_BIT (c);
3664		    range_start = c;
3665                  }
3666              }
3667
3668            /* Discard any (non)matching list bytes that are all 0 at the
3669               end of the map.  Decrease the map-length byte too.  */
3670            while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
3671              b[-1]--;
3672            b += b[-1];
3673#endif /* WCHAR */
3674          }
3675          break;
3676
3677
3678	case '(':
3679          if (syntax & RE_NO_BK_PARENS)
3680            goto handle_open;
3681          else
3682            goto normal_char;
3683
3684
3685        case ')':
3686          if (syntax & RE_NO_BK_PARENS)
3687            goto handle_close;
3688          else
3689            goto normal_char;
3690
3691
3692        case '\n':
3693          if (syntax & RE_NEWLINE_ALT)
3694            goto handle_alt;
3695          else
3696            goto normal_char;
3697
3698
3699	case '|':
3700          if (syntax & RE_NO_BK_VBAR)
3701            goto handle_alt;
3702          else
3703            goto normal_char;
3704
3705
3706        case '{':
3707           if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
3708             goto handle_interval;
3709           else
3710             goto normal_char;
3711
3712
3713        case '\\':
3714          if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3715
3716          /* Do not translate the character after the \, so that we can
3717             distinguish, e.g., \B from \b, even if we normally would
3718             translate, e.g., B to b.  */
3719          PATFETCH_RAW (c);
3720
3721          switch (c)
3722            {
3723            case '(':
3724              if (syntax & RE_NO_BK_PARENS)
3725                goto normal_backslash;
3726
3727            handle_open:
3728              bufp->re_nsub++;
3729              regnum++;
3730
3731              if (COMPILE_STACK_FULL)
3732                {
3733                  RETALLOC (compile_stack.stack, compile_stack.size << 1,
3734                            compile_stack_elt_t);
3735                  if (compile_stack.stack == NULL) return REG_ESPACE;
3736
3737                  compile_stack.size <<= 1;
3738                }
3739
3740              /* These are the values to restore when we hit end of this
3741                 group.  They are all relative offsets, so that if the
3742                 whole pattern moves because of realloc, they will still
3743                 be valid.  */
3744              COMPILE_STACK_TOP.begalt_offset = begalt - COMPILED_BUFFER_VAR;
3745              COMPILE_STACK_TOP.fixup_alt_jump
3746                = fixup_alt_jump ? fixup_alt_jump - COMPILED_BUFFER_VAR + 1 : 0;
3747              COMPILE_STACK_TOP.laststart_offset = b - COMPILED_BUFFER_VAR;
3748              COMPILE_STACK_TOP.regnum = regnum;
3749
3750              /* We will eventually replace the 0 with the number of
3751                 groups inner to this one.  But do not push a
3752                 start_memory for groups beyond the last one we can
3753                 represent in the compiled pattern.  */
3754              if (regnum <= MAX_REGNUM)
3755                {
3756                  COMPILE_STACK_TOP.inner_group_offset = b
3757		    - COMPILED_BUFFER_VAR + 2;
3758                  BUF_PUSH_3 (start_memory, regnum, 0);
3759                }
3760
3761              compile_stack.avail++;
3762
3763              fixup_alt_jump = 0;
3764              laststart = 0;
3765              begalt = b;
3766	      /* If we've reached MAX_REGNUM groups, then this open
3767		 won't actually generate any code, so we'll have to
3768		 clear pending_exact explicitly.  */
3769	      pending_exact = 0;
3770              break;
3771
3772
3773            case ')':
3774              if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
3775
3776              if (COMPILE_STACK_EMPTY)
3777		{
3778		  if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3779		    goto normal_backslash;
3780		  else
3781		    FREE_STACK_RETURN (REG_ERPAREN);
3782		}
3783
3784            handle_close:
3785              if (fixup_alt_jump)
3786                { /* Push a dummy failure point at the end of the
3787                     alternative for a possible future
3788                     `pop_failure_jump' to pop.  See comments at
3789                     `push_dummy_failure' in `re_match_2'.  */
3790                  BUF_PUSH (push_dummy_failure);
3791
3792                  /* We allocated space for this jump when we assigned
3793                     to `fixup_alt_jump', in the `handle_alt' case below.  */
3794                  STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
3795                }
3796
3797              /* See similar code for backslashed left paren above.  */
3798              if (COMPILE_STACK_EMPTY)
3799		{
3800		  if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3801		    goto normal_char;
3802		  else
3803		    FREE_STACK_RETURN (REG_ERPAREN);
3804		}
3805
3806              /* Since we just checked for an empty stack above, this
3807                 ``can't happen''.  */
3808              assert (compile_stack.avail != 0);
3809              {
3810                /* We don't just want to restore into `regnum', because
3811                   later groups should continue to be numbered higher,
3812                   as in `(ab)c(de)' -- the second group is #2.  */
3813                regnum_t this_group_regnum;
3814
3815                compile_stack.avail--;
3816                begalt = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.begalt_offset;
3817                fixup_alt_jump
3818                  = COMPILE_STACK_TOP.fixup_alt_jump
3819                    ? COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.fixup_alt_jump - 1
3820                    : 0;
3821                laststart = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.laststart_offset;
3822                this_group_regnum = COMPILE_STACK_TOP.regnum;
3823		/* If we've reached MAX_REGNUM groups, then this open
3824		   won't actually generate any code, so we'll have to
3825		   clear pending_exact explicitly.  */
3826		pending_exact = 0;
3827
3828                /* We're at the end of the group, so now we know how many
3829                   groups were inside this one.  */
3830                if (this_group_regnum <= MAX_REGNUM)
3831                  {
3832		    UCHAR_T *inner_group_loc
3833                      = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.inner_group_offset;
3834
3835                    *inner_group_loc = regnum - this_group_regnum;
3836                    BUF_PUSH_3 (stop_memory, this_group_regnum,
3837                                regnum - this_group_regnum);
3838                  }
3839              }
3840              break;
3841
3842
3843            case '|':					/* `\|'.  */
3844              if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
3845                goto normal_backslash;
3846            handle_alt:
3847              if (syntax & RE_LIMITED_OPS)
3848                goto normal_char;
3849
3850              /* Insert before the previous alternative a jump which
3851                 jumps to this alternative if the former fails.  */
3852              GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3853              INSERT_JUMP (on_failure_jump, begalt,
3854			   b + 2 + 2 * OFFSET_ADDRESS_SIZE);
3855              pending_exact = 0;
3856              b += 1 + OFFSET_ADDRESS_SIZE;
3857
3858              /* The alternative before this one has a jump after it
3859                 which gets executed if it gets matched.  Adjust that
3860                 jump so it will jump to this alternative's analogous
3861                 jump (put in below, which in turn will jump to the next
3862                 (if any) alternative's such jump, etc.).  The last such
3863                 jump jumps to the correct final destination.  A picture:
3864                          _____ _____
3865                          |   | |   |
3866                          |   v |   v
3867                         a | b   | c
3868
3869                 If we are at `b', then fixup_alt_jump right now points to a
3870                 three-byte space after `a'.  We'll put in the jump, set
3871                 fixup_alt_jump to right after `b', and leave behind three
3872                 bytes which we'll fill in when we get to after `c'.  */
3873
3874              if (fixup_alt_jump)
3875                STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
3876
3877              /* Mark and leave space for a jump after this alternative,
3878                 to be filled in later either by next alternative or
3879                 when know we're at the end of a series of alternatives.  */
3880              fixup_alt_jump = b;
3881              GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3882              b += 1 + OFFSET_ADDRESS_SIZE;
3883
3884              laststart = 0;
3885              begalt = b;
3886              break;
3887
3888
3889            case '{':
3890              /* If \{ is a literal.  */
3891              if (!(syntax & RE_INTERVALS)
3892                     /* If we're at `\{' and it's not the open-interval
3893                        operator.  */
3894		  || (syntax & RE_NO_BK_BRACES))
3895                goto normal_backslash;
3896
3897            handle_interval:
3898              {
3899                /* If got here, then the syntax allows intervals.  */
3900
3901                /* At least (most) this many matches must be made.  */
3902                int lower_bound = -1, upper_bound = -1;
3903
3904		/* Place in the uncompiled pattern (i.e., just after
3905		   the '{') to go back to if the interval is invalid.  */
3906		const CHAR_T *beg_interval = p;
3907
3908                if (p == pend)
3909		  goto invalid_interval;
3910
3911                GET_UNSIGNED_NUMBER (lower_bound);
3912
3913                if (c == ',')
3914                  {
3915                    GET_UNSIGNED_NUMBER (upper_bound);
3916		    if (upper_bound < 0)
3917		      upper_bound = RE_DUP_MAX;
3918                  }
3919                else
3920                  /* Interval such as `{1}' => match exactly once. */
3921                  upper_bound = lower_bound;
3922
3923                if (! (0 <= lower_bound && lower_bound <= upper_bound))
3924		  goto invalid_interval;
3925
3926                if (!(syntax & RE_NO_BK_BRACES))
3927                  {
3928		    if (c != '\\' || p == pend)
3929		      goto invalid_interval;
3930                    PATFETCH (c);
3931                  }
3932
3933                if (c != '}')
3934		  goto invalid_interval;
3935
3936                /* If it's invalid to have no preceding re.  */
3937                if (!laststart)
3938                  {
3939		    if (syntax & RE_CONTEXT_INVALID_OPS
3940			&& !(syntax & RE_INVALID_INTERVAL_ORD))
3941                      FREE_STACK_RETURN (REG_BADRPT);
3942                    else if (syntax & RE_CONTEXT_INDEP_OPS)
3943                      laststart = b;
3944                    else
3945                      goto unfetch_interval;
3946                  }
3947
3948                /* We just parsed a valid interval.  */
3949
3950                if (RE_DUP_MAX < upper_bound)
3951		  FREE_STACK_RETURN (REG_BADBR);
3952
3953                /* If the upper bound is zero, don't want to succeed at
3954                   all; jump from `laststart' to `b + 3', which will be
3955		   the end of the buffer after we insert the jump.  */
3956		/* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE'
3957		   instead of 'b + 3'.  */
3958                 if (upper_bound == 0)
3959                   {
3960                     GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3961                     INSERT_JUMP (jump, laststart, b + 1
3962				  + OFFSET_ADDRESS_SIZE);
3963                     b += 1 + OFFSET_ADDRESS_SIZE;
3964                   }
3965
3966                 /* Otherwise, we have a nontrivial interval.  When
3967                    we're all done, the pattern will look like:
3968                      set_number_at <jump count> <upper bound>
3969                      set_number_at <succeed_n count> <lower bound>
3970                      succeed_n <after jump addr> <succeed_n count>
3971                      <body of loop>
3972                      jump_n <succeed_n addr> <jump count>
3973                    (The upper bound and `jump_n' are omitted if
3974                    `upper_bound' is 1, though.)  */
3975                 else
3976                   { /* If the upper bound is > 1, we need to insert
3977                        more at the end of the loop.  */
3978                     unsigned nbytes = 2 + 4 * OFFSET_ADDRESS_SIZE +
3979		       (upper_bound > 1) * (2 + 4 * OFFSET_ADDRESS_SIZE);
3980
3981                     GET_BUFFER_SPACE (nbytes);
3982
3983                     /* Initialize lower bound of the `succeed_n', even
3984                        though it will be set during matching by its
3985                        attendant `set_number_at' (inserted next),
3986                        because `re_compile_fastmap' needs to know.
3987                        Jump to the `jump_n' we might insert below.  */
3988                     INSERT_JUMP2 (succeed_n, laststart,
3989                                   b + 1 + 2 * OFFSET_ADDRESS_SIZE
3990				   + (upper_bound > 1) * (1 + 2 * OFFSET_ADDRESS_SIZE)
3991				   , lower_bound);
3992                     b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3993
3994                     /* Code to initialize the lower bound.  Insert
3995                        before the `succeed_n'.  The `5' is the last two
3996                        bytes of this `set_number_at', plus 3 bytes of
3997                        the following `succeed_n'.  */
3998		     /* ifdef WCHAR, The '1+2*OFFSET_ADDRESS_SIZE'
3999			is the 'set_number_at', plus '1+OFFSET_ADDRESS_SIZE'
4000			of the following `succeed_n'.  */
4001                     PREFIX(insert_op2) (set_number_at, laststart, 1
4002				 + 2 * OFFSET_ADDRESS_SIZE, lower_bound, b);
4003                     b += 1 + 2 * OFFSET_ADDRESS_SIZE;
4004
4005                     if (upper_bound > 1)
4006                       { /* More than one repetition is allowed, so
4007                            append a backward jump to the `succeed_n'
4008                            that starts this interval.
4009
4010                            When we've reached this during matching,
4011                            we'll have matched the interval once, so
4012                            jump back only `upper_bound - 1' times.  */
4013                         STORE_JUMP2 (jump_n, b, laststart
4014				      + 2 * OFFSET_ADDRESS_SIZE + 1,
4015                                      upper_bound - 1);
4016                         b += 1 + 2 * OFFSET_ADDRESS_SIZE;
4017
4018                         /* The location we want to set is the second
4019                            parameter of the `jump_n'; that is `b-2' as
4020                            an absolute address.  `laststart' will be
4021                            the `set_number_at' we're about to insert;
4022                            `laststart+3' the number to set, the source
4023                            for the relative address.  But we are
4024                            inserting into the middle of the pattern --
4025                            so everything is getting moved up by 5.
4026                            Conclusion: (b - 2) - (laststart + 3) + 5,
4027                            i.e., b - laststart.
4028
4029                            We insert this at the beginning of the loop
4030                            so that if we fail during matching, we'll
4031                            reinitialize the bounds.  */
4032                         PREFIX(insert_op2) (set_number_at, laststart,
4033					     b - laststart,
4034					     upper_bound - 1, b);
4035                         b += 1 + 2 * OFFSET_ADDRESS_SIZE;
4036                       }
4037                   }
4038                pending_exact = 0;
4039		break;
4040
4041	      invalid_interval:
4042		if (!(syntax & RE_INVALID_INTERVAL_ORD))
4043		  FREE_STACK_RETURN (p == pend ? REG_EBRACE : REG_BADBR);
4044	      unfetch_interval:
4045		/* Match the characters as literals.  */
4046		p = beg_interval;
4047		c = '{';
4048		if (syntax & RE_NO_BK_BRACES)
4049		  goto normal_char;
4050		else
4051		  goto normal_backslash;
4052	      }
4053
4054#ifdef emacs
4055            /* There is no way to specify the before_dot and after_dot
4056               operators.  rms says this is ok.  --karl  */
4057            case '=':
4058              BUF_PUSH (at_dot);
4059              break;
4060
4061            case 's':
4062              laststart = b;
4063              PATFETCH (c);
4064              BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
4065              break;
4066
4067            case 'S':
4068              laststart = b;
4069              PATFETCH (c);
4070              BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
4071              break;
4072#endif /* emacs */
4073
4074
4075            case 'w':
4076	      if (syntax & RE_NO_GNU_OPS)
4077		goto normal_char;
4078              laststart = b;
4079              BUF_PUSH (wordchar);
4080              break;
4081
4082
4083            case 'W':
4084	      if (syntax & RE_NO_GNU_OPS)
4085		goto normal_char;
4086              laststart = b;
4087              BUF_PUSH (notwordchar);
4088              break;
4089
4090
4091            case '<':
4092	      if (syntax & RE_NO_GNU_OPS)
4093		goto normal_char;
4094              BUF_PUSH (wordbeg);
4095              break;
4096
4097            case '>':
4098	      if (syntax & RE_NO_GNU_OPS)
4099		goto normal_char;
4100              BUF_PUSH (wordend);
4101              break;
4102
4103            case 'b':
4104	      if (syntax & RE_NO_GNU_OPS)
4105		goto normal_char;
4106              BUF_PUSH (wordbound);
4107              break;
4108
4109            case 'B':
4110	      if (syntax & RE_NO_GNU_OPS)
4111		goto normal_char;
4112              BUF_PUSH (notwordbound);
4113              break;
4114
4115            case '`':
4116	      if (syntax & RE_NO_GNU_OPS)
4117		goto normal_char;
4118              BUF_PUSH (begbuf);
4119              break;
4120
4121            case '\'':
4122	      if (syntax & RE_NO_GNU_OPS)
4123		goto normal_char;
4124              BUF_PUSH (endbuf);
4125              break;
4126
4127            case '1': case '2': case '3': case '4': case '5':
4128            case '6': case '7': case '8': case '9':
4129              if (syntax & RE_NO_BK_REFS)
4130                goto normal_char;
4131
4132              c1 = c - '0';
4133
4134              if (c1 > regnum)
4135                FREE_STACK_RETURN (REG_ESUBREG);
4136
4137              /* Can't back reference to a subexpression if inside of it.  */
4138              if (group_in_compile_stack (compile_stack, (regnum_t) c1))
4139                goto normal_char;
4140
4141              laststart = b;
4142              BUF_PUSH_2 (duplicate, c1);
4143              break;
4144
4145
4146            case '+':
4147            case '?':
4148              if (syntax & RE_BK_PLUS_QM)
4149                goto handle_plus;
4150              else
4151                goto normal_backslash;
4152
4153            default:
4154            normal_backslash:
4155              /* You might think it would be useful for \ to mean
4156                 not to translate; but if we don't translate it
4157                 it will never match anything.  */
4158              c = TRANSLATE (c);
4159              goto normal_char;
4160            }
4161          break;
4162
4163
4164	default:
4165        /* Expects the character in `c'.  */
4166	normal_char:
4167	      /* If no exactn currently being built.  */
4168          if (!pending_exact
4169#ifdef WCHAR
4170	      /* If last exactn handle binary(or character) and
4171		 new exactn handle character(or binary).  */
4172	      || is_exactn_bin != is_binary[p - 1 - pattern]
4173#endif /* WCHAR */
4174
4175              /* If last exactn not at current position.  */
4176              || pending_exact + *pending_exact + 1 != b
4177
4178              /* We have only one byte following the exactn for the count.  */
4179	      || *pending_exact == (1 << BYTEWIDTH) - 1
4180
4181              /* If followed by a repetition operator.  */
4182              || *p == '*' || *p == '^'
4183	      || ((syntax & RE_BK_PLUS_QM)
4184		  ? *p == '\\' && (p[1] == '+' || p[1] == '?')
4185		  : (*p == '+' || *p == '?'))
4186	      || ((syntax & RE_INTERVALS)
4187                  && ((syntax & RE_NO_BK_BRACES)
4188		      ? *p == '{'
4189                      : (p[0] == '\\' && p[1] == '{'))))
4190	    {
4191	      /* Start building a new exactn.  */
4192
4193              laststart = b;
4194
4195#ifdef WCHAR
4196	      /* Is this exactn binary data or character? */
4197	      is_exactn_bin = is_binary[p - 1 - pattern];
4198	      if (is_exactn_bin)
4199		  BUF_PUSH_2 (exactn_bin, 0);
4200	      else
4201		  BUF_PUSH_2 (exactn, 0);
4202#else
4203	      BUF_PUSH_2 (exactn, 0);
4204#endif /* WCHAR */
4205	      pending_exact = b - 1;
4206            }
4207
4208	  BUF_PUSH (c);
4209          (*pending_exact)++;
4210	  break;
4211        } /* switch (c) */
4212    } /* while p != pend */
4213
4214
4215  /* Through the pattern now.  */
4216
4217  if (fixup_alt_jump)
4218    STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
4219
4220  if (!COMPILE_STACK_EMPTY)
4221    FREE_STACK_RETURN (REG_EPAREN);
4222
4223  /* If we don't want backtracking, force success
4224     the first time we reach the end of the compiled pattern.  */
4225  if (syntax & RE_NO_POSIX_BACKTRACKING)
4226    BUF_PUSH (succeed);
4227
4228#ifdef WCHAR
4229  free (pattern);
4230  free (mbs_offset);
4231  free (is_binary);
4232#endif
4233  free (compile_stack.stack);
4234
4235  /* We have succeeded; set the length of the buffer.  */
4236#ifdef WCHAR
4237  bufp->used = (uintptr_t) b - (uintptr_t) COMPILED_BUFFER_VAR;
4238#else
4239  bufp->used = b - bufp->buffer;
4240#endif
4241
4242#ifdef DEBUG
4243  if (debug)
4244    {
4245      DEBUG_PRINT1 ("\nCompiled pattern: \n");
4246      PREFIX(print_compiled_pattern) (bufp);
4247    }
4248#endif /* DEBUG */
4249
4250#ifndef MATCH_MAY_ALLOCATE
4251  /* Initialize the failure stack to the largest possible stack.  This
4252     isn't necessary unless we're trying to avoid calling alloca in
4253     the search and match routines.  */
4254  {
4255    int num_regs = bufp->re_nsub + 1;
4256
4257    /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
4258       is strictly greater than re_max_failures, the largest possible stack
4259       is 2 * re_max_failures failure points.  */
4260    if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
4261      {
4262	fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
4263
4264# ifdef emacs
4265	if (! fail_stack.stack)
4266	  fail_stack.stack
4267	    = (PREFIX(fail_stack_elt_t) *) xmalloc (fail_stack.size
4268				    * sizeof (PREFIX(fail_stack_elt_t)));
4269	else
4270	  fail_stack.stack
4271	    = (PREFIX(fail_stack_elt_t) *) xrealloc (fail_stack.stack,
4272				     (fail_stack.size
4273				      * sizeof (PREFIX(fail_stack_elt_t))));
4274# else /* not emacs */
4275	if (! fail_stack.stack)
4276	  fail_stack.stack
4277	    = (PREFIX(fail_stack_elt_t) *) malloc (fail_stack.size
4278				   * sizeof (PREFIX(fail_stack_elt_t)));
4279	else
4280	  fail_stack.stack
4281	    = (PREFIX(fail_stack_elt_t) *) realloc (fail_stack.stack,
4282					    (fail_stack.size
4283				     * sizeof (PREFIX(fail_stack_elt_t))));
4284# endif /* not emacs */
4285      }
4286
4287   PREFIX(regex_grow_registers) (num_regs);
4288  }
4289#endif /* not MATCH_MAY_ALLOCATE */
4290
4291  return REG_NOERROR;
4292} /* regex_compile */
4293
4294/* Subroutines for `regex_compile'.  */
4295
4296/* Store OP at LOC followed by two-byte integer parameter ARG.  */
4297/* ifdef WCHAR, integer parameter is 1 wchar_t.  */
4298
4299static void
4300PREFIX(store_op1) (op, loc, arg)
4301    re_opcode_t op;
4302    UCHAR_T *loc;
4303    int arg;
4304{
4305  *loc = (UCHAR_T) op;
4306  STORE_NUMBER (loc + 1, arg);
4307}
4308
4309
4310/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2.  */
4311/* ifdef WCHAR, integer parameter is 1 wchar_t.  */
4312
4313static void
4314PREFIX(store_op2) (op, loc, arg1, arg2)
4315    re_opcode_t op;
4316    UCHAR_T *loc;
4317    int arg1, arg2;
4318{
4319  *loc = (UCHAR_T) op;
4320  STORE_NUMBER (loc + 1, arg1);
4321  STORE_NUMBER (loc + 1 + OFFSET_ADDRESS_SIZE, arg2);
4322}
4323
4324
4325/* Copy the bytes from LOC to END to open up three bytes of space at LOC
4326   for OP followed by two-byte integer parameter ARG.  */
4327/* ifdef WCHAR, integer parameter is 1 wchar_t.  */
4328
4329static void
4330PREFIX(insert_op1) (op, loc, arg, end)
4331    re_opcode_t op;
4332    UCHAR_T *loc;
4333    int arg;
4334    UCHAR_T *end;
4335{
4336  register UCHAR_T *pfrom = end;
4337  register UCHAR_T *pto = end + 1 + OFFSET_ADDRESS_SIZE;
4338
4339  while (pfrom != loc)
4340    *--pto = *--pfrom;
4341
4342  PREFIX(store_op1) (op, loc, arg);
4343}
4344
4345
4346/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2.  */
4347/* ifdef WCHAR, integer parameter is 1 wchar_t.  */
4348
4349static void
4350PREFIX(insert_op2) (op, loc, arg1, arg2, end)
4351    re_opcode_t op;
4352    UCHAR_T *loc;
4353    int arg1, arg2;
4354    UCHAR_T *end;
4355{
4356  register UCHAR_T *pfrom = end;
4357  register UCHAR_T *pto = end + 1 + 2 * OFFSET_ADDRESS_SIZE;
4358
4359  while (pfrom != loc)
4360    *--pto = *--pfrom;
4361
4362  PREFIX(store_op2) (op, loc, arg1, arg2);
4363}
4364
4365
4366/* P points to just after a ^ in PATTERN.  Return true if that ^ comes
4367   after an alternative or a begin-subexpression.  We assume there is at
4368   least one character before the ^.  */
4369
4370static boolean
4371PREFIX(at_begline_loc_p) (pattern, p, syntax)
4372    const CHAR_T *pattern, *p;
4373    reg_syntax_t syntax;
4374{
4375  const CHAR_T *prev = p - 2;
4376  boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
4377
4378  return
4379       /* After a subexpression?  */
4380       (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
4381       /* After an alternative?  */
4382    || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
4383}
4384
4385
4386/* The dual of at_begline_loc_p.  This one is for $.  We assume there is
4387   at least one character after the $, i.e., `P < PEND'.  */
4388
4389static boolean
4390PREFIX(at_endline_loc_p) (p, pend, syntax)
4391    const CHAR_T *p, *pend;
4392    reg_syntax_t syntax;
4393{
4394  const CHAR_T *next = p;
4395  boolean next_backslash = *next == '\\';
4396  const CHAR_T *next_next = p + 1 < pend ? p + 1 : 0;
4397
4398  return
4399       /* Before a subexpression?  */
4400       (syntax & RE_NO_BK_PARENS ? *next == ')'
4401        : next_backslash && next_next && *next_next == ')')
4402       /* Before an alternative?  */
4403    || (syntax & RE_NO_BK_VBAR ? *next == '|'
4404        : next_backslash && next_next && *next_next == '|');
4405}
4406
4407#else /* not INSIDE_RECURSION */
4408
4409/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
4410   false if it's not.  */
4411
4412static boolean
4413group_in_compile_stack (compile_stack, regnum)
4414    compile_stack_type compile_stack;
4415    regnum_t regnum;
4416{
4417  int this_element;
4418
4419  for (this_element = compile_stack.avail - 1;
4420       this_element >= 0;
4421       this_element--)
4422    if (compile_stack.stack[this_element].regnum == regnum)
4423      return true;
4424
4425  return false;
4426}
4427#endif /* not INSIDE_RECURSION */
4428
4429#ifdef INSIDE_RECURSION
4430
4431#ifdef WCHAR
4432/* This insert space, which size is "num", into the pattern at "loc".
4433   "end" must point the end of the allocated buffer.  */
4434static void
4435insert_space (num, loc, end)
4436     int num;
4437     CHAR_T *loc;
4438     CHAR_T *end;
4439{
4440  register CHAR_T *pto = end;
4441  register CHAR_T *pfrom = end - num;
4442
4443  while (pfrom >= loc)
4444    *pto-- = *pfrom--;
4445}
4446#endif /* WCHAR */
4447
4448#ifdef WCHAR
4449static reg_errcode_t
4450wcs_compile_range (range_start_char, p_ptr, pend, translate, syntax, b,
4451		   char_set)
4452     CHAR_T range_start_char;
4453     const CHAR_T **p_ptr, *pend;
4454     CHAR_T *char_set, *b;
4455     RE_TRANSLATE_TYPE translate;
4456     reg_syntax_t syntax;
4457{
4458  const CHAR_T *p = *p_ptr;
4459  CHAR_T range_start, range_end;
4460  reg_errcode_t ret;
4461# ifdef _LIBC
4462  uint32_t nrules;
4463  uint32_t start_val, end_val;
4464# endif
4465  if (p == pend)
4466    return REG_ERANGE;
4467
4468# ifdef _LIBC
4469  nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
4470  if (nrules != 0)
4471    {
4472      const char *collseq = (const char *) _NL_CURRENT(LC_COLLATE,
4473						       _NL_COLLATE_COLLSEQWC);
4474      const unsigned char *extra = (const unsigned char *)
4475	_NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
4476
4477      if (range_start_char < -1)
4478	{
4479	  /* range_start is a collating symbol.  */
4480	  int32_t *wextra;
4481	  /* Retreive the index and get collation sequence value.  */
4482	  wextra = (int32_t*)(extra + char_set[-range_start_char]);
4483	  start_val = wextra[1 + *wextra];
4484	}
4485      else
4486	start_val = collseq_table_lookup(collseq, TRANSLATE(range_start_char));
4487
4488      end_val = collseq_table_lookup (collseq, TRANSLATE (p[0]));
4489
4490      /* Report an error if the range is empty and the syntax prohibits
4491	 this.  */
4492      ret = ((syntax & RE_NO_EMPTY_RANGES)
4493	     && (start_val > end_val))? REG_ERANGE : REG_NOERROR;
4494
4495      /* Insert space to the end of the char_ranges.  */
4496      insert_space(2, b - char_set[5] - 2, b - 1);
4497      *(b - char_set[5] - 2) = (wchar_t)start_val;
4498      *(b - char_set[5] - 1) = (wchar_t)end_val;
4499      char_set[4]++; /* ranges_index */
4500    }
4501  else
4502# endif
4503    {
4504      range_start = (range_start_char >= 0)? TRANSLATE (range_start_char):
4505	range_start_char;
4506      range_end = TRANSLATE (p[0]);
4507      /* Report an error if the range is empty and the syntax prohibits
4508	 this.  */
4509      ret = ((syntax & RE_NO_EMPTY_RANGES)
4510	     && (range_start > range_end))? REG_ERANGE : REG_NOERROR;
4511
4512      /* Insert space to the end of the char_ranges.  */
4513      insert_space(2, b - char_set[5] - 2, b - 1);
4514      *(b - char_set[5] - 2) = range_start;
4515      *(b - char_set[5] - 1) = range_end;
4516      char_set[4]++; /* ranges_index */
4517    }
4518  /* Have to increment the pointer into the pattern string, so the
4519     caller isn't still at the ending character.  */
4520  (*p_ptr)++;
4521
4522  return ret;
4523}
4524#else /* BYTE */
4525/* Read the ending character of a range (in a bracket expression) from the
4526   uncompiled pattern *P_PTR (which ends at PEND).  We assume the
4527   starting character is in `P[-2]'.  (`P[-1]' is the character `-'.)
4528   Then we set the translation of all bits between the starting and
4529   ending characters (inclusive) in the compiled pattern B.
4530
4531   Return an error code.
4532
4533   We use these short variable names so we can use the same macros as
4534   `regex_compile' itself.  */
4535
4536static reg_errcode_t
4537byte_compile_range (range_start_char, p_ptr, pend, translate, syntax, b)
4538     unsigned int range_start_char;
4539     const char **p_ptr, *pend;
4540     RE_TRANSLATE_TYPE translate;
4541     reg_syntax_t syntax;
4542     unsigned char *b;
4543{
4544  unsigned this_char;
4545  const char *p = *p_ptr;
4546  reg_errcode_t ret;
4547# if _LIBC
4548  const unsigned char *collseq;
4549  unsigned int start_colseq;
4550  unsigned int end_colseq;
4551# else
4552  unsigned end_char;
4553# endif
4554
4555  if (p == pend)
4556    return REG_ERANGE;
4557
4558  /* Have to increment the pointer into the pattern string, so the
4559     caller isn't still at the ending character.  */
4560  (*p_ptr)++;
4561
4562  /* Report an error if the range is empty and the syntax prohibits this.  */
4563  ret = syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
4564
4565# if _LIBC
4566  collseq = (const unsigned char *) _NL_CURRENT (LC_COLLATE,
4567						 _NL_COLLATE_COLLSEQMB);
4568
4569  start_colseq = collseq[(unsigned char) TRANSLATE (range_start_char)];
4570  end_colseq = collseq[(unsigned char) TRANSLATE (p[0])];
4571  for (this_char = 0; this_char <= (unsigned char) -1; ++this_char)
4572    {
4573      unsigned int this_colseq = collseq[(unsigned char) TRANSLATE (this_char)];
4574
4575      if (start_colseq <= this_colseq && this_colseq <= end_colseq)
4576	{
4577	  SET_LIST_BIT (TRANSLATE (this_char));
4578	  ret = REG_NOERROR;
4579	}
4580    }
4581# else
4582  /* Here we see why `this_char' has to be larger than an `unsigned
4583     char' -- we would otherwise go into an infinite loop, since all
4584     characters <= 0xff.  */
4585  range_start_char = TRANSLATE (range_start_char);
4586  /* TRANSLATE(p[0]) is casted to char (not unsigned char) in TRANSLATE,
4587     and some compilers cast it to int implicitly, so following for_loop
4588     may fall to (almost) infinite loop.
4589     e.g. If translate[p[0]] = 0xff, end_char may equals to 0xffffffff.
4590     To avoid this, we cast p[0] to unsigned int and truncate it.  */
4591  end_char = ((unsigned)TRANSLATE(p[0]) & ((1 << BYTEWIDTH) - 1));
4592
4593  for (this_char = range_start_char; this_char <= end_char; ++this_char)
4594    {
4595      SET_LIST_BIT (TRANSLATE (this_char));
4596      ret = REG_NOERROR;
4597    }
4598# endif
4599
4600  return ret;
4601}
4602#endif /* WCHAR */
4603
4604/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4605   BUFP.  A fastmap records which of the (1 << BYTEWIDTH) possible
4606   characters can start a string that matches the pattern.  This fastmap
4607   is used by re_search to skip quickly over impossible starting points.
4608
4609   The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4610   area as BUFP->fastmap.
4611
4612   We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4613   the pattern buffer.
4614
4615   Returns 0 if we succeed, -2 if an internal error.   */
4616
4617#ifdef WCHAR
4618/* local function for re_compile_fastmap.
4619   truncate wchar_t character to char.  */
4620static unsigned char truncate_wchar (CHAR_T c);
4621
4622static unsigned char
4623truncate_wchar (c)
4624     CHAR_T c;
4625{
4626  unsigned char buf[MB_CUR_MAX];
4627  mbstate_t state;
4628  int retval;
4629  memset (&state, '\0', sizeof (state));
4630  retval = wcrtomb (buf, c, &state);
4631  return retval > 0 ? buf[0] : (unsigned char) c;
4632}
4633#endif /* WCHAR */
4634
4635static int
4636PREFIX(re_compile_fastmap) (bufp)
4637     struct re_pattern_buffer *bufp;
4638{
4639  int j, k;
4640#ifdef MATCH_MAY_ALLOCATE
4641  PREFIX(fail_stack_type) fail_stack;
4642#endif
4643#ifndef REGEX_MALLOC
4644  char *destination;
4645#endif
4646
4647  register char *fastmap = bufp->fastmap;
4648
4649#ifdef WCHAR
4650  /* We need to cast pattern to (wchar_t*), because we casted this compiled
4651     pattern to (char*) in regex_compile.  */
4652  UCHAR_T *pattern = (UCHAR_T*)bufp->buffer;
4653  register UCHAR_T *pend = (UCHAR_T*) (bufp->buffer + bufp->used);
4654#else /* BYTE */
4655  UCHAR_T *pattern = bufp->buffer;
4656  register UCHAR_T *pend = pattern + bufp->used;
4657#endif /* WCHAR */
4658  UCHAR_T *p = pattern;
4659
4660#ifdef REL_ALLOC
4661  /* This holds the pointer to the failure stack, when
4662     it is allocated relocatably.  */
4663  fail_stack_elt_t *failure_stack_ptr;
4664#endif
4665
4666  /* Assume that each path through the pattern can be null until
4667     proven otherwise.  We set this false at the bottom of switch
4668     statement, to which we get only if a particular path doesn't
4669     match the empty string.  */
4670  boolean path_can_be_null = true;
4671
4672  /* We aren't doing a `succeed_n' to begin with.  */
4673  boolean succeed_n_p = false;
4674
4675  assert (fastmap != NULL && p != NULL);
4676
4677  INIT_FAIL_STACK ();
4678  bzero (fastmap, 1 << BYTEWIDTH);  /* Assume nothing's valid.  */
4679  bufp->fastmap_accurate = 1;	    /* It will be when we're done.  */
4680  bufp->can_be_null = 0;
4681
4682  while (1)
4683    {
4684      if (p == pend || *p == succeed)
4685	{
4686	  /* We have reached the (effective) end of pattern.  */
4687	  if (!FAIL_STACK_EMPTY ())
4688	    {
4689	      bufp->can_be_null |= path_can_be_null;
4690
4691	      /* Reset for next path.  */
4692	      path_can_be_null = true;
4693
4694	      p = fail_stack.stack[--fail_stack.avail].pointer;
4695
4696	      continue;
4697	    }
4698	  else
4699	    break;
4700	}
4701
4702      /* We should never be about to go beyond the end of the pattern.  */
4703      assert (p < pend);
4704
4705      switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4706	{
4707
4708        /* I guess the idea here is to simply not bother with a fastmap
4709           if a backreference is used, since it's too hard to figure out
4710           the fastmap for the corresponding group.  Setting
4711           `can_be_null' stops `re_search_2' from using the fastmap, so
4712           that is all we do.  */
4713	case duplicate:
4714	  bufp->can_be_null = 1;
4715          goto done;
4716
4717
4718      /* Following are the cases which match a character.  These end
4719         with `break'.  */
4720
4721#ifdef WCHAR
4722	case exactn:
4723          fastmap[truncate_wchar(p[1])] = 1;
4724	  break;
4725#else /* BYTE */
4726	case exactn:
4727          fastmap[p[1]] = 1;
4728	  break;
4729#endif /* WCHAR */
4730#ifdef MBS_SUPPORT
4731	case exactn_bin:
4732	  fastmap[p[1]] = 1;
4733	  break;
4734#endif
4735
4736#ifdef WCHAR
4737        /* It is hard to distinguish fastmap from (multi byte) characters
4738           which depends on current locale.  */
4739        case charset:
4740	case charset_not:
4741	case wordchar:
4742	case notwordchar:
4743          bufp->can_be_null = 1;
4744          goto done;
4745#else /* BYTE */
4746        case charset:
4747          for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
4748	    if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
4749              fastmap[j] = 1;
4750	  break;
4751
4752
4753	case charset_not:
4754	  /* Chars beyond end of map must be allowed.  */
4755	  for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
4756            fastmap[j] = 1;
4757
4758	  for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
4759	    if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
4760              fastmap[j] = 1;
4761          break;
4762
4763
4764	case wordchar:
4765	  for (j = 0; j < (1 << BYTEWIDTH); j++)
4766	    if (SYNTAX (j) == Sword)
4767	      fastmap[j] = 1;
4768	  break;
4769
4770
4771	case notwordchar:
4772	  for (j = 0; j < (1 << BYTEWIDTH); j++)
4773	    if (SYNTAX (j) != Sword)
4774	      fastmap[j] = 1;
4775	  break;
4776#endif /* WCHAR */
4777
4778        case anychar:
4779	  {
4780	    int fastmap_newline = fastmap['\n'];
4781
4782	    /* `.' matches anything ...  */
4783	    for (j = 0; j < (1 << BYTEWIDTH); j++)
4784	      fastmap[j] = 1;
4785
4786	    /* ... except perhaps newline.  */
4787	    if (!(bufp->syntax & RE_DOT_NEWLINE))
4788	      fastmap['\n'] = fastmap_newline;
4789
4790	    /* Return if we have already set `can_be_null'; if we have,
4791	       then the fastmap is irrelevant.  Something's wrong here.  */
4792	    else if (bufp->can_be_null)
4793	      goto done;
4794
4795	    /* Otherwise, have to check alternative paths.  */
4796	    break;
4797	  }
4798
4799#ifdef emacs
4800        case syntaxspec:
4801	  k = *p++;
4802	  for (j = 0; j < (1 << BYTEWIDTH); j++)
4803	    if (SYNTAX (j) == (enum syntaxcode) k)
4804	      fastmap[j] = 1;
4805	  break;
4806
4807
4808	case notsyntaxspec:
4809	  k = *p++;
4810	  for (j = 0; j < (1 << BYTEWIDTH); j++)
4811	    if (SYNTAX (j) != (enum syntaxcode) k)
4812	      fastmap[j] = 1;
4813	  break;
4814
4815
4816      /* All cases after this match the empty string.  These end with
4817         `continue'.  */
4818
4819
4820	case before_dot:
4821	case at_dot:
4822	case after_dot:
4823          continue;
4824#endif /* emacs */
4825
4826
4827        case no_op:
4828        case begline:
4829        case endline:
4830	case begbuf:
4831	case endbuf:
4832	case wordbound:
4833	case notwordbound:
4834	case wordbeg:
4835	case wordend:
4836        case push_dummy_failure:
4837          continue;
4838
4839
4840	case jump_n:
4841        case pop_failure_jump:
4842	case maybe_pop_jump:
4843	case jump:
4844        case jump_past_alt:
4845	case dummy_failure_jump:
4846          EXTRACT_NUMBER_AND_INCR (j, p);
4847	  p += j;
4848	  if (j > 0)
4849	    continue;
4850
4851          /* Jump backward implies we just went through the body of a
4852             loop and matched nothing.  Opcode jumped to should be
4853             `on_failure_jump' or `succeed_n'.  Just treat it like an
4854             ordinary jump.  For a * loop, it has pushed its failure
4855             point already; if so, discard that as redundant.  */
4856          if ((re_opcode_t) *p != on_failure_jump
4857	      && (re_opcode_t) *p != succeed_n)
4858	    continue;
4859
4860          p++;
4861          EXTRACT_NUMBER_AND_INCR (j, p);
4862          p += j;
4863
4864          /* If what's on the stack is where we are now, pop it.  */
4865          if (!FAIL_STACK_EMPTY ()
4866	      && fail_stack.stack[fail_stack.avail - 1].pointer == p)
4867            fail_stack.avail--;
4868
4869          continue;
4870
4871
4872        case on_failure_jump:
4873        case on_failure_keep_string_jump:
4874	handle_on_failure_jump:
4875          EXTRACT_NUMBER_AND_INCR (j, p);
4876
4877          /* For some patterns, e.g., `(a?)?', `p+j' here points to the
4878             end of the pattern.  We don't want to push such a point,
4879             since when we restore it above, entering the switch will
4880             increment `p' past the end of the pattern.  We don't need
4881             to push such a point since we obviously won't find any more
4882             fastmap entries beyond `pend'.  Such a pattern can match
4883             the null string, though.  */
4884          if (p + j < pend)
4885            {
4886              if (!PUSH_PATTERN_OP (p + j, fail_stack))
4887		{
4888		  RESET_FAIL_STACK ();
4889		  return -2;
4890		}
4891            }
4892          else
4893            bufp->can_be_null = 1;
4894
4895          if (succeed_n_p)
4896            {
4897              EXTRACT_NUMBER_AND_INCR (k, p);	/* Skip the n.  */
4898              succeed_n_p = false;
4899	    }
4900
4901          continue;
4902
4903
4904	case succeed_n:
4905          /* Get to the number of times to succeed.  */
4906          p += OFFSET_ADDRESS_SIZE;
4907
4908          /* Increment p past the n for when k != 0.  */
4909          EXTRACT_NUMBER_AND_INCR (k, p);
4910          if (k == 0)
4911	    {
4912              p -= 2 * OFFSET_ADDRESS_SIZE;
4913  	      succeed_n_p = true;  /* Spaghetti code alert.  */
4914              goto handle_on_failure_jump;
4915            }
4916          continue;
4917
4918
4919	case set_number_at:
4920          p += 2 * OFFSET_ADDRESS_SIZE;
4921          continue;
4922
4923
4924	case start_memory:
4925        case stop_memory:
4926	  p += 2;
4927	  continue;
4928
4929
4930	default:
4931          abort (); /* We have listed all the cases.  */
4932        } /* switch *p++ */
4933
4934      /* Getting here means we have found the possible starting
4935         characters for one path of the pattern -- and that the empty
4936         string does not match.  We need not follow this path further.
4937         Instead, look at the next alternative (remembered on the
4938         stack), or quit if no more.  The test at the top of the loop
4939         does these things.  */
4940      path_can_be_null = false;
4941      p = pend;
4942    } /* while p */
4943
4944  /* Set `can_be_null' for the last path (also the first path, if the
4945     pattern is empty).  */
4946  bufp->can_be_null |= path_can_be_null;
4947
4948 done:
4949  RESET_FAIL_STACK ();
4950  return 0;
4951}
4952
4953#else /* not INSIDE_RECURSION */
4954
4955int
4956re_compile_fastmap (bufp)
4957     struct re_pattern_buffer *bufp;
4958{
4959# ifdef MBS_SUPPORT
4960  if (MB_CUR_MAX != 1)
4961    return wcs_re_compile_fastmap(bufp);
4962  else
4963# endif
4964    return byte_re_compile_fastmap(bufp);
4965} /* re_compile_fastmap */
4966#ifdef _LIBC
4967weak_alias (__re_compile_fastmap, re_compile_fastmap)
4968#endif
4969
4970
4971/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4972   ENDS.  Subsequent matches using PATTERN_BUFFER and REGS will use
4973   this memory for recording register information.  STARTS and ENDS
4974   must be allocated using the malloc library routine, and must each
4975   be at least NUM_REGS * sizeof (regoff_t) bytes long.
4976
4977   If NUM_REGS == 0, then subsequent matches should allocate their own
4978   register data.
4979
4980   Unless this function is called, the first search or match using
4981   PATTERN_BUFFER will allocate its own register data, without
4982   freeing the old data.  */
4983
4984void
4985re_set_registers (bufp, regs, num_regs, starts, ends)
4986    struct re_pattern_buffer *bufp;
4987    struct re_registers *regs;
4988    unsigned num_regs;
4989    regoff_t *starts, *ends;
4990{
4991  if (num_regs)
4992    {
4993      bufp->regs_allocated = REGS_REALLOCATE;
4994      regs->num_regs = num_regs;
4995      regs->start = starts;
4996      regs->end = ends;
4997    }
4998  else
4999    {
5000      bufp->regs_allocated = REGS_UNALLOCATED;
5001      regs->num_regs = 0;
5002      regs->start = regs->end = (regoff_t *) 0;
5003    }
5004}
5005#ifdef _LIBC
5006weak_alias (__re_set_registers, re_set_registers)
5007#endif
5008
5009/* Searching routines.  */
5010
5011/* Like re_search_2, below, but only one string is specified, and
5012   doesn't let you say where to stop matching.  */
5013
5014int
5015re_search (bufp, string, size, startpos, range, regs)
5016     struct re_pattern_buffer *bufp;
5017     const char *string;
5018     int size, startpos, range;
5019     struct re_registers *regs;
5020{
5021  return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
5022		      regs, size);
5023}
5024#ifdef _LIBC
5025weak_alias (__re_search, re_search)
5026#endif
5027
5028
5029/* Using the compiled pattern in BUFP->buffer, first tries to match the
5030   virtual concatenation of STRING1 and STRING2, starting first at index
5031   STARTPOS, then at STARTPOS + 1, and so on.
5032
5033   STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
5034
5035   RANGE is how far to scan while trying to match.  RANGE = 0 means try
5036   only at STARTPOS; in general, the last start tried is STARTPOS +
5037   RANGE.
5038
5039   In REGS, return the indices of the virtual concatenation of STRING1
5040   and STRING2 that matched the entire BUFP->buffer and its contained
5041   subexpressions.
5042
5043   Do not consider matching one past the index STOP in the virtual
5044   concatenation of STRING1 and STRING2.
5045
5046   We return either the position in the strings at which the match was
5047   found, -1 if no match, or -2 if error (such as failure
5048   stack overflow).  */
5049
5050int
5051re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
5052     struct re_pattern_buffer *bufp;
5053     const char *string1, *string2;
5054     int size1, size2;
5055     int startpos;
5056     int range;
5057     struct re_registers *regs;
5058     int stop;
5059{
5060# ifdef MBS_SUPPORT
5061  if (MB_CUR_MAX != 1)
5062    return wcs_re_search_2 (bufp, string1, size1, string2, size2, startpos,
5063			    range, regs, stop);
5064  else
5065# endif
5066    return byte_re_search_2 (bufp, string1, size1, string2, size2, startpos,
5067			     range, regs, stop);
5068} /* re_search_2 */
5069#ifdef _LIBC
5070weak_alias (__re_search_2, re_search_2)
5071#endif
5072
5073#endif /* not INSIDE_RECURSION */
5074
5075#ifdef INSIDE_RECURSION
5076
5077#ifdef MATCH_MAY_ALLOCATE
5078# define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
5079#else
5080# define FREE_VAR(var) if (var) free (var); var = NULL
5081#endif
5082
5083#ifdef WCHAR
5084# define MAX_ALLOCA_SIZE	2000
5085
5086# define FREE_WCS_BUFFERS() \
5087  do {									      \
5088    if (size1 > MAX_ALLOCA_SIZE)					      \
5089      {									      \
5090	free (wcs_string1);						      \
5091	free (mbs_offset1);						      \
5092      }									      \
5093    else								      \
5094      {									      \
5095	FREE_VAR (wcs_string1);						      \
5096	FREE_VAR (mbs_offset1);						      \
5097      }									      \
5098    if (size2 > MAX_ALLOCA_SIZE) 					      \
5099      {									      \
5100	free (wcs_string2);						      \
5101	free (mbs_offset2);						      \
5102      }									      \
5103    else								      \
5104      {									      \
5105	FREE_VAR (wcs_string2);						      \
5106	FREE_VAR (mbs_offset2);						      \
5107      }									      \
5108  } while (0)
5109
5110#endif
5111
5112
5113static int
5114PREFIX(re_search_2) (bufp, string1, size1, string2, size2, startpos, range,
5115		     regs, stop)
5116     struct re_pattern_buffer *bufp;
5117     const char *string1, *string2;
5118     int size1, size2;
5119     int startpos;
5120     int range;
5121     struct re_registers *regs;
5122     int stop;
5123{
5124  int val;
5125  register char *fastmap = bufp->fastmap;
5126  register RE_TRANSLATE_TYPE translate = bufp->translate;
5127  int total_size = size1 + size2;
5128  int endpos = startpos + range;
5129#ifdef WCHAR
5130  /* We need wchar_t* buffers correspond to cstring1, cstring2.  */
5131  wchar_t *wcs_string1 = NULL, *wcs_string2 = NULL;
5132  /* We need the size of wchar_t buffers correspond to csize1, csize2.  */
5133  int wcs_size1 = 0, wcs_size2 = 0;
5134  /* offset buffer for optimizatoin. See convert_mbs_to_wc.  */
5135  int *mbs_offset1 = NULL, *mbs_offset2 = NULL;
5136  /* They hold whether each wchar_t is binary data or not.  */
5137  char *is_binary = NULL;
5138#endif /* WCHAR */
5139
5140  /* Check for out-of-range STARTPOS.  */
5141  if (startpos < 0 || startpos > total_size)
5142    return -1;
5143
5144  /* Fix up RANGE if it might eventually take us outside
5145     the virtual concatenation of STRING1 and STRING2.
5146     Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE.  */
5147  if (endpos < 0)
5148    range = 0 - startpos;
5149  else if (endpos > total_size)
5150    range = total_size - startpos;
5151
5152  /* If the search isn't to be a backwards one, don't waste time in a
5153     search for a pattern that must be anchored.  */
5154  if (bufp->used > 0 && range > 0
5155      && ((re_opcode_t) bufp->buffer[0] == begbuf
5156	  /* `begline' is like `begbuf' if it cannot match at newlines.  */
5157	  || ((re_opcode_t) bufp->buffer[0] == begline
5158	      && !bufp->newline_anchor)))
5159    {
5160      if (startpos > 0)
5161	return -1;
5162      else
5163	range = 1;
5164    }
5165
5166#ifdef emacs
5167  /* In a forward search for something that starts with \=.
5168     don't keep searching past point.  */
5169  if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
5170    {
5171      range = PT - startpos;
5172      if (range <= 0)
5173	return -1;
5174    }
5175#endif /* emacs */
5176
5177  /* Update the fastmap now if not correct already.  */
5178  if (fastmap && !bufp->fastmap_accurate)
5179    if (re_compile_fastmap (bufp) == -2)
5180      return -2;
5181
5182#ifdef WCHAR
5183  /* Allocate wchar_t array for wcs_string1 and wcs_string2 and
5184     fill them with converted string.  */
5185  if (size1 != 0)
5186    {
5187      if (size1 > MAX_ALLOCA_SIZE)
5188	{
5189	  wcs_string1 = TALLOC (size1 + 1, CHAR_T);
5190	  mbs_offset1 = TALLOC (size1 + 1, int);
5191	  is_binary = TALLOC (size1 + 1, char);
5192	}
5193      else
5194	{
5195	  wcs_string1 = REGEX_TALLOC (size1 + 1, CHAR_T);
5196	  mbs_offset1 = REGEX_TALLOC (size1 + 1, int);
5197	  is_binary = REGEX_TALLOC (size1 + 1, char);
5198	}
5199      if (!wcs_string1 || !mbs_offset1 || !is_binary)
5200	{
5201	  if (size1 > MAX_ALLOCA_SIZE)
5202	    {
5203	      free (wcs_string1);
5204	      free (mbs_offset1);
5205	      free (is_binary);
5206	    }
5207	  else
5208	    {
5209	      FREE_VAR (wcs_string1);
5210	      FREE_VAR (mbs_offset1);
5211	      FREE_VAR (is_binary);
5212	    }
5213	  return -2;
5214	}
5215      wcs_size1 = convert_mbs_to_wcs(wcs_string1, string1, size1,
5216				     mbs_offset1, is_binary);
5217      wcs_string1[wcs_size1] = L'\0'; /* for a sentinel  */
5218      if (size1 > MAX_ALLOCA_SIZE)
5219	free (is_binary);
5220      else
5221	FREE_VAR (is_binary);
5222    }
5223  if (size2 != 0)
5224    {
5225      if (size2 > MAX_ALLOCA_SIZE)
5226	{
5227	  wcs_string2 = TALLOC (size2 + 1, CHAR_T);
5228	  mbs_offset2 = TALLOC (size2 + 1, int);
5229	  is_binary = TALLOC (size2 + 1, char);
5230	}
5231      else
5232	{
5233	  wcs_string2 = REGEX_TALLOC (size2 + 1, CHAR_T);
5234	  mbs_offset2 = REGEX_TALLOC (size2 + 1, int);
5235	  is_binary = REGEX_TALLOC (size2 + 1, char);
5236	}
5237      if (!wcs_string2 || !mbs_offset2 || !is_binary)
5238	{
5239	  FREE_WCS_BUFFERS ();
5240	  if (size2 > MAX_ALLOCA_SIZE)
5241	    free (is_binary);
5242	  else
5243	    FREE_VAR (is_binary);
5244	  return -2;
5245	}
5246      wcs_size2 = convert_mbs_to_wcs(wcs_string2, string2, size2,
5247				     mbs_offset2, is_binary);
5248      wcs_string2[wcs_size2] = L'\0'; /* for a sentinel  */
5249      if (size2 > MAX_ALLOCA_SIZE)
5250	free (is_binary);
5251      else
5252	FREE_VAR (is_binary);
5253    }
5254#endif /* WCHAR */
5255
5256
5257  /* Loop through the string, looking for a place to start matching.  */
5258  for (;;)
5259    {
5260      /* If a fastmap is supplied, skip quickly over characters that
5261         cannot be the start of a match.  If the pattern can match the
5262         null string, however, we don't need to skip characters; we want
5263         the first null string.  */
5264      if (fastmap && startpos < total_size && !bufp->can_be_null)
5265	{
5266	  if (range > 0)	/* Searching forwards.  */
5267	    {
5268	      register const char *d;
5269	      register int lim = 0;
5270	      int irange = range;
5271
5272              if (startpos < size1 && startpos + range >= size1)
5273                lim = range - (size1 - startpos);
5274
5275	      d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
5276
5277              /* Written out as an if-else to avoid testing `translate'
5278                 inside the loop.  */
5279	      if (translate)
5280                while (range > lim
5281                       && !fastmap[(unsigned char)
5282				   translate[(unsigned char) *d++]])
5283                  range--;
5284	      else
5285                while (range > lim && !fastmap[(unsigned char) *d++])
5286                  range--;
5287
5288	      startpos += irange - range;
5289	    }
5290	  else				/* Searching backwards.  */
5291	    {
5292	      register CHAR_T c = (size1 == 0 || startpos >= size1
5293				      ? string2[startpos - size1]
5294				      : string1[startpos]);
5295
5296	      if (!fastmap[(unsigned char) TRANSLATE (c)])
5297		goto advance;
5298	    }
5299	}
5300
5301      /* If can't match the null string, and that's all we have left, fail.  */
5302      if (range >= 0 && startpos == total_size && fastmap
5303          && !bufp->can_be_null)
5304       {
5305#ifdef WCHAR
5306         FREE_WCS_BUFFERS ();
5307#endif
5308         return -1;
5309       }
5310
5311#ifdef WCHAR
5312      val = wcs_re_match_2_internal (bufp, string1, size1, string2,
5313				     size2, startpos, regs, stop,
5314				     wcs_string1, wcs_size1,
5315				     wcs_string2, wcs_size2,
5316				     mbs_offset1, mbs_offset2);
5317#else /* BYTE */
5318      val = byte_re_match_2_internal (bufp, string1, size1, string2,
5319				      size2, startpos, regs, stop);
5320#endif /* BYTE */
5321
5322#ifndef REGEX_MALLOC
5323# ifdef C_ALLOCA
5324      alloca (0);
5325# endif
5326#endif
5327
5328      if (val >= 0)
5329	{
5330#ifdef WCHAR
5331	  FREE_WCS_BUFFERS ();
5332#endif
5333	  return startpos;
5334	}
5335
5336      if (val == -2)
5337	{
5338#ifdef WCHAR
5339	  FREE_WCS_BUFFERS ();
5340#endif
5341	  return -2;
5342	}
5343
5344    advance:
5345      if (!range)
5346        break;
5347      else if (range > 0)
5348        {
5349          range--;
5350          startpos++;
5351        }
5352      else
5353        {
5354          range++;
5355          startpos--;
5356        }
5357    }
5358#ifdef WCHAR
5359  FREE_WCS_BUFFERS ();
5360#endif
5361  return -1;
5362}
5363
5364#ifdef WCHAR
5365/* This converts PTR, a pointer into one of the search wchar_t strings
5366   `string1' and `string2' into an multibyte string offset from the
5367   beginning of that string. We use mbs_offset to optimize.
5368   See convert_mbs_to_wcs.  */
5369# define POINTER_TO_OFFSET(ptr)						\
5370  (FIRST_STRING_P (ptr)							\
5371   ? ((regoff_t)(mbs_offset1 != NULL? mbs_offset1[(ptr)-string1] : 0))	\
5372   : ((regoff_t)((mbs_offset2 != NULL? mbs_offset2[(ptr)-string2] : 0)	\
5373		 + csize1)))
5374#else /* BYTE */
5375/* This converts PTR, a pointer into one of the search strings `string1'
5376   and `string2' into an offset from the beginning of that string.  */
5377# define POINTER_TO_OFFSET(ptr)			\
5378  (FIRST_STRING_P (ptr)				\
5379   ? ((regoff_t) ((ptr) - string1))		\
5380   : ((regoff_t) ((ptr) - string2 + size1)))
5381#endif /* WCHAR */
5382
5383/* Macros for dealing with the split strings in re_match_2.  */
5384
5385#define MATCHING_IN_FIRST_STRING  (dend == end_match_1)
5386
5387/* Call before fetching a character with *d.  This switches over to
5388   string2 if necessary.  */
5389#define PREFETCH()							\
5390  while (d == dend)						    	\
5391    {									\
5392      /* End of string2 => fail.  */					\
5393      if (dend == end_match_2) 						\
5394        goto fail;							\
5395      /* End of string1 => advance to string2.  */ 			\
5396      d = string2;						        \
5397      dend = end_match_2;						\
5398    }
5399
5400/* Test if at very beginning or at very end of the virtual concatenation
5401   of `string1' and `string2'.  If only one string, it's `string2'.  */
5402#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5403#define AT_STRINGS_END(d) ((d) == end2)
5404
5405
5406/* Test if D points to a character which is word-constituent.  We have
5407   two special cases to check for: if past the end of string1, look at
5408   the first character in string2; and if before the beginning of
5409   string2, look at the last character in string1.  */
5410#ifdef WCHAR
5411/* Use internationalized API instead of SYNTAX.  */
5412# define WORDCHAR_P(d)							\
5413  (iswalnum ((wint_t)((d) == end1 ? *string2				\
5414           : (d) == string2 - 1 ? *(end1 - 1) : *(d))) != 0		\
5415   || ((d) == end1 ? *string2						\
5416       : (d) == string2 - 1 ? *(end1 - 1) : *(d)) == L'_')
5417#else /* BYTE */
5418# define WORDCHAR_P(d)							\
5419  (SYNTAX ((d) == end1 ? *string2					\
5420           : (d) == string2 - 1 ? *(end1 - 1) : *(d))			\
5421   == Sword)
5422#endif /* WCHAR */
5423
5424/* Disabled due to a compiler bug -- see comment at case wordbound */
5425#if 0
5426/* Test if the character before D and the one at D differ with respect
5427   to being word-constituent.  */
5428#define AT_WORD_BOUNDARY(d)						\
5429  (AT_STRINGS_BEG (d) || AT_STRINGS_END (d)				\
5430   || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
5431#endif
5432
5433/* Free everything we malloc.  */
5434#ifdef MATCH_MAY_ALLOCATE
5435# ifdef WCHAR
5436#  define FREE_VARIABLES()						\
5437  do {									\
5438    REGEX_FREE_STACK (fail_stack.stack);				\
5439    FREE_VAR (regstart);						\
5440    FREE_VAR (regend);							\
5441    FREE_VAR (old_regstart);						\
5442    FREE_VAR (old_regend);						\
5443    FREE_VAR (best_regstart);						\
5444    FREE_VAR (best_regend);						\
5445    FREE_VAR (reg_info);						\
5446    FREE_VAR (reg_dummy);						\
5447    FREE_VAR (reg_info_dummy);						\
5448    if (!cant_free_wcs_buf)						\
5449      {									\
5450        FREE_VAR (string1);						\
5451        FREE_VAR (string2);						\
5452        FREE_VAR (mbs_offset1);						\
5453        FREE_VAR (mbs_offset2);						\
5454      }									\
5455  } while (0)
5456# else /* BYTE */
5457#  define FREE_VARIABLES()						\
5458  do {									\
5459    REGEX_FREE_STACK (fail_stack.stack);				\
5460    FREE_VAR (regstart);						\
5461    FREE_VAR (regend);							\
5462    FREE_VAR (old_regstart);						\
5463    FREE_VAR (old_regend);						\
5464    FREE_VAR (best_regstart);						\
5465    FREE_VAR (best_regend);						\
5466    FREE_VAR (reg_info);						\
5467    FREE_VAR (reg_dummy);						\
5468    FREE_VAR (reg_info_dummy);						\
5469  } while (0)
5470# endif /* WCHAR */
5471#else
5472# ifdef WCHAR
5473#  define FREE_VARIABLES()						\
5474  do {									\
5475    if (!cant_free_wcs_buf)						\
5476      {									\
5477        FREE_VAR (string1);						\
5478        FREE_VAR (string2);						\
5479        FREE_VAR (mbs_offset1);						\
5480        FREE_VAR (mbs_offset2);						\
5481      }									\
5482  } while (0)
5483# else /* BYTE */
5484#  define FREE_VARIABLES() ((void)0) /* Do nothing!  But inhibit gcc warning. */
5485# endif /* WCHAR */
5486#endif /* not MATCH_MAY_ALLOCATE */
5487
5488/* These values must meet several constraints.  They must not be valid
5489   register values; since we have a limit of 255 registers (because
5490   we use only one byte in the pattern for the register number), we can
5491   use numbers larger than 255.  They must differ by 1, because of
5492   NUM_FAILURE_ITEMS above.  And the value for the lowest register must
5493   be larger than the value for the highest register, so we do not try
5494   to actually save any registers when none are active.  */
5495#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
5496#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
5497
5498#else /* not INSIDE_RECURSION */
5499/* Matching routines.  */
5500
5501#ifndef emacs   /* Emacs never uses this.  */
5502/* re_match is like re_match_2 except it takes only a single string.  */
5503
5504int
5505re_match (bufp, string, size, pos, regs)
5506     struct re_pattern_buffer *bufp;
5507     const char *string;
5508     int size, pos;
5509     struct re_registers *regs;
5510{
5511  int result;
5512# ifdef MBS_SUPPORT
5513  if (MB_CUR_MAX != 1)
5514    result = wcs_re_match_2_internal (bufp, NULL, 0, string, size,
5515				      pos, regs, size,
5516				      NULL, 0, NULL, 0, NULL, NULL);
5517  else
5518# endif
5519    result = byte_re_match_2_internal (bufp, NULL, 0, string, size,
5520				  pos, regs, size);
5521# ifndef REGEX_MALLOC
5522#  ifdef C_ALLOCA
5523  alloca (0);
5524#  endif
5525# endif
5526  return result;
5527}
5528# ifdef _LIBC
5529weak_alias (__re_match, re_match)
5530# endif
5531#endif /* not emacs */
5532
5533#endif /* not INSIDE_RECURSION */
5534
5535#ifdef INSIDE_RECURSION
5536static boolean PREFIX(group_match_null_string_p) _RE_ARGS ((UCHAR_T **p,
5537						    UCHAR_T *end,
5538					PREFIX(register_info_type) *reg_info));
5539static boolean PREFIX(alt_match_null_string_p) _RE_ARGS ((UCHAR_T *p,
5540						  UCHAR_T *end,
5541					PREFIX(register_info_type) *reg_info));
5542static boolean PREFIX(common_op_match_null_string_p) _RE_ARGS ((UCHAR_T **p,
5543							UCHAR_T *end,
5544					PREFIX(register_info_type) *reg_info));
5545static int PREFIX(bcmp_translate) _RE_ARGS ((const CHAR_T *s1, const CHAR_T *s2,
5546				     int len, char *translate));
5547#else /* not INSIDE_RECURSION */
5548
5549/* re_match_2 matches the compiled pattern in BUFP against the
5550   the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
5551   and SIZE2, respectively).  We start matching at POS, and stop
5552   matching at STOP.
5553
5554   If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
5555   store offsets for the substring each group matched in REGS.  See the
5556   documentation for exactly how many groups we fill.
5557
5558   We return -1 if no match, -2 if an internal error (such as the
5559   failure stack overflowing).  Otherwise, we return the length of the
5560   matched substring.  */
5561
5562int
5563re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
5564     struct re_pattern_buffer *bufp;
5565     const char *string1, *string2;
5566     int size1, size2;
5567     int pos;
5568     struct re_registers *regs;
5569     int stop;
5570{
5571  int result;
5572# ifdef MBS_SUPPORT
5573  if (MB_CUR_MAX != 1)
5574    result = wcs_re_match_2_internal (bufp, string1, size1, string2, size2,
5575				      pos, regs, stop,
5576				      NULL, 0, NULL, 0, NULL, NULL);
5577  else
5578# endif
5579    result = byte_re_match_2_internal (bufp, string1, size1, string2, size2,
5580				  pos, regs, stop);
5581
5582#ifndef REGEX_MALLOC
5583# ifdef C_ALLOCA
5584  alloca (0);
5585# endif
5586#endif
5587  return result;
5588}
5589#ifdef _LIBC
5590weak_alias (__re_match_2, re_match_2)
5591#endif
5592
5593#endif /* not INSIDE_RECURSION */
5594
5595#ifdef INSIDE_RECURSION
5596
5597#ifdef WCHAR
5598static int count_mbs_length PARAMS ((int *, int));
5599
5600/* This check the substring (from 0, to length) of the multibyte string,
5601   to which offset_buffer correspond. And count how many wchar_t_characters
5602   the substring occupy. We use offset_buffer to optimization.
5603   See convert_mbs_to_wcs.  */
5604
5605static int
5606count_mbs_length(offset_buffer, length)
5607     int *offset_buffer;
5608     int length;
5609{
5610  int upper, lower;
5611
5612  /* Check whether the size is valid.  */
5613  if (length < 0)
5614    return -1;
5615
5616  if (offset_buffer == NULL)
5617    return 0;
5618
5619  /* If there are no multibyte character, offset_buffer[i] == i.
5620   Optmize for this case.  */
5621  if (offset_buffer[length] == length)
5622    return length;
5623
5624  /* Set up upper with length. (because for all i, offset_buffer[i] >= i)  */
5625  upper = length;
5626  lower = 0;
5627
5628  while (true)
5629    {
5630      int middle = (lower + upper) / 2;
5631      if (middle == lower || middle == upper)
5632	break;
5633      if (offset_buffer[middle] > length)
5634	upper = middle;
5635      else if (offset_buffer[middle] < length)
5636	lower = middle;
5637      else
5638	return middle;
5639    }
5640
5641  return -1;
5642}
5643#endif /* WCHAR */
5644
5645/* This is a separate function so that we can force an alloca cleanup
5646   afterwards.  */
5647#ifdef WCHAR
5648static int
5649wcs_re_match_2_internal (bufp, cstring1, csize1, cstring2, csize2, pos,
5650			 regs, stop, string1, size1, string2, size2,
5651			 mbs_offset1, mbs_offset2)
5652     struct re_pattern_buffer *bufp;
5653     const char *cstring1, *cstring2;
5654     int csize1, csize2;
5655     int pos;
5656     struct re_registers *regs;
5657     int stop;
5658     /* string1 == string2 == NULL means string1/2, size1/2 and
5659	mbs_offset1/2 need seting up in this function.  */
5660     /* We need wchar_t* buffers correspond to cstring1, cstring2.  */
5661     wchar_t *string1, *string2;
5662     /* We need the size of wchar_t buffers correspond to csize1, csize2.  */
5663     int size1, size2;
5664     /* offset buffer for optimizatoin. See convert_mbs_to_wc.  */
5665     int *mbs_offset1, *mbs_offset2;
5666#else /* BYTE */
5667static int
5668byte_re_match_2_internal (bufp, string1, size1,string2, size2, pos,
5669			  regs, stop)
5670     struct re_pattern_buffer *bufp;
5671     const char *string1, *string2;
5672     int size1, size2;
5673     int pos;
5674     struct re_registers *regs;
5675     int stop;
5676#endif /* BYTE */
5677{
5678  /* General temporaries.  */
5679  int mcnt;
5680  UCHAR_T *p1;
5681#ifdef WCHAR
5682  /* They hold whether each wchar_t is binary data or not.  */
5683  char *is_binary = NULL;
5684  /* If true, we can't free string1/2, mbs_offset1/2.  */
5685  int cant_free_wcs_buf = 1;
5686#endif /* WCHAR */
5687
5688  /* Just past the end of the corresponding string.  */
5689  const CHAR_T *end1, *end2;
5690
5691  /* Pointers into string1 and string2, just past the last characters in
5692     each to consider matching.  */
5693  const CHAR_T *end_match_1, *end_match_2;
5694
5695  /* Where we are in the data, and the end of the current string.  */
5696  const CHAR_T *d, *dend;
5697
5698  /* Where we are in the pattern, and the end of the pattern.  */
5699#ifdef WCHAR
5700  UCHAR_T *pattern, *p;
5701  register UCHAR_T *pend;
5702#else /* BYTE */
5703  UCHAR_T *p = bufp->buffer;
5704  register UCHAR_T *pend = p + bufp->used;
5705#endif /* WCHAR */
5706
5707  /* Mark the opcode just after a start_memory, so we can test for an
5708     empty subpattern when we get to the stop_memory.  */
5709  UCHAR_T *just_past_start_mem = 0;
5710
5711  /* We use this to map every character in the string.  */
5712  RE_TRANSLATE_TYPE translate = bufp->translate;
5713
5714  /* Failure point stack.  Each place that can handle a failure further
5715     down the line pushes a failure point on this stack.  It consists of
5716     restart, regend, and reg_info for all registers corresponding to
5717     the subexpressions we're currently inside, plus the number of such
5718     registers, and, finally, two char *'s.  The first char * is where
5719     to resume scanning the pattern; the second one is where to resume
5720     scanning the strings.  If the latter is zero, the failure point is
5721     a ``dummy''; if a failure happens and the failure point is a dummy,
5722     it gets discarded and the next next one is tried.  */
5723#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.  */
5724  PREFIX(fail_stack_type) fail_stack;
5725#endif
5726#ifdef DEBUG
5727  static unsigned failure_id;
5728  unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
5729#endif
5730
5731#ifdef REL_ALLOC
5732  /* This holds the pointer to the failure stack, when
5733     it is allocated relocatably.  */
5734  fail_stack_elt_t *failure_stack_ptr;
5735#endif
5736
5737  /* We fill all the registers internally, independent of what we
5738     return, for use in backreferences.  The number here includes
5739     an element for register zero.  */
5740  size_t num_regs = bufp->re_nsub + 1;
5741
5742  /* The currently active registers.  */
5743  active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG;
5744  active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG;
5745
5746  /* Information on the contents of registers. These are pointers into
5747     the input strings; they record just what was matched (on this
5748     attempt) by a subexpression part of the pattern, that is, the
5749     regnum-th regstart pointer points to where in the pattern we began
5750     matching and the regnum-th regend points to right after where we
5751     stopped matching the regnum-th subexpression.  (The zeroth register
5752     keeps track of what the whole pattern matches.)  */
5753#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
5754  const CHAR_T **regstart, **regend;
5755#endif
5756
5757  /* If a group that's operated upon by a repetition operator fails to
5758     match anything, then the register for its start will need to be
5759     restored because it will have been set to wherever in the string we
5760     are when we last see its open-group operator.  Similarly for a
5761     register's end.  */
5762#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
5763  const CHAR_T **old_regstart, **old_regend;
5764#endif
5765
5766  /* The is_active field of reg_info helps us keep track of which (possibly
5767     nested) subexpressions we are currently in. The matched_something
5768     field of reg_info[reg_num] helps us tell whether or not we have
5769     matched any of the pattern so far this time through the reg_num-th
5770     subexpression.  These two fields get reset each time through any
5771     loop their register is in.  */
5772#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.  */
5773  PREFIX(register_info_type) *reg_info;
5774#endif
5775
5776  /* The following record the register info as found in the above
5777     variables when we find a match better than any we've seen before.
5778     This happens as we backtrack through the failure points, which in
5779     turn happens only if we have not yet matched the entire string. */
5780  unsigned best_regs_set = false;
5781#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
5782  const CHAR_T **best_regstart, **best_regend;
5783#endif
5784
5785  /* Logically, this is `best_regend[0]'.  But we don't want to have to
5786     allocate space for that if we're not allocating space for anything
5787     else (see below).  Also, we never need info about register 0 for
5788     any of the other register vectors, and it seems rather a kludge to
5789     treat `best_regend' differently than the rest.  So we keep track of
5790     the end of the best match so far in a separate variable.  We
5791     initialize this to NULL so that when we backtrack the first time
5792     and need to test it, it's not garbage.  */
5793  const CHAR_T *match_end = NULL;
5794
5795  /* This helps SET_REGS_MATCHED avoid doing redundant work.  */
5796  int set_regs_matched_done = 0;
5797
5798  /* Used when we pop values we don't care about.  */
5799#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
5800  const CHAR_T **reg_dummy;
5801  PREFIX(register_info_type) *reg_info_dummy;
5802#endif
5803
5804#ifdef DEBUG
5805  /* Counts the total number of registers pushed.  */
5806  unsigned num_regs_pushed = 0;
5807#endif
5808
5809  /* Definitions for state transitions.  More efficiently for gcc.  */
5810#ifdef __GNUC__
5811# if defined HAVE_SUBTRACT_LOCAL_LABELS && defined SHARED
5812#  define NEXT \
5813      do								      \
5814	{								      \
5815	  int offset;							      \
5816	  const void *__unbounded ptr;					      \
5817	  offset = (p == pend						      \
5818		    ? 0 : jmptable[SWITCH_ENUM_CAST ((re_opcode_t) *p++)]);   \
5819	  ptr = &&end_of_pattern + offset;				      \
5820	  goto *ptr;							      \
5821	}								      \
5822      while (0)
5823#  define REF(x) \
5824  &&label_##x - &&end_of_pattern
5825#  define JUMP_TABLE_TYPE const int
5826# else
5827#  define NEXT \
5828      do								      \
5829	{								      \
5830	  const void *__unbounded ptr;					      \
5831	  ptr = (p == pend ? &&end_of_pattern				      \
5832		 : jmptable[SWITCH_ENUM_CAST ((re_opcode_t) *p++)]);	      \
5833	  goto *ptr;							      \
5834	}								      \
5835      while (0)
5836#  define REF(x) \
5837  &&label_##x
5838#  define JUMP_TABLE_TYPE const void *const
5839# endif
5840# define CASE(x) label_##x
5841  static JUMP_TABLE_TYPE jmptable[] =
5842    {
5843    REF (no_op),
5844    REF (succeed),
5845    REF (exactn),
5846# ifdef MBS_SUPPORT
5847    REF (exactn_bin),
5848# endif
5849    REF (anychar),
5850    REF (charset),
5851    REF (charset_not),
5852    REF (start_memory),
5853    REF (stop_memory),
5854    REF (duplicate),
5855    REF (begline),
5856    REF (endline),
5857    REF (begbuf),
5858    REF (endbuf),
5859    REF (jump),
5860    REF (jump_past_alt),
5861    REF (on_failure_jump),
5862    REF (on_failure_keep_string_jump),
5863    REF (pop_failure_jump),
5864    REF (maybe_pop_jump),
5865    REF (dummy_failure_jump),
5866    REF (push_dummy_failure),
5867    REF (succeed_n),
5868    REF (jump_n),
5869    REF (set_number_at),
5870    REF (wordchar),
5871    REF (notwordchar),
5872    REF (wordbeg),
5873    REF (wordend),
5874    REF (wordbound),
5875    REF (notwordbound)
5876# ifdef emacs
5877    ,REF (before_dot),
5878    REF (at_dot),
5879    REF (after_dot),
5880    REF (syntaxspec),
5881    REF (notsyntaxspec)
5882# endif
5883    };
5884#else
5885# define NEXT \
5886  break
5887# define CASE(x) \
5888  case x
5889#endif
5890
5891  DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5892
5893  INIT_FAIL_STACK ();
5894
5895#ifdef MATCH_MAY_ALLOCATE
5896  /* Do not bother to initialize all the register variables if there are
5897     no groups in the pattern, as it takes a fair amount of time.  If
5898     there are groups, we include space for register 0 (the whole
5899     pattern), even though we never use it, since it simplifies the
5900     array indexing.  We should fix this.  */
5901  if (bufp->re_nsub)
5902    {
5903      regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5904      regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5905      old_regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5906      old_regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5907      best_regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5908      best_regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5909      reg_info = REGEX_TALLOC (num_regs, PREFIX(register_info_type));
5910      reg_dummy = REGEX_TALLOC (num_regs, const CHAR_T *);
5911      reg_info_dummy = REGEX_TALLOC (num_regs, PREFIX(register_info_type));
5912
5913      if (!(regstart && regend && old_regstart && old_regend && reg_info
5914            && best_regstart && best_regend && reg_dummy && reg_info_dummy))
5915        {
5916          FREE_VARIABLES ();
5917          return -2;
5918        }
5919    }
5920  else
5921    {
5922      /* We must initialize all our variables to NULL, so that
5923         `FREE_VARIABLES' doesn't try to free them.  */
5924      regstart = regend = old_regstart = old_regend = best_regstart
5925        = best_regend = reg_dummy = NULL;
5926      reg_info = reg_info_dummy = (PREFIX(register_info_type) *) NULL;
5927    }
5928#endif /* MATCH_MAY_ALLOCATE */
5929
5930  /* The starting position is bogus.  */
5931#ifdef WCHAR
5932  if (pos < 0 || pos > csize1 + csize2)
5933#else /* BYTE */
5934  if (pos < 0 || pos > size1 + size2)
5935#endif
5936    {
5937      FREE_VARIABLES ();
5938      return -1;
5939    }
5940
5941#ifdef WCHAR
5942  /* Allocate wchar_t array for string1 and string2 and
5943     fill them with converted string.  */
5944  if (string1 == NULL && string2 == NULL)
5945    {
5946      /* We need seting up buffers here.  */
5947
5948      /* We must free wcs buffers in this function.  */
5949      cant_free_wcs_buf = 0;
5950
5951      if (csize1 != 0)
5952	{
5953	  string1 = REGEX_TALLOC (csize1 + 1, CHAR_T);
5954	  mbs_offset1 = REGEX_TALLOC (csize1 + 1, int);
5955	  is_binary = REGEX_TALLOC (csize1 + 1, char);
5956	  if (!string1 || !mbs_offset1 || !is_binary)
5957	    {
5958	      FREE_VAR (string1);
5959	      FREE_VAR (mbs_offset1);
5960	      FREE_VAR (is_binary);
5961	      return -2;
5962	    }
5963	}
5964      if (csize2 != 0)
5965	{
5966	  string2 = REGEX_TALLOC (csize2 + 1, CHAR_T);
5967	  mbs_offset2 = REGEX_TALLOC (csize2 + 1, int);
5968	  is_binary = REGEX_TALLOC (csize2 + 1, char);
5969	  if (!string2 || !mbs_offset2 || !is_binary)
5970	    {
5971	      FREE_VAR (string1);
5972	      FREE_VAR (mbs_offset1);
5973	      FREE_VAR (string2);
5974	      FREE_VAR (mbs_offset2);
5975	      FREE_VAR (is_binary);
5976	      return -2;
5977	    }
5978	  size2 = convert_mbs_to_wcs(string2, cstring2, csize2,
5979				     mbs_offset2, is_binary);
5980	  string2[size2] = L'\0'; /* for a sentinel  */
5981	  FREE_VAR (is_binary);
5982	}
5983    }
5984
5985  /* We need to cast pattern to (wchar_t*), because we casted this compiled
5986     pattern to (char*) in regex_compile.  */
5987  p = pattern = (CHAR_T*)bufp->buffer;
5988  pend = (CHAR_T*)(bufp->buffer + bufp->used);
5989
5990#endif /* WCHAR */
5991
5992  /* Initialize subexpression text positions to -1 to mark ones that no
5993     start_memory/stop_memory has been seen for. Also initialize the
5994     register information struct.  */
5995  for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
5996    {
5997      regstart[mcnt] = regend[mcnt]
5998        = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
5999
6000      REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
6001      IS_ACTIVE (reg_info[mcnt]) = 0;
6002      MATCHED_SOMETHING (reg_info[mcnt]) = 0;
6003      EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
6004    }
6005
6006  /* We move `string1' into `string2' if the latter's empty -- but not if
6007     `string1' is null.  */
6008  if (size2 == 0 && string1 != NULL)
6009    {
6010      string2 = string1;
6011      size2 = size1;
6012      string1 = 0;
6013      size1 = 0;
6014#ifdef WCHAR
6015      mbs_offset2 = mbs_offset1;
6016      csize2 = csize1;
6017      mbs_offset1 = NULL;
6018      csize1 = 0;
6019#endif
6020    }
6021  end1 = string1 + size1;
6022  end2 = string2 + size2;
6023
6024  /* Compute where to stop matching, within the two strings.  */
6025#ifdef WCHAR
6026  if (stop <= csize1)
6027    {
6028      mcnt = count_mbs_length(mbs_offset1, stop);
6029      end_match_1 = string1 + mcnt;
6030      end_match_2 = string2;
6031    }
6032  else
6033    {
6034      if (stop > csize1 + csize2)
6035	stop = csize1 + csize2;
6036      end_match_1 = end1;
6037      mcnt = count_mbs_length(mbs_offset2, stop-csize1);
6038      end_match_2 = string2 + mcnt;
6039    }
6040  if (mcnt < 0)
6041    { /* count_mbs_length return error.  */
6042      FREE_VARIABLES ();
6043      return -1;
6044    }
6045#else
6046  if (stop <= size1)
6047    {
6048      end_match_1 = string1 + stop;
6049      end_match_2 = string2;
6050    }
6051  else
6052    {
6053      end_match_1 = end1;
6054      end_match_2 = string2 + stop - size1;
6055    }
6056#endif /* WCHAR */
6057
6058  /* `p' scans through the pattern as `d' scans through the data.
6059     `dend' is the end of the input string that `d' points within.  `d'
6060     is advanced into the following input string whenever necessary, but
6061     this happens before fetching; therefore, at the beginning of the
6062     loop, `d' can be pointing at the end of a string, but it cannot
6063     equal `string2'.  */
6064#ifdef WCHAR
6065  if (size1 > 0 && pos <= csize1)
6066    {
6067      mcnt = count_mbs_length(mbs_offset1, pos);
6068      d = string1 + mcnt;
6069      dend = end_match_1;
6070    }
6071  else
6072    {
6073      mcnt = count_mbs_length(mbs_offset2, pos-csize1);
6074      d = string2 + mcnt;
6075      dend = end_match_2;
6076    }
6077
6078  if (mcnt < 0)
6079    { /* count_mbs_length return error.  */
6080      FREE_VARIABLES ();
6081      return -1;
6082    }
6083#else
6084  if (size1 > 0 && pos <= size1)
6085    {
6086      d = string1 + pos;
6087      dend = end_match_1;
6088    }
6089  else
6090    {
6091      d = string2 + pos - size1;
6092      dend = end_match_2;
6093    }
6094#endif /* WCHAR */
6095
6096  DEBUG_PRINT1 ("The compiled pattern is:\n");
6097  DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
6098  DEBUG_PRINT1 ("The string to match is: `");
6099  DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
6100  DEBUG_PRINT1 ("'\n");
6101
6102  /* This loops over pattern commands.  It exits by returning from the
6103     function if the match is complete, or it drops through if the match
6104     fails at this starting point in the input data.  */
6105  for (;;)
6106    {
6107#ifdef _LIBC
6108      DEBUG_PRINT2 ("\n%p: ", p);
6109#else
6110      DEBUG_PRINT2 ("\n0x%x: ", p);
6111#endif
6112
6113#ifdef __GNUC__
6114      NEXT;
6115#else
6116      if (p == pend)
6117#endif
6118	{
6119#ifdef __GNUC__
6120	end_of_pattern:
6121#endif
6122	  /* End of pattern means we might have succeeded.  */
6123	  DEBUG_PRINT1 ("end of pattern ... ");
6124
6125	  /* If we haven't matched the entire string, and we want the
6126	     longest match, try backtracking.  */
6127	  if (d != end_match_2)
6128	    {
6129	      /* 1 if this match ends in the same string (string1 or string2)
6130		 as the best previous match.  */
6131	      boolean same_str_p = (FIRST_STRING_P (match_end)
6132				    == MATCHING_IN_FIRST_STRING);
6133	      /* 1 if this match is the best seen so far.  */
6134	      boolean best_match_p;
6135
6136	      /* AIX compiler got confused when this was combined
6137		 with the previous declaration.  */
6138	      if (same_str_p)
6139		best_match_p = d > match_end;
6140	      else
6141		best_match_p = !MATCHING_IN_FIRST_STRING;
6142
6143	      DEBUG_PRINT1 ("backtracking.\n");
6144
6145	      if (!FAIL_STACK_EMPTY ())
6146		{ /* More failure points to try.  */
6147
6148		  /* If exceeds best match so far, save it.  */
6149		  if (!best_regs_set || best_match_p)
6150		    {
6151		      best_regs_set = true;
6152		      match_end = d;
6153
6154		      DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
6155
6156		      for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
6157			{
6158			  best_regstart[mcnt] = regstart[mcnt];
6159			  best_regend[mcnt] = regend[mcnt];
6160			}
6161		    }
6162		  goto fail;
6163		}
6164
6165	      /* If no failure points, don't restore garbage.  And if
6166		 last match is real best match, don't restore second
6167		 best one. */
6168	      else if (best_regs_set && !best_match_p)
6169		{
6170		restore_best_regs:
6171		  /* Restore best match.  It may happen that `dend ==
6172		     end_match_1' while the restored d is in string2.
6173		     For example, the pattern `x.*y.*z' against the
6174		     strings `x-' and `y-z-', if the two strings are
6175		     not consecutive in memory.  */
6176		  DEBUG_PRINT1 ("Restoring best registers.\n");
6177
6178		  d = match_end;
6179		  dend = ((d >= string1 && d <= end1)
6180			  ? end_match_1 : end_match_2);
6181
6182		  for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
6183		    {
6184		      regstart[mcnt] = best_regstart[mcnt];
6185		      regend[mcnt] = best_regend[mcnt];
6186		    }
6187		}
6188	    } /* d != end_match_2 */
6189
6190	succeed_label:
6191	  DEBUG_PRINT1 ("Accepting match.\n");
6192	  /* If caller wants register contents data back, do it.  */
6193	  if (regs && !bufp->no_sub)
6194	    {
6195	      /* Have the register data arrays been allocated?  */
6196	      if (bufp->regs_allocated == REGS_UNALLOCATED)
6197		{ /* No.  So allocate them with malloc.  We need one
6198		     extra element beyond `num_regs' for the `-1' marker
6199		     GNU code uses.  */
6200		  regs->num_regs = MAX (RE_NREGS, num_regs + 1);
6201		  regs->start = TALLOC (regs->num_regs, regoff_t);
6202		  regs->end = TALLOC (regs->num_regs, regoff_t);
6203		  if (regs->start == NULL || regs->end == NULL)
6204		    {
6205		      FREE_VARIABLES ();
6206		      return -2;
6207		    }
6208		  bufp->regs_allocated = REGS_REALLOCATE;
6209		}
6210	      else if (bufp->regs_allocated == REGS_REALLOCATE)
6211		{ /* Yes.  If we need more elements than were already
6212		     allocated, reallocate them.  If we need fewer, just
6213		     leave it alone.  */
6214		  if (regs->num_regs < num_regs + 1)
6215		    {
6216		      regs->num_regs = num_regs + 1;
6217		      RETALLOC (regs->start, regs->num_regs, regoff_t);
6218		      RETALLOC (regs->end, regs->num_regs, regoff_t);
6219		      if (regs->start == NULL || regs->end == NULL)
6220			{
6221			  FREE_VARIABLES ();
6222			  return -2;
6223			}
6224		    }
6225		}
6226	      else
6227		{
6228		  /* These braces fend off a "empty body in an else-statement"
6229		     warning under GCC when assert expands to nothing.  */
6230		  assert (bufp->regs_allocated == REGS_FIXED);
6231		}
6232
6233	      /* Convert the pointer data in `regstart' and `regend' to
6234		 indices.  Register zero has to be set differently,
6235		 since we haven't kept track of any info for it.  */
6236	      if (regs->num_regs > 0)
6237		{
6238		  regs->start[0] = pos;
6239#ifdef WCHAR
6240		  if (MATCHING_IN_FIRST_STRING)
6241		    regs->end[0] = (mbs_offset1 != NULL ?
6242				    mbs_offset1[d-string1] : 0);
6243		  else
6244		    regs->end[0] = csize1 + (mbs_offset2 != NULL
6245					     ? mbs_offset2[d-string2] : 0);
6246#else
6247		  regs->end[0] = (MATCHING_IN_FIRST_STRING
6248				  ? ((regoff_t) (d - string1))
6249				  : ((regoff_t) (d - string2 + size1)));
6250#endif /* WCHAR */
6251		}
6252
6253	      /* Go through the first `min (num_regs, regs->num_regs)'
6254		 registers, since that is all we initialized.  */
6255	      for (mcnt = 1; (unsigned) mcnt < MIN (num_regs, regs->num_regs);
6256		   mcnt++)
6257		{
6258		  if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
6259		    regs->start[mcnt] = regs->end[mcnt] = -1;
6260		  else
6261		    {
6262		      regs->start[mcnt]
6263			= (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
6264		      regs->end[mcnt]
6265			= (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
6266		    }
6267		}
6268
6269	      /* If the regs structure we return has more elements than
6270		 were in the pattern, set the extra elements to -1.  If
6271		 we (re)allocated the registers, this is the case,
6272		 because we always allocate enough to have at least one
6273		 -1 at the end.  */
6274	      for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; mcnt++)
6275		regs->start[mcnt] = regs->end[mcnt] = -1;
6276	    } /* regs && !bufp->no_sub */
6277
6278	  DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
6279			nfailure_points_pushed, nfailure_points_popped,
6280			nfailure_points_pushed - nfailure_points_popped);
6281	  DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
6282
6283#ifdef WCHAR
6284	  if (MATCHING_IN_FIRST_STRING)
6285	    mcnt = mbs_offset1 != NULL ? mbs_offset1[d-string1] : 0;
6286	  else
6287	    mcnt = (mbs_offset2 != NULL ? mbs_offset2[d-string2] : 0) +
6288	      csize1;
6289	  mcnt -= pos;
6290#else
6291	  mcnt = d - pos - (MATCHING_IN_FIRST_STRING
6292			    ? string1 : string2 - size1);
6293#endif /* WCHAR */
6294
6295	  DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
6296
6297	  FREE_VARIABLES ();
6298	  return mcnt;
6299	}
6300
6301#ifndef __GNUC__
6302      /* Otherwise match next pattern command.  */
6303      switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
6304	{
6305#endif
6306        /* Ignore these.  Used to ignore the n of succeed_n's which
6307           currently have n == 0.  */
6308        CASE (no_op):
6309          DEBUG_PRINT1 ("EXECUTING no_op.\n");
6310          NEXT;
6311
6312	CASE (succeed):
6313          DEBUG_PRINT1 ("EXECUTING succeed.\n");
6314	  goto succeed_label;
6315
6316        /* Match the next n pattern characters exactly.  The following
6317           byte in the pattern defines n, and the n bytes after that
6318           are the characters to match.  */
6319	CASE (exactn):
6320#ifdef MBS_SUPPORT
6321	CASE (exactn_bin):
6322#endif
6323	  mcnt = *p++;
6324          DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
6325
6326          /* This is written out as an if-else so we don't waste time
6327             testing `translate' inside the loop.  */
6328          if (translate)
6329	    {
6330	      do
6331		{
6332		  PREFETCH ();
6333#ifdef WCHAR
6334		  if (*d <= 0xff)
6335		    {
6336		      if ((UCHAR_T) translate[(unsigned char) *d++]
6337			  != (UCHAR_T) *p++)
6338			goto fail;
6339		    }
6340		  else
6341		    {
6342		      if (*d++ != (CHAR_T) *p++)
6343			goto fail;
6344		    }
6345#else
6346		  if ((UCHAR_T) translate[(unsigned char) *d++]
6347		      != (UCHAR_T) *p++)
6348                    goto fail;
6349#endif /* WCHAR */
6350		}
6351	      while (--mcnt);
6352	    }
6353	  else
6354	    {
6355	      do
6356		{
6357		  PREFETCH ();
6358		  if (*d++ != (CHAR_T) *p++) goto fail;
6359		}
6360	      while (--mcnt);
6361	    }
6362	  SET_REGS_MATCHED ();
6363          NEXT;
6364
6365
6366        /* Match any character except possibly a newline or a null.  */
6367	CASE (anychar):
6368          DEBUG_PRINT1 ("EXECUTING anychar.\n");
6369
6370          PREFETCH ();
6371
6372          if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
6373              || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
6374	    goto fail;
6375
6376          SET_REGS_MATCHED ();
6377          DEBUG_PRINT2 ("  Matched `%ld'.\n", (long int) *d);
6378          d++;
6379	  NEXT;
6380
6381
6382	CASE (charset):
6383	CASE (charset_not):
6384	  {
6385	    register UCHAR_T c;
6386#ifdef WCHAR
6387	    unsigned int i, char_class_length, coll_symbol_length,
6388              equiv_class_length, ranges_length, chars_length, length;
6389	    CHAR_T *workp, *workp2, *charset_top;
6390#define WORK_BUFFER_SIZE 128
6391            CHAR_T str_buf[WORK_BUFFER_SIZE];
6392# ifdef _LIBC
6393	    uint32_t nrules;
6394# endif /* _LIBC */
6395#endif /* WCHAR */
6396	    boolean not = (re_opcode_t) *(p - 1) == charset_not;
6397
6398            DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
6399	    PREFETCH ();
6400	    c = TRANSLATE (*d); /* The character to match.  */
6401#ifdef WCHAR
6402# ifdef _LIBC
6403	    nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
6404# endif /* _LIBC */
6405	    charset_top = p - 1;
6406	    char_class_length = *p++;
6407	    coll_symbol_length = *p++;
6408	    equiv_class_length = *p++;
6409	    ranges_length = *p++;
6410	    chars_length = *p++;
6411	    /* p points charset[6], so the address of the next instruction
6412	       (charset[l+m+n+2o+k+p']) equals p[l+m+n+2*o+p'],
6413	       where l=length of char_classes, m=length of collating_symbol,
6414	       n=equivalence_class, o=length of char_range,
6415	       p'=length of character.  */
6416	    workp = p;
6417	    /* Update p to indicate the next instruction.  */
6418	    p += char_class_length + coll_symbol_length+ equiv_class_length +
6419              2*ranges_length + chars_length;
6420
6421            /* match with char_class?  */
6422	    for (i = 0; i < char_class_length ; i += CHAR_CLASS_SIZE)
6423	      {
6424		wctype_t wctype;
6425		uintptr_t alignedp = ((uintptr_t)workp
6426				      + __alignof__(wctype_t) - 1)
6427		  		      & ~(uintptr_t)(__alignof__(wctype_t) - 1);
6428		wctype = *((wctype_t*)alignedp);
6429		workp += CHAR_CLASS_SIZE;
6430		if (iswctype((wint_t)c, wctype))
6431		  goto char_set_matched;
6432	      }
6433
6434            /* match with collating_symbol?  */
6435# ifdef _LIBC
6436	    if (nrules != 0)
6437	      {
6438		const unsigned char *extra = (const unsigned char *)
6439		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
6440
6441		for (workp2 = workp + coll_symbol_length ; workp < workp2 ;
6442		     workp++)
6443		  {
6444		    int32_t *wextra;
6445		    wextra = (int32_t*)(extra + *workp++);
6446		    for (i = 0; i < *wextra; ++i)
6447		      if (TRANSLATE(d[i]) != wextra[1 + i])
6448			break;
6449
6450		    if (i == *wextra)
6451		      {
6452			/* Update d, however d will be incremented at
6453			   char_set_matched:, we decrement d here.  */
6454			d += i - 1;
6455			goto char_set_matched;
6456		      }
6457		  }
6458	      }
6459	    else /* (nrules == 0) */
6460# endif
6461	      /* If we can't look up collation data, we use wcscoll
6462		 instead.  */
6463	      {
6464		for (workp2 = workp + coll_symbol_length ; workp < workp2 ;)
6465		  {
6466		    const CHAR_T *backup_d = d, *backup_dend = dend;
6467		    length = wcslen (workp);
6468
6469		    /* If wcscoll(the collating symbol, whole string) > 0,
6470		       any substring of the string never match with the
6471		       collating symbol.  */
6472		    if (wcscoll (workp, d) > 0)
6473		      {
6474			workp += length + 1;
6475			continue;
6476		      }
6477
6478		    /* First, we compare the collating symbol with
6479		       the first character of the string.
6480		       If it don't match, we add the next character to
6481		       the compare buffer in turn.  */
6482		    for (i = 0 ; i < WORK_BUFFER_SIZE-1 ; i++, d++)
6483		      {
6484			int match;
6485			if (d == dend)
6486			  {
6487			    if (dend == end_match_2)
6488			      break;
6489			    d = string2;
6490			    dend = end_match_2;
6491			  }
6492
6493			/* add next character to the compare buffer.  */
6494			str_buf[i] = TRANSLATE(*d);
6495			str_buf[i+1] = '\0';
6496
6497			match = wcscoll (workp, str_buf);
6498			if (match == 0)
6499			  goto char_set_matched;
6500
6501			if (match < 0)
6502			  /* (str_buf > workp) indicate (str_buf + X > workp),
6503			     because for all X (str_buf + X > str_buf).
6504			     So we don't need continue this loop.  */
6505			  break;
6506
6507			/* Otherwise(str_buf < workp),
6508			   (str_buf+next_character) may equals (workp).
6509			   So we continue this loop.  */
6510		      }
6511		    /* not matched */
6512		    d = backup_d;
6513		    dend = backup_dend;
6514		    workp += length + 1;
6515		  }
6516              }
6517            /* match with equivalence_class?  */
6518# ifdef _LIBC
6519	    if (nrules != 0)
6520	      {
6521                const CHAR_T *backup_d = d, *backup_dend = dend;
6522		/* Try to match the equivalence class against
6523		   those known to the collate implementation.  */
6524		const int32_t *table;
6525		const int32_t *weights;
6526		const int32_t *extra;
6527		const int32_t *indirect;
6528		int32_t idx, idx2;
6529		wint_t *cp;
6530		size_t len;
6531
6532		/* This #include defines a local function!  */
6533#  include <locale/weightwc.h>
6534
6535		table = (const int32_t *)
6536		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEWC);
6537		weights = (const wint_t *)
6538		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTWC);
6539		extra = (const wint_t *)
6540		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAWC);
6541		indirect = (const int32_t *)
6542		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTWC);
6543
6544		/* Write 1 collating element to str_buf, and
6545		   get its index.  */
6546		idx2 = 0;
6547
6548		for (i = 0 ; idx2 == 0 && i < WORK_BUFFER_SIZE - 1; i++)
6549		  {
6550		    cp = (wint_t*)str_buf;
6551		    if (d == dend)
6552		      {
6553			if (dend == end_match_2)
6554			  break;
6555			d = string2;
6556			dend = end_match_2;
6557		      }
6558		    str_buf[i] = TRANSLATE(*(d+i));
6559		    str_buf[i+1] = '\0'; /* sentinel */
6560		    idx2 = findidx ((const wint_t**)&cp);
6561		  }
6562
6563		/* Update d, however d will be incremented at
6564		   char_set_matched:, we decrement d here.  */
6565		d = backup_d + ((wchar_t*)cp - (wchar_t*)str_buf - 1);
6566		if (d >= dend)
6567		  {
6568		    if (dend == end_match_2)
6569			d = dend;
6570		    else
6571		      {
6572			d = string2;
6573			dend = end_match_2;
6574		      }
6575		  }
6576
6577		len = weights[idx2];
6578
6579		for (workp2 = workp + equiv_class_length ; workp < workp2 ;
6580		     workp++)
6581		  {
6582		    idx = (int32_t)*workp;
6583		    /* We already checked idx != 0 in regex_compile. */
6584
6585		    if (idx2 != 0 && len == weights[idx])
6586		      {
6587			int cnt = 0;
6588			while (cnt < len && (weights[idx + 1 + cnt]
6589					     == weights[idx2 + 1 + cnt]))
6590			  ++cnt;
6591
6592			if (cnt == len)
6593			  goto char_set_matched;
6594		      }
6595		  }
6596		/* not matched */
6597                d = backup_d;
6598                dend = backup_dend;
6599	      }
6600	    else /* (nrules == 0) */
6601# endif
6602	      /* If we can't look up collation data, we use wcscoll
6603		 instead.  */
6604	      {
6605		for (workp2 = workp + equiv_class_length ; workp < workp2 ;)
6606		  {
6607		    const CHAR_T *backup_d = d, *backup_dend = dend;
6608		    length = wcslen (workp);
6609
6610		    /* If wcscoll(the collating symbol, whole string) > 0,
6611		       any substring of the string never match with the
6612		       collating symbol.  */
6613		    if (wcscoll (workp, d) > 0)
6614		      {
6615			workp += length + 1;
6616			break;
6617		      }
6618
6619		    /* First, we compare the equivalence class with
6620		       the first character of the string.
6621		       If it don't match, we add the next character to
6622		       the compare buffer in turn.  */
6623		    for (i = 0 ; i < WORK_BUFFER_SIZE - 1 ; i++, d++)
6624		      {
6625			int match;
6626			if (d == dend)
6627			  {
6628			    if (dend == end_match_2)
6629			      break;
6630			    d = string2;
6631			    dend = end_match_2;
6632			  }
6633
6634			/* add next character to the compare buffer.  */
6635			str_buf[i] = TRANSLATE(*d);
6636			str_buf[i+1] = '\0';
6637
6638			match = wcscoll (workp, str_buf);
6639
6640			if (match == 0)
6641			  goto char_set_matched;
6642
6643			if (match < 0)
6644			/* (str_buf > workp) indicate (str_buf + X > workp),
6645			   because for all X (str_buf + X > str_buf).
6646			   So we don't need continue this loop.  */
6647			  break;
6648
6649			/* Otherwise(str_buf < workp),
6650			   (str_buf+next_character) may equals (workp).
6651			   So we continue this loop.  */
6652		      }
6653		    /* not matched */
6654		    d = backup_d;
6655		    dend = backup_dend;
6656		    workp += length + 1;
6657		  }
6658	      }
6659
6660            /* match with char_range?  */
6661# ifdef _LIBC
6662	    if (nrules != 0)
6663	      {
6664		uint32_t collseqval;
6665		const char *collseq = (const char *)
6666		  _NL_CURRENT(LC_COLLATE, _NL_COLLATE_COLLSEQWC);
6667
6668		collseqval = collseq_table_lookup (collseq, c);
6669
6670		for (; workp < p - chars_length ;)
6671		  {
6672		    uint32_t start_val, end_val;
6673
6674		    /* We already compute the collation sequence value
6675		       of the characters (or collating symbols).  */
6676		    start_val = (uint32_t) *workp++; /* range_start */
6677		    end_val = (uint32_t) *workp++; /* range_end */
6678
6679		    if (start_val <= collseqval && collseqval <= end_val)
6680		      goto char_set_matched;
6681		  }
6682	      }
6683	    else
6684# endif
6685	      {
6686		/* We set range_start_char at str_buf[0], range_end_char
6687		   at str_buf[4], and compared char at str_buf[2].  */
6688		str_buf[1] = 0;
6689		str_buf[2] = c;
6690		str_buf[3] = 0;
6691		str_buf[5] = 0;
6692		for (; workp < p - chars_length ;)
6693		  {
6694		    wchar_t *range_start_char, *range_end_char;
6695
6696		    /* match if (range_start_char <= c <= range_end_char).  */
6697
6698		    /* If range_start(or end) < 0, we assume -range_start(end)
6699		       is the offset of the collating symbol which is specified
6700		       as the character of the range start(end).  */
6701
6702		    /* range_start */
6703		    if (*workp < 0)
6704		      range_start_char = charset_top - (*workp++);
6705		    else
6706		      {
6707			str_buf[0] = *workp++;
6708			range_start_char = str_buf;
6709		      }
6710
6711		    /* range_end */
6712		    if (*workp < 0)
6713		      range_end_char = charset_top - (*workp++);
6714		    else
6715		      {
6716			str_buf[4] = *workp++;
6717			range_end_char = str_buf + 4;
6718		      }
6719
6720		    if (wcscoll (range_start_char, str_buf+2) <= 0
6721			&& wcscoll (str_buf+2, range_end_char) <= 0)
6722		      goto char_set_matched;
6723		  }
6724	      }
6725
6726            /* match with char?  */
6727	    for (; workp < p ; workp++)
6728	      if (c == *workp)
6729		goto char_set_matched;
6730
6731	    not = !not;
6732
6733	  char_set_matched:
6734	    if (not) goto fail;
6735#else
6736            /* Cast to `unsigned' instead of `unsigned char' in case the
6737               bit list is a full 32 bytes long.  */
6738	    if (c < (unsigned) (*p * BYTEWIDTH)
6739		&& p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
6740	      not = !not;
6741
6742	    p += 1 + *p;
6743
6744	    if (!not) goto fail;
6745#undef WORK_BUFFER_SIZE
6746#endif /* WCHAR */
6747	    SET_REGS_MATCHED ();
6748            d++;
6749	    NEXT;
6750	  }
6751
6752
6753        /* The beginning of a group is represented by start_memory.
6754           The arguments are the register number in the next byte, and the
6755           number of groups inner to this one in the next.  The text
6756           matched within the group is recorded (in the internal
6757           registers data structure) under the register number.  */
6758        CASE (start_memory):
6759	  DEBUG_PRINT3 ("EXECUTING start_memory %ld (%ld):\n",
6760			(long int) *p, (long int) p[1]);
6761
6762          /* Find out if this group can match the empty string.  */
6763	  p1 = p;		/* To send to group_match_null_string_p.  */
6764
6765          if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
6766            REG_MATCH_NULL_STRING_P (reg_info[*p])
6767              = PREFIX(group_match_null_string_p) (&p1, pend, reg_info);
6768
6769          /* Save the position in the string where we were the last time
6770             we were at this open-group operator in case the group is
6771             operated upon by a repetition operator, e.g., with `(a*)*b'
6772             against `ab'; then we want to ignore where we are now in
6773             the string in case this attempt to match fails.  */
6774          old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
6775                             ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
6776                             : regstart[*p];
6777	  DEBUG_PRINT2 ("  old_regstart: %d\n",
6778			 POINTER_TO_OFFSET (old_regstart[*p]));
6779
6780          regstart[*p] = d;
6781	  DEBUG_PRINT2 ("  regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
6782
6783          IS_ACTIVE (reg_info[*p]) = 1;
6784          MATCHED_SOMETHING (reg_info[*p]) = 0;
6785
6786	  /* Clear this whenever we change the register activity status.  */
6787	  set_regs_matched_done = 0;
6788
6789          /* This is the new highest active register.  */
6790          highest_active_reg = *p;
6791
6792          /* If nothing was active before, this is the new lowest active
6793             register.  */
6794          if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
6795            lowest_active_reg = *p;
6796
6797          /* Move past the register number and inner group count.  */
6798          p += 2;
6799	  just_past_start_mem = p;
6800
6801          NEXT;
6802
6803
6804        /* The stop_memory opcode represents the end of a group.  Its
6805           arguments are the same as start_memory's: the register
6806           number, and the number of inner groups.  */
6807	CASE (stop_memory):
6808	  DEBUG_PRINT3 ("EXECUTING stop_memory %ld (%ld):\n",
6809			(long int) *p, (long int) p[1]);
6810
6811          /* We need to save the string position the last time we were at
6812             this close-group operator in case the group is operated
6813             upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
6814             against `aba'; then we want to ignore where we are now in
6815             the string in case this attempt to match fails.  */
6816          old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
6817                           ? REG_UNSET (regend[*p]) ? d : regend[*p]
6818			   : regend[*p];
6819	  DEBUG_PRINT2 ("      old_regend: %d\n",
6820			 POINTER_TO_OFFSET (old_regend[*p]));
6821
6822          regend[*p] = d;
6823	  DEBUG_PRINT2 ("      regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
6824
6825          /* This register isn't active anymore.  */
6826          IS_ACTIVE (reg_info[*p]) = 0;
6827
6828	  /* Clear this whenever we change the register activity status.  */
6829	  set_regs_matched_done = 0;
6830
6831          /* If this was the only register active, nothing is active
6832             anymore.  */
6833          if (lowest_active_reg == highest_active_reg)
6834            {
6835              lowest_active_reg = NO_LOWEST_ACTIVE_REG;
6836              highest_active_reg = NO_HIGHEST_ACTIVE_REG;
6837            }
6838          else
6839            { /* We must scan for the new highest active register, since
6840                 it isn't necessarily one less than now: consider
6841                 (a(b)c(d(e)f)g).  When group 3 ends, after the f), the
6842                 new highest active register is 1.  */
6843              UCHAR_T r = *p - 1;
6844              while (r > 0 && !IS_ACTIVE (reg_info[r]))
6845                r--;
6846
6847              /* If we end up at register zero, that means that we saved
6848                 the registers as the result of an `on_failure_jump', not
6849                 a `start_memory', and we jumped to past the innermost
6850                 `stop_memory'.  For example, in ((.)*) we save
6851                 registers 1 and 2 as a result of the *, but when we pop
6852                 back to the second ), we are at the stop_memory 1.
6853                 Thus, nothing is active.  */
6854	      if (r == 0)
6855                {
6856                  lowest_active_reg = NO_LOWEST_ACTIVE_REG;
6857                  highest_active_reg = NO_HIGHEST_ACTIVE_REG;
6858                }
6859              else
6860                highest_active_reg = r;
6861            }
6862
6863          /* If just failed to match something this time around with a
6864             group that's operated on by a repetition operator, try to
6865             force exit from the ``loop'', and restore the register
6866             information for this group that we had before trying this
6867             last match.  */
6868          if ((!MATCHED_SOMETHING (reg_info[*p])
6869               || just_past_start_mem == p - 1)
6870	      && (p + 2) < pend)
6871            {
6872              boolean is_a_jump_n = false;
6873
6874              p1 = p + 2;
6875              mcnt = 0;
6876              switch ((re_opcode_t) *p1++)
6877                {
6878                  case jump_n:
6879		    is_a_jump_n = true;
6880                  case pop_failure_jump:
6881		  case maybe_pop_jump:
6882		  case jump:
6883		  case dummy_failure_jump:
6884                    EXTRACT_NUMBER_AND_INCR (mcnt, p1);
6885		    if (is_a_jump_n)
6886		      p1 += OFFSET_ADDRESS_SIZE;
6887                    break;
6888
6889                  default:
6890                    /* do nothing */ ;
6891                }
6892	      p1 += mcnt;
6893
6894              /* If the next operation is a jump backwards in the pattern
6895	         to an on_failure_jump right before the start_memory
6896                 corresponding to this stop_memory, exit from the loop
6897                 by forcing a failure after pushing on the stack the
6898                 on_failure_jump's jump in the pattern, and d.  */
6899              if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
6900                  && (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == start_memory
6901		  && p1[2+OFFSET_ADDRESS_SIZE] == *p)
6902		{
6903                  /* If this group ever matched anything, then restore
6904                     what its registers were before trying this last
6905                     failed match, e.g., with `(a*)*b' against `ab' for
6906                     regstart[1], and, e.g., with `((a*)*(b*)*)*'
6907                     against `aba' for regend[3].
6908
6909                     Also restore the registers for inner groups for,
6910                     e.g., `((a*)(b*))*' against `aba' (register 3 would
6911                     otherwise get trashed).  */
6912
6913                  if (EVER_MATCHED_SOMETHING (reg_info[*p]))
6914		    {
6915		      unsigned r;
6916
6917                      EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
6918
6919		      /* Restore this and inner groups' (if any) registers.  */
6920                      for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1);
6921			   r++)
6922                        {
6923                          regstart[r] = old_regstart[r];
6924
6925                          /* xx why this test?  */
6926                          if (old_regend[r] >= regstart[r])
6927                            regend[r] = old_regend[r];
6928                        }
6929                    }
6930		  p1++;
6931                  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
6932                  PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
6933
6934                  goto fail;
6935                }
6936            }
6937
6938          /* Move past the register number and the inner group count.  */
6939          p += 2;
6940          NEXT;
6941
6942
6943	/* \<digit> has been turned into a `duplicate' command which is
6944           followed by the numeric value of <digit> as the register number.  */
6945        CASE (duplicate):
6946	  {
6947	    register const CHAR_T *d2, *dend2;
6948	    int regno = *p++;   /* Get which register to match against.  */
6949	    DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
6950
6951	    /* Can't back reference a group which we've never matched.  */
6952            if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
6953              goto fail;
6954
6955            /* Where in input to try to start matching.  */
6956            d2 = regstart[regno];
6957
6958            /* Where to stop matching; if both the place to start and
6959               the place to stop matching are in the same string, then
6960               set to the place to stop, otherwise, for now have to use
6961               the end of the first string.  */
6962
6963            dend2 = ((FIRST_STRING_P (regstart[regno])
6964		      == FIRST_STRING_P (regend[regno]))
6965		     ? regend[regno] : end_match_1);
6966	    for (;;)
6967	      {
6968		/* If necessary, advance to next segment in register
6969                   contents.  */
6970		while (d2 == dend2)
6971		  {
6972		    if (dend2 == end_match_2) break;
6973		    if (dend2 == regend[regno]) break;
6974
6975                    /* End of string1 => advance to string2. */
6976                    d2 = string2;
6977                    dend2 = regend[regno];
6978		  }
6979		/* At end of register contents => success */
6980		if (d2 == dend2) break;
6981
6982		/* If necessary, advance to next segment in data.  */
6983		PREFETCH ();
6984
6985		/* How many characters left in this segment to match.  */
6986		mcnt = dend - d;
6987
6988		/* Want how many consecutive characters we can match in
6989                   one shot, so, if necessary, adjust the count.  */
6990                if (mcnt > dend2 - d2)
6991		  mcnt = dend2 - d2;
6992
6993		/* Compare that many; failure if mismatch, else move
6994                   past them.  */
6995		if (translate
6996                    ? PREFIX(bcmp_translate) (d, d2, mcnt, translate)
6997                    : memcmp (d, d2, mcnt*sizeof(UCHAR_T)))
6998		  goto fail;
6999		d += mcnt, d2 += mcnt;
7000
7001		/* Do this because we've match some characters.  */
7002		SET_REGS_MATCHED ();
7003	      }
7004	  }
7005	  NEXT;
7006
7007
7008        /* begline matches the empty string at the beginning of the string
7009           (unless `not_bol' is set in `bufp'), and, if
7010           `newline_anchor' is set, after newlines.  */
7011	CASE (begline):
7012          DEBUG_PRINT1 ("EXECUTING begline.\n");
7013
7014          if (AT_STRINGS_BEG (d))
7015            {
7016              if (!bufp->not_bol)
7017		{
7018		  NEXT;
7019		}
7020            }
7021          else if (d[-1] == '\n' && bufp->newline_anchor)
7022            {
7023              NEXT;
7024            }
7025          /* In all other cases, we fail.  */
7026          goto fail;
7027
7028
7029        /* endline is the dual of begline.  */
7030	CASE (endline):
7031          DEBUG_PRINT1 ("EXECUTING endline.\n");
7032
7033          if (AT_STRINGS_END (d))
7034            {
7035              if (!bufp->not_eol)
7036		{
7037		  NEXT;
7038		}
7039            }
7040
7041          /* We have to ``prefetch'' the next character.  */
7042          else if ((d == end1 ? *string2 : *d) == '\n'
7043                   && bufp->newline_anchor)
7044            {
7045              NEXT;
7046            }
7047          goto fail;
7048
7049
7050	/* Match at the very beginning of the data.  */
7051        CASE (begbuf):
7052          DEBUG_PRINT1 ("EXECUTING begbuf.\n");
7053          if (AT_STRINGS_BEG (d))
7054	    {
7055	      NEXT;
7056	    }
7057          goto fail;
7058
7059
7060	/* Match at the very end of the data.  */
7061        CASE (endbuf):
7062          DEBUG_PRINT1 ("EXECUTING endbuf.\n");
7063	  if (AT_STRINGS_END (d))
7064	    {
7065	      NEXT;
7066	    }
7067          goto fail;
7068
7069
7070        /* on_failure_keep_string_jump is used to optimize `.*\n'.  It
7071           pushes NULL as the value for the string on the stack.  Then
7072           `pop_failure_point' will keep the current value for the
7073           string, instead of restoring it.  To see why, consider
7074           matching `foo\nbar' against `.*\n'.  The .* matches the foo;
7075           then the . fails against the \n.  But the next thing we want
7076           to do is match the \n against the \n; if we restored the
7077           string value, we would be back at the foo.
7078
7079           Because this is used only in specific cases, we don't need to
7080           check all the things that `on_failure_jump' does, to make
7081           sure the right things get saved on the stack.  Hence we don't
7082           share its code.  The only reason to push anything on the
7083           stack at all is that otherwise we would have to change
7084           `anychar's code to do something besides goto fail in this
7085           case; that seems worse than this.  */
7086        CASE (on_failure_keep_string_jump):
7087          DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
7088
7089          EXTRACT_NUMBER_AND_INCR (mcnt, p);
7090#ifdef _LIBC
7091          DEBUG_PRINT3 (" %d (to %p):\n", mcnt, p + mcnt);
7092#else
7093          DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
7094#endif
7095
7096          PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
7097          NEXT;
7098
7099
7100	/* Uses of on_failure_jump:
7101
7102           Each alternative starts with an on_failure_jump that points
7103           to the beginning of the next alternative.  Each alternative
7104           except the last ends with a jump that in effect jumps past
7105           the rest of the alternatives.  (They really jump to the
7106           ending jump of the following alternative, because tensioning
7107           these jumps is a hassle.)
7108
7109           Repeats start with an on_failure_jump that points past both
7110           the repetition text and either the following jump or
7111           pop_failure_jump back to this on_failure_jump.  */
7112	CASE (on_failure_jump):
7113        on_failure:
7114          DEBUG_PRINT1 ("EXECUTING on_failure_jump");
7115
7116          EXTRACT_NUMBER_AND_INCR (mcnt, p);
7117#ifdef _LIBC
7118          DEBUG_PRINT3 (" %d (to %p)", mcnt, p + mcnt);
7119#else
7120          DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
7121#endif
7122
7123          /* If this on_failure_jump comes right before a group (i.e.,
7124             the original * applied to a group), save the information
7125             for that group and all inner ones, so that if we fail back
7126             to this point, the group's information will be correct.
7127             For example, in \(a*\)*\1, we need the preceding group,
7128             and in \(zz\(a*\)b*\)\2, we need the inner group.  */
7129
7130          /* We can't use `p' to check ahead because we push
7131             a failure point to `p + mcnt' after we do this.  */
7132          p1 = p;
7133
7134          /* We need to skip no_op's before we look for the
7135             start_memory in case this on_failure_jump is happening as
7136             the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
7137             against aba.  */
7138          while (p1 < pend && (re_opcode_t) *p1 == no_op)
7139            p1++;
7140
7141          if (p1 < pend && (re_opcode_t) *p1 == start_memory)
7142            {
7143              /* We have a new highest active register now.  This will
7144                 get reset at the start_memory we are about to get to,
7145                 but we will have saved all the registers relevant to
7146                 this repetition op, as described above.  */
7147              highest_active_reg = *(p1 + 1) + *(p1 + 2);
7148              if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
7149                lowest_active_reg = *(p1 + 1);
7150            }
7151
7152          DEBUG_PRINT1 (":\n");
7153          PUSH_FAILURE_POINT (p + mcnt, d, -2);
7154          NEXT;
7155
7156
7157        /* A smart repeat ends with `maybe_pop_jump'.
7158	   We change it to either `pop_failure_jump' or `jump'.  */
7159        CASE (maybe_pop_jump):
7160          EXTRACT_NUMBER_AND_INCR (mcnt, p);
7161          DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
7162          {
7163	    register UCHAR_T *p2 = p;
7164
7165            /* Compare the beginning of the repeat with what in the
7166               pattern follows its end. If we can establish that there
7167               is nothing that they would both match, i.e., that we
7168               would have to backtrack because of (as in, e.g., `a*a')
7169               then we can change to pop_failure_jump, because we'll
7170               never have to backtrack.
7171
7172               This is not true in the case of alternatives: in
7173               `(a|ab)*' we do need to backtrack to the `ab' alternative
7174               (e.g., if the string was `ab').  But instead of trying to
7175               detect that here, the alternative has put on a dummy
7176               failure point which is what we will end up popping.  */
7177
7178	    /* Skip over open/close-group commands.
7179	       If what follows this loop is a ...+ construct,
7180	       look at what begins its body, since we will have to
7181	       match at least one of that.  */
7182	    while (1)
7183	      {
7184		if (p2 + 2 < pend
7185		    && ((re_opcode_t) *p2 == stop_memory
7186			|| (re_opcode_t) *p2 == start_memory))
7187		  p2 += 3;
7188		else if (p2 + 2 + 2 * OFFSET_ADDRESS_SIZE < pend
7189			 && (re_opcode_t) *p2 == dummy_failure_jump)
7190		  p2 += 2 + 2 * OFFSET_ADDRESS_SIZE;
7191		else
7192		  break;
7193	      }
7194
7195	    p1 = p + mcnt;
7196	    /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
7197	       to the `maybe_finalize_jump' of this case.  Examine what
7198	       follows.  */
7199
7200            /* If we're at the end of the pattern, we can change.  */
7201            if (p2 == pend)
7202	      {
7203		/* Consider what happens when matching ":\(.*\)"
7204		   against ":/".  I don't really understand this code
7205		   yet.  */
7206  	        p[-(1+OFFSET_ADDRESS_SIZE)] = (UCHAR_T)
7207		  pop_failure_jump;
7208                DEBUG_PRINT1
7209                  ("  End of pattern: change to `pop_failure_jump'.\n");
7210              }
7211
7212            else if ((re_opcode_t) *p2 == exactn
7213#ifdef MBS_SUPPORT
7214		     || (re_opcode_t) *p2 == exactn_bin
7215#endif
7216		     || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
7217	      {
7218		register UCHAR_T c
7219                  = *p2 == (UCHAR_T) endline ? '\n' : p2[2];
7220
7221                if (((re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn
7222#ifdef MBS_SUPPORT
7223		     || (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn_bin
7224#endif
7225		    ) && p1[3+OFFSET_ADDRESS_SIZE] != c)
7226                  {
7227  		    p[-(1+OFFSET_ADDRESS_SIZE)] = (UCHAR_T)
7228		      pop_failure_jump;
7229#ifdef WCHAR
7230		      DEBUG_PRINT3 ("  %C != %C => pop_failure_jump.\n",
7231				    (wint_t) c,
7232				    (wint_t) p1[3+OFFSET_ADDRESS_SIZE]);
7233#else
7234		      DEBUG_PRINT3 ("  %c != %c => pop_failure_jump.\n",
7235				    (char) c,
7236				    (char) p1[3+OFFSET_ADDRESS_SIZE]);
7237#endif
7238                  }
7239
7240#ifndef WCHAR
7241		else if ((re_opcode_t) p1[3] == charset
7242			 || (re_opcode_t) p1[3] == charset_not)
7243		  {
7244		    int not = (re_opcode_t) p1[3] == charset_not;
7245
7246		    if (c < (unsigned) (p1[4] * BYTEWIDTH)
7247			&& p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
7248		      not = !not;
7249
7250                    /* `not' is equal to 1 if c would match, which means
7251                        that we can't change to pop_failure_jump.  */
7252		    if (!not)
7253                      {
7254  		        p[-3] = (unsigned char) pop_failure_jump;
7255                        DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
7256                      }
7257		  }
7258#endif /* not WCHAR */
7259	      }
7260#ifndef WCHAR
7261            else if ((re_opcode_t) *p2 == charset)
7262	      {
7263		/* We win if the first character of the loop is not part
7264                   of the charset.  */
7265                if ((re_opcode_t) p1[3] == exactn
7266 		    && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
7267 			  && (p2[2 + p1[5] / BYTEWIDTH]
7268 			      & (1 << (p1[5] % BYTEWIDTH)))))
7269		  {
7270		    p[-3] = (unsigned char) pop_failure_jump;
7271		    DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
7272                  }
7273
7274		else if ((re_opcode_t) p1[3] == charset_not)
7275		  {
7276		    int idx;
7277		    /* We win if the charset_not inside the loop
7278		       lists every character listed in the charset after.  */
7279		    for (idx = 0; idx < (int) p2[1]; idx++)
7280		      if (! (p2[2 + idx] == 0
7281			     || (idx < (int) p1[4]
7282				 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
7283			break;
7284
7285		    if (idx == p2[1])
7286                      {
7287  		        p[-3] = (unsigned char) pop_failure_jump;
7288                        DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
7289                      }
7290		  }
7291		else if ((re_opcode_t) p1[3] == charset)
7292		  {
7293		    int idx;
7294		    /* We win if the charset inside the loop
7295		       has no overlap with the one after the loop.  */
7296		    for (idx = 0;
7297			 idx < (int) p2[1] && idx < (int) p1[4];
7298			 idx++)
7299		      if ((p2[2 + idx] & p1[5 + idx]) != 0)
7300			break;
7301
7302		    if (idx == p2[1] || idx == p1[4])
7303                      {
7304  		        p[-3] = (unsigned char) pop_failure_jump;
7305                        DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
7306                      }
7307		  }
7308	      }
7309#endif /* not WCHAR */
7310	  }
7311	  p -= OFFSET_ADDRESS_SIZE;	/* Point at relative address again.  */
7312	  if ((re_opcode_t) p[-1] != pop_failure_jump)
7313	    {
7314	      p[-1] = (UCHAR_T) jump;
7315              DEBUG_PRINT1 ("  Match => jump.\n");
7316	      goto unconditional_jump;
7317	    }
7318        /* Note fall through.  */
7319
7320
7321	/* The end of a simple repeat has a pop_failure_jump back to
7322           its matching on_failure_jump, where the latter will push a
7323           failure point.  The pop_failure_jump takes off failure
7324           points put on by this pop_failure_jump's matching
7325           on_failure_jump; we got through the pattern to here from the
7326           matching on_failure_jump, so didn't fail.  */
7327        CASE (pop_failure_jump):
7328          {
7329            /* We need to pass separate storage for the lowest and
7330               highest registers, even though we don't care about the
7331               actual values.  Otherwise, we will restore only one
7332               register from the stack, since lowest will == highest in
7333               `pop_failure_point'.  */
7334            active_reg_t dummy_low_reg, dummy_high_reg;
7335            UCHAR_T *pdummy = NULL;
7336            const CHAR_T *sdummy = NULL;
7337
7338            DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
7339            POP_FAILURE_POINT (sdummy, pdummy,
7340                               dummy_low_reg, dummy_high_reg,
7341                               reg_dummy, reg_dummy, reg_info_dummy);
7342          }
7343	  /* Note fall through.  */
7344
7345	unconditional_jump:
7346#ifdef _LIBC
7347	  DEBUG_PRINT2 ("\n%p: ", p);
7348#else
7349	  DEBUG_PRINT2 ("\n0x%x: ", p);
7350#endif
7351          /* Note fall through.  */
7352
7353        /* Unconditionally jump (without popping any failure points).  */
7354        CASE (jump):
7355	  EXTRACT_NUMBER_AND_INCR (mcnt, p);	/* Get the amount to jump.  */
7356          DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
7357	  p += mcnt;				/* Do the jump.  */
7358#ifdef _LIBC
7359          DEBUG_PRINT2 ("(to %p).\n", p);
7360#else
7361          DEBUG_PRINT2 ("(to 0x%x).\n", p);
7362#endif
7363	  NEXT;
7364
7365
7366        /* We need this opcode so we can detect where alternatives end
7367           in `group_match_null_string_p' et al.  */
7368        CASE (jump_past_alt):
7369          DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
7370          goto unconditional_jump;
7371
7372
7373        /* Normally, the on_failure_jump pushes a failure point, which
7374           then gets popped at pop_failure_jump.  We will end up at
7375           pop_failure_jump, also, and with a pattern of, say, `a+', we
7376           are skipping over the on_failure_jump, so we have to push
7377           something meaningless for pop_failure_jump to pop.  */
7378        CASE (dummy_failure_jump):
7379          DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
7380          /* It doesn't matter what we push for the string here.  What
7381             the code at `fail' tests is the value for the pattern.  */
7382          PUSH_FAILURE_POINT (NULL, NULL, -2);
7383          goto unconditional_jump;
7384
7385
7386        /* At the end of an alternative, we need to push a dummy failure
7387           point in case we are followed by a `pop_failure_jump', because
7388           we don't want the failure point for the alternative to be
7389           popped.  For example, matching `(a|ab)*' against `aab'
7390           requires that we match the `ab' alternative.  */
7391        CASE (push_dummy_failure):
7392          DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
7393          /* See comments just above at `dummy_failure_jump' about the
7394             two zeroes.  */
7395          PUSH_FAILURE_POINT (NULL, NULL, -2);
7396          NEXT;
7397
7398        /* Have to succeed matching what follows at least n times.
7399           After that, handle like `on_failure_jump'.  */
7400        CASE (succeed_n):
7401          EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE);
7402          DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
7403
7404          assert (mcnt >= 0);
7405          /* Originally, this is how many times we HAVE to succeed.  */
7406          if (mcnt > 0)
7407            {
7408               mcnt--;
7409	       p += OFFSET_ADDRESS_SIZE;
7410               STORE_NUMBER_AND_INCR (p, mcnt);
7411#ifdef _LIBC
7412               DEBUG_PRINT3 ("  Setting %p to %d.\n", p - OFFSET_ADDRESS_SIZE
7413			     , mcnt);
7414#else
7415               DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p - OFFSET_ADDRESS_SIZE
7416			     , mcnt);
7417#endif
7418            }
7419	  else if (mcnt == 0)
7420            {
7421#ifdef _LIBC
7422              DEBUG_PRINT2 ("  Setting two bytes from %p to no_op.\n",
7423			    p + OFFSET_ADDRESS_SIZE);
7424#else
7425              DEBUG_PRINT2 ("  Setting two bytes from 0x%x to no_op.\n",
7426			    p + OFFSET_ADDRESS_SIZE);
7427#endif /* _LIBC */
7428
7429#ifdef WCHAR
7430	      p[1] = (UCHAR_T) no_op;
7431#else
7432	      p[2] = (UCHAR_T) no_op;
7433              p[3] = (UCHAR_T) no_op;
7434#endif /* WCHAR */
7435              goto on_failure;
7436            }
7437          NEXT;
7438
7439        CASE (jump_n):
7440          EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE);
7441          DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
7442
7443          /* Originally, this is how many times we CAN jump.  */
7444          if (mcnt)
7445            {
7446               mcnt--;
7447               STORE_NUMBER (p + OFFSET_ADDRESS_SIZE, mcnt);
7448
7449#ifdef _LIBC
7450               DEBUG_PRINT3 ("  Setting %p to %d.\n", p + OFFSET_ADDRESS_SIZE,
7451			     mcnt);
7452#else
7453               DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p + OFFSET_ADDRESS_SIZE,
7454			     mcnt);
7455#endif /* _LIBC */
7456	       goto unconditional_jump;
7457            }
7458          /* If don't have to jump any more, skip over the rest of command.  */
7459	  else
7460	    p += 2 * OFFSET_ADDRESS_SIZE;
7461          NEXT;
7462
7463	CASE (set_number_at):
7464	  {
7465            DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
7466
7467            EXTRACT_NUMBER_AND_INCR (mcnt, p);
7468            p1 = p + mcnt;
7469            EXTRACT_NUMBER_AND_INCR (mcnt, p);
7470#ifdef _LIBC
7471            DEBUG_PRINT3 ("  Setting %p to %d.\n", p1, mcnt);
7472#else
7473            DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p1, mcnt);
7474#endif
7475	    STORE_NUMBER (p1, mcnt);
7476            NEXT;
7477          }
7478
7479#if 0
7480	/* The DEC Alpha C compiler 3.x generates incorrect code for the
7481	   test  WORDCHAR_P (d - 1) != WORDCHAR_P (d)  in the expansion of
7482	   AT_WORD_BOUNDARY, so this code is disabled.  Expanding the
7483	   macro and introducing temporary variables works around the bug.  */
7484
7485	CASE (wordbound):
7486	  DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7487	  if (AT_WORD_BOUNDARY (d))
7488	    {
7489	      NEXT;
7490	    }
7491	  goto fail;
7492
7493	CASE (notwordbound):
7494	  DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7495	  if (AT_WORD_BOUNDARY (d))
7496	    goto fail;
7497	  NEXT;
7498#else
7499	CASE (wordbound):
7500	{
7501	  boolean prevchar, thischar;
7502
7503	  DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7504	  if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
7505	    {
7506	      NEXT;
7507	    }
7508
7509	  prevchar = WORDCHAR_P (d - 1);
7510	  thischar = WORDCHAR_P (d);
7511	  if (prevchar != thischar)
7512	    {
7513	      NEXT;
7514	    }
7515	  goto fail;
7516	}
7517
7518      CASE (notwordbound):
7519	{
7520	  boolean prevchar, thischar;
7521
7522	  DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7523	  if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
7524	    goto fail;
7525
7526	  prevchar = WORDCHAR_P (d - 1);
7527	  thischar = WORDCHAR_P (d);
7528	  if (prevchar != thischar)
7529	    goto fail;
7530	  NEXT;
7531	}
7532#endif
7533
7534	CASE (wordbeg):
7535          DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
7536	  if (!AT_STRINGS_END (d) && WORDCHAR_P (d)
7537	      && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
7538	    {
7539	      NEXT;
7540	    }
7541          goto fail;
7542
7543	CASE (wordend):
7544          DEBUG_PRINT1 ("EXECUTING wordend.\n");
7545	  if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
7546              && (AT_STRINGS_END (d) || !WORDCHAR_P (d)))
7547	    {
7548	      NEXT;
7549	    }
7550          goto fail;
7551
7552#ifdef emacs
7553  	CASE (before_dot):
7554          DEBUG_PRINT1 ("EXECUTING before_dot.\n");
7555 	  if (PTR_CHAR_POS ((unsigned char *) d) >= point)
7556  	    goto fail;
7557  	  NEXT;
7558
7559  	CASE (at_dot):
7560          DEBUG_PRINT1 ("EXECUTING at_dot.\n");
7561 	  if (PTR_CHAR_POS ((unsigned char *) d) != point)
7562  	    goto fail;
7563  	  NEXT;
7564
7565  	CASE (after_dot):
7566          DEBUG_PRINT1 ("EXECUTING after_dot.\n");
7567          if (PTR_CHAR_POS ((unsigned char *) d) <= point)
7568  	    goto fail;
7569  	  NEXT;
7570
7571	CASE (syntaxspec):
7572          DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
7573	  mcnt = *p++;
7574	  goto matchsyntax;
7575
7576        CASE (wordchar):
7577          DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
7578	  mcnt = (int) Sword;
7579        matchsyntax:
7580	  PREFETCH ();
7581	  /* Can't use *d++ here; SYNTAX may be an unsafe macro.  */
7582	  d++;
7583	  if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
7584	    goto fail;
7585          SET_REGS_MATCHED ();
7586	  NEXT;
7587
7588	CASE (notsyntaxspec):
7589          DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
7590	  mcnt = *p++;
7591	  goto matchnotsyntax;
7592
7593        CASE (notwordchar):
7594          DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
7595	  mcnt = (int) Sword;
7596        matchnotsyntax:
7597	  PREFETCH ();
7598	  /* Can't use *d++ here; SYNTAX may be an unsafe macro.  */
7599	  d++;
7600	  if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
7601	    goto fail;
7602	  SET_REGS_MATCHED ();
7603          NEXT;
7604
7605#else /* not emacs */
7606	CASE (wordchar):
7607          DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
7608	  PREFETCH ();
7609          if (!WORDCHAR_P (d))
7610            goto fail;
7611	  SET_REGS_MATCHED ();
7612          d++;
7613	  NEXT;
7614
7615	CASE (notwordchar):
7616          DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
7617	  PREFETCH ();
7618	  if (WORDCHAR_P (d))
7619            goto fail;
7620          SET_REGS_MATCHED ();
7621          d++;
7622	  NEXT;
7623#endif /* not emacs */
7624
7625#ifndef __GNUC__
7626        default:
7627          abort ();
7628	}
7629      continue;  /* Successfully executed one pattern command; keep going.  */
7630#endif
7631
7632
7633    /* We goto here if a matching operation fails. */
7634    fail:
7635      if (!FAIL_STACK_EMPTY ())
7636	{ /* A restart point is known.  Restore to that state.  */
7637          DEBUG_PRINT1 ("\nFAIL:\n");
7638          POP_FAILURE_POINT (d, p,
7639                             lowest_active_reg, highest_active_reg,
7640                             regstart, regend, reg_info);
7641
7642          /* If this failure point is a dummy, try the next one.  */
7643          if (!p)
7644	    goto fail;
7645
7646          /* If we failed to the end of the pattern, don't examine *p.  */
7647	  assert (p <= pend);
7648          if (p < pend)
7649            {
7650              boolean is_a_jump_n = false;
7651
7652              /* If failed to a backwards jump that's part of a repetition
7653                 loop, need to pop this failure point and use the next one.  */
7654              switch ((re_opcode_t) *p)
7655                {
7656                case jump_n:
7657                  is_a_jump_n = true;
7658                case maybe_pop_jump:
7659                case pop_failure_jump:
7660                case jump:
7661                  p1 = p + 1;
7662                  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7663                  p1 += mcnt;
7664
7665                  if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
7666                      || (!is_a_jump_n
7667                          && (re_opcode_t) *p1 == on_failure_jump))
7668                    goto fail;
7669                  break;
7670                default:
7671                  /* do nothing */ ;
7672                }
7673            }
7674
7675          if (d >= string1 && d <= end1)
7676	    dend = end_match_1;
7677        }
7678      else
7679        break;   /* Matching at this starting point really fails.  */
7680    } /* for (;;) */
7681
7682  if (best_regs_set)
7683    goto restore_best_regs;
7684
7685  FREE_VARIABLES ();
7686
7687  return -1;         			/* Failure to match.  */
7688} /* re_match_2 */
7689
7690/* Subroutine definitions for re_match_2.  */
7691
7692
7693/* We are passed P pointing to a register number after a start_memory.
7694
7695   Return true if the pattern up to the corresponding stop_memory can
7696   match the empty string, and false otherwise.
7697
7698   If we find the matching stop_memory, sets P to point to one past its number.
7699   Otherwise, sets P to an undefined byte less than or equal to END.
7700
7701   We don't handle duplicates properly (yet).  */
7702
7703static boolean
7704PREFIX(group_match_null_string_p) (p, end, reg_info)
7705    UCHAR_T **p, *end;
7706    PREFIX(register_info_type) *reg_info;
7707{
7708  int mcnt;
7709  /* Point to after the args to the start_memory.  */
7710  UCHAR_T *p1 = *p + 2;
7711
7712  while (p1 < end)
7713    {
7714      /* Skip over opcodes that can match nothing, and return true or
7715	 false, as appropriate, when we get to one that can't, or to the
7716         matching stop_memory.  */
7717
7718      switch ((re_opcode_t) *p1)
7719        {
7720        /* Could be either a loop or a series of alternatives.  */
7721        case on_failure_jump:
7722          p1++;
7723          EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7724
7725          /* If the next operation is not a jump backwards in the
7726	     pattern.  */
7727
7728	  if (mcnt >= 0)
7729	    {
7730              /* Go through the on_failure_jumps of the alternatives,
7731                 seeing if any of the alternatives cannot match nothing.
7732                 The last alternative starts with only a jump,
7733                 whereas the rest start with on_failure_jump and end
7734                 with a jump, e.g., here is the pattern for `a|b|c':
7735
7736                 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
7737                 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
7738                 /exactn/1/c
7739
7740                 So, we have to first go through the first (n-1)
7741                 alternatives and then deal with the last one separately.  */
7742
7743
7744              /* Deal with the first (n-1) alternatives, which start
7745                 with an on_failure_jump (see above) that jumps to right
7746                 past a jump_past_alt.  */
7747
7748              while ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] ==
7749		     jump_past_alt)
7750                {
7751                  /* `mcnt' holds how many bytes long the alternative
7752                     is, including the ending `jump_past_alt' and
7753                     its number.  */
7754
7755                  if (!PREFIX(alt_match_null_string_p) (p1, p1 + mcnt -
7756						(1 + OFFSET_ADDRESS_SIZE),
7757						reg_info))
7758                    return false;
7759
7760                  /* Move to right after this alternative, including the
7761		     jump_past_alt.  */
7762                  p1 += mcnt;
7763
7764                  /* Break if it's the beginning of an n-th alternative
7765                     that doesn't begin with an on_failure_jump.  */
7766                  if ((re_opcode_t) *p1 != on_failure_jump)
7767                    break;
7768
7769		  /* Still have to check that it's not an n-th
7770		     alternative that starts with an on_failure_jump.  */
7771		  p1++;
7772                  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7773                  if ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] !=
7774		      jump_past_alt)
7775                    {
7776		      /* Get to the beginning of the n-th alternative.  */
7777                      p1 -= 1 + OFFSET_ADDRESS_SIZE;
7778                      break;
7779                    }
7780                }
7781
7782              /* Deal with the last alternative: go back and get number
7783                 of the `jump_past_alt' just before it.  `mcnt' contains
7784                 the length of the alternative.  */
7785              EXTRACT_NUMBER (mcnt, p1 - OFFSET_ADDRESS_SIZE);
7786
7787              if (!PREFIX(alt_match_null_string_p) (p1, p1 + mcnt, reg_info))
7788                return false;
7789
7790              p1 += mcnt;	/* Get past the n-th alternative.  */
7791            } /* if mcnt > 0 */
7792          break;
7793
7794
7795        case stop_memory:
7796	  assert (p1[1] == **p);
7797          *p = p1 + 2;
7798          return true;
7799
7800
7801        default:
7802          if (!PREFIX(common_op_match_null_string_p) (&p1, end, reg_info))
7803            return false;
7804        }
7805    } /* while p1 < end */
7806
7807  return false;
7808} /* group_match_null_string_p */
7809
7810
7811/* Similar to group_match_null_string_p, but doesn't deal with alternatives:
7812   It expects P to be the first byte of a single alternative and END one
7813   byte past the last. The alternative can contain groups.  */
7814
7815static boolean
7816PREFIX(alt_match_null_string_p) (p, end, reg_info)
7817    UCHAR_T *p, *end;
7818    PREFIX(register_info_type) *reg_info;
7819{
7820  int mcnt;
7821  UCHAR_T *p1 = p;
7822
7823  while (p1 < end)
7824    {
7825      /* Skip over opcodes that can match nothing, and break when we get
7826         to one that can't.  */
7827
7828      switch ((re_opcode_t) *p1)
7829        {
7830	/* It's a loop.  */
7831        case on_failure_jump:
7832          p1++;
7833          EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7834          p1 += mcnt;
7835          break;
7836
7837	default:
7838          if (!PREFIX(common_op_match_null_string_p) (&p1, end, reg_info))
7839            return false;
7840        }
7841    }  /* while p1 < end */
7842
7843  return true;
7844} /* alt_match_null_string_p */
7845
7846
7847/* Deals with the ops common to group_match_null_string_p and
7848   alt_match_null_string_p.
7849
7850   Sets P to one after the op and its arguments, if any.  */
7851
7852static boolean
7853PREFIX(common_op_match_null_string_p) (p, end, reg_info)
7854    UCHAR_T **p, *end;
7855    PREFIX(register_info_type) *reg_info;
7856{
7857  int mcnt;
7858  boolean ret;
7859  int reg_no;
7860  UCHAR_T *p1 = *p;
7861
7862  switch ((re_opcode_t) *p1++)
7863    {
7864    case no_op:
7865    case begline:
7866    case endline:
7867    case begbuf:
7868    case endbuf:
7869    case wordbeg:
7870    case wordend:
7871    case wordbound:
7872    case notwordbound:
7873#ifdef emacs
7874    case before_dot:
7875    case at_dot:
7876    case after_dot:
7877#endif
7878      break;
7879
7880    case start_memory:
7881      reg_no = *p1;
7882      assert (reg_no > 0 && reg_no <= MAX_REGNUM);
7883      ret = PREFIX(group_match_null_string_p) (&p1, end, reg_info);
7884
7885      /* Have to set this here in case we're checking a group which
7886         contains a group and a back reference to it.  */
7887
7888      if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
7889        REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
7890
7891      if (!ret)
7892        return false;
7893      break;
7894
7895    /* If this is an optimized succeed_n for zero times, make the jump.  */
7896    case jump:
7897      EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7898      if (mcnt >= 0)
7899        p1 += mcnt;
7900      else
7901        return false;
7902      break;
7903
7904    case succeed_n:
7905      /* Get to the number of times to succeed.  */
7906      p1 += OFFSET_ADDRESS_SIZE;
7907      EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7908
7909      if (mcnt == 0)
7910        {
7911          p1 -= 2 * OFFSET_ADDRESS_SIZE;
7912          EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7913          p1 += mcnt;
7914        }
7915      else
7916        return false;
7917      break;
7918
7919    case duplicate:
7920      if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
7921        return false;
7922      break;
7923
7924    case set_number_at:
7925      p1 += 2 * OFFSET_ADDRESS_SIZE;
7926
7927    default:
7928      /* All other opcodes mean we cannot match the empty string.  */
7929      return false;
7930  }
7931
7932  *p = p1;
7933  return true;
7934} /* common_op_match_null_string_p */
7935
7936
7937/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
7938   bytes; nonzero otherwise.  */
7939
7940static int
7941PREFIX(bcmp_translate) (s1, s2, len, translate)
7942     const CHAR_T *s1, *s2;
7943     register int len;
7944     RE_TRANSLATE_TYPE translate;
7945{
7946  register const UCHAR_T *p1 = (const UCHAR_T *) s1;
7947  register const UCHAR_T *p2 = (const UCHAR_T *) s2;
7948  while (len)
7949    {
7950#ifdef WCHAR
7951      if (((*p1<=0xff)?translate[*p1++]:*p1++)
7952	  != ((*p2<=0xff)?translate[*p2++]:*p2++))
7953	return 1;
7954#else /* BYTE */
7955      if (translate[*p1++] != translate[*p2++]) return 1;
7956#endif /* WCHAR */
7957      len--;
7958    }
7959  return 0;
7960}
7961
7962
7963#else /* not INSIDE_RECURSION */
7964
7965/* Entry points for GNU code.  */
7966
7967/* re_compile_pattern is the GNU regular expression compiler: it
7968   compiles PATTERN (of length SIZE) and puts the result in BUFP.
7969   Returns 0 if the pattern was valid, otherwise an error string.
7970
7971   Assumes the `allocated' (and perhaps `buffer') and `translate' fields
7972   are set in BUFP on entry.
7973
7974   We call regex_compile to do the actual compilation.  */
7975
7976const char *
7977re_compile_pattern (pattern, length, bufp)
7978     const char *pattern;
7979     size_t length;
7980     struct re_pattern_buffer *bufp;
7981{
7982  reg_errcode_t ret;
7983
7984  /* GNU code is written to assume at least RE_NREGS registers will be set
7985     (and at least one extra will be -1).  */
7986  bufp->regs_allocated = REGS_UNALLOCATED;
7987
7988  /* And GNU code determines whether or not to get register information
7989     by passing null for the REGS argument to re_match, etc., not by
7990     setting no_sub.  */
7991  bufp->no_sub = 0;
7992
7993  /* Match anchors at newline.  */
7994  bufp->newline_anchor = 1;
7995
7996# ifdef MBS_SUPPORT
7997  if (MB_CUR_MAX != 1)
7998    ret = wcs_regex_compile (pattern, length, re_syntax_options, bufp);
7999  else
8000# endif
8001    ret = byte_regex_compile (pattern, length, re_syntax_options, bufp);
8002
8003  if (!ret)
8004    return NULL;
8005  return gettext (re_error_msgid + re_error_msgid_idx[(int) ret]);
8006}
8007#ifdef _LIBC
8008weak_alias (__re_compile_pattern, re_compile_pattern)
8009#endif
8010
8011/* Entry points compatible with 4.2 BSD regex library.  We don't define
8012   them unless specifically requested.  */
8013
8014#if defined _REGEX_RE_COMP || defined _LIBC
8015
8016/* BSD has one and only one pattern buffer.  */
8017static struct re_pattern_buffer re_comp_buf;
8018
8019char *
8020#ifdef _LIBC
8021/* Make these definitions weak in libc, so POSIX programs can redefine
8022   these names if they don't use our functions, and still use
8023   regcomp/regexec below without link errors.  */
8024weak_function
8025#endif
8026re_comp (s)
8027    const char *s;
8028{
8029  reg_errcode_t ret;
8030
8031  if (!s)
8032    {
8033      if (!re_comp_buf.buffer)
8034	return gettext ("No previous regular expression");
8035      return 0;
8036    }
8037
8038  if (!re_comp_buf.buffer)
8039    {
8040      re_comp_buf.buffer = (unsigned char *) malloc (200);
8041      if (re_comp_buf.buffer == NULL)
8042        return (char *) gettext (re_error_msgid
8043				 + re_error_msgid_idx[(int) REG_ESPACE]);
8044      re_comp_buf.allocated = 200;
8045
8046      re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
8047      if (re_comp_buf.fastmap == NULL)
8048	return (char *) gettext (re_error_msgid
8049				 + re_error_msgid_idx[(int) REG_ESPACE]);
8050    }
8051
8052  /* Since `re_exec' always passes NULL for the `regs' argument, we
8053     don't need to initialize the pattern buffer fields which affect it.  */
8054
8055  /* Match anchors at newlines.  */
8056  re_comp_buf.newline_anchor = 1;
8057
8058# ifdef MBS_SUPPORT
8059  if (MB_CUR_MAX != 1)
8060    ret = wcs_regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
8061  else
8062# endif
8063    ret = byte_regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
8064
8065  if (!ret)
8066    return NULL;
8067
8068  /* Yes, we're discarding `const' here if !HAVE_LIBINTL.  */
8069  return (char *) gettext (re_error_msgid + re_error_msgid_idx[(int) ret]);
8070}
8071
8072
8073int
8074#ifdef _LIBC
8075weak_function
8076#endif
8077re_exec (s)
8078    const char *s;
8079{
8080  const int len = strlen (s);
8081  return
8082    0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
8083}
8084
8085#endif /* _REGEX_RE_COMP */
8086
8087/* POSIX.2 functions.  Don't define these for Emacs.  */
8088
8089#ifndef emacs
8090
8091/* regcomp takes a regular expression as a string and compiles it.
8092
8093   PREG is a regex_t *.  We do not expect any fields to be initialized,
8094   since POSIX says we shouldn't.  Thus, we set
8095
8096     `buffer' to the compiled pattern;
8097     `used' to the length of the compiled pattern;
8098     `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
8099       REG_EXTENDED bit in CFLAGS is set; otherwise, to
8100       RE_SYNTAX_POSIX_BASIC;
8101     `newline_anchor' to REG_NEWLINE being set in CFLAGS;
8102     `fastmap' to an allocated space for the fastmap;
8103     `fastmap_accurate' to zero;
8104     `re_nsub' to the number of subexpressions in PATTERN.
8105
8106   PATTERN is the address of the pattern string.
8107
8108   CFLAGS is a series of bits which affect compilation.
8109
8110     If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
8111     use POSIX basic syntax.
8112
8113     If REG_NEWLINE is set, then . and [^...] don't match newline.
8114     Also, regexec will try a match beginning after every newline.
8115
8116     If REG_ICASE is set, then we considers upper- and lowercase
8117     versions of letters to be equivalent when matching.
8118
8119     If REG_NOSUB is set, then when PREG is passed to regexec, that
8120     routine will report only success or failure, and nothing about the
8121     registers.
8122
8123   It returns 0 if it succeeds, nonzero if it doesn't.  (See regex.h for
8124   the return codes and their meanings.)  */
8125
8126int
8127regcomp (preg, pattern, cflags)
8128    regex_t *preg;
8129    const char *pattern;
8130    int cflags;
8131{
8132  reg_errcode_t ret;
8133  reg_syntax_t syntax
8134    = (cflags & REG_EXTENDED) ?
8135      RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
8136
8137  /* regex_compile will allocate the space for the compiled pattern.  */
8138  preg->buffer = 0;
8139  preg->allocated = 0;
8140  preg->used = 0;
8141
8142  /* Try to allocate space for the fastmap.  */
8143  preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
8144
8145  if (cflags & REG_ICASE)
8146    {
8147      unsigned i;
8148
8149      preg->translate
8150	= (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
8151				      * sizeof (*(RE_TRANSLATE_TYPE)0));
8152      if (preg->translate == NULL)
8153        return (int) REG_ESPACE;
8154
8155      /* Map uppercase characters to corresponding lowercase ones.  */
8156      for (i = 0; i < CHAR_SET_SIZE; i++)
8157        preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
8158    }
8159  else
8160    preg->translate = NULL;
8161
8162  /* If REG_NEWLINE is set, newlines are treated differently.  */
8163  if (cflags & REG_NEWLINE)
8164    { /* REG_NEWLINE implies neither . nor [^...] match newline.  */
8165      syntax &= ~RE_DOT_NEWLINE;
8166      syntax |= RE_HAT_LISTS_NOT_NEWLINE;
8167      /* It also changes the matching behavior.  */
8168      preg->newline_anchor = 1;
8169    }
8170  else
8171    preg->newline_anchor = 0;
8172
8173  preg->no_sub = !!(cflags & REG_NOSUB);
8174
8175  /* POSIX says a null character in the pattern terminates it, so we
8176     can use strlen here in compiling the pattern.  */
8177# ifdef MBS_SUPPORT
8178  if (MB_CUR_MAX != 1)
8179    ret = wcs_regex_compile (pattern, strlen (pattern), syntax, preg);
8180  else
8181# endif
8182    ret = byte_regex_compile (pattern, strlen (pattern), syntax, preg);
8183
8184  /* POSIX doesn't distinguish between an unmatched open-group and an
8185     unmatched close-group: both are REG_EPAREN.  */
8186  if (ret == REG_ERPAREN) ret = REG_EPAREN;
8187
8188  if (ret == REG_NOERROR && preg->fastmap)
8189    {
8190      /* Compute the fastmap now, since regexec cannot modify the pattern
8191	 buffer.  */
8192      if (re_compile_fastmap (preg) == -2)
8193	{
8194	  /* Some error occurred while computing the fastmap, just forget
8195	     about it.  */
8196	  free (preg->fastmap);
8197	  preg->fastmap = NULL;
8198	}
8199    }
8200
8201  return (int) ret;
8202}
8203#ifdef _LIBC
8204weak_alias (__regcomp, regcomp)
8205#endif
8206
8207
8208/* regexec searches for a given pattern, specified by PREG, in the
8209   string STRING.
8210
8211   If NMATCH is zero or REG_NOSUB was set in the cflags argument to
8212   `regcomp', we ignore PMATCH.  Otherwise, we assume PMATCH has at
8213   least NMATCH elements, and we set them to the offsets of the
8214   corresponding matched substrings.
8215
8216   EFLAGS specifies `execution flags' which affect matching: if
8217   REG_NOTBOL is set, then ^ does not match at the beginning of the
8218   string; if REG_NOTEOL is set, then $ does not match at the end.
8219
8220   We return 0 if we find a match and REG_NOMATCH if not.  */
8221
8222int
8223regexec (preg, string, nmatch, pmatch, eflags)
8224    const regex_t *preg;
8225    const char *string;
8226    size_t nmatch;
8227    regmatch_t pmatch[];
8228    int eflags;
8229{
8230  int ret;
8231  struct re_registers regs;
8232  regex_t private_preg;
8233  int len = strlen (string);
8234  boolean want_reg_info = !preg->no_sub && nmatch > 0;
8235
8236  private_preg = *preg;
8237
8238  private_preg.not_bol = !!(eflags & REG_NOTBOL);
8239  private_preg.not_eol = !!(eflags & REG_NOTEOL);
8240
8241  /* The user has told us exactly how many registers to return
8242     information about, via `nmatch'.  We have to pass that on to the
8243     matching routines.  */
8244  private_preg.regs_allocated = REGS_FIXED;
8245
8246  if (want_reg_info)
8247    {
8248      regs.num_regs = nmatch;
8249      regs.start = TALLOC (nmatch * 2, regoff_t);
8250      if (regs.start == NULL)
8251        return (int) REG_NOMATCH;
8252      regs.end = regs.start + nmatch;
8253    }
8254
8255  /* Perform the searching operation.  */
8256  ret = re_search (&private_preg, string, len,
8257                   /* start: */ 0, /* range: */ len,
8258                   want_reg_info ? &regs : (struct re_registers *) 0);
8259
8260  /* Copy the register information to the POSIX structure.  */
8261  if (want_reg_info)
8262    {
8263      if (ret >= 0)
8264        {
8265          unsigned r;
8266
8267          for (r = 0; r < nmatch; r++)
8268            {
8269              pmatch[r].rm_so = regs.start[r];
8270              pmatch[r].rm_eo = regs.end[r];
8271            }
8272        }
8273
8274      /* If we needed the temporary register info, free the space now.  */
8275      free (regs.start);
8276    }
8277
8278  /* We want zero return to mean success, unlike `re_search'.  */
8279  return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
8280}
8281#ifdef _LIBC
8282weak_alias (__regexec, regexec)
8283#endif
8284
8285
8286/* Returns a message corresponding to an error code, ERRCODE, returned
8287   from either regcomp or regexec.   We don't use PREG here.  */
8288
8289size_t
8290regerror (errcode, preg, errbuf, errbuf_size)
8291    int errcode;
8292    const regex_t *preg;
8293    char *errbuf;
8294    size_t errbuf_size;
8295{
8296  const char *msg;
8297  size_t msg_size;
8298
8299  if (errcode < 0
8300      || errcode >= (int) (sizeof (re_error_msgid_idx)
8301			   / sizeof (re_error_msgid_idx[0])))
8302    /* Only error codes returned by the rest of the code should be passed
8303       to this routine.  If we are given anything else, or if other regex
8304       code generates an invalid error code, then the program has a bug.
8305       Dump core so we can fix it.  */
8306    abort ();
8307
8308  msg = gettext (re_error_msgid + re_error_msgid_idx[errcode]);
8309
8310  msg_size = strlen (msg) + 1; /* Includes the null.  */
8311
8312  if (errbuf_size != 0)
8313    {
8314      if (msg_size > errbuf_size)
8315        {
8316#if defined HAVE_MEMPCPY || defined _LIBC
8317	  *((char *) __mempcpy (errbuf, msg, errbuf_size - 1)) = '\0';
8318#else
8319          memcpy (errbuf, msg, errbuf_size - 1);
8320          errbuf[errbuf_size - 1] = 0;
8321#endif
8322        }
8323      else
8324        memcpy (errbuf, msg, msg_size);
8325    }
8326
8327  return msg_size;
8328}
8329#ifdef _LIBC
8330weak_alias (__regerror, regerror)
8331#endif
8332
8333
8334/* Free dynamically allocated space used by PREG.  */
8335
8336void
8337regfree (preg)
8338    regex_t *preg;
8339{
8340  if (preg->buffer != NULL)
8341    free (preg->buffer);
8342  preg->buffer = NULL;
8343
8344  preg->allocated = 0;
8345  preg->used = 0;
8346
8347  if (preg->fastmap != NULL)
8348    free (preg->fastmap);
8349  preg->fastmap = NULL;
8350  preg->fastmap_accurate = 0;
8351
8352  if (preg->translate != NULL)
8353    free (preg->translate);
8354  preg->translate = NULL;
8355}
8356#ifdef _LIBC
8357weak_alias (__regfree, regfree)
8358#endif
8359
8360#endif /* not emacs  */
8361
8362#endif /* not INSIDE_RECURSION */
8363
8364
8365#undef STORE_NUMBER
8366#undef STORE_NUMBER_AND_INCR
8367#undef EXTRACT_NUMBER
8368#undef EXTRACT_NUMBER_AND_INCR
8369
8370#undef DEBUG_PRINT_COMPILED_PATTERN
8371#undef DEBUG_PRINT_DOUBLE_STRING
8372
8373#undef INIT_FAIL_STACK
8374#undef RESET_FAIL_STACK
8375#undef DOUBLE_FAIL_STACK
8376#undef PUSH_PATTERN_OP
8377#undef PUSH_FAILURE_POINTER
8378#undef PUSH_FAILURE_INT
8379#undef PUSH_FAILURE_ELT
8380#undef POP_FAILURE_POINTER
8381#undef POP_FAILURE_INT
8382#undef POP_FAILURE_ELT
8383#undef DEBUG_PUSH
8384#undef DEBUG_POP
8385#undef PUSH_FAILURE_POINT
8386#undef POP_FAILURE_POINT
8387
8388#undef REG_UNSET_VALUE
8389#undef REG_UNSET
8390
8391#undef PATFETCH
8392#undef PATFETCH_RAW
8393#undef PATUNFETCH
8394#undef TRANSLATE
8395
8396#undef INIT_BUF_SIZE
8397#undef GET_BUFFER_SPACE
8398#undef BUF_PUSH
8399#undef BUF_PUSH_2
8400#undef BUF_PUSH_3
8401#undef STORE_JUMP
8402#undef STORE_JUMP2
8403#undef INSERT_JUMP
8404#undef INSERT_JUMP2
8405#undef EXTEND_BUFFER
8406#undef GET_UNSIGNED_NUMBER
8407#undef FREE_STACK_RETURN
8408
8409# undef POINTER_TO_OFFSET
8410# undef MATCHING_IN_FRST_STRING
8411# undef PREFETCH
8412# undef AT_STRINGS_BEG
8413# undef AT_STRINGS_END
8414# undef WORDCHAR_P
8415# undef FREE_VAR
8416# undef FREE_VARIABLES
8417# undef NO_HIGHEST_ACTIVE_REG
8418# undef NO_LOWEST_ACTIVE_REG
8419
8420# undef CHAR_T
8421# undef UCHAR_T
8422# undef COMPILED_BUFFER_VAR
8423# undef OFFSET_ADDRESS_SIZE
8424# undef CHAR_CLASS_SIZE
8425# undef PREFIX
8426# undef ARG_PREFIX
8427# undef PUT_CHAR
8428# undef BYTE
8429# undef WCHAR
8430
8431# define DEFINED_ONCE
8432