1/*
2 * Copyright (c) 2012-2013 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28#include <mach/host_priv.h>
29#include <mach/host_special_ports.h>
30#include <mach/mach_types.h>
31#include <mach/telemetry_notification_server.h>
32
33#include <kern/assert.h>
34#include <kern/clock.h>
35#include <kern/debug.h>
36#include <kern/host.h>
37#include <kern/kalloc.h>
38#include <kern/kern_types.h>
39#include <kern/locks.h>
40#include <kern/misc_protos.h>
41#include <kern/sched.h>
42#include <kern/sched_prim.h>
43#include <kern/telemetry.h>
44#include <kern/timer_call.h>
45
46#include <pexpert/pexpert.h>
47
48#include <vm/vm_kern.h>
49#include <vm/vm_shared_region.h>
50
51#include <kperf/kperf.h>
52#include <kperf/context.h>
53#include <kperf/callstack.h>
54
55#include <sys/kdebug.h>
56#include <uuid/uuid.h>
57#include <kdp/kdp_dyld.h>
58
59#define TELEMETRY_DEBUG 0
60
61extern int	proc_pid(void *);
62extern char	*proc_name_address(void *p);
63extern uint64_t proc_uniqueid(void *p);
64extern uint64_t proc_was_throttled(void *p);
65extern uint64_t proc_did_throttle(void *p);
66extern uint64_t get_dispatchqueue_serialno_offset_from_proc(void *p);
67extern int	proc_selfpid(void);
68
69struct micro_snapshot_buffer {
70	vm_offset_t		buffer;
71	uint32_t		size;
72	uint32_t		current_position;
73	uint32_t		end_point;
74};
75
76void telemetry_take_sample(thread_t thread, uint8_t microsnapshot_flags, struct micro_snapshot_buffer * current_buffer);
77int telemetry_buffer_gather(user_addr_t buffer, uint32_t *length, boolean_t mark, struct micro_snapshot_buffer * current_buffer);
78
79#define TELEMETRY_DEFAULT_SAMPLE_RATE (1) /* 1 sample every 1 second */
80#define TELEMETRY_DEFAULT_WINDOW_BUFFER_SIZE (512*1024) /* Should hopefully provide 10 seconds worth of samples */
81#define TELEMETRY_DEFAULT_BUFFER_SIZE (16*1024)
82#define TELEMETRY_MAX_BUFFER_SIZE (64*1024)
83
84#define	TELEMETRY_DEFAULT_NOTIFY_LEEWAY (4*1024) // Userland gets 4k of leeway to collect data after notification
85#define	TELEMETRY_MAX_UUID_COUNT (128) // Max of 128 non-shared-cache UUIDs to log for symbolication
86
87uint32_t 			telemetry_sample_rate = 0;
88volatile boolean_t 	telemetry_needs_record = FALSE;
89volatile boolean_t	telemetry_windowed_record = FALSE;
90volatile boolean_t 	telemetry_needs_timer_arming_record = FALSE;
91
92/*
93 * Tells the scheduler that we want it to invoke
94 * compute_telemetry_windowed(); it is still our responsibility
95 * to ensure that we do not panic if someone disables the window
96 * buffer immediately after the scheduler does so.
97 */
98volatile boolean_t	telemetry_window_enabled = FALSE;
99
100/*
101 * If TRUE, record micro-stackshot samples for all tasks.
102 * If FALSE, only sample tasks which are marked for telemetry.
103 */
104boolean_t			telemetry_sample_all_tasks = FALSE;
105uint32_t			telemetry_active_tasks = 0; // Number of tasks opted into telemetry
106
107uint32_t			telemetry_timestamp = 0;
108
109/*
110 * We have two buffers.  The telemetry_buffer is responsible
111 * for timer samples and interrupt samples that are driven by
112 * compute_averages().  It will notify its client (if one
113 * exists) when it has enough data to be worth flushing.
114 *
115 * The window_buffer contains only interrupt_samples that are
116 * driven by the scheduler.  Its intent is to provide a
117 * window of recent activity on the cpu(s).
118 */
119struct micro_snapshot_buffer telemetry_buffer = {0, 0, 0, 0};
120struct micro_snapshot_buffer window_buffer = {0, 0, 0, 0};
121
122int					telemetry_bytes_since_last_mark = -1; // How much data since buf was last marked?
123int					telemetry_buffer_notify_at = 0;
124
125lck_grp_t       	telemetry_lck_grp;
126lck_mtx_t       	telemetry_mtx;
127
128#define TELEMETRY_LOCK() do { lck_mtx_lock(&telemetry_mtx); } while(0)
129#define TELEMETRY_TRY_SPIN_LOCK() lck_mtx_try_lock_spin(&telemetry_mtx)
130#define TELEMETRY_UNLOCK() do { lck_mtx_unlock(&telemetry_mtx); } while(0)
131
132void telemetry_init(void)
133{
134	kern_return_t ret;
135	uint32_t	  telemetry_notification_leeway;
136
137	lck_grp_init(&telemetry_lck_grp, "telemetry group", LCK_GRP_ATTR_NULL);
138	lck_mtx_init(&telemetry_mtx, &telemetry_lck_grp, LCK_ATTR_NULL);
139
140	if (!PE_parse_boot_argn("telemetry_buffer_size", &telemetry_buffer.size, sizeof(telemetry_buffer.size))) {
141		telemetry_buffer.size = TELEMETRY_DEFAULT_BUFFER_SIZE;
142	}
143
144	if (telemetry_buffer.size > TELEMETRY_MAX_BUFFER_SIZE)
145		telemetry_buffer.size = TELEMETRY_MAX_BUFFER_SIZE;
146
147	ret = kmem_alloc(kernel_map, &telemetry_buffer.buffer, telemetry_buffer.size);
148	if (ret != KERN_SUCCESS) {
149		kprintf("Telemetry: Allocation failed: %d\n", ret);
150		return;
151	}
152	bzero((void *) telemetry_buffer.buffer, telemetry_buffer.size);
153
154	if (!PE_parse_boot_argn("telemetry_notification_leeway", &telemetry_notification_leeway, sizeof(telemetry_notification_leeway))) {
155		/*
156		 * By default, notify the user to collect the buffer when there is this much space left in the buffer.
157		 */
158		telemetry_notification_leeway = TELEMETRY_DEFAULT_NOTIFY_LEEWAY;
159	}
160	if (telemetry_notification_leeway >= telemetry_buffer.size) {
161		printf("telemetry: nonsensical telemetry_notification_leeway boot-arg %d changed to %d\n",
162		       telemetry_notification_leeway, TELEMETRY_DEFAULT_NOTIFY_LEEWAY);
163		telemetry_notification_leeway = TELEMETRY_DEFAULT_NOTIFY_LEEWAY;
164	}
165	telemetry_buffer_notify_at = telemetry_buffer.size - telemetry_notification_leeway;
166
167	if (!PE_parse_boot_argn("telemetry_sample_rate", &telemetry_sample_rate, sizeof(telemetry_sample_rate))) {
168		telemetry_sample_rate = TELEMETRY_DEFAULT_SAMPLE_RATE;
169	}
170
171	/*
172	 * To enable telemetry for all tasks, include "telemetry_sample_all_tasks=1" in boot-args.
173	 */
174	if (!PE_parse_boot_argn("telemetry_sample_all_tasks", &telemetry_sample_all_tasks, sizeof(telemetry_sample_all_tasks))) {
175
176		telemetry_sample_all_tasks = TRUE;
177
178	}
179
180	kprintf("Telemetry: Sampling %stasks once per %u second%s\n",
181		(telemetry_sample_all_tasks) ? "all " : "",
182		telemetry_sample_rate, telemetry_sample_rate == 1 ? "" : "s");
183}
184
185/*
186 * Enable or disable global microstackshots (ie telemetry_sample_all_tasks).
187 *
188 * enable_disable == 1: turn it on
189 * enable_disable == 0: turn it off
190 */
191void
192telemetry_global_ctl(int enable_disable)
193{
194	if (enable_disable == 1) {
195		telemetry_sample_all_tasks = TRUE;
196	} else {
197		telemetry_sample_all_tasks = FALSE;
198	}
199}
200
201/*
202 * Opt the given task into or out of the telemetry stream.
203 *
204 * Supported reasons (callers may use any or all of):
205 *     TF_CPUMON_WARNING
206 *     TF_WAKEMON_WARNING
207 *
208 * enable_disable == 1: turn it on
209 * enable_disable == 0: turn it off
210 */
211void
212telemetry_task_ctl(task_t task, uint32_t reasons, int enable_disable)
213{
214	task_lock(task);
215	telemetry_task_ctl_locked(task, reasons, enable_disable);
216	task_unlock(task);
217}
218
219void
220telemetry_task_ctl_locked(task_t task, uint32_t reasons, int enable_disable)
221{
222	uint32_t origflags;
223
224	assert((reasons != 0) && ((reasons | TF_TELEMETRY) == TF_TELEMETRY));
225
226	task_lock_assert_owned(task);
227
228	origflags = task->t_flags;
229
230	if (enable_disable == 1) {
231		task->t_flags |= reasons;
232		if ((origflags & TF_TELEMETRY) == 0) {
233			OSIncrementAtomic(&telemetry_active_tasks);
234#if TELEMETRY_DEBUG
235			printf("%s: telemetry OFF -> ON (%d active)\n", proc_name_address(task->bsd_info), telemetry_active_tasks);
236#endif
237		}
238	} else {
239		task->t_flags &= ~reasons;
240		if (((origflags & TF_TELEMETRY) != 0) && ((task->t_flags & TF_TELEMETRY) == 0)) {
241			/*
242			 * If this task went from having at least one telemetry bit to having none,
243			 * the net change was to disable telemetry for the task.
244			 */
245			OSDecrementAtomic(&telemetry_active_tasks);
246#if TELEMETRY_DEBUG
247			printf("%s: telemetry ON -> OFF (%d active)\n", proc_name_address(task->bsd_info), telemetry_active_tasks);
248#endif
249		}
250	}
251}
252
253/*
254 * Enable the window_buffer, and do any associated setup.
255 */
256kern_return_t
257telemetry_enable_window(void)
258{
259	kern_return_t ret = KERN_SUCCESS;
260	vm_offset_t kern_buffer = 0;
261	vm_size_t kern_buffer_size = TELEMETRY_DEFAULT_WINDOW_BUFFER_SIZE;
262
263	/*
264	 * We have no guarantee we won't allocate the buffer, take
265	 * the lock, and then discover someone beat us to the punch,
266	 * but we would prefer to avoid blocking while holding the
267	 * lock.
268	 */
269	ret = kmem_alloc(kernel_map, &kern_buffer, kern_buffer_size);
270
271	TELEMETRY_LOCK();
272
273	if (!window_buffer.buffer) {
274		if (ret == KERN_SUCCESS) {
275			/* No existing buffer was found, so... */
276			window_buffer.end_point = 0;
277			window_buffer.current_position = 0;
278
279			/* Hand off the buffer, and... */
280			window_buffer.size = (uint32_t) kern_buffer_size;
281			window_buffer.buffer = kern_buffer;
282			kern_buffer = 0;
283			kern_buffer_size = 0;
284			bzero((void *) window_buffer.buffer, window_buffer.size);
285
286			/* Let the scheduler know it should drive windowed samples */
287			telemetry_window_enabled = TRUE;
288		}
289	} else {
290		/* We already have a buffer, so we have "succeeded" */
291		ret = KERN_SUCCESS;
292	}
293
294	TELEMETRY_UNLOCK();
295
296	if (kern_buffer)
297		kmem_free(kernel_map, kern_buffer, kern_buffer_size);
298
299	return ret;
300}
301
302/*
303 * Disable the window_buffer, and do any associated teardown.
304 */
305void
306telemetry_disable_window(void)
307{
308	vm_offset_t kern_buffer = 0;
309	vm_size_t kern_buffer_size = 0;
310
311	TELEMETRY_LOCK();
312
313	if (window_buffer.buffer) {
314		/* We have a window buffer, so tear it down */
315		telemetry_window_enabled = FALSE;
316		kern_buffer = window_buffer.buffer;
317		kern_buffer_size = window_buffer.size;
318		window_buffer.buffer = 0;
319		window_buffer.size = 0;
320		window_buffer.current_position = 0;
321		window_buffer.end_point = 0;
322	}
323
324	TELEMETRY_UNLOCK();
325
326	if (kern_buffer)
327		kmem_free(kernel_map, kern_buffer, kern_buffer_size);
328}
329
330/*
331 * Determine if the current thread is eligible for telemetry:
332 *
333 * telemetry_sample_all_tasks: All threads are eligible. This takes precedence.
334 * telemetry_active_tasks: Count of tasks opted in.
335 * task->t_flags & TF_TELEMETRY: This task is opted in.
336 */
337static boolean_t
338telemetry_is_active(thread_t thread)
339{
340	if (telemetry_sample_all_tasks == TRUE) {
341		return (TRUE);
342	}
343
344	if ((telemetry_active_tasks > 0) && ((thread->task->t_flags & TF_TELEMETRY) != 0)) {
345		return (TRUE);
346	}
347
348	return (FALSE);
349}
350
351/*
352 * Userland is arming a timer. If we are eligible for such a record,
353 * sample now. No need to do this one at the AST because we're already at
354 * a safe place in this system call.
355 */
356int telemetry_timer_event(__unused uint64_t deadline, __unused uint64_t interval, __unused uint64_t leeway)
357{
358	if (telemetry_needs_timer_arming_record == TRUE) {
359		telemetry_needs_timer_arming_record = FALSE;
360		telemetry_take_sample(current_thread(), kTimerArmingRecord | kUserMode, &telemetry_buffer);
361	}
362
363	return (0);
364}
365
366/*
367 * Mark the current thread for an interrupt-based
368 * telemetry record, to be sampled at the next AST boundary.
369 */
370void telemetry_mark_curthread(boolean_t interrupted_userspace)
371{
372	uint32_t ast_bits = 0;
373	thread_t thread = current_thread();
374
375	/*
376	 * If telemetry isn't active for this thread, return and try
377	 * again next time.
378	 */
379	if (telemetry_is_active(thread) == FALSE) {
380		return;
381	}
382
383	ast_bits |= (interrupted_userspace ? AST_TELEMETRY_USER : AST_TELEMETRY_KERNEL);
384
385	if (telemetry_windowed_record) {
386		ast_bits |= AST_TELEMETRY_WINDOWED;
387	}
388
389	telemetry_windowed_record = FALSE;
390	telemetry_needs_record = FALSE;
391	thread_ast_set(thread, ast_bits);
392	ast_propagate(thread->ast);
393}
394
395void compute_telemetry(void *arg __unused)
396{
397	if (telemetry_sample_all_tasks || (telemetry_active_tasks > 0)) {
398		if ((++telemetry_timestamp) % telemetry_sample_rate == 0) {
399			telemetry_needs_record = TRUE;
400			telemetry_needs_timer_arming_record = TRUE;
401		}
402	}
403}
404
405void compute_telemetry_windowed(void)
406{
407	if (telemetry_sample_all_tasks || (telemetry_active_tasks > 0)) {
408		/*
409		 * Due to the relationship between the two fields here,
410		 * a request for a windowed record will "squash" a
411		 * request for a regular interrupt record.  We hedge
412		 * against this by doing a quick check for an existing
413		 * request.  compute_telemetry doesn't hedge because
414		 * a regular request cannot squash a windowed request
415		 * (due to the implementation).
416		 *
417		 * If we really want to do this properly, we could make
418		 * telemetry_needs_record a bitfield, and process one
419		 * request per telemetry_mark_curthread... but that
420		 * would be more expensive (atomics).  This should be
421		 * robust enough for now (although it biases in favor
422		 * of the regular records).
423		 */
424		if (!telemetry_needs_record) {
425			telemetry_needs_record = TRUE;
426			telemetry_windowed_record = TRUE;
427		}
428	}
429}
430
431/*
432 * If userland has registered a port for telemetry notifications, send one now.
433 */
434static void
435telemetry_notify_user(void)
436{
437	mach_port_t user_port;
438	uint32_t	flags = 0;
439	int			error;
440
441	error = host_get_telemetry_port(host_priv_self(), &user_port);
442	if ((error != KERN_SUCCESS) || !IPC_PORT_VALID(user_port)) {
443		return;
444	}
445
446	telemetry_notification(user_port, flags);
447}
448
449void telemetry_ast(thread_t thread, boolean_t interrupted_userspace, boolean_t is_windowed)
450{
451	uint8_t microsnapshot_flags = kInterruptRecord;
452
453	if (interrupted_userspace)
454		microsnapshot_flags |= kUserMode;
455
456	if (is_windowed) {
457		telemetry_take_sample(thread, microsnapshot_flags, &window_buffer);
458	} else {
459		telemetry_take_sample(thread, microsnapshot_flags, &telemetry_buffer);
460	}
461}
462
463void telemetry_take_sample(thread_t thread, uint8_t microsnapshot_flags, struct micro_snapshot_buffer * current_buffer)
464{
465	task_t task;
466	void *p;
467	struct kperf_context ctx;
468	struct callstack cs;
469	uint32_t btcount, bti;
470	struct micro_snapshot *msnap;
471	struct task_snapshot *tsnap;
472	struct thread_snapshot *thsnap;
473	clock_sec_t secs;
474	clock_usec_t usecs;
475	vm_size_t framesize;
476	uint32_t current_record_start;
477	uint32_t tmp = 0;
478	boolean_t notify = FALSE;
479
480	if (thread == THREAD_NULL)
481		return;
482
483	task = thread->task;
484	if ((task == TASK_NULL) || (task == kernel_task))
485		return;
486
487	/*
488	 * To avoid overloading the system with telemetry requests, make
489	 * sure we don't add more requests while existing ones are
490	 * in-flight.  Attempt this by checking if we can grab the lock.
491	 *
492	 * This concerns me a little; this working as intended is
493	 * contingent on the workload being done in the context of the
494	 * telemetry lock being the expensive part of telemetry.  This
495	 * includes populating the buffer and the client gathering it,
496	 * but excludes the copyin overhead.
497	 */
498	if (!TELEMETRY_TRY_SPIN_LOCK())
499		return;
500
501	TELEMETRY_UNLOCK();
502
503	/* telemetry_XXX accessed outside of lock for instrumentation only */
504	/* TODO */
505	KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_STACKSHOT, MICROSTACKSHOT_RECORD) | DBG_FUNC_START, microsnapshot_flags, telemetry_bytes_since_last_mark, 0, 0, (&telemetry_buffer != current_buffer));
506
507	p = get_bsdtask_info(task);
508
509	ctx.cur_thread = thread;
510	ctx.cur_pid = proc_pid(p);
511
512	/*
513	 * Gather up the data we'll need for this sample. The sample is written into the kernel
514	 * buffer with the global telemetry lock held -- so we must do our (possibly faulting)
515	 * copies from userland here, before taking the lock.
516	 */
517	kperf_ucallstack_sample(&cs, &ctx);
518	if (!(cs.flags & CALLSTACK_VALID))
519		return;
520
521	/*
522	 * Find the actual [slid] address of the shared cache's UUID, and copy it in from userland.
523	 */
524	int		 					shared_cache_uuid_valid = 0;
525	uint64_t					shared_cache_base_address;
526	struct _dyld_cache_header	shared_cache_header;
527	uint64_t					shared_cache_slide;
528
529	/*
530	 * Don't copy in the entire shared cache header; we only need the UUID. Calculate the
531	 * offset of that one field.
532	 */
533	int sc_header_uuid_offset = (char *)&shared_cache_header.uuid - (char *)&shared_cache_header;
534	vm_shared_region_t sr = vm_shared_region_get(task);
535	if (sr != NULL) {
536		if ((vm_shared_region_start_address(sr, &shared_cache_base_address) == KERN_SUCCESS) &&
537			(copyin(shared_cache_base_address + sc_header_uuid_offset, (char *)&shared_cache_header.uuid,
538	    	    sizeof (shared_cache_header.uuid)) == 0)) {
539			shared_cache_uuid_valid = 1;
540			shared_cache_slide = vm_shared_region_get_slide(sr);
541		}
542		// vm_shared_region_get() gave us a reference on the shared region.
543		vm_shared_region_deallocate(sr);
544	}
545
546	/*
547	 * Retrieve the array of UUID's for binaries used by this task.
548	 * We reach down into DYLD's data structures to find the array.
549	 *
550	 * XXX - make this common with kdp?
551	 */
552	uint32_t			uuid_info_count = 0;
553	mach_vm_address_t	uuid_info_addr = 0;
554	if (task_has_64BitAddr(task)) {
555		struct user64_dyld_all_image_infos task_image_infos;
556		if (copyin(task->all_image_info_addr, (char *)&task_image_infos, sizeof(task_image_infos)) == 0) {
557			uuid_info_count = (uint32_t)task_image_infos.uuidArrayCount;
558			uuid_info_addr = task_image_infos.uuidArray;
559		}
560	} else {
561		struct user32_dyld_all_image_infos task_image_infos;
562		if (copyin(task->all_image_info_addr, (char *)&task_image_infos, sizeof(task_image_infos)) == 0) {
563			uuid_info_count = task_image_infos.uuidArrayCount;
564			uuid_info_addr = task_image_infos.uuidArray;
565		}
566	}
567
568	/*
569	 * If we get a NULL uuid_info_addr (which can happen when we catch dyld in the middle of updating
570	 * this data structure), we zero the uuid_info_count so that we won't even try to save load info
571	 * for this task.
572	 */
573	if (!uuid_info_addr) {
574		uuid_info_count = 0;
575	}
576
577	/*
578	 * Don't copy in an unbounded amount of memory. The main binary and interesting
579	 * non-shared-cache libraries should be in the first few images.
580	 */
581	if (uuid_info_count > TELEMETRY_MAX_UUID_COUNT) {
582		uuid_info_count = TELEMETRY_MAX_UUID_COUNT;
583	}
584
585	uint32_t uuid_info_size = (uint32_t)(task_has_64BitAddr(thread->task) ? sizeof(struct user64_dyld_uuid_info) : sizeof(struct user32_dyld_uuid_info));
586	uint32_t uuid_info_array_size = uuid_info_count * uuid_info_size;
587	char	 *uuid_info_array = NULL;
588
589	if (uuid_info_count > 0) {
590		if ((uuid_info_array = (char *)kalloc(uuid_info_array_size)) == NULL) {
591			return;
592		}
593
594		/*
595		 * Copy in the UUID info array.
596		 * It may be nonresident, in which case just fix up nloadinfos to 0 in the task snapshot.
597		 */
598		if (copyin(uuid_info_addr, uuid_info_array, uuid_info_array_size) != 0) {
599			kfree(uuid_info_array, uuid_info_array_size);
600			uuid_info_array = NULL;
601			uuid_info_array_size = 0;
602		}
603	}
604
605	/*
606	 * Look for a dispatch queue serial number, and copy it in from userland if present.
607	 */
608	uint64_t dqserialnum = 0;
609	int		 dqserialnum_valid = 0;
610
611	uint64_t dqkeyaddr = thread_dispatchqaddr(thread);
612	if (dqkeyaddr != 0) {
613		uint64_t dqaddr = 0;
614		uint64_t dq_serialno_offset = get_dispatchqueue_serialno_offset_from_proc(task->bsd_info);
615		if ((copyin(dqkeyaddr, (char *)&dqaddr, (task_has_64BitAddr(task) ? 8 : 4)) == 0) &&
616		    (dqaddr != 0) && (dq_serialno_offset != 0)) {
617			uint64_t dqserialnumaddr = dqaddr + dq_serialno_offset;
618			if (copyin(dqserialnumaddr, (char *)&dqserialnum, (task_has_64BitAddr(task) ? 8 : 4)) == 0) {
619				dqserialnum_valid = 1;
620			}
621		}
622	}
623
624	clock_get_calendar_microtime(&secs, &usecs);
625
626	TELEMETRY_LOCK();
627
628	/*
629	 * For the benefit of the window buffer; if our buffer is not backed by anything,
630	 * then we cannot take the sample.  Meant to allow us to deallocate the window
631	 * buffer if it is disabled.
632	 */
633	if (!current_buffer->buffer)
634		goto cancel_sample;
635
636	/*
637	 * We do the bulk of the operation under the telemetry lock, on assumption that
638	 * any page faults during execution will not cause another AST_TELEMETRY_ALL
639	 * to deadlock; they will just block until we finish. This makes it easier
640	 * to copy into the buffer directly. As soon as we unlock, userspace can copy
641	 * out of our buffer.
642	 */
643
644copytobuffer:
645
646	current_record_start = current_buffer->current_position;
647
648	if ((current_buffer->size - current_buffer->current_position) < sizeof(struct micro_snapshot)) {
649		/*
650		 * We can't fit a record in the space available, so wrap around to the beginning.
651		 * Save the current position as the known end point of valid data.
652		 */
653		current_buffer->end_point = current_record_start;
654		current_buffer->current_position = 0;
655		if (current_record_start == 0) {
656			/* This sample is too large to fit in the buffer even when we started at 0, so skip it */
657			goto cancel_sample;
658		}
659		goto copytobuffer;
660	}
661
662	msnap = (struct micro_snapshot *)(uintptr_t)(current_buffer->buffer + current_buffer->current_position);
663	msnap->snapshot_magic = STACKSHOT_MICRO_SNAPSHOT_MAGIC;
664	msnap->ms_flags = microsnapshot_flags;
665	msnap->ms_opaque_flags = 0; /* namespace managed by userspace */
666	msnap->ms_cpu = 0; /* XXX - does this field make sense for a micro-stackshot? */
667	msnap->ms_time = secs;
668	msnap->ms_time_microsecs = usecs;
669
670	current_buffer->current_position += sizeof(struct micro_snapshot);
671
672	if ((current_buffer->size - current_buffer->current_position) < sizeof(struct task_snapshot)) {
673		current_buffer->end_point = current_record_start;
674		current_buffer->current_position = 0;
675		if (current_record_start == 0) {
676			/* This sample is too large to fit in the buffer even when we started at 0, so skip it */
677			goto cancel_sample;
678		}
679		goto copytobuffer;
680	}
681
682	tsnap = (struct task_snapshot *)(uintptr_t)(current_buffer->buffer + current_buffer->current_position);
683	bzero(tsnap, sizeof(*tsnap));
684	tsnap->snapshot_magic = STACKSHOT_TASK_SNAPSHOT_MAGIC;
685	tsnap->pid = proc_pid(p);
686	tsnap->uniqueid = proc_uniqueid(p);
687	tsnap->user_time_in_terminated_threads = task->total_user_time;
688	tsnap->system_time_in_terminated_threads = task->total_system_time;
689	tsnap->suspend_count = task->suspend_count;
690	tsnap->task_size = pmap_resident_count(task->map->pmap);
691	tsnap->faults = task->faults;
692	tsnap->pageins = task->pageins;
693	tsnap->cow_faults = task->cow_faults;
694	/*
695	 * The throttling counters are maintained as 64-bit counters in the proc
696	 * structure. However, we reserve 32-bits (each) for them in the task_snapshot
697	 * struct to save space and since we do not expect them to overflow 32-bits. If we
698	 * find these values overflowing in the future, the fix would be to simply
699	 * upgrade these counters to 64-bit in the task_snapshot struct
700	 */
701	tsnap->was_throttled = (uint32_t) proc_was_throttled(p);
702	tsnap->did_throttle = (uint32_t) proc_did_throttle(p);
703
704	if (task->t_flags & TF_TELEMETRY) {
705		tsnap->ss_flags |= kTaskRsrcFlagged;
706	}
707
708	if (task->effective_policy.darwinbg == 1) {
709		tsnap->ss_flags |= kTaskDarwinBG;
710	}
711
712	proc_get_darwinbgstate(task, &tmp);
713
714	if (task->requested_policy.t_role == TASK_FOREGROUND_APPLICATION) {
715		tsnap->ss_flags |= kTaskIsForeground;
716	}
717
718	if (tmp & PROC_FLAG_ADAPTIVE_IMPORTANT) {
719		tsnap->ss_flags |= kTaskIsBoosted;
720	}
721
722	if (tmp & PROC_FLAG_SUPPRESSED) {
723		tsnap->ss_flags |= kTaskIsSuppressed;
724	}
725
726	tsnap->latency_qos = task_grab_latency_qos(task);
727
728	strlcpy(tsnap->p_comm, proc_name_address(p), sizeof(tsnap->p_comm));
729	if (task_has_64BitAddr(thread->task)) {
730		tsnap->ss_flags |= kUser64_p;
731	}
732
733	if (shared_cache_uuid_valid) {
734		tsnap->shared_cache_slide = shared_cache_slide;
735		bcopy(shared_cache_header.uuid, tsnap->shared_cache_identifier, sizeof (shared_cache_header.uuid));
736	}
737
738	current_buffer->current_position += sizeof(struct task_snapshot);
739
740	/*
741	 * Directly after the task snapshot, place the array of UUID's corresponding to the binaries
742	 * used by this task.
743	 */
744	if ((current_buffer->size - current_buffer->current_position) < uuid_info_array_size) {
745		current_buffer->end_point = current_record_start;
746		current_buffer->current_position = 0;
747		if (current_record_start == 0) {
748			/* This sample is too large to fit in the buffer even when we started at 0, so skip it */
749			goto cancel_sample;
750		}
751		goto copytobuffer;
752	}
753
754	/*
755	 * Copy the UUID info array into our sample.
756	 */
757	if (uuid_info_array_size > 0) {
758		bcopy(uuid_info_array, (char *)(current_buffer->buffer + current_buffer->current_position), uuid_info_array_size);
759		tsnap->nloadinfos = uuid_info_count;
760	}
761
762	current_buffer->current_position += uuid_info_array_size;
763
764	/*
765	 * After the task snapshot & list of binary UUIDs, we place a thread snapshot.
766	 */
767
768	if ((current_buffer->size - current_buffer->current_position) < sizeof(struct thread_snapshot)) {
769		/* wrap and overwrite */
770		current_buffer->end_point = current_record_start;
771		current_buffer->current_position = 0;
772		if (current_record_start == 0) {
773			/* This sample is too large to fit in the buffer even when we started at 0, so skip it */
774			goto cancel_sample;
775		}
776		goto copytobuffer;
777	}
778
779	thsnap = (struct thread_snapshot *)(uintptr_t)(current_buffer->buffer + current_buffer->current_position);
780	bzero(thsnap, sizeof(*thsnap));
781
782	thsnap->snapshot_magic = STACKSHOT_THREAD_SNAPSHOT_MAGIC;
783	thsnap->thread_id = thread_tid(thread);
784	thsnap->state = thread->state;
785	thsnap->priority = thread->priority;
786	thsnap->sched_pri = thread->sched_pri;
787	thsnap->sched_flags = thread->sched_flags;
788	thsnap->ss_flags |= kStacksPCOnly;
789	thsnap->ts_qos = thread->effective_policy.thep_qos;
790
791	if (thread->effective_policy.darwinbg) {
792		thsnap->ss_flags |= kThreadDarwinBG;
793	}
794
795	thsnap->user_time = timer_grab(&thread->user_timer);
796
797	uint64_t tval = timer_grab(&thread->system_timer);
798
799	if (thread->precise_user_kernel_time) {
800		thsnap->system_time = tval;
801	} else {
802		thsnap->user_time += tval;
803		thsnap->system_time = 0;
804	}
805
806	current_buffer->current_position += sizeof(struct thread_snapshot);
807
808	/*
809	 * If this thread has a dispatch queue serial number, include it here.
810	 */
811	if (dqserialnum_valid) {
812		if ((current_buffer->size - current_buffer->current_position) < sizeof(dqserialnum)) {
813			/* wrap and overwrite */
814			current_buffer->end_point = current_record_start;
815			current_buffer->current_position = 0;
816			if (current_record_start == 0) {
817				/* This sample is too large to fit in the buffer even when we started at 0, so skip it */
818				goto cancel_sample;
819			}
820			goto copytobuffer;
821		}
822
823		thsnap->ss_flags |= kHasDispatchSerial;
824		bcopy(&dqserialnum, (char *)current_buffer->buffer + current_buffer->current_position, sizeof (dqserialnum));
825		current_buffer->current_position += sizeof (dqserialnum);
826	}
827
828	if (task_has_64BitAddr(task)) {
829		framesize = 8;
830		thsnap->ss_flags |= kUser64_p;
831	} else {
832		framesize = 4;
833	}
834
835	btcount = cs.nframes;
836
837	/*
838	 * If we can't fit this entire stacktrace then cancel this record, wrap to the beginning,
839	 * and start again there so that we always store a full record.
840	 */
841	if ((current_buffer->size - current_buffer->current_position)/framesize < btcount) {
842		current_buffer->end_point = current_record_start;
843		current_buffer->current_position = 0;
844		if (current_record_start == 0) {
845			/* This sample is too large to fit in the buffer even when we started at 0, so skip it */
846			goto cancel_sample;
847		}
848		goto copytobuffer;
849	}
850
851	for (bti=0; bti < btcount; bti++, current_buffer->current_position += framesize) {
852		if (framesize == 8) {
853			*(uint64_t *)(uintptr_t)(current_buffer->buffer + current_buffer->current_position) = cs.frames[bti];
854		} else {
855			*(uint32_t *)(uintptr_t)(current_buffer->buffer + current_buffer->current_position) = (uint32_t)cs.frames[bti];
856		}
857	}
858
859	if (current_buffer->end_point < current_buffer->current_position) {
860		/*
861		 * Each time the cursor wraps around to the beginning, we leave a
862		 * differing amount of unused space at the end of the buffer. Make
863		 * sure the cursor pushes the end point in case we're making use of
864		 * more of the buffer than we did the last time we wrapped.
865		 */
866		current_buffer->end_point = current_buffer->current_position;
867	}
868
869	thsnap->nuser_frames = btcount;
870
871	/*
872	 * Now THIS is a hack.
873	 */
874	if (current_buffer == &telemetry_buffer) {
875		telemetry_bytes_since_last_mark += (current_buffer->current_position - current_record_start);
876		if (telemetry_bytes_since_last_mark > telemetry_buffer_notify_at) {
877			notify = TRUE;
878		}
879	}
880
881cancel_sample:
882
883	TELEMETRY_UNLOCK();
884
885	/* TODO */
886	KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_STACKSHOT, MICROSTACKSHOT_RECORD) | DBG_FUNC_END, notify, telemetry_bytes_since_last_mark, current_buffer->current_position, current_buffer->end_point, (&telemetry_buffer != current_buffer));
887
888	if (notify) {
889		telemetry_notify_user();
890	}
891
892	if (uuid_info_array != NULL) {
893		kfree(uuid_info_array, uuid_info_array_size);
894	}
895}
896
897#if TELEMETRY_DEBUG
898static void
899log_telemetry_output(vm_offset_t buf, uint32_t pos, uint32_t sz)
900{
901	struct micro_snapshot *p;
902	uint32_t offset;
903
904	printf("Copying out %d bytes of telemetry at offset %d\n", sz, pos);
905
906	buf += pos;
907
908	/*
909	 * Find and log each timestamp in this chunk of buffer.
910	 */
911	for (offset = 0; offset < sz; offset++) {
912		p = (struct micro_snapshot *)(buf + offset);
913		if (p->snapshot_magic == STACKSHOT_MICRO_SNAPSHOT_MAGIC) {
914			printf("telemetry timestamp: %lld\n", p->ms_time);
915		}
916	}
917}
918#endif
919
920int telemetry_gather(user_addr_t buffer, uint32_t *length, boolean_t mark)
921{
922	return telemetry_buffer_gather(buffer, length, mark, &telemetry_buffer);
923}
924
925int telemetry_gather_windowed(user_addr_t buffer, uint32_t *length)
926{
927	return telemetry_buffer_gather(buffer, length, 0, &window_buffer);
928}
929
930int telemetry_buffer_gather(user_addr_t buffer, uint32_t *length, boolean_t mark, struct micro_snapshot_buffer * current_buffer)
931{
932	int result = 0;
933	uint32_t oldest_record_offset;
934
935	/* TODO */
936	KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_STACKSHOT, MICROSTACKSHOT_GATHER) | DBG_FUNC_START, mark, telemetry_bytes_since_last_mark, 0, 0, (&telemetry_buffer != current_buffer));
937
938	TELEMETRY_LOCK();
939
940	if (current_buffer->buffer == 0) {
941		*length = 0;
942		goto out;
943	}
944
945	if (*length < current_buffer->size) {
946		result = KERN_NO_SPACE;
947		goto out;
948	}
949
950	/*
951	 * Copy the ring buffer out to userland in order sorted by time: least recent to most recent.
952	 * First, we need to search forward from the cursor to find the oldest record in our buffer.
953	 */
954	oldest_record_offset = current_buffer->current_position;
955	do {
956		if (((oldest_record_offset + sizeof(uint32_t)) > current_buffer->size) ||
957		    ((oldest_record_offset + sizeof(uint32_t)) > current_buffer->end_point)) {
958
959			if (*(uint32_t *)(uintptr_t)(current_buffer->buffer) == 0) {
960				/*
961				 * There is no magic number at the start of the buffer, which means
962				 * it's empty; nothing to see here yet.
963				 */
964				*length = 0;
965				goto out;
966			}
967			/*
968			 * We've looked through the end of the active buffer without finding a valid
969			 * record; that means all valid records are in a single chunk, beginning at
970			 * the very start of the buffer.
971			 */
972
973			oldest_record_offset = 0;
974			assert(*(uint32_t *)(uintptr_t)(current_buffer->buffer) == STACKSHOT_MICRO_SNAPSHOT_MAGIC);
975			break;
976		}
977
978		if (*(uint32_t *)(uintptr_t)(current_buffer->buffer + oldest_record_offset) == STACKSHOT_MICRO_SNAPSHOT_MAGIC)
979			break;
980
981		/*
982		 * There are no alignment guarantees for micro-stackshot records, so we must search at each
983		 * byte offset.
984		 */
985		oldest_record_offset++;
986	} while (oldest_record_offset != current_buffer->current_position);
987
988	/*
989	 * If needed, copyout in two chunks: from the oldest record to the end of the buffer, and then
990	 * from the beginning of the buffer up to the current position.
991	 */
992	if (oldest_record_offset != 0) {
993#if TELEMETRY_DEBUG
994		log_telemetry_output(current_buffer->buffer, oldest_record_offset,
995		                     current_buffer->end_point - oldest_record_offset);
996#endif
997		if ((result = copyout((void *)(current_buffer->buffer + oldest_record_offset), buffer,
998		    current_buffer->end_point - oldest_record_offset)) != 0) {
999			*length = 0;
1000			goto out;
1001		}
1002		*length = current_buffer->end_point - oldest_record_offset;
1003	} else {
1004		*length = 0;
1005	}
1006
1007#if TELEMETRY_DEBUG
1008	log_telemetry_output(current_buffer->buffer, 0, current_buffer->current_position);
1009#endif
1010	if ((result = copyout((void *)current_buffer->buffer, buffer + *length,
1011	    current_buffer->current_position)) != 0) {
1012		*length = 0;
1013		goto out;
1014	}
1015	*length += (uint32_t)current_buffer->current_position;
1016
1017out:
1018
1019	if (mark && (*length > 0)) {
1020		telemetry_bytes_since_last_mark = 0;
1021	}
1022
1023	TELEMETRY_UNLOCK();
1024
1025	KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_STACKSHOT, MICROSTACKSHOT_GATHER) | DBG_FUNC_END, current_buffer->current_position, *length, current_buffer->end_point, 0, (&telemetry_buffer != current_buffer));
1026
1027	return (result);
1028}
1029
1030/************************/
1031/* BOOT PROFILE SUPPORT */
1032/************************/
1033/*
1034 * Boot Profiling
1035 *
1036 * The boot-profiling support is a mechanism to sample activity happening on the
1037 * system during boot. This mechanism sets up a periodic timer and on every timer fire,
1038 * captures a full backtrace into the boot profiling buffer. This buffer can be pulled
1039 * out and analyzed from user-space. It is turned on using the following boot-args:
1040 * "bootprofile_buffer_size" specifies the size of the boot profile buffer
1041 * "bootprofile_interval_ms" specifies the interval for the profiling timer
1042 *
1043 * Process Specific Boot Profiling
1044 *
1045 * The boot-arg "bootprofile_proc_name" can be used to specify a certain
1046 * process that needs to profiled during boot. Setting this boot-arg changes
1047 * the way stackshots are captured. At every timer fire, the code looks at the
1048 * currently running process and takes a stackshot only if the requested process
1049 * is on-core (which makes it unsuitable for MP systems).
1050 *
1051 * Trigger Events
1052 *
1053 * The boot-arg "bootprofile_type=boot" starts the timer during early boot. Using
1054 * "wake" starts the timer at AP wake from suspend-to-RAM.
1055 */
1056
1057#define BOOTPROFILE_MAX_BUFFER_SIZE (64*1024*1024) /* see also COPYSIZELIMIT_PANIC */
1058
1059vm_offset_t			bootprofile_buffer = 0;
1060uint32_t			bootprofile_buffer_size = 0;
1061uint32_t			bootprofile_buffer_current_position = 0;
1062uint32_t			bootprofile_interval_ms = 0;
1063uint64_t			bootprofile_interval_abs = 0;
1064uint64_t			bootprofile_next_deadline = 0;
1065uint32_t			bootprofile_all_procs = 0;
1066char				bootprofile_proc_name[17];
1067
1068lck_grp_t       	bootprofile_lck_grp;
1069lck_mtx_t       	bootprofile_mtx;
1070
1071enum {
1072	kBootProfileDisabled = 0,
1073	kBootProfileStartTimerAtBoot,
1074	kBootProfileStartTimerAtWake
1075} bootprofile_type = kBootProfileDisabled;
1076
1077
1078static timer_call_data_t	bootprofile_timer_call_entry;
1079
1080#define BOOTPROFILE_LOCK() do { lck_mtx_lock(&bootprofile_mtx); } while(0)
1081#define BOOTPROFILE_TRY_SPIN_LOCK() lck_mtx_try_lock_spin(&bootprofile_mtx)
1082#define BOOTPROFILE_UNLOCK() do { lck_mtx_unlock(&bootprofile_mtx); } while(0)
1083
1084static void bootprofile_timer_call(
1085	timer_call_param_t      param0,
1086	timer_call_param_t      param1);
1087
1088extern int
1089stack_snapshot_from_kernel(int pid, void *buf, uint32_t size, uint32_t flags, unsigned *retbytes);
1090
1091void bootprofile_init(void)
1092{
1093	kern_return_t ret;
1094	char type[32];
1095
1096	lck_grp_init(&bootprofile_lck_grp, "bootprofile group", LCK_GRP_ATTR_NULL);
1097	lck_mtx_init(&bootprofile_mtx, &bootprofile_lck_grp, LCK_ATTR_NULL);
1098
1099	if (!PE_parse_boot_argn("bootprofile_buffer_size", &bootprofile_buffer_size, sizeof(bootprofile_buffer_size))) {
1100		bootprofile_buffer_size = 0;
1101	}
1102
1103	if (bootprofile_buffer_size > BOOTPROFILE_MAX_BUFFER_SIZE)
1104		bootprofile_buffer_size = BOOTPROFILE_MAX_BUFFER_SIZE;
1105
1106	if (!PE_parse_boot_argn("bootprofile_interval_ms", &bootprofile_interval_ms, sizeof(bootprofile_interval_ms))) {
1107		bootprofile_interval_ms = 0;
1108	}
1109
1110	if (!PE_parse_boot_argn("bootprofile_proc_name", &bootprofile_proc_name, sizeof(bootprofile_proc_name))) {
1111		bootprofile_all_procs = 1;
1112		bootprofile_proc_name[0] = '\0';
1113	}
1114
1115	if (PE_parse_boot_argn("bootprofile_type", type, sizeof(type))) {
1116		if (0 == strcmp(type, "boot")) {
1117			bootprofile_type = kBootProfileStartTimerAtBoot;
1118		} else if (0 == strcmp(type, "wake")) {
1119			bootprofile_type = kBootProfileStartTimerAtWake;
1120		} else {
1121			bootprofile_type = kBootProfileDisabled;
1122		}
1123	} else {
1124		bootprofile_type = kBootProfileDisabled;
1125	}
1126
1127	clock_interval_to_absolutetime_interval(bootprofile_interval_ms, NSEC_PER_MSEC, &bootprofile_interval_abs);
1128
1129	/* Both boot args must be set to enable */
1130	if ((bootprofile_type == kBootProfileDisabled) || (bootprofile_buffer_size == 0) || (bootprofile_interval_abs == 0)) {
1131		return;
1132	}
1133
1134	ret = kmem_alloc(kernel_map, &bootprofile_buffer, bootprofile_buffer_size);
1135	if (ret != KERN_SUCCESS) {
1136		kprintf("Boot profile: Allocation failed: %d\n", ret);
1137		return;
1138	}
1139	bzero((void *) bootprofile_buffer, bootprofile_buffer_size);
1140
1141	kprintf("Boot profile: Sampling %s once per %u ms at %s\n", bootprofile_all_procs ? "all procs" : bootprofile_proc_name,  bootprofile_interval_ms,
1142			bootprofile_type == kBootProfileStartTimerAtBoot ? "boot" : (bootprofile_type == kBootProfileStartTimerAtWake ? "wake" : "unknown"));
1143
1144	timer_call_setup(&bootprofile_timer_call_entry,
1145					 bootprofile_timer_call,
1146					 NULL);
1147
1148	if (bootprofile_type == kBootProfileStartTimerAtBoot) {
1149		bootprofile_next_deadline = mach_absolute_time() + bootprofile_interval_abs;
1150		timer_call_enter_with_leeway(&bootprofile_timer_call_entry,
1151									 NULL,
1152									 bootprofile_next_deadline,
1153									 0,
1154									 TIMER_CALL_SYS_NORMAL,
1155									 FALSE);
1156	}
1157}
1158
1159void
1160bootprofile_wake_from_sleep(void)
1161{
1162	if (bootprofile_type == kBootProfileStartTimerAtWake) {
1163		bootprofile_next_deadline = mach_absolute_time() + bootprofile_interval_abs;
1164		timer_call_enter_with_leeway(&bootprofile_timer_call_entry,
1165									 NULL,
1166									 bootprofile_next_deadline,
1167									 0,
1168									 TIMER_CALL_SYS_NORMAL,
1169									 FALSE);
1170	}
1171}
1172
1173
1174static void bootprofile_timer_call(
1175	timer_call_param_t      param0 __unused,
1176	timer_call_param_t      param1 __unused)
1177{
1178	unsigned retbytes = 0;
1179	int pid_to_profile = -1;
1180
1181	if (!BOOTPROFILE_TRY_SPIN_LOCK()) {
1182		goto reprogram;
1183	}
1184
1185	/* Check if process-specific boot profiling is turned on */
1186	if (!bootprofile_all_procs) {
1187		/*
1188		 * Since boot profiling initializes really early in boot, it is
1189		 * possible that at this point, the task/proc is not initialized.
1190		 * Nothing to do in that case.
1191		 */
1192
1193		if ((current_task() != NULL) && (current_task()->bsd_info != NULL) &&
1194		    (0 == strncmp(bootprofile_proc_name, proc_name_address(current_task()->bsd_info), 17))) {
1195			pid_to_profile = proc_selfpid();
1196		}
1197		else {
1198			/*
1199			 * Process-specific boot profiling requested but the on-core process is
1200			 * something else. Nothing to do here.
1201			 */
1202			BOOTPROFILE_UNLOCK();
1203			goto reprogram;
1204		}
1205	}
1206
1207	/* initiate a stackshot with whatever portion of the buffer is left */
1208	if (bootprofile_buffer_current_position < bootprofile_buffer_size) {
1209		stack_snapshot_from_kernel(
1210			pid_to_profile,
1211			(void *)(bootprofile_buffer + bootprofile_buffer_current_position),
1212			bootprofile_buffer_size - bootprofile_buffer_current_position,
1213			STACKSHOT_SAVE_LOADINFO | STACKSHOT_SAVE_KEXT_LOADINFO | STACKSHOT_GET_GLOBAL_MEM_STATS,
1214            &retbytes
1215			);
1216
1217		bootprofile_buffer_current_position += retbytes;
1218	}
1219
1220	BOOTPROFILE_UNLOCK();
1221
1222	/* If we didn't get any data or have run out of buffer space, stop profiling */
1223	if ((retbytes == 0) || (bootprofile_buffer_current_position == bootprofile_buffer_size)) {
1224		return;
1225	}
1226
1227
1228reprogram:
1229	/* If the user gathered the buffer, no need to keep profiling */
1230	if (bootprofile_interval_abs == 0) {
1231		return;
1232	}
1233
1234	clock_deadline_for_periodic_event(bootprofile_interval_abs,
1235									  mach_absolute_time(),
1236									  &bootprofile_next_deadline);
1237	timer_call_enter_with_leeway(&bootprofile_timer_call_entry,
1238								 NULL,
1239								 bootprofile_next_deadline,
1240								 0,
1241								 TIMER_CALL_SYS_NORMAL,
1242								 FALSE);
1243}
1244
1245int bootprofile_gather(user_addr_t buffer, uint32_t *length)
1246{
1247	int result = 0;
1248
1249	BOOTPROFILE_LOCK();
1250
1251	if (bootprofile_buffer == 0) {
1252		*length = 0;
1253		goto out;
1254	}
1255
1256	if (*length < bootprofile_buffer_current_position) {
1257		result = KERN_NO_SPACE;
1258		goto out;
1259	}
1260
1261	if ((result = copyout((void *)bootprofile_buffer, buffer,
1262	    bootprofile_buffer_current_position)) != 0) {
1263		*length = 0;
1264		goto out;
1265	}
1266	*length = bootprofile_buffer_current_position;
1267
1268	/* cancel future timers */
1269	bootprofile_interval_abs = 0;
1270
1271out:
1272
1273	BOOTPROFILE_UNLOCK();
1274
1275	return (result);
1276}
1277