1/* BFD back-end for Renesas H8/300 COFF binaries.
2   Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3   2000, 2001, 2002, 2003, 2004, 2005, 2006
4   Free Software Foundation, Inc.
5   Written by Steve Chamberlain, <sac@cygnus.com>.
6
7   This file is part of BFD, the Binary File Descriptor library.
8
9   This program is free software; you can redistribute it and/or modify
10   it under the terms of the GNU General Public License as published by
11   the Free Software Foundation; either version 2 of the License, or
12   (at your option) any later version.
13
14   This program is distributed in the hope that it will be useful,
15   but WITHOUT ANY WARRANTY; without even the implied warranty of
16   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17   GNU General Public License for more details.
18
19   You should have received a copy of the GNU General Public License
20   along with this program; if not, write to the Free Software
21   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA.  */
22
23#include "bfd.h"
24#include "sysdep.h"
25#include "libbfd.h"
26#include "bfdlink.h"
27#include "genlink.h"
28#include "coff/h8300.h"
29#include "coff/internal.h"
30#include "libcoff.h"
31#include "libiberty.h"
32
33#define COFF_DEFAULT_SECTION_ALIGNMENT_POWER (1)
34
35/* We derive a hash table from the basic BFD hash table to
36   hold entries in the function vector.  Aside from the
37   info stored by the basic hash table, we need the offset
38   of a particular entry within the hash table as well as
39   the offset where we'll add the next entry.  */
40
41struct funcvec_hash_entry
42  {
43    /* The basic hash table entry.  */
44    struct bfd_hash_entry root;
45
46    /* The offset within the vectors section where
47       this entry lives.  */
48    bfd_vma offset;
49  };
50
51struct funcvec_hash_table
52  {
53    /* The basic hash table.  */
54    struct bfd_hash_table root;
55
56    bfd *abfd;
57
58    /* Offset at which we'll add the next entry.  */
59    unsigned int offset;
60  };
61
62static struct bfd_hash_entry *
63funcvec_hash_newfunc
64  (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
65
66static bfd_reloc_status_type special
67  (bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **);
68static int select_reloc
69  (reloc_howto_type *);
70static void rtype2howto
71  (arelent *, struct internal_reloc *);
72static void reloc_processing
73  (arelent *, struct internal_reloc *, asymbol **, bfd *, asection *);
74static bfd_boolean h8300_symbol_address_p
75  (bfd *, asection *, bfd_vma);
76static int h8300_reloc16_estimate
77  (bfd *, asection *, arelent *, unsigned int,
78   struct bfd_link_info *);
79static void h8300_reloc16_extra_cases
80  (bfd *, struct bfd_link_info *, struct bfd_link_order *, arelent *,
81   bfd_byte *, unsigned int *, unsigned int *);
82static bfd_boolean h8300_bfd_link_add_symbols
83  (bfd *, struct bfd_link_info *);
84
85/* To lookup a value in the function vector hash table.  */
86#define funcvec_hash_lookup(table, string, create, copy) \
87  ((struct funcvec_hash_entry *) \
88   bfd_hash_lookup (&(table)->root, (string), (create), (copy)))
89
90/* The derived h8300 COFF linker table.  Note it's derived from
91   the generic linker hash table, not the COFF backend linker hash
92   table!  We use this to attach additional data structures we
93   need while linking on the h8300.  */
94struct h8300_coff_link_hash_table {
95  /* The main hash table.  */
96  struct generic_link_hash_table root;
97
98  /* Section for the vectors table.  This gets attached to a
99     random input bfd, we keep it here for easy access.  */
100  asection *vectors_sec;
101
102  /* Hash table of the functions we need to enter into the function
103     vector.  */
104  struct funcvec_hash_table *funcvec_hash_table;
105};
106
107static struct bfd_link_hash_table *h8300_coff_link_hash_table_create (bfd *);
108
109/* Get the H8/300 COFF linker hash table from a link_info structure.  */
110
111#define h8300_coff_hash_table(p) \
112  ((struct h8300_coff_link_hash_table *) ((coff_hash_table (p))))
113
114/* Initialize fields within a funcvec hash table entry.  Called whenever
115   a new entry is added to the funcvec hash table.  */
116
117static struct bfd_hash_entry *
118funcvec_hash_newfunc (struct bfd_hash_entry *entry,
119		      struct bfd_hash_table *gen_table,
120		      const char *string)
121{
122  struct funcvec_hash_entry *ret;
123  struct funcvec_hash_table *table;
124
125  ret = (struct funcvec_hash_entry *) entry;
126  table = (struct funcvec_hash_table *) gen_table;
127
128  /* Allocate the structure if it has not already been allocated by a
129     subclass.  */
130  if (ret == NULL)
131    ret = ((struct funcvec_hash_entry *)
132	   bfd_hash_allocate (gen_table,
133			      sizeof (struct funcvec_hash_entry)));
134  if (ret == NULL)
135    return NULL;
136
137  /* Call the allocation method of the superclass.  */
138  ret = ((struct funcvec_hash_entry *)
139	 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, gen_table, string));
140
141  if (ret == NULL)
142    return NULL;
143
144  /* Note where this entry will reside in the function vector table.  */
145  ret->offset = table->offset;
146
147  /* Bump the offset at which we store entries in the function
148     vector.  We'd like to bump up the size of the vectors section,
149     but it's not easily available here.  */
150 switch (bfd_get_mach (table->abfd))
151   {
152   case bfd_mach_h8300:
153   case bfd_mach_h8300hn:
154   case bfd_mach_h8300sn:
155     table->offset += 2;
156     break;
157   case bfd_mach_h8300h:
158   case bfd_mach_h8300s:
159     table->offset += 4;
160     break;
161   default:
162     return NULL;
163   }
164
165  /* Everything went OK.  */
166  return (struct bfd_hash_entry *) ret;
167}
168
169/* Initialize the function vector hash table.  */
170
171static bfd_boolean
172funcvec_hash_table_init (struct funcvec_hash_table *table,
173			 bfd *abfd,
174			 struct bfd_hash_entry *(*newfunc)
175			   (struct bfd_hash_entry *,
176			    struct bfd_hash_table *,
177			    const char *),
178			 unsigned int entsize)
179{
180  /* Initialize our local fields, then call the generic initialization
181     routine.  */
182  table->offset = 0;
183  table->abfd = abfd;
184  return (bfd_hash_table_init (&table->root, newfunc, entsize));
185}
186
187/* Create the derived linker hash table.  We use a derived hash table
188   basically to hold "static" information during an H8/300 coff link
189   without using static variables.  */
190
191static struct bfd_link_hash_table *
192h8300_coff_link_hash_table_create (bfd *abfd)
193{
194  struct h8300_coff_link_hash_table *ret;
195  bfd_size_type amt = sizeof (struct h8300_coff_link_hash_table);
196
197  ret = (struct h8300_coff_link_hash_table *) bfd_malloc (amt);
198  if (ret == NULL)
199    return NULL;
200  if (!_bfd_link_hash_table_init (&ret->root.root, abfd,
201				  _bfd_generic_link_hash_newfunc,
202				  sizeof (struct generic_link_hash_entry)))
203    {
204      free (ret);
205      return NULL;
206    }
207
208  /* Initialize our data.  */
209  ret->vectors_sec = NULL;
210  ret->funcvec_hash_table = NULL;
211
212  /* OK.  Everything's initialized, return the base pointer.  */
213  return &ret->root.root;
214}
215
216/* Special handling for H8/300 relocs.
217   We only come here for pcrel stuff and return normally if not an -r link.
218   When doing -r, we can't do any arithmetic for the pcrel stuff, because
219   the code in reloc.c assumes that we can manipulate the targets of
220   the pcrel branches.  This isn't so, since the H8/300 can do relaxing,
221   which means that the gap after the instruction may not be enough to
222   contain the offset required for the branch, so we have to use only
223   the addend until the final link.  */
224
225static bfd_reloc_status_type
226special (bfd *abfd ATTRIBUTE_UNUSED,
227	 arelent *reloc_entry ATTRIBUTE_UNUSED,
228	 asymbol *symbol ATTRIBUTE_UNUSED,
229	 PTR data ATTRIBUTE_UNUSED,
230	 asection *input_section ATTRIBUTE_UNUSED,
231	 bfd *output_bfd,
232	 char **error_message ATTRIBUTE_UNUSED)
233{
234  if (output_bfd == (bfd *) NULL)
235    return bfd_reloc_continue;
236
237  /* Adjust the reloc address to that in the output section.  */
238  reloc_entry->address += input_section->output_offset;
239  return bfd_reloc_ok;
240}
241
242static reloc_howto_type howto_table[] = {
243  HOWTO (R_RELBYTE, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "8", FALSE, 0x000000ff, 0x000000ff, FALSE),
244  HOWTO (R_RELWORD, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "16", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
245  HOWTO (R_RELLONG, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, special, "32", FALSE, 0xffffffff, 0xffffffff, FALSE),
246  HOWTO (R_PCRBYTE, 0, 0, 8, TRUE, 0, complain_overflow_signed, special, "DISP8", FALSE, 0x000000ff, 0x000000ff, TRUE),
247  HOWTO (R_PCRWORD, 0, 1, 16, TRUE, 0, complain_overflow_signed, special, "DISP16", FALSE, 0x0000ffff, 0x0000ffff, TRUE),
248  HOWTO (R_PCRLONG, 0, 2, 32, TRUE, 0, complain_overflow_signed, special, "DISP32", FALSE, 0xffffffff, 0xffffffff, TRUE),
249  HOWTO (R_MOV16B1, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "relaxable mov.b:16", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
250  HOWTO (R_MOV16B2, 0, 1, 8, FALSE, 0, complain_overflow_bitfield, special, "relaxed mov.b:16", FALSE, 0x000000ff, 0x000000ff, FALSE),
251  HOWTO (R_JMP1, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "16/pcrel", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
252  HOWTO (R_JMP2, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "pcrecl/16", FALSE, 0x000000ff, 0x000000ff, FALSE),
253  HOWTO (R_JMPL1, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, special, "24/pcrell", FALSE, 0x00ffffff, 0x00ffffff, FALSE),
254  HOWTO (R_JMPL2, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "pc8/24", FALSE, 0x000000ff, 0x000000ff, FALSE),
255  HOWTO (R_MOV24B1, 0, 1, 32, FALSE, 0, complain_overflow_bitfield, special, "relaxable mov.b:24", FALSE, 0xffffffff, 0xffffffff, FALSE),
256  HOWTO (R_MOV24B2, 0, 1, 8, FALSE, 0, complain_overflow_bitfield, special, "relaxed mov.b:24", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
257
258  /* An indirect reference to a function.  This causes the function's address
259     to be added to the function vector in lo-mem and puts the address of
260     the function vector's entry in the jsr instruction.  */
261  HOWTO (R_MEM_INDIRECT, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "8/indirect", FALSE, 0x000000ff, 0x000000ff, FALSE),
262
263  /* Internal reloc for relaxing.  This is created when a 16-bit pc-relative
264     branch is turned into an 8-bit pc-relative branch.  */
265  HOWTO (R_PCRWORD_B, 0, 0, 8, TRUE, 0, complain_overflow_bitfield, special, "relaxed bCC:16", FALSE, 0x000000ff, 0x000000ff, FALSE),
266
267  HOWTO (R_MOVL1, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,special, "32/24 relaxable move", FALSE, 0xffffffff, 0xffffffff, FALSE),
268
269  HOWTO (R_MOVL2, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "32/24 relaxed move", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
270
271  HOWTO (R_BCC_INV, 0, 0, 8, TRUE, 0, complain_overflow_signed, special, "DISP8 inverted", FALSE, 0x000000ff, 0x000000ff, TRUE),
272
273  HOWTO (R_JMP_DEL, 0, 0, 8, TRUE, 0, complain_overflow_signed, special, "Deleted jump", FALSE, 0x000000ff, 0x000000ff, TRUE),
274};
275
276/* Turn a howto into a reloc number.  */
277
278#define SELECT_RELOC(x,howto) \
279  { x.r_type = select_reloc (howto); }
280
281#define BADMAG(x) (H8300BADMAG (x) && H8300HBADMAG (x) && H8300SBADMAG (x) \
282				   && H8300HNBADMAG(x) && H8300SNBADMAG(x))
283#define H8300 1			/* Customize coffcode.h  */
284#define __A_MAGIC_SET__
285
286/* Code to swap in the reloc.  */
287#define SWAP_IN_RELOC_OFFSET	H_GET_32
288#define SWAP_OUT_RELOC_OFFSET	H_PUT_32
289#define SWAP_OUT_RELOC_EXTRA(abfd, src, dst) \
290  dst->r_stuff[0] = 'S'; \
291  dst->r_stuff[1] = 'C';
292
293static int
294select_reloc (reloc_howto_type *howto)
295{
296  return howto->type;
297}
298
299/* Code to turn a r_type into a howto ptr, uses the above howto table.  */
300
301static void
302rtype2howto (arelent *internal, struct internal_reloc *dst)
303{
304  switch (dst->r_type)
305    {
306    case R_RELBYTE:
307      internal->howto = howto_table + 0;
308      break;
309    case R_RELWORD:
310      internal->howto = howto_table + 1;
311      break;
312    case R_RELLONG:
313      internal->howto = howto_table + 2;
314      break;
315    case R_PCRBYTE:
316      internal->howto = howto_table + 3;
317      break;
318    case R_PCRWORD:
319      internal->howto = howto_table + 4;
320      break;
321    case R_PCRLONG:
322      internal->howto = howto_table + 5;
323      break;
324    case R_MOV16B1:
325      internal->howto = howto_table + 6;
326      break;
327    case R_MOV16B2:
328      internal->howto = howto_table + 7;
329      break;
330    case R_JMP1:
331      internal->howto = howto_table + 8;
332      break;
333    case R_JMP2:
334      internal->howto = howto_table + 9;
335      break;
336    case R_JMPL1:
337      internal->howto = howto_table + 10;
338      break;
339    case R_JMPL2:
340      internal->howto = howto_table + 11;
341      break;
342    case R_MOV24B1:
343      internal->howto = howto_table + 12;
344      break;
345    case R_MOV24B2:
346      internal->howto = howto_table + 13;
347      break;
348    case R_MEM_INDIRECT:
349      internal->howto = howto_table + 14;
350      break;
351    case R_PCRWORD_B:
352      internal->howto = howto_table + 15;
353      break;
354    case R_MOVL1:
355      internal->howto = howto_table + 16;
356      break;
357    case R_MOVL2:
358      internal->howto = howto_table + 17;
359      break;
360    case R_BCC_INV:
361      internal->howto = howto_table + 18;
362      break;
363    case R_JMP_DEL:
364      internal->howto = howto_table + 19;
365      break;
366    default:
367      abort ();
368      break;
369    }
370}
371
372#define RTYPE2HOWTO(internal, relocentry) rtype2howto (internal, relocentry)
373
374/* Perform any necessary magic to the addend in a reloc entry.  */
375
376#define CALC_ADDEND(abfd, symbol, ext_reloc, cache_ptr) \
377 cache_ptr->addend = ext_reloc.r_offset;
378
379#define RELOC_PROCESSING(relent,reloc,symbols,abfd,section) \
380 reloc_processing (relent, reloc, symbols, abfd, section)
381
382static void
383reloc_processing (arelent *relent, struct internal_reloc *reloc,
384		  asymbol **symbols, bfd *abfd, asection *section)
385{
386  relent->address = reloc->r_vaddr;
387  rtype2howto (relent, reloc);
388
389  if (((int) reloc->r_symndx) > 0)
390    relent->sym_ptr_ptr = symbols + obj_convert (abfd)[reloc->r_symndx];
391  else
392    relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
393
394  relent->addend = reloc->r_offset;
395  relent->address -= section->vma;
396}
397
398static bfd_boolean
399h8300_symbol_address_p (bfd *abfd, asection *input_section, bfd_vma address)
400{
401  asymbol **s;
402
403  s = _bfd_generic_link_get_symbols (abfd);
404  BFD_ASSERT (s != (asymbol **) NULL);
405
406  /* Search all the symbols for one in INPUT_SECTION with
407     address ADDRESS.  */
408  while (*s)
409    {
410      asymbol *p = *s;
411
412      if (p->section == input_section
413	  && (input_section->output_section->vma
414	      + input_section->output_offset
415	      + p->value) == address)
416	return TRUE;
417      s++;
418    }
419  return FALSE;
420}
421
422/* If RELOC represents a relaxable instruction/reloc, change it into
423   the relaxed reloc, notify the linker that symbol addresses
424   have changed (bfd_perform_slip) and return how much the current
425   section has shrunk by.
426
427   FIXME: Much of this code has knowledge of the ordering of entries
428   in the howto table.  This needs to be fixed.  */
429
430static int
431h8300_reloc16_estimate (bfd *abfd, asection *input_section, arelent *reloc,
432			unsigned int shrink, struct bfd_link_info *link_info)
433{
434  bfd_vma value;
435  bfd_vma dot;
436  bfd_vma gap;
437  static asection *last_input_section = NULL;
438  static arelent *last_reloc = NULL;
439
440  /* The address of the thing to be relocated will have moved back by
441     the size of the shrink - but we don't change reloc->address here,
442     since we need it to know where the relocation lives in the source
443     uncooked section.  */
444  bfd_vma address = reloc->address - shrink;
445
446  if (input_section != last_input_section)
447    last_reloc = NULL;
448
449  /* Only examine the relocs which might be relaxable.  */
450  switch (reloc->howto->type)
451    {
452      /* This is the 16-/24-bit absolute branch which could become an
453	 8-bit pc-relative branch.  */
454    case R_JMP1:
455    case R_JMPL1:
456      /* Get the address of the target of this branch.  */
457      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
458
459      /* Get the address of the next instruction (not the reloc).  */
460      dot = (input_section->output_section->vma
461	     + input_section->output_offset + address);
462
463      /* Adjust for R_JMP1 vs R_JMPL1.  */
464      dot += (reloc->howto->type == R_JMP1 ? 1 : 2);
465
466      /* Compute the distance from this insn to the branch target.  */
467      gap = value - dot;
468
469      /* If the distance is within -128..+128 inclusive, then we can relax
470	 this jump.  +128 is valid since the target will move two bytes
471	 closer if we do relax this branch.  */
472      if ((int) gap >= -128 && (int) gap <= 128)
473	{
474	  bfd_byte code;
475
476	  if (!bfd_get_section_contents (abfd, input_section, & code,
477					 reloc->address, 1))
478	    break;
479	  code = bfd_get_8 (abfd, & code);
480
481	  /* It's possible we may be able to eliminate this branch entirely;
482	     if the previous instruction is a branch around this instruction,
483	     and there's no label at this instruction, then we can reverse
484	     the condition on the previous branch and eliminate this jump.
485
486	       original:			new:
487		 bCC lab1			bCC' lab2
488		 jmp lab2
489		lab1:				lab1:
490
491	     This saves 4 bytes instead of two, and should be relatively
492	     common.
493
494	     Only perform this optimisation for jumps (code 0x5a) not
495	     subroutine calls, as otherwise it could transform:
496
497			     mov.w   r0,r0
498			     beq     .L1
499			     jsr     @_bar
500		      .L1:   rts
501		      _bar:  rts
502	     into:
503			     mov.w   r0,r0
504			     bne     _bar
505			     rts
506		      _bar:  rts
507
508	     which changes the call (jsr) into a branch (bne).  */
509	  if (code == 0x5a
510	      && gap <= 126
511	      && last_reloc
512	      && last_reloc->howto->type == R_PCRBYTE)
513	    {
514	      bfd_vma last_value;
515	      last_value = bfd_coff_reloc16_get_value (last_reloc, link_info,
516						       input_section) + 1;
517
518	      if (last_value == dot + 2
519		  && last_reloc->address + 1 == reloc->address
520		  && !h8300_symbol_address_p (abfd, input_section, dot - 2))
521		{
522		  reloc->howto = howto_table + 19;
523		  last_reloc->howto = howto_table + 18;
524		  last_reloc->sym_ptr_ptr = reloc->sym_ptr_ptr;
525		  last_reloc->addend = reloc->addend;
526		  shrink += 4;
527		  bfd_perform_slip (abfd, 4, input_section, address);
528		  break;
529		}
530	    }
531
532	  /* Change the reloc type.  */
533	  reloc->howto = reloc->howto + 1;
534
535	  /* This shrinks this section by two bytes.  */
536	  shrink += 2;
537	  bfd_perform_slip (abfd, 2, input_section, address);
538	}
539      break;
540
541    /* This is the 16-bit pc-relative branch which could become an 8-bit
542       pc-relative branch.  */
543    case R_PCRWORD:
544      /* Get the address of the target of this branch, add one to the value
545	 because the addend field in PCrel jumps is off by -1.  */
546      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section) + 1;
547
548      /* Get the address of the next instruction if we were to relax.  */
549      dot = input_section->output_section->vma +
550	input_section->output_offset + address;
551
552      /* Compute the distance from this insn to the branch target.  */
553      gap = value - dot;
554
555      /* If the distance is within -128..+128 inclusive, then we can relax
556	 this jump.  +128 is valid since the target will move two bytes
557	 closer if we do relax this branch.  */
558      if ((int) gap >= -128 && (int) gap <= 128)
559	{
560	  /* Change the reloc type.  */
561	  reloc->howto = howto_table + 15;
562
563	  /* This shrinks this section by two bytes.  */
564	  shrink += 2;
565	  bfd_perform_slip (abfd, 2, input_section, address);
566	}
567      break;
568
569    /* This is a 16-bit absolute address in a mov.b insn, which can
570       become an 8-bit absolute address if it's in the right range.  */
571    case R_MOV16B1:
572      /* Get the address of the data referenced by this mov.b insn.  */
573      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
574      value = bfd_h8300_pad_address (abfd, value);
575
576      /* If the address is in the top 256 bytes of the address space
577	 then we can relax this instruction.  */
578      if (value >= 0xffffff00u)
579	{
580	  /* Change the reloc type.  */
581	  reloc->howto = reloc->howto + 1;
582
583	  /* This shrinks this section by two bytes.  */
584	  shrink += 2;
585	  bfd_perform_slip (abfd, 2, input_section, address);
586	}
587      break;
588
589    /* Similarly for a 24-bit absolute address in a mov.b.  Note that
590       if we can't relax this into an 8-bit absolute, we'll fall through
591       and try to relax it into a 16-bit absolute.  */
592    case R_MOV24B1:
593      /* Get the address of the data referenced by this mov.b insn.  */
594      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
595      value = bfd_h8300_pad_address (abfd, value);
596
597      if (value >= 0xffffff00u)
598	{
599	  /* Change the reloc type.  */
600	  reloc->howto = reloc->howto + 1;
601
602	  /* This shrinks this section by four bytes.  */
603	  shrink += 4;
604	  bfd_perform_slip (abfd, 4, input_section, address);
605
606	  /* Done with this reloc.  */
607	  break;
608	}
609
610      /* FALLTHROUGH and try to turn the 24-/32-bit reloc into a 16-bit
611	 reloc.  */
612
613    /* This is a 24-/32-bit absolute address in a mov insn, which can
614       become an 16-bit absolute address if it's in the right range.  */
615    case R_MOVL1:
616      /* Get the address of the data referenced by this mov insn.  */
617      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
618      value = bfd_h8300_pad_address (abfd, value);
619
620      /* If the address is a sign-extended 16-bit value then we can
621         relax this instruction.  */
622      if (value <= 0x7fff || value >= 0xffff8000u)
623	{
624	  /* Change the reloc type.  */
625	  reloc->howto = howto_table + 17;
626
627	  /* This shrinks this section by two bytes.  */
628	  shrink += 2;
629	  bfd_perform_slip (abfd, 2, input_section, address);
630	}
631      break;
632
633      /* No other reloc types represent relaxing opportunities.  */
634    default:
635      break;
636    }
637
638  last_reloc = reloc;
639  last_input_section = input_section;
640  return shrink;
641}
642
643/* Handle relocations for the H8/300, including relocs for relaxed
644   instructions.
645
646   FIXME: Not all relocations check for overflow!  */
647
648static void
649h8300_reloc16_extra_cases (bfd *abfd, struct bfd_link_info *link_info,
650			   struct bfd_link_order *link_order, arelent *reloc,
651			   bfd_byte *data, unsigned int *src_ptr,
652			   unsigned int *dst_ptr)
653{
654  unsigned int src_address = *src_ptr;
655  unsigned int dst_address = *dst_ptr;
656  asection *input_section = link_order->u.indirect.section;
657  bfd_vma value;
658  bfd_vma dot;
659  int gap, tmp;
660  unsigned char temp_code;
661
662  switch (reloc->howto->type)
663    {
664    /* Generic 8-bit pc-relative relocation.  */
665    case R_PCRBYTE:
666      /* Get the address of the target of this branch.  */
667      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
668
669      dot = (input_section->output_offset
670	     + dst_address
671	     + link_order->u.indirect.section->output_section->vma);
672
673      gap = value - dot;
674
675      /* Sanity check.  */
676      if (gap < -128 || gap > 126)
677	{
678	  if (! ((*link_info->callbacks->reloc_overflow)
679		 (link_info, NULL,
680		  bfd_asymbol_name (*reloc->sym_ptr_ptr),
681		  reloc->howto->name, reloc->addend, input_section->owner,
682		  input_section, reloc->address)))
683	    abort ();
684	}
685
686      /* Everything looks OK.  Apply the relocation and update the
687	 src/dst address appropriately.  */
688      bfd_put_8 (abfd, gap, data + dst_address);
689      dst_address++;
690      src_address++;
691
692      /* All done.  */
693      break;
694
695    /* Generic 16-bit pc-relative relocation.  */
696    case R_PCRWORD:
697      /* Get the address of the target of this branch.  */
698      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
699
700      /* Get the address of the instruction (not the reloc).  */
701      dot = (input_section->output_offset
702	     + dst_address
703	     + link_order->u.indirect.section->output_section->vma + 1);
704
705      gap = value - dot;
706
707      /* Sanity check.  */
708      if (gap > 32766 || gap < -32768)
709	{
710	  if (! ((*link_info->callbacks->reloc_overflow)
711		 (link_info, NULL,
712		  bfd_asymbol_name (*reloc->sym_ptr_ptr),
713		  reloc->howto->name, reloc->addend, input_section->owner,
714		  input_section, reloc->address)))
715	    abort ();
716	}
717
718      /* Everything looks OK.  Apply the relocation and update the
719	 src/dst address appropriately.  */
720      bfd_put_16 (abfd, (bfd_vma) gap, data + dst_address);
721      dst_address += 2;
722      src_address += 2;
723
724      /* All done.  */
725      break;
726
727    /* Generic 8-bit absolute relocation.  */
728    case R_RELBYTE:
729      /* Get the address of the object referenced by this insn.  */
730      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
731
732      bfd_put_8 (abfd, value & 0xff, data + dst_address);
733      dst_address += 1;
734      src_address += 1;
735
736      /* All done.  */
737      break;
738
739    /* Various simple 16-bit absolute relocations.  */
740    case R_MOV16B1:
741    case R_JMP1:
742    case R_RELWORD:
743      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
744      bfd_put_16 (abfd, value, data + dst_address);
745      dst_address += 2;
746      src_address += 2;
747      break;
748
749    /* Various simple 24-/32-bit absolute relocations.  */
750    case R_MOV24B1:
751    case R_MOVL1:
752    case R_RELLONG:
753      /* Get the address of the target of this branch.  */
754      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
755      bfd_put_32 (abfd, value, data + dst_address);
756      dst_address += 4;
757      src_address += 4;
758      break;
759
760    /* Another 24-/32-bit absolute relocation.  */
761    case R_JMPL1:
762      /* Get the address of the target of this branch.  */
763      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
764
765      value = ((value & 0x00ffffff)
766	       | (bfd_get_32 (abfd, data + src_address) & 0xff000000));
767      bfd_put_32 (abfd, value, data + dst_address);
768      dst_address += 4;
769      src_address += 4;
770      break;
771
772      /* This is a 24-/32-bit absolute address in one of the following
773	 instructions:
774
775	   "band", "bclr", "biand", "bild", "bior", "bist", "bixor",
776	   "bld", "bnot", "bor", "bset", "bst", "btst", "bxor", "ldc.w",
777	   "stc.w" and "mov.[bwl]"
778
779	 We may relax this into an 16-bit absolute address if it's in
780	 the right range.  */
781    case R_MOVL2:
782      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
783      value = bfd_h8300_pad_address (abfd, value);
784
785      /* Sanity check.  */
786      if (value <= 0x7fff || value >= 0xffff8000u)
787	{
788	  /* Insert the 16-bit value into the proper location.  */
789	  bfd_put_16 (abfd, value, data + dst_address);
790
791	  /* Fix the opcode.  For all the instructions that belong to
792	     this relaxation, we simply need to turn off bit 0x20 in
793	     the previous byte.  */
794	  data[dst_address - 1] &= ~0x20;
795	  dst_address += 2;
796	  src_address += 4;
797	}
798      else
799	{
800	  if (! ((*link_info->callbacks->reloc_overflow)
801		 (link_info, NULL,
802		  bfd_asymbol_name (*reloc->sym_ptr_ptr),
803		  reloc->howto->name, reloc->addend, input_section->owner,
804		  input_section, reloc->address)))
805	    abort ();
806	}
807      break;
808
809    /* A 16-bit absolute branch that is now an 8-bit pc-relative branch.  */
810    case R_JMP2:
811      /* Get the address of the target of this branch.  */
812      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
813
814      /* Get the address of the next instruction.  */
815      dot = (input_section->output_offset
816	     + dst_address
817	     + link_order->u.indirect.section->output_section->vma + 1);
818
819      gap = value - dot;
820
821      /* Sanity check.  */
822      if (gap < -128 || gap > 126)
823	{
824	  if (! ((*link_info->callbacks->reloc_overflow)
825		 (link_info, NULL,
826		  bfd_asymbol_name (*reloc->sym_ptr_ptr),
827		  reloc->howto->name, reloc->addend, input_section->owner,
828		  input_section, reloc->address)))
829	    abort ();
830	}
831
832      /* Now fix the instruction itself.  */
833      switch (data[dst_address - 1])
834	{
835	case 0x5e:
836	  /* jsr -> bsr */
837	  bfd_put_8 (abfd, 0x55, data + dst_address - 1);
838	  break;
839	case 0x5a:
840	  /* jmp -> bra */
841	  bfd_put_8 (abfd, 0x40, data + dst_address - 1);
842	  break;
843
844	default:
845	  abort ();
846	}
847
848      /* Write out the 8-bit value.  */
849      bfd_put_8 (abfd, gap, data + dst_address);
850
851      dst_address += 1;
852      src_address += 3;
853
854      break;
855
856    /* A 16-bit pc-relative branch that is now an 8-bit pc-relative branch.  */
857    case R_PCRWORD_B:
858      /* Get the address of the target of this branch.  */
859      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
860
861      /* Get the address of the instruction (not the reloc).  */
862      dot = (input_section->output_offset
863	     + dst_address
864	     + link_order->u.indirect.section->output_section->vma - 1);
865
866      gap = value - dot;
867
868      /* Sanity check.  */
869      if (gap < -128 || gap > 126)
870	{
871	  if (! ((*link_info->callbacks->reloc_overflow)
872		 (link_info, NULL,
873		  bfd_asymbol_name (*reloc->sym_ptr_ptr),
874		  reloc->howto->name, reloc->addend, input_section->owner,
875		  input_section, reloc->address)))
876	    abort ();
877	}
878
879      /* Now fix the instruction.  */
880      switch (data[dst_address - 2])
881	{
882	case 0x58:
883	  /* bCC:16 -> bCC:8 */
884	  /* Get the second byte of the original insn, which contains
885	     the condition code.  */
886	  tmp = data[dst_address - 1];
887
888	  /* Compute the fisrt byte of the relaxed instruction.  The
889	     original sequence 0x58 0xX0 is relaxed to 0x4X, where X
890	     represents the condition code.  */
891	  tmp &= 0xf0;
892	  tmp >>= 4;
893	  tmp |= 0x40;
894
895	  /* Write it.  */
896	  bfd_put_8 (abfd, tmp, data + dst_address - 2);
897	  break;
898
899	case 0x5c:
900	  /* bsr:16 -> bsr:8 */
901	  bfd_put_8 (abfd, 0x55, data + dst_address - 2);
902	  break;
903
904	default:
905	  abort ();
906	}
907
908      /* Output the target.  */
909      bfd_put_8 (abfd, gap, data + dst_address - 1);
910
911      /* We don't advance dst_address -- the 8-bit reloc is applied at
912	 dst_address - 1, so the next insn should begin at dst_address.  */
913      src_address += 2;
914
915      break;
916
917    /* Similarly for a 24-bit absolute that is now 8 bits.  */
918    case R_JMPL2:
919      /* Get the address of the target of this branch.  */
920      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
921
922      /* Get the address of the instruction (not the reloc).  */
923      dot = (input_section->output_offset
924	     + dst_address
925	     + link_order->u.indirect.section->output_section->vma + 2);
926
927      gap = value - dot;
928
929      /* Fix the instruction.  */
930      switch (data[src_address])
931	{
932	case 0x5e:
933	  /* jsr -> bsr */
934	  bfd_put_8 (abfd, 0x55, data + dst_address);
935	  break;
936	case 0x5a:
937	  /* jmp ->bra */
938	  bfd_put_8 (abfd, 0x40, data + dst_address);
939	  break;
940	default:
941	  abort ();
942	}
943
944      bfd_put_8 (abfd, gap, data + dst_address + 1);
945      dst_address += 2;
946      src_address += 4;
947
948      break;
949
950      /* This is a 16-bit absolute address in one of the following
951	 instructions:
952
953	   "band", "bclr", "biand", "bild", "bior", "bist", "bixor",
954	   "bld", "bnot", "bor", "bset", "bst", "btst", "bxor", and
955	   "mov.b"
956
957	 We may relax this into an 8-bit absolute address if it's in
958	 the right range.  */
959    case R_MOV16B2:
960      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
961
962      /* All instructions with R_H8_DIR16B2 start with 0x6a.  */
963      if (data[dst_address - 2] != 0x6a)
964	abort ();
965
966      temp_code = data[src_address - 1];
967
968      /* If this is a mov.b instruction, clear the lower nibble, which
969	 contains the source/destination register number.  */
970      if ((temp_code & 0x10) != 0x10)
971	temp_code &= 0xf0;
972
973      /* Fix up the opcode.  */
974      switch (temp_code)
975	{
976	case 0x00:
977	  /* This is mov.b @aa:16,Rd.  */
978	  data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x20;
979	  break;
980	case 0x80:
981	  /* This is mov.b Rs,@aa:16.  */
982	  data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x30;
983	  break;
984	case 0x18:
985	  /* This is a bit-maniputation instruction that stores one
986	     bit into memory, one of "bclr", "bist", "bnot", "bset",
987	     and "bst".  */
988	  data[dst_address - 2] = 0x7f;
989	  break;
990	case 0x10:
991	  /* This is a bit-maniputation instruction that loads one bit
992	     from memory, one of "band", "biand", "bild", "bior",
993	     "bixor", "bld", "bor", "btst", and "bxor".  */
994	  data[dst_address - 2] = 0x7e;
995	  break;
996	default:
997	  abort ();
998	}
999
1000      bfd_put_8 (abfd, value & 0xff, data + dst_address - 1);
1001      src_address += 2;
1002      break;
1003
1004      /* This is a 24-bit absolute address in one of the following
1005	 instructions:
1006
1007	   "band", "bclr", "biand", "bild", "bior", "bist", "bixor",
1008	   "bld", "bnot", "bor", "bset", "bst", "btst", "bxor", and
1009	   "mov.b"
1010
1011	 We may relax this into an 8-bit absolute address if it's in
1012	 the right range.  */
1013    case R_MOV24B2:
1014      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
1015
1016      /* All instructions with R_MOV24B2 start with 0x6a.  */
1017      if (data[dst_address - 2] != 0x6a)
1018	abort ();
1019
1020      temp_code = data[src_address - 1];
1021
1022      /* If this is a mov.b instruction, clear the lower nibble, which
1023	 contains the source/destination register number.  */
1024      if ((temp_code & 0x30) != 0x30)
1025	temp_code &= 0xf0;
1026
1027      /* Fix up the opcode.  */
1028      switch (temp_code)
1029	{
1030	case 0x20:
1031	  /* This is mov.b @aa:24/32,Rd.  */
1032	  data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x20;
1033	  break;
1034	case 0xa0:
1035	  /* This is mov.b Rs,@aa:24/32.  */
1036	  data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x30;
1037	  break;
1038	case 0x38:
1039	  /* This is a bit-maniputation instruction that stores one
1040	     bit into memory, one of "bclr", "bist", "bnot", "bset",
1041	     and "bst".  */
1042	  data[dst_address - 2] = 0x7f;
1043	  break;
1044	case 0x30:
1045	  /* This is a bit-maniputation instruction that loads one bit
1046	     from memory, one of "band", "biand", "bild", "bior",
1047	     "bixor", "bld", "bor", "btst", and "bxor".  */
1048	  data[dst_address - 2] = 0x7e;
1049	  break;
1050	default:
1051	  abort ();
1052	}
1053
1054      bfd_put_8 (abfd, value & 0xff, data + dst_address - 1);
1055      src_address += 4;
1056      break;
1057
1058    case R_BCC_INV:
1059      /* Get the address of the target of this branch.  */
1060      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
1061
1062      dot = (input_section->output_offset
1063	     + dst_address
1064	     + link_order->u.indirect.section->output_section->vma) + 1;
1065
1066      gap = value - dot;
1067
1068      /* Sanity check.  */
1069      if (gap < -128 || gap > 126)
1070	{
1071	  if (! ((*link_info->callbacks->reloc_overflow)
1072		 (link_info, NULL,
1073		  bfd_asymbol_name (*reloc->sym_ptr_ptr),
1074		  reloc->howto->name, reloc->addend, input_section->owner,
1075		  input_section, reloc->address)))
1076	    abort ();
1077	}
1078
1079      /* Everything looks OK.  Fix the condition in the instruction, apply
1080	 the relocation, and update the src/dst address appropriately.  */
1081
1082      bfd_put_8 (abfd, bfd_get_8 (abfd, data + dst_address - 1) ^ 1,
1083		 data + dst_address - 1);
1084      bfd_put_8 (abfd, gap, data + dst_address);
1085      dst_address++;
1086      src_address++;
1087
1088      /* All done.  */
1089      break;
1090
1091    case R_JMP_DEL:
1092      src_address += 4;
1093      break;
1094
1095    /* An 8-bit memory indirect instruction (jmp/jsr).
1096
1097       There's several things that need to be done to handle
1098       this relocation.
1099
1100       If this is a reloc against the absolute symbol, then
1101       we should handle it just R_RELBYTE.  Likewise if it's
1102       for a symbol with a value ge 0 and le 0xff.
1103
1104       Otherwise it's a jump/call through the function vector,
1105       and the linker is expected to set up the function vector
1106       and put the right value into the jump/call instruction.  */
1107    case R_MEM_INDIRECT:
1108      {
1109	/* We need to find the symbol so we can determine it's
1110	   address in the function vector table.  */
1111	asymbol *symbol;
1112	const char *name;
1113	struct funcvec_hash_table *ftab;
1114	struct funcvec_hash_entry *h;
1115	struct h8300_coff_link_hash_table *htab;
1116	asection *vectors_sec;
1117
1118	if (link_info->hash->creator != abfd->xvec)
1119	  {
1120	    (*_bfd_error_handler)
1121	      (_("cannot handle R_MEM_INDIRECT reloc when using %s output"),
1122	       link_info->hash->creator->name);
1123
1124	    /* What else can we do?  This function doesn't allow return
1125	       of an error, and we don't want to call abort as that
1126	       indicates an internal error.  */
1127#ifndef EXIT_FAILURE
1128#define EXIT_FAILURE 1
1129#endif
1130	    xexit (EXIT_FAILURE);
1131	  }
1132	htab = h8300_coff_hash_table (link_info);
1133	vectors_sec = htab->vectors_sec;
1134
1135	/* First see if this is a reloc against the absolute symbol
1136	   or against a symbol with a nonnegative value <= 0xff.  */
1137	symbol = *(reloc->sym_ptr_ptr);
1138	value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
1139	if (symbol == bfd_abs_section_ptr->symbol
1140	    || value <= 0xff)
1141	  {
1142	    /* This should be handled in a manner very similar to
1143	       R_RELBYTES.   If the value is in range, then just slam
1144	       the value into the right location.  Else trigger a
1145	       reloc overflow callback.  */
1146	    if (value <= 0xff)
1147	      {
1148		bfd_put_8 (abfd, value, data + dst_address);
1149		dst_address += 1;
1150		src_address += 1;
1151	      }
1152	    else
1153	      {
1154		if (! ((*link_info->callbacks->reloc_overflow)
1155		       (link_info, NULL,
1156			bfd_asymbol_name (*reloc->sym_ptr_ptr),
1157			reloc->howto->name, reloc->addend, input_section->owner,
1158			input_section, reloc->address)))
1159		  abort ();
1160	      }
1161	    break;
1162	  }
1163
1164	/* This is a jump/call through a function vector, and we're
1165	   expected to create the function vector ourselves.
1166
1167	   First look up this symbol in the linker hash table -- we need
1168	   the derived linker symbol which holds this symbol's index
1169	   in the function vector.  */
1170	name = symbol->name;
1171	if (symbol->flags & BSF_LOCAL)
1172	  {
1173	    char *new_name = bfd_malloc ((bfd_size_type) strlen (name) + 10);
1174
1175	    if (new_name == NULL)
1176	      abort ();
1177
1178	    sprintf (new_name, "%s_%08x", name, symbol->section->id);
1179	    name = new_name;
1180	  }
1181
1182	ftab = htab->funcvec_hash_table;
1183	h = funcvec_hash_lookup (ftab, name, FALSE, FALSE);
1184
1185	/* This shouldn't ever happen.  If it does that means we've got
1186	   data corruption of some kind.  Aborting seems like a reasonable
1187	   thing to do here.  */
1188	if (h == NULL || vectors_sec == NULL)
1189	  abort ();
1190
1191	/* Place the address of the function vector entry into the
1192	   reloc's address.  */
1193	bfd_put_8 (abfd,
1194		   vectors_sec->output_offset + h->offset,
1195		   data + dst_address);
1196
1197	dst_address++;
1198	src_address++;
1199
1200	/* Now create an entry in the function vector itself.  */
1201	switch (bfd_get_mach (input_section->owner))
1202	  {
1203	  case bfd_mach_h8300:
1204	  case bfd_mach_h8300hn:
1205	  case bfd_mach_h8300sn:
1206	    bfd_put_16 (abfd,
1207			bfd_coff_reloc16_get_value (reloc,
1208						    link_info,
1209						    input_section),
1210			vectors_sec->contents + h->offset);
1211	    break;
1212	  case bfd_mach_h8300h:
1213	  case bfd_mach_h8300s:
1214	    bfd_put_32 (abfd,
1215			bfd_coff_reloc16_get_value (reloc,
1216						    link_info,
1217						    input_section),
1218			vectors_sec->contents + h->offset);
1219	    break;
1220	  default:
1221	    abort ();
1222	  }
1223
1224	/* Gross.  We've already written the contents of the vector section
1225	   before we get here...  So we write it again with the new data.  */
1226	bfd_set_section_contents (vectors_sec->output_section->owner,
1227				  vectors_sec->output_section,
1228				  vectors_sec->contents,
1229				  (file_ptr) vectors_sec->output_offset,
1230				  vectors_sec->size);
1231	break;
1232      }
1233
1234    default:
1235      abort ();
1236      break;
1237
1238    }
1239
1240  *src_ptr = src_address;
1241  *dst_ptr = dst_address;
1242}
1243
1244/* Routine for the h8300 linker.
1245
1246   This routine is necessary to handle the special R_MEM_INDIRECT
1247   relocs on the h8300.  It's responsible for generating a vectors
1248   section and attaching it to an input bfd as well as sizing
1249   the vectors section.  It also creates our vectors hash table.
1250
1251   It uses the generic linker routines to actually add the symbols.
1252   from this BFD to the bfd linker hash table.  It may add a few
1253   selected static symbols to the bfd linker hash table.  */
1254
1255static bfd_boolean
1256h8300_bfd_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
1257{
1258  asection *sec;
1259  struct funcvec_hash_table *funcvec_hash_table;
1260  bfd_size_type amt;
1261  struct h8300_coff_link_hash_table *htab;
1262
1263  /* Add the symbols using the generic code.  */
1264  _bfd_generic_link_add_symbols (abfd, info);
1265
1266  if (info->hash->creator != abfd->xvec)
1267    return TRUE;
1268
1269  htab = h8300_coff_hash_table (info);
1270
1271  /* If we haven't created a vectors section, do so now.  */
1272  if (!htab->vectors_sec)
1273    {
1274      flagword flags;
1275
1276      /* Make sure the appropriate flags are set, including SEC_IN_MEMORY.  */
1277      flags = (SEC_ALLOC | SEC_LOAD
1278	       | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_READONLY);
1279      htab->vectors_sec = bfd_make_section_with_flags (abfd, ".vectors",
1280						       flags);
1281
1282      /* If the section wasn't created, or we couldn't set the flags,
1283	 quit quickly now, rather than dying a painful death later.  */
1284      if (!htab->vectors_sec)
1285	return FALSE;
1286
1287      /* Also create the vector hash table.  */
1288      amt = sizeof (struct funcvec_hash_table);
1289      funcvec_hash_table = (struct funcvec_hash_table *) bfd_alloc (abfd, amt);
1290
1291      if (!funcvec_hash_table)
1292	return FALSE;
1293
1294      /* And initialize the funcvec hash table.  */
1295      if (!funcvec_hash_table_init (funcvec_hash_table, abfd,
1296				    funcvec_hash_newfunc,
1297				    sizeof (struct funcvec_hash_entry)))
1298	{
1299	  bfd_release (abfd, funcvec_hash_table);
1300	  return FALSE;
1301	}
1302
1303      /* Store away a pointer to the funcvec hash table.  */
1304      htab->funcvec_hash_table = funcvec_hash_table;
1305    }
1306
1307  /* Load up the function vector hash table.  */
1308  funcvec_hash_table = htab->funcvec_hash_table;
1309
1310  /* Now scan the relocs for all the sections in this bfd; create
1311     additional space in the .vectors section as needed.  */
1312  for (sec = abfd->sections; sec; sec = sec->next)
1313    {
1314      long reloc_size, reloc_count, i;
1315      asymbol **symbols;
1316      arelent **relocs;
1317
1318      /* Suck in the relocs, symbols & canonicalize them.  */
1319      reloc_size = bfd_get_reloc_upper_bound (abfd, sec);
1320      if (reloc_size <= 0)
1321	continue;
1322
1323      relocs = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
1324      if (!relocs)
1325	return FALSE;
1326
1327      /* The symbols should have been read in by _bfd_generic link_add_symbols
1328	 call abovec, so we can cheat and use the pointer to them that was
1329	 saved in the above call.  */
1330      symbols = _bfd_generic_link_get_symbols(abfd);
1331      reloc_count = bfd_canonicalize_reloc (abfd, sec, relocs, symbols);
1332      if (reloc_count <= 0)
1333	{
1334	  free (relocs);
1335	  continue;
1336	}
1337
1338      /* Now walk through all the relocations in this section.  */
1339      for (i = 0; i < reloc_count; i++)
1340	{
1341	  arelent *reloc = relocs[i];
1342	  asymbol *symbol = *(reloc->sym_ptr_ptr);
1343	  const char *name;
1344
1345	  /* We've got an indirect reloc.  See if we need to add it
1346	     to the function vector table.   At this point, we have
1347	     to add a new entry for each unique symbol referenced
1348	     by an R_MEM_INDIRECT relocation except for a reloc
1349	     against the absolute section symbol.  */
1350	  if (reloc->howto->type == R_MEM_INDIRECT
1351	      && symbol != bfd_abs_section_ptr->symbol)
1352
1353	    {
1354	      struct funcvec_hash_table *ftab;
1355	      struct funcvec_hash_entry *h;
1356
1357	      name = symbol->name;
1358	      if (symbol->flags & BSF_LOCAL)
1359		{
1360		  char *new_name;
1361
1362		  new_name = bfd_malloc ((bfd_size_type) strlen (name) + 10);
1363		  if (new_name == NULL)
1364		    abort ();
1365
1366		  sprintf (new_name, "%s_%08x", name, symbol->section->id);
1367		  name = new_name;
1368		}
1369
1370	      /* Look this symbol up in the function vector hash table.  */
1371	      ftab = htab->funcvec_hash_table;
1372	      h = funcvec_hash_lookup (ftab, name, FALSE, FALSE);
1373
1374	      /* If this symbol isn't already in the hash table, add
1375		 it and bump up the size of the hash table.  */
1376	      if (h == NULL)
1377		{
1378		  h = funcvec_hash_lookup (ftab, name, TRUE, TRUE);
1379		  if (h == NULL)
1380		    {
1381		      free (relocs);
1382		      return FALSE;
1383		    }
1384
1385		  /* Bump the size of the vectors section.  Each vector
1386		     takes 2 bytes on the h8300 and 4 bytes on the h8300h.  */
1387		  switch (bfd_get_mach (abfd))
1388		    {
1389		    case bfd_mach_h8300:
1390		    case bfd_mach_h8300hn:
1391		    case bfd_mach_h8300sn:
1392		      htab->vectors_sec->size += 2;
1393		      break;
1394		    case bfd_mach_h8300h:
1395		    case bfd_mach_h8300s:
1396		      htab->vectors_sec->size += 4;
1397		      break;
1398		    default:
1399		      abort ();
1400		    }
1401		}
1402	    }
1403	}
1404
1405      /* We're done with the relocations, release them.  */
1406      free (relocs);
1407    }
1408
1409  /* Now actually allocate some space for the function vector.  It's
1410     wasteful to do this more than once, but this is easier.  */
1411  sec = htab->vectors_sec;
1412  if (sec->size != 0)
1413    {
1414      /* Free the old contents.  */
1415      if (sec->contents)
1416	free (sec->contents);
1417
1418      /* Allocate new contents.  */
1419      sec->contents = bfd_malloc (sec->size);
1420    }
1421
1422  return TRUE;
1423}
1424
1425#define coff_reloc16_extra_cases h8300_reloc16_extra_cases
1426#define coff_reloc16_estimate h8300_reloc16_estimate
1427#define coff_bfd_link_add_symbols h8300_bfd_link_add_symbols
1428#define coff_bfd_link_hash_table_create h8300_coff_link_hash_table_create
1429
1430#define COFF_LONG_FILENAMES
1431#include "coffcode.h"
1432
1433#undef coff_bfd_get_relocated_section_contents
1434#undef coff_bfd_relax_section
1435#define coff_bfd_get_relocated_section_contents \
1436  bfd_coff_reloc16_get_relocated_section_contents
1437#define coff_bfd_relax_section bfd_coff_reloc16_relax_section
1438
1439CREATE_BIG_COFF_TARGET_VEC (h8300coff_vec, "coff-h8300", BFD_IS_RELAXABLE, 0, '_', NULL, COFF_SWAP_TABLE)
1440