1/****************************************************************
2
3The author of this software is David M. Gay.
4
5Copyright (C) 1998-2000 by Lucent Technologies
6All Rights Reserved
7
8Permission to use, copy, modify, and distribute this software and
9its documentation for any purpose and without fee is hereby
10granted, provided that the above copyright notice appear in all
11copies and that both that the copyright notice and this
12permission notice and warranty disclaimer appear in supporting
13documentation, and that the name of Lucent or any of its entities
14not be used in advertising or publicity pertaining to
15distribution of the software without specific, written prior
16permission.
17
18LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
19INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.
20IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY
21SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
22WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
23IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
24ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
25THIS SOFTWARE.
26
27****************************************************************/
28
29/* This is a variation on dtoa.c that converts arbitary binary
30   floating-point formats to and from decimal notation.  It uses
31   double-precision arithmetic internally, so there are still
32   various #ifdefs that adapt the calculations to the native
33   double-precision arithmetic (any of IEEE, VAX D_floating,
34   or IBM mainframe arithmetic).
35
36   Please send bug reports to David M. Gay (dmg at acm dot org,
37   with " at " changed at "@" and " dot " changed to ".").
38 */
39
40/* On a machine with IEEE extended-precision registers, it is
41 * necessary to specify double-precision (53-bit) rounding precision
42 * before invoking strtod or dtoa.  If the machine uses (the equivalent
43 * of) Intel 80x87 arithmetic, the call
44 *	_control87(PC_53, MCW_PC);
45 * does this with many compilers.  Whether this or another call is
46 * appropriate depends on the compiler; for this to work, it may be
47 * necessary to #include "float.h" or another system-dependent header
48 * file.
49 */
50
51/* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
52 *
53 * This strtod returns a nearest machine number to the input decimal
54 * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are
55 * broken by the IEEE round-even rule.  Otherwise ties are broken by
56 * biased rounding (add half and chop).
57 *
58 * Inspired loosely by William D. Clinger's paper "How to Read Floating
59 * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 112-126].
60 *
61 * Modifications:
62 *
63 *	1. We only require IEEE, IBM, or VAX double-precision
64 *		arithmetic (not IEEE double-extended).
65 *	2. We get by with floating-point arithmetic in a case that
66 *		Clinger missed -- when we're computing d * 10^n
67 *		for a small integer d and the integer n is not too
68 *		much larger than 22 (the maximum integer k for which
69 *		we can represent 10^k exactly), we may be able to
70 *		compute (d*10^k) * 10^(e-k) with just one roundoff.
71 *	3. Rather than a bit-at-a-time adjustment of the binary
72 *		result in the hard case, we use floating-point
73 *		arithmetic to determine the adjustment to within
74 *		one bit; only in really hard cases do we need to
75 *		compute a second residual.
76 *	4. Because of 3., we don't need a large table of powers of 10
77 *		for ten-to-e (just some small tables, e.g. of 10^k
78 *		for 0 <= k <= 22).
79 */
80
81/*
82 * #define IEEE_8087 for IEEE-arithmetic machines where the least
83 *	significant byte has the lowest address.
84 * #define IEEE_MC68k for IEEE-arithmetic machines where the most
85 *	significant byte has the lowest address.
86 * #define Long int on machines with 32-bit ints and 64-bit longs.
87 * #define Sudden_Underflow for IEEE-format machines without gradual
88 *	underflow (i.e., that flush to zero on underflow).
89 * #define IBM for IBM mainframe-style floating-point arithmetic.
90 * #define VAX for VAX-style floating-point arithmetic (D_floating).
91 * #define No_leftright to omit left-right logic in fast floating-point
92 *	computation of dtoa.
93 * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3.
94 * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
95 *	that use extended-precision instructions to compute rounded
96 *	products and quotients) with IBM.
97 * #define ROUND_BIASED for IEEE-format with biased rounding.
98 * #define Inaccurate_Divide for IEEE-format with correctly rounded
99 *	products but inaccurate quotients, e.g., for Intel i860.
100 * #define NO_LONG_LONG on machines that do not have a "long long"
101 *	integer type (of >= 64 bits).  On such machines, you can
102 *	#define Just_16 to store 16 bits per 32-bit Long when doing
103 *	high-precision integer arithmetic.  Whether this speeds things
104 *	up or slows things down depends on the machine and the number
105 *	being converted.  If long long is available and the name is
106 *	something other than "long long", #define Llong to be the name,
107 *	and if "unsigned Llong" does not work as an unsigned version of
108 *	Llong, #define #ULLong to be the corresponding unsigned type.
109 * #define KR_headers for old-style C function headers.
110 * #define Bad_float_h if your system lacks a float.h or if it does not
111 *	define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
112 *	FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
113 * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
114 *	if memory is available and otherwise does something you deem
115 *	appropriate.  If MALLOC is undefined, malloc will be invoked
116 *	directly -- and assumed always to succeed.  Similarly, if you
117 *	want something other than the system's free() to be called to
118 *	recycle memory acquired from MALLOC, #define FREE to be the
119 *	name of the alternate routine.  (FREE or free is only called in
120 *	pathological cases, e.g., in a gdtoa call after a gdtoa return in
121 *	mode 3 with thousands of digits requested.)
122 * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
123 *	memory allocations from a private pool of memory when possible.
124 *	When used, the private pool is PRIVATE_MEM bytes long:  2304 bytes,
125 *	unless #defined to be a different length.  This default length
126 *	suffices to get rid of MALLOC calls except for unusual cases,
127 *	such as decimal-to-binary conversion of a very long string of
128 *	digits.  When converting IEEE double precision values, the
129 *	longest string gdtoa can return is about 751 bytes long.  For
130 *	conversions by strtod of strings of 800 digits and all gdtoa
131 *	conversions of IEEE doubles in single-threaded executions with
132 *	8-byte pointers, PRIVATE_MEM >= 7400 appears to suffice; with
133 *	4-byte pointers, PRIVATE_MEM >= 7112 appears adequate.
134 * #define NO_INFNAN_CHECK if you do not wish to have INFNAN_CHECK
135 *	#defined automatically on IEEE systems.  On such systems,
136 *	when INFNAN_CHECK is #defined, strtod checks
137 *	for Infinity and NaN (case insensitively).
138 *	When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined,
139 *	strtodg also accepts (case insensitively) strings of the form
140 *	NaN(x), where x is a string of hexadecimal digits (optionally
141 *	preceded by 0x or 0X) and spaces; if there is only one string
142 *	of hexadecimal digits, it is taken for the fraction bits of the
143 *	resulting NaN; if there are two or more strings of hexadecimal
144 *	digits, each string is assigned to the next available sequence
145 *	of 32-bit words of fractions bits (starting with the most
146 *	significant), right-aligned in each sequence.
147 *	Unless GDTOA_NON_PEDANTIC_NANCHECK is #defined, input "NaN(...)"
148 *	is consumed even when ... has the wrong form (in which case the
149 *	"(...)" is consumed but ignored).
150 * #define MULTIPLE_THREADS if the system offers preemptively scheduled
151 *	multiple threads.  In this case, you must provide (or suitably
152 *	#define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed
153 *	by FREE_DTOA_LOCK(n) for n = 0 or 1.  (The second lock, accessed
154 *	in pow5mult, ensures lazy evaluation of only one copy of high
155 *	powers of 5; omitting this lock would introduce a small
156 *	probability of wasting memory, but would otherwise be harmless.)
157 *	You must also invoke freedtoa(s) to free the value s returned by
158 *	dtoa.  You may do so whether or not MULTIPLE_THREADS is #defined.
159 * #define IMPRECISE_INEXACT if you do not care about the setting of
160 *	the STRTOG_Inexact bits in the special case of doing IEEE double
161 *	precision conversions (which could also be done by the strtod in
162 *	dtoa.c).
163 * #define NO_HEX_FP to disable recognition of C9x's hexadecimal
164 *	floating-point constants.
165 * #define -DNO_ERRNO to suppress setting errno (in strtod.c and
166 *	strtodg.c).
167 * #define NO_STRING_H to use private versions of memcpy.
168 *	On some K&R systems, it may also be necessary to
169 *	#define DECLARE_SIZE_T in this case.
170 * #define USE_LOCALE to use the current locale's decimal_point value.
171 */
172
173#ifndef GDTOAIMP_H_INCLUDED
174#define GDTOAIMP_H_INCLUDED
175/*
176 * Paranoia: Protect exported symbols, including ones in files we don't
177 * compile right now.  The standard strtof and strtod survive.
178 */
179#define	dtoa		__dtoa
180#define	gdtoa		__gdtoa
181#define	freedtoa	__freedtoa
182#define	strtodg		__strtodg
183#define	g_ddfmt		__g_ddfmt
184#define	g_dfmt		__g_dfmt
185#define	g_ffmt		__g_ffmt
186#define	g_Qfmt		__g_Qfmt
187#define	g_xfmt		__g_xfmt
188#define	g_xLfmt		__g_xLfmt
189#define	strtoId		__strtoId
190#define	strtoIdd	__strtoIdd
191#define	strtoIf		__strtoIf
192#define	strtoIQ		__strtoIQ
193#define	strtoIx		__strtoIx
194#define	strtoIxL	__strtoIxL
195#define	strtord		__strtord
196#define	strtordd	__strtordd
197#define	strtorf		__strtorf
198#define	strtorQ		__strtorQ
199#define	strtorx		__strtorx
200#define	strtorxL	__strtorxL
201#define	strtodI		__strtodI
202#define	strtopd		__strtopd
203#define	strtopdd	__strtopdd
204#define	strtopf		__strtopf
205#define	strtopQ		__strtopQ
206#define	strtopx		__strtopx
207#define	strtopxL	__strtopxL
208
209/* Protect gdtoa-internal symbols */
210#define	Balloc		__Balloc_D2A
211#define	Bfree		__Bfree_D2A
212#define	ULtoQ		__ULtoQ_D2A
213#define	ULtof		__ULtof_D2A
214#define	ULtod		__ULtod_D2A
215#define	ULtodd		__ULtodd_D2A
216#define	ULtox		__ULtox_D2A
217#define	ULtoxL		__ULtoxL_D2A
218#define	any_on		__any_on_D2A
219#define	b2d		__b2d_D2A
220#define	bigtens		__bigtens_D2A
221#define	cmp		__cmp_D2A
222#define	copybits	__copybits_D2A
223#define	d2b		__d2b_D2A
224#define	decrement	__decrement_D2A
225#define	diff		__diff_D2A
226#define	dtoa_result	__dtoa_result_D2A
227#define	g__fmt		__g__fmt_D2A
228#define	gethex		__gethex_D2A
229#define	hexdig		__hexdig_D2A
230#define	hexdig_init_D2A	__hexdig_init_D2A
231#define	hexnan		__hexnan_D2A
232#define	hi0bits		__hi0bits_D2A
233#define	hi0bits_D2A	__hi0bits_D2A
234#define	i2b		__i2b_D2A
235#define	increment	__increment_D2A
236#define	lo0bits		__lo0bits_D2A
237#define	lshift		__lshift_D2A
238#define	match		__match_D2A
239#define	mult		__mult_D2A
240#define	multadd		__multadd_D2A
241#define	nrv_alloc	__nrv_alloc_D2A
242#define	pow5mult	__pow5mult_D2A
243#define	quorem		__quorem_D2A
244#define	ratio		__ratio_D2A
245#define	rshift		__rshift_D2A
246#define	rv_alloc	__rv_alloc_D2A
247#define	s2b		__s2b_D2A
248#define	set_ones	__set_ones_D2A
249#define	strcp		__strcp_D2A
250#define	strcp_D2A      	__strcp_D2A
251#define	strtoIg		__strtoIg_D2A
252#define	sum		__sum_D2A
253#define	tens		__tens_D2A
254#define	tinytens	__tinytens_D2A
255#define	tinytens	__tinytens_D2A
256#define	trailz		__trailz_D2A
257#define	ulp		__ulp_D2A
258
259#include <xlocale.h>
260#include "gdtoa.h"
261#include "gd_qnan.h"
262#ifdef Honor_FLT_ROUNDS
263#include <fenv.h>
264#endif
265
266#ifdef DEBUG
267#include "stdio.h"
268#define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
269#endif
270
271#include "limits.h"
272#include "stdlib.h"
273#include "string.h"
274#include "libc_private.h"
275#include "spinlock.h"
276
277#ifdef KR_headers
278#define Char char
279#else
280#define Char void
281#endif
282
283#ifdef MALLOC
284extern Char *MALLOC ANSI((size_t));
285#else
286#define MALLOC malloc
287#endif
288
289#define INFNAN_CHECK
290#define USE_LOCALE
291#define NO_LOCALE_CACHE
292
293#undef IEEE_Arith
294#undef Avoid_Underflow
295#ifdef IEEE_MC68k
296#define IEEE_Arith
297#endif
298#ifdef IEEE_8087
299#define IEEE_Arith
300#endif
301
302#include "errno.h"
303#ifdef Bad_float_h
304
305#ifdef IEEE_Arith
306#define DBL_DIG 15
307#define DBL_MAX_10_EXP 308
308#define DBL_MAX_EXP 1024
309#define FLT_RADIX 2
310#define DBL_MAX 1.7976931348623157e+308
311#endif
312
313#ifdef IBM
314#define DBL_DIG 16
315#define DBL_MAX_10_EXP 75
316#define DBL_MAX_EXP 63
317#define FLT_RADIX 16
318#define DBL_MAX 7.2370055773322621e+75
319#endif
320
321#ifdef VAX
322#define DBL_DIG 16
323#define DBL_MAX_10_EXP 38
324#define DBL_MAX_EXP 127
325#define FLT_RADIX 2
326#define DBL_MAX 1.7014118346046923e+38
327#define n_bigtens 2
328#endif
329
330#ifndef LONG_MAX
331#define LONG_MAX 2147483647
332#endif
333
334#else /* ifndef Bad_float_h */
335#include "float.h"
336#endif /* Bad_float_h */
337
338#ifdef IEEE_Arith
339#define Scale_Bit 0x10
340#define n_bigtens 5
341#endif
342
343#ifdef IBM
344#define n_bigtens 3
345#endif
346
347#ifdef VAX
348#define n_bigtens 2
349#endif
350
351#ifndef __MATH_H__
352#include "math.h"
353#endif
354
355#ifdef __cplusplus
356extern "C" {
357#endif
358
359#if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1
360Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined.
361#endif
362
363typedef union { double d; ULong L[2]; } U;
364
365#ifdef IEEE_8087
366#define word0(x) (x)->L[1]
367#define word1(x) (x)->L[0]
368#else
369#define word0(x) (x)->L[0]
370#define word1(x) (x)->L[1]
371#endif
372#define dval(x) (x)->d
373
374/* The following definition of Storeinc is appropriate for MIPS processors.
375 * An alternative that might be better on some machines is
376 * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
377 */
378#if defined(IEEE_8087) + defined(VAX)
379#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \
380((unsigned short *)a)[0] = (unsigned short)c, a++)
381#else
382#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \
383((unsigned short *)a)[1] = (unsigned short)c, a++)
384#endif
385
386/* #define P DBL_MANT_DIG */
387/* Ten_pmax = floor(P*log(2)/log(5)) */
388/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
389/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
390/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
391
392#ifdef IEEE_Arith
393#define Exp_shift  20
394#define Exp_shift1 20
395#define Exp_msk1    0x100000
396#define Exp_msk11   0x100000
397#define Exp_mask  0x7ff00000
398#define P 53
399#define Bias 1023
400#define Emin (-1022)
401#define Exp_1  0x3ff00000
402#define Exp_11 0x3ff00000
403#define Ebits 11
404#define Frac_mask  0xfffff
405#define Frac_mask1 0xfffff
406#define Ten_pmax 22
407#define Bletch 0x10
408#define Bndry_mask  0xfffff
409#define Bndry_mask1 0xfffff
410#define LSB 1
411#define Sign_bit 0x80000000
412#define Log2P 1
413#define Tiny0 0
414#define Tiny1 1
415#define Quick_max 14
416#define Int_max 14
417
418#ifndef Flt_Rounds
419#ifdef FLT_ROUNDS
420#define Flt_Rounds FLT_ROUNDS
421#else
422#define Flt_Rounds 1
423#endif
424#endif /*Flt_Rounds*/
425
426#else /* ifndef IEEE_Arith */
427#undef  Sudden_Underflow
428#define Sudden_Underflow
429#ifdef IBM
430#undef Flt_Rounds
431#define Flt_Rounds 0
432#define Exp_shift  24
433#define Exp_shift1 24
434#define Exp_msk1   0x1000000
435#define Exp_msk11  0x1000000
436#define Exp_mask  0x7f000000
437#define P 14
438#define Bias 65
439#define Exp_1  0x41000000
440#define Exp_11 0x41000000
441#define Ebits 8	/* exponent has 7 bits, but 8 is the right value in b2d */
442#define Frac_mask  0xffffff
443#define Frac_mask1 0xffffff
444#define Bletch 4
445#define Ten_pmax 22
446#define Bndry_mask  0xefffff
447#define Bndry_mask1 0xffffff
448#define LSB 1
449#define Sign_bit 0x80000000
450#define Log2P 4
451#define Tiny0 0x100000
452#define Tiny1 0
453#define Quick_max 14
454#define Int_max 15
455#else /* VAX */
456#undef Flt_Rounds
457#define Flt_Rounds 1
458#define Exp_shift  23
459#define Exp_shift1 7
460#define Exp_msk1    0x80
461#define Exp_msk11   0x800000
462#define Exp_mask  0x7f80
463#define P 56
464#define Bias 129
465#define Exp_1  0x40800000
466#define Exp_11 0x4080
467#define Ebits 8
468#define Frac_mask  0x7fffff
469#define Frac_mask1 0xffff007f
470#define Ten_pmax 24
471#define Bletch 2
472#define Bndry_mask  0xffff007f
473#define Bndry_mask1 0xffff007f
474#define LSB 0x10000
475#define Sign_bit 0x8000
476#define Log2P 1
477#define Tiny0 0x80
478#define Tiny1 0
479#define Quick_max 15
480#define Int_max 15
481#endif /* IBM, VAX */
482#endif /* IEEE_Arith */
483
484#ifndef IEEE_Arith
485#define ROUND_BIASED
486#endif
487
488#ifdef RND_PRODQUOT
489#define rounded_product(a,b) a = rnd_prod(a, b)
490#define rounded_quotient(a,b) a = rnd_quot(a, b)
491#ifdef KR_headers
492extern double rnd_prod(), rnd_quot();
493#else
494extern double rnd_prod(double, double), rnd_quot(double, double);
495#endif
496#else
497#define rounded_product(a,b) a *= b
498#define rounded_quotient(a,b) a /= b
499#endif
500
501#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
502#define Big1 0xffffffff
503
504#undef  Pack_16
505#ifndef Pack_32
506#define Pack_32
507#endif
508
509#ifdef NO_LONG_LONG
510#undef ULLong
511#ifdef Just_16
512#undef Pack_32
513#define Pack_16
514/* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
515 * This makes some inner loops simpler and sometimes saves work
516 * during multiplications, but it often seems to make things slightly
517 * slower.  Hence the default is now to store 32 bits per Long.
518 */
519#endif
520#else	/* long long available */
521#ifndef Llong
522#define Llong long long
523#endif
524#ifndef ULLong
525#define ULLong unsigned Llong
526#endif
527#endif /* NO_LONG_LONG */
528
529#ifdef Pack_32
530#define ULbits 32
531#define kshift 5
532#define kmask 31
533#define ALL_ON 0xffffffff
534#else
535#define ULbits 16
536#define kshift 4
537#define kmask 15
538#define ALL_ON 0xffff
539#endif
540
541#define MULTIPLE_THREADS
542extern spinlock_t __gdtoa_locks[2];
543#define ACQUIRE_DTOA_LOCK(n)	do {				\
544	if (__isthreaded) _SPINLOCK(&__gdtoa_locks[n]);		\
545} while(0)
546#define FREE_DTOA_LOCK(n)	do {				\
547	if (__isthreaded) _SPINUNLOCK(&__gdtoa_locks[n]);	\
548} while(0)
549
550#define Kmax 9
551
552 struct
553Bigint {
554	struct Bigint *next;
555	int k, maxwds, sign, wds;
556	ULong x[1];
557	};
558
559 typedef struct Bigint Bigint;
560
561#ifdef NO_STRING_H
562#ifdef DECLARE_SIZE_T
563typedef unsigned int size_t;
564#endif
565extern void memcpy_D2A ANSI((void*, const void*, size_t));
566#define Bcopy(x,y) memcpy_D2A(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int))
567#else /* !NO_STRING_H */
568#define Bcopy(x,y) memcpy(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int))
569#endif /* NO_STRING_H */
570
571 extern char *dtoa_result;
572 extern CONST double bigtens[], tens[], tinytens[];
573 extern CONST unsigned char hexdig[];
574
575 extern Bigint *Balloc ANSI((int));
576 extern void Bfree ANSI((Bigint*));
577 extern void ULtof ANSI((ULong*, ULong*, Long, int));
578 extern void ULtod ANSI((ULong*, ULong*, Long, int));
579 extern void ULtodd ANSI((ULong*, ULong*, Long, int));
580 extern void ULtoQ ANSI((ULong*, ULong*, Long, int));
581 extern void ULtox ANSI((UShort*, ULong*, Long, int));
582 extern void ULtoxL ANSI((ULong*, ULong*, Long, int));
583 extern ULong any_on ANSI((Bigint*, int));
584 extern double b2d ANSI((Bigint*, int*));
585 extern int cmp ANSI((Bigint*, Bigint*));
586 extern void copybits ANSI((ULong*, int, Bigint*));
587 extern Bigint *d2b ANSI((double, int*, int*));
588 extern void decrement ANSI((Bigint*));
589 extern Bigint *diff ANSI((Bigint*, Bigint*));
590 extern char *dtoa ANSI((double d, int mode, int ndigits,
591			int *decpt, int *sign, char **rve));
592 extern char *g__fmt ANSI((char*, char*, char*, int, ULong, size_t));
593 extern int gethex ANSI((CONST char**, CONST FPI*, Long*, Bigint**, int, locale_t));
594 extern void hexdig_init_D2A(Void);
595 extern int hexnan ANSI((CONST char**, CONST FPI*, ULong*));
596 extern int hi0bits_D2A ANSI((ULong));
597 extern Bigint *i2b ANSI((int));
598 extern Bigint *increment ANSI((Bigint*));
599 extern int lo0bits ANSI((ULong*));
600 extern Bigint *lshift ANSI((Bigint*, int));
601 extern int match ANSI((CONST char**, char*));
602 extern Bigint *mult ANSI((Bigint*, Bigint*));
603 extern Bigint *multadd ANSI((Bigint*, int, int));
604 extern char *nrv_alloc ANSI((char*, char **, int));
605 extern Bigint *pow5mult ANSI((Bigint*, int));
606 extern int quorem ANSI((Bigint*, Bigint*));
607 extern double ratio ANSI((Bigint*, Bigint*));
608 extern void rshift ANSI((Bigint*, int));
609 extern char *rv_alloc ANSI((int));
610 extern Bigint *s2b ANSI((CONST char*, int, int, ULong, int));
611 extern Bigint *set_ones ANSI((Bigint*, int));
612 extern char *strcp ANSI((char*, const char*));
613 extern int strtoIg ANSI((CONST char*, char**, FPI*, Long*, Bigint**, int*));
614 extern double strtod ANSI((const char *s00, char **se));
615 extern double strtod_l ANSI((const char *s00, char **se, locale_t));
616 extern Bigint *sum ANSI((Bigint*, Bigint*));
617 extern int trailz ANSI((Bigint*));
618 extern double ulp ANSI((U*));
619
620#ifdef __cplusplus
621}
622#endif
623/*
624 * NAN_WORD0 and NAN_WORD1 are only referenced in strtod.c.  Prior to
625 * 20050115, they used to be hard-wired here (to 0x7ff80000 and 0,
626 * respectively), but now are determined by compiling and running
627 * qnan.c to generate gd_qnan.h, which specifies d_QNAN0 and d_QNAN1.
628 * Formerly gdtoaimp.h recommended supplying suitable -DNAN_WORD0=...
629 * and -DNAN_WORD1=...  values if necessary.  This should still work.
630 * (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
631 */
632#ifdef IEEE_Arith
633#ifndef NO_INFNAN_CHECK
634#undef INFNAN_CHECK
635#define INFNAN_CHECK
636#endif
637#ifdef IEEE_MC68k
638#define _0 0
639#define _1 1
640#ifndef NAN_WORD0
641#define NAN_WORD0 d_QNAN0
642#endif
643#ifndef NAN_WORD1
644#define NAN_WORD1 d_QNAN1
645#endif
646#else
647#define _0 1
648#define _1 0
649#ifndef NAN_WORD0
650#define NAN_WORD0 d_QNAN1
651#endif
652#ifndef NAN_WORD1
653#define NAN_WORD1 d_QNAN0
654#endif
655#endif
656#else
657#undef INFNAN_CHECK
658#endif
659
660#undef SI
661#ifdef Sudden_Underflow
662#define SI 1
663#else
664#define SI 0
665#endif
666
667/*
668 * For very large strings, strtod and family might exhaust memory in tight
669 * memory conditions (especially in 32-bits).  Such large strings could also
670 * tie up a CPU for minutes at a time.  Either can be considered a denial-of-
671 * service vunerability.
672 *
673 * To fix, we limit the string size to the maximum we need to calculate the
674 * rounding point correctly.  The longest string corresponding to the exact
675 * value of a floating point number occuring at 1.f...f p^-n, where n is
676 * the (absolute value of the) smallest exponent for a normalize number.
677 *
678 * To calculate this number of decimal digits, we use the formula:
679 *
680 * (n + m) - int(n * log10(2)) + 3
681 *
682 * where m is the number of bits in the f...f fraction.  This is the number
683 * of decimal digits for the least significant bit minus the number of leading
684 * zeros for the most significant bit (the '1'), plus a few to compensate for
685 * an extra digits due to the full 1.f...f value, an extra digit for the
686 * mid-way point for rounding and an extra guard digit.
687 *
688 * Using the approximation log10(2) ~ 1233 / (2^12), converting to the fpi.emin
689 * and fpi.nbits values, we get:
690 *
691 * -fpi.emin -((1233 * (-fpi.nbits - fpi.emin)) >> 12) + 3
692 *
693 * Finally, we add an extra digit, either '1' or '0', to represent whether
694 * to-be-truncated digits contain a non-zero digit, or are all zeros,
695 * respectively.
696 *
697 * The truncated string is allocated on the heap, so code using
698 * TRUNCATE_DIGITS() will need to free that space when no longer needed.
699 * Pass a char * as the second argument, initialized to NULL; if its value
700 * becomes non-NULL, memory was allocated.
701 */
702#define LOG2NUM 1233
703#define LOG2DENOMSHIFT 12
704#define TRUNCATEDIGITS(_nbits, _emin)	(-(_emin) - ((LOG2NUM * (-(_nbits) - (_emin))) >> LOG2DENOMSHIFT) + 3)
705
706#define TRUNCATE_DIGITS(_s0, _temp, _nd, _nd0, _nf, _nbits, _emin, _dplen) \
707{ \
708	int _maxdigits = TRUNCATEDIGITS((_nbits), (_emin)); \
709	if ((_nd) > _maxdigits && \
710	  ((_temp) = MALLOC(_maxdigits + (_dplen) + 2)) != NULL) { \
711		char *_tp = (_temp) + _maxdigits; \
712		if ((_nd0) >= _maxdigits) { \
713			memcpy((_temp), (_s0), _maxdigits); \
714			if ((_nd) > (_nd0)) *_tp++ = '1'; \
715			else { \
716			    const char *_q = (_s0) + _maxdigits; \
717			    int _n = (_nd0) - _maxdigits; \
718			    for(; _n > 0 && *_q == '0'; _n--, _q++) {} \
719			    *_tp++ = _n > 0 ? '1' : '0'; \
720			    } \
721			(_nf) = -((_nd0) - (_maxdigits + 1)); \
722			(_nd0) = _maxdigits + 1; \
723			} \
724		else if ((_nd0) == 0) { \
725			memcpy((_temp), (_s0), _maxdigits); \
726			*_tp++ = '1'; \
727			(_nf) -= ((_nd) - (_maxdigits + 1)); \
728			} \
729		else { \
730			memcpy((_temp), (_s0), _maxdigits + (_dplen)); \
731			_tp += (_dplen); \
732			*_tp++ = '1'; \
733			(_nf) = (_maxdigits + 1) - (_nd0); \
734			} \
735		*_tp = 0; \
736		(_nd) = _maxdigits + 1; \
737		(_s0) = (_temp); \
738		} \
739	}
740
741#endif /* GDTOAIMP_H_INCLUDED */
742