1/*
2 * Copyright (c) 2000-2013 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29/*	$FreeBSD: src/sys/netinet6/frag6.c,v 1.2.2.5 2001/07/03 11:01:50 ume Exp $	*/
30/*	$KAME: frag6.c,v 1.31 2001/05/17 13:45:34 jinmei Exp $	*/
31
32/*
33 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 *    notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 *    notice, this list of conditions and the following disclaimer in the
43 *    documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the project nor the names of its contributors
45 *    may be used to endorse or promote products derived from this software
46 *    without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 */
60
61#include <sys/param.h>
62#include <sys/systm.h>
63#include <sys/malloc.h>
64#include <sys/mcache.h>
65#include <sys/mbuf.h>
66#include <sys/domain.h>
67#include <sys/protosw.h>
68#include <sys/socket.h>
69#include <sys/errno.h>
70#include <sys/time.h>
71#include <sys/kernel.h>
72#include <sys/syslog.h>
73#include <kern/queue.h>
74#include <kern/locks.h>
75
76#include <net/if.h>
77#include <net/route.h>
78
79#include <netinet/in.h>
80#include <netinet/in_var.h>
81#include <netinet/ip.h>
82#include <netinet/ip6.h>
83#include <netinet6/ip6_var.h>
84#include <netinet/icmp6.h>
85
86#include <net/net_osdep.h>
87#include <dev/random/randomdev.h>
88
89/*
90 * Define it to get a correct behavior on per-interface statistics.
91 */
92#define IN6_IFSTAT_STRICT
93
94MBUFQ_HEAD(fq6_head);
95
96static void frag6_save_context(struct mbuf *, int);
97static void frag6_scrub_context(struct mbuf *);
98static int frag6_restore_context(struct mbuf *);
99
100static void frag6_icmp6_paramprob_error(struct fq6_head *);
101static void frag6_icmp6_timeex_error(struct fq6_head *);
102
103static void frag6_enq(struct ip6asfrag *, struct ip6asfrag *);
104static void frag6_deq(struct ip6asfrag *);
105static void frag6_insque(struct ip6q *, struct ip6q *);
106static void frag6_remque(struct ip6q *);
107static void frag6_freef(struct ip6q *, struct fq6_head *, struct fq6_head *);
108
109static int frag6_timeout_run;		/* frag6 timer is scheduled to run */
110static void frag6_timeout(void *);
111static void frag6_sched_timeout(void);
112
113static struct ip6q *ip6q_alloc(int);
114static void ip6q_free(struct ip6q *);
115static void ip6q_updateparams(void);
116static struct ip6asfrag *ip6af_alloc(int);
117static void ip6af_free(struct ip6asfrag *);
118
119decl_lck_mtx_data(static, ip6qlock);
120static lck_attr_t	*ip6qlock_attr;
121static lck_grp_t	*ip6qlock_grp;
122static lck_grp_attr_t	*ip6qlock_grp_attr;
123
124/* IPv6 fragment reassembly queues (protected by ip6qlock) */
125static struct ip6q ip6q;		/* ip6 reassembly queues */
126static int ip6_maxfragpackets;		/* max packets in reass queues */
127static u_int32_t frag6_nfragpackets;	/* # of packets in reass queues */
128static int ip6_maxfrags;		/* max fragments in reass queues */
129static u_int32_t frag6_nfrags;		/* # of fragments in reass queues */
130static u_int32_t ip6q_limit;		/* ip6q allocation limit */
131static u_int32_t ip6q_count;		/* current # of allocated ip6q's */
132static u_int32_t ip6af_limit;		/* ip6asfrag allocation limit */
133static u_int32_t ip6af_count;		/* current # of allocated ip6asfrag's */
134
135static int sysctl_maxfragpackets SYSCTL_HANDLER_ARGS;
136static int sysctl_maxfrags SYSCTL_HANDLER_ARGS;
137
138SYSCTL_DECL(_net_inet6_ip6);
139
140SYSCTL_PROC(_net_inet6_ip6, IPV6CTL_MAXFRAGPACKETS, maxfragpackets,
141    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &ip6_maxfragpackets, 0,
142    sysctl_maxfragpackets, "I",
143    "Maximum number of IPv6 fragment reassembly queue entries");
144
145SYSCTL_UINT(_net_inet6_ip6, OID_AUTO, fragpackets,
146    CTLFLAG_RD | CTLFLAG_LOCKED, &frag6_nfragpackets, 0,
147    "Current number of IPv6 fragment reassembly queue entries");
148
149SYSCTL_PROC(_net_inet6_ip6, IPV6CTL_MAXFRAGS, maxfrags,
150    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &ip6_maxfrags, 0,
151    sysctl_maxfrags, "I", "Maximum number of IPv6 fragments allowed");
152
153/*
154 * Initialise reassembly queue and fragment identifier.
155 */
156void
157frag6_init(void)
158{
159	/* ip6q_alloc() uses mbufs for IPv6 fragment queue structures */
160	_CASSERT(sizeof (struct ip6q) <= _MLEN);
161	/* ip6af_alloc() uses mbufs for IPv6 fragment queue structures */
162	_CASSERT(sizeof (struct ip6asfrag) <= _MLEN);
163
164	/* IPv6 fragment reassembly queue lock */
165	ip6qlock_grp_attr  = lck_grp_attr_alloc_init();
166	ip6qlock_grp = lck_grp_alloc_init("ip6qlock", ip6qlock_grp_attr);
167	ip6qlock_attr = lck_attr_alloc_init();
168	lck_mtx_init(&ip6qlock, ip6qlock_grp, ip6qlock_attr);
169
170	lck_mtx_lock(&ip6qlock);
171	/* Initialize IPv6 reassembly queue. */
172	ip6q.ip6q_next = ip6q.ip6q_prev = &ip6q;
173
174	/* same limits as IPv4 */
175	ip6_maxfragpackets = nmbclusters / 32;
176	ip6_maxfrags = ip6_maxfragpackets * 2;
177	ip6q_updateparams();
178	lck_mtx_unlock(&ip6qlock);
179}
180
181static void
182frag6_save_context(struct mbuf *m, int val)
183{
184	m->m_pkthdr.pkt_hdr = (void *)(uintptr_t)val;
185}
186
187static void
188frag6_scrub_context(struct mbuf *m)
189{
190	m->m_pkthdr.pkt_hdr = NULL;
191}
192
193static int
194frag6_restore_context(struct mbuf *m)
195{
196	return ((int)m->m_pkthdr.pkt_hdr);
197}
198
199/*
200 * Send any deferred ICMP param problem error messages; caller must not be
201 * holding ip6qlock and is expected to have saved the per-packet parameter
202 * value via frag6_save_context().
203 */
204static void
205frag6_icmp6_paramprob_error(struct fq6_head *diq6)
206{
207	lck_mtx_assert(&ip6qlock, LCK_MTX_ASSERT_NOTOWNED);
208
209	if (!MBUFQ_EMPTY(diq6)) {
210		struct mbuf *merr, *merr_tmp;
211		int param;
212		MBUFQ_FOREACH_SAFE(merr, diq6, merr_tmp) {
213			MBUFQ_REMOVE(diq6, merr);
214			MBUFQ_NEXT(merr) = NULL;
215			param = frag6_restore_context(merr);
216			frag6_scrub_context(merr);
217			icmp6_error(merr, ICMP6_PARAM_PROB,
218			    ICMP6_PARAMPROB_HEADER, param);
219		}
220	}
221}
222
223/*
224 * Send any deferred ICMP time exceeded error messages;
225 * caller must not be holding ip6qlock.
226 */
227static void
228frag6_icmp6_timeex_error(struct fq6_head *diq6)
229{
230	lck_mtx_assert(&ip6qlock, LCK_MTX_ASSERT_NOTOWNED);
231
232	if (!MBUFQ_EMPTY(diq6)) {
233		struct mbuf *m, *m_tmp;
234		MBUFQ_FOREACH_SAFE(m, diq6, m_tmp) {
235			MBUFQ_REMOVE(diq6, m);
236			MBUFQ_NEXT(m) = NULL;
237			icmp6_error(m, ICMP6_TIME_EXCEEDED,
238			    ICMP6_TIME_EXCEED_REASSEMBLY, 0);
239		}
240	}
241}
242
243/*
244 * In RFC2460, fragment and reassembly rule do not agree with each other,
245 * in terms of next header field handling in fragment header.
246 * While the sender will use the same value for all of the fragmented packets,
247 * receiver is suggested not to check the consistency.
248 *
249 * fragment rule (p20):
250 *	(2) A Fragment header containing:
251 *	The Next Header value that identifies the first header of
252 *	the Fragmentable Part of the original packet.
253 *		-> next header field is same for all fragments
254 *
255 * reassembly rule (p21):
256 *	The Next Header field of the last header of the Unfragmentable
257 *	Part is obtained from the Next Header field of the first
258 *	fragment's Fragment header.
259 *		-> should grab it from the first fragment only
260 *
261 * The following note also contradicts with fragment rule - noone is going to
262 * send different fragment with different next header field.
263 *
264 * additional note (p22):
265 *	The Next Header values in the Fragment headers of different
266 *	fragments of the same original packet may differ.  Only the value
267 *	from the Offset zero fragment packet is used for reassembly.
268 *		-> should grab it from the first fragment only
269 *
270 * There is no explicit reason given in the RFC.  Historical reason maybe?
271 */
272/*
273 * Fragment input
274 */
275int
276frag6_input(struct mbuf **mp, int *offp, int proto)
277{
278#pragma unused(proto)
279	struct mbuf *m = *mp, *t;
280	struct ip6_hdr *ip6;
281	struct ip6_frag *ip6f;
282	struct ip6q *q6;
283	struct ip6asfrag *af6, *ip6af, *af6dwn;
284	int offset = *offp, nxt, i, next;
285	int first_frag = 0;
286	int fragoff, frgpartlen;	/* must be larger than u_int16_t */
287	struct ifnet *dstifp = NULL;
288	u_int8_t ecn, ecn0;
289	uint32_t csum, csum_flags;
290	struct fq6_head diq6;
291	int locked = 0;
292
293	VERIFY(m->m_flags & M_PKTHDR);
294
295	MBUFQ_INIT(&diq6);	/* for deferred ICMP param problem errors */
296
297	/* Expect 32-bit aligned data pointer on strict-align platforms */
298	MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m);
299
300	ip6 = mtod(m, struct ip6_hdr *);
301	IP6_EXTHDR_CHECK(m, offset, sizeof(struct ip6_frag), goto done);
302	ip6f = (struct ip6_frag *)((caddr_t)ip6 + offset);
303
304#ifdef IN6_IFSTAT_STRICT
305	/* find the destination interface of the packet. */
306	if (m->m_pkthdr.pkt_flags & PKTF_IFAINFO) {
307		uint32_t idx;
308
309		if (ip6_getdstifaddr_info(m, &idx, NULL) == 0) {
310			if (idx > 0 && idx <= if_index) {
311				ifnet_head_lock_shared();
312				dstifp = ifindex2ifnet[idx];
313				ifnet_head_done();
314			}
315		}
316	}
317#endif /* IN6_IFSTAT_STRICT */
318
319	/* we are violating the spec, this may not be the dst interface */
320	if (dstifp == NULL)
321		dstifp = m->m_pkthdr.rcvif;
322
323	/* jumbo payload can't contain a fragment header */
324	if (ip6->ip6_plen == 0) {
325		icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER, offset);
326		in6_ifstat_inc(dstifp, ifs6_reass_fail);
327		m = NULL;
328		goto done;
329	}
330
331	/*
332	 * check whether fragment packet's fragment length is
333	 * multiple of 8 octets.
334	 * sizeof(struct ip6_frag) == 8
335	 * sizeof(struct ip6_hdr) = 40
336	 */
337	if ((ip6f->ip6f_offlg & IP6F_MORE_FRAG) &&
338	    (((ntohs(ip6->ip6_plen) - offset) & 0x7) != 0)) {
339		icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER,
340		    offsetof(struct ip6_hdr, ip6_plen));
341		in6_ifstat_inc(dstifp, ifs6_reass_fail);
342		m = NULL;
343		goto done;
344	}
345
346	/* If ip6_maxfragpackets or ip6_maxfrags is 0, never accept fragments */
347	if (ip6_maxfragpackets == 0 || ip6_maxfrags == 0) {
348		ip6stat.ip6s_fragments++;
349		ip6stat.ip6s_fragdropped++;
350		in6_ifstat_inc(dstifp, ifs6_reass_fail);
351		m_freem(m);
352		m = NULL;
353		goto done;
354	}
355
356	/* offset now points to data portion */
357	offset += sizeof(struct ip6_frag);
358
359	/*
360	 * Leverage partial checksum offload for simple UDP/IP fragments,
361	 * as that is the most common case.
362	 *
363	 * Perform 1's complement adjustment of octets that got included/
364	 * excluded in the hardware-calculated checksum value.
365	 */
366	if (ip6f->ip6f_nxt == IPPROTO_UDP &&
367	    offset == (sizeof (*ip6) + sizeof (*ip6f)) &&
368	    (m->m_pkthdr.csum_flags &
369	    (CSUM_DATA_VALID | CSUM_PARTIAL | CSUM_PSEUDO_HDR)) ==
370	    (CSUM_DATA_VALID | CSUM_PARTIAL)) {
371		uint32_t start;
372
373		start = m->m_pkthdr.csum_rx_start;
374		csum = m->m_pkthdr.csum_rx_val;
375
376		if (start != offset) {
377			uint16_t s, d;
378
379			if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src)) {
380				s = ip6->ip6_src.s6_addr16[1];
381				ip6->ip6_src.s6_addr16[1] = 0 ;
382			}
383			if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst)) {
384				d = ip6->ip6_dst.s6_addr16[1];
385				ip6->ip6_dst.s6_addr16[1] = 0;
386			}
387
388			/* callee folds in sum */
389			csum = m_adj_sum16(m, start, offset, csum);
390
391			if (IN6_IS_SCOPE_EMBED(&ip6->ip6_src))
392				ip6->ip6_src.s6_addr16[1] = s;
393			if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst))
394				ip6->ip6_dst.s6_addr16[1] = d;
395
396		}
397		csum_flags = m->m_pkthdr.csum_flags;
398	} else {
399		csum = 0;
400		csum_flags = 0;
401	}
402
403	/* Invalidate checksum */
404	m->m_pkthdr.csum_flags &= ~CSUM_DATA_VALID;
405
406	ip6stat.ip6s_fragments++;
407	in6_ifstat_inc(dstifp, ifs6_reass_reqd);
408
409	lck_mtx_lock(&ip6qlock);
410	locked = 1;
411
412	for (q6 = ip6q.ip6q_next; q6 != &ip6q; q6 = q6->ip6q_next)
413		if (ip6f->ip6f_ident == q6->ip6q_ident &&
414		    IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &q6->ip6q_src) &&
415		    IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &q6->ip6q_dst))
416			break;
417
418	if (q6 == &ip6q) {
419		/*
420		 * the first fragment to arrive, create a reassembly queue.
421		 */
422		first_frag = 1;
423
424		q6 = ip6q_alloc(M_DONTWAIT);
425		if (q6 == NULL)
426			goto dropfrag;
427
428		frag6_insque(q6, &ip6q);
429		frag6_nfragpackets++;
430
431		/* ip6q_nxt will be filled afterwards, from 1st fragment */
432		q6->ip6q_down	= q6->ip6q_up = (struct ip6asfrag *)q6;
433#ifdef notyet
434		q6->ip6q_nxtp	= (u_char *)nxtp;
435#endif
436		q6->ip6q_ident	= ip6f->ip6f_ident;
437		q6->ip6q_ttl	= IPV6_FRAGTTL;
438		q6->ip6q_src	= ip6->ip6_src;
439		q6->ip6q_dst	= ip6->ip6_dst;
440		q6->ip6q_ecn	=
441		    (ntohl(ip6->ip6_flow) >> 20) & IPTOS_ECN_MASK;
442		q6->ip6q_unfrglen = -1;	/* The 1st fragment has not arrived. */
443
444		q6->ip6q_nfrag = 0;
445
446		/*
447		 * If the first fragment has valid checksum offload
448		 * info, the rest of fragments are eligible as well.
449		 */
450		if (csum_flags != 0) {
451			q6->ip6q_csum = csum;
452			q6->ip6q_csum_flags = csum_flags;
453		}
454	}
455
456	/*
457	 * If it's the 1st fragment, record the length of the
458	 * unfragmentable part and the next header of the fragment header.
459	 */
460	fragoff = ntohs(ip6f->ip6f_offlg & IP6F_OFF_MASK);
461	if (fragoff == 0) {
462		q6->ip6q_unfrglen = offset - sizeof(struct ip6_hdr) -
463		    sizeof(struct ip6_frag);
464		q6->ip6q_nxt = ip6f->ip6f_nxt;
465	}
466
467	/*
468	 * Check that the reassembled packet would not exceed 65535 bytes
469	 * in size.
470	 * If it would exceed, discard the fragment and return an ICMP error.
471	 */
472	frgpartlen = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen) - offset;
473	if (q6->ip6q_unfrglen >= 0) {
474		/* The 1st fragment has already arrived. */
475		if (q6->ip6q_unfrglen + fragoff + frgpartlen > IPV6_MAXPACKET) {
476			lck_mtx_unlock(&ip6qlock);
477			locked = 0;
478			icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER,
479			    offset - sizeof(struct ip6_frag) +
480			    offsetof(struct ip6_frag, ip6f_offlg));
481			m = NULL;
482			goto done;
483		}
484	} else if (fragoff + frgpartlen > IPV6_MAXPACKET) {
485		lck_mtx_unlock(&ip6qlock);
486		locked = 0;
487		icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER,
488		    offset - sizeof(struct ip6_frag) +
489		    offsetof(struct ip6_frag, ip6f_offlg));
490		m = NULL;
491		goto done;
492	}
493	/*
494	 * If it's the first fragment, do the above check for each
495	 * fragment already stored in the reassembly queue.
496	 */
497	if (fragoff == 0) {
498		for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6;
499		     af6 = af6dwn) {
500			af6dwn = af6->ip6af_down;
501
502			if (q6->ip6q_unfrglen + af6->ip6af_off + af6->ip6af_frglen >
503			    IPV6_MAXPACKET) {
504				struct mbuf *merr = IP6_REASS_MBUF(af6);
505				struct ip6_hdr *ip6err;
506				int erroff = af6->ip6af_offset;
507
508				/* dequeue the fragment. */
509				frag6_deq(af6);
510				ip6af_free(af6);
511
512				/* adjust pointer. */
513				ip6err = mtod(merr, struct ip6_hdr *);
514
515				/*
516				 * Restore source and destination addresses
517				 * in the erroneous IPv6 header.
518				 */
519				ip6err->ip6_src = q6->ip6q_src;
520				ip6err->ip6_dst = q6->ip6q_dst;
521
522				frag6_save_context(merr,
523				    erroff - sizeof (struct ip6_frag) +
524				    offsetof(struct ip6_frag, ip6f_offlg));
525
526				MBUFQ_ENQUEUE(&diq6, merr);
527			}
528		}
529	}
530
531	ip6af = ip6af_alloc(M_DONTWAIT);
532	if (ip6af == NULL)
533		goto dropfrag;
534
535	ip6af->ip6af_mff = ip6f->ip6f_offlg & IP6F_MORE_FRAG;
536	ip6af->ip6af_off = fragoff;
537	ip6af->ip6af_frglen = frgpartlen;
538	ip6af->ip6af_offset = offset;
539	IP6_REASS_MBUF(ip6af) = m;
540
541	if (first_frag) {
542		af6 = (struct ip6asfrag *)q6;
543		goto insert;
544	}
545
546	/*
547	 * Handle ECN by comparing this segment with the first one;
548	 * if CE is set, do not lose CE.
549	 * drop if CE and not-ECT are mixed for the same packet.
550	 */
551	ecn = (ntohl(ip6->ip6_flow) >> 20) & IPTOS_ECN_MASK;
552	ecn0 = q6->ip6q_ecn;
553	if (ecn == IPTOS_ECN_CE) {
554		if (ecn0 == IPTOS_ECN_NOTECT) {
555			ip6af_free(ip6af);
556			goto dropfrag;
557		}
558		if (ecn0 != IPTOS_ECN_CE)
559			q6->ip6q_ecn = IPTOS_ECN_CE;
560	}
561	if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT) {
562		ip6af_free(ip6af);
563		goto dropfrag;
564	}
565
566	/*
567	 * Find a segment which begins after this one does.
568	 */
569	for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6;
570	     af6 = af6->ip6af_down)
571		if (af6->ip6af_off > ip6af->ip6af_off)
572			break;
573
574#if 0
575	/*
576	 * If there is a preceding segment, it may provide some of
577	 * our data already.  If so, drop the data from the incoming
578	 * segment.  If it provides all of our data, drop us.
579	 *
580	 * If some of the data is dropped from the preceding
581	 * segment, then it's checksum is invalidated.
582	 */
583	if (af6->ip6af_up != (struct ip6asfrag *)q6) {
584		i = af6->ip6af_up->ip6af_off + af6->ip6af_up->ip6af_frglen
585			- ip6af->ip6af_off;
586		if (i > 0) {
587			if (i >= ip6af->ip6af_frglen)
588				goto dropfrag;
589			m_adj(IP6_REASS_MBUF(ip6af), i);
590			q6->ip6q_csum_flags = 0;
591			ip6af->ip6af_off += i;
592			ip6af->ip6af_frglen -= i;
593		}
594	}
595
596	/*
597	 * While we overlap succeeding segments trim them or,
598	 * if they are completely covered, dequeue them.
599	 */
600	while (af6 != (struct ip6asfrag *)q6 &&
601	       ip6af->ip6af_off + ip6af->ip6af_frglen > af6->ip6af_off) {
602		i = (ip6af->ip6af_off + ip6af->ip6af_frglen) - af6->ip6af_off;
603		if (i < af6->ip6af_frglen) {
604			af6->ip6af_frglen -= i;
605			af6->ip6af_off += i;
606			m_adj(IP6_REASS_MBUF(af6), i);
607			q6->ip6q_csum_flags = 0;
608			break;
609		}
610		af6 = af6->ip6af_down;
611		m_freem(IP6_REASS_MBUF(af6->ip6af_up));
612		frag6_deq(af6->ip6af_up);
613	}
614#else
615	/*
616	 * If the incoming framgent overlaps some existing fragments in
617	 * the reassembly queue, drop it, since it is dangerous to override
618	 * existing fragments from a security point of view.
619	 * We don't know which fragment is the bad guy - here we trust
620	 * fragment that came in earlier, with no real reason.
621	 *
622	 * Note: due to changes after disabling this part, mbuf passed to
623	 * m_adj() below now does not meet the requirement.
624	 */
625	if (af6->ip6af_up != (struct ip6asfrag *)q6) {
626		i = af6->ip6af_up->ip6af_off + af6->ip6af_up->ip6af_frglen
627			- ip6af->ip6af_off;
628		if (i > 0) {
629#if 0				/* suppress the noisy log */
630			log(LOG_ERR, "%d bytes of a fragment from %s "
631			    "overlaps the previous fragment\n",
632			    i, ip6_sprintf(&q6->ip6q_src));
633#endif
634			ip6af_free(ip6af);
635			goto dropfrag;
636		}
637	}
638	if (af6 != (struct ip6asfrag *)q6) {
639		i = (ip6af->ip6af_off + ip6af->ip6af_frglen) - af6->ip6af_off;
640		if (i > 0) {
641#if 0				/* suppress the noisy log */
642			log(LOG_ERR, "%d bytes of a fragment from %s "
643			    "overlaps the succeeding fragment",
644			    i, ip6_sprintf(&q6->ip6q_src));
645#endif
646			ip6af_free(ip6af);
647			goto dropfrag;
648		}
649	}
650#endif
651
652	/*
653	 * If this fragment contains similar checksum offload info
654	 * as that of the existing ones, accumulate checksum.  Otherwise,
655	 * invalidate checksum offload info for the entire datagram.
656	 */
657	if (csum_flags != 0 && csum_flags == q6->ip6q_csum_flags)
658		q6->ip6q_csum += csum;
659	else if (q6->ip6q_csum_flags != 0)
660		q6->ip6q_csum_flags = 0;
661
662insert:
663
664	/*
665	 * Stick new segment in its place;
666	 * check for complete reassembly.
667	 * Move to front of packet queue, as we are
668	 * the most recently active fragmented packet.
669	 */
670	frag6_enq(ip6af, af6->ip6af_up);
671	frag6_nfrags++;
672	q6->ip6q_nfrag++;
673#if 0 /* xxx */
674	if (q6 != ip6q.ip6q_next) {
675		frag6_remque(q6);
676		frag6_insque(q6, &ip6q);
677	}
678#endif
679	next = 0;
680	for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6;
681	     af6 = af6->ip6af_down) {
682		if (af6->ip6af_off != next) {
683			lck_mtx_unlock(&ip6qlock);
684			locked = 0;
685			m = NULL;
686			goto done;
687		}
688		next += af6->ip6af_frglen;
689	}
690	if (af6->ip6af_up->ip6af_mff) {
691		lck_mtx_unlock(&ip6qlock);
692		locked = 0;
693		m = NULL;
694		goto done;
695	}
696
697	/*
698	 * Reassembly is complete; concatenate fragments.
699	 */
700	ip6af = q6->ip6q_down;
701	t = m = IP6_REASS_MBUF(ip6af);
702	af6 = ip6af->ip6af_down;
703	frag6_deq(ip6af);
704	while (af6 != (struct ip6asfrag *)q6) {
705		af6dwn = af6->ip6af_down;
706		frag6_deq(af6);
707		while (t->m_next)
708			t = t->m_next;
709		t->m_next = IP6_REASS_MBUF(af6);
710		m_adj(t->m_next, af6->ip6af_offset);
711		ip6af_free(af6);
712		af6 = af6dwn;
713	}
714
715	/*
716	 * Store partial hardware checksum info from the fragment queue;
717	 * the receive start offset is set to 40 bytes (see code at the
718	 * top of this routine.)
719	 */
720	if (q6->ip6q_csum_flags != 0) {
721		csum = q6->ip6q_csum;
722
723		ADDCARRY(csum);
724
725		m->m_pkthdr.csum_rx_val = csum;
726		m->m_pkthdr.csum_rx_start = sizeof (struct ip6_hdr);
727		m->m_pkthdr.csum_flags = q6->ip6q_csum_flags;
728	} else if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) ||
729	    (m->m_pkthdr.pkt_flags & PKTF_LOOP)) {
730		/* loopback checksums are always OK */
731		m->m_pkthdr.csum_data = 0xffff;
732		m->m_pkthdr.csum_flags &= ~CSUM_PARTIAL;
733		m->m_pkthdr.csum_flags = CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
734	}
735
736	/* adjust offset to point where the original next header starts */
737	offset = ip6af->ip6af_offset - sizeof(struct ip6_frag);
738	ip6af_free(ip6af);
739	ip6 = mtod(m, struct ip6_hdr *);
740	ip6->ip6_plen = htons((u_short)next + offset - sizeof(struct ip6_hdr));
741	ip6->ip6_src = q6->ip6q_src;
742	ip6->ip6_dst = q6->ip6q_dst;
743	if (q6->ip6q_ecn == IPTOS_ECN_CE)
744		ip6->ip6_flow |= htonl(IPTOS_ECN_CE << 20);
745
746	nxt = q6->ip6q_nxt;
747#ifdef notyet
748	*q6->ip6q_nxtp = (u_char)(nxt & 0xff);
749#endif
750
751	/* Delete frag6 header */
752	if (m->m_len >= offset + sizeof(struct ip6_frag)) {
753		/* This is the only possible case with !PULLDOWN_TEST */
754		ovbcopy((caddr_t)ip6, (caddr_t)ip6 + sizeof(struct ip6_frag),
755		    offset);
756		m->m_data += sizeof(struct ip6_frag);
757		m->m_len -= sizeof(struct ip6_frag);
758	} else {
759		/* this comes with no copy if the boundary is on cluster */
760		if ((t = m_split(m, offset, M_DONTWAIT)) == NULL) {
761			frag6_remque(q6);
762			frag6_nfragpackets--;
763			frag6_nfrags -= q6->ip6q_nfrag;
764			ip6q_free(q6);
765			goto dropfrag;
766		}
767		m_adj(t, sizeof(struct ip6_frag));
768		m_cat(m, t);
769	}
770
771	/*
772	 * Store NXT to the original.
773	 */
774	{
775		char *prvnxtp = ip6_get_prevhdr(m, offset); /* XXX */
776		*prvnxtp = nxt;
777	}
778
779	frag6_remque(q6);
780	frag6_nfragpackets--;
781	frag6_nfrags -= q6->ip6q_nfrag;
782	ip6q_free(q6);
783
784	if (m->m_flags & M_PKTHDR)	/* Isn't it always true? */
785		m_fixhdr(m);
786
787	ip6stat.ip6s_reassembled++;
788
789	/*
790	 * Tell launch routine the next header
791	 */
792	*mp = m;
793	*offp = offset;
794
795	/* arm the purge timer if not already and if there's work to do */
796	frag6_sched_timeout();
797	lck_mtx_unlock(&ip6qlock);
798	in6_ifstat_inc(dstifp, ifs6_reass_ok);
799	frag6_icmp6_paramprob_error(&diq6);
800	VERIFY(MBUFQ_EMPTY(&diq6));
801	return (nxt);
802
803done:
804	VERIFY(m == NULL);
805	if (!locked) {
806		if (frag6_nfragpackets == 0) {
807			frag6_icmp6_paramprob_error(&diq6);
808			VERIFY(MBUFQ_EMPTY(&diq6));
809			return (IPPROTO_DONE);
810		}
811		lck_mtx_lock(&ip6qlock);
812	}
813	/* arm the purge timer if not already and if there's work to do */
814	frag6_sched_timeout();
815	lck_mtx_unlock(&ip6qlock);
816	frag6_icmp6_paramprob_error(&diq6);
817	VERIFY(MBUFQ_EMPTY(&diq6));
818	return (IPPROTO_DONE);
819
820dropfrag:
821	ip6stat.ip6s_fragdropped++;
822	/* arm the purge timer if not already and if there's work to do */
823	frag6_sched_timeout();
824	lck_mtx_unlock(&ip6qlock);
825	in6_ifstat_inc(dstifp, ifs6_reass_fail);
826	m_freem(m);
827	frag6_icmp6_paramprob_error(&diq6);
828	VERIFY(MBUFQ_EMPTY(&diq6));
829	return (IPPROTO_DONE);
830}
831
832/*
833 * Free a fragment reassembly header and all
834 * associated datagrams.
835 */
836void
837frag6_freef(struct ip6q *q6, struct fq6_head *dfq6, struct fq6_head *diq6)
838{
839	struct ip6asfrag *af6, *down6;
840
841	lck_mtx_assert(&ip6qlock, LCK_MTX_ASSERT_OWNED);
842
843	for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6;
844	     af6 = down6) {
845		struct mbuf *m = IP6_REASS_MBUF(af6);
846
847		down6 = af6->ip6af_down;
848		frag6_deq(af6);
849
850		/*
851		 * Return ICMP time exceeded error for the 1st fragment.
852		 * Just free other fragments.
853		 */
854		if (af6->ip6af_off == 0) {
855			struct ip6_hdr *ip6;
856
857			/* adjust pointer */
858			ip6 = mtod(m, struct ip6_hdr *);
859
860			/* restore source and destination addresses */
861			ip6->ip6_src = q6->ip6q_src;
862			ip6->ip6_dst = q6->ip6q_dst;
863
864			MBUFQ_ENQUEUE(diq6, m);
865		} else {
866			MBUFQ_ENQUEUE(dfq6, m);
867		}
868		ip6af_free(af6);
869
870	}
871	frag6_remque(q6);
872	frag6_nfragpackets--;
873	frag6_nfrags -= q6->ip6q_nfrag;
874	ip6q_free(q6);
875}
876
877/*
878 * Put an ip fragment on a reassembly chain.
879 * Like insque, but pointers in middle of structure.
880 */
881void
882frag6_enq(struct ip6asfrag *af6, struct ip6asfrag *up6)
883{
884	lck_mtx_assert(&ip6qlock, LCK_MTX_ASSERT_OWNED);
885
886	af6->ip6af_up = up6;
887	af6->ip6af_down = up6->ip6af_down;
888	up6->ip6af_down->ip6af_up = af6;
889	up6->ip6af_down = af6;
890}
891
892/*
893 * To frag6_enq as remque is to insque.
894 */
895void
896frag6_deq(struct ip6asfrag *af6)
897{
898	lck_mtx_assert(&ip6qlock, LCK_MTX_ASSERT_OWNED);
899
900	af6->ip6af_up->ip6af_down = af6->ip6af_down;
901	af6->ip6af_down->ip6af_up = af6->ip6af_up;
902}
903
904void
905frag6_insque(struct ip6q *new, struct ip6q *old)
906{
907	lck_mtx_assert(&ip6qlock, LCK_MTX_ASSERT_OWNED);
908
909	new->ip6q_prev = old;
910	new->ip6q_next = old->ip6q_next;
911	old->ip6q_next->ip6q_prev= new;
912	old->ip6q_next = new;
913}
914
915void
916frag6_remque(struct ip6q *p6)
917{
918	lck_mtx_assert(&ip6qlock, LCK_MTX_ASSERT_OWNED);
919
920	p6->ip6q_prev->ip6q_next = p6->ip6q_next;
921	p6->ip6q_next->ip6q_prev = p6->ip6q_prev;
922}
923
924/*
925 * IPv6 reassembling timer processing;
926 * if a timer expires on a reassembly
927 * queue, discard it.
928 */
929static void
930frag6_timeout(void *arg)
931{
932#pragma unused(arg)
933	struct fq6_head dfq6, diq6;
934	struct ip6q *q6;
935
936	MBUFQ_INIT(&dfq6);	/* for deferred frees */
937	MBUFQ_INIT(&diq6);	/* for deferred ICMP time exceeded errors */
938
939	/*
940	 * Update coarse-grained networking timestamp (in sec.); the idea
941	 * is to piggy-back on the timeout callout to update the counter
942	 * returnable via net_uptime().
943	 */
944	net_update_uptime();
945
946	lck_mtx_lock(&ip6qlock);
947	q6 = ip6q.ip6q_next;
948	if (q6)
949		while (q6 != &ip6q) {
950			--q6->ip6q_ttl;
951			q6 = q6->ip6q_next;
952			if (q6->ip6q_prev->ip6q_ttl == 0) {
953				ip6stat.ip6s_fragtimeout++;
954				/* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */
955				frag6_freef(q6->ip6q_prev, &dfq6, &diq6);
956			}
957		}
958	/*
959	 * If we are over the maximum number of fragments
960	 * (due to the limit being lowered), drain off
961	 * enough to get down to the new limit.
962	 */
963	if (ip6_maxfragpackets >= 0) {
964		while (frag6_nfragpackets > (unsigned)ip6_maxfragpackets &&
965		    ip6q.ip6q_prev) {
966			ip6stat.ip6s_fragoverflow++;
967			/* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */
968			frag6_freef(ip6q.ip6q_prev, &dfq6, &diq6);
969		}
970	}
971	/* re-arm the purge timer if there's work to do */
972	frag6_timeout_run = 0;
973	frag6_sched_timeout();
974	lck_mtx_unlock(&ip6qlock);
975
976	/* free fragments that need to be freed */
977	if (!MBUFQ_EMPTY(&dfq6))
978		MBUFQ_DRAIN(&dfq6);
979
980	frag6_icmp6_timeex_error(&diq6);
981
982	VERIFY(MBUFQ_EMPTY(&dfq6));
983	VERIFY(MBUFQ_EMPTY(&diq6));
984}
985
986static void
987frag6_sched_timeout(void)
988{
989	lck_mtx_assert(&ip6qlock, LCK_MTX_ASSERT_OWNED);
990
991	if (!frag6_timeout_run && frag6_nfragpackets > 0) {
992		frag6_timeout_run = 1;
993		timeout(frag6_timeout, NULL, hz);
994	}
995}
996
997/*
998 * Drain off all datagram fragments.
999 */
1000void
1001frag6_drain(void)
1002{
1003	struct fq6_head dfq6, diq6;
1004
1005	MBUFQ_INIT(&dfq6);	/* for deferred frees */
1006	MBUFQ_INIT(&diq6);	/* for deferred ICMP time exceeded errors */
1007
1008	lck_mtx_lock(&ip6qlock);
1009	while (ip6q.ip6q_next != &ip6q) {
1010		ip6stat.ip6s_fragdropped++;
1011		/* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */
1012		frag6_freef(ip6q.ip6q_next, &dfq6, &diq6);
1013	}
1014	lck_mtx_unlock(&ip6qlock);
1015
1016	/* free fragments that need to be freed */
1017	if (!MBUFQ_EMPTY(&dfq6))
1018		MBUFQ_DRAIN(&dfq6);
1019
1020	frag6_icmp6_timeex_error(&diq6);
1021
1022	VERIFY(MBUFQ_EMPTY(&dfq6));
1023	VERIFY(MBUFQ_EMPTY(&diq6));
1024}
1025
1026static struct ip6q *
1027ip6q_alloc(int how)
1028{
1029	struct mbuf *t;
1030	struct ip6q *q6;
1031
1032	/*
1033	 * See comments in ip6q_updateparams().  Keep the count separate
1034	 * from frag6_nfragpackets since the latter represents the elements
1035	 * already in the reassembly queues.
1036	 */
1037	if (ip6q_limit > 0 && ip6q_count > ip6q_limit)
1038		return (NULL);
1039
1040	t = m_get(how, MT_FTABLE);
1041	if (t != NULL) {
1042		atomic_add_32(&ip6q_count, 1);
1043		q6 = mtod(t, struct ip6q *);
1044		bzero(q6, sizeof (*q6));
1045	} else {
1046		q6 = NULL;
1047	}
1048	return (q6);
1049}
1050
1051static void
1052ip6q_free(struct ip6q *q6)
1053{
1054	(void) m_free(dtom(q6));
1055	atomic_add_32(&ip6q_count, -1);
1056}
1057
1058static struct ip6asfrag *
1059ip6af_alloc(int how)
1060{
1061	struct mbuf *t;
1062	struct ip6asfrag *af6;
1063
1064	/*
1065	 * See comments in ip6q_updateparams().  Keep the count separate
1066	 * from frag6_nfrags since the latter represents the elements
1067	 * already in the reassembly queues.
1068	 */
1069	if (ip6af_limit > 0 && ip6af_count > ip6af_limit)
1070		return (NULL);
1071
1072	t = m_get(how, MT_FTABLE);
1073	if (t != NULL) {
1074		atomic_add_32(&ip6af_count, 1);
1075		af6 = mtod(t, struct ip6asfrag *);
1076		bzero(af6, sizeof (*af6));
1077	} else {
1078		af6 = NULL;
1079	}
1080	return (af6);
1081}
1082
1083static void
1084ip6af_free(struct ip6asfrag *af6)
1085{
1086	(void) m_free(dtom(af6));
1087	atomic_add_32(&ip6af_count, -1);
1088}
1089
1090static void
1091ip6q_updateparams(void)
1092{
1093	lck_mtx_assert(&ip6qlock, LCK_MTX_ASSERT_OWNED);
1094	/*
1095	 * -1 for unlimited allocation.
1096	 */
1097	if (ip6_maxfragpackets < 0)
1098		ip6q_limit = 0;
1099	if (ip6_maxfrags < 0)
1100		ip6af_limit = 0;
1101	/*
1102	 * Positive number for specific bound.
1103	 */
1104	if (ip6_maxfragpackets > 0)
1105		ip6q_limit = ip6_maxfragpackets;
1106	if (ip6_maxfrags > 0)
1107		ip6af_limit = ip6_maxfrags;
1108	/*
1109	 * Zero specifies no further fragment queue allocation -- set the
1110	 * bound very low, but rely on implementation elsewhere to actually
1111	 * prevent allocation and reclaim current queues.
1112	 */
1113	if (ip6_maxfragpackets == 0)
1114		ip6q_limit = 1;
1115	if (ip6_maxfrags == 0)
1116		ip6af_limit = 1;
1117	/*
1118	 * Arm the purge timer if not already and if there's work to do
1119	 */
1120	frag6_sched_timeout();
1121}
1122
1123static int
1124sysctl_maxfragpackets SYSCTL_HANDLER_ARGS
1125{
1126#pragma unused(arg1, arg2)
1127	int error, i;
1128
1129	lck_mtx_lock(&ip6qlock);
1130	i = ip6_maxfragpackets;
1131	error = sysctl_handle_int(oidp, &i, 0, req);
1132	if (error || req->newptr == USER_ADDR_NULL)
1133		goto done;
1134	/* impose bounds */
1135	if (i < -1 || i > (nmbclusters / 4)) {
1136		error = EINVAL;
1137		goto done;
1138	}
1139	ip6_maxfragpackets = i;
1140	ip6q_updateparams();
1141done:
1142	lck_mtx_unlock(&ip6qlock);
1143	return (error);
1144}
1145
1146static int
1147sysctl_maxfrags SYSCTL_HANDLER_ARGS
1148{
1149#pragma unused(arg1, arg2)
1150	int error, i;
1151
1152	lck_mtx_lock(&ip6qlock);
1153	i = ip6_maxfrags;
1154	error = sysctl_handle_int(oidp, &i, 0, req);
1155	if (error || req->newptr == USER_ADDR_NULL)
1156		goto done;
1157	/* impose bounds */
1158	if (i < -1 || i > (nmbclusters / 4)) {
1159		error = EINVAL;
1160		goto done;
1161	}
1162	ip6_maxfrags= i;
1163	ip6q_updateparams();	/* see if we need to arm timer */
1164done:
1165	lck_mtx_unlock(&ip6qlock);
1166	return (error);
1167}
1168