1/* bfd back-end for HP PA-RISC SOM objects.
2   Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3   2000, 2001, 2002, 2003, 2004, 2005, 2006
4   Free Software Foundation, Inc.
5
6   Contributed by the Center for Software Science at the
7   University of Utah.
8
9   This file is part of BFD, the Binary File Descriptor library.
10
11   This program is free software; you can redistribute it and/or modify
12   it under the terms of the GNU General Public License as published by
13   the Free Software Foundation; either version 2 of the License, or
14   (at your option) any later version.
15
16   This program is distributed in the hope that it will be useful,
17   but WITHOUT ANY WARRANTY; without even the implied warranty of
18   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19   GNU General Public License for more details.
20
21   You should have received a copy of the GNU General Public License
22   along with this program; if not, write to the Free Software
23   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
24   02110-1301, USA.  */
25
26#include "alloca-conf.h"
27#include "bfd.h"
28#include "sysdep.h"
29
30#if defined (HOST_HPPAHPUX) || defined (HOST_HPPABSD) || defined (HOST_HPPAOSF) || defined(HOST_HPPAMPEIX)
31
32#include "libbfd.h"
33#include "som.h"
34#include "safe-ctype.h"
35
36#include <sys/param.h>
37#include <signal.h>
38#include <machine/reg.h>
39#include <sys/file.h>
40
41static bfd_reloc_status_type hppa_som_reloc
42  (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
43static bfd_boolean som_mkobject (bfd *);
44static bfd_boolean som_is_space (asection *);
45static bfd_boolean som_is_subspace (asection *);
46static int compare_subspaces (const void *, const void *);
47static unsigned long som_compute_checksum (bfd *);
48static bfd_boolean som_build_and_write_symbol_table (bfd *);
49static unsigned int som_slurp_symbol_table (bfd *);
50
51/* Magic not defined in standard HP-UX header files until 8.0.  */
52
53#ifndef CPU_PA_RISC1_0
54#define CPU_PA_RISC1_0 0x20B
55#endif /* CPU_PA_RISC1_0 */
56
57#ifndef CPU_PA_RISC1_1
58#define CPU_PA_RISC1_1 0x210
59#endif /* CPU_PA_RISC1_1 */
60
61#ifndef CPU_PA_RISC2_0
62#define CPU_PA_RISC2_0 0x214
63#endif /* CPU_PA_RISC2_0 */
64
65#ifndef _PA_RISC1_0_ID
66#define _PA_RISC1_0_ID CPU_PA_RISC1_0
67#endif /* _PA_RISC1_0_ID */
68
69#ifndef _PA_RISC1_1_ID
70#define _PA_RISC1_1_ID CPU_PA_RISC1_1
71#endif /* _PA_RISC1_1_ID */
72
73#ifndef _PA_RISC2_0_ID
74#define _PA_RISC2_0_ID CPU_PA_RISC2_0
75#endif /* _PA_RISC2_0_ID */
76
77#ifndef _PA_RISC_MAXID
78#define _PA_RISC_MAXID	0x2FF
79#endif /* _PA_RISC_MAXID */
80
81#ifndef _PA_RISC_ID
82#define _PA_RISC_ID(__m_num)		\
83    (((__m_num) == _PA_RISC1_0_ID) ||	\
84     ((__m_num) >= _PA_RISC1_1_ID && (__m_num) <= _PA_RISC_MAXID))
85#endif /* _PA_RISC_ID */
86
87/* HIUX in it's infinite stupidity changed the names for several "well
88   known" constants.  Work around such braindamage.  Try the HPUX version
89   first, then the HIUX version, and finally provide a default.  */
90#ifdef HPUX_AUX_ID
91#define EXEC_AUX_ID HPUX_AUX_ID
92#endif
93
94#if !defined (EXEC_AUX_ID) && defined (HIUX_AUX_ID)
95#define EXEC_AUX_ID HIUX_AUX_ID
96#endif
97
98#ifndef EXEC_AUX_ID
99#define EXEC_AUX_ID 0
100#endif
101
102/* Size (in chars) of the temporary buffers used during fixup and string
103   table writes.   */
104
105#define SOM_TMP_BUFSIZE 8192
106
107/* Size of the hash table in archives.  */
108#define SOM_LST_HASH_SIZE 31
109
110/* Max number of SOMs to be found in an archive.  */
111#define SOM_LST_MODULE_LIMIT 1024
112
113/* Generic alignment macro.  */
114#define SOM_ALIGN(val, alignment) \
115  (((val) + (alignment) - 1) &~ ((unsigned long) (alignment) - 1))
116
117/* SOM allows any one of the four previous relocations to be reused
118   with a "R_PREV_FIXUP" relocation entry.  Since R_PREV_FIXUP
119   relocations are always a single byte, using a R_PREV_FIXUP instead
120   of some multi-byte relocation makes object files smaller.
121
122   Note one side effect of using a R_PREV_FIXUP is the relocation that
123   is being repeated moves to the front of the queue.  */
124struct reloc_queue
125{
126  unsigned char *reloc;
127  unsigned int size;
128} reloc_queue[4];
129
130/* This fully describes the symbol types which may be attached to
131   an EXPORT or IMPORT directive.  Only SOM uses this formation
132   (ELF has no need for it).  */
133typedef enum
134{
135  SYMBOL_TYPE_UNKNOWN,
136  SYMBOL_TYPE_ABSOLUTE,
137  SYMBOL_TYPE_CODE,
138  SYMBOL_TYPE_DATA,
139  SYMBOL_TYPE_ENTRY,
140  SYMBOL_TYPE_MILLICODE,
141  SYMBOL_TYPE_PLABEL,
142  SYMBOL_TYPE_PRI_PROG,
143  SYMBOL_TYPE_SEC_PROG,
144} pa_symbol_type;
145
146struct section_to_type
147{
148  char *section;
149  char type;
150};
151
152/* Assorted symbol information that needs to be derived from the BFD symbol
153   and/or the BFD backend private symbol data.  */
154struct som_misc_symbol_info
155{
156  unsigned int symbol_type;
157  unsigned int symbol_scope;
158  unsigned int arg_reloc;
159  unsigned int symbol_info;
160  unsigned int symbol_value;
161  unsigned int priv_level;
162  unsigned int secondary_def;
163  unsigned int is_comdat;
164  unsigned int is_common;
165  unsigned int dup_common;
166};
167
168/* Map SOM section names to POSIX/BSD single-character symbol types.
169
170   This table includes all the standard subspaces as defined in the
171   current "PRO ABI for PA-RISC Systems", $UNWIND$ which for
172   some reason was left out, and sections specific to embedded stabs.  */
173
174static const struct section_to_type stt[] =
175{
176  {"$TEXT$", 't'},
177  {"$SHLIB_INFO$", 't'},
178  {"$MILLICODE$", 't'},
179  {"$LIT$", 't'},
180  {"$CODE$", 't'},
181  {"$UNWIND_START$", 't'},
182  {"$UNWIND$", 't'},
183  {"$PRIVATE$", 'd'},
184  {"$PLT$", 'd'},
185  {"$SHLIB_DATA$", 'd'},
186  {"$DATA$", 'd'},
187  {"$SHORTDATA$", 'g'},
188  {"$DLT$", 'd'},
189  {"$GLOBAL$", 'g'},
190  {"$SHORTBSS$", 's'},
191  {"$BSS$", 'b'},
192  {"$GDB_STRINGS$", 'N'},
193  {"$GDB_SYMBOLS$", 'N'},
194  {0, 0}
195};
196
197/* About the relocation formatting table...
198
199   There are 256 entries in the table, one for each possible
200   relocation opcode available in SOM.  We index the table by
201   the relocation opcode.  The names and operations are those
202   defined by a.out_800 (4).
203
204   Right now this table is only used to count and perform minimal
205   processing on relocation streams so that they can be internalized
206   into BFD and symbolically printed by utilities.  To make actual use
207   of them would be much more difficult, BFD's concept of relocations
208   is far too simple to handle SOM relocations.  The basic assumption
209   that a relocation can be completely processed independent of other
210   relocations before an object file is written is invalid for SOM.
211
212   The SOM relocations are meant to be processed as a stream, they
213   specify copying of data from the input section to the output section
214   while possibly modifying the data in some manner.  They also can
215   specify that a variable number of zeros or uninitialized data be
216   inserted on in the output segment at the current offset.  Some
217   relocations specify that some previous relocation be re-applied at
218   the current location in the input/output sections.  And finally a number
219   of relocations have effects on other sections (R_ENTRY, R_EXIT,
220   R_UNWIND_AUX and a variety of others).  There isn't even enough room
221   in the BFD relocation data structure to store enough information to
222   perform all the relocations.
223
224   Each entry in the table has three fields.
225
226   The first entry is an index into this "class" of relocations.  This
227   index can then be used as a variable within the relocation itself.
228
229   The second field is a format string which actually controls processing
230   of the relocation.  It uses a simple postfix machine to do calculations
231   based on variables/constants found in the string and the relocation
232   stream.
233
234   The third field specifys whether or not this relocation may use
235   a constant (V) from the previous R_DATA_OVERRIDE rather than a constant
236   stored in the instruction.
237
238   Variables:
239
240   L = input space byte count
241   D = index into class of relocations
242   M = output space byte count
243   N = statement number (unused?)
244   O = stack operation
245   R = parameter relocation bits
246   S = symbol index
247   T = first 32 bits of stack unwind information
248   U = second 32 bits of stack unwind information
249   V = a literal constant (usually used in the next relocation)
250   P = a previous relocation
251
252   Lower case letters (starting with 'b') refer to following
253   bytes in the relocation stream.  'b' is the next 1 byte,
254   c is the next 2 bytes, d is the next 3 bytes, etc...
255   This is the variable part of the relocation entries that
256   makes our life a living hell.
257
258   numerical constants are also used in the format string.  Note
259   the constants are represented in decimal.
260
261   '+', "*" and "=" represents the obvious postfix operators.
262   '<' represents a left shift.
263
264   Stack Operations:
265
266   Parameter Relocation Bits:
267
268   Unwind Entries:
269
270   Previous Relocations:  The index field represents which in the queue
271   of 4 previous fixups should be re-applied.
272
273   Literal Constants:  These are generally used to represent addend
274   parts of relocations when these constants are not stored in the
275   fields of the instructions themselves.  For example the instruction
276   addil foo-$global$-0x1234 would use an override for "0x1234" rather
277   than storing it into the addil itself.  */
278
279struct fixup_format
280{
281  int D;
282  const char *format;
283};
284
285static const struct fixup_format som_fixup_formats[256] =
286{
287  /* R_NO_RELOCATION.  */
288  {  0, "LD1+4*=" },		/* 0x00 */
289  {  1, "LD1+4*=" },		/* 0x01 */
290  {  2, "LD1+4*=" },		/* 0x02 */
291  {  3, "LD1+4*=" },		/* 0x03 */
292  {  4, "LD1+4*=" },		/* 0x04 */
293  {  5, "LD1+4*=" },		/* 0x05 */
294  {  6, "LD1+4*=" },		/* 0x06 */
295  {  7, "LD1+4*=" },		/* 0x07 */
296  {  8, "LD1+4*=" },		/* 0x08 */
297  {  9, "LD1+4*=" },		/* 0x09 */
298  { 10, "LD1+4*=" },		/* 0x0a */
299  { 11, "LD1+4*=" },		/* 0x0b */
300  { 12, "LD1+4*=" },		/* 0x0c */
301  { 13, "LD1+4*=" },		/* 0x0d */
302  { 14, "LD1+4*=" },		/* 0x0e */
303  { 15, "LD1+4*=" },		/* 0x0f */
304  { 16, "LD1+4*=" },		/* 0x10 */
305  { 17, "LD1+4*=" },		/* 0x11 */
306  { 18, "LD1+4*=" },		/* 0x12 */
307  { 19, "LD1+4*=" },		/* 0x13 */
308  { 20, "LD1+4*=" },		/* 0x14 */
309  { 21, "LD1+4*=" },		/* 0x15 */
310  { 22, "LD1+4*=" },		/* 0x16 */
311  { 23, "LD1+4*=" },		/* 0x17 */
312  {  0, "LD8<b+1+4*=" },	/* 0x18 */
313  {  1, "LD8<b+1+4*=" },	/* 0x19 */
314  {  2, "LD8<b+1+4*=" },	/* 0x1a */
315  {  3, "LD8<b+1+4*=" },	/* 0x1b */
316  {  0, "LD16<c+1+4*=" },	/* 0x1c */
317  {  1, "LD16<c+1+4*=" },	/* 0x1d */
318  {  2, "LD16<c+1+4*=" },	/* 0x1e */
319  {  0, "Ld1+=" },		/* 0x1f */
320  /* R_ZEROES.  */
321  {  0, "Lb1+4*=" },		/* 0x20 */
322  {  1, "Ld1+=" },		/* 0x21 */
323  /* R_UNINIT.  */
324  {  0, "Lb1+4*=" },		/* 0x22 */
325  {  1, "Ld1+=" },		/* 0x23 */
326  /* R_RELOCATION.  */
327  {  0, "L4=" },		/* 0x24 */
328  /* R_DATA_ONE_SYMBOL.  */
329  {  0, "L4=Sb=" },		/* 0x25 */
330  {  1, "L4=Sd=" },		/* 0x26 */
331  /* R_DATA_PLEBEL.  */
332  {  0, "L4=Sb=" },		/* 0x27 */
333  {  1, "L4=Sd=" },		/* 0x28 */
334  /* R_SPACE_REF.  */
335  {  0, "L4=" },		/* 0x29 */
336  /* R_REPEATED_INIT.  */
337  {  0, "L4=Mb1+4*=" },		/* 0x2a */
338  {  1, "Lb4*=Mb1+L*=" },	/* 0x2b */
339  {  2, "Lb4*=Md1+4*=" },	/* 0x2c */
340  {  3, "Ld1+=Me1+=" },		/* 0x2d */
341  {  0, "" },			/* 0x2e */
342  {  0, "" },			/* 0x2f */
343  /* R_PCREL_CALL.  */
344  {  0, "L4=RD=Sb=" },		/* 0x30 */
345  {  1, "L4=RD=Sb=" },		/* 0x31 */
346  {  2, "L4=RD=Sb=" },		/* 0x32 */
347  {  3, "L4=RD=Sb=" },		/* 0x33 */
348  {  4, "L4=RD=Sb=" },		/* 0x34 */
349  {  5, "L4=RD=Sb=" },		/* 0x35 */
350  {  6, "L4=RD=Sb=" },		/* 0x36 */
351  {  7, "L4=RD=Sb=" },		/* 0x37 */
352  {  8, "L4=RD=Sb=" },		/* 0x38 */
353  {  9, "L4=RD=Sb=" },		/* 0x39 */
354  {  0, "L4=RD8<b+=Sb=" },	/* 0x3a */
355  {  1, "L4=RD8<b+=Sb=" },	/* 0x3b */
356  {  0, "L4=RD8<b+=Sd=" },	/* 0x3c */
357  {  1, "L4=RD8<b+=Sd=" },	/* 0x3d */
358  /* R_SHORT_PCREL_MODE.  */
359  {  0, "" },			/* 0x3e */
360  /* R_LONG_PCREL_MODE.  */
361  {  0, "" },			/* 0x3f */
362  /* R_ABS_CALL.  */
363  {  0, "L4=RD=Sb=" },		/* 0x40 */
364  {  1, "L4=RD=Sb=" },		/* 0x41 */
365  {  2, "L4=RD=Sb=" },		/* 0x42 */
366  {  3, "L4=RD=Sb=" },		/* 0x43 */
367  {  4, "L4=RD=Sb=" },		/* 0x44 */
368  {  5, "L4=RD=Sb=" },		/* 0x45 */
369  {  6, "L4=RD=Sb=" },		/* 0x46 */
370  {  7, "L4=RD=Sb=" },		/* 0x47 */
371  {  8, "L4=RD=Sb=" },		/* 0x48 */
372  {  9, "L4=RD=Sb=" },		/* 0x49 */
373  {  0, "L4=RD8<b+=Sb=" },	/* 0x4a */
374  {  1, "L4=RD8<b+=Sb=" },	/* 0x4b */
375  {  0, "L4=RD8<b+=Sd=" },	/* 0x4c */
376  {  1, "L4=RD8<b+=Sd=" },	/* 0x4d */
377  /* R_RESERVED.  */
378  {  0, "" },			/* 0x4e */
379  {  0, "" },			/* 0x4f */
380  /* R_DP_RELATIVE.  */
381  {  0, "L4=SD=" },		/* 0x50 */
382  {  1, "L4=SD=" },		/* 0x51 */
383  {  2, "L4=SD=" },		/* 0x52 */
384  {  3, "L4=SD=" },		/* 0x53 */
385  {  4, "L4=SD=" },		/* 0x54 */
386  {  5, "L4=SD=" },		/* 0x55 */
387  {  6, "L4=SD=" },		/* 0x56 */
388  {  7, "L4=SD=" },		/* 0x57 */
389  {  8, "L4=SD=" },		/* 0x58 */
390  {  9, "L4=SD=" },		/* 0x59 */
391  { 10, "L4=SD=" },		/* 0x5a */
392  { 11, "L4=SD=" },		/* 0x5b */
393  { 12, "L4=SD=" },		/* 0x5c */
394  { 13, "L4=SD=" },		/* 0x5d */
395  { 14, "L4=SD=" },		/* 0x5e */
396  { 15, "L4=SD=" },		/* 0x5f */
397  { 16, "L4=SD=" },		/* 0x60 */
398  { 17, "L4=SD=" },		/* 0x61 */
399  { 18, "L4=SD=" },		/* 0x62 */
400  { 19, "L4=SD=" },		/* 0x63 */
401  { 20, "L4=SD=" },		/* 0x64 */
402  { 21, "L4=SD=" },		/* 0x65 */
403  { 22, "L4=SD=" },		/* 0x66 */
404  { 23, "L4=SD=" },		/* 0x67 */
405  { 24, "L4=SD=" },		/* 0x68 */
406  { 25, "L4=SD=" },		/* 0x69 */
407  { 26, "L4=SD=" },		/* 0x6a */
408  { 27, "L4=SD=" },		/* 0x6b */
409  { 28, "L4=SD=" },		/* 0x6c */
410  { 29, "L4=SD=" },		/* 0x6d */
411  { 30, "L4=SD=" },		/* 0x6e */
412  { 31, "L4=SD=" },		/* 0x6f */
413  { 32, "L4=Sb=" },		/* 0x70 */
414  { 33, "L4=Sd=" },		/* 0x71 */
415  /* R_RESERVED.  */
416  {  0, "" },			/* 0x72 */
417  {  0, "" },			/* 0x73 */
418  {  0, "" },			/* 0x74 */
419  {  0, "" },			/* 0x75 */
420  {  0, "" },			/* 0x76 */
421  {  0, "" },			/* 0x77 */
422  /* R_DLT_REL.  */
423  {  0, "L4=Sb=" },		/* 0x78 */
424  {  1, "L4=Sd=" },		/* 0x79 */
425  /* R_RESERVED.  */
426  {  0, "" },			/* 0x7a */
427  {  0, "" },			/* 0x7b */
428  {  0, "" },			/* 0x7c */
429  {  0, "" },			/* 0x7d */
430  {  0, "" },			/* 0x7e */
431  {  0, "" },			/* 0x7f */
432  /* R_CODE_ONE_SYMBOL.  */
433  {  0, "L4=SD=" },		/* 0x80 */
434  {  1, "L4=SD=" },		/* 0x81 */
435  {  2, "L4=SD=" },		/* 0x82 */
436  {  3, "L4=SD=" },		/* 0x83 */
437  {  4, "L4=SD=" },		/* 0x84 */
438  {  5, "L4=SD=" },		/* 0x85 */
439  {  6, "L4=SD=" },		/* 0x86 */
440  {  7, "L4=SD=" },		/* 0x87 */
441  {  8, "L4=SD=" },		/* 0x88 */
442  {  9, "L4=SD=" },		/* 0x89 */
443  { 10, "L4=SD=" },		/* 0x8q */
444  { 11, "L4=SD=" },		/* 0x8b */
445  { 12, "L4=SD=" },		/* 0x8c */
446  { 13, "L4=SD=" },		/* 0x8d */
447  { 14, "L4=SD=" },		/* 0x8e */
448  { 15, "L4=SD=" },		/* 0x8f */
449  { 16, "L4=SD=" },		/* 0x90 */
450  { 17, "L4=SD=" },		/* 0x91 */
451  { 18, "L4=SD=" },		/* 0x92 */
452  { 19, "L4=SD=" },		/* 0x93 */
453  { 20, "L4=SD=" },		/* 0x94 */
454  { 21, "L4=SD=" },		/* 0x95 */
455  { 22, "L4=SD=" },		/* 0x96 */
456  { 23, "L4=SD=" },		/* 0x97 */
457  { 24, "L4=SD=" },		/* 0x98 */
458  { 25, "L4=SD=" },		/* 0x99 */
459  { 26, "L4=SD=" },		/* 0x9a */
460  { 27, "L4=SD=" },		/* 0x9b */
461  { 28, "L4=SD=" },		/* 0x9c */
462  { 29, "L4=SD=" },		/* 0x9d */
463  { 30, "L4=SD=" },		/* 0x9e */
464  { 31, "L4=SD=" },		/* 0x9f */
465  { 32, "L4=Sb=" },		/* 0xa0 */
466  { 33, "L4=Sd=" },		/* 0xa1 */
467  /* R_RESERVED.  */
468  {  0, "" },			/* 0xa2 */
469  {  0, "" },			/* 0xa3 */
470  {  0, "" },			/* 0xa4 */
471  {  0, "" },			/* 0xa5 */
472  {  0, "" },			/* 0xa6 */
473  {  0, "" },			/* 0xa7 */
474  {  0, "" },			/* 0xa8 */
475  {  0, "" },			/* 0xa9 */
476  {  0, "" },			/* 0xaa */
477  {  0, "" },			/* 0xab */
478  {  0, "" },			/* 0xac */
479  {  0, "" },			/* 0xad */
480  /* R_MILLI_REL.  */
481  {  0, "L4=Sb=" },		/* 0xae */
482  {  1, "L4=Sd=" },		/* 0xaf */
483  /* R_CODE_PLABEL.  */
484  {  0, "L4=Sb=" },		/* 0xb0 */
485  {  1, "L4=Sd=" },		/* 0xb1 */
486  /* R_BREAKPOINT.  */
487  {  0, "L4=" },		/* 0xb2 */
488  /* R_ENTRY.  */
489  {  0, "Te=Ue=" },		/* 0xb3 */
490  {  1, "Uf=" },		/* 0xb4 */
491  /* R_ALT_ENTRY.  */
492  {  0, "" },			/* 0xb5 */
493  /* R_EXIT.  */
494  {  0, "" },			/* 0xb6 */
495  /* R_BEGIN_TRY.  */
496  {  0, "" },			/* 0xb7 */
497  /* R_END_TRY.  */
498  {  0, "R0=" },		/* 0xb8 */
499  {  1, "Rb4*=" },		/* 0xb9 */
500  {  2, "Rd4*=" },		/* 0xba */
501  /* R_BEGIN_BRTAB.  */
502  {  0, "" },			/* 0xbb */
503  /* R_END_BRTAB.  */
504  {  0, "" },			/* 0xbc */
505  /* R_STATEMENT.  */
506  {  0, "Nb=" },		/* 0xbd */
507  {  1, "Nc=" },		/* 0xbe */
508  {  2, "Nd=" },		/* 0xbf */
509  /* R_DATA_EXPR.  */
510  {  0, "L4=" },		/* 0xc0 */
511  /* R_CODE_EXPR.  */
512  {  0, "L4=" },		/* 0xc1 */
513  /* R_FSEL.  */
514  {  0, "" },			/* 0xc2 */
515  /* R_LSEL.  */
516  {  0, "" },			/* 0xc3 */
517  /* R_RSEL.  */
518  {  0, "" },			/* 0xc4 */
519  /* R_N_MODE.  */
520  {  0, "" },			/* 0xc5 */
521  /* R_S_MODE.  */
522  {  0, "" },			/* 0xc6 */
523  /* R_D_MODE.  */
524  {  0, "" },			/* 0xc7 */
525  /* R_R_MODE.  */
526  {  0, "" },			/* 0xc8 */
527  /* R_DATA_OVERRIDE.  */
528  {  0, "V0=" },		/* 0xc9 */
529  {  1, "Vb=" },		/* 0xca */
530  {  2, "Vc=" },		/* 0xcb */
531  {  3, "Vd=" },		/* 0xcc */
532  {  4, "Ve=" },		/* 0xcd */
533  /* R_TRANSLATED.  */
534  {  0, "" },			/* 0xce */
535  /* R_AUX_UNWIND.  */
536  {  0,"Sd=Ve=Ee=" },	       /* 0xcf */
537  /* R_COMP1.  */
538  {  0, "Ob=" },		/* 0xd0 */
539  /* R_COMP2.  */
540  {  0, "Ob=Sd=" },		/* 0xd1 */
541  /* R_COMP3.  */
542  {  0, "Ob=Ve=" },		/* 0xd2 */
543  /* R_PREV_FIXUP.  */
544  {  0, "P" },			/* 0xd3 */
545  {  1, "P" },			/* 0xd4 */
546  {  2, "P" },			/* 0xd5 */
547  {  3, "P" },			/* 0xd6 */
548  /* R_SEC_STMT.  */
549  {  0, "" },			/* 0xd7 */
550  /* R_N0SEL.  */
551  {  0, "" },			/* 0xd8 */
552  /* R_N1SEL.  */
553  {  0, "" },			/* 0xd9 */
554  /* R_LINETAB.  */
555  {  0, "Eb=Sd=Ve=" },		/* 0xda */
556  /* R_LINETAB_ESC.  */
557  {  0, "Eb=Mb=" },		/* 0xdb */
558  /* R_LTP_OVERRIDE.  */
559  {  0, "" },			/* 0xdc */
560  /* R_COMMENT.  */
561  {  0, "Ob=Vf=" },		/* 0xdd */
562  /* R_RESERVED.  */
563  {  0, "" },			/* 0xde */
564  {  0, "" },			/* 0xdf */
565  {  0, "" },			/* 0xe0 */
566  {  0, "" },			/* 0xe1 */
567  {  0, "" },			/* 0xe2 */
568  {  0, "" },			/* 0xe3 */
569  {  0, "" },			/* 0xe4 */
570  {  0, "" },			/* 0xe5 */
571  {  0, "" },			/* 0xe6 */
572  {  0, "" },			/* 0xe7 */
573  {  0, "" },			/* 0xe8 */
574  {  0, "" },			/* 0xe9 */
575  {  0, "" },			/* 0xea */
576  {  0, "" },			/* 0xeb */
577  {  0, "" },			/* 0xec */
578  {  0, "" },			/* 0xed */
579  {  0, "" },			/* 0xee */
580  {  0, "" },			/* 0xef */
581  {  0, "" },			/* 0xf0 */
582  {  0, "" },			/* 0xf1 */
583  {  0, "" },			/* 0xf2 */
584  {  0, "" },			/* 0xf3 */
585  {  0, "" },			/* 0xf4 */
586  {  0, "" },			/* 0xf5 */
587  {  0, "" },			/* 0xf6 */
588  {  0, "" },			/* 0xf7 */
589  {  0, "" },			/* 0xf8 */
590  {  0, "" },			/* 0xf9 */
591  {  0, "" },			/* 0xfa */
592  {  0, "" },			/* 0xfb */
593  {  0, "" },			/* 0xfc */
594  {  0, "" },			/* 0xfd */
595  {  0, "" },			/* 0xfe */
596  {  0, "" },			/* 0xff */
597};
598
599static const int comp1_opcodes[] =
600{
601  0x00,
602  0x40,
603  0x41,
604  0x42,
605  0x43,
606  0x44,
607  0x45,
608  0x46,
609  0x47,
610  0x48,
611  0x49,
612  0x4a,
613  0x4b,
614  0x60,
615  0x80,
616  0xa0,
617  0xc0,
618  -1
619};
620
621static const int comp2_opcodes[] =
622{
623  0x00,
624  0x80,
625  0x82,
626  0xc0,
627  -1
628};
629
630static const int comp3_opcodes[] =
631{
632  0x00,
633  0x02,
634  -1
635};
636
637/* These apparently are not in older versions of hpux reloc.h (hpux7).  */
638#ifndef R_DLT_REL
639#define R_DLT_REL 0x78
640#endif
641
642#ifndef R_AUX_UNWIND
643#define R_AUX_UNWIND 0xcf
644#endif
645
646#ifndef R_SEC_STMT
647#define R_SEC_STMT 0xd7
648#endif
649
650/* And these first appeared in hpux10.  */
651#ifndef R_SHORT_PCREL_MODE
652#define NO_PCREL_MODES
653#define R_SHORT_PCREL_MODE 0x3e
654#endif
655
656#ifndef R_LONG_PCREL_MODE
657#define R_LONG_PCREL_MODE 0x3f
658#endif
659
660#ifndef R_N0SEL
661#define R_N0SEL 0xd8
662#endif
663
664#ifndef R_N1SEL
665#define R_N1SEL 0xd9
666#endif
667
668#ifndef R_LINETAB
669#define R_LINETAB 0xda
670#endif
671
672#ifndef R_LINETAB_ESC
673#define R_LINETAB_ESC 0xdb
674#endif
675
676#ifndef R_LTP_OVERRIDE
677#define R_LTP_OVERRIDE 0xdc
678#endif
679
680#ifndef R_COMMENT
681#define R_COMMENT 0xdd
682#endif
683
684#define SOM_HOWTO(TYPE, NAME)	\
685  HOWTO(TYPE, 0, 0, 32, FALSE, 0, 0, hppa_som_reloc, NAME, FALSE, 0, 0, FALSE)
686
687static reloc_howto_type som_hppa_howto_table[] =
688{
689  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
690  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
691  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
692  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
693  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
694  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
695  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
696  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
697  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
698  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
699  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
700  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
701  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
702  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
703  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
704  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
705  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
706  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
707  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
708  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
709  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
710  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
711  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
712  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
713  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
714  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
715  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
716  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
717  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
718  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
719  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
720  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
721  SOM_HOWTO (R_ZEROES, "R_ZEROES"),
722  SOM_HOWTO (R_ZEROES, "R_ZEROES"),
723  SOM_HOWTO (R_UNINIT, "R_UNINIT"),
724  SOM_HOWTO (R_UNINIT, "R_UNINIT"),
725  SOM_HOWTO (R_RELOCATION, "R_RELOCATION"),
726  SOM_HOWTO (R_DATA_ONE_SYMBOL, "R_DATA_ONE_SYMBOL"),
727  SOM_HOWTO (R_DATA_ONE_SYMBOL, "R_DATA_ONE_SYMBOL"),
728  SOM_HOWTO (R_DATA_PLABEL, "R_DATA_PLABEL"),
729  SOM_HOWTO (R_DATA_PLABEL, "R_DATA_PLABEL"),
730  SOM_HOWTO (R_SPACE_REF, "R_SPACE_REF"),
731  SOM_HOWTO (R_REPEATED_INIT, "REPEATED_INIT"),
732  SOM_HOWTO (R_REPEATED_INIT, "REPEATED_INIT"),
733  SOM_HOWTO (R_REPEATED_INIT, "REPEATED_INIT"),
734  SOM_HOWTO (R_REPEATED_INIT, "REPEATED_INIT"),
735  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
736  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
737  SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
738  SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
739  SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
740  SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
741  SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
742  SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
743  SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
744  SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
745  SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
746  SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
747  SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
748  SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
749  SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
750  SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
751  SOM_HOWTO (R_SHORT_PCREL_MODE, "R_SHORT_PCREL_MODE"),
752  SOM_HOWTO (R_LONG_PCREL_MODE, "R_LONG_PCREL_MODE"),
753  SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
754  SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
755  SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
756  SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
757  SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
758  SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
759  SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
760  SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
761  SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
762  SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
763  SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
764  SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
765  SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
766  SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
767  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
768  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
769  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
770  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
771  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
772  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
773  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
774  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
775  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
776  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
777  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
778  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
779  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
780  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
781  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
782  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
783  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
784  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
785  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
786  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
787  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
788  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
789  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
790  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
791  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
792  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
793  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
794  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
795  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
796  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
797  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
798  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
799  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
800  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
801  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
802  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
803  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
804  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
805  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
806  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
807  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
808  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
809  SOM_HOWTO (R_DLT_REL, "R_DLT_REL"),
810  SOM_HOWTO (R_DLT_REL, "R_DLT_REL"),
811  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
812  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
813  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
814  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
815  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
816  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
817  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
818  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
819  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
820  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
821  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
822  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
823  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
824  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
825  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
826  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
827  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
828  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
829  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
830  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
831  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
832  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
833  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
834  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
835  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
836  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
837  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
838  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
839  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
840  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
841  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
842  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
843  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
844  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
845  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
846  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
847  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
848  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
849  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
850  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
851  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
852  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
853  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
854  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
855  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
856  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
857  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
858  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
859  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
860  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
861  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
862  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
863  SOM_HOWTO (R_MILLI_REL, "R_MILLI_REL"),
864  SOM_HOWTO (R_MILLI_REL, "R_MILLI_REL"),
865  SOM_HOWTO (R_CODE_PLABEL, "R_CODE_PLABEL"),
866  SOM_HOWTO (R_CODE_PLABEL, "R_CODE_PLABEL"),
867  SOM_HOWTO (R_BREAKPOINT, "R_BREAKPOINT"),
868  SOM_HOWTO (R_ENTRY, "R_ENTRY"),
869  SOM_HOWTO (R_ENTRY, "R_ENTRY"),
870  SOM_HOWTO (R_ALT_ENTRY, "R_ALT_ENTRY"),
871  SOM_HOWTO (R_EXIT, "R_EXIT"),
872  SOM_HOWTO (R_BEGIN_TRY, "R_BEGIN_TRY"),
873  SOM_HOWTO (R_END_TRY, "R_END_TRY"),
874  SOM_HOWTO (R_END_TRY, "R_END_TRY"),
875  SOM_HOWTO (R_END_TRY, "R_END_TRY"),
876  SOM_HOWTO (R_BEGIN_BRTAB, "R_BEGIN_BRTAB"),
877  SOM_HOWTO (R_END_BRTAB, "R_END_BRTAB"),
878  SOM_HOWTO (R_STATEMENT, "R_STATEMENT"),
879  SOM_HOWTO (R_STATEMENT, "R_STATEMENT"),
880  SOM_HOWTO (R_STATEMENT, "R_STATEMENT"),
881  SOM_HOWTO (R_DATA_EXPR, "R_DATA_EXPR"),
882  SOM_HOWTO (R_CODE_EXPR, "R_CODE_EXPR"),
883  SOM_HOWTO (R_FSEL, "R_FSEL"),
884  SOM_HOWTO (R_LSEL, "R_LSEL"),
885  SOM_HOWTO (R_RSEL, "R_RSEL"),
886  SOM_HOWTO (R_N_MODE, "R_N_MODE"),
887  SOM_HOWTO (R_S_MODE, "R_S_MODE"),
888  SOM_HOWTO (R_D_MODE, "R_D_MODE"),
889  SOM_HOWTO (R_R_MODE, "R_R_MODE"),
890  SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
891  SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
892  SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
893  SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
894  SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
895  SOM_HOWTO (R_TRANSLATED, "R_TRANSLATED"),
896  SOM_HOWTO (R_AUX_UNWIND, "R_AUX_UNWIND"),
897  SOM_HOWTO (R_COMP1, "R_COMP1"),
898  SOM_HOWTO (R_COMP2, "R_COMP2"),
899  SOM_HOWTO (R_COMP3, "R_COMP3"),
900  SOM_HOWTO (R_PREV_FIXUP, "R_PREV_FIXUP"),
901  SOM_HOWTO (R_PREV_FIXUP, "R_PREV_FIXUP"),
902  SOM_HOWTO (R_PREV_FIXUP, "R_PREV_FIXUP"),
903  SOM_HOWTO (R_PREV_FIXUP, "R_PREV_FIXUP"),
904  SOM_HOWTO (R_SEC_STMT, "R_SEC_STMT"),
905  SOM_HOWTO (R_N0SEL, "R_N0SEL"),
906  SOM_HOWTO (R_N1SEL, "R_N1SEL"),
907  SOM_HOWTO (R_LINETAB, "R_LINETAB"),
908  SOM_HOWTO (R_LINETAB_ESC, "R_LINETAB_ESC"),
909  SOM_HOWTO (R_LTP_OVERRIDE, "R_LTP_OVERRIDE"),
910  SOM_HOWTO (R_COMMENT, "R_COMMENT"),
911  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
912  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
913  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
914  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
915  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
916  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
917  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
918  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
919  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
920  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
921  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
922  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
923  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
924  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
925  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
926  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
927  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
928  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
929  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
930  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
931  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
932  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
933  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
934  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
935  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
936  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
937  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
938  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
939  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
940  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
941  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
942  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
943  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
944  SOM_HOWTO (R_RESERVED, "R_RESERVED")
945};
946
947/* Initialize the SOM relocation queue.  By definition the queue holds
948   the last four multibyte fixups.  */
949
950static void
951som_initialize_reloc_queue (struct reloc_queue *queue)
952{
953  queue[0].reloc = NULL;
954  queue[0].size = 0;
955  queue[1].reloc = NULL;
956  queue[1].size = 0;
957  queue[2].reloc = NULL;
958  queue[2].size = 0;
959  queue[3].reloc = NULL;
960  queue[3].size = 0;
961}
962
963/* Insert a new relocation into the relocation queue.  */
964
965static void
966som_reloc_queue_insert (unsigned char *p,
967			unsigned int size,
968			struct reloc_queue *queue)
969{
970  queue[3].reloc = queue[2].reloc;
971  queue[3].size = queue[2].size;
972  queue[2].reloc = queue[1].reloc;
973  queue[2].size = queue[1].size;
974  queue[1].reloc = queue[0].reloc;
975  queue[1].size = queue[0].size;
976  queue[0].reloc = p;
977  queue[0].size = size;
978}
979
980/* When an entry in the relocation queue is reused, the entry moves
981   to the front of the queue.  */
982
983static void
984som_reloc_queue_fix (struct reloc_queue *queue, unsigned int index)
985{
986  if (index == 0)
987    return;
988
989  if (index == 1)
990    {
991      unsigned char *tmp1 = queue[0].reloc;
992      unsigned int tmp2 = queue[0].size;
993
994      queue[0].reloc = queue[1].reloc;
995      queue[0].size = queue[1].size;
996      queue[1].reloc = tmp1;
997      queue[1].size = tmp2;
998      return;
999    }
1000
1001  if (index == 2)
1002    {
1003      unsigned char *tmp1 = queue[0].reloc;
1004      unsigned int tmp2 = queue[0].size;
1005
1006      queue[0].reloc = queue[2].reloc;
1007      queue[0].size = queue[2].size;
1008      queue[2].reloc = queue[1].reloc;
1009      queue[2].size = queue[1].size;
1010      queue[1].reloc = tmp1;
1011      queue[1].size = tmp2;
1012      return;
1013    }
1014
1015  if (index == 3)
1016    {
1017      unsigned char *tmp1 = queue[0].reloc;
1018      unsigned int tmp2 = queue[0].size;
1019
1020      queue[0].reloc = queue[3].reloc;
1021      queue[0].size = queue[3].size;
1022      queue[3].reloc = queue[2].reloc;
1023      queue[3].size = queue[2].size;
1024      queue[2].reloc = queue[1].reloc;
1025      queue[2].size = queue[1].size;
1026      queue[1].reloc = tmp1;
1027      queue[1].size = tmp2;
1028      return;
1029    }
1030  abort ();
1031}
1032
1033/* Search for a particular relocation in the relocation queue.  */
1034
1035static int
1036som_reloc_queue_find (unsigned char *p,
1037		      unsigned int size,
1038		      struct reloc_queue *queue)
1039{
1040  if (queue[0].reloc && !memcmp (p, queue[0].reloc, size)
1041      && size == queue[0].size)
1042    return 0;
1043  if (queue[1].reloc && !memcmp (p, queue[1].reloc, size)
1044      && size == queue[1].size)
1045    return 1;
1046  if (queue[2].reloc && !memcmp (p, queue[2].reloc, size)
1047      && size == queue[2].size)
1048    return 2;
1049  if (queue[3].reloc && !memcmp (p, queue[3].reloc, size)
1050      && size == queue[3].size)
1051    return 3;
1052  return -1;
1053}
1054
1055static unsigned char *
1056try_prev_fixup (bfd *abfd ATTRIBUTE_UNUSED,
1057		unsigned int *subspace_reloc_sizep,
1058		unsigned char *p,
1059		unsigned int size,
1060		struct reloc_queue *queue)
1061{
1062  int queue_index = som_reloc_queue_find (p, size, queue);
1063
1064  if (queue_index != -1)
1065    {
1066      /* Found this in a previous fixup.  Undo the fixup we
1067	 just built and use R_PREV_FIXUP instead.  We saved
1068	 a total of size - 1 bytes in the fixup stream.  */
1069      bfd_put_8 (abfd, R_PREV_FIXUP + queue_index, p);
1070      p += 1;
1071      *subspace_reloc_sizep += 1;
1072      som_reloc_queue_fix (queue, queue_index);
1073    }
1074  else
1075    {
1076      som_reloc_queue_insert (p, size, queue);
1077      *subspace_reloc_sizep += size;
1078      p += size;
1079    }
1080  return p;
1081}
1082
1083/* Emit the proper R_NO_RELOCATION fixups to map the next SKIP
1084   bytes without any relocation.  Update the size of the subspace
1085   relocation stream via SUBSPACE_RELOC_SIZE_P; also return the
1086   current pointer into the relocation stream.  */
1087
1088static unsigned char *
1089som_reloc_skip (bfd *abfd,
1090		unsigned int skip,
1091		unsigned char *p,
1092		unsigned int *subspace_reloc_sizep,
1093		struct reloc_queue *queue)
1094{
1095  /* Use a 4 byte R_NO_RELOCATION entry with a maximal value
1096     then R_PREV_FIXUPs to get the difference down to a
1097     reasonable size.  */
1098  if (skip >= 0x1000000)
1099    {
1100      skip -= 0x1000000;
1101      bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1102      bfd_put_8 (abfd, 0xff, p + 1);
1103      bfd_put_16 (abfd, (bfd_vma) 0xffff, p + 2);
1104      p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1105      while (skip >= 0x1000000)
1106	{
1107	  skip -= 0x1000000;
1108	  bfd_put_8 (abfd, R_PREV_FIXUP, p);
1109	  p++;
1110	  *subspace_reloc_sizep += 1;
1111	  /* No need to adjust queue here since we are repeating the
1112	     most recent fixup.  */
1113	}
1114    }
1115
1116  /* The difference must be less than 0x1000000.  Use one
1117     more R_NO_RELOCATION entry to get to the right difference.  */
1118  if ((skip & 3) == 0 && skip <= 0xc0000 && skip > 0)
1119    {
1120      /* Difference can be handled in a simple single-byte
1121	 R_NO_RELOCATION entry.  */
1122      if (skip <= 0x60)
1123	{
1124	  bfd_put_8 (abfd, R_NO_RELOCATION + (skip >> 2) - 1, p);
1125	  *subspace_reloc_sizep += 1;
1126	  p++;
1127	}
1128      /* Handle it with a two byte R_NO_RELOCATION entry.  */
1129      else if (skip <= 0x1000)
1130	{
1131	  bfd_put_8 (abfd, R_NO_RELOCATION + 24 + (((skip >> 2) - 1) >> 8), p);
1132	  bfd_put_8 (abfd, (skip >> 2) - 1, p + 1);
1133	  p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1134	}
1135      /* Handle it with a three byte R_NO_RELOCATION entry.  */
1136      else
1137	{
1138	  bfd_put_8 (abfd, R_NO_RELOCATION + 28 + (((skip >> 2) - 1) >> 16), p);
1139	  bfd_put_16 (abfd, (bfd_vma) (skip >> 2) - 1, p + 1);
1140	  p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1141	}
1142    }
1143  /* Ugh.  Punt and use a 4 byte entry.  */
1144  else if (skip > 0)
1145    {
1146      bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
1147      bfd_put_8 (abfd, (skip - 1) >> 16, p + 1);
1148      bfd_put_16 (abfd, (bfd_vma) skip - 1, p + 2);
1149      p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1150    }
1151  return p;
1152}
1153
1154/* Emit the proper R_DATA_OVERRIDE fixups to handle a nonzero addend
1155   from a BFD relocation.  Update the size of the subspace relocation
1156   stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer
1157   into the relocation stream.  */
1158
1159static unsigned char *
1160som_reloc_addend (bfd *abfd,
1161		  bfd_vma addend,
1162		  unsigned char *p,
1163		  unsigned int *subspace_reloc_sizep,
1164		  struct reloc_queue *queue)
1165{
1166  if (addend + 0x80 < 0x100)
1167    {
1168      bfd_put_8 (abfd, R_DATA_OVERRIDE + 1, p);
1169      bfd_put_8 (abfd, addend, p + 1);
1170      p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1171    }
1172  else if (addend + 0x8000 < 0x10000)
1173    {
1174      bfd_put_8 (abfd, R_DATA_OVERRIDE + 2, p);
1175      bfd_put_16 (abfd, addend, p + 1);
1176      p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1177    }
1178  else if (addend + 0x800000 < 0x1000000)
1179    {
1180      bfd_put_8 (abfd, R_DATA_OVERRIDE + 3, p);
1181      bfd_put_8 (abfd, addend >> 16, p + 1);
1182      bfd_put_16 (abfd, addend, p + 2);
1183      p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
1184    }
1185  else
1186    {
1187      bfd_put_8 (abfd, R_DATA_OVERRIDE + 4, p);
1188      bfd_put_32 (abfd, addend, p + 1);
1189      p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1190    }
1191  return p;
1192}
1193
1194/* Handle a single function call relocation.  */
1195
1196static unsigned char *
1197som_reloc_call (bfd *abfd,
1198		unsigned char *p,
1199		unsigned int *subspace_reloc_sizep,
1200		arelent *bfd_reloc,
1201		int sym_num,
1202		struct reloc_queue *queue)
1203{
1204  int arg_bits = HPPA_R_ARG_RELOC (bfd_reloc->addend);
1205  int rtn_bits = arg_bits & 0x3;
1206  int type, done = 0;
1207
1208  /* You'll never believe all this is necessary to handle relocations
1209     for function calls.  Having to compute and pack the argument
1210     relocation bits is the real nightmare.
1211
1212     If you're interested in how this works, just forget it.  You really
1213     do not want to know about this braindamage.  */
1214
1215  /* First see if this can be done with a "simple" relocation.  Simple
1216     relocations have a symbol number < 0x100 and have simple encodings
1217     of argument relocations.  */
1218
1219  if (sym_num < 0x100)
1220    {
1221      switch (arg_bits)
1222	{
1223	case 0:
1224	case 1:
1225	  type = 0;
1226	  break;
1227	case 1 << 8:
1228	case 1 << 8 | 1:
1229	  type = 1;
1230	  break;
1231	case 1 << 8 | 1 << 6:
1232	case 1 << 8 | 1 << 6 | 1:
1233	  type = 2;
1234	  break;
1235	case 1 << 8 | 1 << 6 | 1 << 4:
1236	case 1 << 8 | 1 << 6 | 1 << 4 | 1:
1237	  type = 3;
1238	  break;
1239	case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2:
1240	case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2 | 1:
1241	  type = 4;
1242	  break;
1243	default:
1244	  /* Not one of the easy encodings.  This will have to be
1245	     handled by the more complex code below.  */
1246	  type = -1;
1247	  break;
1248	}
1249      if (type != -1)
1250	{
1251	  /* Account for the return value too.  */
1252	  if (rtn_bits)
1253	    type += 5;
1254
1255	  /* Emit a 2 byte relocation.  Then see if it can be handled
1256	     with a relocation which is already in the relocation queue.  */
1257	  bfd_put_8 (abfd, bfd_reloc->howto->type + type, p);
1258	  bfd_put_8 (abfd, sym_num, p + 1);
1259	  p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
1260	  done = 1;
1261	}
1262    }
1263
1264  /* If this could not be handled with a simple relocation, then do a hard
1265     one.  Hard relocations occur if the symbol number was too high or if
1266     the encoding of argument relocation bits is too complex.  */
1267  if (! done)
1268    {
1269      /* Don't ask about these magic sequences.  I took them straight
1270	 from gas-1.36 which took them from the a.out man page.  */
1271      type = rtn_bits;
1272      if ((arg_bits >> 6 & 0xf) == 0xe)
1273	type += 9 * 40;
1274      else
1275	type += (3 * (arg_bits >> 8 & 3) + (arg_bits >> 6 & 3)) * 40;
1276      if ((arg_bits >> 2 & 0xf) == 0xe)
1277	type += 9 * 4;
1278      else
1279	type += (3 * (arg_bits >> 4 & 3) + (arg_bits >> 2 & 3)) * 4;
1280
1281      /* Output the first two bytes of the relocation.  These describe
1282	 the length of the relocation and encoding style.  */
1283      bfd_put_8 (abfd, bfd_reloc->howto->type + 10
1284		 + 2 * (sym_num >= 0x100) + (type >= 0x100),
1285		 p);
1286      bfd_put_8 (abfd, type, p + 1);
1287
1288      /* Now output the symbol index and see if this bizarre relocation
1289	 just happened to be in the relocation queue.  */
1290      if (sym_num < 0x100)
1291	{
1292	  bfd_put_8 (abfd, sym_num, p + 2);
1293	  p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
1294	}
1295      else
1296	{
1297	  bfd_put_8 (abfd, sym_num >> 16, p + 2);
1298	  bfd_put_16 (abfd, (bfd_vma) sym_num, p + 3);
1299	  p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
1300	}
1301    }
1302  return p;
1303}
1304
1305/* Return the logarithm of X, base 2, considering X unsigned,
1306   if X is a power of 2.  Otherwise, returns -1.  */
1307
1308static int
1309exact_log2 (unsigned int x)
1310{
1311  int log = 0;
1312
1313  /* Test for 0 or a power of 2.  */
1314  if (x == 0 || x != (x & -x))
1315    return -1;
1316
1317  while ((x >>= 1) != 0)
1318    log++;
1319  return log;
1320}
1321
1322static bfd_reloc_status_type
1323hppa_som_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1324		arelent *reloc_entry,
1325		asymbol *symbol_in ATTRIBUTE_UNUSED,
1326		void *data ATTRIBUTE_UNUSED,
1327		asection *input_section,
1328		bfd *output_bfd,
1329		char **error_message ATTRIBUTE_UNUSED)
1330{
1331  if (output_bfd)
1332    reloc_entry->address += input_section->output_offset;
1333
1334  return bfd_reloc_ok;
1335}
1336
1337/* Given a generic HPPA relocation type, the instruction format,
1338   and a field selector, return one or more appropriate SOM relocations.  */
1339
1340int **
1341hppa_som_gen_reloc_type (bfd *abfd,
1342			 int base_type,
1343			 int format,
1344			 enum hppa_reloc_field_selector_type_alt field,
1345			 int sym_diff,
1346			 asymbol *sym)
1347{
1348  int *final_type, **final_types;
1349
1350  final_types = bfd_alloc (abfd, (bfd_size_type) sizeof (int *) * 6);
1351  final_type = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1352  if (!final_types || !final_type)
1353    return NULL;
1354
1355  /* The field selector may require additional relocations to be
1356     generated.  It's impossible to know at this moment if additional
1357     relocations will be needed, so we make them.  The code to actually
1358     write the relocation/fixup stream is responsible for removing
1359     any redundant relocations.  */
1360  switch (field)
1361    {
1362    case e_fsel:
1363    case e_psel:
1364    case e_lpsel:
1365    case e_rpsel:
1366      final_types[0] = final_type;
1367      final_types[1] = NULL;
1368      final_types[2] = NULL;
1369      *final_type = base_type;
1370      break;
1371
1372    case e_tsel:
1373    case e_ltsel:
1374    case e_rtsel:
1375      final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1376      if (!final_types[0])
1377	return NULL;
1378      if (field == e_tsel)
1379	*final_types[0] = R_FSEL;
1380      else if (field == e_ltsel)
1381	*final_types[0] = R_LSEL;
1382      else
1383	*final_types[0] = R_RSEL;
1384      final_types[1] = final_type;
1385      final_types[2] = NULL;
1386      *final_type = base_type;
1387      break;
1388
1389    case e_lssel:
1390    case e_rssel:
1391      final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1392      if (!final_types[0])
1393	return NULL;
1394      *final_types[0] = R_S_MODE;
1395      final_types[1] = final_type;
1396      final_types[2] = NULL;
1397      *final_type = base_type;
1398      break;
1399
1400    case e_lsel:
1401    case e_rsel:
1402      final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1403      if (!final_types[0])
1404	return NULL;
1405      *final_types[0] = R_N_MODE;
1406      final_types[1] = final_type;
1407      final_types[2] = NULL;
1408      *final_type = base_type;
1409      break;
1410
1411    case e_ldsel:
1412    case e_rdsel:
1413      final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1414      if (!final_types[0])
1415	return NULL;
1416      *final_types[0] = R_D_MODE;
1417      final_types[1] = final_type;
1418      final_types[2] = NULL;
1419      *final_type = base_type;
1420      break;
1421
1422    case e_lrsel:
1423    case e_rrsel:
1424      final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1425      if (!final_types[0])
1426	return NULL;
1427      *final_types[0] = R_R_MODE;
1428      final_types[1] = final_type;
1429      final_types[2] = NULL;
1430      *final_type = base_type;
1431      break;
1432
1433    case e_nsel:
1434      final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1435      if (!final_types[0])
1436	return NULL;
1437      *final_types[0] = R_N1SEL;
1438      final_types[1] = final_type;
1439      final_types[2] = NULL;
1440      *final_type = base_type;
1441      break;
1442
1443    case e_nlsel:
1444    case e_nlrsel:
1445      final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1446      if (!final_types[0])
1447	return NULL;
1448      *final_types[0] = R_N0SEL;
1449      final_types[1] = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
1450      if (!final_types[1])
1451	return NULL;
1452      if (field == e_nlsel)
1453	*final_types[1] = R_N_MODE;
1454      else
1455	*final_types[1] = R_R_MODE;
1456      final_types[2] = final_type;
1457      final_types[3] = NULL;
1458      *final_type = base_type;
1459      break;
1460
1461    /* FIXME: These two field selectors are not currently supported.  */
1462    case e_ltpsel:
1463    case e_rtpsel:
1464      abort ();
1465    }
1466
1467  switch (base_type)
1468    {
1469    case R_HPPA:
1470      /* The difference of two symbols needs *very* special handling.  */
1471      if (sym_diff)
1472	{
1473	  bfd_size_type amt = sizeof (int);
1474
1475	  final_types[0] = bfd_alloc (abfd, amt);
1476	  final_types[1] = bfd_alloc (abfd, amt);
1477	  final_types[2] = bfd_alloc (abfd, amt);
1478	  final_types[3] = bfd_alloc (abfd, amt);
1479	  if (!final_types[0] || !final_types[1] || !final_types[2])
1480	    return NULL;
1481	  if (field == e_fsel)
1482	    *final_types[0] = R_FSEL;
1483	  else if (field == e_rsel)
1484	    *final_types[0] = R_RSEL;
1485	  else if (field == e_lsel)
1486	    *final_types[0] = R_LSEL;
1487	  *final_types[1] = R_COMP2;
1488	  *final_types[2] = R_COMP2;
1489	  *final_types[3] = R_COMP1;
1490	  final_types[4] = final_type;
1491	  if (format == 32)
1492	    *final_types[4] = R_DATA_EXPR;
1493	  else
1494	    *final_types[4] = R_CODE_EXPR;
1495	  final_types[5] = NULL;
1496	  break;
1497	}
1498      /* PLABELs get their own relocation type.  */
1499      else if (field == e_psel
1500	       || field == e_lpsel
1501	       || field == e_rpsel)
1502	{
1503	  /* A PLABEL relocation that has a size of 32 bits must
1504	     be a R_DATA_PLABEL.  All others are R_CODE_PLABELs.  */
1505	  if (format == 32)
1506	    *final_type = R_DATA_PLABEL;
1507	  else
1508	    *final_type = R_CODE_PLABEL;
1509	}
1510      /* PIC stuff.  */
1511      else if (field == e_tsel
1512	       || field == e_ltsel
1513	       || field == e_rtsel)
1514	*final_type = R_DLT_REL;
1515      /* A relocation in the data space is always a full 32bits.  */
1516      else if (format == 32)
1517	{
1518	  *final_type = R_DATA_ONE_SYMBOL;
1519
1520	  /* If there's no SOM symbol type associated with this BFD
1521	     symbol, then set the symbol type to ST_DATA.
1522
1523	     Only do this if the type is going to default later when
1524	     we write the object file.
1525
1526	     This is done so that the linker never encounters an
1527	     R_DATA_ONE_SYMBOL reloc involving an ST_CODE symbol.
1528
1529	     This allows the compiler to generate exception handling
1530	     tables.
1531
1532	     Note that one day we may need to also emit BEGIN_BRTAB and
1533	     END_BRTAB to prevent the linker from optimizing away insns
1534	     in exception handling regions.  */
1535	  if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
1536	      && (sym->flags & BSF_SECTION_SYM) == 0
1537	      && (sym->flags & BSF_FUNCTION) == 0
1538	      && ! bfd_is_com_section (sym->section))
1539	    som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
1540	}
1541      break;
1542
1543    case R_HPPA_GOTOFF:
1544      /* More PLABEL special cases.  */
1545      if (field == e_psel
1546	  || field == e_lpsel
1547	  || field == e_rpsel)
1548	*final_type = R_DATA_PLABEL;
1549      break;
1550
1551    case R_HPPA_COMPLEX:
1552      /* The difference of two symbols needs *very* special handling.  */
1553      if (sym_diff)
1554	{
1555	  bfd_size_type amt = sizeof (int);
1556
1557	  final_types[0] = bfd_alloc (abfd, amt);
1558	  final_types[1] = bfd_alloc (abfd, amt);
1559	  final_types[2] = bfd_alloc (abfd, amt);
1560	  final_types[3] = bfd_alloc (abfd, amt);
1561	  if (!final_types[0] || !final_types[1] || !final_types[2])
1562	    return NULL;
1563	  if (field == e_fsel)
1564	    *final_types[0] = R_FSEL;
1565	  else if (field == e_rsel)
1566	    *final_types[0] = R_RSEL;
1567	  else if (field == e_lsel)
1568	    *final_types[0] = R_LSEL;
1569	  *final_types[1] = R_COMP2;
1570	  *final_types[2] = R_COMP2;
1571	  *final_types[3] = R_COMP1;
1572	  final_types[4] = final_type;
1573	  if (format == 32)
1574	    *final_types[4] = R_DATA_EXPR;
1575	  else
1576	    *final_types[4] = R_CODE_EXPR;
1577	  final_types[5] = NULL;
1578	  break;
1579	}
1580      else
1581	break;
1582
1583    case R_HPPA_NONE:
1584    case R_HPPA_ABS_CALL:
1585      /* Right now we can default all these.  */
1586      break;
1587
1588    case R_HPPA_PCREL_CALL:
1589      {
1590#ifndef NO_PCREL_MODES
1591	/* If we have short and long pcrel modes, then generate the proper
1592	   mode selector, then the pcrel relocation.  Redundant selectors
1593	   will be eliminated as the relocs are sized and emitted.  */
1594	bfd_size_type amt = sizeof (int);
1595
1596	final_types[0] = bfd_alloc (abfd, amt);
1597	if (!final_types[0])
1598	  return NULL;
1599	if (format == 17)
1600	  *final_types[0] = R_SHORT_PCREL_MODE;
1601	else
1602	  *final_types[0] = R_LONG_PCREL_MODE;
1603	final_types[1] = final_type;
1604	final_types[2] = NULL;
1605	*final_type = base_type;
1606#endif
1607	break;
1608      }
1609    }
1610  return final_types;
1611}
1612
1613/* Return the address of the correct entry in the PA SOM relocation
1614   howto table.  */
1615
1616static reloc_howto_type *
1617som_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1618			   bfd_reloc_code_real_type code)
1619{
1620  if ((int) code < (int) R_NO_RELOCATION + 255)
1621    {
1622      BFD_ASSERT ((int) som_hppa_howto_table[(int) code].type == (int) code);
1623      return &som_hppa_howto_table[(int) code];
1624    }
1625
1626  return NULL;
1627}
1628
1629/* Perform some initialization for an object.  Save results of this
1630   initialization in the BFD.  */
1631
1632static const bfd_target *
1633som_object_setup (bfd *abfd,
1634		  struct header *file_hdrp,
1635		  struct som_exec_auxhdr *aux_hdrp,
1636		  unsigned long current_offset)
1637{
1638  asection *section;
1639
1640  /* som_mkobject will set bfd_error if som_mkobject fails.  */
1641  if (! som_mkobject (abfd))
1642    return NULL;
1643
1644  /* Set BFD flags based on what information is available in the SOM.  */
1645  abfd->flags = BFD_NO_FLAGS;
1646  if (file_hdrp->symbol_total)
1647    abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
1648
1649  switch (file_hdrp->a_magic)
1650    {
1651    case DEMAND_MAGIC:
1652      abfd->flags |= (D_PAGED | WP_TEXT | EXEC_P);
1653      break;
1654    case SHARE_MAGIC:
1655      abfd->flags |= (WP_TEXT | EXEC_P);
1656      break;
1657    case EXEC_MAGIC:
1658      abfd->flags |= (EXEC_P);
1659      break;
1660    case RELOC_MAGIC:
1661      abfd->flags |= HAS_RELOC;
1662      break;
1663#ifdef SHL_MAGIC
1664    case SHL_MAGIC:
1665#endif
1666#ifdef DL_MAGIC
1667    case DL_MAGIC:
1668#endif
1669      abfd->flags |= DYNAMIC;
1670      break;
1671
1672    default:
1673      break;
1674    }
1675
1676  /* Save the auxiliary header.  */
1677  obj_som_exec_hdr (abfd) = aux_hdrp;
1678
1679  /* Allocate space to hold the saved exec header information.  */
1680  obj_som_exec_data (abfd) = bfd_zalloc (abfd, (bfd_size_type) sizeof (struct som_exec_data));
1681  if (obj_som_exec_data (abfd) == NULL)
1682    return NULL;
1683
1684  /* The braindamaged OSF1 linker switched exec_flags and exec_entry!
1685
1686     We used to identify OSF1 binaries based on NEW_VERSION_ID, but
1687     apparently the latest HPUX linker is using NEW_VERSION_ID now.
1688
1689     It's about time, OSF has used the new id since at least 1992;
1690     HPUX didn't start till nearly 1995!.
1691
1692     The new approach examines the entry field for an executable.  If
1693     it is not 4-byte aligned then it's not a proper code address and
1694     we guess it's really the executable flags.  For a main program,
1695     we also consider zero to be indicative of a buggy linker, since
1696     that is not a valid entry point.  The entry point for a shared
1697     library, however, can be zero so we do not consider that to be
1698     indicative of a buggy linker.  */
1699  if (aux_hdrp)
1700    {
1701      int found = 0;
1702
1703      for (section = abfd->sections; section; section = section->next)
1704	{
1705	  bfd_vma entry;
1706
1707	  if ((section->flags & SEC_CODE) == 0)
1708	    continue;
1709	  entry = aux_hdrp->exec_entry + aux_hdrp->exec_tmem;
1710	  if (entry >= section->vma
1711	      && entry < section->vma + section->size)
1712	    found = 1;
1713	}
1714      if ((aux_hdrp->exec_entry == 0 && !(abfd->flags & DYNAMIC))
1715	  || (aux_hdrp->exec_entry & 0x3) != 0
1716	  || ! found)
1717	{
1718	  bfd_get_start_address (abfd) = aux_hdrp->exec_flags;
1719	  obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_entry;
1720	}
1721      else
1722	{
1723	  bfd_get_start_address (abfd) = aux_hdrp->exec_entry + current_offset;
1724	  obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_flags;
1725	}
1726    }
1727
1728  obj_som_exec_data (abfd)->version_id = file_hdrp->version_id;
1729
1730  bfd_default_set_arch_mach (abfd, bfd_arch_hppa, pa10);
1731  bfd_get_symcount (abfd) = file_hdrp->symbol_total;
1732
1733  /* Initialize the saved symbol table and string table to NULL.
1734     Save important offsets and sizes from the SOM header into
1735     the BFD.  */
1736  obj_som_stringtab (abfd) = NULL;
1737  obj_som_symtab (abfd) = NULL;
1738  obj_som_sorted_syms (abfd) = NULL;
1739  obj_som_stringtab_size (abfd) = file_hdrp->symbol_strings_size;
1740  obj_som_sym_filepos (abfd) = file_hdrp->symbol_location + current_offset;
1741  obj_som_str_filepos (abfd) = (file_hdrp->symbol_strings_location
1742				+ current_offset);
1743  obj_som_reloc_filepos (abfd) = (file_hdrp->fixup_request_location
1744				  + current_offset);
1745  obj_som_exec_data (abfd)->system_id = file_hdrp->system_id;
1746
1747  return abfd->xvec;
1748}
1749
1750/* Convert all of the space and subspace info into BFD sections.  Each space
1751   contains a number of subspaces, which in turn describe the mapping between
1752   regions of the exec file, and the address space that the program runs in.
1753   BFD sections which correspond to spaces will overlap the sections for the
1754   associated subspaces.  */
1755
1756static bfd_boolean
1757setup_sections (bfd *abfd,
1758		struct header *file_hdr,
1759		unsigned long current_offset)
1760{
1761  char *space_strings;
1762  unsigned int space_index, i;
1763  unsigned int total_subspaces = 0;
1764  asection **subspace_sections = NULL;
1765  asection *section;
1766  bfd_size_type amt;
1767
1768  /* First, read in space names.  */
1769  amt = file_hdr->space_strings_size;
1770  space_strings = bfd_malloc (amt);
1771  if (!space_strings && amt != 0)
1772    goto error_return;
1773
1774  if (bfd_seek (abfd, current_offset + file_hdr->space_strings_location,
1775		SEEK_SET) != 0)
1776    goto error_return;
1777  if (bfd_bread (space_strings, amt, abfd) != amt)
1778    goto error_return;
1779
1780  /* Loop over all of the space dictionaries, building up sections.  */
1781  for (space_index = 0; space_index < file_hdr->space_total; space_index++)
1782    {
1783      struct space_dictionary_record space;
1784      struct som_subspace_dictionary_record subspace, save_subspace;
1785      unsigned int subspace_index;
1786      asection *space_asect;
1787      bfd_size_type space_size = 0;
1788      char *newname;
1789
1790      /* Read the space dictionary element.  */
1791      if (bfd_seek (abfd,
1792		    (current_offset + file_hdr->space_location
1793		     + space_index * sizeof space),
1794		    SEEK_SET) != 0)
1795	goto error_return;
1796      amt = sizeof space;
1797      if (bfd_bread (&space, amt, abfd) != amt)
1798	goto error_return;
1799
1800      /* Setup the space name string.  */
1801      space.name.n_name = space.name.n_strx + space_strings;
1802
1803      /* Make a section out of it.  */
1804      amt = strlen (space.name.n_name) + 1;
1805      newname = bfd_alloc (abfd, amt);
1806      if (!newname)
1807	goto error_return;
1808      strcpy (newname, space.name.n_name);
1809
1810      space_asect = bfd_make_section_anyway (abfd, newname);
1811      if (!space_asect)
1812	goto error_return;
1813
1814      if (space.is_loadable == 0)
1815	space_asect->flags |= SEC_DEBUGGING;
1816
1817      /* Set up all the attributes for the space.  */
1818      if (! bfd_som_set_section_attributes (space_asect, space.is_defined,
1819					    space.is_private, space.sort_key,
1820					    space.space_number))
1821	goto error_return;
1822
1823      /* If the space has no subspaces, then we're done.  */
1824      if (space.subspace_quantity == 0)
1825	continue;
1826
1827      /* Now, read in the first subspace for this space.  */
1828      if (bfd_seek (abfd,
1829		    (current_offset + file_hdr->subspace_location
1830		     + space.subspace_index * sizeof subspace),
1831		    SEEK_SET) != 0)
1832	goto error_return;
1833      amt = sizeof subspace;
1834      if (bfd_bread (&subspace, amt, abfd) != amt)
1835	goto error_return;
1836      /* Seek back to the start of the subspaces for loop below.  */
1837      if (bfd_seek (abfd,
1838		    (current_offset + file_hdr->subspace_location
1839		     + space.subspace_index * sizeof subspace),
1840		    SEEK_SET) != 0)
1841	goto error_return;
1842
1843      /* Setup the start address and file loc from the first subspace
1844	 record.  */
1845      space_asect->vma = subspace.subspace_start;
1846      space_asect->filepos = subspace.file_loc_init_value + current_offset;
1847      space_asect->alignment_power = exact_log2 (subspace.alignment);
1848      if (space_asect->alignment_power == (unsigned) -1)
1849	goto error_return;
1850
1851      /* Initialize save_subspace so we can reliably determine if this
1852	 loop placed any useful values into it.  */
1853      memset (&save_subspace, 0, sizeof (save_subspace));
1854
1855      /* Loop over the rest of the subspaces, building up more sections.  */
1856      for (subspace_index = 0; subspace_index < space.subspace_quantity;
1857	   subspace_index++)
1858	{
1859	  asection *subspace_asect;
1860
1861	  /* Read in the next subspace.  */
1862	  amt = sizeof subspace;
1863	  if (bfd_bread (&subspace, amt, abfd) != amt)
1864	    goto error_return;
1865
1866	  /* Setup the subspace name string.  */
1867	  subspace.name.n_name = subspace.name.n_strx + space_strings;
1868
1869	  amt = strlen (subspace.name.n_name) + 1;
1870	  newname = bfd_alloc (abfd, amt);
1871	  if (!newname)
1872	    goto error_return;
1873	  strcpy (newname, subspace.name.n_name);
1874
1875	  /* Make a section out of this subspace.  */
1876	  subspace_asect = bfd_make_section_anyway (abfd, newname);
1877	  if (!subspace_asect)
1878	    goto error_return;
1879
1880	  /* Store private information about the section.  */
1881	  if (! bfd_som_set_subsection_attributes (subspace_asect, space_asect,
1882						   subspace.access_control_bits,
1883						   subspace.sort_key,
1884						   subspace.quadrant,
1885						   subspace.is_comdat,
1886						   subspace.is_common,
1887						   subspace.dup_common))
1888	    goto error_return;
1889
1890	  /* Keep an easy mapping between subspaces and sections.
1891	     Note we do not necessarily read the subspaces in the
1892	     same order in which they appear in the object file.
1893
1894	     So to make the target index come out correctly, we
1895	     store the location of the subspace header in target
1896	     index, then sort using the location of the subspace
1897	     header as the key.  Then we can assign correct
1898	     subspace indices.  */
1899	  total_subspaces++;
1900	  subspace_asect->target_index = bfd_tell (abfd) - sizeof (subspace);
1901
1902	  /* Set SEC_READONLY and SEC_CODE/SEC_DATA as specified
1903	     by the access_control_bits in the subspace header.  */
1904	  switch (subspace.access_control_bits >> 4)
1905	    {
1906	    /* Readonly data.  */
1907	    case 0x0:
1908	      subspace_asect->flags |= SEC_DATA | SEC_READONLY;
1909	      break;
1910
1911	    /* Normal data.  */
1912	    case 0x1:
1913	      subspace_asect->flags |= SEC_DATA;
1914	      break;
1915
1916	    /* Readonly code and the gateways.
1917	       Gateways have other attributes which do not map
1918	       into anything BFD knows about.  */
1919	    case 0x2:
1920	    case 0x4:
1921	    case 0x5:
1922	    case 0x6:
1923	    case 0x7:
1924	      subspace_asect->flags |= SEC_CODE | SEC_READONLY;
1925	      break;
1926
1927	    /* dynamic (writable) code.  */
1928	    case 0x3:
1929	      subspace_asect->flags |= SEC_CODE;
1930	      break;
1931	    }
1932
1933	  if (subspace.is_comdat || subspace.is_common || subspace.dup_common)
1934	    subspace_asect->flags |= SEC_LINK_ONCE;
1935
1936	  if (subspace.subspace_length > 0)
1937	    subspace_asect->flags |= SEC_HAS_CONTENTS;
1938
1939	  if (subspace.is_loadable)
1940	    subspace_asect->flags |= SEC_ALLOC | SEC_LOAD;
1941	  else
1942	    subspace_asect->flags |= SEC_DEBUGGING;
1943
1944	  if (subspace.code_only)
1945	    subspace_asect->flags |= SEC_CODE;
1946
1947	  /* Both file_loc_init_value and initialization_length will
1948	     be zero for a BSS like subspace.  */
1949	  if (subspace.file_loc_init_value == 0
1950	      && subspace.initialization_length == 0)
1951	    subspace_asect->flags &= ~(SEC_DATA | SEC_LOAD | SEC_HAS_CONTENTS);
1952
1953	  /* This subspace has relocations.
1954	     The fixup_request_quantity is a byte count for the number of
1955	     entries in the relocation stream; it is not the actual number
1956	     of relocations in the subspace.  */
1957	  if (subspace.fixup_request_quantity != 0)
1958	    {
1959	      subspace_asect->flags |= SEC_RELOC;
1960	      subspace_asect->rel_filepos = subspace.fixup_request_index;
1961	      som_section_data (subspace_asect)->reloc_size
1962		= subspace.fixup_request_quantity;
1963	      /* We can not determine this yet.  When we read in the
1964		 relocation table the correct value will be filled in.  */
1965	      subspace_asect->reloc_count = (unsigned) -1;
1966	    }
1967
1968	  /* Update save_subspace if appropriate.  */
1969	  if (subspace.file_loc_init_value > save_subspace.file_loc_init_value)
1970	    save_subspace = subspace;
1971
1972	  subspace_asect->vma = subspace.subspace_start;
1973	  subspace_asect->size = subspace.subspace_length;
1974	  subspace_asect->filepos = (subspace.file_loc_init_value
1975				     + current_offset);
1976	  subspace_asect->alignment_power = exact_log2 (subspace.alignment);
1977	  if (subspace_asect->alignment_power == (unsigned) -1)
1978	    goto error_return;
1979
1980	  /* Keep track of the accumulated sizes of the sections.  */
1981	  space_size += subspace.subspace_length;
1982	}
1983
1984      /* This can happen for a .o which defines symbols in otherwise
1985	 empty subspaces.  */
1986      if (!save_subspace.file_loc_init_value)
1987	space_asect->size = 0;
1988      else
1989	{
1990	  if (file_hdr->a_magic != RELOC_MAGIC)
1991	    {
1992	      /* Setup the size for the space section based upon the info
1993		 in the last subspace of the space.  */
1994	      space_asect->size = (save_subspace.subspace_start
1995				   - space_asect->vma
1996				   + save_subspace.subspace_length);
1997	    }
1998	  else
1999	    {
2000	      /* The subspace_start field is not initialised in relocatable
2001	         only objects, so it cannot be used for length calculations.
2002		 Instead we use the space_size value which we have been
2003		 accumulating.  This isn't an accurate estimate since it
2004		 ignores alignment and ordering issues.  */
2005	      space_asect->size = space_size;
2006	    }
2007	}
2008    }
2009  /* Now that we've read in all the subspace records, we need to assign
2010     a target index to each subspace.  */
2011  amt = total_subspaces;
2012  amt *= sizeof (asection *);
2013  subspace_sections = bfd_malloc (amt);
2014  if (subspace_sections == NULL)
2015    goto error_return;
2016
2017  for (i = 0, section = abfd->sections; section; section = section->next)
2018    {
2019      if (!som_is_subspace (section))
2020	continue;
2021
2022      subspace_sections[i] = section;
2023      i++;
2024    }
2025  qsort (subspace_sections, total_subspaces,
2026	 sizeof (asection *), compare_subspaces);
2027
2028  /* subspace_sections is now sorted in the order in which the subspaces
2029     appear in the object file.  Assign an index to each one now.  */
2030  for (i = 0; i < total_subspaces; i++)
2031    subspace_sections[i]->target_index = i;
2032
2033  if (space_strings != NULL)
2034    free (space_strings);
2035
2036  if (subspace_sections != NULL)
2037    free (subspace_sections);
2038
2039  return TRUE;
2040
2041 error_return:
2042  if (space_strings != NULL)
2043    free (space_strings);
2044
2045  if (subspace_sections != NULL)
2046    free (subspace_sections);
2047  return FALSE;
2048}
2049
2050/* Read in a SOM object and make it into a BFD.  */
2051
2052static const bfd_target *
2053som_object_p (bfd *abfd)
2054{
2055  struct header file_hdr;
2056  struct som_exec_auxhdr *aux_hdr_ptr = NULL;
2057  unsigned long current_offset = 0;
2058  struct lst_header lst_header;
2059  struct som_entry som_entry;
2060  bfd_size_type amt;
2061#define ENTRY_SIZE sizeof (struct som_entry)
2062
2063  amt = FILE_HDR_SIZE;
2064  if (bfd_bread ((void *) &file_hdr, amt, abfd) != amt)
2065    {
2066      if (bfd_get_error () != bfd_error_system_call)
2067	bfd_set_error (bfd_error_wrong_format);
2068      return NULL;
2069    }
2070
2071  if (!_PA_RISC_ID (file_hdr.system_id))
2072    {
2073      bfd_set_error (bfd_error_wrong_format);
2074      return NULL;
2075    }
2076
2077  switch (file_hdr.a_magic)
2078    {
2079    case RELOC_MAGIC:
2080    case EXEC_MAGIC:
2081    case SHARE_MAGIC:
2082    case DEMAND_MAGIC:
2083#ifdef DL_MAGIC
2084    case DL_MAGIC:
2085#endif
2086#ifdef SHL_MAGIC
2087    case SHL_MAGIC:
2088#endif
2089#ifdef SHARED_MAGIC_CNX
2090    case SHARED_MAGIC_CNX:
2091#endif
2092      break;
2093
2094#ifdef EXECLIBMAGIC
2095    case EXECLIBMAGIC:
2096      /* Read the lst header and determine where the SOM directory begins.  */
2097
2098      if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0)
2099	{
2100	  if (bfd_get_error () != bfd_error_system_call)
2101	    bfd_set_error (bfd_error_wrong_format);
2102	  return NULL;
2103	}
2104
2105      amt = SLSTHDR;
2106      if (bfd_bread ((void *) &lst_header, amt, abfd) != amt)
2107	{
2108	  if (bfd_get_error () != bfd_error_system_call)
2109	    bfd_set_error (bfd_error_wrong_format);
2110	  return NULL;
2111	}
2112
2113      /* Position to and read the first directory entry.  */
2114
2115      if (bfd_seek (abfd, lst_header.dir_loc, SEEK_SET) != 0)
2116	{
2117	  if (bfd_get_error () != bfd_error_system_call)
2118	    bfd_set_error (bfd_error_wrong_format);
2119	  return NULL;
2120	}
2121
2122      amt = ENTRY_SIZE;
2123      if (bfd_bread ((void *) &som_entry, amt, abfd) != amt)
2124	{
2125	  if (bfd_get_error () != bfd_error_system_call)
2126	    bfd_set_error (bfd_error_wrong_format);
2127	  return NULL;
2128	}
2129
2130      /* Now position to the first SOM.  */
2131
2132      if (bfd_seek (abfd, som_entry.location, SEEK_SET) != 0)
2133	{
2134	  if (bfd_get_error () != bfd_error_system_call)
2135	    bfd_set_error (bfd_error_wrong_format);
2136	  return NULL;
2137	}
2138
2139      current_offset = som_entry.location;
2140
2141      /* And finally, re-read the som header.  */
2142      amt = FILE_HDR_SIZE;
2143      if (bfd_bread ((void *) &file_hdr, amt, abfd) != amt)
2144	{
2145	  if (bfd_get_error () != bfd_error_system_call)
2146	    bfd_set_error (bfd_error_wrong_format);
2147	  return NULL;
2148	}
2149
2150      break;
2151#endif
2152
2153    default:
2154      bfd_set_error (bfd_error_wrong_format);
2155      return NULL;
2156    }
2157
2158  if (file_hdr.version_id != VERSION_ID
2159      && file_hdr.version_id != NEW_VERSION_ID)
2160    {
2161      bfd_set_error (bfd_error_wrong_format);
2162      return NULL;
2163    }
2164
2165  /* If the aux_header_size field in the file header is zero, then this
2166     object is an incomplete executable (a .o file).  Do not try to read
2167     a non-existant auxiliary header.  */
2168  if (file_hdr.aux_header_size != 0)
2169    {
2170      aux_hdr_ptr = bfd_zalloc (abfd,
2171				(bfd_size_type) sizeof (*aux_hdr_ptr));
2172      if (aux_hdr_ptr == NULL)
2173	return NULL;
2174      amt = AUX_HDR_SIZE;
2175      if (bfd_bread ((void *) aux_hdr_ptr, amt, abfd) != amt)
2176	{
2177	  if (bfd_get_error () != bfd_error_system_call)
2178	    bfd_set_error (bfd_error_wrong_format);
2179	  return NULL;
2180	}
2181    }
2182
2183  if (!setup_sections (abfd, &file_hdr, current_offset))
2184    {
2185      /* setup_sections does not bubble up a bfd error code.  */
2186      bfd_set_error (bfd_error_bad_value);
2187      return NULL;
2188    }
2189
2190  /* This appears to be a valid SOM object.  Do some initialization.  */
2191  return som_object_setup (abfd, &file_hdr, aux_hdr_ptr, current_offset);
2192}
2193
2194/* Create a SOM object.  */
2195
2196static bfd_boolean
2197som_mkobject (bfd *abfd)
2198{
2199  /* Allocate memory to hold backend information.  */
2200  abfd->tdata.som_data = bfd_zalloc (abfd, (bfd_size_type) sizeof (struct som_data_struct));
2201  if (abfd->tdata.som_data == NULL)
2202    return FALSE;
2203  return TRUE;
2204}
2205
2206/* Initialize some information in the file header.  This routine makes
2207   not attempt at doing the right thing for a full executable; it
2208   is only meant to handle relocatable objects.  */
2209
2210static bfd_boolean
2211som_prep_headers (bfd *abfd)
2212{
2213  struct header *file_hdr;
2214  asection *section;
2215  bfd_size_type amt = sizeof (struct header);
2216
2217  /* Make and attach a file header to the BFD.  */
2218  file_hdr = bfd_zalloc (abfd, amt);
2219  if (file_hdr == NULL)
2220    return FALSE;
2221  obj_som_file_hdr (abfd) = file_hdr;
2222
2223  if (abfd->flags & (EXEC_P | DYNAMIC))
2224    {
2225      /* Make and attach an exec header to the BFD.  */
2226      amt = sizeof (struct som_exec_auxhdr);
2227      obj_som_exec_hdr (abfd) = bfd_zalloc (abfd, amt);
2228      if (obj_som_exec_hdr (abfd) == NULL)
2229	return FALSE;
2230
2231      if (abfd->flags & D_PAGED)
2232	file_hdr->a_magic = DEMAND_MAGIC;
2233      else if (abfd->flags & WP_TEXT)
2234	file_hdr->a_magic = SHARE_MAGIC;
2235#ifdef SHL_MAGIC
2236      else if (abfd->flags & DYNAMIC)
2237	file_hdr->a_magic = SHL_MAGIC;
2238#endif
2239      else
2240	file_hdr->a_magic = EXEC_MAGIC;
2241    }
2242  else
2243    file_hdr->a_magic = RELOC_MAGIC;
2244
2245  /* These fields are optional, and embedding timestamps is not always
2246     a wise thing to do, it makes comparing objects during a multi-stage
2247     bootstrap difficult.  */
2248  file_hdr->file_time.secs = 0;
2249  file_hdr->file_time.nanosecs = 0;
2250
2251  file_hdr->entry_space = 0;
2252  file_hdr->entry_subspace = 0;
2253  file_hdr->entry_offset = 0;
2254  file_hdr->presumed_dp = 0;
2255
2256  /* Now iterate over the sections translating information from
2257     BFD sections to SOM spaces/subspaces.  */
2258  for (section = abfd->sections; section != NULL; section = section->next)
2259    {
2260      /* Ignore anything which has not been marked as a space or
2261	 subspace.  */
2262      if (!som_is_space (section) && !som_is_subspace (section))
2263	continue;
2264
2265      if (som_is_space (section))
2266	{
2267	  /* Allocate space for the space dictionary.  */
2268	  amt = sizeof (struct space_dictionary_record);
2269	  som_section_data (section)->space_dict = bfd_zalloc (abfd, amt);
2270	  if (som_section_data (section)->space_dict == NULL)
2271	    return FALSE;
2272	  /* Set space attributes.  Note most attributes of SOM spaces
2273	     are set based on the subspaces it contains.  */
2274	  som_section_data (section)->space_dict->loader_fix_index = -1;
2275	  som_section_data (section)->space_dict->init_pointer_index = -1;
2276
2277	  /* Set more attributes that were stuffed away in private data.  */
2278	  som_section_data (section)->space_dict->sort_key =
2279	    som_section_data (section)->copy_data->sort_key;
2280	  som_section_data (section)->space_dict->is_defined =
2281	    som_section_data (section)->copy_data->is_defined;
2282	  som_section_data (section)->space_dict->is_private =
2283	    som_section_data (section)->copy_data->is_private;
2284	  som_section_data (section)->space_dict->space_number =
2285	    som_section_data (section)->copy_data->space_number;
2286	}
2287      else
2288	{
2289	  /* Allocate space for the subspace dictionary.  */
2290	  amt = sizeof (struct som_subspace_dictionary_record);
2291	  som_section_data (section)->subspace_dict = bfd_zalloc (abfd, amt);
2292	  if (som_section_data (section)->subspace_dict == NULL)
2293	    return FALSE;
2294
2295	  /* Set subspace attributes.  Basic stuff is done here, additional
2296	     attributes are filled in later as more information becomes
2297	     available.  */
2298	  if (section->flags & SEC_ALLOC)
2299	    som_section_data (section)->subspace_dict->is_loadable = 1;
2300
2301	  if (section->flags & SEC_CODE)
2302	    som_section_data (section)->subspace_dict->code_only = 1;
2303
2304	  som_section_data (section)->subspace_dict->subspace_start =
2305	    section->vma;
2306	  som_section_data (section)->subspace_dict->subspace_length =
2307	    section->size;
2308	  som_section_data (section)->subspace_dict->initialization_length =
2309	    section->size;
2310	  som_section_data (section)->subspace_dict->alignment =
2311	    1 << section->alignment_power;
2312
2313	  /* Set more attributes that were stuffed away in private data.  */
2314	  som_section_data (section)->subspace_dict->sort_key =
2315	    som_section_data (section)->copy_data->sort_key;
2316	  som_section_data (section)->subspace_dict->access_control_bits =
2317	    som_section_data (section)->copy_data->access_control_bits;
2318	  som_section_data (section)->subspace_dict->quadrant =
2319	    som_section_data (section)->copy_data->quadrant;
2320	  som_section_data (section)->subspace_dict->is_comdat =
2321	    som_section_data (section)->copy_data->is_comdat;
2322	  som_section_data (section)->subspace_dict->is_common =
2323	    som_section_data (section)->copy_data->is_common;
2324	  som_section_data (section)->subspace_dict->dup_common =
2325	    som_section_data (section)->copy_data->dup_common;
2326	}
2327    }
2328  return TRUE;
2329}
2330
2331/* Return TRUE if the given section is a SOM space, FALSE otherwise.  */
2332
2333static bfd_boolean
2334som_is_space (asection *section)
2335{
2336  /* If no copy data is available, then it's neither a space nor a
2337     subspace.  */
2338  if (som_section_data (section)->copy_data == NULL)
2339    return FALSE;
2340
2341  /* If the containing space isn't the same as the given section,
2342     then this isn't a space.  */
2343  if (som_section_data (section)->copy_data->container != section
2344      && (som_section_data (section)->copy_data->container->output_section
2345	  != section))
2346    return FALSE;
2347
2348  /* OK.  Must be a space.  */
2349  return TRUE;
2350}
2351
2352/* Return TRUE if the given section is a SOM subspace, FALSE otherwise.  */
2353
2354static bfd_boolean
2355som_is_subspace (asection *section)
2356{
2357  /* If no copy data is available, then it's neither a space nor a
2358     subspace.  */
2359  if (som_section_data (section)->copy_data == NULL)
2360    return FALSE;
2361
2362  /* If the containing space is the same as the given section,
2363     then this isn't a subspace.  */
2364  if (som_section_data (section)->copy_data->container == section
2365      || (som_section_data (section)->copy_data->container->output_section
2366	  == section))
2367    return FALSE;
2368
2369  /* OK.  Must be a subspace.  */
2370  return TRUE;
2371}
2372
2373/* Return TRUE if the given space contains the given subspace.  It
2374   is safe to assume space really is a space, and subspace really
2375   is a subspace.  */
2376
2377static bfd_boolean
2378som_is_container (asection *space, asection *subspace)
2379{
2380  return (som_section_data (subspace)->copy_data->container == space)
2381    || (som_section_data (subspace)->copy_data->container->output_section
2382	== space);
2383}
2384
2385/* Count and return the number of spaces attached to the given BFD.  */
2386
2387static unsigned long
2388som_count_spaces (bfd *abfd)
2389{
2390  int count = 0;
2391  asection *section;
2392
2393  for (section = abfd->sections; section != NULL; section = section->next)
2394    count += som_is_space (section);
2395
2396  return count;
2397}
2398
2399/* Count the number of subspaces attached to the given BFD.  */
2400
2401static unsigned long
2402som_count_subspaces (bfd *abfd)
2403{
2404  int count = 0;
2405  asection *section;
2406
2407  for (section = abfd->sections; section != NULL; section = section->next)
2408    count += som_is_subspace (section);
2409
2410  return count;
2411}
2412
2413/* Return -1, 0, 1 indicating the relative ordering of sym1 and sym2.
2414
2415   We desire symbols to be ordered starting with the symbol with the
2416   highest relocation count down to the symbol with the lowest relocation
2417   count.  Doing so compacts the relocation stream.  */
2418
2419static int
2420compare_syms (const void *arg1, const void *arg2)
2421{
2422  asymbol **sym1 = (asymbol **) arg1;
2423  asymbol **sym2 = (asymbol **) arg2;
2424  unsigned int count1, count2;
2425
2426  /* Get relocation count for each symbol.  Note that the count
2427     is stored in the udata pointer for section symbols!  */
2428  if ((*sym1)->flags & BSF_SECTION_SYM)
2429    count1 = (*sym1)->udata.i;
2430  else
2431    count1 = som_symbol_data (*sym1)->reloc_count;
2432
2433  if ((*sym2)->flags & BSF_SECTION_SYM)
2434    count2 = (*sym2)->udata.i;
2435  else
2436    count2 = som_symbol_data (*sym2)->reloc_count;
2437
2438  /* Return the appropriate value.  */
2439  if (count1 < count2)
2440    return 1;
2441  else if (count1 > count2)
2442    return -1;
2443  return 0;
2444}
2445
2446/* Return -1, 0, 1 indicating the relative ordering of subspace1
2447   and subspace.  */
2448
2449static int
2450compare_subspaces (const void *arg1, const void *arg2)
2451{
2452  asection **subspace1 = (asection **) arg1;
2453  asection **subspace2 = (asection **) arg2;
2454
2455  if ((*subspace1)->target_index < (*subspace2)->target_index)
2456    return -1;
2457  else if ((*subspace2)->target_index < (*subspace1)->target_index)
2458    return 1;
2459  else
2460    return 0;
2461}
2462
2463/* Perform various work in preparation for emitting the fixup stream.  */
2464
2465static void
2466som_prep_for_fixups (bfd *abfd, asymbol **syms, unsigned long num_syms)
2467{
2468  unsigned long i;
2469  asection *section;
2470  asymbol **sorted_syms;
2471  bfd_size_type amt;
2472
2473  /* Most SOM relocations involving a symbol have a length which is
2474     dependent on the index of the symbol.  So symbols which are
2475     used often in relocations should have a small index.  */
2476
2477  /* First initialize the counters for each symbol.  */
2478  for (i = 0; i < num_syms; i++)
2479    {
2480      /* Handle a section symbol; these have no pointers back to the
2481	 SOM symbol info.  So we just use the udata field to hold the
2482	 relocation count.  */
2483      if (som_symbol_data (syms[i]) == NULL
2484	  || syms[i]->flags & BSF_SECTION_SYM)
2485	{
2486	  syms[i]->flags |= BSF_SECTION_SYM;
2487	  syms[i]->udata.i = 0;
2488	}
2489      else
2490	som_symbol_data (syms[i])->reloc_count = 0;
2491    }
2492
2493  /* Now that the counters are initialized, make a weighted count
2494     of how often a given symbol is used in a relocation.  */
2495  for (section = abfd->sections; section != NULL; section = section->next)
2496    {
2497      int j;
2498
2499      /* Does this section have any relocations?  */
2500      if ((int) section->reloc_count <= 0)
2501	continue;
2502
2503      /* Walk through each relocation for this section.  */
2504      for (j = 1; j < (int) section->reloc_count; j++)
2505	{
2506	  arelent *reloc = section->orelocation[j];
2507	  int scale;
2508
2509	  /* A relocation against a symbol in the *ABS* section really
2510	     does not have a symbol.  Likewise if the symbol isn't associated
2511	     with any section.  */
2512	  if (reloc->sym_ptr_ptr == NULL
2513	      || bfd_is_abs_section ((*reloc->sym_ptr_ptr)->section))
2514	    continue;
2515
2516	  /* Scaling to encourage symbols involved in R_DP_RELATIVE
2517	     and R_CODE_ONE_SYMBOL relocations to come first.  These
2518	     two relocations have single byte versions if the symbol
2519	     index is very small.  */
2520	  if (reloc->howto->type == R_DP_RELATIVE
2521	      || reloc->howto->type == R_CODE_ONE_SYMBOL)
2522	    scale = 2;
2523	  else
2524	    scale = 1;
2525
2526	  /* Handle section symbols by storing the count in the udata
2527	     field.  It will not be used and the count is very important
2528	     for these symbols.  */
2529	  if ((*reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2530	    {
2531	      (*reloc->sym_ptr_ptr)->udata.i =
2532		(*reloc->sym_ptr_ptr)->udata.i + scale;
2533	      continue;
2534	    }
2535
2536	  /* A normal symbol.  Increment the count.  */
2537	  som_symbol_data (*reloc->sym_ptr_ptr)->reloc_count += scale;
2538	}
2539    }
2540
2541  /* Sort a copy of the symbol table, rather than the canonical
2542     output symbol table.  */
2543  amt = num_syms;
2544  amt *= sizeof (asymbol *);
2545  sorted_syms = bfd_zalloc (abfd, amt);
2546  memcpy (sorted_syms, syms, num_syms * sizeof (asymbol *));
2547  qsort (sorted_syms, num_syms, sizeof (asymbol *), compare_syms);
2548  obj_som_sorted_syms (abfd) = sorted_syms;
2549
2550  /* Compute the symbol indexes, they will be needed by the relocation
2551     code.  */
2552  for (i = 0; i < num_syms; i++)
2553    {
2554      /* A section symbol.  Again, there is no pointer to backend symbol
2555	 information, so we reuse the udata field again.  */
2556      if (sorted_syms[i]->flags & BSF_SECTION_SYM)
2557	sorted_syms[i]->udata.i = i;
2558      else
2559	som_symbol_data (sorted_syms[i])->index = i;
2560    }
2561}
2562
2563static bfd_boolean
2564som_write_fixups (bfd *abfd,
2565		  unsigned long current_offset,
2566		  unsigned int *total_reloc_sizep)
2567{
2568  unsigned int i, j;
2569  /* Chunk of memory that we can use as buffer space, then throw
2570     away.  */
2571  unsigned char tmp_space[SOM_TMP_BUFSIZE];
2572  unsigned char *p;
2573  unsigned int total_reloc_size = 0;
2574  unsigned int subspace_reloc_size = 0;
2575  unsigned int num_spaces = obj_som_file_hdr (abfd)->space_total;
2576  asection *section = abfd->sections;
2577  bfd_size_type amt;
2578
2579  memset (tmp_space, 0, SOM_TMP_BUFSIZE);
2580  p = tmp_space;
2581
2582  /* All the fixups for a particular subspace are emitted in a single
2583     stream.  All the subspaces for a particular space are emitted
2584     as a single stream.
2585
2586     So, to get all the locations correct one must iterate through all the
2587     spaces, for each space iterate through its subspaces and output a
2588     fixups stream.  */
2589  for (i = 0; i < num_spaces; i++)
2590    {
2591      asection *subsection;
2592
2593      /* Find a space.  */
2594      while (!som_is_space (section))
2595	section = section->next;
2596
2597      /* Now iterate through each of its subspaces.  */
2598      for (subsection = abfd->sections;
2599	   subsection != NULL;
2600	   subsection = subsection->next)
2601	{
2602	  int reloc_offset;
2603	  unsigned int current_rounding_mode;
2604#ifndef NO_PCREL_MODES
2605	  unsigned int current_call_mode;
2606#endif
2607
2608	  /* Find a subspace of this space.  */
2609	  if (!som_is_subspace (subsection)
2610	      || !som_is_container (section, subsection))
2611	    continue;
2612
2613	  /* If this subspace does not have real data, then we are
2614	     finished with it.  */
2615	  if ((subsection->flags & SEC_HAS_CONTENTS) == 0)
2616	    {
2617	      som_section_data (subsection)->subspace_dict->fixup_request_index
2618		= -1;
2619	      continue;
2620	    }
2621
2622	  /* This subspace has some relocations.  Put the relocation stream
2623	     index into the subspace record.  */
2624	  som_section_data (subsection)->subspace_dict->fixup_request_index
2625	    = total_reloc_size;
2626
2627	  /* To make life easier start over with a clean slate for
2628	     each subspace.  Seek to the start of the relocation stream
2629	     for this subspace in preparation for writing out its fixup
2630	     stream.  */
2631	  if (bfd_seek (abfd, current_offset + total_reloc_size, SEEK_SET) != 0)
2632	    return FALSE;
2633
2634	  /* Buffer space has already been allocated.  Just perform some
2635	     initialization here.  */
2636	  p = tmp_space;
2637	  subspace_reloc_size = 0;
2638	  reloc_offset = 0;
2639	  som_initialize_reloc_queue (reloc_queue);
2640	  current_rounding_mode = R_N_MODE;
2641#ifndef NO_PCREL_MODES
2642	  current_call_mode = R_SHORT_PCREL_MODE;
2643#endif
2644
2645	  /* Translate each BFD relocation into one or more SOM
2646	     relocations.  */
2647	  for (j = 0; j < subsection->reloc_count; j++)
2648	    {
2649	      arelent *bfd_reloc = subsection->orelocation[j];
2650	      unsigned int skip;
2651	      int sym_num;
2652
2653	      /* Get the symbol number.  Remember it's stored in a
2654		 special place for section symbols.  */
2655	      if ((*bfd_reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
2656		sym_num = (*bfd_reloc->sym_ptr_ptr)->udata.i;
2657	      else
2658		sym_num = som_symbol_data (*bfd_reloc->sym_ptr_ptr)->index;
2659
2660	      /* If there is not enough room for the next couple relocations,
2661		 then dump the current buffer contents now.  Also reinitialize
2662		 the relocation queue.
2663
2664		 No single BFD relocation could ever translate into more
2665		 than 100 bytes of SOM relocations (20bytes is probably the
2666		 upper limit, but leave lots of space for growth).  */
2667	      if (p - tmp_space + 100 > SOM_TMP_BUFSIZE)
2668		{
2669		  amt = p - tmp_space;
2670		  if (bfd_bwrite ((void *) tmp_space, amt, abfd) != amt)
2671		    return FALSE;
2672
2673		  p = tmp_space;
2674		  som_initialize_reloc_queue (reloc_queue);
2675		}
2676
2677	      /* Emit R_NO_RELOCATION fixups to map any bytes which were
2678		 skipped.  */
2679	      skip = bfd_reloc->address - reloc_offset;
2680	      p = som_reloc_skip (abfd, skip, p,
2681				  &subspace_reloc_size, reloc_queue);
2682
2683	      /* Update reloc_offset for the next iteration.
2684
2685		 Many relocations do not consume input bytes.  They
2686		 are markers, or set state necessary to perform some
2687		 later relocation.  */
2688	      switch (bfd_reloc->howto->type)
2689		{
2690		case R_ENTRY:
2691		case R_ALT_ENTRY:
2692		case R_EXIT:
2693		case R_N_MODE:
2694		case R_S_MODE:
2695		case R_D_MODE:
2696		case R_R_MODE:
2697		case R_FSEL:
2698		case R_LSEL:
2699		case R_RSEL:
2700		case R_COMP1:
2701		case R_COMP2:
2702		case R_BEGIN_BRTAB:
2703		case R_END_BRTAB:
2704		case R_BEGIN_TRY:
2705		case R_END_TRY:
2706		case R_N0SEL:
2707		case R_N1SEL:
2708#ifndef NO_PCREL_MODES
2709		case R_SHORT_PCREL_MODE:
2710		case R_LONG_PCREL_MODE:
2711#endif
2712		  reloc_offset = bfd_reloc->address;
2713		  break;
2714
2715		default:
2716		  reloc_offset = bfd_reloc->address + 4;
2717		  break;
2718		}
2719
2720	      /* Now the actual relocation we care about.  */
2721	      switch (bfd_reloc->howto->type)
2722		{
2723		case R_PCREL_CALL:
2724		case R_ABS_CALL:
2725		  p = som_reloc_call (abfd, p, &subspace_reloc_size,
2726				      bfd_reloc, sym_num, reloc_queue);
2727		  break;
2728
2729		case R_CODE_ONE_SYMBOL:
2730		case R_DP_RELATIVE:
2731		  /* Account for any addend.  */
2732		  if (bfd_reloc->addend)
2733		    p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2734					  &subspace_reloc_size, reloc_queue);
2735
2736		  if (sym_num < 0x20)
2737		    {
2738		      bfd_put_8 (abfd, bfd_reloc->howto->type + sym_num, p);
2739		      subspace_reloc_size += 1;
2740		      p += 1;
2741		    }
2742		  else if (sym_num < 0x100)
2743		    {
2744		      bfd_put_8 (abfd, bfd_reloc->howto->type + 32, p);
2745		      bfd_put_8 (abfd, sym_num, p + 1);
2746		      p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2747					  2, reloc_queue);
2748		    }
2749		  else if (sym_num < 0x10000000)
2750		    {
2751		      bfd_put_8 (abfd, bfd_reloc->howto->type + 33, p);
2752		      bfd_put_8 (abfd, sym_num >> 16, p + 1);
2753		      bfd_put_16 (abfd, (bfd_vma) sym_num, p + 2);
2754		      p = try_prev_fixup (abfd, &subspace_reloc_size,
2755					  p, 4, reloc_queue);
2756		    }
2757		  else
2758		    abort ();
2759		  break;
2760
2761		case R_DATA_ONE_SYMBOL:
2762		case R_DATA_PLABEL:
2763		case R_CODE_PLABEL:
2764		case R_DLT_REL:
2765		  /* Account for any addend using R_DATA_OVERRIDE.  */
2766		  if (bfd_reloc->howto->type != R_DATA_ONE_SYMBOL
2767		      && bfd_reloc->addend)
2768		    p = som_reloc_addend (abfd, bfd_reloc->addend, p,
2769					  &subspace_reloc_size, reloc_queue);
2770
2771		  if (sym_num < 0x100)
2772		    {
2773		      bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2774		      bfd_put_8 (abfd, sym_num, p + 1);
2775		      p = try_prev_fixup (abfd, &subspace_reloc_size, p,
2776					  2, reloc_queue);
2777		    }
2778		  else if (sym_num < 0x10000000)
2779		    {
2780		      bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
2781		      bfd_put_8 (abfd, sym_num >> 16, p + 1);
2782		      bfd_put_16 (abfd, (bfd_vma) sym_num, p + 2);
2783		      p = try_prev_fixup (abfd, &subspace_reloc_size,
2784					  p, 4, reloc_queue);
2785		    }
2786		  else
2787		    abort ();
2788		  break;
2789
2790		case R_ENTRY:
2791		  {
2792		    unsigned int tmp;
2793		    arelent *tmp_reloc = NULL;
2794		    bfd_put_8 (abfd, R_ENTRY, p);
2795
2796		    /* R_ENTRY relocations have 64 bits of associated
2797		       data.  Unfortunately the addend field of a bfd
2798		       relocation is only 32 bits.  So, we split up
2799		       the 64bit unwind information and store part in
2800		       the R_ENTRY relocation, and the rest in the R_EXIT
2801		       relocation.  */
2802		    bfd_put_32 (abfd, bfd_reloc->addend, p + 1);
2803
2804		    /* Find the next R_EXIT relocation.  */
2805		    for (tmp = j; tmp < subsection->reloc_count; tmp++)
2806		      {
2807			tmp_reloc = subsection->orelocation[tmp];
2808			if (tmp_reloc->howto->type == R_EXIT)
2809			  break;
2810		      }
2811
2812		    if (tmp == subsection->reloc_count)
2813		      abort ();
2814
2815		    bfd_put_32 (abfd, tmp_reloc->addend, p + 5);
2816		    p = try_prev_fixup (abfd, &subspace_reloc_size,
2817					p, 9, reloc_queue);
2818		    break;
2819		  }
2820
2821		case R_N_MODE:
2822		case R_S_MODE:
2823		case R_D_MODE:
2824		case R_R_MODE:
2825		  /* If this relocation requests the current rounding
2826		     mode, then it is redundant.  */
2827		  if (bfd_reloc->howto->type != current_rounding_mode)
2828		    {
2829		      bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2830		      subspace_reloc_size += 1;
2831		      p += 1;
2832		      current_rounding_mode = bfd_reloc->howto->type;
2833		    }
2834		  break;
2835
2836#ifndef NO_PCREL_MODES
2837		case R_LONG_PCREL_MODE:
2838		case R_SHORT_PCREL_MODE:
2839		  if (bfd_reloc->howto->type != current_call_mode)
2840		    {
2841		      bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2842		      subspace_reloc_size += 1;
2843		      p += 1;
2844		      current_call_mode = bfd_reloc->howto->type;
2845		    }
2846		  break;
2847#endif
2848
2849		case R_EXIT:
2850		case R_ALT_ENTRY:
2851		case R_FSEL:
2852		case R_LSEL:
2853		case R_RSEL:
2854		case R_BEGIN_BRTAB:
2855		case R_END_BRTAB:
2856		case R_BEGIN_TRY:
2857		case R_N0SEL:
2858		case R_N1SEL:
2859		  bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2860		  subspace_reloc_size += 1;
2861		  p += 1;
2862		  break;
2863
2864		case R_END_TRY:
2865		  /* The end of an exception handling region.  The reloc's
2866		     addend contains the offset of the exception handling
2867		     code.  */
2868		  if (bfd_reloc->addend == 0)
2869		    bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2870		  else if (bfd_reloc->addend < 1024)
2871		    {
2872		      bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
2873		      bfd_put_8 (abfd, bfd_reloc->addend / 4, p + 1);
2874		      p = try_prev_fixup (abfd, &subspace_reloc_size,
2875					  p, 2, reloc_queue);
2876		    }
2877		  else
2878		    {
2879		      bfd_put_8 (abfd, bfd_reloc->howto->type + 2, p);
2880		      bfd_put_8 (abfd, (bfd_reloc->addend / 4) >> 16, p + 1);
2881		      bfd_put_16 (abfd, bfd_reloc->addend / 4, p + 2);
2882		      p = try_prev_fixup (abfd, &subspace_reloc_size,
2883					  p, 4, reloc_queue);
2884		    }
2885		  break;
2886
2887		case R_COMP1:
2888		  /* The only time we generate R_COMP1, R_COMP2 and
2889		     R_CODE_EXPR relocs is for the difference of two
2890		     symbols.  Hence we can cheat here.  */
2891		  bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2892		  bfd_put_8 (abfd, 0x44, p + 1);
2893		  p = try_prev_fixup (abfd, &subspace_reloc_size,
2894				      p, 2, reloc_queue);
2895		  break;
2896
2897		case R_COMP2:
2898		  /* The only time we generate R_COMP1, R_COMP2 and
2899		     R_CODE_EXPR relocs is for the difference of two
2900		     symbols.  Hence we can cheat here.  */
2901		  bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2902		  bfd_put_8 (abfd, 0x80, p + 1);
2903		  bfd_put_8 (abfd, sym_num >> 16, p + 2);
2904		  bfd_put_16 (abfd, (bfd_vma) sym_num, p + 3);
2905		  p = try_prev_fixup (abfd, &subspace_reloc_size,
2906				      p, 5, reloc_queue);
2907		  break;
2908
2909		case R_CODE_EXPR:
2910		case R_DATA_EXPR:
2911		  /* The only time we generate R_COMP1, R_COMP2 and
2912		     R_CODE_EXPR relocs is for the difference of two
2913		     symbols.  Hence we can cheat here.  */
2914		  bfd_put_8 (abfd, bfd_reloc->howto->type, p);
2915		  subspace_reloc_size += 1;
2916		  p += 1;
2917		  break;
2918
2919		/* Put a "R_RESERVED" relocation in the stream if
2920		   we hit something we do not understand.  The linker
2921		   will complain loudly if this ever happens.  */
2922		default:
2923		  bfd_put_8 (abfd, 0xff, p);
2924		  subspace_reloc_size += 1;
2925		  p += 1;
2926		  break;
2927		}
2928	    }
2929
2930	  /* Last BFD relocation for a subspace has been processed.
2931	     Map the rest of the subspace with R_NO_RELOCATION fixups.  */
2932	  p = som_reloc_skip (abfd, subsection->size - reloc_offset,
2933			      p, &subspace_reloc_size, reloc_queue);
2934
2935	  /* Scribble out the relocations.  */
2936	  amt = p - tmp_space;
2937	  if (bfd_bwrite ((void *) tmp_space, amt, abfd) != amt)
2938	    return FALSE;
2939	  p = tmp_space;
2940
2941	  total_reloc_size += subspace_reloc_size;
2942	  som_section_data (subsection)->subspace_dict->fixup_request_quantity
2943	    = subspace_reloc_size;
2944	}
2945      section = section->next;
2946    }
2947  *total_reloc_sizep = total_reloc_size;
2948  return TRUE;
2949}
2950
2951/* Write out the space/subspace string table.  */
2952
2953static bfd_boolean
2954som_write_space_strings (bfd *abfd,
2955			 unsigned long current_offset,
2956			 unsigned int *string_sizep)
2957{
2958  /* Chunk of memory that we can use as buffer space, then throw
2959     away.  */
2960  size_t tmp_space_size = SOM_TMP_BUFSIZE;
2961  char *tmp_space = alloca (tmp_space_size);
2962  char *p = tmp_space;
2963  unsigned int strings_size = 0;
2964  asection *section;
2965  bfd_size_type amt;
2966
2967  /* Seek to the start of the space strings in preparation for writing
2968     them out.  */
2969  if (bfd_seek (abfd, (file_ptr) current_offset, SEEK_SET) != 0)
2970    return FALSE;
2971
2972  /* Walk through all the spaces and subspaces (order is not important)
2973     building up and writing string table entries for their names.  */
2974  for (section = abfd->sections; section != NULL; section = section->next)
2975    {
2976      size_t length;
2977
2978      /* Only work with space/subspaces; avoid any other sections
2979	 which might have been made (.text for example).  */
2980      if (!som_is_space (section) && !som_is_subspace (section))
2981	continue;
2982
2983      /* Get the length of the space/subspace name.  */
2984      length = strlen (section->name);
2985
2986      /* If there is not enough room for the next entry, then dump the
2987	 current buffer contents now and maybe allocate a larger
2988	 buffer.  Each entry will take 4 bytes to hold the string
2989	 length + the string itself + null terminator.  */
2990      if (p - tmp_space + 5 + length > tmp_space_size)
2991	{
2992	  /* Flush buffer before refilling or reallocating.  */
2993	  amt = p - tmp_space;
2994	  if (bfd_bwrite ((void *) &tmp_space[0], amt, abfd) != amt)
2995	    return FALSE;
2996
2997	  /* Reallocate if now empty buffer still too small.  */
2998	  if (5 + length > tmp_space_size)
2999	    {
3000	      /* Ensure a minimum growth factor to avoid O(n**2) space
3001		 consumption for n strings.  The optimal minimum
3002		 factor seems to be 2, as no other value can guarantee
3003		 wasting less than 50% space.  (Note that we cannot
3004		 deallocate space allocated by `alloca' without
3005		 returning from this function.)  The same technique is
3006		 used a few more times below when a buffer is
3007		 reallocated.  */
3008	      tmp_space_size = MAX (2 * tmp_space_size, 5 + length);
3009	      tmp_space = alloca (tmp_space_size);
3010	    }
3011
3012	  /* Reset to beginning of the (possibly new) buffer space.  */
3013	  p = tmp_space;
3014	}
3015
3016      /* First element in a string table entry is the length of the
3017	 string.  Alignment issues are already handled.  */
3018      bfd_put_32 (abfd, (bfd_vma) length, p);
3019      p += 4;
3020      strings_size += 4;
3021
3022      /* Record the index in the space/subspace records.  */
3023      if (som_is_space (section))
3024	som_section_data (section)->space_dict->name.n_strx = strings_size;
3025      else
3026	som_section_data (section)->subspace_dict->name.n_strx = strings_size;
3027
3028      /* Next comes the string itself + a null terminator.  */
3029      strcpy (p, section->name);
3030      p += length + 1;
3031      strings_size += length + 1;
3032
3033      /* Always align up to the next word boundary.  */
3034      while (strings_size % 4)
3035	{
3036	  bfd_put_8 (abfd, 0, p);
3037	  p++;
3038	  strings_size++;
3039	}
3040    }
3041
3042  /* Done with the space/subspace strings.  Write out any information
3043     contained in a partial block.  */
3044  amt = p - tmp_space;
3045  if (bfd_bwrite ((void *) &tmp_space[0], amt, abfd) != amt)
3046    return FALSE;
3047  *string_sizep = strings_size;
3048  return TRUE;
3049}
3050
3051/* Write out the symbol string table.  */
3052
3053static bfd_boolean
3054som_write_symbol_strings (bfd *abfd,
3055			  unsigned long current_offset,
3056			  asymbol **syms,
3057			  unsigned int num_syms,
3058			  unsigned int *string_sizep,
3059			  COMPUNIT *compilation_unit)
3060{
3061  unsigned int i;
3062
3063  /* Chunk of memory that we can use as buffer space, then throw
3064     away.  */
3065  size_t tmp_space_size = SOM_TMP_BUFSIZE;
3066  char *tmp_space = alloca (tmp_space_size);
3067  char *p = tmp_space;
3068
3069  unsigned int strings_size = 0;
3070  char *comp[4];
3071  bfd_size_type amt;
3072
3073  /* This gets a bit gruesome because of the compilation unit.  The
3074     strings within the compilation unit are part of the symbol
3075     strings, but don't have symbol_dictionary entries.  So, manually
3076     write them and update the compilation unit header.  On input, the
3077     compilation unit header contains local copies of the strings.
3078     Move them aside.  */
3079  if (compilation_unit)
3080    {
3081      comp[0] = compilation_unit->name.n_name;
3082      comp[1] = compilation_unit->language_name.n_name;
3083      comp[2] = compilation_unit->product_id.n_name;
3084      comp[3] = compilation_unit->version_id.n_name;
3085    }
3086
3087  /* Seek to the start of the space strings in preparation for writing
3088     them out.  */
3089  if (bfd_seek (abfd, (file_ptr) current_offset, SEEK_SET) != 0)
3090    return FALSE;
3091
3092  if (compilation_unit)
3093    {
3094      for (i = 0; i < 4; i++)
3095	{
3096	  size_t length = strlen (comp[i]);
3097
3098	  /* If there is not enough room for the next entry, then dump
3099	     the current buffer contents now and maybe allocate a
3100	     larger buffer.  */
3101	  if (p - tmp_space + 5 + length > tmp_space_size)
3102	    {
3103	      /* Flush buffer before refilling or reallocating.  */
3104	      amt = p - tmp_space;
3105	      if (bfd_bwrite ((void *) &tmp_space[0], amt, abfd) != amt)
3106		return FALSE;
3107
3108	      /* Reallocate if now empty buffer still too small.  */
3109	      if (5 + length > tmp_space_size)
3110		{
3111		  /* See alloca above for discussion of new size.  */
3112		  tmp_space_size = MAX (2 * tmp_space_size, 5 + length);
3113		  tmp_space = alloca (tmp_space_size);
3114		}
3115
3116	      /* Reset to beginning of the (possibly new) buffer
3117		 space.  */
3118	      p = tmp_space;
3119	    }
3120
3121	  /* First element in a string table entry is the length of
3122	     the string.  This must always be 4 byte aligned.  This is
3123	     also an appropriate time to fill in the string index
3124	     field in the symbol table entry.  */
3125	  bfd_put_32 (abfd, (bfd_vma) length, p);
3126	  strings_size += 4;
3127	  p += 4;
3128
3129	  /* Next comes the string itself + a null terminator.  */
3130	  strcpy (p, comp[i]);
3131
3132	  switch (i)
3133	    {
3134	    case 0:
3135	      obj_som_compilation_unit (abfd)->name.n_strx = strings_size;
3136	      break;
3137	    case 1:
3138	      obj_som_compilation_unit (abfd)->language_name.n_strx =
3139		strings_size;
3140	      break;
3141	    case 2:
3142	      obj_som_compilation_unit (abfd)->product_id.n_strx =
3143		strings_size;
3144	      break;
3145	    case 3:
3146	      obj_som_compilation_unit (abfd)->version_id.n_strx =
3147		strings_size;
3148	      break;
3149	    }
3150
3151	  p += length + 1;
3152	  strings_size += length + 1;
3153
3154	  /* Always align up to the next word boundary.  */
3155	  while (strings_size % 4)
3156	    {
3157	      bfd_put_8 (abfd, 0, p);
3158	      strings_size++;
3159	      p++;
3160	    }
3161	}
3162    }
3163
3164  for (i = 0; i < num_syms; i++)
3165    {
3166      size_t length = strlen (syms[i]->name);
3167
3168      /* If there is not enough room for the next entry, then dump the
3169	 current buffer contents now and maybe allocate a larger buffer.  */
3170     if (p - tmp_space + 5 + length > tmp_space_size)
3171	{
3172	  /* Flush buffer before refilling or reallocating.  */
3173	  amt = p - tmp_space;
3174	  if (bfd_bwrite ((void *) &tmp_space[0], amt, abfd) != amt)
3175	    return FALSE;
3176
3177	  /* Reallocate if now empty buffer still too small.  */
3178	  if (5 + length > tmp_space_size)
3179	    {
3180	      /* See alloca above for discussion of new size.  */
3181	      tmp_space_size = MAX (2 * tmp_space_size, 5 + length);
3182	      tmp_space = alloca (tmp_space_size);
3183	    }
3184
3185	  /* Reset to beginning of the (possibly new) buffer space.  */
3186	  p = tmp_space;
3187	}
3188
3189      /* First element in a string table entry is the length of the
3190	 string.  This must always be 4 byte aligned.  This is also
3191	 an appropriate time to fill in the string index field in the
3192	 symbol table entry.  */
3193      bfd_put_32 (abfd, (bfd_vma) length, p);
3194      strings_size += 4;
3195      p += 4;
3196
3197      /* Next comes the string itself + a null terminator.  */
3198      strcpy (p, syms[i]->name);
3199
3200      som_symbol_data (syms[i])->stringtab_offset = strings_size;
3201      p += length + 1;
3202      strings_size += length + 1;
3203
3204      /* Always align up to the next word boundary.  */
3205      while (strings_size % 4)
3206	{
3207	  bfd_put_8 (abfd, 0, p);
3208	  strings_size++;
3209	  p++;
3210	}
3211    }
3212
3213  /* Scribble out any partial block.  */
3214  amt = p - tmp_space;
3215  if (bfd_bwrite ((void *) &tmp_space[0], amt, abfd) != amt)
3216    return FALSE;
3217
3218  *string_sizep = strings_size;
3219  return TRUE;
3220}
3221
3222/* Compute variable information to be placed in the SOM headers,
3223   space/subspace dictionaries, relocation streams, etc.  Begin
3224   writing parts of the object file.  */
3225
3226static bfd_boolean
3227som_begin_writing (bfd *abfd)
3228{
3229  unsigned long current_offset = 0;
3230  unsigned int strings_size = 0;
3231  unsigned long num_spaces, num_subspaces, i;
3232  asection *section;
3233  unsigned int total_subspaces = 0;
3234  struct som_exec_auxhdr *exec_header = NULL;
3235
3236  /* The file header will always be first in an object file,
3237     everything else can be in random locations.  To keep things
3238     "simple" BFD will lay out the object file in the manner suggested
3239     by the PRO ABI for PA-RISC Systems.  */
3240
3241  /* Before any output can really begin offsets for all the major
3242     portions of the object file must be computed.  So, starting
3243     with the initial file header compute (and sometimes write)
3244     each portion of the object file.  */
3245
3246  /* Make room for the file header, it's contents are not complete
3247     yet, so it can not be written at this time.  */
3248  current_offset += sizeof (struct header);
3249
3250  /* Any auxiliary headers will follow the file header.  Right now
3251     we support only the copyright and version headers.  */
3252  obj_som_file_hdr (abfd)->aux_header_location = current_offset;
3253  obj_som_file_hdr (abfd)->aux_header_size = 0;
3254  if (abfd->flags & (EXEC_P | DYNAMIC))
3255    {
3256      /* Parts of the exec header will be filled in later, so
3257	 delay writing the header itself.  Fill in the defaults,
3258	 and write it later.  */
3259      current_offset += sizeof (struct som_exec_auxhdr);
3260      obj_som_file_hdr (abfd)->aux_header_size
3261	+= sizeof (struct som_exec_auxhdr);
3262      exec_header = obj_som_exec_hdr (abfd);
3263      exec_header->som_auxhdr.type = EXEC_AUX_ID;
3264      exec_header->som_auxhdr.length = 40;
3265    }
3266  if (obj_som_version_hdr (abfd) != NULL)
3267    {
3268      bfd_size_type len;
3269
3270      if (bfd_seek (abfd, (file_ptr) current_offset, SEEK_SET) != 0)
3271	return FALSE;
3272
3273      /* Write the aux_id structure and the string length.  */
3274      len = sizeof (struct aux_id) + sizeof (unsigned int);
3275      obj_som_file_hdr (abfd)->aux_header_size += len;
3276      current_offset += len;
3277      if (bfd_bwrite ((void *) obj_som_version_hdr (abfd), len, abfd) != len)
3278	return FALSE;
3279
3280      /* Write the version string.  */
3281      len = obj_som_version_hdr (abfd)->header_id.length - sizeof (int);
3282      obj_som_file_hdr (abfd)->aux_header_size += len;
3283      current_offset += len;
3284      if (bfd_bwrite ((void *) obj_som_version_hdr (abfd)->user_string, len, abfd)
3285	  != len)
3286	return FALSE;
3287    }
3288
3289  if (obj_som_copyright_hdr (abfd) != NULL)
3290    {
3291      bfd_size_type len;
3292
3293      if (bfd_seek (abfd, (file_ptr) current_offset, SEEK_SET) != 0)
3294	return FALSE;
3295
3296      /* Write the aux_id structure and the string length.  */
3297      len = sizeof (struct aux_id) + sizeof (unsigned int);
3298      obj_som_file_hdr (abfd)->aux_header_size += len;
3299      current_offset += len;
3300      if (bfd_bwrite ((void *) obj_som_copyright_hdr (abfd), len, abfd) != len)
3301	return FALSE;
3302
3303      /* Write the copyright string.  */
3304      len = obj_som_copyright_hdr (abfd)->header_id.length - sizeof (int);
3305      obj_som_file_hdr (abfd)->aux_header_size += len;
3306      current_offset += len;
3307      if (bfd_bwrite ((void *) obj_som_copyright_hdr (abfd)->copyright, len, abfd)
3308	  != len)
3309	return FALSE;
3310    }
3311
3312  /* Next comes the initialization pointers; we have no initialization
3313     pointers, so current offset does not change.  */
3314  obj_som_file_hdr (abfd)->init_array_location = current_offset;
3315  obj_som_file_hdr (abfd)->init_array_total = 0;
3316
3317  /* Next are the space records.  These are fixed length records.
3318
3319     Count the number of spaces to determine how much room is needed
3320     in the object file for the space records.
3321
3322     The names of the spaces are stored in a separate string table,
3323     and the index for each space into the string table is computed
3324     below.  Therefore, it is not possible to write the space headers
3325     at this time.  */
3326  num_spaces = som_count_spaces (abfd);
3327  obj_som_file_hdr (abfd)->space_location = current_offset;
3328  obj_som_file_hdr (abfd)->space_total = num_spaces;
3329  current_offset += num_spaces * sizeof (struct space_dictionary_record);
3330
3331  /* Next are the subspace records.  These are fixed length records.
3332
3333     Count the number of subspaes to determine how much room is needed
3334     in the object file for the subspace records.
3335
3336     A variety if fields in the subspace record are still unknown at
3337     this time (index into string table, fixup stream location/size, etc).  */
3338  num_subspaces = som_count_subspaces (abfd);
3339  obj_som_file_hdr (abfd)->subspace_location = current_offset;
3340  obj_som_file_hdr (abfd)->subspace_total = num_subspaces;
3341  current_offset
3342    += num_subspaces * sizeof (struct som_subspace_dictionary_record);
3343
3344  /* Next is the string table for the space/subspace names.  We will
3345     build and write the string table on the fly.  At the same time
3346     we will fill in the space/subspace name index fields.  */
3347
3348  /* The string table needs to be aligned on a word boundary.  */
3349  if (current_offset % 4)
3350    current_offset += (4 - (current_offset % 4));
3351
3352  /* Mark the offset of the space/subspace string table in the
3353     file header.  */
3354  obj_som_file_hdr (abfd)->space_strings_location = current_offset;
3355
3356  /* Scribble out the space strings.  */
3357  if (! som_write_space_strings (abfd, current_offset, &strings_size))
3358    return FALSE;
3359
3360  /* Record total string table size in the header and update the
3361     current offset.  */
3362  obj_som_file_hdr (abfd)->space_strings_size = strings_size;
3363  current_offset += strings_size;
3364
3365  /* Next is the compilation unit.  */
3366  obj_som_file_hdr (abfd)->compiler_location = current_offset;
3367  obj_som_file_hdr (abfd)->compiler_total = 0;
3368  if (obj_som_compilation_unit (abfd))
3369    {
3370      obj_som_file_hdr (abfd)->compiler_total = 1;
3371      current_offset += COMPUNITSZ;
3372    }
3373
3374  /* Now compute the file positions for the loadable subspaces, taking
3375     care to make sure everything stays properly aligned.  */
3376
3377  section = abfd->sections;
3378  for (i = 0; i < num_spaces; i++)
3379    {
3380      asection *subsection;
3381      int first_subspace;
3382      unsigned int subspace_offset = 0;
3383
3384      /* Find a space.  */
3385      while (!som_is_space (section))
3386	section = section->next;
3387
3388      first_subspace = 1;
3389      /* Now look for all its subspaces.  */
3390      for (subsection = abfd->sections;
3391	   subsection != NULL;
3392	   subsection = subsection->next)
3393	{
3394
3395	  if (!som_is_subspace (subsection)
3396	      || !som_is_container (section, subsection)
3397	      || (subsection->flags & SEC_ALLOC) == 0)
3398	    continue;
3399
3400	  /* If this is the first subspace in the space, and we are
3401	     building an executable, then take care to make sure all
3402	     the alignments are correct and update the exec header.  */
3403	  if (first_subspace
3404	      && (abfd->flags & (EXEC_P | DYNAMIC)))
3405	    {
3406	      /* Demand paged executables have each space aligned to a
3407		 page boundary.  Sharable executables (write-protected
3408		 text) have just the private (aka data & bss) space aligned
3409		 to a page boundary.  Ugh.  Not true for HPUX.
3410
3411		 The HPUX kernel requires the text to always be page aligned
3412		 within the file regardless of the executable's type.  */
3413	      if (abfd->flags & (D_PAGED | DYNAMIC)
3414		  || (subsection->flags & SEC_CODE)
3415		  || ((abfd->flags & WP_TEXT)
3416		      && (subsection->flags & SEC_DATA)))
3417		current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3418
3419	      /* Update the exec header.  */
3420	      if (subsection->flags & SEC_CODE && exec_header->exec_tfile == 0)
3421		{
3422		  exec_header->exec_tmem = section->vma;
3423		  exec_header->exec_tfile = current_offset;
3424		}
3425	      if (subsection->flags & SEC_DATA && exec_header->exec_dfile == 0)
3426		{
3427		  exec_header->exec_dmem = section->vma;
3428		  exec_header->exec_dfile = current_offset;
3429		}
3430
3431	      /* Keep track of exactly where we are within a particular
3432		 space.  This is necessary as the braindamaged HPUX
3433		 loader will create holes between subspaces *and*
3434		 subspace alignments are *NOT* preserved.  What a crock.  */
3435	      subspace_offset = subsection->vma;
3436
3437	      /* Only do this for the first subspace within each space.  */
3438	      first_subspace = 0;
3439	    }
3440	  else if (abfd->flags & (EXEC_P | DYNAMIC))
3441	    {
3442	      /* The braindamaged HPUX loader may have created a hole
3443		 between two subspaces.  It is *not* sufficient to use
3444		 the alignment specifications within the subspaces to
3445		 account for these holes -- I've run into at least one
3446		 case where the loader left one code subspace unaligned
3447		 in a final executable.
3448
3449		 To combat this we keep a current offset within each space,
3450		 and use the subspace vma fields to detect and preserve
3451		 holes.  What a crock!
3452
3453		 ps.  This is not necessary for unloadable space/subspaces.  */
3454	      current_offset += subsection->vma - subspace_offset;
3455	      if (subsection->flags & SEC_CODE)
3456		exec_header->exec_tsize += subsection->vma - subspace_offset;
3457	      else
3458		exec_header->exec_dsize += subsection->vma - subspace_offset;
3459	      subspace_offset += subsection->vma - subspace_offset;
3460	    }
3461
3462	  subsection->target_index = total_subspaces++;
3463	  /* This is real data to be loaded from the file.  */
3464	  if (subsection->flags & SEC_LOAD)
3465	    {
3466	      /* Update the size of the code & data.  */
3467	      if (abfd->flags & (EXEC_P | DYNAMIC)
3468		  && subsection->flags & SEC_CODE)
3469		exec_header->exec_tsize += subsection->size;
3470	      else if (abfd->flags & (EXEC_P | DYNAMIC)
3471		       && subsection->flags & SEC_DATA)
3472		exec_header->exec_dsize += subsection->size;
3473	      som_section_data (subsection)->subspace_dict->file_loc_init_value
3474		= current_offset;
3475	      subsection->filepos = current_offset;
3476	      current_offset += subsection->size;
3477	      subspace_offset += subsection->size;
3478	    }
3479	  /* Looks like uninitialized data.  */
3480	  else
3481	    {
3482	      /* Update the size of the bss section.  */
3483	      if (abfd->flags & (EXEC_P | DYNAMIC))
3484		exec_header->exec_bsize += subsection->size;
3485
3486	      som_section_data (subsection)->subspace_dict->file_loc_init_value
3487		= 0;
3488	      som_section_data (subsection)->subspace_dict->
3489		initialization_length = 0;
3490	    }
3491	}
3492      /* Goto the next section.  */
3493      section = section->next;
3494    }
3495
3496  /* Finally compute the file positions for unloadable subspaces.
3497     If building an executable, start the unloadable stuff on its
3498     own page.  */
3499
3500  if (abfd->flags & (EXEC_P | DYNAMIC))
3501    current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3502
3503  obj_som_file_hdr (abfd)->unloadable_sp_location = current_offset;
3504  section = abfd->sections;
3505  for (i = 0; i < num_spaces; i++)
3506    {
3507      asection *subsection;
3508
3509      /* Find a space.  */
3510      while (!som_is_space (section))
3511	section = section->next;
3512
3513      if (abfd->flags & (EXEC_P | DYNAMIC))
3514	current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3515
3516      /* Now look for all its subspaces.  */
3517      for (subsection = abfd->sections;
3518	   subsection != NULL;
3519	   subsection = subsection->next)
3520	{
3521
3522	  if (!som_is_subspace (subsection)
3523	      || !som_is_container (section, subsection)
3524	      || (subsection->flags & SEC_ALLOC) != 0)
3525	    continue;
3526
3527	  subsection->target_index = total_subspaces++;
3528	  /* This is real data to be loaded from the file.  */
3529	  if ((subsection->flags & SEC_LOAD) == 0)
3530	    {
3531	      som_section_data (subsection)->subspace_dict->file_loc_init_value
3532		= current_offset;
3533	      subsection->filepos = current_offset;
3534	      current_offset += subsection->size;
3535	    }
3536	  /* Looks like uninitialized data.  */
3537	  else
3538	    {
3539	      som_section_data (subsection)->subspace_dict->file_loc_init_value
3540		= 0;
3541	      som_section_data (subsection)->subspace_dict->
3542		initialization_length = subsection->size;
3543	    }
3544	}
3545      /* Goto the next section.  */
3546      section = section->next;
3547    }
3548
3549  /* If building an executable, then make sure to seek to and write
3550     one byte at the end of the file to make sure any necessary
3551     zeros are filled in.  Ugh.  */
3552  if (abfd->flags & (EXEC_P | DYNAMIC))
3553    current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
3554  if (bfd_seek (abfd, (file_ptr) current_offset - 1, SEEK_SET) != 0)
3555    return FALSE;
3556  if (bfd_bwrite ((void *) "", (bfd_size_type) 1, abfd) != 1)
3557    return FALSE;
3558
3559  obj_som_file_hdr (abfd)->unloadable_sp_size
3560    = current_offset - obj_som_file_hdr (abfd)->unloadable_sp_location;
3561
3562  /* Loader fixups are not supported in any way shape or form.  */
3563  obj_som_file_hdr (abfd)->loader_fixup_location = 0;
3564  obj_som_file_hdr (abfd)->loader_fixup_total = 0;
3565
3566  /* Done.  Store the total size of the SOM so far.  */
3567  obj_som_file_hdr (abfd)->som_length = current_offset;
3568
3569  return TRUE;
3570}
3571
3572/* Finally, scribble out the various headers to the disk.  */
3573
3574static bfd_boolean
3575som_finish_writing (bfd *abfd)
3576{
3577  int num_spaces = som_count_spaces (abfd);
3578  asymbol **syms = bfd_get_outsymbols (abfd);
3579  int i, num_syms;
3580  int subspace_index = 0;
3581  file_ptr location;
3582  asection *section;
3583  unsigned long current_offset;
3584  unsigned int strings_size, total_reloc_size;
3585  bfd_size_type amt;
3586
3587  /* We must set up the version identifier here as objcopy/strip copy
3588     private BFD data too late for us to handle this in som_begin_writing.  */
3589  if (obj_som_exec_data (abfd)
3590      && obj_som_exec_data (abfd)->version_id)
3591    obj_som_file_hdr (abfd)->version_id = obj_som_exec_data (abfd)->version_id;
3592  else
3593    obj_som_file_hdr (abfd)->version_id = NEW_VERSION_ID;
3594
3595  /* Next is the symbol table.  These are fixed length records.
3596
3597     Count the number of symbols to determine how much room is needed
3598     in the object file for the symbol table.
3599
3600     The names of the symbols are stored in a separate string table,
3601     and the index for each symbol name into the string table is computed
3602     below.  Therefore, it is not possible to write the symbol table
3603     at this time.
3604
3605     These used to be output before the subspace contents, but they
3606     were moved here to work around a stupid bug in the hpux linker
3607     (fixed in hpux10).  */
3608  current_offset = obj_som_file_hdr (abfd)->som_length;
3609
3610  /* Make sure we're on a word boundary.  */
3611  if (current_offset % 4)
3612    current_offset += (4 - (current_offset % 4));
3613
3614  num_syms = bfd_get_symcount (abfd);
3615  obj_som_file_hdr (abfd)->symbol_location = current_offset;
3616  obj_som_file_hdr (abfd)->symbol_total = num_syms;
3617  current_offset += num_syms * sizeof (struct symbol_dictionary_record);
3618
3619  /* Next are the symbol strings.
3620     Align them to a word boundary.  */
3621  if (current_offset % 4)
3622    current_offset += (4 - (current_offset % 4));
3623  obj_som_file_hdr (abfd)->symbol_strings_location = current_offset;
3624
3625  /* Scribble out the symbol strings.  */
3626  if (! som_write_symbol_strings (abfd, current_offset, syms,
3627				  num_syms, &strings_size,
3628				  obj_som_compilation_unit (abfd)))
3629    return FALSE;
3630
3631  /* Record total string table size in header and update the
3632     current offset.  */
3633  obj_som_file_hdr (abfd)->symbol_strings_size = strings_size;
3634  current_offset += strings_size;
3635
3636  /* Do prep work before handling fixups.  */
3637  som_prep_for_fixups (abfd,
3638		       bfd_get_outsymbols (abfd),
3639		       bfd_get_symcount (abfd));
3640
3641  /* At the end of the file is the fixup stream which starts on a
3642     word boundary.  */
3643  if (current_offset % 4)
3644    current_offset += (4 - (current_offset % 4));
3645  obj_som_file_hdr (abfd)->fixup_request_location = current_offset;
3646
3647  /* Write the fixups and update fields in subspace headers which
3648     relate to the fixup stream.  */
3649  if (! som_write_fixups (abfd, current_offset, &total_reloc_size))
3650    return FALSE;
3651
3652  /* Record the total size of the fixup stream in the file header.  */
3653  obj_som_file_hdr (abfd)->fixup_request_total = total_reloc_size;
3654
3655  /* Done.  Store the total size of the SOM.  */
3656  obj_som_file_hdr (abfd)->som_length = current_offset + total_reloc_size;
3657
3658  /* Now that the symbol table information is complete, build and
3659     write the symbol table.  */
3660  if (! som_build_and_write_symbol_table (abfd))
3661    return FALSE;
3662
3663  /* Subspaces are written first so that we can set up information
3664     about them in their containing spaces as the subspace is written.  */
3665
3666  /* Seek to the start of the subspace dictionary records.  */
3667  location = obj_som_file_hdr (abfd)->subspace_location;
3668  if (bfd_seek (abfd, location, SEEK_SET) != 0)
3669    return FALSE;
3670
3671  section = abfd->sections;
3672  /* Now for each loadable space write out records for its subspaces.  */
3673  for (i = 0; i < num_spaces; i++)
3674    {
3675      asection *subsection;
3676
3677      /* Find a space.  */
3678      while (!som_is_space (section))
3679	section = section->next;
3680
3681      /* Now look for all its subspaces.  */
3682      for (subsection = abfd->sections;
3683	   subsection != NULL;
3684	   subsection = subsection->next)
3685	{
3686
3687	  /* Skip any section which does not correspond to a space
3688	     or subspace.  Or does not have SEC_ALLOC set (and therefore
3689	     has no real bits on the disk).  */
3690	  if (!som_is_subspace (subsection)
3691	      || !som_is_container (section, subsection)
3692	      || (subsection->flags & SEC_ALLOC) == 0)
3693	    continue;
3694
3695	  /* If this is the first subspace for this space, then save
3696	     the index of the subspace in its containing space.  Also
3697	     set "is_loadable" in the containing space.  */
3698
3699	  if (som_section_data (section)->space_dict->subspace_quantity == 0)
3700	    {
3701	      som_section_data (section)->space_dict->is_loadable = 1;
3702	      som_section_data (section)->space_dict->subspace_index
3703		= subspace_index;
3704	    }
3705
3706	  /* Increment the number of subspaces seen and the number of
3707	     subspaces contained within the current space.  */
3708	  subspace_index++;
3709	  som_section_data (section)->space_dict->subspace_quantity++;
3710
3711	  /* Mark the index of the current space within the subspace's
3712	     dictionary record.  */
3713	  som_section_data (subsection)->subspace_dict->space_index = i;
3714
3715	  /* Dump the current subspace header.  */
3716	  amt = sizeof (struct som_subspace_dictionary_record);
3717	  if (bfd_bwrite ((void *) som_section_data (subsection)->subspace_dict,
3718			 amt, abfd) != amt)
3719	    return FALSE;
3720	}
3721      /* Goto the next section.  */
3722      section = section->next;
3723    }
3724
3725  /* Now repeat the process for unloadable subspaces.  */
3726  section = abfd->sections;
3727  /* Now for each space write out records for its subspaces.  */
3728  for (i = 0; i < num_spaces; i++)
3729    {
3730      asection *subsection;
3731
3732      /* Find a space.  */
3733      while (!som_is_space (section))
3734	section = section->next;
3735
3736      /* Now look for all its subspaces.  */
3737      for (subsection = abfd->sections;
3738	   subsection != NULL;
3739	   subsection = subsection->next)
3740	{
3741
3742	  /* Skip any section which does not correspond to a space or
3743	     subspace, or which SEC_ALLOC set (and therefore handled
3744	     in the loadable spaces/subspaces code above).  */
3745
3746	  if (!som_is_subspace (subsection)
3747	      || !som_is_container (section, subsection)
3748	      || (subsection->flags & SEC_ALLOC) != 0)
3749	    continue;
3750
3751	  /* If this is the first subspace for this space, then save
3752	     the index of the subspace in its containing space.  Clear
3753	     "is_loadable".  */
3754
3755	  if (som_section_data (section)->space_dict->subspace_quantity == 0)
3756	    {
3757	      som_section_data (section)->space_dict->is_loadable = 0;
3758	      som_section_data (section)->space_dict->subspace_index
3759		= subspace_index;
3760	    }
3761
3762	  /* Increment the number of subspaces seen and the number of
3763	     subspaces contained within the current space.  */
3764	  som_section_data (section)->space_dict->subspace_quantity++;
3765	  subspace_index++;
3766
3767	  /* Mark the index of the current space within the subspace's
3768	     dictionary record.  */
3769	  som_section_data (subsection)->subspace_dict->space_index = i;
3770
3771	  /* Dump this subspace header.  */
3772	  amt = sizeof (struct som_subspace_dictionary_record);
3773	  if (bfd_bwrite ((void *) som_section_data (subsection)->subspace_dict,
3774			 amt, abfd) != amt)
3775	    return FALSE;
3776	}
3777      /* Goto the next section.  */
3778      section = section->next;
3779    }
3780
3781  /* All the subspace dictionary records are written, and all the
3782     fields are set up in the space dictionary records.
3783
3784     Seek to the right location and start writing the space
3785     dictionary records.  */
3786  location = obj_som_file_hdr (abfd)->space_location;
3787  if (bfd_seek (abfd, location, SEEK_SET) != 0)
3788    return FALSE;
3789
3790  section = abfd->sections;
3791  for (i = 0; i < num_spaces; i++)
3792    {
3793      /* Find a space.  */
3794      while (!som_is_space (section))
3795	section = section->next;
3796
3797      /* Dump its header.  */
3798      amt = sizeof (struct space_dictionary_record);
3799      if (bfd_bwrite ((void *) som_section_data (section)->space_dict,
3800		     amt, abfd) != amt)
3801	return FALSE;
3802
3803      /* Goto the next section.  */
3804      section = section->next;
3805    }
3806
3807  /* Write the compilation unit record if there is one.  */
3808  if (obj_som_compilation_unit (abfd))
3809    {
3810      location = obj_som_file_hdr (abfd)->compiler_location;
3811      if (bfd_seek (abfd, location, SEEK_SET) != 0)
3812	return FALSE;
3813
3814      amt = COMPUNITSZ;
3815      if (bfd_bwrite ((void *) obj_som_compilation_unit (abfd), amt, abfd) != amt)
3816	return FALSE;
3817    }
3818
3819  /* Setting of the system_id has to happen very late now that copying of
3820     BFD private data happens *after* section contents are set.  */
3821  if (abfd->flags & (EXEC_P | DYNAMIC))
3822    obj_som_file_hdr (abfd)->system_id = obj_som_exec_data (abfd)->system_id;
3823  else if (bfd_get_mach (abfd) == pa20)
3824    obj_som_file_hdr (abfd)->system_id = CPU_PA_RISC2_0;
3825  else if (bfd_get_mach (abfd) == pa11)
3826    obj_som_file_hdr (abfd)->system_id = CPU_PA_RISC1_1;
3827  else
3828    obj_som_file_hdr (abfd)->system_id = CPU_PA_RISC1_0;
3829
3830  /* Compute the checksum for the file header just before writing
3831     the header to disk.  */
3832  obj_som_file_hdr (abfd)->checksum = som_compute_checksum (abfd);
3833
3834  /* Only thing left to do is write out the file header.  It is always
3835     at location zero.  Seek there and write it.  */
3836  if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0)
3837    return FALSE;
3838  amt = sizeof (struct header);
3839  if (bfd_bwrite ((void *) obj_som_file_hdr (abfd), amt, abfd) != amt)
3840    return FALSE;
3841
3842  /* Now write the exec header.  */
3843  if (abfd->flags & (EXEC_P | DYNAMIC))
3844    {
3845      long tmp, som_length;
3846      struct som_exec_auxhdr *exec_header;
3847
3848      exec_header = obj_som_exec_hdr (abfd);
3849      exec_header->exec_entry = bfd_get_start_address (abfd);
3850      exec_header->exec_flags = obj_som_exec_data (abfd)->exec_flags;
3851
3852      /* Oh joys.  Ram some of the BSS data into the DATA section
3853	 to be compatible with how the hp linker makes objects
3854	 (saves memory space).  */
3855      tmp = exec_header->exec_dsize;
3856      tmp = SOM_ALIGN (tmp, PA_PAGESIZE);
3857      exec_header->exec_bsize -= (tmp - exec_header->exec_dsize);
3858      if (exec_header->exec_bsize < 0)
3859	exec_header->exec_bsize = 0;
3860      exec_header->exec_dsize = tmp;
3861
3862      /* Now perform some sanity checks.  The idea is to catch bogons now and
3863	 inform the user, instead of silently generating a bogus file.  */
3864      som_length = obj_som_file_hdr (abfd)->som_length;
3865      if (exec_header->exec_tfile + exec_header->exec_tsize > som_length
3866	  || exec_header->exec_dfile + exec_header->exec_dsize > som_length)
3867	{
3868	  bfd_set_error (bfd_error_bad_value);
3869	  return FALSE;
3870	}
3871
3872      if (bfd_seek (abfd, obj_som_file_hdr (abfd)->aux_header_location,
3873		    SEEK_SET) != 0)
3874	return FALSE;
3875
3876      amt = AUX_HDR_SIZE;
3877      if (bfd_bwrite ((void *) exec_header, amt, abfd) != amt)
3878	return FALSE;
3879    }
3880  return TRUE;
3881}
3882
3883/* Compute and return the checksum for a SOM file header.  */
3884
3885static unsigned long
3886som_compute_checksum (bfd *abfd)
3887{
3888  unsigned long checksum, count, i;
3889  unsigned long *buffer = (unsigned long *) obj_som_file_hdr (abfd);
3890
3891  checksum = 0;
3892  count = sizeof (struct header) / sizeof (unsigned long);
3893  for (i = 0; i < count; i++)
3894    checksum ^= *(buffer + i);
3895
3896  return checksum;
3897}
3898
3899static void
3900som_bfd_derive_misc_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
3901				 asymbol *sym,
3902				 struct som_misc_symbol_info *info)
3903{
3904  /* Initialize.  */
3905  memset (info, 0, sizeof (struct som_misc_symbol_info));
3906
3907  /* The HP SOM linker requires detailed type information about
3908     all symbols (including undefined symbols!).  Unfortunately,
3909     the type specified in an import/export statement does not
3910     always match what the linker wants.  Severe braindamage.  */
3911
3912  /* Section symbols will not have a SOM symbol type assigned to
3913     them yet.  Assign all section symbols type ST_DATA.  */
3914  if (sym->flags & BSF_SECTION_SYM)
3915    info->symbol_type = ST_DATA;
3916  else
3917    {
3918      /* For BFD style common, the linker will choke unless we set the
3919	 type and scope to ST_STORAGE and SS_UNSAT, respectively.  */
3920      if (bfd_is_com_section (sym->section))
3921	{
3922	  info->symbol_type = ST_STORAGE;
3923	  info->symbol_scope = SS_UNSAT;
3924	}
3925
3926      /* It is possible to have a symbol without an associated
3927	 type.  This happens if the user imported the symbol
3928	 without a type and the symbol was never defined
3929	 locally.  If BSF_FUNCTION is set for this symbol, then
3930	 assign it type ST_CODE (the HP linker requires undefined
3931	 external functions to have type ST_CODE rather than ST_ENTRY).  */
3932      else if ((som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3933		|| som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
3934	       && bfd_is_und_section (sym->section)
3935	       && sym->flags & BSF_FUNCTION)
3936	info->symbol_type = ST_CODE;
3937
3938      /* Handle function symbols which were defined in this file.
3939	 They should have type ST_ENTRY.  Also retrieve the argument
3940	 relocation bits from the SOM backend information.  */
3941      else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ENTRY
3942	       || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE
3943		   && (sym->flags & BSF_FUNCTION))
3944	       || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
3945		   && (sym->flags & BSF_FUNCTION)))
3946	{
3947	  info->symbol_type = ST_ENTRY;
3948	  info->arg_reloc = som_symbol_data (sym)->tc_data.ap.hppa_arg_reloc;
3949	  info->priv_level= som_symbol_data (sym)->tc_data.ap.hppa_priv_level;
3950	}
3951
3952      /* For unknown symbols set the symbol's type based on the symbol's
3953	 section (ST_DATA for DATA sections, ST_CODE for CODE sections).  */
3954      else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN)
3955	{
3956	  if (sym->section->flags & SEC_CODE)
3957	    info->symbol_type = ST_CODE;
3958	  else
3959	    info->symbol_type = ST_DATA;
3960	}
3961
3962      /* From now on it's a very simple mapping.  */
3963      else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ABSOLUTE)
3964	info->symbol_type = ST_ABSOLUTE;
3965      else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
3966	info->symbol_type = ST_CODE;
3967      else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_DATA)
3968	info->symbol_type = ST_DATA;
3969      else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_MILLICODE)
3970	info->symbol_type = ST_MILLICODE;
3971      else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PLABEL)
3972	info->symbol_type = ST_PLABEL;
3973      else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PRI_PROG)
3974	info->symbol_type = ST_PRI_PROG;
3975      else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_SEC_PROG)
3976	info->symbol_type = ST_SEC_PROG;
3977    }
3978
3979  /* Now handle the symbol's scope.  Exported data which is not
3980     in the common section has scope SS_UNIVERSAL.  Note scope
3981     of common symbols was handled earlier!  */
3982  if (bfd_is_com_section (sym->section))
3983    ;
3984  else if (bfd_is_und_section (sym->section))
3985    info->symbol_scope = SS_UNSAT;
3986  else if (sym->flags & (BSF_EXPORT | BSF_WEAK))
3987    info->symbol_scope = SS_UNIVERSAL;
3988  /* Anything else which is not in the common section has scope
3989     SS_LOCAL.  */
3990  else
3991    info->symbol_scope = SS_LOCAL;
3992
3993  /* Now set the symbol_info field.  It has no real meaning
3994     for undefined or common symbols, but the HP linker will
3995     choke if it's not set to some "reasonable" value.  We
3996     use zero as a reasonable value.  */
3997  if (bfd_is_com_section (sym->section)
3998      || bfd_is_und_section (sym->section)
3999      || bfd_is_abs_section (sym->section))
4000    info->symbol_info = 0;
4001  /* For all other symbols, the symbol_info field contains the
4002     subspace index of the space this symbol is contained in.  */
4003  else
4004    info->symbol_info = sym->section->target_index;
4005
4006  /* Set the symbol's value.  */
4007  info->symbol_value = sym->value + sym->section->vma;
4008
4009  /* The secondary_def field is for "weak" symbols.  */
4010  if (sym->flags & BSF_WEAK)
4011    info->secondary_def = TRUE;
4012  else
4013    info->secondary_def = FALSE;
4014
4015  /* The is_comdat, is_common and dup_common fields provide various
4016     flavors of common.
4017
4018     For data symbols, setting IS_COMMON provides Fortran style common
4019     (duplicate definitions and overlapped initialization).  Setting both
4020     IS_COMMON and DUP_COMMON provides Cobol style common (duplicate
4021     definitions as long as they are all the same length).  In a shared
4022     link data symbols retain their IS_COMMON and DUP_COMMON flags.
4023     An IS_COMDAT data symbol is similar to a IS_COMMON | DUP_COMMON
4024     symbol except in that it loses its IS_COMDAT flag in a shared link.
4025
4026     For code symbols, IS_COMDAT and DUP_COMMON have effect.  Universal
4027     DUP_COMMON code symbols are not exported from shared libraries.
4028     IS_COMDAT symbols are exported but they lose their IS_COMDAT flag.
4029
4030     We take a simplified approach to setting the is_comdat, is_common
4031     and dup_common flags in symbols based on the flag settings of their
4032     subspace.  This avoids having to add directives like `.comdat' but
4033     the linker behavior is probably undefined if there is more than one
4034     universal symbol (comdat key sysmbol) in a subspace.
4035
4036     The behavior of these flags is not well documentmented, so there
4037     may be bugs and some surprising interactions with other flags.  */
4038  if (som_section_data (sym->section)
4039      && som_section_data (sym->section)->subspace_dict
4040      && info->symbol_scope == SS_UNIVERSAL
4041      && (info->symbol_type == ST_ENTRY
4042	  || info->symbol_type == ST_CODE
4043	  || info->symbol_type == ST_DATA))
4044    {
4045      info->is_comdat
4046	= som_section_data (sym->section)->subspace_dict->is_comdat;
4047      info->is_common
4048	= som_section_data (sym->section)->subspace_dict->is_common;
4049      info->dup_common
4050	= som_section_data (sym->section)->subspace_dict->dup_common;
4051    }
4052}
4053
4054/* Build and write, in one big chunk, the entire symbol table for
4055   this BFD.  */
4056
4057static bfd_boolean
4058som_build_and_write_symbol_table (bfd *abfd)
4059{
4060  unsigned int num_syms = bfd_get_symcount (abfd);
4061  file_ptr symtab_location = obj_som_file_hdr (abfd)->symbol_location;
4062  asymbol **bfd_syms = obj_som_sorted_syms (abfd);
4063  struct symbol_dictionary_record *som_symtab = NULL;
4064  unsigned int i;
4065  bfd_size_type symtab_size;
4066
4067  /* Compute total symbol table size and allocate a chunk of memory
4068     to hold the symbol table as we build it.  */
4069  symtab_size = num_syms;
4070  symtab_size *= sizeof (struct symbol_dictionary_record);
4071  som_symtab = bfd_zmalloc (symtab_size);
4072  if (som_symtab == NULL && symtab_size != 0)
4073    goto error_return;
4074
4075  /* Walk over each symbol.  */
4076  for (i = 0; i < num_syms; i++)
4077    {
4078      struct som_misc_symbol_info info;
4079
4080      /* This is really an index into the symbol strings table.
4081	 By the time we get here, the index has already been
4082	 computed and stored into the name field in the BFD symbol.  */
4083      som_symtab[i].name.n_strx = som_symbol_data(bfd_syms[i])->stringtab_offset;
4084
4085      /* Derive SOM information from the BFD symbol.  */
4086      som_bfd_derive_misc_symbol_info (abfd, bfd_syms[i], &info);
4087
4088      /* Now use it.  */
4089      som_symtab[i].symbol_type = info.symbol_type;
4090      som_symtab[i].symbol_scope = info.symbol_scope;
4091      som_symtab[i].arg_reloc = info.arg_reloc;
4092      som_symtab[i].symbol_info = info.symbol_info;
4093      som_symtab[i].xleast = 3;
4094      som_symtab[i].symbol_value = info.symbol_value | info.priv_level;
4095      som_symtab[i].secondary_def = info.secondary_def;
4096      som_symtab[i].is_comdat = info.is_comdat;
4097      som_symtab[i].is_common = info.is_common;
4098      som_symtab[i].dup_common = info.dup_common;
4099    }
4100
4101  /* Everything is ready, seek to the right location and
4102     scribble out the symbol table.  */
4103  if (bfd_seek (abfd, symtab_location, SEEK_SET) != 0)
4104    return FALSE;
4105
4106  if (bfd_bwrite ((void *) som_symtab, symtab_size, abfd) != symtab_size)
4107    goto error_return;
4108
4109  if (som_symtab != NULL)
4110    free (som_symtab);
4111  return TRUE;
4112 error_return:
4113  if (som_symtab != NULL)
4114    free (som_symtab);
4115  return FALSE;
4116}
4117
4118/* Write an object in SOM format.  */
4119
4120static bfd_boolean
4121som_write_object_contents (bfd *abfd)
4122{
4123  if (! abfd->output_has_begun)
4124    {
4125      /* Set up fixed parts of the file, space, and subspace headers.
4126	 Notify the world that output has begun.  */
4127      som_prep_headers (abfd);
4128      abfd->output_has_begun = TRUE;
4129      /* Start writing the object file.  This include all the string
4130	 tables, fixup streams, and other portions of the object file.  */
4131      som_begin_writing (abfd);
4132    }
4133
4134  return som_finish_writing (abfd);
4135}
4136
4137/* Read and save the string table associated with the given BFD.  */
4138
4139static bfd_boolean
4140som_slurp_string_table (bfd *abfd)
4141{
4142  char *stringtab;
4143  bfd_size_type amt;
4144
4145  /* Use the saved version if its available.  */
4146  if (obj_som_stringtab (abfd) != NULL)
4147    return TRUE;
4148
4149  /* I don't think this can currently happen, and I'm not sure it should
4150     really be an error, but it's better than getting unpredictable results
4151     from the host's malloc when passed a size of zero.  */
4152  if (obj_som_stringtab_size (abfd) == 0)
4153    {
4154      bfd_set_error (bfd_error_no_symbols);
4155      return FALSE;
4156    }
4157
4158  /* Allocate and read in the string table.  */
4159  amt = obj_som_stringtab_size (abfd);
4160  stringtab = bfd_zmalloc (amt);
4161  if (stringtab == NULL)
4162    return FALSE;
4163
4164  if (bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET) != 0)
4165    return FALSE;
4166
4167  if (bfd_bread (stringtab, amt, abfd) != amt)
4168    return FALSE;
4169
4170  /* Save our results and return success.  */
4171  obj_som_stringtab (abfd) = stringtab;
4172  return TRUE;
4173}
4174
4175/* Return the amount of data (in bytes) required to hold the symbol
4176   table for this object.  */
4177
4178static long
4179som_get_symtab_upper_bound (bfd *abfd)
4180{
4181  if (!som_slurp_symbol_table (abfd))
4182    return -1;
4183
4184  return (bfd_get_symcount (abfd) + 1) * sizeof (asymbol *);
4185}
4186
4187/* Convert from a SOM subspace index to a BFD section.  */
4188
4189static asection *
4190bfd_section_from_som_symbol (bfd *abfd, struct symbol_dictionary_record *symbol)
4191{
4192  asection *section;
4193
4194  /* The meaning of the symbol_info field changes for functions
4195     within executables.  So only use the quick symbol_info mapping for
4196     incomplete objects and non-function symbols in executables.  */
4197  if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4198      || (symbol->symbol_type != ST_ENTRY
4199	  && symbol->symbol_type != ST_PRI_PROG
4200	  && symbol->symbol_type != ST_SEC_PROG
4201	  && symbol->symbol_type != ST_MILLICODE))
4202    {
4203      int index = symbol->symbol_info;
4204
4205      for (section = abfd->sections; section != NULL; section = section->next)
4206	if (section->target_index == index && som_is_subspace (section))
4207	  return section;
4208    }
4209  else
4210    {
4211      unsigned int value = symbol->symbol_value;
4212
4213      /* For executables we will have to use the symbol's address and
4214	 find out what section would contain that address.   Yuk.  */
4215      for (section = abfd->sections; section; section = section->next)
4216	if (value >= section->vma
4217	    && value <= section->vma + section->size
4218	    && som_is_subspace (section))
4219	  return section;
4220    }
4221
4222  /* Could be a symbol from an external library (such as an OMOS
4223     shared library).  Don't abort.  */
4224  return bfd_abs_section_ptr;
4225}
4226
4227/* Read and save the symbol table associated with the given BFD.  */
4228
4229static unsigned int
4230som_slurp_symbol_table (bfd *abfd)
4231{
4232  int symbol_count = bfd_get_symcount (abfd);
4233  int symsize = sizeof (struct symbol_dictionary_record);
4234  char *stringtab;
4235  struct symbol_dictionary_record *buf = NULL, *bufp, *endbufp;
4236  som_symbol_type *sym, *symbase;
4237  bfd_size_type amt;
4238
4239  /* Return saved value if it exists.  */
4240  if (obj_som_symtab (abfd) != NULL)
4241    goto successful_return;
4242
4243  /* Special case.  This is *not* an error.  */
4244  if (symbol_count == 0)
4245    goto successful_return;
4246
4247  if (!som_slurp_string_table (abfd))
4248    goto error_return;
4249
4250  stringtab = obj_som_stringtab (abfd);
4251
4252  amt = symbol_count;
4253  amt *= sizeof (som_symbol_type);
4254  symbase = bfd_zmalloc (amt);
4255  if (symbase == NULL)
4256    goto error_return;
4257
4258  /* Read in the external SOM representation.  */
4259  amt = symbol_count;
4260  amt *= symsize;
4261  buf = bfd_malloc (amt);
4262  if (buf == NULL && amt != 0)
4263    goto error_return;
4264  if (bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET) != 0)
4265    goto error_return;
4266  if (bfd_bread (buf, amt, abfd) != amt)
4267    goto error_return;
4268
4269  /* Iterate over all the symbols and internalize them.  */
4270  endbufp = buf + symbol_count;
4271  for (bufp = buf, sym = symbase; bufp < endbufp; ++bufp)
4272    {
4273      /* I don't think we care about these.  */
4274      if (bufp->symbol_type == ST_SYM_EXT
4275	  || bufp->symbol_type == ST_ARG_EXT)
4276	continue;
4277
4278      /* Set some private data we care about.  */
4279      if (bufp->symbol_type == ST_NULL)
4280	som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
4281      else if (bufp->symbol_type == ST_ABSOLUTE)
4282	som_symbol_data (sym)->som_type = SYMBOL_TYPE_ABSOLUTE;
4283      else if (bufp->symbol_type == ST_DATA)
4284	som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
4285      else if (bufp->symbol_type == ST_CODE)
4286	som_symbol_data (sym)->som_type = SYMBOL_TYPE_CODE;
4287      else if (bufp->symbol_type == ST_PRI_PROG)
4288	som_symbol_data (sym)->som_type = SYMBOL_TYPE_PRI_PROG;
4289      else if (bufp->symbol_type == ST_SEC_PROG)
4290	som_symbol_data (sym)->som_type = SYMBOL_TYPE_SEC_PROG;
4291      else if (bufp->symbol_type == ST_ENTRY)
4292	som_symbol_data (sym)->som_type = SYMBOL_TYPE_ENTRY;
4293      else if (bufp->symbol_type == ST_MILLICODE)
4294	som_symbol_data (sym)->som_type = SYMBOL_TYPE_MILLICODE;
4295      else if (bufp->symbol_type == ST_PLABEL)
4296	som_symbol_data (sym)->som_type = SYMBOL_TYPE_PLABEL;
4297      else
4298	som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
4299      som_symbol_data (sym)->tc_data.ap.hppa_arg_reloc = bufp->arg_reloc;
4300
4301      /* Some reasonable defaults.  */
4302      sym->symbol.the_bfd = abfd;
4303      sym->symbol.name = bufp->name.n_strx + stringtab;
4304      sym->symbol.value = bufp->symbol_value;
4305      sym->symbol.section = 0;
4306      sym->symbol.flags = 0;
4307
4308      switch (bufp->symbol_type)
4309	{
4310	case ST_ENTRY:
4311	case ST_MILLICODE:
4312	  sym->symbol.flags |= BSF_FUNCTION;
4313	  som_symbol_data (sym)->tc_data.ap.hppa_priv_level =
4314	    sym->symbol.value & 0x3;
4315	  sym->symbol.value &= ~0x3;
4316	  break;
4317
4318	case ST_STUB:
4319	case ST_CODE:
4320	case ST_PRI_PROG:
4321	case ST_SEC_PROG:
4322	  som_symbol_data (sym)->tc_data.ap.hppa_priv_level =
4323	    sym->symbol.value & 0x3;
4324	  sym->symbol.value &= ~0x3;
4325	  /* If the symbol's scope is SS_UNSAT, then these are
4326	     undefined function symbols.  */
4327	  if (bufp->symbol_scope == SS_UNSAT)
4328	    sym->symbol.flags |= BSF_FUNCTION;
4329
4330	default:
4331	  break;
4332	}
4333
4334      /* Handle scoping and section information.  */
4335      switch (bufp->symbol_scope)
4336	{
4337	/* symbol_info field is undefined for SS_EXTERNAL and SS_UNSAT symbols,
4338	   so the section associated with this symbol can't be known.  */
4339	case SS_EXTERNAL:
4340	  if (bufp->symbol_type != ST_STORAGE)
4341	    sym->symbol.section = bfd_und_section_ptr;
4342	  else
4343	    sym->symbol.section = bfd_com_section_ptr;
4344	  sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
4345	  break;
4346
4347	case SS_UNSAT:
4348	  if (bufp->symbol_type != ST_STORAGE)
4349	    sym->symbol.section = bfd_und_section_ptr;
4350	  else
4351	    sym->symbol.section = bfd_com_section_ptr;
4352	  break;
4353
4354	case SS_UNIVERSAL:
4355	  sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
4356	  sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
4357	  sym->symbol.value -= sym->symbol.section->vma;
4358	  break;
4359
4360	case SS_LOCAL:
4361	  sym->symbol.flags |= BSF_LOCAL;
4362	  sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
4363	  sym->symbol.value -= sym->symbol.section->vma;
4364	  break;
4365	}
4366
4367      /* Check for a weak symbol.  */
4368      if (bufp->secondary_def)
4369	sym->symbol.flags |= BSF_WEAK;
4370
4371      /* Mark section symbols and symbols used by the debugger.
4372	 Note $START$ is a magic code symbol, NOT a section symbol.  */
4373      if (sym->symbol.name[0] == '$'
4374	  && sym->symbol.name[strlen (sym->symbol.name) - 1] == '$'
4375	  && !strcmp (sym->symbol.name, sym->symbol.section->name))
4376	sym->symbol.flags |= BSF_SECTION_SYM;
4377      else if (CONST_STRNEQ (sym->symbol.name, "L$0\002"))
4378	{
4379	  sym->symbol.flags |= BSF_SECTION_SYM;
4380	  sym->symbol.name = sym->symbol.section->name;
4381	}
4382      else if (CONST_STRNEQ (sym->symbol.name, "L$0\001"))
4383	sym->symbol.flags |= BSF_DEBUGGING;
4384
4385      /* Note increment at bottom of loop, since we skip some symbols
4386	 we can not include it as part of the for statement.  */
4387      sym++;
4388    }
4389
4390  /* We modify the symbol count to record the number of BFD symbols we
4391     created.  */
4392  bfd_get_symcount (abfd) = sym - symbase;
4393
4394  /* Save our results and return success.  */
4395  obj_som_symtab (abfd) = symbase;
4396 successful_return:
4397  if (buf != NULL)
4398    free (buf);
4399  return (TRUE);
4400
4401 error_return:
4402  if (buf != NULL)
4403    free (buf);
4404  return FALSE;
4405}
4406
4407/* Canonicalize a SOM symbol table.  Return the number of entries
4408   in the symbol table.  */
4409
4410static long
4411som_canonicalize_symtab (bfd *abfd, asymbol **location)
4412{
4413  int i;
4414  som_symbol_type *symbase;
4415
4416  if (!som_slurp_symbol_table (abfd))
4417    return -1;
4418
4419  i = bfd_get_symcount (abfd);
4420  symbase = obj_som_symtab (abfd);
4421
4422  for (; i > 0; i--, location++, symbase++)
4423    *location = &symbase->symbol;
4424
4425  /* Final null pointer.  */
4426  *location = 0;
4427  return (bfd_get_symcount (abfd));
4428}
4429
4430/* Make a SOM symbol.  There is nothing special to do here.  */
4431
4432static asymbol *
4433som_make_empty_symbol (bfd *abfd)
4434{
4435  bfd_size_type amt = sizeof (som_symbol_type);
4436  som_symbol_type *new = bfd_zalloc (abfd, amt);
4437
4438  if (new == NULL)
4439    return NULL;
4440  new->symbol.the_bfd = abfd;
4441
4442  return &new->symbol;
4443}
4444
4445/* Print symbol information.  */
4446
4447static void
4448som_print_symbol (bfd *abfd,
4449		  void *afile,
4450		  asymbol *symbol,
4451		  bfd_print_symbol_type how)
4452{
4453  FILE *file = (FILE *) afile;
4454
4455  switch (how)
4456    {
4457    case bfd_print_symbol_name:
4458      fprintf (file, "%s", symbol->name);
4459      break;
4460    case bfd_print_symbol_more:
4461      fprintf (file, "som ");
4462      fprintf_vma (file, symbol->value);
4463      fprintf (file, " %lx", (long) symbol->flags);
4464      break;
4465    case bfd_print_symbol_all:
4466      {
4467	const char *section_name;
4468
4469	section_name = symbol->section ? symbol->section->name : "(*none*)";
4470	bfd_print_symbol_vandf (abfd, (void *) file, symbol);
4471	fprintf (file, " %s\t%s", section_name, symbol->name);
4472	break;
4473      }
4474    }
4475}
4476
4477static bfd_boolean
4478som_bfd_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
4479			     const char *name)
4480{
4481  return name[0] == 'L' && name[1] == '$';
4482}
4483
4484/* Count or process variable-length SOM fixup records.
4485
4486   To avoid code duplication we use this code both to compute the number
4487   of relocations requested by a stream, and to internalize the stream.
4488
4489   When computing the number of relocations requested by a stream the
4490   variables rptr, section, and symbols have no meaning.
4491
4492   Return the number of relocations requested by the fixup stream.  When
4493   not just counting
4494
4495   This needs at least two or three more passes to get it cleaned up.  */
4496
4497static unsigned int
4498som_set_reloc_info (unsigned char *fixup,
4499		    unsigned int end,
4500		    arelent *internal_relocs,
4501		    asection *section,
4502		    asymbol **symbols,
4503		    bfd_boolean just_count)
4504{
4505  unsigned int op, varname, deallocate_contents = 0;
4506  unsigned char *end_fixups = &fixup[end];
4507  const struct fixup_format *fp;
4508  const char *cp;
4509  unsigned char *save_fixup;
4510  int variables[26], stack[20], c, v, count, prev_fixup, *sp, saved_unwind_bits;
4511  const int *subop;
4512  arelent *rptr = internal_relocs;
4513  unsigned int offset = 0;
4514
4515#define	var(c)		variables[(c) - 'A']
4516#define	push(v)		(*sp++ = (v))
4517#define	pop()		(*--sp)
4518#define	emptystack()	(sp == stack)
4519
4520  som_initialize_reloc_queue (reloc_queue);
4521  memset (variables, 0, sizeof (variables));
4522  memset (stack, 0, sizeof (stack));
4523  count = 0;
4524  prev_fixup = 0;
4525  saved_unwind_bits = 0;
4526  sp = stack;
4527
4528  while (fixup < end_fixups)
4529    {
4530      /* Save pointer to the start of this fixup.  We'll use
4531	 it later to determine if it is necessary to put this fixup
4532	 on the queue.  */
4533      save_fixup = fixup;
4534
4535      /* Get the fixup code and its associated format.  */
4536      op = *fixup++;
4537      fp = &som_fixup_formats[op];
4538
4539      /* Handle a request for a previous fixup.  */
4540      if (*fp->format == 'P')
4541	{
4542	  /* Get pointer to the beginning of the prev fixup, move
4543	     the repeated fixup to the head of the queue.  */
4544	  fixup = reloc_queue[fp->D].reloc;
4545	  som_reloc_queue_fix (reloc_queue, fp->D);
4546	  prev_fixup = 1;
4547
4548	  /* Get the fixup code and its associated format.  */
4549	  op = *fixup++;
4550	  fp = &som_fixup_formats[op];
4551	}
4552
4553      /* If this fixup will be passed to BFD, set some reasonable defaults.  */
4554      if (! just_count
4555	  && som_hppa_howto_table[op].type != R_NO_RELOCATION
4556	  && som_hppa_howto_table[op].type != R_DATA_OVERRIDE)
4557	{
4558	  rptr->address = offset;
4559	  rptr->howto = &som_hppa_howto_table[op];
4560	  rptr->addend = 0;
4561	  rptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
4562	}
4563
4564      /* Set default input length to 0.  Get the opcode class index
4565	 into D.  */
4566      var ('L') = 0;
4567      var ('D') = fp->D;
4568      var ('U') = saved_unwind_bits;
4569
4570      /* Get the opcode format.  */
4571      cp = fp->format;
4572
4573      /* Process the format string.  Parsing happens in two phases,
4574	 parse RHS, then assign to LHS.  Repeat until no more
4575	 characters in the format string.  */
4576      while (*cp)
4577	{
4578	  /* The variable this pass is going to compute a value for.  */
4579	  varname = *cp++;
4580
4581	  /* Start processing RHS.  Continue until a NULL or '=' is found.  */
4582	  do
4583	    {
4584	      c = *cp++;
4585
4586	      /* If this is a variable, push it on the stack.  */
4587	      if (ISUPPER (c))
4588		push (var (c));
4589
4590	      /* If this is a lower case letter, then it represents
4591		 additional data from the fixup stream to be pushed onto
4592		 the stack.  */
4593	      else if (ISLOWER (c))
4594		{
4595		  int bits = (c - 'a') * 8;
4596		  for (v = 0; c > 'a'; --c)
4597		    v = (v << 8) | *fixup++;
4598		  if (varname == 'V')
4599		    v = sign_extend (v, bits);
4600		  push (v);
4601		}
4602
4603	      /* A decimal constant.  Push it on the stack.  */
4604	      else if (ISDIGIT (c))
4605		{
4606		  v = c - '0';
4607		  while (ISDIGIT (*cp))
4608		    v = (v * 10) + (*cp++ - '0');
4609		  push (v);
4610		}
4611	      else
4612		/* An operator.  Pop two two values from the stack and
4613		   use them as operands to the given operation.  Push
4614		   the result of the operation back on the stack.  */
4615		switch (c)
4616		  {
4617		  case '+':
4618		    v = pop ();
4619		    v += pop ();
4620		    push (v);
4621		    break;
4622		  case '*':
4623		    v = pop ();
4624		    v *= pop ();
4625		    push (v);
4626		    break;
4627		  case '<':
4628		    v = pop ();
4629		    v = pop () << v;
4630		    push (v);
4631		    break;
4632		  default:
4633		    abort ();
4634		  }
4635	    }
4636	  while (*cp && *cp != '=');
4637
4638	  /* Move over the equal operator.  */
4639	  cp++;
4640
4641	  /* Pop the RHS off the stack.  */
4642	  c = pop ();
4643
4644	  /* Perform the assignment.  */
4645	  var (varname) = c;
4646
4647	  /* Handle side effects. and special 'O' stack cases.  */
4648	  switch (varname)
4649	    {
4650	    /* Consume some bytes from the input space.  */
4651	    case 'L':
4652	      offset += c;
4653	      break;
4654	    /* A symbol to use in the relocation.  Make a note
4655	       of this if we are not just counting.  */
4656	    case 'S':
4657	      if (! just_count)
4658		rptr->sym_ptr_ptr = &symbols[c];
4659	      break;
4660	    /* Argument relocation bits for a function call.  */
4661	    case 'R':
4662	      if (! just_count)
4663		{
4664		  unsigned int tmp = var ('R');
4665		  rptr->addend = 0;
4666
4667		  if ((som_hppa_howto_table[op].type == R_PCREL_CALL
4668		       && R_PCREL_CALL + 10 > op)
4669		      || (som_hppa_howto_table[op].type == R_ABS_CALL
4670			  && R_ABS_CALL + 10 > op))
4671		    {
4672		      /* Simple encoding.  */
4673		      if (tmp > 4)
4674			{
4675			  tmp -= 5;
4676			  rptr->addend |= 1;
4677			}
4678		      if (tmp == 4)
4679			rptr->addend |= 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2;
4680		      else if (tmp == 3)
4681			rptr->addend |= 1 << 8 | 1 << 6 | 1 << 4;
4682		      else if (tmp == 2)
4683			rptr->addend |= 1 << 8 | 1 << 6;
4684		      else if (tmp == 1)
4685			rptr->addend |= 1 << 8;
4686		    }
4687		  else
4688		    {
4689		      unsigned int tmp1, tmp2;
4690
4691		      /* First part is easy -- low order two bits are
4692			 directly copied, then shifted away.  */
4693		      rptr->addend = tmp & 0x3;
4694		      tmp >>= 2;
4695
4696		      /* Diving the result by 10 gives us the second
4697			 part.  If it is 9, then the first two words
4698			 are a double precision paramater, else it is
4699			 3 * the first arg bits + the 2nd arg bits.  */
4700		      tmp1 = tmp / 10;
4701		      tmp -= tmp1 * 10;
4702		      if (tmp1 == 9)
4703			rptr->addend += (0xe << 6);
4704		      else
4705			{
4706			  /* Get the two pieces.  */
4707			  tmp2 = tmp1 / 3;
4708			  tmp1 -= tmp2 * 3;
4709			  /* Put them in the addend.  */
4710			  rptr->addend += (tmp2 << 8) + (tmp1 << 6);
4711			}
4712
4713		      /* What's left is the third part.  It's unpacked
4714			 just like the second.  */
4715		      if (tmp == 9)
4716			rptr->addend += (0xe << 2);
4717		      else
4718			{
4719			  tmp2 = tmp / 3;
4720			  tmp -= tmp2 * 3;
4721			  rptr->addend += (tmp2 << 4) + (tmp << 2);
4722			}
4723		    }
4724		  rptr->addend = HPPA_R_ADDEND (rptr->addend, 0);
4725		}
4726	      break;
4727	    /* Handle the linker expression stack.  */
4728	    case 'O':
4729	      switch (op)
4730		{
4731		case R_COMP1:
4732		  subop = comp1_opcodes;
4733		  break;
4734		case R_COMP2:
4735		  subop = comp2_opcodes;
4736		  break;
4737		case R_COMP3:
4738		  subop = comp3_opcodes;
4739		  break;
4740		default:
4741		  abort ();
4742		}
4743	      while (*subop <= (unsigned char) c)
4744		++subop;
4745	      --subop;
4746	      break;
4747	    /* The lower 32unwind bits must be persistent.  */
4748	    case 'U':
4749	      saved_unwind_bits = var ('U');
4750	      break;
4751
4752	    default:
4753	      break;
4754	    }
4755	}
4756
4757      /* If we used a previous fixup, clean up after it.  */
4758      if (prev_fixup)
4759	{
4760	  fixup = save_fixup + 1;
4761	  prev_fixup = 0;
4762	}
4763      /* Queue it.  */
4764      else if (fixup > save_fixup + 1)
4765	som_reloc_queue_insert (save_fixup, fixup - save_fixup, reloc_queue);
4766
4767      /* We do not pass R_DATA_OVERRIDE or R_NO_RELOCATION
4768	 fixups to BFD.  */
4769      if (som_hppa_howto_table[op].type != R_DATA_OVERRIDE
4770	  && som_hppa_howto_table[op].type != R_NO_RELOCATION)
4771	{
4772	  /* Done with a single reloction. Loop back to the top.  */
4773	  if (! just_count)
4774	    {
4775	      if (som_hppa_howto_table[op].type == R_ENTRY)
4776		rptr->addend = var ('T');
4777	      else if (som_hppa_howto_table[op].type == R_EXIT)
4778		rptr->addend = var ('U');
4779	      else if (som_hppa_howto_table[op].type == R_PCREL_CALL
4780		       || som_hppa_howto_table[op].type == R_ABS_CALL)
4781		;
4782	      else if (som_hppa_howto_table[op].type == R_DATA_ONE_SYMBOL)
4783		{
4784		  /* Try what was specified in R_DATA_OVERRIDE first
4785		     (if anything).  Then the hard way using the
4786		     section contents.  */
4787		  rptr->addend = var ('V');
4788
4789		  if (rptr->addend == 0 && !section->contents)
4790		    {
4791		      /* Got to read the damn contents first.  We don't
4792			 bother saving the contents (yet).  Add it one
4793			 day if the need arises.  */
4794		      bfd_byte *contents;
4795		      if (!bfd_malloc_and_get_section (section->owner, section,
4796						       &contents))
4797			{
4798			  if (contents != NULL)
4799			    free (contents);
4800			  return (unsigned) -1;
4801			}
4802		      section->contents = contents;
4803		      deallocate_contents = 1;
4804		    }
4805		  else if (rptr->addend == 0)
4806		    rptr->addend = bfd_get_32 (section->owner,
4807					       (section->contents
4808						+ offset - var ('L')));
4809
4810		}
4811	      else
4812		rptr->addend = var ('V');
4813	      rptr++;
4814	    }
4815	  count++;
4816	  /* Now that we've handled a "full" relocation, reset
4817	     some state.  */
4818	  memset (variables, 0, sizeof (variables));
4819	  memset (stack, 0, sizeof (stack));
4820	}
4821    }
4822  if (deallocate_contents)
4823    free (section->contents);
4824
4825  return count;
4826
4827#undef var
4828#undef push
4829#undef pop
4830#undef emptystack
4831}
4832
4833/* Read in the relocs (aka fixups in SOM terms) for a section.
4834
4835   som_get_reloc_upper_bound calls this routine with JUST_COUNT
4836   set to TRUE to indicate it only needs a count of the number
4837   of actual relocations.  */
4838
4839static bfd_boolean
4840som_slurp_reloc_table (bfd *abfd,
4841		       asection *section,
4842		       asymbol **symbols,
4843		       bfd_boolean just_count)
4844{
4845  unsigned char *external_relocs;
4846  unsigned int fixup_stream_size;
4847  arelent *internal_relocs;
4848  unsigned int num_relocs;
4849  bfd_size_type amt;
4850
4851  fixup_stream_size = som_section_data (section)->reloc_size;
4852  /* If there were no relocations, then there is nothing to do.  */
4853  if (section->reloc_count == 0)
4854    return TRUE;
4855
4856  /* If reloc_count is -1, then the relocation stream has not been
4857     parsed.  We must do so now to know how many relocations exist.  */
4858  if (section->reloc_count == (unsigned) -1)
4859    {
4860      amt = fixup_stream_size;
4861      external_relocs = bfd_malloc (amt);
4862      if (external_relocs == NULL)
4863	return FALSE;
4864      /* Read in the external forms.  */
4865      if (bfd_seek (abfd,
4866		    obj_som_reloc_filepos (abfd) + section->rel_filepos,
4867		    SEEK_SET)
4868	  != 0)
4869	return FALSE;
4870      if (bfd_bread (external_relocs, amt, abfd) != amt)
4871	return FALSE;
4872
4873      /* Let callers know how many relocations found.
4874	 also save the relocation stream as we will
4875	 need it again.  */
4876      section->reloc_count = som_set_reloc_info (external_relocs,
4877						 fixup_stream_size,
4878						 NULL, NULL, NULL, TRUE);
4879
4880      som_section_data (section)->reloc_stream = external_relocs;
4881    }
4882
4883  /* If the caller only wanted a count, then return now.  */
4884  if (just_count)
4885    return TRUE;
4886
4887  num_relocs = section->reloc_count;
4888  external_relocs = som_section_data (section)->reloc_stream;
4889  /* Return saved information about the relocations if it is available.  */
4890  if (section->relocation != NULL)
4891    return TRUE;
4892
4893  amt = num_relocs;
4894  amt *= sizeof (arelent);
4895  internal_relocs = bfd_zalloc (abfd, (amt));
4896  if (internal_relocs == NULL)
4897    return FALSE;
4898
4899  /* Process and internalize the relocations.  */
4900  som_set_reloc_info (external_relocs, fixup_stream_size,
4901		      internal_relocs, section, symbols, FALSE);
4902
4903  /* We're done with the external relocations.  Free them.  */
4904  free (external_relocs);
4905  som_section_data (section)->reloc_stream = NULL;
4906
4907  /* Save our results and return success.  */
4908  section->relocation = internal_relocs;
4909  return TRUE;
4910}
4911
4912/* Return the number of bytes required to store the relocation
4913   information associated with the given section.  */
4914
4915static long
4916som_get_reloc_upper_bound (bfd *abfd, sec_ptr asect)
4917{
4918  /* If section has relocations, then read in the relocation stream
4919     and parse it to determine how many relocations exist.  */
4920  if (asect->flags & SEC_RELOC)
4921    {
4922      if (! som_slurp_reloc_table (abfd, asect, NULL, TRUE))
4923	return -1;
4924      return (asect->reloc_count + 1) * sizeof (arelent *);
4925    }
4926  /* There are no relocations.  */
4927  return 0;
4928}
4929
4930/* Convert relocations from SOM (external) form into BFD internal
4931   form.  Return the number of relocations.  */
4932
4933static long
4934som_canonicalize_reloc (bfd *abfd,
4935			sec_ptr section,
4936			arelent **relptr,
4937			asymbol **symbols)
4938{
4939  arelent *tblptr;
4940  int count;
4941
4942  if (! som_slurp_reloc_table (abfd, section, symbols, FALSE))
4943    return -1;
4944
4945  count = section->reloc_count;
4946  tblptr = section->relocation;
4947
4948  while (count--)
4949    *relptr++ = tblptr++;
4950
4951  *relptr = NULL;
4952  return section->reloc_count;
4953}
4954
4955extern const bfd_target som_vec;
4956
4957/* A hook to set up object file dependent section information.  */
4958
4959static bfd_boolean
4960som_new_section_hook (bfd *abfd, asection *newsect)
4961{
4962  if (!newsect->used_by_bfd)
4963    {
4964      bfd_size_type amt = sizeof (struct som_section_data_struct);
4965
4966      newsect->used_by_bfd = bfd_zalloc (abfd, amt);
4967      if (!newsect->used_by_bfd)
4968	return FALSE;
4969    }
4970  newsect->alignment_power = 3;
4971
4972  /* We allow more than three sections internally.  */
4973  return _bfd_generic_new_section_hook (abfd, newsect);
4974}
4975
4976/* Copy any private info we understand from the input symbol
4977   to the output symbol.  */
4978
4979static bfd_boolean
4980som_bfd_copy_private_symbol_data (bfd *ibfd,
4981				  asymbol *isymbol,
4982				  bfd *obfd,
4983				  asymbol *osymbol)
4984{
4985  struct som_symbol *input_symbol = (struct som_symbol *) isymbol;
4986  struct som_symbol *output_symbol = (struct som_symbol *) osymbol;
4987
4988  /* One day we may try to grok other private data.  */
4989  if (ibfd->xvec->flavour != bfd_target_som_flavour
4990      || obfd->xvec->flavour != bfd_target_som_flavour)
4991    return FALSE;
4992
4993  /* The only private information we need to copy is the argument relocation
4994     bits.  */
4995  output_symbol->tc_data.ap.hppa_arg_reloc =
4996    input_symbol->tc_data.ap.hppa_arg_reloc;
4997
4998  return TRUE;
4999}
5000
5001/* Copy any private info we understand from the input section
5002   to the output section.  */
5003
5004static bfd_boolean
5005som_bfd_copy_private_section_data (bfd *ibfd,
5006				   asection *isection,
5007				   bfd *obfd,
5008				   asection *osection)
5009{
5010  bfd_size_type amt;
5011
5012  /* One day we may try to grok other private data.  */
5013  if (ibfd->xvec->flavour != bfd_target_som_flavour
5014      || obfd->xvec->flavour != bfd_target_som_flavour
5015      || (!som_is_space (isection) && !som_is_subspace (isection)))
5016    return TRUE;
5017
5018  amt = sizeof (struct som_copyable_section_data_struct);
5019  som_section_data (osection)->copy_data = bfd_zalloc (obfd, amt);
5020  if (som_section_data (osection)->copy_data == NULL)
5021    return FALSE;
5022
5023  memcpy (som_section_data (osection)->copy_data,
5024	  som_section_data (isection)->copy_data,
5025	  sizeof (struct som_copyable_section_data_struct));
5026
5027  /* Reparent if necessary.  */
5028  if (som_section_data (osection)->copy_data->container)
5029    som_section_data (osection)->copy_data->container =
5030      som_section_data (osection)->copy_data->container->output_section;
5031
5032  return TRUE;
5033}
5034
5035/* Copy any private info we understand from the input bfd
5036   to the output bfd.  */
5037
5038static bfd_boolean
5039som_bfd_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
5040{
5041  /* One day we may try to grok other private data.  */
5042  if (ibfd->xvec->flavour != bfd_target_som_flavour
5043      || obfd->xvec->flavour != bfd_target_som_flavour)
5044    return TRUE;
5045
5046  /* Allocate some memory to hold the data we need.  */
5047  obj_som_exec_data (obfd) = bfd_zalloc (obfd, (bfd_size_type) sizeof (struct som_exec_data));
5048  if (obj_som_exec_data (obfd) == NULL)
5049    return FALSE;
5050
5051  /* Now copy the data.  */
5052  memcpy (obj_som_exec_data (obfd), obj_som_exec_data (ibfd),
5053	  sizeof (struct som_exec_data));
5054
5055  return TRUE;
5056}
5057
5058/* Display the SOM header.  */
5059
5060static bfd_boolean
5061som_bfd_print_private_bfd_data (bfd *abfd, void *farg)
5062{
5063  struct som_exec_auxhdr *exec_header;
5064  struct aux_id* auxhdr;
5065  FILE *f;
5066
5067  f = (FILE *) farg;
5068
5069  exec_header = obj_som_exec_hdr (abfd);
5070  if (exec_header)
5071    {
5072      fprintf (f, _("\nExec Auxiliary Header\n"));
5073      fprintf (f, "  flags              ");
5074      auxhdr = &exec_header->som_auxhdr;
5075      if (auxhdr->mandatory)
5076	fprintf (f, "mandatory ");
5077      if (auxhdr->copy)
5078	fprintf (f, "copy ");
5079      if (auxhdr->append)
5080	fprintf (f, "append ");
5081      if (auxhdr->ignore)
5082	fprintf (f, "ignore ");
5083      fprintf (f, "\n");
5084      fprintf (f, "  type               %#x\n", auxhdr->type);
5085      fprintf (f, "  length             %#x\n", auxhdr->length);
5086
5087      /* Note that, depending on the HP-UX version, the following fields can be
5088         either ints, or longs.  */
5089
5090      fprintf (f, "  text size          %#lx\n", (long) exec_header->exec_tsize);
5091      fprintf (f, "  text memory offset %#lx\n", (long) exec_header->exec_tmem);
5092      fprintf (f, "  text file offset   %#lx\n", (long) exec_header->exec_tfile);
5093      fprintf (f, "  data size          %#lx\n", (long) exec_header->exec_dsize);
5094      fprintf (f, "  data memory offset %#lx\n", (long) exec_header->exec_dmem);
5095      fprintf (f, "  data file offset   %#lx\n", (long) exec_header->exec_dfile);
5096      fprintf (f, "  bss size           %#lx\n", (long) exec_header->exec_bsize);
5097      fprintf (f, "  entry point        %#lx\n", (long) exec_header->exec_entry);
5098      fprintf (f, "  loader flags       %#lx\n", (long) exec_header->exec_flags);
5099      fprintf (f, "  bss initializer    %#lx\n", (long) exec_header->exec_bfill);
5100    }
5101
5102  return TRUE;
5103}
5104
5105/* Set backend info for sections which can not be described
5106   in the BFD data structures.  */
5107
5108bfd_boolean
5109bfd_som_set_section_attributes (asection *section,
5110				int defined,
5111				int private,
5112				unsigned int sort_key,
5113				int spnum)
5114{
5115  /* Allocate memory to hold the magic information.  */
5116  if (som_section_data (section)->copy_data == NULL)
5117    {
5118      bfd_size_type amt = sizeof (struct som_copyable_section_data_struct);
5119
5120      som_section_data (section)->copy_data = bfd_zalloc (section->owner, amt);
5121      if (som_section_data (section)->copy_data == NULL)
5122	return FALSE;
5123    }
5124  som_section_data (section)->copy_data->sort_key = sort_key;
5125  som_section_data (section)->copy_data->is_defined = defined;
5126  som_section_data (section)->copy_data->is_private = private;
5127  som_section_data (section)->copy_data->container = section;
5128  som_section_data (section)->copy_data->space_number = spnum;
5129  return TRUE;
5130}
5131
5132/* Set backend info for subsections which can not be described
5133   in the BFD data structures.  */
5134
5135bfd_boolean
5136bfd_som_set_subsection_attributes (asection *section,
5137				   asection *container,
5138				   int access,
5139				   unsigned int sort_key,
5140				   int quadrant,
5141				   int comdat,
5142				   int common,
5143				   int dup_common)
5144{
5145  /* Allocate memory to hold the magic information.  */
5146  if (som_section_data (section)->copy_data == NULL)
5147    {
5148      bfd_size_type amt = sizeof (struct som_copyable_section_data_struct);
5149
5150      som_section_data (section)->copy_data = bfd_zalloc (section->owner, amt);
5151      if (som_section_data (section)->copy_data == NULL)
5152	return FALSE;
5153    }
5154  som_section_data (section)->copy_data->sort_key = sort_key;
5155  som_section_data (section)->copy_data->access_control_bits = access;
5156  som_section_data (section)->copy_data->quadrant = quadrant;
5157  som_section_data (section)->copy_data->container = container;
5158  som_section_data (section)->copy_data->is_comdat = comdat;
5159  som_section_data (section)->copy_data->is_common = common;
5160  som_section_data (section)->copy_data->dup_common = dup_common;
5161  return TRUE;
5162}
5163
5164/* Set the full SOM symbol type.  SOM needs far more symbol information
5165   than any other object file format I'm aware of.  It is mandatory
5166   to be able to know if a symbol is an entry point, millicode, data,
5167   code, absolute, storage request, or procedure label.  If you get
5168   the symbol type wrong your program will not link.  */
5169
5170void
5171bfd_som_set_symbol_type (asymbol *symbol, unsigned int type)
5172{
5173  som_symbol_data (symbol)->som_type = type;
5174}
5175
5176/* Attach an auxiliary header to the BFD backend so that it may be
5177   written into the object file.  */
5178
5179bfd_boolean
5180bfd_som_attach_aux_hdr (bfd *abfd, int type, char *string)
5181{
5182  bfd_size_type amt;
5183
5184  if (type == VERSION_AUX_ID)
5185    {
5186      size_t len = strlen (string);
5187      int pad = 0;
5188
5189      if (len % 4)
5190	pad = (4 - (len % 4));
5191      amt = sizeof (struct aux_id) + sizeof (unsigned int) + len + pad;
5192      obj_som_version_hdr (abfd) = bfd_zalloc (abfd, amt);
5193      if (!obj_som_version_hdr (abfd))
5194	return FALSE;
5195      obj_som_version_hdr (abfd)->header_id.type = VERSION_AUX_ID;
5196      obj_som_version_hdr (abfd)->header_id.length = len + pad;
5197      obj_som_version_hdr (abfd)->header_id.length += sizeof (int);
5198      obj_som_version_hdr (abfd)->string_length = len;
5199      strncpy (obj_som_version_hdr (abfd)->user_string, string, len);
5200    }
5201  else if (type == COPYRIGHT_AUX_ID)
5202    {
5203      int len = strlen (string);
5204      int pad = 0;
5205
5206      if (len % 4)
5207	pad = (4 - (len % 4));
5208      amt = sizeof (struct aux_id) + sizeof (unsigned int) + len + pad;
5209      obj_som_copyright_hdr (abfd) = bfd_zalloc (abfd, amt);
5210      if (!obj_som_copyright_hdr (abfd))
5211	return FALSE;
5212      obj_som_copyright_hdr (abfd)->header_id.type = COPYRIGHT_AUX_ID;
5213      obj_som_copyright_hdr (abfd)->header_id.length = len + pad;
5214      obj_som_copyright_hdr (abfd)->header_id.length += sizeof (int);
5215      obj_som_copyright_hdr (abfd)->string_length = len;
5216      strcpy (obj_som_copyright_hdr (abfd)->copyright, string);
5217    }
5218  return TRUE;
5219}
5220
5221/* Attach a compilation unit header to the BFD backend so that it may be
5222   written into the object file.  */
5223
5224bfd_boolean
5225bfd_som_attach_compilation_unit (bfd *abfd,
5226				 const char *name,
5227				 const char *language_name,
5228				 const char *product_id,
5229				 const char *version_id)
5230{
5231  COMPUNIT *n = (COMPUNIT *) bfd_zalloc (abfd, (bfd_size_type) COMPUNITSZ);
5232
5233  if (n == NULL)
5234    return FALSE;
5235
5236#define STRDUP(f) \
5237  if (f != NULL) \
5238    { \
5239      n->f.n_name = bfd_alloc (abfd, (bfd_size_type) strlen (f) + 1); \
5240      if (n->f.n_name == NULL) \
5241	return FALSE; \
5242      strcpy (n->f.n_name, f); \
5243    }
5244
5245  STRDUP (name);
5246  STRDUP (language_name);
5247  STRDUP (product_id);
5248  STRDUP (version_id);
5249
5250#undef STRDUP
5251
5252  obj_som_compilation_unit (abfd) = n;
5253
5254  return TRUE;
5255}
5256
5257static bfd_boolean
5258som_get_section_contents (bfd *abfd,
5259			  sec_ptr section,
5260			  void *location,
5261			  file_ptr offset,
5262			  bfd_size_type count)
5263{
5264  if (count == 0 || ((section->flags & SEC_HAS_CONTENTS) == 0))
5265    return TRUE;
5266  if ((bfd_size_type) (offset+count) > section->size
5267      || bfd_seek (abfd, (file_ptr) (section->filepos + offset), SEEK_SET) != 0
5268      || bfd_bread (location, count, abfd) != count)
5269    return FALSE; /* On error.  */
5270  return TRUE;
5271}
5272
5273static bfd_boolean
5274som_set_section_contents (bfd *abfd,
5275			  sec_ptr section,
5276			  const void *location,
5277			  file_ptr offset,
5278			  bfd_size_type count)
5279{
5280  if (! abfd->output_has_begun)
5281    {
5282      /* Set up fixed parts of the file, space, and subspace headers.
5283	 Notify the world that output has begun.  */
5284      som_prep_headers (abfd);
5285      abfd->output_has_begun = TRUE;
5286      /* Start writing the object file.  This include all the string
5287	 tables, fixup streams, and other portions of the object file.  */
5288      som_begin_writing (abfd);
5289    }
5290
5291  /* Only write subspaces which have "real" contents (eg. the contents
5292     are not generated at run time by the OS).  */
5293  if (!som_is_subspace (section)
5294      || ((section->flags & SEC_HAS_CONTENTS) == 0))
5295    return TRUE;
5296
5297  /* Seek to the proper offset within the object file and write the
5298     data.  */
5299  offset += som_section_data (section)->subspace_dict->file_loc_init_value;
5300  if (bfd_seek (abfd, offset, SEEK_SET) != 0)
5301    return FALSE;
5302
5303  if (bfd_bwrite (location, count, abfd) != count)
5304    return FALSE;
5305  return TRUE;
5306}
5307
5308static bfd_boolean
5309som_set_arch_mach (bfd *abfd,
5310		   enum bfd_architecture arch,
5311		   unsigned long machine)
5312{
5313  /* Allow any architecture to be supported by the SOM backend.  */
5314  return bfd_default_set_arch_mach (abfd, arch, machine);
5315}
5316
5317static bfd_boolean
5318som_find_nearest_line (bfd *abfd ATTRIBUTE_UNUSED,
5319		       asection *section ATTRIBUTE_UNUSED,
5320		       asymbol **symbols ATTRIBUTE_UNUSED,
5321		       bfd_vma offset ATTRIBUTE_UNUSED,
5322		       const char **filename_ptr ATTRIBUTE_UNUSED,
5323		       const char **functionname_ptr ATTRIBUTE_UNUSED,
5324		       unsigned int *line_ptr ATTRIBUTE_UNUSED)
5325{
5326  return FALSE;
5327}
5328
5329static int
5330som_sizeof_headers (bfd *abfd ATTRIBUTE_UNUSED,
5331		    struct bfd_link_info *info ATTRIBUTE_UNUSED)
5332{
5333  (*_bfd_error_handler) (_("som_sizeof_headers unimplemented"));
5334  fflush (stderr);
5335  abort ();
5336  return 0;
5337}
5338
5339/* Return the single-character symbol type corresponding to
5340   SOM section S, or '?' for an unknown SOM section.  */
5341
5342static char
5343som_section_type (const char *s)
5344{
5345  const struct section_to_type *t;
5346
5347  for (t = &stt[0]; t->section; t++)
5348    if (!strcmp (s, t->section))
5349      return t->type;
5350  return '?';
5351}
5352
5353static int
5354som_decode_symclass (asymbol *symbol)
5355{
5356  char c;
5357
5358  if (bfd_is_com_section (symbol->section))
5359    return 'C';
5360  if (bfd_is_und_section (symbol->section))
5361    {
5362      if (symbol->flags & BSF_WEAK)
5363	{
5364	  /* If weak, determine if it's specifically an object
5365	     or non-object weak.  */
5366	  if (symbol->flags & BSF_OBJECT)
5367	    return 'v';
5368	  else
5369	    return 'w';
5370	}
5371      else
5372	 return 'U';
5373    }
5374  if (bfd_is_ind_section (symbol->section))
5375    return 'I';
5376  if (symbol->flags & BSF_WEAK)
5377    {
5378      /* If weak, determine if it's specifically an object
5379	 or non-object weak.  */
5380      if (symbol->flags & BSF_OBJECT)
5381	return 'V';
5382      else
5383	return 'W';
5384    }
5385  if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
5386    return '?';
5387
5388  if (bfd_is_abs_section (symbol->section)
5389      || (som_symbol_data (symbol) != NULL
5390	  && som_symbol_data (symbol)->som_type == SYMBOL_TYPE_ABSOLUTE))
5391    c = 'a';
5392  else if (symbol->section)
5393    c = som_section_type (symbol->section->name);
5394  else
5395    return '?';
5396  if (symbol->flags & BSF_GLOBAL)
5397    c = TOUPPER (c);
5398  return c;
5399}
5400
5401/* Return information about SOM symbol SYMBOL in RET.  */
5402
5403static void
5404som_get_symbol_info (bfd *ignore_abfd ATTRIBUTE_UNUSED,
5405		     asymbol *symbol,
5406		     symbol_info *ret)
5407{
5408  ret->type = som_decode_symclass (symbol);
5409  if (ret->type != 'U')
5410    ret->value = symbol->value + symbol->section->vma;
5411  else
5412    ret->value = 0;
5413  ret->name = symbol->name;
5414}
5415
5416/* Count the number of symbols in the archive symbol table.  Necessary
5417   so that we can allocate space for all the carsyms at once.  */
5418
5419static bfd_boolean
5420som_bfd_count_ar_symbols (bfd *abfd,
5421			  struct lst_header *lst_header,
5422			  symindex *count)
5423{
5424  unsigned int i;
5425  unsigned int *hash_table = NULL;
5426  bfd_size_type amt;
5427  file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5428
5429  amt = lst_header->hash_size;
5430  amt *= sizeof (unsigned int);
5431  hash_table = bfd_malloc (amt);
5432  if (hash_table == NULL && lst_header->hash_size != 0)
5433    goto error_return;
5434
5435  /* Don't forget to initialize the counter!  */
5436  *count = 0;
5437
5438  /* Read in the hash table.  The has table is an array of 32bit file offsets
5439     which point to the hash chains.  */
5440  if (bfd_bread ((void *) hash_table, amt, abfd) != amt)
5441    goto error_return;
5442
5443  /* Walk each chain counting the number of symbols found on that particular
5444     chain.  */
5445  for (i = 0; i < lst_header->hash_size; i++)
5446    {
5447      struct lst_symbol_record lst_symbol;
5448
5449      /* An empty chain has zero as it's file offset.  */
5450      if (hash_table[i] == 0)
5451	continue;
5452
5453      /* Seek to the first symbol in this hash chain.  */
5454      if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) != 0)
5455	goto error_return;
5456
5457      /* Read in this symbol and update the counter.  */
5458      amt = sizeof (lst_symbol);
5459      if (bfd_bread ((void *) &lst_symbol, amt, abfd) != amt)
5460	goto error_return;
5461
5462      (*count)++;
5463
5464      /* Now iterate through the rest of the symbols on this chain.  */
5465      while (lst_symbol.next_entry)
5466	{
5467
5468	  /* Seek to the next symbol.  */
5469	  if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
5470	      != 0)
5471	    goto error_return;
5472
5473	  /* Read the symbol in and update the counter.  */
5474	  amt = sizeof (lst_symbol);
5475	  if (bfd_bread ((void *) &lst_symbol, amt, abfd) != amt)
5476	    goto error_return;
5477
5478	  (*count)++;
5479	}
5480    }
5481  if (hash_table != NULL)
5482    free (hash_table);
5483  return TRUE;
5484
5485 error_return:
5486  if (hash_table != NULL)
5487    free (hash_table);
5488  return FALSE;
5489}
5490
5491/* Fill in the canonical archive symbols (SYMS) from the archive described
5492   by ABFD and LST_HEADER.  */
5493
5494static bfd_boolean
5495som_bfd_fill_in_ar_symbols (bfd *abfd,
5496			    struct lst_header *lst_header,
5497			    carsym **syms)
5498{
5499  unsigned int i, len;
5500  carsym *set = syms[0];
5501  unsigned int *hash_table = NULL;
5502  struct som_entry *som_dict = NULL;
5503  bfd_size_type amt;
5504  file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5505
5506  amt = lst_header->hash_size;
5507  amt *= sizeof (unsigned int);
5508  hash_table = bfd_malloc (amt);
5509  if (hash_table == NULL && lst_header->hash_size != 0)
5510    goto error_return;
5511
5512  /* Read in the hash table.  The has table is an array of 32bit file offsets
5513     which point to the hash chains.  */
5514  if (bfd_bread ((void *) hash_table, amt, abfd) != amt)
5515    goto error_return;
5516
5517  /* Seek to and read in the SOM dictionary.  We will need this to fill
5518     in the carsym's filepos field.  */
5519  if (bfd_seek (abfd, lst_filepos + lst_header->dir_loc, SEEK_SET) != 0)
5520    goto error_return;
5521
5522  amt = lst_header->module_count;
5523  amt *= sizeof (struct som_entry);
5524  som_dict = bfd_malloc (amt);
5525  if (som_dict == NULL && lst_header->module_count != 0)
5526    goto error_return;
5527
5528  if (bfd_bread ((void *) som_dict, amt, abfd) != amt)
5529    goto error_return;
5530
5531  /* Walk each chain filling in the carsyms as we go along.  */
5532  for (i = 0; i < lst_header->hash_size; i++)
5533    {
5534      struct lst_symbol_record lst_symbol;
5535
5536      /* An empty chain has zero as it's file offset.  */
5537      if (hash_table[i] == 0)
5538	continue;
5539
5540      /* Seek to and read the first symbol on the chain.  */
5541      if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) != 0)
5542	goto error_return;
5543
5544      amt = sizeof (lst_symbol);
5545      if (bfd_bread ((void *) &lst_symbol, amt, abfd) != amt)
5546	goto error_return;
5547
5548      /* Get the name of the symbol, first get the length which is stored
5549	 as a 32bit integer just before the symbol.
5550
5551	 One might ask why we don't just read in the entire string table
5552	 and index into it.  Well, according to the SOM ABI the string
5553	 index can point *anywhere* in the archive to save space, so just
5554	 using the string table would not be safe.  */
5555      if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
5556			    + lst_symbol.name.n_strx - 4, SEEK_SET) != 0)
5557	goto error_return;
5558
5559      if (bfd_bread (&len, (bfd_size_type) 4, abfd) != 4)
5560	goto error_return;
5561
5562      /* Allocate space for the name and null terminate it too.  */
5563      set->name = bfd_zalloc (abfd, (bfd_size_type) len + 1);
5564      if (!set->name)
5565	goto error_return;
5566      if (bfd_bread (set->name, (bfd_size_type) len, abfd) != len)
5567	goto error_return;
5568
5569      set->name[len] = 0;
5570
5571      /* Fill in the file offset.  Note that the "location" field points
5572	 to the SOM itself, not the ar_hdr in front of it.  */
5573      set->file_offset = som_dict[lst_symbol.som_index].location
5574			  - sizeof (struct ar_hdr);
5575
5576      /* Go to the next symbol.  */
5577      set++;
5578
5579      /* Iterate through the rest of the chain.  */
5580      while (lst_symbol.next_entry)
5581	{
5582	  /* Seek to the next symbol and read it in.  */
5583	  if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
5584	      != 0)
5585	    goto error_return;
5586
5587	  amt = sizeof (lst_symbol);
5588	  if (bfd_bread ((void *) &lst_symbol, amt, abfd) != amt)
5589	    goto error_return;
5590
5591	  /* Seek to the name length & string and read them in.  */
5592	  if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
5593				+ lst_symbol.name.n_strx - 4, SEEK_SET) != 0)
5594	    goto error_return;
5595
5596	  if (bfd_bread (&len, (bfd_size_type) 4, abfd) != 4)
5597	    goto error_return;
5598
5599	  /* Allocate space for the name and null terminate it too.  */
5600	  set->name = bfd_zalloc (abfd, (bfd_size_type) len + 1);
5601	  if (!set->name)
5602	    goto error_return;
5603
5604	  if (bfd_bread (set->name, (bfd_size_type) len, abfd) != len)
5605	    goto error_return;
5606	  set->name[len] = 0;
5607
5608	  /* Fill in the file offset.  Note that the "location" field points
5609	     to the SOM itself, not the ar_hdr in front of it.  */
5610	  set->file_offset = som_dict[lst_symbol.som_index].location
5611			       - sizeof (struct ar_hdr);
5612
5613	  /* Go on to the next symbol.  */
5614	  set++;
5615	}
5616    }
5617  /* If we haven't died by now, then we successfully read the entire
5618     archive symbol table.  */
5619  if (hash_table != NULL)
5620    free (hash_table);
5621  if (som_dict != NULL)
5622    free (som_dict);
5623  return TRUE;
5624
5625 error_return:
5626  if (hash_table != NULL)
5627    free (hash_table);
5628  if (som_dict != NULL)
5629    free (som_dict);
5630  return FALSE;
5631}
5632
5633/* Read in the LST from the archive.  */
5634
5635static bfd_boolean
5636som_slurp_armap (bfd *abfd)
5637{
5638  struct lst_header lst_header;
5639  struct ar_hdr ar_header;
5640  unsigned int parsed_size;
5641  struct artdata *ardata = bfd_ardata (abfd);
5642  char nextname[17];
5643  bfd_size_type amt = 16;
5644  int i = bfd_bread ((void *) nextname, amt, abfd);
5645
5646  /* Special cases.  */
5647  if (i == 0)
5648    return TRUE;
5649  if (i != 16)
5650    return FALSE;
5651
5652  if (bfd_seek (abfd, (file_ptr) -16, SEEK_CUR) != 0)
5653    return FALSE;
5654
5655  /* For archives without .o files there is no symbol table.  */
5656  if (! CONST_STRNEQ (nextname, "/               "))
5657    {
5658      bfd_has_map (abfd) = FALSE;
5659      return TRUE;
5660    }
5661
5662  /* Read in and sanity check the archive header.  */
5663  amt = sizeof (struct ar_hdr);
5664  if (bfd_bread ((void *) &ar_header, amt, abfd) != amt)
5665    return FALSE;
5666
5667  if (strncmp (ar_header.ar_fmag, ARFMAG, 2))
5668    {
5669      bfd_set_error (bfd_error_malformed_archive);
5670      return FALSE;
5671    }
5672
5673  /* How big is the archive symbol table entry?  */
5674  errno = 0;
5675  parsed_size = strtol (ar_header.ar_size, NULL, 10);
5676  if (errno != 0)
5677    {
5678      bfd_set_error (bfd_error_malformed_archive);
5679      return FALSE;
5680    }
5681
5682  /* Save off the file offset of the first real user data.  */
5683  ardata->first_file_filepos = bfd_tell (abfd) + parsed_size;
5684
5685  /* Read in the library symbol table.  We'll make heavy use of this
5686     in just a minute.  */
5687  amt = sizeof (struct lst_header);
5688  if (bfd_bread ((void *) &lst_header, amt, abfd) != amt)
5689    return FALSE;
5690
5691  /* Sanity check.  */
5692  if (lst_header.a_magic != LIBMAGIC)
5693    {
5694      bfd_set_error (bfd_error_malformed_archive);
5695      return FALSE;
5696    }
5697
5698  /* Count the number of symbols in the library symbol table.  */
5699  if (! som_bfd_count_ar_symbols (abfd, &lst_header, &ardata->symdef_count))
5700    return FALSE;
5701
5702  /* Get back to the start of the library symbol table.  */
5703  if (bfd_seek (abfd, (ardata->first_file_filepos - parsed_size
5704		       + sizeof (struct lst_header)), SEEK_SET) != 0)
5705    return FALSE;
5706
5707  /* Initialize the cache and allocate space for the library symbols.  */
5708  ardata->cache = 0;
5709  amt = ardata->symdef_count;
5710  amt *= sizeof (carsym);
5711  ardata->symdefs = bfd_alloc (abfd, amt);
5712  if (!ardata->symdefs)
5713    return FALSE;
5714
5715  /* Now fill in the canonical archive symbols.  */
5716  if (! som_bfd_fill_in_ar_symbols (abfd, &lst_header, &ardata->symdefs))
5717    return FALSE;
5718
5719  /* Seek back to the "first" file in the archive.  Note the "first"
5720     file may be the extended name table.  */
5721  if (bfd_seek (abfd, ardata->first_file_filepos, SEEK_SET) != 0)
5722    return FALSE;
5723
5724  /* Notify the generic archive code that we have a symbol map.  */
5725  bfd_has_map (abfd) = TRUE;
5726  return TRUE;
5727}
5728
5729/* Begin preparing to write a SOM library symbol table.
5730
5731   As part of the prep work we need to determine the number of symbols
5732   and the size of the associated string section.  */
5733
5734static bfd_boolean
5735som_bfd_prep_for_ar_write (bfd *abfd,
5736			   unsigned int *num_syms,
5737			   unsigned int *stringsize)
5738{
5739  bfd *curr_bfd = abfd->archive_head;
5740
5741  /* Some initialization.  */
5742  *num_syms = 0;
5743  *stringsize = 0;
5744
5745  /* Iterate over each BFD within this archive.  */
5746  while (curr_bfd != NULL)
5747    {
5748      unsigned int curr_count, i;
5749      som_symbol_type *sym;
5750
5751      /* Don't bother for non-SOM objects.  */
5752      if (curr_bfd->format != bfd_object
5753	  || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5754	{
5755	  curr_bfd = curr_bfd->next;
5756	  continue;
5757	}
5758
5759      /* Make sure the symbol table has been read, then snag a pointer
5760	 to it.  It's a little slimey to grab the symbols via obj_som_symtab,
5761	 but doing so avoids allocating lots of extra memory.  */
5762      if (! som_slurp_symbol_table (curr_bfd))
5763	return FALSE;
5764
5765      sym = obj_som_symtab (curr_bfd);
5766      curr_count = bfd_get_symcount (curr_bfd);
5767
5768      /* Examine each symbol to determine if it belongs in the
5769	 library symbol table.  */
5770      for (i = 0; i < curr_count; i++, sym++)
5771	{
5772	  struct som_misc_symbol_info info;
5773
5774	  /* Derive SOM information from the BFD symbol.  */
5775	  som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5776
5777	  /* Should we include this symbol?  */
5778	  if (info.symbol_type == ST_NULL
5779	      || info.symbol_type == ST_SYM_EXT
5780	      || info.symbol_type == ST_ARG_EXT)
5781	    continue;
5782
5783	  /* Only global symbols and unsatisfied commons.  */
5784	  if (info.symbol_scope != SS_UNIVERSAL
5785	      && info.symbol_type != ST_STORAGE)
5786	    continue;
5787
5788	  /* Do no include undefined symbols.  */
5789	  if (bfd_is_und_section (sym->symbol.section))
5790	    continue;
5791
5792	  /* Bump the various counters, being careful to honor
5793	     alignment considerations in the string table.  */
5794	  (*num_syms)++;
5795	  *stringsize = *stringsize + strlen (sym->symbol.name) + 5;
5796	  while (*stringsize % 4)
5797	    (*stringsize)++;
5798	}
5799
5800      curr_bfd = curr_bfd->next;
5801    }
5802  return TRUE;
5803}
5804
5805/* Hash a symbol name based on the hashing algorithm presented in the
5806   SOM ABI.  */
5807
5808static unsigned int
5809som_bfd_ar_symbol_hash (asymbol *symbol)
5810{
5811  unsigned int len = strlen (symbol->name);
5812
5813  /* Names with length 1 are special.  */
5814  if (len == 1)
5815    return 0x1000100 | (symbol->name[0] << 16) | symbol->name[0];
5816
5817  return ((len & 0x7f) << 24) | (symbol->name[1] << 16)
5818	  | (symbol->name[len - 2] << 8) | symbol->name[len - 1];
5819}
5820
5821/* Do the bulk of the work required to write the SOM library
5822   symbol table.  */
5823
5824static bfd_boolean
5825som_bfd_ar_write_symbol_stuff (bfd *abfd,
5826			       unsigned int nsyms,
5827			       unsigned int string_size,
5828			       struct lst_header lst,
5829			       unsigned elength)
5830{
5831  file_ptr lst_filepos;
5832  char *strings = NULL, *p;
5833  struct lst_symbol_record *lst_syms = NULL, *curr_lst_sym;
5834  bfd *curr_bfd;
5835  unsigned int *hash_table = NULL;
5836  struct som_entry *som_dict = NULL;
5837  struct lst_symbol_record **last_hash_entry = NULL;
5838  unsigned int curr_som_offset, som_index = 0;
5839  bfd_size_type amt;
5840
5841  amt = lst.hash_size;
5842  amt *= sizeof (unsigned int);
5843  hash_table = bfd_zmalloc (amt);
5844  if (hash_table == NULL && lst.hash_size != 0)
5845    goto error_return;
5846
5847  amt = lst.module_count;
5848  amt *= sizeof (struct som_entry);
5849  som_dict = bfd_zmalloc (amt);
5850  if (som_dict == NULL && lst.module_count != 0)
5851    goto error_return;
5852
5853  amt = lst.hash_size;
5854  amt *= sizeof (struct lst_symbol_record *);
5855  last_hash_entry = bfd_zmalloc (amt);
5856  if (last_hash_entry == NULL && lst.hash_size != 0)
5857    goto error_return;
5858
5859  /* Lots of fields are file positions relative to the start
5860     of the lst record.  So save its location.  */
5861  lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
5862
5863  /* Symbols have som_index fields, so we have to keep track of the
5864     index of each SOM in the archive.
5865
5866     The SOM dictionary has (among other things) the absolute file
5867     position for the SOM which a particular dictionary entry
5868     describes.  We have to compute that information as we iterate
5869     through the SOMs/symbols.  */
5870  som_index = 0;
5871
5872  /* We add in the size of the archive header twice as the location
5873     in the SOM dictionary is the actual offset of the SOM, not the
5874     archive header before the SOM.  */
5875  curr_som_offset = 8 + 2 * sizeof (struct ar_hdr) + lst.file_end;
5876
5877  /* Make room for the archive header and the contents of the
5878     extended string table.  Note that elength includes the size
5879     of the archive header for the extended name table!  */
5880  if (elength)
5881    curr_som_offset += elength;
5882
5883  /* Make sure we're properly aligned.  */
5884  curr_som_offset = (curr_som_offset + 0x1) & ~0x1;
5885
5886  /* FIXME should be done with buffers just like everything else...  */
5887  amt = nsyms;
5888  amt *= sizeof (struct lst_symbol_record);
5889  lst_syms = bfd_malloc (amt);
5890  if (lst_syms == NULL && nsyms != 0)
5891    goto error_return;
5892  strings = bfd_malloc ((bfd_size_type) string_size);
5893  if (strings == NULL && string_size != 0)
5894    goto error_return;
5895
5896  p = strings;
5897  curr_lst_sym = lst_syms;
5898
5899  curr_bfd = abfd->archive_head;
5900  while (curr_bfd != NULL)
5901    {
5902      unsigned int curr_count, i;
5903      som_symbol_type *sym;
5904
5905      /* Don't bother for non-SOM objects.  */
5906      if (curr_bfd->format != bfd_object
5907	  || curr_bfd->xvec->flavour != bfd_target_som_flavour)
5908	{
5909	  curr_bfd = curr_bfd->next;
5910	  continue;
5911	}
5912
5913      /* Make sure the symbol table has been read, then snag a pointer
5914	 to it.  It's a little slimey to grab the symbols via obj_som_symtab,
5915	 but doing so avoids allocating lots of extra memory.  */
5916      if (! som_slurp_symbol_table (curr_bfd))
5917	goto error_return;
5918
5919      sym = obj_som_symtab (curr_bfd);
5920      curr_count = bfd_get_symcount (curr_bfd);
5921
5922      for (i = 0; i < curr_count; i++, sym++)
5923	{
5924	  struct som_misc_symbol_info info;
5925
5926	  /* Derive SOM information from the BFD symbol.  */
5927	  som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
5928
5929	  /* Should we include this symbol?  */
5930	  if (info.symbol_type == ST_NULL
5931	      || info.symbol_type == ST_SYM_EXT
5932	      || info.symbol_type == ST_ARG_EXT)
5933	    continue;
5934
5935	  /* Only global symbols and unsatisfied commons.  */
5936	  if (info.symbol_scope != SS_UNIVERSAL
5937	      && info.symbol_type != ST_STORAGE)
5938	    continue;
5939
5940	  /* Do no include undefined symbols.  */
5941	  if (bfd_is_und_section (sym->symbol.section))
5942	    continue;
5943
5944	  /* If this is the first symbol from this SOM, then update
5945	     the SOM dictionary too.  */
5946	  if (som_dict[som_index].location == 0)
5947	    {
5948	      som_dict[som_index].location = curr_som_offset;
5949	      som_dict[som_index].length = arelt_size (curr_bfd);
5950	    }
5951
5952	  /* Fill in the lst symbol record.  */
5953	  curr_lst_sym->hidden = 0;
5954	  curr_lst_sym->secondary_def = info.secondary_def;
5955	  curr_lst_sym->symbol_type = info.symbol_type;
5956	  curr_lst_sym->symbol_scope = info.symbol_scope;
5957	  curr_lst_sym->check_level = 0;
5958	  curr_lst_sym->must_qualify = 0;
5959	  curr_lst_sym->initially_frozen = 0;
5960	  curr_lst_sym->memory_resident = 0;
5961	  curr_lst_sym->is_common = bfd_is_com_section (sym->symbol.section);
5962	  curr_lst_sym->dup_common = info.dup_common;
5963	  curr_lst_sym->xleast = 3;
5964	  curr_lst_sym->arg_reloc = info.arg_reloc;
5965	  curr_lst_sym->name.n_strx = p - strings + 4;
5966	  curr_lst_sym->qualifier_name.n_strx = 0;
5967	  curr_lst_sym->symbol_info = info.symbol_info;
5968	  curr_lst_sym->symbol_value = info.symbol_value | info.priv_level;
5969	  curr_lst_sym->symbol_descriptor = 0;
5970	  curr_lst_sym->reserved = 0;
5971	  curr_lst_sym->som_index = som_index;
5972	  curr_lst_sym->symbol_key = som_bfd_ar_symbol_hash (&sym->symbol);
5973	  curr_lst_sym->next_entry = 0;
5974
5975	  /* Insert into the hash table.  */
5976	  if (hash_table[curr_lst_sym->symbol_key % lst.hash_size])
5977	    {
5978	      struct lst_symbol_record *tmp;
5979
5980	      /* There is already something at the head of this hash chain,
5981		 so tack this symbol onto the end of the chain.  */
5982	      tmp = last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size];
5983	      tmp->next_entry
5984		= (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5985		  + lst.hash_size * 4
5986		  + lst.module_count * sizeof (struct som_entry)
5987		  + sizeof (struct lst_header);
5988	    }
5989	  else
5990	    /* First entry in this hash chain.  */
5991	    hash_table[curr_lst_sym->symbol_key % lst.hash_size]
5992	      = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
5993	      + lst.hash_size * 4
5994	      + lst.module_count * sizeof (struct som_entry)
5995	      + sizeof (struct lst_header);
5996
5997	  /* Keep track of the last symbol we added to this chain so we can
5998	     easily update its next_entry pointer.  */
5999	  last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size]
6000	    = curr_lst_sym;
6001
6002	  /* Update the string table.  */
6003	  bfd_put_32 (abfd, strlen (sym->symbol.name), p);
6004	  p += 4;
6005	  strcpy (p, sym->symbol.name);
6006	  p += strlen (sym->symbol.name) + 1;
6007	  while ((int) p % 4)
6008	    {
6009	      bfd_put_8 (abfd, 0, p);
6010	      p++;
6011	    }
6012
6013	  /* Head to the next symbol.  */
6014	  curr_lst_sym++;
6015	}
6016
6017      /* Keep track of where each SOM will finally reside; then look
6018	 at the next BFD.  */
6019      curr_som_offset += arelt_size (curr_bfd) + sizeof (struct ar_hdr);
6020
6021      /* A particular object in the archive may have an odd length; the
6022	 linker requires objects begin on an even boundary.  So round
6023	 up the current offset as necessary.  */
6024      curr_som_offset = (curr_som_offset + 0x1) &~ (unsigned) 1;
6025      curr_bfd = curr_bfd->next;
6026      som_index++;
6027    }
6028
6029  /* Now scribble out the hash table.  */
6030  amt = lst.hash_size * 4;
6031  if (bfd_bwrite ((void *) hash_table, amt, abfd) != amt)
6032    goto error_return;
6033
6034  /* Then the SOM dictionary.  */
6035  amt = lst.module_count * sizeof (struct som_entry);
6036  if (bfd_bwrite ((void *) som_dict, amt, abfd) != amt)
6037    goto error_return;
6038
6039  /* The library symbols.  */
6040  amt = nsyms * sizeof (struct lst_symbol_record);
6041  if (bfd_bwrite ((void *) lst_syms, amt, abfd) != amt)
6042    goto error_return;
6043
6044  /* And finally the strings.  */
6045  amt = string_size;
6046  if (bfd_bwrite ((void *) strings, amt, abfd) != amt)
6047    goto error_return;
6048
6049  if (hash_table != NULL)
6050    free (hash_table);
6051  if (som_dict != NULL)
6052    free (som_dict);
6053  if (last_hash_entry != NULL)
6054    free (last_hash_entry);
6055  if (lst_syms != NULL)
6056    free (lst_syms);
6057  if (strings != NULL)
6058    free (strings);
6059  return TRUE;
6060
6061 error_return:
6062  if (hash_table != NULL)
6063    free (hash_table);
6064  if (som_dict != NULL)
6065    free (som_dict);
6066  if (last_hash_entry != NULL)
6067    free (last_hash_entry);
6068  if (lst_syms != NULL)
6069    free (lst_syms);
6070  if (strings != NULL)
6071    free (strings);
6072
6073  return FALSE;
6074}
6075
6076/* Write out the LST for the archive.
6077
6078   You'll never believe this is really how armaps are handled in SOM...  */
6079
6080static bfd_boolean
6081som_write_armap (bfd *abfd,
6082		 unsigned int elength,
6083		 struct orl *map ATTRIBUTE_UNUSED,
6084		 unsigned int orl_count ATTRIBUTE_UNUSED,
6085		 int stridx ATTRIBUTE_UNUSED)
6086{
6087  bfd *curr_bfd;
6088  struct stat statbuf;
6089  unsigned int i, lst_size, nsyms, stringsize;
6090  struct ar_hdr hdr;
6091  struct lst_header lst;
6092  int *p;
6093  bfd_size_type amt;
6094
6095  /* We'll use this for the archive's date and mode later.  */
6096  if (stat (abfd->filename, &statbuf) != 0)
6097    {
6098      bfd_set_error (bfd_error_system_call);
6099      return FALSE;
6100    }
6101  /* Fudge factor.  */
6102  bfd_ardata (abfd)->armap_timestamp = statbuf.st_mtime + 60;
6103
6104  /* Account for the lst header first.  */
6105  lst_size = sizeof (struct lst_header);
6106
6107  /* Start building the LST header.  */
6108  /* FIXME:  Do we need to examine each element to determine the
6109     largest id number?  */
6110  lst.system_id = CPU_PA_RISC1_0;
6111  lst.a_magic = LIBMAGIC;
6112  lst.version_id = VERSION_ID;
6113  lst.file_time.secs = 0;
6114  lst.file_time.nanosecs = 0;
6115
6116  lst.hash_loc = lst_size;
6117  lst.hash_size = SOM_LST_HASH_SIZE;
6118
6119  /* Hash table is a SOM_LST_HASH_SIZE 32bit offsets.  */
6120  lst_size += 4 * SOM_LST_HASH_SIZE;
6121
6122  /* We need to count the number of SOMs in this archive.  */
6123  curr_bfd = abfd->archive_head;
6124  lst.module_count = 0;
6125  while (curr_bfd != NULL)
6126    {
6127      /* Only true SOM objects count.  */
6128      if (curr_bfd->format == bfd_object
6129	  && curr_bfd->xvec->flavour == bfd_target_som_flavour)
6130	lst.module_count++;
6131      curr_bfd = curr_bfd->next;
6132    }
6133  lst.module_limit = lst.module_count;
6134  lst.dir_loc = lst_size;
6135  lst_size += sizeof (struct som_entry) * lst.module_count;
6136
6137  /* We don't support import/export tables, auxiliary headers,
6138     or free lists yet.  Make the linker work a little harder
6139     to make our life easier.  */
6140
6141  lst.export_loc = 0;
6142  lst.export_count = 0;
6143  lst.import_loc = 0;
6144  lst.aux_loc = 0;
6145  lst.aux_size = 0;
6146
6147  /* Count how many symbols we will have on the hash chains and the
6148     size of the associated string table.  */
6149  if (! som_bfd_prep_for_ar_write (abfd, &nsyms, &stringsize))
6150    return FALSE;
6151
6152  lst_size += sizeof (struct lst_symbol_record) * nsyms;
6153
6154  /* For the string table.  One day we might actually use this info
6155     to avoid small seeks/reads when reading archives.  */
6156  lst.string_loc = lst_size;
6157  lst.string_size = stringsize;
6158  lst_size += stringsize;
6159
6160  /* SOM ABI says this must be zero.  */
6161  lst.free_list = 0;
6162  lst.file_end = lst_size;
6163
6164  /* Compute the checksum.  Must happen after the entire lst header
6165     has filled in.  */
6166  p = (int *) &lst;
6167  lst.checksum = 0;
6168  for (i = 0; i < sizeof (struct lst_header) / sizeof (int) - 1; i++)
6169    lst.checksum ^= *p++;
6170
6171  sprintf (hdr.ar_name, "/               ");
6172  sprintf (hdr.ar_date, "%ld", bfd_ardata (abfd)->armap_timestamp);
6173  sprintf (hdr.ar_uid, "%ld", (long) getuid ());
6174  sprintf (hdr.ar_gid, "%ld", (long) getgid ());
6175  sprintf (hdr.ar_mode, "%-8o", (unsigned int) statbuf.st_mode);
6176  sprintf (hdr.ar_size, "%-10d", (int) lst_size);
6177  hdr.ar_fmag[0] = '`';
6178  hdr.ar_fmag[1] = '\012';
6179
6180  /* Turn any nulls into spaces.  */
6181  for (i = 0; i < sizeof (struct ar_hdr); i++)
6182    if (((char *) (&hdr))[i] == '\0')
6183      (((char *) (&hdr))[i]) = ' ';
6184
6185  /* Scribble out the ar header.  */
6186  amt = sizeof (struct ar_hdr);
6187  if (bfd_bwrite ((void *) &hdr, amt, abfd) != amt)
6188    return FALSE;
6189
6190  /* Now scribble out the lst header.  */
6191  amt = sizeof (struct lst_header);
6192  if (bfd_bwrite ((void *) &lst, amt, abfd) != amt)
6193    return FALSE;
6194
6195  /* Build and write the armap.  */
6196  if (!som_bfd_ar_write_symbol_stuff (abfd, nsyms, stringsize, lst, elength))
6197    return FALSE;
6198
6199  /* Done.  */
6200  return TRUE;
6201}
6202
6203/* Free all information we have cached for this BFD.  We can always
6204   read it again later if we need it.  */
6205
6206static bfd_boolean
6207som_bfd_free_cached_info (bfd *abfd)
6208{
6209  asection *o;
6210
6211  if (bfd_get_format (abfd) != bfd_object)
6212    return TRUE;
6213
6214#define FREE(x) if (x != NULL) { free (x); x = NULL; }
6215  /* Free the native string and symbol tables.  */
6216  FREE (obj_som_symtab (abfd));
6217  FREE (obj_som_stringtab (abfd));
6218  for (o = abfd->sections; o != NULL; o = o->next)
6219    {
6220      /* Free the native relocations.  */
6221      o->reloc_count = (unsigned) -1;
6222      FREE (som_section_data (o)->reloc_stream);
6223      /* Free the generic relocations.  */
6224      FREE (o->relocation);
6225    }
6226#undef FREE
6227
6228  return TRUE;
6229}
6230
6231/* End of miscellaneous support functions.  */
6232
6233/* Linker support functions.  */
6234
6235static bfd_boolean
6236som_bfd_link_split_section (bfd *abfd ATTRIBUTE_UNUSED, asection *sec)
6237{
6238  return som_is_subspace (sec) && sec->size > 240000;
6239}
6240
6241#define	som_close_and_cleanup		        som_bfd_free_cached_info
6242#define som_read_ar_hdr			        _bfd_generic_read_ar_hdr
6243#define som_openr_next_archived_file	        bfd_generic_openr_next_archived_file
6244#define som_get_elt_at_index		        _bfd_generic_get_elt_at_index
6245#define som_generic_stat_arch_elt	        bfd_generic_stat_arch_elt
6246#define som_truncate_arname		        bfd_bsd_truncate_arname
6247#define som_slurp_extended_name_table	        _bfd_slurp_extended_name_table
6248#define som_construct_extended_name_table       _bfd_archive_coff_construct_extended_name_table
6249#define som_update_armap_timestamp	        bfd_true
6250#define som_bfd_is_target_special_symbol   ((bfd_boolean (*) (bfd *, asymbol *)) bfd_false)
6251#define som_get_lineno			        _bfd_nosymbols_get_lineno
6252#define som_bfd_make_debug_symbol	        _bfd_nosymbols_bfd_make_debug_symbol
6253#define som_read_minisymbols		        _bfd_generic_read_minisymbols
6254#define som_minisymbol_to_symbol	        _bfd_generic_minisymbol_to_symbol
6255#define som_get_section_contents_in_window      _bfd_generic_get_section_contents_in_window
6256#define som_bfd_get_relocated_section_contents  bfd_generic_get_relocated_section_contents
6257#define som_bfd_relax_section                   bfd_generic_relax_section
6258#define som_bfd_link_hash_table_create          _bfd_generic_link_hash_table_create
6259#define som_bfd_link_hash_table_free            _bfd_generic_link_hash_table_free
6260#define som_bfd_link_add_symbols                _bfd_generic_link_add_symbols
6261#define som_bfd_link_just_syms                  _bfd_generic_link_just_syms
6262#define som_bfd_final_link                      _bfd_generic_final_link
6263#define som_bfd_gc_sections		        bfd_generic_gc_sections
6264#define som_bfd_merge_sections		        bfd_generic_merge_sections
6265#define som_bfd_is_group_section	        bfd_generic_is_group_section
6266#define som_bfd_discard_group		        bfd_generic_discard_group
6267#define som_section_already_linked              _bfd_generic_section_already_linked
6268#define som_bfd_merge_private_bfd_data		_bfd_generic_bfd_merge_private_bfd_data
6269#define som_bfd_copy_private_header_data	_bfd_generic_bfd_copy_private_header_data
6270#define som_bfd_set_private_flags		_bfd_generic_bfd_set_private_flags
6271#define som_find_inliner_info			_bfd_nosymbols_find_inliner_info
6272
6273const bfd_target som_vec =
6274{
6275  "som",			/* Name.  */
6276  bfd_target_som_flavour,
6277  BFD_ENDIAN_BIG,		/* Target byte order.  */
6278  BFD_ENDIAN_BIG,		/* Target headers byte order.  */
6279  (HAS_RELOC | EXEC_P |		/* Object flags.  */
6280   HAS_LINENO | HAS_DEBUG |
6281   HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED | DYNAMIC),
6282  (SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS | SEC_LINK_ONCE
6283   | SEC_ALLOC | SEC_LOAD | SEC_RELOC),		/* Section flags.  */
6284
6285  /* Leading_symbol_char: is the first char of a user symbol
6286     predictable, and if so what is it.  */
6287  0,
6288  '/',				/* AR_pad_char.  */
6289  14,				/* AR_max_namelen.  */
6290  bfd_getb64, bfd_getb_signed_64, bfd_putb64,
6291  bfd_getb32, bfd_getb_signed_32, bfd_putb32,
6292  bfd_getb16, bfd_getb_signed_16, bfd_putb16,	/* Data.  */
6293  bfd_getb64, bfd_getb_signed_64, bfd_putb64,
6294  bfd_getb32, bfd_getb_signed_32, bfd_putb32,
6295  bfd_getb16, bfd_getb_signed_16, bfd_putb16,	/* Headers.  */
6296  {_bfd_dummy_target,
6297   som_object_p,		/* bfd_check_format.  */
6298   bfd_generic_archive_p,
6299   _bfd_dummy_target
6300  },
6301  {
6302    bfd_false,
6303    som_mkobject,
6304    _bfd_generic_mkarchive,
6305    bfd_false
6306  },
6307  {
6308    bfd_false,
6309    som_write_object_contents,
6310    _bfd_write_archive_contents,
6311    bfd_false,
6312  },
6313#undef som
6314
6315  BFD_JUMP_TABLE_GENERIC (som),
6316  BFD_JUMP_TABLE_COPY (som),
6317  BFD_JUMP_TABLE_CORE (_bfd_nocore),
6318  BFD_JUMP_TABLE_ARCHIVE (som),
6319  BFD_JUMP_TABLE_SYMBOLS (som),
6320  BFD_JUMP_TABLE_RELOCS (som),
6321  BFD_JUMP_TABLE_WRITE (som),
6322  BFD_JUMP_TABLE_LINK (som),
6323  BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
6324
6325  NULL,
6326
6327  NULL
6328};
6329
6330#endif /* HOST_HPPAHPUX || HOST_HPPABSD || HOST_HPPAOSF */
6331