1/*
2 ---------------------------------------------------------------------------
3 Copyright (c) 2003, Dr Brian Gladman, Worcester, UK.   All rights reserved.
4
5 LICENSE TERMS
6
7 The free distribution and use of this software in both source and binary
8 form is allowed (with or without changes) provided that:
9
10   1. distributions of this source code include the above copyright
11      notice, this list of conditions and the following disclaimer;
12
13   2. distributions in binary form include the above copyright
14      notice, this list of conditions and the following disclaimer
15      in the documentation and/or other associated materials;
16
17   3. the copyright holder's name is not used to endorse products
18      built using this software without specific written permission.
19
20 ALTERNATIVELY, provided that this notice is retained in full, this product
21 may be distributed under the terms of the GNU General Public License (GPL),
22 in which case the provisions of the GPL apply INSTEAD OF those given above.
23
24 DISCLAIMER
25
26 This software is provided 'as is' with no explicit or implied warranties
27 in respect of its properties, including, but not limited to, correctness
28 and/or fitness for purpose.
29 ---------------------------------------------------------------------------
30 Issue 31/01/2006
31
32 This file contains the compilation options for AES (Rijndael) and code
33 that is common across encryption, key scheduling and table generation.
34
35 OPERATION
36
37 These source code files implement the AES algorithm Rijndael designed by
38 Joan Daemen and Vincent Rijmen. This version is designed for the standard
39 block size of 16 bytes and for key sizes of 128, 192 and 256 bits (16, 24
40 and 32 bytes).
41
42 This version is designed for flexibility and speed using operations on
43 32-bit words rather than operations on bytes.  It can be compiled with
44 either big or little endian internal byte order but is faster when the
45 native byte order for the processor is used.
46
47 THE CIPHER INTERFACE
48
49 The cipher interface is implemented as an array of bytes in which lower
50 AES bit sequence indexes map to higher numeric significance within bytes.
51
52  uint_8t                 (an unsigned  8-bit type)
53  uint_32t                (an unsigned 32-bit type)
54  struct aes_encrypt_ctx  (structure for the cipher encryption context)
55  struct aes_decrypt_ctx  (structure for the cipher decryption context)
56  aes_rval                the function return type
57
58  C subroutine calls:
59
60  aes_rval aes_encrypt_key128(const unsigned char *key, aes_encrypt_ctx cx[1]);
61  aes_rval aes_encrypt_key192(const unsigned char *key, aes_encrypt_ctx cx[1]);
62  aes_rval aes_encrypt_key256(const unsigned char *key, aes_encrypt_ctx cx[1]);
63  aes_rval aes_encrypt(const unsigned char *in, unsigned char *out,
64                                                  const aes_encrypt_ctx cx[1]);
65
66  aes_rval aes_decrypt_key128(const unsigned char *key, aes_decrypt_ctx cx[1]);
67  aes_rval aes_decrypt_key192(const unsigned char *key, aes_decrypt_ctx cx[1]);
68  aes_rval aes_decrypt_key256(const unsigned char *key, aes_decrypt_ctx cx[1]);
69  aes_rval aes_decrypt(const unsigned char *in, unsigned char *out,
70                                                  const aes_decrypt_ctx cx[1]);
71
72 IMPORTANT NOTE: If you are using this C interface with dynamic tables make sure that
73 you call gen_tabs() before AES is used so that the tables are initialised.
74
75 C++ aes class subroutines:
76
77     Class AESencrypt  for encryption
78
79      Construtors:
80          AESencrypt(void)
81          AESencrypt(const unsigned char *key) - 128 bit key
82      Members:
83          aes_rval key128(const unsigned char *key)
84          aes_rval key192(const unsigned char *key)
85          aes_rval key256(const unsigned char *key)
86          aes_rval encrypt(const unsigned char *in, unsigned char *out) const
87
88      Class AESdecrypt  for encryption
89      Construtors:
90          AESdecrypt(void)
91          AESdecrypt(const unsigned char *key) - 128 bit key
92      Members:
93          aes_rval key128(const unsigned char *key)
94          aes_rval key192(const unsigned char *key)
95          aes_rval key256(const unsigned char *key)
96          aes_rval decrypt(const unsigned char *in, unsigned char *out) const
97*/
98
99#if !defined( _AESOPT_H )
100#define _AESOPT_H
101
102#if defined( __cplusplus )
103#include "aescpp.h"
104#else
105#include "crypto/aes.h"
106#endif
107
108/*  PLATFORM SPECIFIC INCLUDES */
109
110#include "edefs.h"
111
112/*  CONFIGURATION - THE USE OF DEFINES
113
114    Later in this section there are a number of defines that control the
115    operation of the code.  In each section, the purpose of each define is
116    explained so that the relevant form can be included or excluded by
117    setting either 1's or 0's respectively on the branches of the related
118    #if clauses.  The following local defines should not be changed.
119*/
120
121#define ENCRYPTION_IN_C     1
122#define DECRYPTION_IN_C     2
123#define ENC_KEYING_IN_C     4
124#define DEC_KEYING_IN_C     8
125
126#define NO_TABLES           0
127#define ONE_TABLE           1
128#define FOUR_TABLES         4
129#define NONE                0
130#define PARTIAL             1
131#define FULL                2
132
133/*  --- START OF USER CONFIGURED OPTIONS --- */
134
135/*  1. BYTE ORDER WITHIN 32 BIT WORDS
136
137    The fundamental data processing units in Rijndael are 8-bit bytes. The
138    input, output and key input are all enumerated arrays of bytes in which
139    bytes are numbered starting at zero and increasing to one less than the
140    number of bytes in the array in question. This enumeration is only used
141    for naming bytes and does not imply any adjacency or order relationship
142    from one byte to another. When these inputs and outputs are considered
143    as bit sequences, bits 8*n to 8*n+7 of the bit sequence are mapped to
144    byte[n] with bit 8n+i in the sequence mapped to bit 7-i within the byte.
145    In this implementation bits are numbered from 0 to 7 starting at the
146    numerically least significant end of each byte (bit n represents 2^n).
147
148    However, Rijndael can be implemented more efficiently using 32-bit
149    words by packing bytes into words so that bytes 4*n to 4*n+3 are placed
150    into word[n]. While in principle these bytes can be assembled into words
151    in any positions, this implementation only supports the two formats in
152    which bytes in adjacent positions within words also have adjacent byte
153    numbers. This order is called big-endian if the lowest numbered bytes
154    in words have the highest numeric significance and little-endian if the
155    opposite applies.
156
157    This code can work in either order irrespective of the order used by the
158    machine on which it runs. Normally the internal byte order will be set
159    to the order of the processor on which the code is to be run but this
160    define can be used to reverse this in special situations
161
162    WARNING: Assembler code versions rely on PLATFORM_BYTE_ORDER being set.
163    This define will hence be redefined later (in section 4) if necessary
164*/
165
166#if 1
167#define ALGORITHM_BYTE_ORDER PLATFORM_BYTE_ORDER
168#elif 0
169#define ALGORITHM_BYTE_ORDER IS_LITTLE_ENDIAN
170#elif 0
171#define ALGORITHM_BYTE_ORDER IS_BIG_ENDIAN
172#else
173#error The algorithm byte order is not defined
174#endif
175
176/*  2. VIA ACE SUPPORT
177
178    Define this option if support for the VIA ACE is required. This uses
179    inline assembler instructions and is only implemented for the Microsoft,
180    Intel and GCC compilers.  If VIA ACE is known to be present, then defining
181    ASSUME_VIA_ACE_PRESENT will remove the ordinary encryption/decryption
182    code.  If USE_VIA_ACE_IF_PRESENT is defined then VIA ACE will be used if
183    it is detected (both present and enabled) but the normal AES code will
184    also be present.
185
186    When VIA ACE is to be used, all AES encryption contexts MUST be 16 byte
187    aligned; other input/output buffers do not need to be 16 byte aligned
188    but there are very large performance gains if this can be arranged.
189    VIA ACE also requires the decryption key schedule to be in reverse
190    order (which the following defines ensure).
191*/
192
193#if 0 && !defined( _WIN64 ) && !defined( USE_VIA_ACE_IF_PRESENT )
194#define USE_VIA_ACE_IF_PRESENT
195#endif
196
197#if 0 && !defined( _WIN64 ) && !defined( ASSUME_VIA_ACE_PRESENT )
198#define ASSUME_VIA_ACE_PRESENT
199#endif
200
201/*  3. ASSEMBLER SUPPORT
202
203    This define (which can be on the command line) enables the use of the
204    assembler code routines for encryption, decryption and key scheduling
205    as follows:
206
207    ASM_X86_V1C uses the assembler (aes_x86_v1.asm) with large tables for
208                encryption and decryption and but with key scheduling in C
209    ASM_X86_V2  uses assembler (aes_x86_v2.asm) with compressed tables for
210                encryption, decryption and key scheduling
211    ASM_X86_V2C	uses assembler (aes_x86_v2.asm) with compressed tables for
212                encryption and decryption and but with key scheduling in C
213    ASM_AMD64_C	uses assembler (aes_amd64.asm) with compressed tables for
214                encryption and decryption and but with key scheduling in C
215
216    Change one 'if 0' below to 'if 1' to select the version or define
217    as a compilation option.
218*/
219
220#if defined ( ASM_X86_V1C ) || defined( ASM_X86_V2 ) || defined( ASM_X86_V2C )
221#  if defined( _M_IX86 )
222#    if 0 && !defined( ASM_X86_V1C )
223#      define ASM_X86_V1C
224#    elif 0 && !defined( ASM_X86_V2  )
225#      define ASM_X86_V2
226#    elif 0 && !defined( ASM_X86_V2C )
227#      define ASM_X86_V2C
228#    endif
229#  else
230#    error Assembler code is only available for x86 and AMD64 systems
231#  endif
232#elif defined( ASM_AMD64_C )
233#  if defined( _M_X64 )
234#    if 0 && !defined( ASM_AMD64_C )
235#      define ASM_AMD64_C
236#    endif
237#  else
238#    error Assembler code is only available for x86 and AMD64 systems
239#  endif
240#endif
241
242/*  4. FAST INPUT/OUTPUT OPERATIONS.
243
244    On some machines it is possible to improve speed by transferring the
245    bytes in the input and output arrays to and from the internal 32-bit
246    variables by addressing these arrays as if they are arrays of 32-bit
247    words.  On some machines this will always be possible but there may
248    be a large performance penalty if the byte arrays are not aligned on
249    the normal word boundaries. On other machines this technique will
250    lead to memory access errors when such 32-bit word accesses are not
251    properly aligned. The option SAFE_IO avoids such problems but will
252    often be slower on those machines that support misaligned access
253    (especially so if care is taken to align the input  and output byte
254    arrays on 32-bit word boundaries). If SAFE_IO is not defined it is
255    assumed that access to byte arrays as if they are arrays of 32-bit
256    words will not cause problems when such accesses are misaligned.
257*/
258#if 1 && !defined( _MSC_VER )
259#define SAFE_IO
260#endif
261
262/*  5. LOOP UNROLLING
263
264    The code for encryption and decrytpion cycles through a number of rounds
265    that can be implemented either in a loop or by expanding the code into a
266    long sequence of instructions, the latter producing a larger program but
267    one that will often be much faster. The latter is called loop unrolling.
268    There are also potential speed advantages in expanding two iterations in
269    a loop with half the number of iterations, which is called partial loop
270    unrolling.  The following options allow partial or full loop unrolling
271    to be set independently for encryption and decryption
272*/
273#if 1
274#define ENC_UNROLL  FULL
275#elif 0
276#define ENC_UNROLL  PARTIAL
277#else
278#define ENC_UNROLL  NONE
279#endif
280
281#if 1
282#define DEC_UNROLL  FULL
283#elif 0
284#define DEC_UNROLL  PARTIAL
285#else
286#define DEC_UNROLL  NONE
287#endif
288
289/*  6. FAST FINITE FIELD OPERATIONS
290
291    If this section is included, tables are used to provide faster finite
292    field arithmetic (this has no effect if FIXED_TABLES is defined).
293*/
294#if 1
295#define FF_TABLES
296#endif
297
298/*  7. INTERNAL STATE VARIABLE FORMAT
299
300    The internal state of Rijndael is stored in a number of local 32-bit
301    word varaibles which can be defined either as an array or as individual
302    names variables. Include this section if you want to store these local
303    varaibles in arrays. Otherwise individual local variables will be used.
304*/
305#if 1
306#define ARRAYS
307#endif
308
309/*  8. FIXED OR DYNAMIC TABLES
310
311    When this section is included the tables used by the code are compiled
312    statically into the binary file.  Otherwise the subroutine gen_tabs()
313    must be called to compute them before the code is first used.
314*/
315#if 0 && !(defined( _MSC_VER ) && ( _MSC_VER <= 800 ))
316#define FIXED_TABLES
317#endif
318
319/*  9. TABLE ALIGNMENT
320
321    On some sytsems speed will be improved by aligning the AES large lookup
322    tables on particular boundaries. This define should be set to a power of
323    two giving the desired alignment. It can be left undefined if alignment
324    is not needed.  This option is specific to the Microsft VC++ compiler -
325    it seems to sometimes cause trouble for the VC++ version 6 compiler.
326*/
327
328#if 1 && defined( _MSC_VER ) && ( _MSC_VER >= 1300 )
329#define TABLE_ALIGN 32
330#endif
331
332/*  10. TABLE OPTIONS
333
334    This cipher proceeds by repeating in a number of cycles known as 'rounds'
335    which are implemented by a round function which can optionally be speeded
336    up using tables.  The basic tables are each 256 32-bit words, with either
337    one or four tables being required for each round function depending on
338    how much speed is required. The encryption and decryption round functions
339    are different and the last encryption and decrytpion round functions are
340    different again making four different round functions in all.
341
342    This means that:
343      1. Normal encryption and decryption rounds can each use either 0, 1
344         or 4 tables and table spaces of 0, 1024 or 4096 bytes each.
345      2. The last encryption and decryption rounds can also use either 0, 1
346         or 4 tables and table spaces of 0, 1024 or 4096 bytes each.
347
348    Include or exclude the appropriate definitions below to set the number
349    of tables used by this implementation.
350*/
351
352#if 1   /* set tables for the normal encryption round */
353#define ENC_ROUND   FOUR_TABLES
354#elif 0
355#define ENC_ROUND   ONE_TABLE
356#else
357#define ENC_ROUND   NO_TABLES
358#endif
359
360#if 1   /* set tables for the last encryption round */
361#define LAST_ENC_ROUND  FOUR_TABLES
362#elif 0
363#define LAST_ENC_ROUND  ONE_TABLE
364#else
365#define LAST_ENC_ROUND  NO_TABLES
366#endif
367
368#if 1   /* set tables for the normal decryption round */
369#define DEC_ROUND   FOUR_TABLES
370#elif 0
371#define DEC_ROUND   ONE_TABLE
372#else
373#define DEC_ROUND   NO_TABLES
374#endif
375
376#if 1   /* set tables for the last decryption round */
377#define LAST_DEC_ROUND  FOUR_TABLES
378#elif 0
379#define LAST_DEC_ROUND  ONE_TABLE
380#else
381#define LAST_DEC_ROUND  NO_TABLES
382#endif
383
384/*  The decryption key schedule can be speeded up with tables in the same
385    way that the round functions can.  Include or exclude the following
386    defines to set this requirement.
387*/
388#if 1
389#define KEY_SCHED   FOUR_TABLES
390#elif 0
391#define KEY_SCHED   ONE_TABLE
392#else
393#define KEY_SCHED   NO_TABLES
394#endif
395
396/*  ---- END OF USER CONFIGURED OPTIONS ---- */
397
398/* VIA ACE support is only available for VC++ and GCC */
399
400#if !defined( _MSC_VER ) && !defined( __GNUC__ )
401#  if defined( ASSUME_VIA_ACE_PRESENT )
402#    undef ASSUME_VIA_ACE_PRESENT
403#  endif
404#  if defined( USE_VIA_ACE_IF_PRESENT )
405#    undef USE_VIA_ACE_IF_PRESENT
406#  endif
407#endif
408
409#if defined( ASSUME_VIA_ACE_PRESENT ) && !defined( USE_VIA_ACE_IF_PRESENT )
410#define USE_VIA_ACE_IF_PRESENT
411#endif
412
413#if defined( USE_VIA_ACE_IF_PRESENT ) && !defined ( AES_REV_DKS )
414#define AES_REV_DKS
415#endif
416
417/* Assembler support requires the use of platform byte order */
418
419#if ( defined( ASM_X86_V1C ) || defined( ASM_X86_V2C ) || defined( ASM_AMD64_C ) ) && (ALGORITHM_BYTE_ORDER != PLATFORM_BYTE_ORDER)
420#undef  ALGORITHM_BYTE_ORDER
421#define ALGORITHM_BYTE_ORDER PLATFORM_BYTE_ORDER
422#endif
423
424/* In this implementation the columns of the state array are each held in
425   32-bit words. The state array can be held in various ways: in an array
426   of words, in a number of individual word variables or in a number of
427   processor registers. The following define maps a variable name x and
428   a column number c to the way the state array variable is to be held.
429   The first define below maps the state into an array x[c] whereas the
430   second form maps the state into a number of individual variables x0,
431   x1, etc.  Another form could map individual state colums to machine
432   register names.
433*/
434
435#if defined( ARRAYS )
436#define s(x,c) x[c]
437#else
438#define s(x,c) x##c
439#endif
440
441/*  This implementation provides subroutines for encryption, decryption
442    and for setting the three key lengths (separately) for encryption
443    and decryption. Since not all functions are needed, masks are set
444    up here to determine which will be implemented in C
445*/
446
447#if !defined( AES_ENCRYPT )
448#  define EFUNCS_IN_C   0
449#elif defined( ASSUME_VIA_ACE_PRESENT ) || defined( ASM_X86_V1C )
450    || defined( ASM_X86_V2C ) || defined( ASM_AMD64_C )
451#  define EFUNCS_IN_C   ENC_KEYING_IN_C
452#elif !defined( ASM_X86_V2 )
453#  define EFUNCS_IN_C   ( ENCRYPTION_IN_C | ENC_KEYING_IN_C )
454#else
455#  define EFUNCS_IN_C   0
456#endif
457
458#if !defined( AES_DECRYPT )
459#  define DFUNCS_IN_C   0
460#elif defined( ASSUME_VIA_ACE_PRESENT ) || defined( ASM_X86_V1C )
461    || defined( ASM_X86_V2C ) || defined( ASM_AMD64_C )
462#  define DFUNCS_IN_C   DEC_KEYING_IN_C
463#elif !defined( ASM_X86_V2 )
464#  define DFUNCS_IN_C   ( DECRYPTION_IN_C | DEC_KEYING_IN_C )
465#else
466#  define DFUNCS_IN_C   0
467#endif
468
469#define FUNCS_IN_C  ( EFUNCS_IN_C | DFUNCS_IN_C )
470
471/* END OF CONFIGURATION OPTIONS */
472
473#define RC_LENGTH   (5 * (AES_BLOCK_SIZE / 4 - 2))
474
475/* Disable or report errors on some combinations of options */
476
477#if ENC_ROUND == NO_TABLES && LAST_ENC_ROUND != NO_TABLES
478#undef  LAST_ENC_ROUND
479#define LAST_ENC_ROUND  NO_TABLES
480#elif ENC_ROUND == ONE_TABLE && LAST_ENC_ROUND == FOUR_TABLES
481#undef  LAST_ENC_ROUND
482#define LAST_ENC_ROUND  ONE_TABLE
483#endif
484
485#if ENC_ROUND == NO_TABLES && ENC_UNROLL != NONE
486#undef  ENC_UNROLL
487#define ENC_UNROLL  NONE
488#endif
489
490#if DEC_ROUND == NO_TABLES && LAST_DEC_ROUND != NO_TABLES
491#undef  LAST_DEC_ROUND
492#define LAST_DEC_ROUND  NO_TABLES
493#elif DEC_ROUND == ONE_TABLE && LAST_DEC_ROUND == FOUR_TABLES
494#undef  LAST_DEC_ROUND
495#define LAST_DEC_ROUND  ONE_TABLE
496#endif
497
498#if DEC_ROUND == NO_TABLES && DEC_UNROLL != NONE
499#undef  DEC_UNROLL
500#define DEC_UNROLL  NONE
501#endif
502
503#if defined( bswap32 )
504#define aes_sw32    bswap32
505#elif defined( bswap_32 )
506#define aes_sw32    bswap_32
507#else
508#define brot(x,n)   (((uint_32t)(x) <<  n) | ((uint_32t)(x) >> (32 - n)))
509#define aes_sw32(x) ((brot((x),8) & 0x00ff00ff) | (brot((x),24) & 0xff00ff00))
510#endif
511
512/*  upr(x,n):  rotates bytes within words by n positions, moving bytes to
513               higher index positions with wrap around into low positions
514    ups(x,n):  moves bytes by n positions to higher index positions in
515               words but without wrap around
516    bval(x,n): extracts a byte from a word
517
518    WARNING:   The definitions given here are intended only for use with
519               unsigned variables and with shift counts that are compile
520               time constants
521*/
522
523#if ( ALGORITHM_BYTE_ORDER == IS_LITTLE_ENDIAN )
524#define upr(x,n)        (((uint_32t)(x) << (8 * (n))) | ((uint_32t)(x) >> (32 - 8 * (n))))
525#define ups(x,n)        ((uint_32t) (x) << (8 * (n)))
526#define bval(x,n)       ((uint_8t)((x) >> (8 * (n))))
527#define bytes2word(b0, b1, b2, b3)  \
528        (((uint_32t)(b3) << 24) | ((uint_32t)(b2) << 16) | ((uint_32t)(b1) << 8) | (b0))
529#endif
530
531#if ( ALGORITHM_BYTE_ORDER == IS_BIG_ENDIAN )
532#define upr(x,n)        (((uint_32t)(x) >> (8 * (n))) | ((uint_32t)(x) << (32 - 8 * (n))))
533#define ups(x,n)        ((uint_32t) (x) >> (8 * (n)))
534#define bval(x,n)       ((uint_8t)((x) >> (24 - 8 * (n))))
535#define bytes2word(b0, b1, b2, b3)  \
536        (((uint_32t)(b0) << 24) | ((uint_32t)(b1) << 16) | ((uint_32t)(b2) << 8) | (b3))
537#endif
538
539#if defined( SAFE_IO )
540
541#define word_in(x,c)    bytes2word(((const uint_8t*)(x)+4*c)[0], ((const uint_8t*)(x)+4*c)[1], \
542                                   ((const uint_8t*)(x)+4*c)[2], ((const uint_8t*)(x)+4*c)[3])
543#define word_out(x,c,v) { ((uint_8t*)(x)+4*c)[0] = bval(v,0); ((uint_8t*)(x)+4*c)[1] = bval(v,1); \
544                          ((uint_8t*)(x)+4*c)[2] = bval(v,2); ((uint_8t*)(x)+4*c)[3] = bval(v,3); }
545
546#elif ( ALGORITHM_BYTE_ORDER == PLATFORM_BYTE_ORDER )
547
548#define word_in(x,c)    (*((uint_32t*)(x)+(c)))
549#define word_out(x,c,v) (*((uint_32t*)(x)+(c)) = (v))
550
551#else
552
553#define word_in(x,c)    aes_sw32(*((uint_32t*)(x)+(c)))
554#define word_out(x,c,v) (*((uint_32t*)(x)+(c)) = aes_sw32(v))
555
556#endif
557
558/* the finite field modular polynomial and elements */
559
560#define WPOLY   0x011b
561#define BPOLY     0x1b
562
563/* multiply four bytes in GF(2^8) by 'x' {02} in parallel */
564
565#define m1  0x80808080
566#define m2  0x7f7f7f7f
567#define gf_mulx(x)  ((((x) & m2) << 1) ^ ((((x) & m1) >> 7) * BPOLY))
568
569/* The following defines provide alternative definitions of gf_mulx that might
570   give improved performance if a fast 32-bit multiply is not available. Note
571   that a temporary variable u needs to be defined where gf_mulx is used.
572
573#define gf_mulx(x) (u = (x) & m1, u |= (u >> 1), ((x) & m2) << 1) ^ ((u >> 3) | (u >> 6))
574#define m4  (0x01010101 * BPOLY)
575#define gf_mulx(x) (u = (x) & m1, ((x) & m2) << 1) ^ ((u - (u >> 7)) & m4)
576*/
577
578/* Work out which tables are needed for the different options   */
579
580#if defined( ASM_X86_V1C )
581#if defined( ENC_ROUND )
582#undef  ENC_ROUND
583#endif
584#define ENC_ROUND   FOUR_TABLES
585#if defined( LAST_ENC_ROUND )
586#undef  LAST_ENC_ROUND
587#endif
588#define LAST_ENC_ROUND  FOUR_TABLES
589#if defined( DEC_ROUND )
590#undef  DEC_ROUND
591#endif
592#define DEC_ROUND   FOUR_TABLES
593#if defined( LAST_DEC_ROUND )
594#undef  LAST_DEC_ROUND
595#endif
596#define LAST_DEC_ROUND  FOUR_TABLES
597#if defined( KEY_SCHED )
598#undef  KEY_SCHED
599#define KEY_SCHED   FOUR_TABLES
600#endif
601#endif
602
603#if ( FUNCS_IN_C & ENCRYPTION_IN_C ) || defined( ASM_X86_V1C )
604#if ENC_ROUND == ONE_TABLE
605#define FT1_SET
606#elif ENC_ROUND == FOUR_TABLES
607#define FT4_SET
608#else
609#define SBX_SET
610#endif
611#if LAST_ENC_ROUND == ONE_TABLE
612#define FL1_SET
613#elif LAST_ENC_ROUND == FOUR_TABLES
614#define FL4_SET
615#elif !defined( SBX_SET )
616#define SBX_SET
617#endif
618#endif
619
620#if ( FUNCS_IN_C & DECRYPTION_IN_C ) || defined( ASM_X86_V1C )
621#if DEC_ROUND == ONE_TABLE
622#define IT1_SET
623#elif DEC_ROUND == FOUR_TABLES
624#define IT4_SET
625#else
626#define ISB_SET
627#endif
628#if LAST_DEC_ROUND == ONE_TABLE
629#define IL1_SET
630#elif LAST_DEC_ROUND == FOUR_TABLES
631#define IL4_SET
632#elif !defined(ISB_SET)
633#define ISB_SET
634#endif
635#endif
636
637#if (FUNCS_IN_C & ENC_KEYING_IN_C) || (FUNCS_IN_C & DEC_KEYING_IN_C)
638#if KEY_SCHED == ONE_TABLE
639#define LS1_SET
640#elif KEY_SCHED == FOUR_TABLES
641#define LS4_SET
642#elif !defined( SBX_SET )
643#define SBX_SET
644#endif
645#endif
646
647#if (FUNCS_IN_C & DEC_KEYING_IN_C)
648#if KEY_SCHED == ONE_TABLE
649#define IM1_SET
650#elif KEY_SCHED == FOUR_TABLES
651#define IM4_SET
652#elif !defined( SBX_SET )
653#define SBX_SET
654#endif
655#endif
656
657/* generic definitions of Rijndael macros that use tables    */
658
659#define no_table(x,box,vf,rf,c) bytes2word( \
660    box[bval(vf(x,0,c),rf(0,c))], \
661    box[bval(vf(x,1,c),rf(1,c))], \
662    box[bval(vf(x,2,c),rf(2,c))], \
663    box[bval(vf(x,3,c),rf(3,c))])
664
665#define one_table(x,op,tab,vf,rf,c) \
666 (     tab[bval(vf(x,0,c),rf(0,c))] \
667  ^ op(tab[bval(vf(x,1,c),rf(1,c))],1) \
668  ^ op(tab[bval(vf(x,2,c),rf(2,c))],2) \
669  ^ op(tab[bval(vf(x,3,c),rf(3,c))],3))
670
671#define four_tables(x,tab,vf,rf,c) \
672 (  tab[0][bval(vf(x,0,c),rf(0,c))] \
673  ^ tab[1][bval(vf(x,1,c),rf(1,c))] \
674  ^ tab[2][bval(vf(x,2,c),rf(2,c))] \
675  ^ tab[3][bval(vf(x,3,c),rf(3,c))])
676
677#define vf1(x,r,c)  (x)
678#define rf1(r,c)    (r)
679#define rf2(r,c)    ((8+r-c)&3)
680
681/* perform forward and inverse column mix operation on four bytes in long word x in */
682/* parallel. NOTE: x must be a simple variable, NOT an expression in these macros.  */
683
684#if defined( FM4_SET )    /* not currently used */
685#define fwd_mcol(x)       four_tables(x,t_use(f,m),vf1,rf1,0)
686#elif defined( FM1_SET )  /* not currently used */
687#define fwd_mcol(x)       one_table(x,upr,t_use(f,m),vf1,rf1,0)
688#else
689#define dec_fmvars        uint_32t g2
690#define fwd_mcol(x)       (g2 = gf_mulx(x), g2 ^ upr((x) ^ g2, 3) ^ upr((x), 2) ^ upr((x), 1))
691#endif
692
693#if defined( IM4_SET )
694#define inv_mcol(x)       four_tables(x,t_use(i,m),vf1,rf1,0)
695#elif defined( IM1_SET )
696#define inv_mcol(x)       one_table(x,upr,t_use(i,m),vf1,rf1,0)
697#else
698#define dec_imvars        uint_32t g2, g4, g9
699#define inv_mcol(x)       (g2 = gf_mulx(x), g4 = gf_mulx(g2), g9 = (x) ^ gf_mulx(g4), g4 ^= g9, \
700                          (x) ^ g2 ^ g4 ^ upr(g2 ^ g9, 3) ^ upr(g4, 2) ^ upr(g9, 1))
701#endif
702
703#if defined( FL4_SET )
704#define ls_box(x,c)       four_tables(x,t_use(f,l),vf1,rf2,c)
705#elif   defined( LS4_SET )
706#define ls_box(x,c)       four_tables(x,t_use(l,s),vf1,rf2,c)
707#elif defined( FL1_SET )
708#define ls_box(x,c)       one_table(x,upr,t_use(f,l),vf1,rf2,c)
709#elif defined( LS1_SET )
710#define ls_box(x,c)       one_table(x,upr,t_use(l,s),vf1,rf2,c)
711#else
712#define ls_box(x,c)     no_table(x,t_use(s,box),vf1,rf2,c)
713#endif
714
715#if defined( ASM_X86_V1C ) && defined( AES_DECRYPT ) && !defined( ISB_SET )
716#define ISB_SET
717#endif
718
719#endif
720