1/*
2 * Copyright (c) 2000-2008 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28/*
29 * Copyright (c) 1988, 1989, 1993
30 *	The Regents of the University of California.  All rights reserved.
31 *
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
34 * are met:
35 * 1. Redistributions of source code must retain the above copyright
36 *    notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 *    notice, this list of conditions and the following disclaimer in the
39 *    documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 *    must display the following acknowledgement:
42 *	This product includes software developed by the University of
43 *	California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 *    may be used to endorse or promote products derived from this software
46 *    without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 *	@(#)radix.c	8.4 (Berkeley) 11/2/94
61 * $FreeBSD: src/sys/net/radix.c,v 1.20.2.2 2001/03/06 00:56:50 obrien Exp $
62 */
63
64/*
65 * Routines to build and maintain radix trees for routing lookups.
66 */
67#ifndef _RADIX_H_
68#include <sys/param.h>
69#ifdef	KERNEL
70#include <sys/systm.h>
71#include <sys/malloc.h>
72#define	M_DONTWAIT M_NOWAIT
73#include <sys/domain.h>
74#else
75#include <stdlib.h>
76#endif
77#include <sys/syslog.h>
78#include <net/radix.h>
79#include <sys/socket.h>
80#include <sys/socketvar.h>
81#include <kern/locks.h>
82#endif
83
84static int	rn_walktree_from(struct radix_node_head *h, void *a,
85				      void *m, walktree_f_t *f, void *w);
86static int rn_walktree(struct radix_node_head *, walktree_f_t *, void *);
87static struct radix_node
88	 *rn_insert(void *, struct radix_node_head *, int *,
89			struct radix_node [2]),
90	 *rn_newpair(void *, int, struct radix_node[2]),
91	 *rn_search(void *, struct radix_node *),
92	 *rn_search_m(void *, struct radix_node *, void *);
93
94static int	max_keylen;
95static struct radix_mask *rn_mkfreelist;
96static struct radix_node_head *mask_rnhead;
97static char *addmask_key;
98static char normal_chars[] = {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1};
99static char *rn_zeros, *rn_ones;
100
101
102extern lck_grp_t	*domain_proto_mtx_grp;
103extern lck_attr_t	*domain_proto_mtx_attr;
104lck_mtx_t *rn_mutex;
105
106#define rn_masktop (mask_rnhead->rnh_treetop)
107#undef Bcmp
108#define Bcmp(a, b, l) \
109	(l == 0 ? 0 : bcmp((caddr_t)(a), (caddr_t)(b), (u_long)l))
110
111static int	rn_lexobetter(void *m_arg, void *n_arg);
112static struct radix_mask *
113		rn_new_radix_mask(struct radix_node *tt,
114				       struct radix_mask *next);
115static int rn_satisfies_leaf(char *trial, struct radix_node *leaf, int skip,
116    rn_matchf_t *f, void *w);
117
118#define	RN_MATCHF(rn, f, arg)	(f == NULL || (*f)((rn), arg))
119
120/*
121 * The data structure for the keys is a radix tree with one way
122 * branching removed.  The index rn_bit at an internal node n represents a bit
123 * position to be tested.  The tree is arranged so that all descendants
124 * of a node n have keys whose bits all agree up to position rn_bit - 1.
125 * (We say the index of n is rn_bit.)
126 *
127 * There is at least one descendant which has a one bit at position rn_bit,
128 * and at least one with a zero there.
129 *
130 * A route is determined by a pair of key and mask.  We require that the
131 * bit-wise logical and of the key and mask to be the key.
132 * We define the index of a route to associated with the mask to be
133 * the first bit number in the mask where 0 occurs (with bit number 0
134 * representing the highest order bit).
135 *
136 * We say a mask is normal if every bit is 0, past the index of the mask.
137 * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit,
138 * and m is a normal mask, then the route applies to every descendant of n.
139 * If the index(m) < rn_bit, this implies the trailing last few bits of k
140 * before bit b are all 0, (and hence consequently true of every descendant
141 * of n), so the route applies to all descendants of the node as well.
142 *
143 * Similar logic shows that a non-normal mask m such that
144 * index(m) <= index(n) could potentially apply to many children of n.
145 * Thus, for each non-host route, we attach its mask to a list at an internal
146 * node as high in the tree as we can go.
147 *
148 * The present version of the code makes use of normal routes in short-
149 * circuiting an explict mask and compare operation when testing whether
150 * a key satisfies a normal route, and also in remembering the unique leaf
151 * that governs a subtree.
152 */
153
154static struct radix_node *
155rn_search(void *v_arg, struct radix_node *head)
156{
157	struct radix_node *x;
158	caddr_t v;
159
160	for (x = head, v = v_arg; x->rn_bit >= 0;) {
161		if (x->rn_bmask & v[x->rn_offset])
162			x = x->rn_right;
163		else
164			x = x->rn_left;
165	}
166	return (x);
167}
168
169static struct radix_node *
170rn_search_m(void *v_arg, struct radix_node *head, void *m_arg)
171{
172	struct radix_node *x;
173	caddr_t v = v_arg, m = m_arg;
174
175	for (x = head; x->rn_bit >= 0;) {
176		if ((x->rn_bmask & m[x->rn_offset]) &&
177		    (x->rn_bmask & v[x->rn_offset]))
178			x = x->rn_right;
179		else
180			x = x->rn_left;
181	}
182	return x;
183}
184
185int
186rn_refines(void *m_arg, void *n_arg)
187{
188	caddr_t m = m_arg, n = n_arg;
189	caddr_t lim, lim2 = lim = n + *(u_char *)n;
190	int longer = (*(u_char *)n++) - (int)(*(u_char *)m++);
191	int masks_are_equal = 1;
192
193	if (longer > 0)
194		lim -= longer;
195	while (n < lim) {
196		if (*n & ~(*m))
197			return 0;
198		if (*n++ != *m++)
199			masks_are_equal = 0;
200	}
201	while (n < lim2)
202		if (*n++)
203			return 0;
204	if (masks_are_equal && (longer < 0))
205		for (lim2 = m - longer; m < lim2; )
206			if (*m++)
207				return 1;
208	return (!masks_are_equal);
209}
210
211struct radix_node *
212rn_lookup(void *v_arg, void *m_arg, struct radix_node_head *head)
213{
214	return (rn_lookup_args(v_arg, m_arg, head, NULL, NULL));
215}
216
217struct radix_node *
218rn_lookup_args(void *v_arg, void *m_arg, struct radix_node_head *head,
219    rn_matchf_t *f, void *w)
220{
221	struct radix_node *x;
222	caddr_t netmask = NULL;
223
224	if (m_arg) {
225		x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_offset);
226		if (x == 0)
227			return (NULL);
228		netmask = x->rn_key;
229	}
230	x = rn_match_args(v_arg, head, f, w);
231	if (x && netmask) {
232		while (x && x->rn_mask != netmask)
233			x = x->rn_dupedkey;
234	}
235	return x;
236}
237
238/*
239 * Returns true if address 'trial' has no bits differing from the
240 * leaf's key when compared under the leaf's mask.  In other words,
241 * returns true when 'trial' matches leaf.  If a leaf-matching
242 * routine is passed in, it is also used to find a match on the
243 * conditions defined by the caller of rn_match.
244 */
245static int
246rn_satisfies_leaf(char *trial, struct radix_node *leaf, int skip,
247    rn_matchf_t *f, void *w)
248{
249	char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
250	char *cplim;
251	int length = min(*(u_char *)cp, *(u_char *)cp2);
252
253	if (cp3 == 0)
254		cp3 = rn_ones;
255	else
256		length = min(length, *(u_char *)cp3);
257	cplim = cp + length; cp3 += skip; cp2 += skip;
258	for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
259		if ((*cp ^ *cp2) & *cp3)
260			return 0;
261
262	return (RN_MATCHF(leaf, f, w));
263}
264
265struct radix_node *
266rn_match(void *v_arg, struct radix_node_head *head)
267{
268	return (rn_match_args(v_arg, head, NULL, NULL));
269}
270
271struct radix_node *
272rn_match_args(void *v_arg, struct radix_node_head *head,
273    rn_matchf_t *f, void *w)
274{
275	caddr_t v = v_arg;
276	struct radix_node *t = head->rnh_treetop, *x;
277	caddr_t cp = v, cp2;
278	caddr_t cplim;
279	struct radix_node *saved_t, *top = t;
280	int off = t->rn_offset, vlen = *(u_char *)cp, matched_off;
281	int test, b, rn_bit;
282
283	/*
284	 * Open code rn_search(v, top) to avoid overhead of extra
285	 * subroutine call.
286	 */
287	for (; t->rn_bit >= 0; ) {
288		if (t->rn_bmask & cp[t->rn_offset])
289			t = t->rn_right;
290		else
291			t = t->rn_left;
292	}
293	/*
294	 * See if we match exactly as a host destination
295	 * or at least learn how many bits match, for normal mask finesse.
296	 *
297	 * It doesn't hurt us to limit how many bytes to check
298	 * to the length of the mask, since if it matches we had a genuine
299	 * match and the leaf we have is the most specific one anyway;
300	 * if it didn't match with a shorter length it would fail
301	 * with a long one.  This wins big for class B&C netmasks which
302	 * are probably the most common case...
303	 */
304	if (t->rn_mask)
305		vlen = *(u_char *)t->rn_mask;
306	cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
307	for (; cp < cplim; cp++, cp2++)
308		if (*cp != *cp2)
309			goto on1;
310	/*
311	 * This extra grot is in case we are explicitly asked
312	 * to look up the default.  Ugh!
313	 *
314	 * Never return the root node itself, it seems to cause a
315	 * lot of confusion.
316	 */
317	if (t->rn_flags & RNF_ROOT)
318		t = t->rn_dupedkey;
319	if (t == NULL || RN_MATCHF(t, f, w)) {
320		return (t);
321	} else {
322		/*
323		 * Although we found an exact match on the key,
324		 * f() is looking for some other criteria as well.
325		 * Continue looking as if the exact match failed.
326		 */
327		if (t->rn_parent->rn_flags & RNF_ROOT) {
328			/* Hit the top; have to give up */
329			return (NULL);
330		}
331		b = 0;
332		goto keeplooking;
333	}
334on1:
335	test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
336	for (b = 7; (test >>= 1) > 0;)
337		b--;
338keeplooking:
339	matched_off = cp - v;
340	b += matched_off << 3;
341	rn_bit = -1 - b;
342	/*
343	 * If there is a host route in a duped-key chain, it will be first.
344	 */
345	if ((saved_t = t)->rn_mask == 0)
346		t = t->rn_dupedkey;
347	for (; t; t = t->rn_dupedkey) {
348		/*
349		 * Even if we don't match exactly as a host,
350		 * we may match if the leaf we wound up at is
351		 * a route to a net.
352		 */
353		if (t->rn_flags & RNF_NORMAL) {
354			if ((rn_bit <= t->rn_bit) && RN_MATCHF(t, f, w))
355				return (t);
356		} else if (rn_satisfies_leaf(v, t, matched_off, f, w)) {
357			return (t);
358		}
359	}
360	t = saved_t;
361	/* start searching up the tree */
362	do {
363		struct radix_mask *m;
364		t = t->rn_parent;
365		m = t->rn_mklist;
366		/*
367		 * If non-contiguous masks ever become important
368		 * we can restore the masking and open coding of
369		 * the search and satisfaction test and put the
370		 * calculation of "off" back before the "do".
371		 */
372		while (m) {
373			if (m->rm_flags & RNF_NORMAL) {
374				if ((rn_bit <= m->rm_bit) &&
375				    RN_MATCHF(m->rm_leaf, f, w))
376					return (m->rm_leaf);
377			} else {
378				off = min(t->rn_offset, matched_off);
379				x = rn_search_m(v, t, m->rm_mask);
380				while (x && x->rn_mask != m->rm_mask)
381					x = x->rn_dupedkey;
382				if (x && rn_satisfies_leaf(v, x, off, f, w))
383					return (x);
384			}
385			m = m->rm_mklist;
386		}
387	} while (t != top);
388	return (NULL);
389}
390
391#ifdef RN_DEBUG
392int	rn_nodenum;
393struct	radix_node *rn_clist;
394int	rn_saveinfo;
395int	rn_debug =  1;
396#endif
397
398static struct radix_node *
399rn_newpair(void *v, int b, struct radix_node nodes[2])
400{
401	struct radix_node *tt = nodes, *t = tt + 1;
402	t->rn_bit = b;
403	t->rn_bmask = 0x80 >> (b & 7);
404	t->rn_left = tt;
405	t->rn_offset = b >> 3;
406	tt->rn_bit = -1;
407	tt->rn_key = (caddr_t)v;
408	tt->rn_parent = t;
409	tt->rn_flags = t->rn_flags = RNF_ACTIVE;
410	tt->rn_mklist = t->rn_mklist = NULL;
411#ifdef RN_DEBUG
412	tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
413	tt->rn_twin = t;
414	tt->rn_ybro = rn_clist;
415	rn_clist = tt;
416#endif
417	return t;
418}
419
420static struct radix_node *
421rn_insert(void *v_arg, struct radix_node_head *head, int *dupentry,
422	  struct radix_node nodes[2])
423{
424	caddr_t v = v_arg;
425	struct radix_node *top = head->rnh_treetop;
426	int head_off = top->rn_offset, vlen = (int)*((u_char *)v);
427	struct radix_node *t = rn_search(v_arg, top);
428	caddr_t cp = v + head_off;
429	int b;
430	struct radix_node *tt;
431    	/*
432	 * Find first bit at which v and t->rn_key differ
433	 */
434    {
435	caddr_t cp2 = t->rn_key + head_off;
436	int cmp_res;
437	caddr_t cplim = v + vlen;
438
439	while (cp < cplim)
440		if (*cp2++ != *cp++)
441			goto on1;
442	*dupentry = 1;
443	return t;
444on1:
445	*dupentry = 0;
446	cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
447	for (b = (cp - v) << 3; cmp_res; b--)
448		cmp_res >>= 1;
449    }
450    {
451	struct radix_node *p, *x = top;
452	cp = v;
453	do {
454		p = x;
455		if (cp[x->rn_offset] & x->rn_bmask)
456			x = x->rn_right;
457		else
458			x = x->rn_left;
459	} while (b > (unsigned) x->rn_bit);
460				/* x->rn_bit < b && x->rn_bit >= 0 */
461#ifdef RN_DEBUG
462	if (rn_debug)
463		log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
464#endif
465	t = rn_newpair(v_arg, b, nodes);
466	tt = t->rn_left;
467	if ((cp[p->rn_offset] & p->rn_bmask) == 0)
468		p->rn_left = t;
469	else
470		p->rn_right = t;
471	x->rn_parent = t;
472	t->rn_parent = p; /* frees x, p as temp vars below */
473	if ((cp[t->rn_offset] & t->rn_bmask) == 0) {
474		t->rn_right = x;
475	} else {
476		t->rn_right = tt;
477		t->rn_left = x;
478	}
479#ifdef RN_DEBUG
480	if (rn_debug)
481		log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
482#endif
483    }
484	return (tt);
485}
486
487struct radix_node *
488rn_addmask(void *n_arg, int search, int skip)
489{
490	caddr_t netmask = (caddr_t)n_arg;
491	struct radix_node *x;
492	caddr_t cp, cplim;
493	int b = 0, mlen, j;
494	int maskduplicated, m0, isnormal;
495	struct radix_node *saved_x;
496	static int last_zeroed = 0;
497
498	if ((mlen = *(u_char *)netmask) > max_keylen)
499		mlen = max_keylen;
500	if (skip == 0)
501		skip = 1;
502	if (mlen <= skip)
503		return (mask_rnhead->rnh_nodes);
504	if (skip > 1)
505		Bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
506	if ((m0 = mlen) > skip)
507		Bcopy(netmask + skip, addmask_key + skip, mlen - skip);
508	/*
509	 * Trim trailing zeroes.
510	 */
511	for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
512		cp--;
513	mlen = cp - addmask_key;
514	if (mlen <= skip) {
515		if (m0 >= last_zeroed)
516			last_zeroed = mlen;
517		return (mask_rnhead->rnh_nodes);
518	}
519	if (m0 < last_zeroed)
520		Bzero(addmask_key + m0, last_zeroed - m0);
521	*addmask_key = last_zeroed = mlen;
522	x = rn_search(addmask_key, rn_masktop);
523	if (Bcmp(addmask_key, x->rn_key, mlen) != 0)
524		x = NULL;
525	if (x || search)
526		return (x);
527	R_Malloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x));
528	if ((saved_x = x) == 0)
529		return (NULL);
530	Bzero(x, max_keylen + 2 * sizeof (*x));
531	netmask = cp = (caddr_t)(x + 2);
532	Bcopy(addmask_key, cp, mlen);
533	x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
534	if (maskduplicated) {
535		log(LOG_ERR, "rn_addmask: mask impossibly already in tree");
536		R_Free(saved_x);
537		return (x);
538	}
539	mask_rnhead->rnh_cnt++;
540	/*
541	 * Calculate index of mask, and check for normalcy.
542	 */
543	cplim = netmask + mlen; isnormal = 1;
544	for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;)
545		cp++;
546	if (cp != cplim) {
547		for (j = 0x80; (j & *cp) != 0; j >>= 1)
548			b++;
549		if (*cp != normal_chars[b] || cp != (cplim - 1))
550			isnormal = 0;
551	}
552	b += (cp - netmask) << 3;
553	x->rn_bit = -1 - b;
554	if (isnormal)
555		x->rn_flags |= RNF_NORMAL;
556	return (x);
557}
558
559static int	/* XXX: arbitrary ordering for non-contiguous masks */
560rn_lexobetter(void *m_arg, void *n_arg)
561{
562	u_char *mp = m_arg, *np = n_arg, *lim;
563
564	if (*mp > *np)
565		return 1;  /* not really, but need to check longer one first */
566	if (*mp == *np)
567		for (lim = mp + *mp; mp < lim;)
568			if (*mp++ > *np++)
569				return 1;
570	return 0;
571}
572
573static struct radix_mask *
574rn_new_radix_mask(struct radix_node *tt, struct radix_mask *next)
575{
576	struct radix_mask *m;
577
578	MKGet(m);
579	if (m == 0) {
580		log(LOG_ERR, "Mask for route not entered\n");
581		return (NULL);
582	}
583	Bzero(m, sizeof *m);
584	m->rm_bit = tt->rn_bit;
585	m->rm_flags = tt->rn_flags;
586	if (tt->rn_flags & RNF_NORMAL)
587		m->rm_leaf = tt;
588	else
589		m->rm_mask = tt->rn_mask;
590	m->rm_mklist = next;
591	tt->rn_mklist = m;
592	return m;
593}
594
595struct radix_node *
596rn_addroute(void *v_arg, void *n_arg, struct radix_node_head *head,
597	    struct radix_node treenodes[2])
598{
599	caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg;
600	struct radix_node *t, *x = NULL, *tt;
601	struct radix_node *saved_tt, *top = head->rnh_treetop;
602	short b = 0, b_leaf = 0;
603	int keyduplicated;
604	caddr_t mmask;
605	struct radix_mask *m, **mp;
606
607	/*
608	 * In dealing with non-contiguous masks, there may be
609	 * many different routes which have the same mask.
610	 * We will find it useful to have a unique pointer to
611	 * the mask to speed avoiding duplicate references at
612	 * nodes and possibly save time in calculating indices.
613	 */
614	if (netmask)  {
615		if ((x = rn_addmask(netmask, 0, top->rn_offset)) == 0)
616			return (NULL);
617		b_leaf = x->rn_bit;
618		b = -1 - x->rn_bit;
619		netmask = x->rn_key;
620	}
621	/*
622	 * Deal with duplicated keys: attach node to previous instance
623	 */
624	saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
625	if (keyduplicated) {
626		for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
627			if (tt->rn_mask == netmask)
628				return (NULL);
629			if (netmask == 0 ||
630			    (tt->rn_mask &&
631			     ((b_leaf < tt->rn_bit) /* index(netmask) > node */
632			      || rn_refines(netmask, tt->rn_mask)
633			      || rn_lexobetter(netmask, tt->rn_mask))))
634				break;
635		}
636		/*
637		 * If the mask is not duplicated, we wouldn't
638		 * find it among possible duplicate key entries
639		 * anyway, so the above test doesn't hurt.
640		 *
641		 * We sort the masks for a duplicated key the same way as
642		 * in a masklist -- most specific to least specific.
643		 * This may require the unfortunate nuisance of relocating
644		 * the head of the list.
645		 */
646		if (tt == saved_tt) {
647			struct	radix_node *xx = x;
648			/* link in at head of list */
649			(tt = treenodes)->rn_dupedkey = t;
650			tt->rn_flags = t->rn_flags;
651			tt->rn_parent = x = t->rn_parent;
652			t->rn_parent = tt;	 		/* parent */
653			if (x->rn_left == t)
654				x->rn_left = tt;
655			else
656				x->rn_right = tt;
657			saved_tt = tt; x = xx;
658		} else {
659			(tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
660			t->rn_dupedkey = tt;
661			tt->rn_parent = t;			/* parent */
662			if (tt->rn_dupedkey)			/* parent */
663				tt->rn_dupedkey->rn_parent = tt; /* parent */
664		}
665#ifdef RN_DEBUG
666		t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
667		tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
668#endif
669		tt->rn_key = (caddr_t) v;
670		tt->rn_bit = -1;
671		tt->rn_flags = RNF_ACTIVE;
672	}
673	head->rnh_cnt++;
674	/*
675	 * Put mask in tree.
676	 */
677	if (netmask) {
678		tt->rn_mask = netmask;
679		tt->rn_bit = x->rn_bit;
680		tt->rn_flags |= x->rn_flags & RNF_NORMAL;
681	}
682	t = saved_tt->rn_parent;
683	if (keyduplicated)
684		goto on2;
685	b_leaf = -1 - t->rn_bit;
686	if (t->rn_right == saved_tt)
687		x = t->rn_left;
688	else
689		x = t->rn_right;
690	/* Promote general routes from below */
691	if (x->rn_bit < 0) {
692	    for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
693		if (x->rn_mask && (x->rn_bit >= b_leaf) && x->rn_mklist == 0) {
694			*mp = m = rn_new_radix_mask(x, NULL);
695			if (m)
696				mp = &m->rm_mklist;
697		}
698	} else if (x->rn_mklist) {
699		/*
700		 * Skip over masks whose index is > that of new node
701		 */
702		for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
703			if (m->rm_bit >= b_leaf)
704				break;
705		t->rn_mklist = m; *mp = NULL;
706	}
707on2:
708	/* Add new route to highest possible ancestor's list */
709	if ((netmask == 0) || (b > t->rn_bit ))
710		return tt; /* can't lift at all */
711	b_leaf = tt->rn_bit;
712	do {
713		x = t;
714		t = t->rn_parent;
715	} while (b <= t->rn_bit && x != top);
716	/*
717	 * Search through routes associated with node to
718	 * insert new route according to index.
719	 * Need same criteria as when sorting dupedkeys to avoid
720	 * double loop on deletion.
721	 */
722	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
723		if (m->rm_bit < b_leaf)
724			continue;
725		if (m->rm_bit > b_leaf)
726			break;
727		if (m->rm_flags & RNF_NORMAL) {
728			mmask = m->rm_leaf->rn_mask;
729			if (tt->rn_flags & RNF_NORMAL) {
730			    log(LOG_ERR,
731			        "Non-unique normal route, mask not entered");
732				return tt;
733			}
734		} else
735			mmask = m->rm_mask;
736		if (mmask == netmask) {
737			m->rm_refs++;
738			tt->rn_mklist = m;
739			return tt;
740		}
741		if (rn_refines(netmask, mmask)
742		    || rn_lexobetter(netmask, mmask))
743			break;
744	}
745	*mp = rn_new_radix_mask(tt, *mp);
746	return tt;
747}
748
749struct radix_node *
750rn_delete(void *v_arg, void *netmask_arg, struct radix_node_head *head)
751{
752	struct radix_node *t, *p, *x, *tt;
753	struct radix_mask *m, *saved_m, **mp;
754	struct radix_node *dupedkey, *saved_tt, *top;
755	caddr_t v, netmask;
756	int b, head_off, vlen;
757
758	v = v_arg;
759	netmask = netmask_arg;
760	x = head->rnh_treetop;
761	tt = rn_search(v, x);
762	head_off = x->rn_offset;
763	vlen =  *(u_char *)v;
764	saved_tt = tt;
765	top = x;
766	if (tt == 0 ||
767	    Bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
768		return (NULL);
769	/*
770	 * Delete our route from mask lists.
771	 */
772	if (netmask) {
773		if ((x = rn_addmask(netmask, 1, head_off)) == 0)
774			return (NULL);
775		netmask = x->rn_key;
776		while (tt->rn_mask != netmask)
777			if ((tt = tt->rn_dupedkey) == 0)
778				return (NULL);
779	}
780	if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0)
781		goto on1;
782	if (tt->rn_flags & RNF_NORMAL) {
783		if (m->rm_leaf != tt || m->rm_refs > 0) {
784			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
785			return NULL;  /* dangling ref could cause disaster */
786		}
787	} else {
788		if (m->rm_mask != tt->rn_mask) {
789			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
790			goto on1;
791		}
792		if (--m->rm_refs >= 0)
793			goto on1;
794	}
795	b = -1 - tt->rn_bit;
796	t = saved_tt->rn_parent;
797	if (b > t->rn_bit)
798		goto on1; /* Wasn't lifted at all */
799	do {
800		x = t;
801		t = t->rn_parent;
802	} while (b <= t->rn_bit && x != top);
803	for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
804		if (m == saved_m) {
805			*mp = m->rm_mklist;
806			MKFree(m);
807			break;
808		}
809	if (m == 0) {
810		log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
811		if (tt->rn_flags & RNF_NORMAL)
812			return (NULL); /* Dangling ref to us */
813	}
814on1:
815	/*
816	 * Eliminate us from tree
817	 */
818	if (tt->rn_flags & RNF_ROOT)
819		return (NULL);
820	head->rnh_cnt--;
821#ifdef RN_DEBUG
822	/* Get us out of the creation list */
823	for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
824	if (t) t->rn_ybro = tt->rn_ybro;
825#endif
826	t = tt->rn_parent;
827	dupedkey = saved_tt->rn_dupedkey;
828	if (dupedkey) {
829		/*
830		 * at this point, tt is the deletion target and saved_tt
831		 * is the head of the dupekey chain
832		 */
833		if (tt == saved_tt) {
834			/* remove from head of chain */
835			x = dupedkey; x->rn_parent = t;
836			if (t->rn_left == tt)
837				t->rn_left = x;
838			else
839				t->rn_right = x;
840		} else {
841			/* find node in front of tt on the chain */
842			for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
843				p = p->rn_dupedkey;
844			if (p) {
845				p->rn_dupedkey = tt->rn_dupedkey;
846				if (tt->rn_dupedkey)		/* parent */
847					tt->rn_dupedkey->rn_parent = p;
848								/* parent */
849			} else log(LOG_ERR, "rn_delete: couldn't find us\n");
850		}
851		t = tt + 1;
852		if  (t->rn_flags & RNF_ACTIVE) {
853#ifndef RN_DEBUG
854			*++x = *t;
855			p = t->rn_parent;
856#else
857			b = t->rn_info;
858			*++x = *t;
859			t->rn_info = b;
860			p = t->rn_parent;
861#endif
862			if (p->rn_left == t)
863				p->rn_left = x;
864			else
865				p->rn_right = x;
866			x->rn_left->rn_parent = x;
867			x->rn_right->rn_parent = x;
868		}
869		goto out;
870	}
871	if (t->rn_left == tt)
872		x = t->rn_right;
873	else
874		x = t->rn_left;
875	p = t->rn_parent;
876	if (p->rn_right == t)
877		p->rn_right = x;
878	else
879		p->rn_left = x;
880	x->rn_parent = p;
881	/*
882	 * Demote routes attached to us.
883	 */
884	if (t->rn_mklist) {
885		if (x->rn_bit >= 0) {
886			for (mp = &x->rn_mklist; (m = *mp);)
887				mp = &m->rm_mklist;
888			*mp = t->rn_mklist;
889		} else {
890			/* If there are any key,mask pairs in a sibling
891			   duped-key chain, some subset will appear sorted
892			   in the same order attached to our mklist */
893			for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
894				if (m == x->rn_mklist) {
895					struct radix_mask *mm = m->rm_mklist;
896					x->rn_mklist = NULL;
897					if (--(m->rm_refs) < 0)
898						MKFree(m);
899					m = mm;
900				}
901			if (m)
902				log(LOG_ERR,
903				    "rn_delete: Orphaned Mask %p at %p\n",
904				    (void *)m, (void *)x);
905		}
906	}
907	/*
908	 * We may be holding an active internal node in the tree.
909	 */
910	x = tt + 1;
911	if (t != x) {
912#ifndef RN_DEBUG
913		*t = *x;
914#else
915		b = t->rn_info;
916		*t = *x;
917		t->rn_info = b;
918#endif
919		t->rn_left->rn_parent = t;
920		t->rn_right->rn_parent = t;
921		p = x->rn_parent;
922		if (p->rn_left == x)
923			p->rn_left = t;
924		else
925			p->rn_right = t;
926	}
927out:
928	tt->rn_flags &= ~RNF_ACTIVE;
929	tt[1].rn_flags &= ~RNF_ACTIVE;
930	return (tt);
931}
932
933/*
934 * This is the same as rn_walktree() except for the parameters and the
935 * exit.
936 */
937static int
938rn_walktree_from(struct radix_node_head *h, void *a, void *m, walktree_f_t *f,
939    void *w)
940{
941	int error;
942	struct radix_node *base, *next;
943	u_char *xa = (u_char *)a;
944	u_char *xm = (u_char *)m;
945	struct radix_node *rn, *last;
946	int stopping;
947	int lastb;
948	int rnh_cnt;
949
950	/*
951	 * This gets complicated because we may delete the node while
952	 * applying the function f to it; we cannot simply use the next
953	 * leaf as the successor node in advance, because that leaf may
954	 * be removed as well during deletion when it is a clone of the
955	 * current node.  When that happens, we would end up referring
956	 * to an already-freed radix node as the successor node.  To get
957	 * around this issue, if we detect that the radix tree has changed
958	 * in dimension (smaller than before), we simply restart the walk
959	 * from the top of tree.
960	 */
961restart:
962	last = NULL;
963	stopping = 0;
964	rnh_cnt = h->rnh_cnt;
965
966	/*
967	 * rn_search_m is sort-of-open-coded here.
968	 */
969	for (rn = h->rnh_treetop; rn->rn_bit >= 0; ) {
970		last = rn;
971		if (!(rn->rn_bmask & xm[rn->rn_offset]))
972			break;
973
974		if (rn->rn_bmask & xa[rn->rn_offset])
975			rn = rn->rn_right;
976		else
977			rn = rn->rn_left;
978	}
979
980	/*
981	 * Two cases: either we stepped off the end of our mask,
982	 * in which case last == rn, or we reached a leaf, in which
983	 * case we want to start from the last node we looked at.
984	 * Either way, last is the node we want to start from.
985	 */
986	rn = last;
987	lastb = rn->rn_bit;
988
989	/* First time through node, go left */
990	while (rn->rn_bit >= 0)
991		rn = rn->rn_left;
992
993	while (!stopping) {
994		base = rn;
995		/* If at right child go back up, otherwise, go right */
996		while (rn->rn_parent->rn_right == rn
997		       && !(rn->rn_flags & RNF_ROOT)) {
998			rn = rn->rn_parent;
999
1000			/* if went up beyond last, stop */
1001			if (rn->rn_bit <= lastb) {
1002				stopping = 1;
1003				/*
1004				 * XXX we should jump to the 'Process leaves'
1005				 * part, because the values of 'rn' and 'next'
1006				 * we compute will not be used. Not a big deal
1007				 * because this loop will terminate, but it is
1008				 * inefficient and hard to understand!
1009				 */
1010			}
1011		}
1012
1013		/*
1014		 * The following code (bug fix) inherited from FreeBSD is
1015		 * currently disabled, because our implementation uses the
1016		 * RTF_PRCLONING scheme that has been abandoned in current
1017		 * FreeBSD release.  The scheme involves setting such a flag
1018		 * for the default route entry, and therefore all off-link
1019		 * destinations would become clones of that entry.  Enabling
1020		 * the following code would be problematic at this point,
1021		 * because the removal of default route would cause only
1022		 * the left-half of the tree to be traversed, leaving the
1023		 * right-half untouched.  If there are clones of the entry
1024		 * that reside in that right-half, they would not be deleted
1025		 * and would linger around until they expire or explicitly
1026		 * deleted, which is a very bad thing.
1027		 *
1028		 * This code should be uncommented only after we get rid
1029		 * of the RTF_PRCLONING scheme.
1030		 */
1031#if 0
1032		/*
1033		 * At the top of the tree, no need to traverse the right
1034		 * half, prevent the traversal of the entire tree in the
1035		 * case of default route.
1036		 */
1037		if (rn->rn_parent->rn_flags & RNF_ROOT)
1038			stopping = 1;
1039#endif
1040
1041		/* Find the next *leaf* to start from */
1042		for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
1043			rn = rn->rn_left;
1044		next = rn;
1045		/* Process leaves */
1046		while ((rn = base) != 0) {
1047			base = rn->rn_dupedkey;
1048			if (!(rn->rn_flags & RNF_ROOT)
1049			    && (error = (*f)(rn, w)))
1050				return (error);
1051		}
1052		/* If one or more nodes got deleted, restart from top */
1053		if (h->rnh_cnt < rnh_cnt)
1054			goto restart;
1055		rn = next;
1056		if (rn->rn_flags & RNF_ROOT)
1057			stopping = 1;
1058	}
1059	return 0;
1060}
1061
1062static int
1063rn_walktree(struct radix_node_head *h, walktree_f_t *f, void *w)
1064{
1065	int error;
1066	struct radix_node *base, *next;
1067	struct radix_node *rn;
1068	int rnh_cnt;
1069
1070	/*
1071	 * This gets complicated because we may delete the node while
1072	 * applying the function f to it; we cannot simply use the next
1073	 * leaf as the successor node in advance, because that leaf may
1074	 * be removed as well during deletion when it is a clone of the
1075	 * current node.  When that happens, we would end up referring
1076	 * to an already-freed radix node as the successor node.  To get
1077	 * around this issue, if we detect that the radix tree has changed
1078	 * in dimension (smaller than before), we simply restart the walk
1079	 * from the top of tree.
1080	 */
1081restart:
1082	rn = h->rnh_treetop;
1083	rnh_cnt = h->rnh_cnt;
1084
1085	/* First time through node, go left */
1086	while (rn->rn_bit >= 0)
1087		rn = rn->rn_left;
1088	for (;;) {
1089		base = rn;
1090		/* If at right child go back up, otherwise, go right */
1091		while (rn->rn_parent->rn_right == rn &&
1092		    (rn->rn_flags & RNF_ROOT) == 0)
1093			rn = rn->rn_parent;
1094		/* Find the next *leaf* to start from */
1095		for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
1096			rn = rn->rn_left;
1097		next = rn;
1098		/* Process leaves */
1099		while ((rn = base) != NULL) {
1100			base = rn->rn_dupedkey;
1101			if (!(rn->rn_flags & RNF_ROOT)
1102			    && (error = (*f)(rn, w)))
1103				return (error);
1104		}
1105		/* If one or more nodes got deleted, restart from top */
1106		if (h->rnh_cnt < rnh_cnt)
1107			goto restart;
1108		rn = next;
1109		if (rn->rn_flags & RNF_ROOT)
1110			return (0);
1111	}
1112	/* NOTREACHED */
1113}
1114
1115int
1116rn_inithead(void **head, int off)
1117{
1118	struct radix_node_head *rnh;
1119	struct radix_node *t, *tt, *ttt;
1120	if (*head)
1121		return (1);
1122	R_Malloc(rnh, struct radix_node_head *, sizeof (*rnh));
1123	if (rnh == 0)
1124		return (0);
1125	Bzero(rnh, sizeof (*rnh));
1126	*head = rnh;
1127	t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
1128	ttt = rnh->rnh_nodes + 2;
1129	t->rn_right = ttt;
1130	t->rn_parent = t;
1131	tt = t->rn_left;
1132	tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
1133	tt->rn_bit = -1 - off;
1134	*ttt = *tt;
1135	ttt->rn_key = rn_ones;
1136	rnh->rnh_addaddr = rn_addroute;
1137	rnh->rnh_deladdr = rn_delete;
1138	rnh->rnh_matchaddr = rn_match;
1139	rnh->rnh_matchaddr_args = rn_match_args;
1140	rnh->rnh_lookup = rn_lookup;
1141	rnh->rnh_lookup_args = rn_lookup_args;
1142	rnh->rnh_walktree = rn_walktree;
1143	rnh->rnh_walktree_from = rn_walktree_from;
1144	rnh->rnh_treetop = t;
1145	rnh->rnh_cnt = 3;
1146	return (1);
1147}
1148
1149void
1150rn_init(void)
1151{
1152	char *cp, *cplim;
1153#ifdef KERNEL
1154	struct domain *dom;
1155
1156	/* lock already held when rn_init is called */
1157	for (dom = domains; dom; dom = dom->dom_next)
1158		if (dom->dom_maxrtkey > max_keylen)
1159			max_keylen = dom->dom_maxrtkey;
1160#endif
1161	if (max_keylen == 0) {
1162		log(LOG_ERR,
1163		    "rn_init: radix functions require max_keylen be set\n");
1164		return;
1165	}
1166	R_Malloc(rn_zeros, char *, 3 * max_keylen);
1167	if (rn_zeros == NULL)
1168		panic("rn_init");
1169	Bzero(rn_zeros, 3 * max_keylen);
1170	rn_ones = cp = rn_zeros + max_keylen;
1171	addmask_key = cplim = rn_ones + max_keylen;
1172	while (cp < cplim)
1173		*cp++ = -1;
1174	if (rn_inithead((void **)&mask_rnhead, 0) == 0)
1175		panic("rn_init 2");
1176
1177	rn_mutex = lck_mtx_alloc_init(domain_proto_mtx_grp, domain_proto_mtx_attr);
1178}
1179