1/**
2 *******************************************************************************
3 * Copyright (C) 2006-2012, International Business Machines Corporation
4 * and others. All Rights Reserved.
5 *******************************************************************************
6 */
7
8#include "unicode/utypes.h"
9
10#if !UCONFIG_NO_BREAK_ITERATION
11
12#include "brkeng.h"
13#include "dictbe.h"
14#include "unicode/uniset.h"
15#include "unicode/chariter.h"
16#include "unicode/ubrk.h"
17#include "uvector.h"
18#include "uassert.h"
19#include "unicode/normlzr.h"
20#include "cmemory.h"
21#include "dictionarydata.h"
22
23U_NAMESPACE_BEGIN
24
25/*
26 ******************************************************************
27 */
28
29DictionaryBreakEngine::DictionaryBreakEngine(uint32_t breakTypes) {
30    fTypes = breakTypes;
31}
32
33DictionaryBreakEngine::~DictionaryBreakEngine() {
34}
35
36UBool
37DictionaryBreakEngine::handles(UChar32 c, int32_t breakType) const {
38    return (breakType >= 0 && breakType < 32 && (((uint32_t)1 << breakType) & fTypes)
39            && fSet.contains(c));
40}
41
42int32_t
43DictionaryBreakEngine::findBreaks( UText *text,
44                                 int32_t startPos,
45                                 int32_t endPos,
46                                 UBool reverse,
47                                 int32_t breakType,
48                                 UStack &foundBreaks ) const {
49    int32_t result = 0;
50
51    // Find the span of characters included in the set.
52    int32_t start = (int32_t)utext_getNativeIndex(text);
53    int32_t current;
54    int32_t rangeStart;
55    int32_t rangeEnd;
56    UChar32 c = utext_current32(text);
57    if (reverse) {
58        UBool   isDict = fSet.contains(c);
59        while((current = (int32_t)utext_getNativeIndex(text)) > startPos && isDict) {
60            c = utext_previous32(text);
61            isDict = fSet.contains(c);
62        }
63        rangeStart = (current < startPos) ? startPos : current+(isDict ? 0 : 1);
64        rangeEnd = start + 1;
65    }
66    else {
67        while((current = (int32_t)utext_getNativeIndex(text)) < endPos && fSet.contains(c)) {
68            utext_next32(text);         // TODO:  recast loop for postincrement
69            c = utext_current32(text);
70        }
71        rangeStart = start;
72        rangeEnd = current;
73    }
74    if (breakType >= 0 && breakType < 32 && (((uint32_t)1 << breakType) & fTypes)) {
75        result = divideUpDictionaryRange(text, rangeStart, rangeEnd, foundBreaks);
76        utext_setNativeIndex(text, current);
77    }
78
79    return result;
80}
81
82void
83DictionaryBreakEngine::setCharacters( const UnicodeSet &set ) {
84    fSet = set;
85    // Compact for caching
86    fSet.compact();
87}
88
89/*
90 ******************************************************************
91 */
92
93
94// Helper class for improving readability of the Thai word break
95// algorithm. The implementation is completely inline.
96
97// List size, limited by the maximum number of words in the dictionary
98// that form a nested sequence.
99#define POSSIBLE_WORD_LIST_MAX 20
100
101class PossibleWord {
102private:
103    // list of word candidate lengths, in increasing length order
104    int32_t   lengths[POSSIBLE_WORD_LIST_MAX];
105    int32_t   count;      // Count of candidates
106    int32_t   prefix;     // The longest match with a dictionary word
107    int32_t   offset;     // Offset in the text of these candidates
108    int       mark;       // The preferred candidate's offset
109    int       current;    // The candidate we're currently looking at
110
111public:
112    PossibleWord();
113    ~PossibleWord();
114
115    // Fill the list of candidates if needed, select the longest, and return the number found
116    int       candidates( UText *text, DictionaryMatcher *dict, int32_t rangeEnd );
117
118    // Select the currently marked candidate, point after it in the text, and invalidate self
119    int32_t   acceptMarked( UText *text );
120
121    // Back up from the current candidate to the next shorter one; return TRUE if that exists
122    // and point the text after it
123    UBool     backUp( UText *text );
124
125    // Return the longest prefix this candidate location shares with a dictionary word
126    int32_t   longestPrefix();
127
128    // Mark the current candidate as the one we like
129    void      markCurrent();
130};
131
132inline
133PossibleWord::PossibleWord() {
134    offset = -1;
135}
136
137inline
138PossibleWord::~PossibleWord() {
139}
140
141inline int
142PossibleWord::candidates( UText *text, DictionaryMatcher *dict, int32_t rangeEnd ) {
143    // TODO: If getIndex is too slow, use offset < 0 and add discardAll()
144    int32_t start = (int32_t)utext_getNativeIndex(text);
145    if (start != offset) {
146        offset = start;
147        prefix = dict->matches(text, rangeEnd-start, lengths, count, sizeof(lengths)/sizeof(lengths[0]));
148        // Dictionary leaves text after longest prefix, not longest word. Back up.
149        if (count <= 0) {
150            utext_setNativeIndex(text, start);
151        }
152    }
153    if (count > 0) {
154        utext_setNativeIndex(text, start+lengths[count-1]);
155    }
156    current = count-1;
157    mark = current;
158    return count;
159}
160
161inline int32_t
162PossibleWord::acceptMarked( UText *text ) {
163    utext_setNativeIndex(text, offset + lengths[mark]);
164    return lengths[mark];
165}
166
167inline UBool
168PossibleWord::backUp( UText *text ) {
169    if (current > 0) {
170        utext_setNativeIndex(text, offset + lengths[--current]);
171        return TRUE;
172    }
173    return FALSE;
174}
175
176inline int32_t
177PossibleWord::longestPrefix() {
178    return prefix;
179}
180
181inline void
182PossibleWord::markCurrent() {
183    mark = current;
184}
185
186// How many words in a row are "good enough"?
187#define THAI_LOOKAHEAD 3
188
189// Will not combine a non-word with a preceding dictionary word longer than this
190#define THAI_ROOT_COMBINE_THRESHOLD 3
191
192// Will not combine a non-word that shares at least this much prefix with a
193// dictionary word, with a preceding word
194#define THAI_PREFIX_COMBINE_THRESHOLD 3
195
196// Ellision character
197#define THAI_PAIYANNOI 0x0E2F
198
199// Repeat character
200#define THAI_MAIYAMOK 0x0E46
201
202// Minimum word size
203#define THAI_MIN_WORD 2
204
205// Minimum number of characters for two words
206#define THAI_MIN_WORD_SPAN (THAI_MIN_WORD * 2)
207
208ThaiBreakEngine::ThaiBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status)
209    : DictionaryBreakEngine((1<<UBRK_WORD) | (1<<UBRK_LINE)),
210      fDictionary(adoptDictionary)
211{
212    fThaiWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Thai:]&[:LineBreak=SA:]]"), status);
213    if (U_SUCCESS(status)) {
214        setCharacters(fThaiWordSet);
215    }
216    fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Thai:]&[:LineBreak=SA:]&[:M:]]"), status);
217    fMarkSet.add(0x0020);
218    fEndWordSet = fThaiWordSet;
219    fEndWordSet.remove(0x0E31);             // MAI HAN-AKAT
220    fEndWordSet.remove(0x0E40, 0x0E44);     // SARA E through SARA AI MAIMALAI
221    fBeginWordSet.add(0x0E01, 0x0E2E);      // KO KAI through HO NOKHUK
222    fBeginWordSet.add(0x0E40, 0x0E44);      // SARA E through SARA AI MAIMALAI
223    fSuffixSet.add(THAI_PAIYANNOI);
224    fSuffixSet.add(THAI_MAIYAMOK);
225
226    // Compact for caching.
227    fMarkSet.compact();
228    fEndWordSet.compact();
229    fBeginWordSet.compact();
230    fSuffixSet.compact();
231}
232
233ThaiBreakEngine::~ThaiBreakEngine() {
234    delete fDictionary;
235}
236
237int32_t
238ThaiBreakEngine::divideUpDictionaryRange( UText *text,
239                                                int32_t rangeStart,
240                                                int32_t rangeEnd,
241                                                UStack &foundBreaks ) const {
242    if ((rangeEnd - rangeStart) < THAI_MIN_WORD_SPAN) {
243        return 0;       // Not enough characters for two words
244    }
245
246    uint32_t wordsFound = 0;
247    int32_t wordLength;
248    int32_t current;
249    UErrorCode status = U_ZERO_ERROR;
250    PossibleWord words[THAI_LOOKAHEAD];
251    UChar32 uc;
252
253    utext_setNativeIndex(text, rangeStart);
254
255    while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) {
256        wordLength = 0;
257
258        // Look for candidate words at the current position
259        int candidates = words[wordsFound%THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
260
261        // If we found exactly one, use that
262        if (candidates == 1) {
263            wordLength = words[wordsFound % THAI_LOOKAHEAD].acceptMarked(text);
264            wordsFound += 1;
265        }
266        // If there was more than one, see which one can take us forward the most words
267        else if (candidates > 1) {
268            // If we're already at the end of the range, we're done
269            if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) {
270                goto foundBest;
271            }
272            do {
273                int wordsMatched = 1;
274                if (words[(wordsFound + 1) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) {
275                    if (wordsMatched < 2) {
276                        // Followed by another dictionary word; mark first word as a good candidate
277                        words[wordsFound%THAI_LOOKAHEAD].markCurrent();
278                        wordsMatched = 2;
279                    }
280
281                    // If we're already at the end of the range, we're done
282                    if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) {
283                        goto foundBest;
284                    }
285
286                    // See if any of the possible second words is followed by a third word
287                    do {
288                        // If we find a third word, stop right away
289                        if (words[(wordsFound + 2) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) {
290                            words[wordsFound % THAI_LOOKAHEAD].markCurrent();
291                            goto foundBest;
292                        }
293                    }
294                    while (words[(wordsFound + 1) % THAI_LOOKAHEAD].backUp(text));
295                }
296            }
297            while (words[wordsFound % THAI_LOOKAHEAD].backUp(text));
298foundBest:
299            wordLength = words[wordsFound % THAI_LOOKAHEAD].acceptMarked(text);
300            wordsFound += 1;
301        }
302
303        // We come here after having either found a word or not. We look ahead to the
304        // next word. If it's not a dictionary word, we will combine it withe the word we
305        // just found (if there is one), but only if the preceding word does not exceed
306        // the threshold.
307        // The text iterator should now be positioned at the end of the word we found.
308        if ((int32_t)utext_getNativeIndex(text) < rangeEnd && wordLength < THAI_ROOT_COMBINE_THRESHOLD) {
309            // if it is a dictionary word, do nothing. If it isn't, then if there is
310            // no preceding word, or the non-word shares less than the minimum threshold
311            // of characters with a dictionary word, then scan to resynchronize
312            if (words[wordsFound % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0
313                  && (wordLength == 0
314                      || words[wordsFound%THAI_LOOKAHEAD].longestPrefix() < THAI_PREFIX_COMBINE_THRESHOLD)) {
315                // Look for a plausible word boundary
316                //TODO: This section will need a rework for UText.
317                int32_t remaining = rangeEnd - (current+wordLength);
318                UChar32 pc = utext_current32(text);
319                int32_t chars = 0;
320                for (;;) {
321                    utext_next32(text);
322                    uc = utext_current32(text);
323                    // TODO: Here we're counting on the fact that the SA languages are all
324                    // in the BMP. This should get fixed with the UText rework.
325                    chars += 1;
326                    if (--remaining <= 0) {
327                        break;
328                    }
329                    if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) {
330                        // Maybe. See if it's in the dictionary.
331                        // NOTE: In the original Apple code, checked that the next
332                        // two characters after uc were not 0x0E4C THANTHAKHAT before
333                        // checking the dictionary. That is just a performance filter,
334                        // but it's not clear it's faster than checking the trie.
335                        int candidates = words[(wordsFound + 1) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
336                        utext_setNativeIndex(text, current + wordLength + chars);
337                        if (candidates > 0) {
338                            break;
339                        }
340                    }
341                    pc = uc;
342                }
343
344                // Bump the word count if there wasn't already one
345                if (wordLength <= 0) {
346                    wordsFound += 1;
347                }
348
349                // Update the length with the passed-over characters
350                wordLength += chars;
351            }
352            else {
353                // Back up to where we were for next iteration
354                utext_setNativeIndex(text, current+wordLength);
355            }
356        }
357
358        // Never stop before a combining mark.
359        int32_t currPos;
360        while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) {
361            utext_next32(text);
362            wordLength += (int32_t)utext_getNativeIndex(text) - currPos;
363        }
364
365        // Look ahead for possible suffixes if a dictionary word does not follow.
366        // We do this in code rather than using a rule so that the heuristic
367        // resynch continues to function. For example, one of the suffix characters
368        // could be a typo in the middle of a word.
369        if ((int32_t)utext_getNativeIndex(text) < rangeEnd && wordLength > 0) {
370            if (words[wordsFound%THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0
371                && fSuffixSet.contains(uc = utext_current32(text))) {
372                if (uc == THAI_PAIYANNOI) {
373                    if (!fSuffixSet.contains(utext_previous32(text))) {
374                        // Skip over previous end and PAIYANNOI
375                        utext_next32(text);
376                        utext_next32(text);
377                        wordLength += 1;            // Add PAIYANNOI to word
378                        uc = utext_current32(text);     // Fetch next character
379                    }
380                    else {
381                        // Restore prior position
382                        utext_next32(text);
383                    }
384                }
385                if (uc == THAI_MAIYAMOK) {
386                    if (utext_previous32(text) != THAI_MAIYAMOK) {
387                        // Skip over previous end and MAIYAMOK
388                        utext_next32(text);
389                        utext_next32(text);
390                        wordLength += 1;            // Add MAIYAMOK to word
391                    }
392                    else {
393                        // Restore prior position
394                        utext_next32(text);
395                    }
396                }
397            }
398            else {
399                utext_setNativeIndex(text, current+wordLength);
400            }
401        }
402
403        // Did we find a word on this iteration? If so, push it on the break stack
404        if (wordLength > 0) {
405            foundBreaks.push((current+wordLength), status);
406        }
407    }
408
409    // Don't return a break for the end of the dictionary range if there is one there.
410    if (foundBreaks.peeki() >= rangeEnd) {
411        (void) foundBreaks.popi();
412        wordsFound -= 1;
413    }
414
415    return wordsFound;
416}
417
418// How many words in a row are "good enough"?
419#define KHMER_LOOKAHEAD 3
420
421// Will not combine a non-word with a preceding dictionary word longer than this
422#define KHMER_ROOT_COMBINE_THRESHOLD 3
423
424// Will not combine a non-word that shares at least this much prefix with a
425// dictionary word, with a preceding word
426#define KHMER_PREFIX_COMBINE_THRESHOLD 3
427
428// Minimum word size
429#define KHMER_MIN_WORD 2
430
431// Minimum number of characters for two words
432#define KHMER_MIN_WORD_SPAN (KHMER_MIN_WORD * 2)
433
434KhmerBreakEngine::KhmerBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status)
435    : DictionaryBreakEngine((1 << UBRK_WORD) | (1 << UBRK_LINE)),
436      fDictionary(adoptDictionary)
437{
438    fKhmerWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Khmr:]&[:LineBreak=SA:]]"), status);
439    if (U_SUCCESS(status)) {
440        setCharacters(fKhmerWordSet);
441    }
442    fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Khmr:]&[:LineBreak=SA:]&[:M:]]"), status);
443    fMarkSet.add(0x0020);
444    fEndWordSet = fKhmerWordSet;
445    fBeginWordSet.add(0x1780, 0x17B3);
446    //fBeginWordSet.add(0x17A3, 0x17A4);      // deprecated vowels
447    //fEndWordSet.remove(0x17A5, 0x17A9);     // Khmer independent vowels that can't end a word
448    //fEndWordSet.remove(0x17B2);             // Khmer independent vowel that can't end a word
449    fEndWordSet.remove(0x17D2);             // KHMER SIGN COENG that combines some following characters
450    //fEndWordSet.remove(0x17B6, 0x17C5);     // Remove dependent vowels
451//    fEndWordSet.remove(0x0E31);             // MAI HAN-AKAT
452//    fEndWordSet.remove(0x0E40, 0x0E44);     // SARA E through SARA AI MAIMALAI
453//    fBeginWordSet.add(0x0E01, 0x0E2E);      // KO KAI through HO NOKHUK
454//    fBeginWordSet.add(0x0E40, 0x0E44);      // SARA E through SARA AI MAIMALAI
455//    fSuffixSet.add(THAI_PAIYANNOI);
456//    fSuffixSet.add(THAI_MAIYAMOK);
457
458    // Compact for caching.
459    fMarkSet.compact();
460    fEndWordSet.compact();
461    fBeginWordSet.compact();
462//    fSuffixSet.compact();
463}
464
465KhmerBreakEngine::~KhmerBreakEngine() {
466    delete fDictionary;
467}
468
469int32_t
470KhmerBreakEngine::divideUpDictionaryRange( UText *text,
471                                                int32_t rangeStart,
472                                                int32_t rangeEnd,
473                                                UStack &foundBreaks ) const {
474    if ((rangeEnd - rangeStart) < KHMER_MIN_WORD_SPAN) {
475        return 0;       // Not enough characters for two words
476    }
477
478    uint32_t wordsFound = 0;
479    int32_t wordLength;
480    int32_t current;
481    UErrorCode status = U_ZERO_ERROR;
482    PossibleWord words[KHMER_LOOKAHEAD];
483    UChar32 uc;
484
485    utext_setNativeIndex(text, rangeStart);
486
487    while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) {
488        wordLength = 0;
489
490        // Look for candidate words at the current position
491        int candidates = words[wordsFound%KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
492
493        // If we found exactly one, use that
494        if (candidates == 1) {
495            wordLength = words[wordsFound%KHMER_LOOKAHEAD].acceptMarked(text);
496            wordsFound += 1;
497        }
498
499        // If there was more than one, see which one can take us forward the most words
500        else if (candidates > 1) {
501            // If we're already at the end of the range, we're done
502            if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) {
503                goto foundBest;
504            }
505            do {
506                int wordsMatched = 1;
507                if (words[(wordsFound + 1) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) {
508                    if (wordsMatched < 2) {
509                        // Followed by another dictionary word; mark first word as a good candidate
510                        words[wordsFound % KHMER_LOOKAHEAD].markCurrent();
511                        wordsMatched = 2;
512                    }
513
514                    // If we're already at the end of the range, we're done
515                    if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) {
516                        goto foundBest;
517                    }
518
519                    // See if any of the possible second words is followed by a third word
520                    do {
521                        // If we find a third word, stop right away
522                        if (words[(wordsFound + 2) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) {
523                            words[wordsFound % KHMER_LOOKAHEAD].markCurrent();
524                            goto foundBest;
525                        }
526                    }
527                    while (words[(wordsFound + 1) % KHMER_LOOKAHEAD].backUp(text));
528                }
529            }
530            while (words[wordsFound % KHMER_LOOKAHEAD].backUp(text));
531foundBest:
532            wordLength = words[wordsFound % KHMER_LOOKAHEAD].acceptMarked(text);
533            wordsFound += 1;
534        }
535
536        // We come here after having either found a word or not. We look ahead to the
537        // next word. If it's not a dictionary word, we will combine it with the word we
538        // just found (if there is one), but only if the preceding word does not exceed
539        // the threshold.
540        // The text iterator should now be positioned at the end of the word we found.
541        if ((int32_t)utext_getNativeIndex(text) < rangeEnd && wordLength < KHMER_ROOT_COMBINE_THRESHOLD) {
542            // if it is a dictionary word, do nothing. If it isn't, then if there is
543            // no preceding word, or the non-word shares less than the minimum threshold
544            // of characters with a dictionary word, then scan to resynchronize
545            if (words[wordsFound % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0
546                  && (wordLength == 0
547                      || words[wordsFound % KHMER_LOOKAHEAD].longestPrefix() < KHMER_PREFIX_COMBINE_THRESHOLD)) {
548                // Look for a plausible word boundary
549                //TODO: This section will need a rework for UText.
550                int32_t remaining = rangeEnd - (current+wordLength);
551                UChar32 pc = utext_current32(text);
552                int32_t chars = 0;
553                for (;;) {
554                    utext_next32(text);
555                    uc = utext_current32(text);
556                    // TODO: Here we're counting on the fact that the SA languages are all
557                    // in the BMP. This should get fixed with the UText rework.
558                    chars += 1;
559                    if (--remaining <= 0) {
560                        break;
561                    }
562                    if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) {
563                        // Maybe. See if it's in the dictionary.
564                        int candidates = words[(wordsFound + 1) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
565                        utext_setNativeIndex(text, current+wordLength+chars);
566                        if (candidates > 0) {
567                            break;
568                        }
569                    }
570                    pc = uc;
571                }
572
573                // Bump the word count if there wasn't already one
574                if (wordLength <= 0) {
575                    wordsFound += 1;
576                }
577
578                // Update the length with the passed-over characters
579                wordLength += chars;
580            }
581            else {
582                // Back up to where we were for next iteration
583                utext_setNativeIndex(text, current+wordLength);
584            }
585        }
586
587        // Never stop before a combining mark.
588        int32_t currPos;
589        while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) {
590            utext_next32(text);
591            wordLength += (int32_t)utext_getNativeIndex(text) - currPos;
592        }
593
594        // Look ahead for possible suffixes if a dictionary word does not follow.
595        // We do this in code rather than using a rule so that the heuristic
596        // resynch continues to function. For example, one of the suffix characters
597        // could be a typo in the middle of a word.
598//        if ((int32_t)utext_getNativeIndex(text) < rangeEnd && wordLength > 0) {
599//            if (words[wordsFound%KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0
600//                && fSuffixSet.contains(uc = utext_current32(text))) {
601//                if (uc == KHMER_PAIYANNOI) {
602//                    if (!fSuffixSet.contains(utext_previous32(text))) {
603//                        // Skip over previous end and PAIYANNOI
604//                        utext_next32(text);
605//                        utext_next32(text);
606//                        wordLength += 1;            // Add PAIYANNOI to word
607//                        uc = utext_current32(text);     // Fetch next character
608//                    }
609//                    else {
610//                        // Restore prior position
611//                        utext_next32(text);
612//                    }
613//                }
614//                if (uc == KHMER_MAIYAMOK) {
615//                    if (utext_previous32(text) != KHMER_MAIYAMOK) {
616//                        // Skip over previous end and MAIYAMOK
617//                        utext_next32(text);
618//                        utext_next32(text);
619//                        wordLength += 1;            // Add MAIYAMOK to word
620//                    }
621//                    else {
622//                        // Restore prior position
623//                        utext_next32(text);
624//                    }
625//                }
626//            }
627//            else {
628//                utext_setNativeIndex(text, current+wordLength);
629//            }
630//        }
631
632        // Did we find a word on this iteration? If so, push it on the break stack
633        if (wordLength > 0) {
634            foundBreaks.push((current+wordLength), status);
635        }
636    }
637
638    // Don't return a break for the end of the dictionary range if there is one there.
639    if (foundBreaks.peeki() >= rangeEnd) {
640        (void) foundBreaks.popi();
641        wordsFound -= 1;
642    }
643
644    return wordsFound;
645}
646
647#if !UCONFIG_NO_NORMALIZATION
648/*
649 ******************************************************************
650 * CjkBreakEngine
651 */
652static const uint32_t kuint32max = 0xFFFFFFFF;
653CjkBreakEngine::CjkBreakEngine(DictionaryMatcher *adoptDictionary, LanguageType type, UErrorCode &status)
654: DictionaryBreakEngine(1 << UBRK_WORD), fDictionary(adoptDictionary) {
655    // Korean dictionary only includes Hangul syllables
656    fHangulWordSet.applyPattern(UNICODE_STRING_SIMPLE("[\\uac00-\\ud7a3]"), status);
657    fHanWordSet.applyPattern(UNICODE_STRING_SIMPLE("[:Han:]"), status);
658    fKatakanaWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Katakana:]\\uff9e\\uff9f]"), status);
659    fHiraganaWordSet.applyPattern(UNICODE_STRING_SIMPLE("[:Hiragana:]"), status);
660
661    if (U_SUCCESS(status)) {
662        // handle Korean and Japanese/Chinese using different dictionaries
663        if (type == kKorean) {
664            setCharacters(fHangulWordSet);
665        } else { //Chinese and Japanese
666            UnicodeSet cjSet;
667            cjSet.addAll(fHanWordSet);
668            cjSet.addAll(fKatakanaWordSet);
669            cjSet.addAll(fHiraganaWordSet);
670            cjSet.add(0xFF70);
671            cjSet.add(0x30FC);
672            setCharacters(cjSet);
673        }
674    }
675}
676
677CjkBreakEngine::~CjkBreakEngine(){
678    delete fDictionary;
679}
680
681// The katakanaCost values below are based on the length frequencies of all
682// katakana phrases in the dictionary
683static const int kMaxKatakanaLength = 8;
684static const int kMaxKatakanaGroupLength = 20;
685static const uint32_t maxSnlp = 255;
686
687static inline uint32_t getKatakanaCost(int wordLength){
688    //TODO: fill array with actual values from dictionary!
689    static const uint32_t katakanaCost[kMaxKatakanaLength + 1]
690                                       = {8192, 984, 408, 240, 204, 252, 300, 372, 480};
691    return (wordLength > kMaxKatakanaLength) ? 8192 : katakanaCost[wordLength];
692}
693
694static inline bool isKatakana(uint16_t value) {
695    return (value >= 0x30A1u && value <= 0x30FEu && value != 0x30FBu) ||
696            (value >= 0xFF66u && value <= 0xFF9fu);
697}
698
699// A very simple helper class to streamline the buffer handling in
700// divideUpDictionaryRange.
701template<class T, size_t N>
702class AutoBuffer {
703public:
704    AutoBuffer(size_t size) : buffer(stackBuffer), capacity(N) {
705        if (size > N) {
706            buffer = reinterpret_cast<T*>(uprv_malloc(sizeof(T)*size));
707            capacity = size;
708        }
709    }
710    ~AutoBuffer() {
711        if (buffer != stackBuffer)
712            uprv_free(buffer);
713    }
714
715    T* elems() {
716        return buffer;
717    }
718
719    const T& operator[] (size_t i) const {
720        return buffer[i];
721    }
722
723    T& operator[] (size_t i) {
724        return buffer[i];
725    }
726
727    // resize without copy
728    void resize(size_t size) {
729        if (size <= capacity)
730            return;
731        if (buffer != stackBuffer)
732            uprv_free(buffer);
733        buffer = reinterpret_cast<T*>(uprv_malloc(sizeof(T)*size));
734        capacity = size;
735    }
736
737private:
738    T stackBuffer[N];
739    T* buffer;
740    AutoBuffer();
741    size_t capacity;
742};
743
744
745/*
746 * @param text A UText representing the text
747 * @param rangeStart The start of the range of dictionary characters
748 * @param rangeEnd The end of the range of dictionary characters
749 * @param foundBreaks Output of C array of int32_t break positions, or 0
750 * @return The number of breaks found
751 */
752int32_t
753CjkBreakEngine::divideUpDictionaryRange( UText *text,
754        int32_t rangeStart,
755        int32_t rangeEnd,
756        UStack &foundBreaks ) const {
757    if (rangeStart >= rangeEnd) {
758        return 0;
759    }
760
761    const size_t defaultInputLength = 80;
762    size_t inputLength = rangeEnd - rangeStart;
763    // TODO: Replace by UnicodeString.
764    AutoBuffer<UChar, defaultInputLength> charString(inputLength);
765
766    // Normalize the input string and put it in normalizedText.
767    // The map from the indices of the normalized input to the raw
768    // input is kept in charPositions.
769    UErrorCode status = U_ZERO_ERROR;
770    utext_extract(text, rangeStart, rangeEnd, charString.elems(), inputLength, &status);
771    if (U_FAILURE(status)) {
772        return 0;
773    }
774
775    UnicodeString inputString(charString.elems(), inputLength);
776    // TODO: Use Normalizer2.
777    UNormalizationMode norm_mode = UNORM_NFKC;
778    UBool isNormalized =
779        Normalizer::quickCheck(inputString, norm_mode, status) == UNORM_YES ||
780        Normalizer::isNormalized(inputString, norm_mode, status);
781
782    // TODO: Replace by UVector32.
783    AutoBuffer<int32_t, defaultInputLength> charPositions(inputLength + 1);
784    int numChars = 0;
785    UText normalizedText = UTEXT_INITIALIZER;
786    // Needs to be declared here because normalizedText holds onto its buffer.
787    UnicodeString normalizedString;
788    if (isNormalized) {
789        int32_t index = 0;
790        charPositions[0] = 0;
791        while(index < inputString.length()) {
792            index = inputString.moveIndex32(index, 1);
793            charPositions[++numChars] = index;
794        }
795        utext_openUnicodeString(&normalizedText, &inputString, &status);
796    }
797    else {
798        Normalizer::normalize(inputString, norm_mode, 0, normalizedString, status);
799        if (U_FAILURE(status)) {
800            return 0;
801        }
802        charPositions.resize(normalizedString.length() + 1);
803        Normalizer normalizer(charString.elems(), inputLength, norm_mode);
804        int32_t index = 0;
805        charPositions[0] = 0;
806        while(index < normalizer.endIndex()){
807            /* UChar32 uc = */ normalizer.next();
808            charPositions[++numChars] = index = normalizer.getIndex();
809        }
810        utext_openUnicodeString(&normalizedText, &normalizedString, &status);
811    }
812
813    if (U_FAILURE(status)) {
814        return 0;
815    }
816
817    // From this point on, all the indices refer to the indices of
818    // the normalized input string.
819
820    // bestSnlp[i] is the snlp of the best segmentation of the first i
821    // characters in the range to be matched.
822    // TODO: Replace by UVector32.
823    AutoBuffer<uint32_t, defaultInputLength> bestSnlp(numChars + 1);
824    bestSnlp[0] = 0;
825    for(int i = 1; i <= numChars; i++) {
826        bestSnlp[i] = kuint32max;
827    }
828
829    // prev[i] is the index of the last CJK character in the previous word in
830    // the best segmentation of the first i characters.
831    // TODO: Replace by UVector32.
832    AutoBuffer<int, defaultInputLength> prev(numChars + 1);
833    for(int i = 0; i <= numChars; i++){
834        prev[i] = -1;
835    }
836
837    const size_t maxWordSize = 20;
838    // TODO: Replace both with UVector32.
839    AutoBuffer<int32_t, maxWordSize> values(numChars);
840    AutoBuffer<int32_t, maxWordSize> lengths(numChars);
841
842    // Dynamic programming to find the best segmentation.
843    bool is_prev_katakana = false;
844    for (int32_t i = 0; i < numChars; ++i) {
845        //utext_setNativeIndex(text, rangeStart + i);
846        utext_setNativeIndex(&normalizedText, i);
847        if (bestSnlp[i] == kuint32max)
848            continue;
849
850        int32_t count;
851        // limit maximum word length matched to size of current substring
852        int32_t maxSearchLength = (i + maxWordSize < (size_t) numChars)? maxWordSize : (numChars - i);
853
854        fDictionary->matches(&normalizedText, maxSearchLength, lengths.elems(), count, maxSearchLength, values.elems());
855
856        // if there are no single character matches found in the dictionary
857        // starting with this charcter, treat character as a 1-character word
858        // with the highest value possible, i.e. the least likely to occur.
859        // Exclude Korean characters from this treatment, as they should be left
860        // together by default.
861        if((count == 0 || lengths[0] != 1) &&
862                !fHangulWordSet.contains(utext_current32(&normalizedText))) {
863            values[count] = maxSnlp;
864            lengths[count++] = 1;
865        }
866
867        for (int j = 0; j < count; j++) {
868            uint32_t newSnlp = bestSnlp[i] + values[j];
869            if (newSnlp < bestSnlp[lengths[j] + i]) {
870                bestSnlp[lengths[j] + i] = newSnlp;
871                prev[lengths[j] + i] = i;
872            }
873        }
874
875        // In Japanese,
876        // Katakana word in single character is pretty rare. So we apply
877        // the following heuristic to Katakana: any continuous run of Katakana
878        // characters is considered a candidate word with a default cost
879        // specified in the katakanaCost table according to its length.
880        //utext_setNativeIndex(text, rangeStart + i);
881        utext_setNativeIndex(&normalizedText, i);
882        bool is_katakana = isKatakana(utext_current32(&normalizedText));
883        if (!is_prev_katakana && is_katakana) {
884            int j = i + 1;
885            utext_next32(&normalizedText);
886            // Find the end of the continuous run of Katakana characters
887            while (j < numChars && (j - i) < kMaxKatakanaGroupLength &&
888                    isKatakana(utext_current32(&normalizedText))) {
889                utext_next32(&normalizedText);
890                ++j;
891            }
892            if ((j - i) < kMaxKatakanaGroupLength) {
893                uint32_t newSnlp = bestSnlp[i] + getKatakanaCost(j - i);
894                if (newSnlp < bestSnlp[j]) {
895                    bestSnlp[j] = newSnlp;
896                    prev[j] = i;
897                }
898            }
899        }
900        is_prev_katakana = is_katakana;
901    }
902
903    // Start pushing the optimal offset index into t_boundary (t for tentative).
904    // prev[numChars] is guaranteed to be meaningful.
905    // We'll first push in the reverse order, i.e.,
906    // t_boundary[0] = numChars, and afterwards do a swap.
907    // TODO: Replace by UVector32.
908    AutoBuffer<int, maxWordSize> t_boundary(numChars + 1);
909
910    int numBreaks = 0;
911    // No segmentation found, set boundary to end of range
912    if (bestSnlp[numChars] == kuint32max) {
913        t_boundary[numBreaks++] = numChars;
914    } else {
915        for (int i = numChars; i > 0; i = prev[i]) {
916            t_boundary[numBreaks++] = i;
917        }
918        U_ASSERT(prev[t_boundary[numBreaks - 1]] == 0);
919    }
920
921    // Reverse offset index in t_boundary.
922    // Don't add a break for the start of the dictionary range if there is one
923    // there already.
924    if (foundBreaks.size() == 0 || foundBreaks.peeki() < rangeStart) {
925        t_boundary[numBreaks++] = 0;
926    }
927
928    // Now that we're done, convert positions in t_bdry[] (indices in
929    // the normalized input string) back to indices in the raw input string
930    // while reversing t_bdry and pushing values to foundBreaks.
931    for (int i = numBreaks-1; i >= 0; i--) {
932        foundBreaks.push(charPositions[t_boundary[i]] + rangeStart, status);
933    }
934
935    utext_close(&normalizedText);
936    return numBreaks;
937}
938#endif
939
940U_NAMESPACE_END
941
942#endif /* #if !UCONFIG_NO_BREAK_ITERATION */
943
944