1/*
2 * Copyright (c) 2003-2014 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28/*
29 * Copyright 1998 Massachusetts Institute of Technology
30 *
31 * Permission to use, copy, modify, and distribute this software and
32 * its documentation for any purpose and without fee is hereby
33 * granted, provided that both the above copyright notice and this
34 * permission notice appear in all copies, that both the above
35 * copyright notice and this permission notice appear in all
36 * supporting documentation, and that the name of M.I.T. not be used
37 * in advertising or publicity pertaining to distribution of the
38 * software without specific, written prior permission.  M.I.T. makes
39 * no representations about the suitability of this software for any
40 * purpose.  It is provided "as is" without express or implied
41 * warranty.
42 *
43 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
44 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
45 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
46 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
47 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
50 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
51 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
52 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
53 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
54 * SUCH DAMAGE.
55 *
56 * $FreeBSD: src/sys/net/if_vlan.c,v 1.54 2003/10/31 18:32:08 brooks Exp $
57 */
58
59/*
60 * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.
61 * Might be extended some day to also handle IEEE 802.1p priority
62 * tagging.  This is sort of sneaky in the implementation, since
63 * we need to pretend to be enough of an Ethernet implementation
64 * to make arp work.  The way we do this is by telling everyone
65 * that we are an Ethernet, and then catch the packets that
66 * ether_output() left on our output queue when it calls
67 * if_start(), rewrite them for use by the real outgoing interface,
68 * and ask it to send them.
69 */
70
71
72#include <sys/param.h>
73#include <sys/kernel.h>
74#include <sys/malloc.h>
75#include <sys/mbuf.h>
76#include <sys/queue.h>
77#include <sys/socket.h>
78#include <sys/sockio.h>
79#include <sys/sysctl.h>
80#include <sys/systm.h>
81#include <sys/kern_event.h>
82#include <sys/mcache.h>
83
84#include <net/bpf.h>
85#include <net/ethernet.h>
86#include <net/if.h>
87#include <net/if_arp.h>
88#include <net/if_dl.h>
89#include <net/if_ether.h>
90#include <net/if_types.h>
91#include <net/if_vlan_var.h>
92#include <libkern/OSAtomic.h>
93
94#include <net/dlil.h>
95
96#include <net/kpi_interface.h>
97#include <net/kpi_protocol.h>
98
99#include <kern/locks.h>
100
101#ifdef INET
102#include <netinet/in.h>
103#include <netinet/if_ether.h>
104#endif
105
106#include <net/if_media.h>
107#include <net/multicast_list.h>
108#include <net/ether_if_module.h>
109
110#define VLANNAME	"vlan"
111
112typedef int (bpf_callback_func)(struct ifnet *, struct mbuf *);
113typedef int (if_set_bpf_tap_func)(struct ifnet *ifp, int mode, bpf_callback_func * func);
114
115/**
116 ** vlan locks
117 **/
118static __inline__ lck_grp_t *
119my_lck_grp_alloc_init(const char * grp_name)
120{
121    lck_grp_t *		grp;
122    lck_grp_attr_t *	grp_attrs;
123
124    grp_attrs = lck_grp_attr_alloc_init();
125    grp = lck_grp_alloc_init(grp_name, grp_attrs);
126    lck_grp_attr_free(grp_attrs);
127    return (grp);
128}
129
130static __inline__ lck_mtx_t *
131my_lck_mtx_alloc_init(lck_grp_t * lck_grp)
132{
133    lck_attr_t * 	lck_attrs;
134    lck_mtx_t *		lck_mtx;
135
136    lck_attrs = lck_attr_alloc_init();
137    lck_mtx = lck_mtx_alloc_init(lck_grp, lck_attrs);
138    lck_attr_free(lck_attrs);
139    return (lck_mtx);
140}
141
142static lck_mtx_t * 	vlan_lck_mtx;
143
144static __inline__ void
145vlan_lock_init(void)
146{
147    lck_grp_t *		vlan_lck_grp;
148
149    vlan_lck_grp = my_lck_grp_alloc_init("if_vlan");
150    vlan_lck_mtx = my_lck_mtx_alloc_init(vlan_lck_grp);
151}
152
153static __inline__ void
154vlan_assert_lock_held(void)
155{
156    lck_mtx_assert(vlan_lck_mtx, LCK_MTX_ASSERT_OWNED);
157    return;
158}
159
160static __inline__ void
161vlan_assert_lock_not_held(void)
162{
163    lck_mtx_assert(vlan_lck_mtx, LCK_MTX_ASSERT_NOTOWNED);
164    return;
165}
166
167static __inline__ void
168vlan_lock(void)
169{
170    lck_mtx_lock(vlan_lck_mtx);
171    return;
172}
173
174static __inline__ void
175vlan_unlock(void)
176{
177    lck_mtx_unlock(vlan_lck_mtx);
178    return;
179}
180
181/**
182 ** vlan structures, types
183 **/
184struct vlan_parent;
185LIST_HEAD(vlan_parent_list, vlan_parent);
186struct ifvlan;
187LIST_HEAD(ifvlan_list, ifvlan);
188
189typedef LIST_ENTRY(vlan_parent)
190vlan_parent_entry;
191typedef LIST_ENTRY(ifvlan)
192ifvlan_entry;
193
194#define VLP_SIGNATURE		0xfaceface
195typedef struct vlan_parent {
196    vlan_parent_entry		vlp_parent_list;/* list of parents */
197    struct ifnet *		vlp_ifp;	/* interface */
198    struct ifvlan_list		vlp_vlan_list;	/* list of VLAN's */
199#define VLPF_SUPPORTS_VLAN_MTU		0x00000001
200#define VLPF_CHANGE_IN_PROGRESS		0x00000002
201#define VLPF_DETACHING			0x00000004
202#define VLPF_LINK_EVENT_REQUIRED	0x00000008
203    u_int32_t			vlp_flags;
204    u_int32_t			vlp_event_code;
205    struct ifdevmtu		vlp_devmtu;
206    int32_t			vlp_retain_count;
207    u_int32_t			vlp_signature;	/* VLP_SIGNATURE */
208} vlan_parent, * vlan_parent_ref;
209
210#define IFV_SIGNATURE		0xbeefbeef
211struct ifvlan {
212    ifvlan_entry 		ifv_vlan_list;
213    char			ifv_name[IFNAMSIZ]; /* our unique id */
214    struct ifnet *		ifv_ifp;	/* our interface */
215    vlan_parent_ref		ifv_vlp;	/* parent information */
216    struct	ifv_linkmib {
217	u_int16_t ifvm_encaplen;/* encapsulation length */
218	u_int16_t ifvm_mtufudge;/* MTU fudged by this much */
219	u_int16_t ifvm_proto;	/* encapsulation ethertype */
220	u_int16_t ifvm_tag; 	/* tag to apply on packets leaving if */
221    }	ifv_mib;
222    struct multicast_list 	ifv_multicast;
223#define	IFVF_PROMISC		0x1		/* promiscuous mode enabled */
224#define IFVF_DETACHING		0x2		/* interface is detaching */
225#define IFVF_READY		0x4		/* interface is ready */
226    u_int32_t			ifv_flags;
227    bpf_packet_func		ifv_bpf_input;
228    bpf_packet_func		ifv_bpf_output;
229    int32_t			ifv_retain_count;
230    u_int32_t			ifv_signature;	/* IFV_SIGNATURE */
231};
232
233typedef struct ifvlan * ifvlan_ref;
234
235typedef struct vlan_globals_s {
236    struct vlan_parent_list	parent_list;
237    int				verbose;
238} * vlan_globals_ref;
239
240static vlan_globals_ref	g_vlan;
241
242#define	ifv_tag		ifv_mib.ifvm_tag
243#define	ifv_encaplen	ifv_mib.ifvm_encaplen
244#define	ifv_mtufudge	ifv_mib.ifvm_mtufudge
245
246static void
247vlan_parent_retain(vlan_parent_ref vlp);
248
249static void
250vlan_parent_release(vlan_parent_ref vlp);
251
252/**
253 ** vlan_parent_ref vlp_flags in-lines
254 **/
255static __inline__ int
256vlan_parent_flags_supports_vlan_mtu(vlan_parent_ref vlp)
257{
258    return ((vlp->vlp_flags & VLPF_SUPPORTS_VLAN_MTU) != 0);
259}
260
261static __inline__ void
262vlan_parent_flags_set_supports_vlan_mtu(vlan_parent_ref vlp)
263{
264    vlp->vlp_flags |= VLPF_SUPPORTS_VLAN_MTU;
265    return;
266}
267
268static __inline__ int
269vlan_parent_flags_change_in_progress(vlan_parent_ref vlp)
270{
271    return ((vlp->vlp_flags & VLPF_CHANGE_IN_PROGRESS) != 0);
272}
273
274static __inline__ void
275vlan_parent_flags_set_change_in_progress(vlan_parent_ref vlp)
276{
277    vlp->vlp_flags |= VLPF_CHANGE_IN_PROGRESS;
278    return;
279}
280
281static __inline__ void
282vlan_parent_flags_clear_change_in_progress(vlan_parent_ref vlp)
283{
284    vlp->vlp_flags &= ~VLPF_CHANGE_IN_PROGRESS;
285    return;
286}
287
288static __inline__ int
289vlan_parent_flags_detaching(struct vlan_parent * vlp)
290{
291    return ((vlp->vlp_flags & VLPF_DETACHING) != 0);
292}
293
294static __inline__ void
295vlan_parent_flags_set_detaching(struct vlan_parent * vlp)
296{
297    vlp->vlp_flags |= VLPF_DETACHING;
298    return;
299}
300
301static __inline__ int
302vlan_parent_flags_link_event_required(vlan_parent_ref vlp)
303{
304    return ((vlp->vlp_flags & VLPF_LINK_EVENT_REQUIRED) != 0);
305}
306
307static __inline__ void
308vlan_parent_flags_set_link_event_required(vlan_parent_ref vlp)
309{
310    vlp->vlp_flags |= VLPF_LINK_EVENT_REQUIRED;
311    return;
312}
313
314static __inline__ void
315vlan_parent_flags_clear_link_event_required(vlan_parent_ref vlp)
316{
317    vlp->vlp_flags &= ~VLPF_LINK_EVENT_REQUIRED;
318    return;
319}
320
321
322/**
323 ** ifvlan_flags in-lines routines
324 **/
325static __inline__ int
326ifvlan_flags_promisc(ifvlan_ref ifv)
327{
328    return ((ifv->ifv_flags & IFVF_PROMISC) != 0);
329}
330
331static __inline__ void
332ifvlan_flags_set_promisc(ifvlan_ref ifv)
333{
334    ifv->ifv_flags |= IFVF_PROMISC;
335    return;
336}
337
338static __inline__ void
339ifvlan_flags_clear_promisc(ifvlan_ref ifv)
340{
341    ifv->ifv_flags &= ~IFVF_PROMISC;
342    return;
343}
344
345static __inline__ int
346ifvlan_flags_ready(ifvlan_ref ifv)
347{
348    return ((ifv->ifv_flags & IFVF_READY) != 0);
349}
350
351static __inline__ void
352ifvlan_flags_set_ready(ifvlan_ref ifv)
353{
354    ifv->ifv_flags |= IFVF_READY;
355    return;
356}
357
358static __inline__ int
359ifvlan_flags_detaching(ifvlan_ref ifv)
360{
361    return ((ifv->ifv_flags & IFVF_DETACHING) != 0);
362}
363
364static __inline__ void
365ifvlan_flags_set_detaching(ifvlan_ref ifv)
366{
367    ifv->ifv_flags |= IFVF_DETACHING;
368    return;
369}
370
371#if 0
372SYSCTL_DECL(_net_link);
373SYSCTL_NODE(_net_link, IFT_L2VLAN, vlan, CTLFLAG_RW|CTLFLAG_LOCKED, 0, "IEEE 802.1Q VLAN");
374SYSCTL_NODE(_net_link_vlan, PF_LINK, link, CTLFLAG_RW|CTLFLAG_LOCKED, 0, "for consistency");
375#endif
376
377#define M_VLAN 		M_DEVBUF
378
379static	int vlan_clone_create(struct if_clone *, u_int32_t, void *);
380static	int vlan_clone_destroy(struct ifnet *);
381static	int vlan_input(ifnet_t ifp, protocol_family_t protocol,
382					   mbuf_t m, char *frame_header);
383static	int vlan_output(struct ifnet *ifp, struct mbuf *m);
384static	int vlan_ioctl(ifnet_t ifp, u_long cmd, void * addr);
385static  int vlan_set_bpf_tap(ifnet_t ifp, bpf_tap_mode mode,
386			     bpf_packet_func func);
387static 	int vlan_attach_protocol(struct ifnet *ifp);
388static	int vlan_detach_protocol(struct ifnet *ifp);
389static	int vlan_setmulti(struct ifnet *ifp);
390static	int vlan_unconfig(ifvlan_ref ifv, int need_to_wait);
391static 	int vlan_config(struct ifnet * ifp, struct ifnet * p, int tag);
392static	void vlan_if_free(struct ifnet * ifp);
393static 	int vlan_remove(ifvlan_ref ifv, int need_to_wait);
394
395static struct if_clone vlan_cloner = IF_CLONE_INITIALIZER(VLANNAME,
396							  vlan_clone_create,
397							  vlan_clone_destroy,
398							  0,
399							  IF_MAXUNIT);
400static	void interface_link_event(struct ifnet * ifp, u_int32_t event_code);
401static	void vlan_parent_link_event(struct ifnet * p,
402				    u_int32_t event_code);
403
404static 	int ifvlan_new_mtu(ifvlan_ref ifv, int mtu);
405
406/**
407 ** ifvlan_ref routines
408 **/
409static void
410ifvlan_retain(ifvlan_ref ifv)
411{
412    if (ifv->ifv_signature != IFV_SIGNATURE) {
413	panic("ifvlan_retain: bad signature\n");
414    }
415    if (ifv->ifv_retain_count == 0) {
416	panic("ifvlan_retain: retain count is 0\n");
417    }
418    OSIncrementAtomic(&ifv->ifv_retain_count);
419}
420
421static void
422ifvlan_release(ifvlan_ref ifv)
423{
424    u_int32_t		old_retain_count;
425
426    if (ifv->ifv_signature != IFV_SIGNATURE) {
427	panic("ifvlan_release: bad signature\n");
428    }
429    old_retain_count = OSDecrementAtomic(&ifv->ifv_retain_count);
430    switch (old_retain_count) {
431    case 0:
432	panic("ifvlan_release: retain count is 0\n");
433	break;
434    case 1:
435	if (g_vlan->verbose) {
436	    printf("ifvlan_release(%s)\n", ifv->ifv_name);
437	}
438	ifv->ifv_signature = 0;
439	FREE(ifv, M_VLAN);
440	break;
441    default:
442	break;
443    }
444    return;
445}
446
447static vlan_parent_ref
448ifvlan_get_vlan_parent_retained(ifvlan_ref ifv)
449{
450    vlan_parent_ref	vlp = ifv->ifv_vlp;
451
452    if (vlp == NULL || vlan_parent_flags_detaching(vlp)) {
453	return (NULL);
454    }
455    vlan_parent_retain(vlp);
456    return (vlp);
457}
458
459/**
460 ** ifnet_* routines
461 **/
462
463static ifvlan_ref
464ifnet_get_ifvlan(struct ifnet * ifp)
465{
466    ifvlan_ref		ifv;
467
468    ifv = (ifvlan_ref)ifnet_softc(ifp);
469    return (ifv);
470}
471
472static ifvlan_ref
473ifnet_get_ifvlan_retained(struct ifnet * ifp)
474{
475    ifvlan_ref		ifv;
476
477    ifv = ifnet_get_ifvlan(ifp);
478    if (ifv == NULL) {
479	return (NULL);
480    }
481    if (ifvlan_flags_detaching(ifv)) {
482	return (NULL);
483    }
484    ifvlan_retain(ifv);
485    return (ifv);
486}
487
488static int
489ifnet_ifvlan_vlan_parent_ok(struct ifnet * ifp, ifvlan_ref ifv,
490			    vlan_parent_ref vlp)
491{
492    ifvlan_ref		check_ifv;
493
494    check_ifv = ifnet_get_ifvlan(ifp);
495    if (check_ifv != ifv || ifvlan_flags_detaching(ifv)) {
496	/* ifvlan_ref no longer valid */
497	return (FALSE);
498    }
499    if (ifv->ifv_vlp != vlp) {
500	/* vlan_parent no longer valid */
501	return (FALSE);
502    }
503    if (vlan_parent_flags_detaching(vlp)) {
504	/* parent is detaching */
505	return (FALSE);
506    }
507    return (TRUE);
508}
509
510/**
511 ** vlan, etc. routines
512 **/
513
514static int
515vlan_globals_init(void)
516{
517    vlan_globals_ref	v;
518
519    vlan_assert_lock_not_held();
520
521    if (g_vlan != NULL) {
522	return (0);
523    }
524    v = _MALLOC(sizeof(*v), M_VLAN, M_WAITOK);
525    if (v != NULL) {
526	LIST_INIT(&v->parent_list);
527	v->verbose = 0;
528    }
529    vlan_lock();
530    if (g_vlan != NULL) {
531	vlan_unlock();
532	if (v != NULL) {
533	    _FREE(v, M_VLAN);
534	}
535	return (0);
536    }
537    g_vlan = v;
538    vlan_unlock();
539    if (v == NULL) {
540	return (ENOMEM);
541    }
542    return (0);
543}
544
545static int
546siocgifdevmtu(struct ifnet * ifp, struct ifdevmtu * ifdm_p)
547{
548    struct ifreq	ifr;
549    int 		error;
550
551    bzero(&ifr, sizeof(ifr));
552    error = ifnet_ioctl(ifp, 0,SIOCGIFDEVMTU, &ifr);
553    if (error == 0) {
554	*ifdm_p = ifr.ifr_devmtu;
555    }
556    return (error);
557}
558
559static int
560siocsifaltmtu(struct ifnet * ifp, int mtu)
561{
562    struct ifreq	ifr;
563
564    bzero(&ifr, sizeof(ifr));
565    ifr.ifr_mtu = mtu;
566    return (ifnet_ioctl(ifp, 0, SIOCSIFALTMTU, &ifr));
567}
568
569static __inline__ void
570vlan_bpf_output(struct ifnet * ifp, struct mbuf * m,
571		bpf_packet_func func)
572{
573    if (func != NULL) {
574	(*func)(ifp, m);
575    }
576    return;
577}
578
579static __inline__ void
580vlan_bpf_input(struct ifnet * ifp, struct mbuf * m,
581	       bpf_packet_func func, char * frame_header,
582	       int frame_header_len, int encap_len)
583{
584    if (func != NULL) {
585	if (encap_len > 0) {
586	    /* present the right header to bpf */
587	    bcopy(frame_header, frame_header + encap_len, frame_header_len);
588	}
589	m->m_data -= frame_header_len;
590	m->m_len += frame_header_len;
591	(*func)(ifp, m);
592	m->m_data += frame_header_len;
593	m->m_len -= frame_header_len;
594	if (encap_len > 0) {
595	    /* restore the header */
596	    bcopy(frame_header + encap_len, frame_header, frame_header_len);
597	}
598    }
599    return;
600}
601
602/**
603 ** vlan_parent synchronization routines
604 **/
605static void
606vlan_parent_retain(vlan_parent_ref vlp)
607{
608    if (vlp->vlp_signature != VLP_SIGNATURE) {
609	panic("vlan_parent_retain: signature is bad\n");
610    }
611    if (vlp->vlp_retain_count == 0) {
612	panic("vlan_parent_retain: retain count is 0\n");
613    }
614    OSIncrementAtomic(&vlp->vlp_retain_count);
615}
616
617static void
618vlan_parent_release(vlan_parent_ref vlp)
619{
620    u_int32_t		old_retain_count;
621
622    if (vlp->vlp_signature != VLP_SIGNATURE) {
623	panic("vlan_parent_release: signature is bad\n");
624    }
625    old_retain_count = OSDecrementAtomic(&vlp->vlp_retain_count);
626    switch (old_retain_count) {
627    case 0:
628	panic("vlan_parent_release: retain count is 0\n");
629	break;
630    case 1:
631	if (g_vlan->verbose) {
632	    struct ifnet * ifp = vlp->vlp_ifp;
633	    printf("vlan_parent_release(%s%d)\n", ifnet_name(ifp),
634		   ifnet_unit(ifp));
635	}
636	vlp->vlp_signature = 0;
637	FREE(vlp, M_VLAN);
638	break;
639    default:
640	break;
641    }
642    return;
643}
644
645/*
646 * Function: vlan_parent_wait
647 * Purpose:
648 *   Allows a single thread to gain exclusive access to the vlan_parent
649 *   data structure.  Some operations take a long time to complete,
650 *   and some have side-effects that we can't predict.  Holding the
651 *   vlan_lock() across such operations is not possible.
652 *
653 * Notes:
654 *   Before calling, you must be holding the vlan_lock and have taken
655 *   a reference on the vlan_parent_ref.
656 */
657static void
658vlan_parent_wait(vlan_parent_ref vlp, const char * msg)
659{
660    int		waited = 0;
661
662    /* other add/remove/multicast-change in progress */
663    while (vlan_parent_flags_change_in_progress(vlp)) {
664	if (g_vlan->verbose) {
665	    struct ifnet * ifp = vlp->vlp_ifp;
666
667	    printf("%s%d: %s msleep\n", ifnet_name(ifp), ifnet_unit(ifp), msg);
668	}
669	waited = 1;
670	(void)msleep(vlp, vlan_lck_mtx, PZERO, msg, 0);
671    }
672    /* prevent other vlan parent remove/add from taking place */
673    vlan_parent_flags_set_change_in_progress(vlp);
674    if (g_vlan->verbose && waited) {
675	struct ifnet * ifp = vlp->vlp_ifp;
676
677	printf("%s%d: %s woke up\n", ifnet_name(ifp), ifnet_unit(ifp), msg);
678    }
679    return;
680}
681
682/*
683 * Function: vlan_parent_signal
684 * Purpose:
685 *   Allows the thread that previously invoked vlan_parent_wait() to
686 *   give up exclusive access to the vlan_parent data structure, and wake up
687 *   any other threads waiting to access
688 * Notes:
689 *   Before calling, you must be holding the vlan_lock and have taken
690 *   a reference on the vlan_parent_ref.
691 */
692static void
693vlan_parent_signal(vlan_parent_ref vlp, const char * msg)
694{
695    struct ifnet * vlp_ifp = vlp->vlp_ifp;
696
697    if (vlan_parent_flags_link_event_required(vlp)) {
698	vlan_parent_flags_clear_link_event_required(vlp);
699	if (!vlan_parent_flags_detaching(vlp)) {
700	    u_int32_t		event_code = vlp->vlp_event_code;
701	    ifvlan_ref 		ifv;
702
703	    vlan_unlock();
704
705	    /* we can safely walk the list unlocked */
706	    LIST_FOREACH(ifv, &vlp->vlp_vlan_list, ifv_vlan_list) {
707		struct ifnet *	ifp = ifv->ifv_ifp;
708
709		interface_link_event(ifp, event_code);
710	    }
711	    if (g_vlan->verbose) {
712		printf("%s%d: propagated link event to vlans\n",
713		       ifnet_name(vlp_ifp), ifnet_unit(vlp_ifp));
714	    }
715	    vlan_lock();
716	}
717    }
718    vlan_parent_flags_clear_change_in_progress(vlp);
719    wakeup((caddr_t)vlp);
720    if (g_vlan->verbose) {
721	printf("%s%d: %s wakeup\n",
722	       ifnet_name(vlp_ifp), ifnet_unit(vlp_ifp), msg);
723    }
724    return;
725}
726
727/*
728 * Program our multicast filter. What we're actually doing is
729 * programming the multicast filter of the parent. This has the
730 * side effect of causing the parent interface to receive multicast
731 * traffic that it doesn't really want, which ends up being discarded
732 * later by the upper protocol layers. Unfortunately, there's no way
733 * to avoid this: there really is only one physical interface.
734 */
735static int
736vlan_setmulti(struct ifnet * ifp)
737{
738    int			error = 0;
739    ifvlan_ref 		ifv;
740    struct ifnet *	p;
741    vlan_parent_ref	vlp = NULL;
742
743    vlan_lock();
744    ifv = ifnet_get_ifvlan_retained(ifp);
745    if (ifv == NULL) {
746	goto unlock_done;
747    }
748    vlp = ifvlan_get_vlan_parent_retained(ifv);
749    if (vlp == NULL) {
750	/* no parent, no need to program the multicast filter */
751	goto unlock_done;
752    }
753    vlan_parent_wait(vlp, "vlan_setmulti");
754
755    /* check again, things could have changed */
756    if (ifnet_ifvlan_vlan_parent_ok(ifp, ifv, vlp) == FALSE) {
757	goto signal_done;
758    }
759    p = vlp->vlp_ifp;
760    vlan_unlock();
761
762    /* update parent interface with our multicast addresses */
763    error = multicast_list_program(&ifv->ifv_multicast, ifp, p);
764
765    vlan_lock();
766
767 signal_done:
768    vlan_parent_signal(vlp, "vlan_setmulti");
769
770 unlock_done:
771    vlan_unlock();
772    if (ifv != NULL) {
773	ifvlan_release(ifv);
774    }
775    if (vlp != NULL) {
776	vlan_parent_release(vlp);
777    }
778    return (error);
779}
780
781/**
782 ** vlan_parent list manipulation/lookup routines
783 **/
784static vlan_parent_ref
785parent_list_lookup(struct ifnet * p)
786{
787    vlan_parent_ref	vlp;
788
789    LIST_FOREACH(vlp, &g_vlan->parent_list, vlp_parent_list) {
790	if (vlp->vlp_ifp == p) {
791	    return (vlp);
792	}
793    }
794    return (NULL);
795}
796
797static ifvlan_ref
798vlan_parent_lookup_tag(vlan_parent_ref vlp, int tag)
799{
800    ifvlan_ref		ifv;
801
802    LIST_FOREACH(ifv, &vlp->vlp_vlan_list, ifv_vlan_list) {
803	if (tag == ifv->ifv_tag) {
804	    return (ifv);
805	}
806    }
807    return (NULL);
808}
809
810static ifvlan_ref
811vlan_lookup_parent_and_tag(struct ifnet * p, int tag)
812{
813    vlan_parent_ref	vlp;
814
815    vlp = parent_list_lookup(p);
816    if (vlp != NULL) {
817	return (vlan_parent_lookup_tag(vlp, tag));
818    }
819    return (NULL);
820}
821
822static int
823vlan_parent_find_max_mtu(vlan_parent_ref vlp, ifvlan_ref exclude_ifv)
824{
825    int			max_mtu = 0;
826    ifvlan_ref		ifv;
827
828    LIST_FOREACH(ifv, &vlp->vlp_vlan_list, ifv_vlan_list) {
829	int	req_mtu;
830
831	if (exclude_ifv == ifv) {
832	    continue;
833	}
834	req_mtu = ifnet_mtu(ifv->ifv_ifp) + ifv->ifv_mtufudge;
835	if (req_mtu > max_mtu) {
836	    max_mtu = req_mtu;
837	}
838    }
839    return (max_mtu);
840}
841
842/*
843 * Function: vlan_parent_create
844 * Purpose:
845 *   Create a vlan_parent structure to hold the VLAN's for the given
846 *   interface.  Add it to the list of VLAN parents.
847 */
848static int
849vlan_parent_create(struct ifnet * p, vlan_parent_ref * ret_vlp)
850{
851    int			error;
852    vlan_parent_ref	vlp;
853
854    *ret_vlp = NULL;
855    vlp = _MALLOC(sizeof(*vlp), M_VLAN, M_WAITOK);
856    if (vlp == NULL) {
857	return (ENOMEM);
858    }
859    bzero(vlp, sizeof(*vlp));
860    error = siocgifdevmtu(p, &vlp->vlp_devmtu);
861    if (error != 0) {
862	printf("vlan_parent_create (%s%d): siocgifdevmtu failed, %d\n",
863	       ifnet_name(p), ifnet_unit(p), error);
864	FREE(vlp, M_VLAN);
865	return (error);
866    }
867    LIST_INIT(&vlp->vlp_vlan_list);
868    vlp->vlp_ifp = p;
869    vlp->vlp_retain_count = 1;
870    vlp->vlp_signature = VLP_SIGNATURE;
871    if (ifnet_offload(p)
872	& (IF_HWASSIST_VLAN_MTU | IF_HWASSIST_VLAN_TAGGING)) {
873	vlan_parent_flags_set_supports_vlan_mtu(vlp);
874    }
875    *ret_vlp = vlp;
876    return (0);
877}
878
879static void
880vlan_parent_remove_all_vlans(struct ifnet * p)
881{
882    ifvlan_ref 		ifv;
883    int			need_vlp_release = 0;
884    ifvlan_ref		next;
885    vlan_parent_ref	vlp;
886
887    vlan_lock();
888    vlp = parent_list_lookup(p);
889    if (vlp == NULL || vlan_parent_flags_detaching(vlp)) {
890	/* no VLAN's */
891	vlan_unlock();
892	return;
893    }
894    vlan_parent_flags_set_detaching(vlp);
895    vlan_parent_retain(vlp);
896    vlan_parent_wait(vlp, "vlan_parent_remove_all_vlans");
897    need_vlp_release++;
898    vlp = parent_list_lookup(p);
899    /* check again */
900    if (vlp == NULL) {
901	goto signal_done;
902    }
903
904    for (ifv = LIST_FIRST(&vlp->vlp_vlan_list); ifv != NULL; ifv = next) {
905	struct ifnet *	ifp = ifv->ifv_ifp;
906	int		removed;
907
908	next = LIST_NEXT(ifv, ifv_vlan_list);
909	removed = vlan_remove(ifv, FALSE);
910	if (removed) {
911	    vlan_unlock();
912	    ifnet_detach(ifp);
913	    vlan_lock();
914	}
915    }
916
917    /* the vlan parent has no more VLAN's */
918    ifnet_set_eflags(p, 0, IFEF_VLAN); /* clear IFEF_VLAN */
919
920    LIST_REMOVE(vlp, vlp_parent_list);
921    need_vlp_release++;	/* one for being in the list */
922    need_vlp_release++; /* final reference */
923
924 signal_done:
925    vlan_parent_signal(vlp, "vlan_parent_remove_all_vlans");
926    vlan_unlock();
927
928    while (need_vlp_release--) {
929	vlan_parent_release(vlp);
930    }
931    return;
932}
933
934static __inline__ int
935vlan_parent_no_vlans(vlan_parent_ref vlp)
936{
937    return (LIST_EMPTY(&vlp->vlp_vlan_list));
938}
939
940static void
941vlan_parent_add_vlan(vlan_parent_ref vlp, ifvlan_ref ifv, int tag)
942{
943    LIST_INSERT_HEAD(&vlp->vlp_vlan_list, ifv, ifv_vlan_list);
944    ifv->ifv_vlp = vlp;
945    ifv->ifv_tag = tag;
946    return;
947}
948
949static void
950vlan_parent_remove_vlan(__unused vlan_parent_ref vlp, ifvlan_ref ifv)
951{
952    ifv->ifv_vlp = NULL;
953    LIST_REMOVE(ifv, ifv_vlan_list);
954    return;
955}
956
957static int
958vlan_clone_attach(void)
959{
960    int error;
961
962    error = if_clone_attach(&vlan_cloner);
963    if (error != 0)
964        return error;
965    vlan_lock_init();
966    return 0;
967}
968
969static int
970vlan_clone_create(struct if_clone *ifc, u_int32_t unit, __unused void *params)
971{
972	int							error;
973	ifvlan_ref					ifv;
974	ifnet_t						ifp;
975	struct ifnet_init_eparams	vlan_init;
976
977	error = vlan_globals_init();
978	if (error != 0) {
979		return (error);
980	}
981	ifv = _MALLOC(sizeof(struct ifvlan), M_VLAN, M_WAITOK);
982	if (ifv == NULL)
983		return ENOBUFS;
984	bzero(ifv, sizeof(struct ifvlan));
985	ifv->ifv_retain_count = 1;
986	ifv->ifv_signature = IFV_SIGNATURE;
987	multicast_list_init(&ifv->ifv_multicast);
988
989	/* use the interface name as the unique id for ifp recycle */
990	if ((unsigned int)
991	    snprintf(ifv->ifv_name, sizeof(ifv->ifv_name), "%s%d",
992		     ifc->ifc_name, unit) >= sizeof(ifv->ifv_name)) {
993	    ifvlan_release(ifv);
994	    return (EINVAL);
995	}
996
997	bzero(&vlan_init, sizeof(vlan_init));
998	vlan_init.ver = IFNET_INIT_CURRENT_VERSION;
999	vlan_init.len = sizeof (vlan_init);
1000	vlan_init.flags = IFNET_INIT_LEGACY;
1001	vlan_init.uniqueid = ifv->ifv_name;
1002	vlan_init.uniqueid_len = strlen(ifv->ifv_name);
1003	vlan_init.name = ifc->ifc_name;
1004	vlan_init.unit = unit;
1005	vlan_init.family = IFNET_FAMILY_VLAN;
1006	vlan_init.type = IFT_L2VLAN;
1007	vlan_init.output = vlan_output;
1008	vlan_init.demux = ether_demux;
1009	vlan_init.add_proto = ether_add_proto;
1010	vlan_init.del_proto = ether_del_proto;
1011	vlan_init.check_multi = ether_check_multi;
1012	vlan_init.framer_extended = ether_frameout_extended;
1013	vlan_init.softc = ifv;
1014	vlan_init.ioctl = vlan_ioctl;
1015	vlan_init.set_bpf_tap = vlan_set_bpf_tap;
1016	vlan_init.detach = vlan_if_free;
1017	vlan_init.broadcast_addr = etherbroadcastaddr;
1018	vlan_init.broadcast_len = ETHER_ADDR_LEN;
1019	error = ifnet_allocate_extended(&vlan_init, &ifp);
1020
1021	if (error) {
1022	    ifvlan_release(ifv);
1023	    return (error);
1024	}
1025
1026	ifnet_set_offload(ifp, 0);
1027	ifnet_set_addrlen(ifp, ETHER_ADDR_LEN); /* XXX ethernet specific */
1028	ifnet_set_baudrate(ifp, 0);
1029	ifnet_set_hdrlen(ifp, ETHER_VLAN_ENCAP_LEN);
1030
1031	error = ifnet_attach(ifp, NULL);
1032	if (error) {
1033	    ifnet_release(ifp);
1034	    ifvlan_release(ifv);
1035	    return (error);
1036	}
1037	ifv->ifv_ifp = ifp;
1038
1039	/* attach as ethernet */
1040	bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header));
1041	return (0);
1042}
1043
1044static int
1045vlan_remove(ifvlan_ref ifv, int need_to_wait)
1046{
1047    vlan_assert_lock_held();
1048    if (ifvlan_flags_detaching(ifv)) {
1049	return (0);
1050    }
1051    ifvlan_flags_set_detaching(ifv);
1052    vlan_unconfig(ifv, need_to_wait);
1053    return (1);
1054}
1055
1056
1057static int
1058vlan_clone_destroy(struct ifnet *ifp)
1059{
1060    ifvlan_ref ifv;
1061
1062    vlan_lock();
1063    ifv = ifnet_get_ifvlan_retained(ifp);
1064    if (ifv == NULL) {
1065	vlan_unlock();
1066	return 0;
1067    }
1068    if (vlan_remove(ifv, TRUE) == 0) {
1069	vlan_unlock();
1070	ifvlan_release(ifv);
1071	return 0;
1072    }
1073    vlan_unlock();
1074    ifvlan_release(ifv);
1075    ifnet_detach(ifp);
1076
1077    return 0;
1078}
1079
1080static int
1081vlan_set_bpf_tap(ifnet_t ifp, bpf_tap_mode mode, bpf_packet_func func)
1082{
1083    ifvlan_ref	ifv;
1084
1085    vlan_lock();
1086    ifv = ifnet_get_ifvlan_retained(ifp);
1087    if (ifv == NULL) {
1088	vlan_unlock();
1089	return (ENODEV);
1090    }
1091    switch (mode) {
1092        case BPF_TAP_DISABLE:
1093            ifv->ifv_bpf_input = ifv->ifv_bpf_output = NULL;
1094            break;
1095
1096        case BPF_TAP_INPUT:
1097            ifv->ifv_bpf_input = func;
1098            break;
1099
1100        case BPF_TAP_OUTPUT:
1101	    ifv->ifv_bpf_output = func;
1102            break;
1103
1104        case BPF_TAP_INPUT_OUTPUT:
1105            ifv->ifv_bpf_input = ifv->ifv_bpf_output = func;
1106            break;
1107        default:
1108            break;
1109    }
1110    vlan_unlock();
1111    ifvlan_release(ifv);
1112    return 0;
1113}
1114
1115static int
1116vlan_output(struct ifnet * ifp, struct mbuf * m)
1117{
1118    bpf_packet_func 		bpf_func;
1119    struct ether_vlan_header *	evl;
1120    int				encaplen;
1121    ifvlan_ref			ifv;
1122    struct ifnet *		p;
1123    int 			soft_vlan;
1124    u_short			tag;
1125    vlan_parent_ref		vlp = NULL;
1126    int				err;
1127    struct flowadv		adv = { FADV_SUCCESS };
1128
1129    if (m == 0) {
1130	return (0);
1131    }
1132    if ((m->m_flags & M_PKTHDR) == 0) {
1133	m_freem_list(m);
1134	return (0);
1135    }
1136    vlan_lock();
1137    ifv = ifnet_get_ifvlan_retained(ifp);
1138    if (ifv == NULL || ifvlan_flags_ready(ifv) == 0) {
1139	goto unlock_done;
1140    }
1141    vlp = ifvlan_get_vlan_parent_retained(ifv);
1142    if (vlp == NULL) {
1143	goto unlock_done;
1144    }
1145    p = vlp->vlp_ifp;
1146    (void)ifnet_stat_increment_out(ifp, 1, m->m_pkthdr.len, 0);
1147    soft_vlan = (ifnet_offload(p) & IF_HWASSIST_VLAN_TAGGING) == 0;
1148    bpf_func = ifv->ifv_bpf_output;
1149    tag = ifv->ifv_tag;
1150    encaplen = ifv->ifv_encaplen;
1151    vlan_unlock();
1152
1153    ifvlan_release(ifv);
1154    vlan_parent_release(vlp);
1155
1156    vlan_bpf_output(ifp, m, bpf_func);
1157
1158    /* do not run parent's if_output() if the parent is not up */
1159    if ((ifnet_flags(p) & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING)) {
1160	m_freem(m);
1161	atomic_add_64(&ifp->if_collisions, 1);
1162	return (0);
1163    }
1164    /*
1165     * If underlying interface can do VLAN tag insertion itself,
1166     * just pass the packet along. However, we need some way to
1167     * tell the interface where the packet came from so that it
1168     * knows how to find the VLAN tag to use.  We use a field in
1169     * the mbuf header to store the VLAN tag, and a bit in the
1170     * csum_flags field to mark the field as valid.
1171     */
1172    if (soft_vlan == 0) {
1173	m->m_pkthdr.csum_flags |= CSUM_VLAN_TAG_VALID;
1174	m->m_pkthdr.vlan_tag = tag;
1175    } else {
1176	M_PREPEND(m, encaplen, M_DONTWAIT);
1177	if (m == NULL) {
1178	    printf("%s%d: unable to prepend VLAN header\n", ifnet_name(ifp),
1179		   ifnet_unit(ifp));
1180	    atomic_add_64(&ifp->if_oerrors, 1);
1181	    return (0);
1182	}
1183	/* M_PREPEND takes care of m_len, m_pkthdr.len for us */
1184	if (m->m_len < (int)sizeof(*evl)) {
1185	    m = m_pullup(m, sizeof(*evl));
1186	    if (m == NULL) {
1187		printf("%s%d: unable to pullup VLAN header\n", ifnet_name(ifp),
1188		       ifnet_unit(ifp));
1189		atomic_add_64(&ifp->if_oerrors, 1);
1190		return (0);
1191	    }
1192	}
1193
1194	/*
1195	 * Transform the Ethernet header into an Ethernet header
1196	 * with 802.1Q encapsulation.
1197	 */
1198	bcopy(mtod(m, char *) + encaplen,
1199	      mtod(m, char *), ETHER_HDR_LEN);
1200	evl = mtod(m, struct ether_vlan_header *);
1201	evl->evl_proto = evl->evl_encap_proto;
1202	evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
1203	evl->evl_tag = htons(tag);
1204    }
1205
1206    err = dlil_output(p, PF_VLAN, m, NULL, NULL, 1, &adv);
1207
1208    if (err == 0) {
1209	if (adv.code == FADV_FLOW_CONTROLLED) {
1210	    err = EQFULL;
1211	} else if (adv.code == FADV_SUSPENDED) {
1212	    err = EQSUSPENDED;
1213	}
1214    }
1215
1216    return (err);
1217
1218 unlock_done:
1219    vlan_unlock();
1220    if (ifv != NULL) {
1221	ifvlan_release(ifv);
1222    }
1223    if (vlp != NULL) {
1224	vlan_parent_release(vlp);
1225    }
1226    m_freem_list(m);
1227    return (0);
1228
1229}
1230
1231static int
1232vlan_input(ifnet_t p, __unused protocol_family_t protocol,
1233					   mbuf_t m, char *frame_header)
1234{
1235    bpf_packet_func 		bpf_func = NULL;
1236    struct ether_vlan_header *	evl;
1237    struct ifnet *		ifp = NULL;
1238    int 			soft_vlan = 0;
1239    u_int 			tag = 0;
1240
1241    if (m->m_pkthdr.csum_flags & CSUM_VLAN_TAG_VALID) {
1242	/*
1243	 * Packet is tagged, m contains a normal
1244	 * Ethernet frame; the tag is stored out-of-band.
1245	 */
1246	m->m_pkthdr.csum_flags &= ~CSUM_VLAN_TAG_VALID;
1247	tag = EVL_VLANOFTAG(m->m_pkthdr.vlan_tag);
1248	m->m_pkthdr.vlan_tag = 0;
1249    } else {
1250	soft_vlan = 1;
1251	switch (ifnet_type(p)) {
1252	case IFT_ETHER:
1253	    if (m->m_len < ETHER_VLAN_ENCAP_LEN) {
1254		m_freem(m);
1255		return 0;
1256	    }
1257	    evl = (struct ether_vlan_header *)(void *)frame_header;
1258	    if (ntohs(evl->evl_proto) == ETHERTYPE_VLAN) {
1259		/* don't allow VLAN within VLAN */
1260		m_freem(m);
1261		return (0);
1262	    }
1263	    tag = EVL_VLANOFTAG(ntohs(evl->evl_tag));
1264
1265	    /*
1266	     * Restore the original ethertype.  We'll remove
1267	     * the encapsulation after we've found the vlan
1268	     * interface corresponding to the tag.
1269	     */
1270	    evl->evl_encap_proto = evl->evl_proto;
1271	    break;
1272	default:
1273	    printf("vlan_demux: unsupported if type %u",
1274		   ifnet_type(p));
1275	    m_freem(m);
1276	    return 0;
1277	    break;
1278	}
1279    }
1280    if (tag != 0) {
1281	ifvlan_ref		ifv;
1282
1283	if ((ifnet_eflags(p) & IFEF_VLAN) == 0) {
1284	    /* don't bother looking through the VLAN list */
1285	    m_freem(m);
1286	    return 0;
1287	}
1288	vlan_lock();
1289	ifv = vlan_lookup_parent_and_tag(p, tag);
1290	if (ifv != NULL) {
1291	    ifp = ifv->ifv_ifp;
1292	}
1293	if (ifv == NULL
1294	    || ifvlan_flags_ready(ifv) == 0
1295	    || (ifnet_flags(ifp) & IFF_UP) == 0) {
1296	    vlan_unlock();
1297	    m_freem(m);
1298	    return 0;
1299	}
1300	bpf_func = ifv->ifv_bpf_input;
1301	vlan_unlock();
1302    }
1303    if (soft_vlan) {
1304	/*
1305	 * Packet had an in-line encapsulation header;
1306	 * remove it.  The original header has already
1307	 * been fixed up above.
1308	 */
1309	m->m_len -= ETHER_VLAN_ENCAP_LEN;
1310	m->m_data += ETHER_VLAN_ENCAP_LEN;
1311	m->m_pkthdr.len -= ETHER_VLAN_ENCAP_LEN;
1312	m->m_pkthdr.csum_flags = 0; /* can't trust hardware checksum */
1313    }
1314    if (tag != 0) {
1315	m->m_pkthdr.rcvif = ifp;
1316	m->m_pkthdr.pkt_hdr = frame_header;
1317	(void)ifnet_stat_increment_in(ifp, 1,
1318				      m->m_pkthdr.len + ETHER_HDR_LEN, 0);
1319	vlan_bpf_input(ifp, m, bpf_func, frame_header, ETHER_HDR_LEN,
1320		       soft_vlan ? ETHER_VLAN_ENCAP_LEN : 0);
1321	/* We found a vlan interface, inject on that interface. */
1322	dlil_input_packet_list(ifp, m);
1323    } else {
1324	m->m_pkthdr.pkt_hdr = frame_header;
1325	/* Send priority-tagged packet up through the parent */
1326	dlil_input_packet_list(p, m);
1327    }
1328    return 0;
1329}
1330
1331static int
1332vlan_config(struct ifnet * ifp, struct ifnet * p, int tag)
1333{
1334    int			error;
1335    int			first_vlan = FALSE;
1336    ifvlan_ref 		ifv = NULL;
1337    int			ifv_added = FALSE;
1338    int			need_vlp_release = 0;
1339    vlan_parent_ref	new_vlp = NULL;
1340    ifnet_offload_t	offload;
1341    u_int16_t		parent_flags;
1342    vlan_parent_ref	vlp = NULL;
1343
1344    /* pre-allocate space for vlan_parent, in case we're first */
1345    error = vlan_parent_create(p, &new_vlp);
1346    if (error != 0) {
1347	return (error);
1348    }
1349
1350    vlan_lock();
1351    ifv = ifnet_get_ifvlan_retained(ifp);
1352    if (ifv == NULL || ifv->ifv_vlp != NULL) {
1353	vlan_unlock();
1354	if (ifv != NULL) {
1355	    ifvlan_release(ifv);
1356	}
1357	vlan_parent_release(new_vlp);
1358	return (EBUSY);
1359    }
1360    vlp = parent_list_lookup(p);
1361    if (vlp != NULL) {
1362	vlan_parent_retain(vlp);
1363	need_vlp_release++;
1364	if (vlan_parent_lookup_tag(vlp, tag) != NULL) {
1365	    /* already a VLAN with that tag on this interface */
1366	    error = EADDRINUSE;
1367	    goto unlock_done;
1368	}
1369    }
1370    else {
1371	/* one for being in the list */
1372	vlan_parent_retain(new_vlp);
1373
1374	/* we're the first VLAN on this interface */
1375	LIST_INSERT_HEAD(&g_vlan->parent_list, new_vlp, vlp_parent_list);
1376	vlp = new_vlp;
1377
1378	vlan_parent_retain(vlp);
1379	need_vlp_release++;
1380    }
1381
1382    /* need to wait to ensure no one else is trying to add/remove */
1383    vlan_parent_wait(vlp, "vlan_config");
1384
1385    if (ifnet_get_ifvlan(ifp) != ifv) {
1386	error = EINVAL;
1387	goto signal_done;
1388    }
1389
1390    /* check again because someone might have gotten in */
1391    if (parent_list_lookup(p) != vlp) {
1392	error = EBUSY;
1393	goto signal_done;
1394    }
1395
1396    if (vlan_parent_flags_detaching(vlp)
1397	|| ifvlan_flags_detaching(ifv) || ifv->ifv_vlp != NULL) {
1398	error = EBUSY;
1399	goto signal_done;
1400    }
1401
1402    /* check again because someone might have gotten the tag */
1403    if (vlan_parent_lookup_tag(vlp, tag) != NULL) {
1404	/* already a VLAN with that tag on this interface */
1405	error = EADDRINUSE;
1406	goto signal_done;
1407    }
1408
1409    if (vlan_parent_no_vlans(vlp)) {
1410	first_vlan = TRUE;
1411    }
1412    vlan_parent_add_vlan(vlp, ifv, tag);
1413    ifvlan_retain(ifv);	/* parent references ifv */
1414    ifv_added = TRUE;
1415
1416    /* check whether bond interface is using parent interface */
1417    ifnet_lock_exclusive(p);
1418    if ((ifnet_eflags(p) & IFEF_BOND) != 0) {
1419	ifnet_lock_done(p);
1420	/* don't allow VLAN over interface that's already part of a bond */
1421	error = EBUSY;
1422	goto signal_done;
1423    }
1424    /* prevent BOND interface from using it */
1425    /* Can't use ifnet_set_eflags because that would take the lock */
1426    p->if_eflags |= IFEF_VLAN;
1427    ifnet_lock_done(p);
1428    vlan_unlock();
1429
1430    if (first_vlan) {
1431	/* attach our VLAN "protocol" to the interface */
1432	error = vlan_attach_protocol(p);
1433	if (error) {
1434	    vlan_lock();
1435	    goto signal_done;
1436	}
1437    }
1438
1439    /* configure parent to receive our multicast addresses */
1440    error = multicast_list_program(&ifv->ifv_multicast, ifp, p);
1441    if (error != 0) {
1442	if (first_vlan) {
1443	    (void)vlan_detach_protocol(p);
1444	}
1445	vlan_lock();
1446	goto signal_done;
1447    }
1448
1449    /* set our ethernet address to that of the parent */
1450    ifnet_set_lladdr_and_type(ifp, IF_LLADDR(p), ETHER_ADDR_LEN, IFT_ETHER);
1451
1452    /* no failures past this point */
1453    vlan_lock();
1454
1455    ifv->ifv_encaplen = ETHER_VLAN_ENCAP_LEN;
1456    ifv->ifv_flags = 0;
1457    if (vlan_parent_flags_supports_vlan_mtu(vlp)) {
1458	ifv->ifv_mtufudge = 0;
1459    } else {
1460	/*
1461	 * Fudge the MTU by the encapsulation size.  This
1462	 * makes us incompatible with strictly compliant
1463	 * 802.1Q implementations, but allows us to use
1464	 * the feature with other NetBSD implementations,
1465	 * which might still be useful.
1466	 */
1467	ifv->ifv_mtufudge = ifv->ifv_encaplen;
1468    }
1469    ifnet_set_mtu(ifp, ETHERMTU - ifv->ifv_mtufudge);
1470
1471    /*
1472     * Copy only a selected subset of flags from the parent.
1473     * Other flags are none of our business.
1474     */
1475    parent_flags = ifnet_flags(p)
1476	& (IFF_BROADCAST | IFF_MULTICAST | IFF_SIMPLEX);
1477    ifnet_set_flags(ifp, parent_flags,
1478		    IFF_BROADCAST | IFF_MULTICAST | IFF_SIMPLEX);
1479
1480    /* use hwassist bits from parent interface, but exclude VLAN bits */
1481    offload = ifnet_offload(p) & ~(IFNET_VLAN_TAGGING | IFNET_VLAN_MTU);
1482    ifnet_set_offload(ifp, offload);
1483
1484    ifnet_set_flags(ifp, IFF_RUNNING, IFF_RUNNING);
1485    ifvlan_flags_set_ready(ifv);
1486    vlan_parent_signal(vlp, "vlan_config");
1487    vlan_unlock();
1488    if (new_vlp != vlp) {
1489	/* throw it away, it wasn't needed */
1490	vlan_parent_release(new_vlp);
1491    }
1492    if (ifv != NULL) {
1493	ifvlan_release(ifv);
1494    }
1495    if (first_vlan) {
1496	/* mark the parent interface up */
1497	ifnet_set_flags(p, IFF_UP, IFF_UP);
1498	(void)ifnet_ioctl(p, 0, SIOCSIFFLAGS, (caddr_t)NULL);
1499    }
1500    return 0;
1501
1502 signal_done:
1503    vlan_assert_lock_held();
1504
1505    if (ifv_added) {
1506	vlan_parent_remove_vlan(vlp, ifv);
1507	if (!vlan_parent_flags_detaching(vlp) && vlan_parent_no_vlans(vlp)) {
1508	    /* the vlan parent has no more VLAN's */
1509	    ifnet_set_eflags(p, 0, IFEF_VLAN);
1510	    LIST_REMOVE(vlp, vlp_parent_list);
1511	    /* release outside of the lock below */
1512	    need_vlp_release++;
1513
1514	    /* one for being in the list */
1515	    need_vlp_release++;
1516	}
1517    }
1518    vlan_parent_signal(vlp, "vlan_config");
1519
1520 unlock_done:
1521    vlan_unlock();
1522
1523    while (need_vlp_release--) {
1524	vlan_parent_release(vlp);
1525    }
1526    if (new_vlp != vlp) {
1527	vlan_parent_release(new_vlp);
1528    }
1529    if (ifv != NULL) {
1530	if (ifv_added) {
1531	    ifvlan_release(ifv);
1532	}
1533	ifvlan_release(ifv);
1534    }
1535    return (error);
1536}
1537
1538static void
1539vlan_link_event(struct ifnet * ifp, struct ifnet * p)
1540{
1541    struct ifmediareq ifmr;
1542
1543    /* generate a link event based on the state of the underlying interface */
1544    bzero(&ifmr, sizeof(ifmr));
1545    snprintf(ifmr.ifm_name, sizeof(ifmr.ifm_name),
1546	     "%s%d", ifnet_name(p), ifnet_unit(p));
1547    if (ifnet_ioctl(p, 0, SIOCGIFMEDIA, &ifmr) == 0
1548	&& ifmr.ifm_count > 0 && ifmr.ifm_status & IFM_AVALID) {
1549	u_int32_t	event;
1550
1551	event = (ifmr.ifm_status & IFM_ACTIVE)
1552	    ? KEV_DL_LINK_ON : KEV_DL_LINK_OFF;
1553	interface_link_event(ifp, event);
1554    }
1555    return;
1556}
1557
1558static int
1559vlan_unconfig(ifvlan_ref ifv, int need_to_wait)
1560{
1561    struct ifnet *	ifp = ifv->ifv_ifp;
1562    int			last_vlan = FALSE;
1563    int			need_ifv_release = 0;
1564    int			need_vlp_release = 0;
1565    struct ifnet *	p;
1566    vlan_parent_ref	vlp;
1567
1568    vlan_assert_lock_held();
1569    vlp = ifv->ifv_vlp;
1570    if (vlp == NULL) {
1571	return (0);
1572    }
1573    if (need_to_wait) {
1574	need_vlp_release++;
1575	vlan_parent_retain(vlp);
1576	vlan_parent_wait(vlp, "vlan_unconfig");
1577
1578        /* check again because another thread could be in vlan_unconfig */
1579	if (ifv != ifnet_get_ifvlan(ifp)) {
1580	    goto signal_done;
1581	}
1582	if (ifv->ifv_vlp != vlp) {
1583	    /* vlan parent changed */
1584	    goto signal_done;
1585	}
1586    }
1587
1588    /* ifv has a reference on vlp, need to remove it */
1589    need_vlp_release++;
1590    p = vlp->vlp_ifp;
1591
1592    /* remember whether we're the last VLAN on the parent */
1593    if (LIST_NEXT(LIST_FIRST(&vlp->vlp_vlan_list), ifv_vlan_list) == NULL) {
1594	if (g_vlan->verbose) {
1595	    printf("vlan_unconfig: last vlan on %s%d\n",
1596		   ifnet_name(p), ifnet_unit(p));
1597	}
1598	last_vlan = TRUE;
1599    }
1600
1601    /* back-out any effect our mtu might have had on the parent */
1602    (void)ifvlan_new_mtu(ifv, ETHERMTU - ifv->ifv_mtufudge);
1603
1604    vlan_unlock();
1605
1606    /* un-join multicast on parent interface */
1607    (void)multicast_list_remove(&ifv->ifv_multicast);
1608
1609    /* Clear our MAC address. */
1610    ifnet_set_lladdr_and_type(ifp, NULL, 0, IFT_L2VLAN);
1611
1612    /* detach VLAN "protocol" */
1613    if (last_vlan) {
1614	(void)vlan_detach_protocol(p);
1615    }
1616
1617    vlan_lock();
1618
1619    /* return to the state we were in before SIFVLAN */
1620    ifnet_set_mtu(ifp, 0);
1621    ifnet_set_flags(ifp, 0,
1622		    IFF_BROADCAST | IFF_MULTICAST | IFF_SIMPLEX | IFF_RUNNING);
1623    ifnet_set_offload(ifp, 0);
1624    ifv->ifv_mtufudge = 0;
1625
1626    /* Disconnect from parent. */
1627    vlan_parent_remove_vlan(vlp, ifv);
1628    ifv->ifv_flags = 0;
1629
1630    /* vlan_parent has reference to ifv, remove it */
1631    need_ifv_release++;
1632
1633    /* from this point on, no more referencing ifv */
1634    if (last_vlan && !vlan_parent_flags_detaching(vlp)) {
1635	/* the vlan parent has no more VLAN's */
1636	ifnet_set_eflags(p, 0, IFEF_VLAN);
1637	LIST_REMOVE(vlp, vlp_parent_list);
1638
1639	/* one for being in the list */
1640	need_vlp_release++;
1641
1642	/* release outside of the lock below */
1643	need_vlp_release++;
1644    }
1645
1646 signal_done:
1647    if (need_to_wait) {
1648	vlan_parent_signal(vlp, "vlan_unconfig");
1649    }
1650    vlan_unlock();
1651    while (need_ifv_release--) {
1652	ifvlan_release(ifv);
1653    }
1654    while (need_vlp_release--) {	/* references to vlp */
1655	vlan_parent_release(vlp);
1656    }
1657    vlan_lock();
1658    return (0);
1659}
1660
1661static int
1662vlan_set_promisc(struct ifnet * ifp)
1663{
1664    int 			error = 0;
1665    ifvlan_ref			ifv;
1666    vlan_parent_ref		vlp;
1667
1668    vlan_lock();
1669    ifv = ifnet_get_ifvlan_retained(ifp);
1670    if (ifv == NULL) {
1671	error = EBUSY;
1672	goto done;
1673    }
1674
1675    vlp = ifv->ifv_vlp;
1676    if (vlp == NULL) {
1677	goto done;
1678    }
1679    if ((ifnet_flags(ifp) & IFF_PROMISC) != 0) {
1680	if (!ifvlan_flags_promisc(ifv)) {
1681	    error = ifnet_set_promiscuous(vlp->vlp_ifp, 1);
1682	    if (error == 0) {
1683		ifvlan_flags_set_promisc(ifv);
1684	    }
1685	}
1686    } else {
1687	if (ifvlan_flags_promisc(ifv)) {
1688	    error = ifnet_set_promiscuous(vlp->vlp_ifp, 0);
1689	    if (error == 0) {
1690		ifvlan_flags_clear_promisc(ifv);
1691	    }
1692	}
1693    }
1694 done:
1695    vlan_unlock();
1696    if (ifv != NULL) {
1697	ifvlan_release(ifv);
1698    }
1699    return (error);
1700}
1701
1702static int
1703ifvlan_new_mtu(ifvlan_ref ifv, int mtu)
1704{
1705    struct ifdevmtu *	devmtu_p;
1706    int			error = 0;
1707    struct ifnet * 	ifp = ifv->ifv_ifp;
1708    int			max_mtu;
1709    int			new_mtu = 0;
1710    int			req_mtu;
1711    vlan_parent_ref	vlp;
1712
1713    vlan_assert_lock_held();
1714    vlp = ifv->ifv_vlp;
1715    devmtu_p = &vlp->vlp_devmtu;
1716    req_mtu = mtu + ifv->ifv_mtufudge;
1717    if (req_mtu > devmtu_p->ifdm_max || req_mtu < devmtu_p->ifdm_min) {
1718	return (EINVAL);
1719    }
1720    max_mtu = vlan_parent_find_max_mtu(vlp, ifv);
1721    if (req_mtu > max_mtu) {
1722	new_mtu = req_mtu;
1723    }
1724    else if (max_mtu < devmtu_p->ifdm_current) {
1725	new_mtu = max_mtu;
1726    }
1727    if (new_mtu != 0) {
1728	struct ifnet * 	p = vlp->vlp_ifp;
1729	vlan_unlock();
1730	error = siocsifaltmtu(p, new_mtu);
1731	vlan_lock();
1732    }
1733    if (error == 0) {
1734	if (new_mtu != 0) {
1735	    devmtu_p->ifdm_current = new_mtu;
1736	}
1737	ifnet_set_mtu(ifp, mtu);
1738    }
1739    return (error);
1740}
1741
1742static int
1743vlan_set_mtu(struct ifnet * ifp, int mtu)
1744{
1745    int			error = 0;
1746    ifvlan_ref		ifv;
1747    vlan_parent_ref	vlp;
1748
1749    if (mtu < IF_MINMTU) {
1750	return (EINVAL);
1751    }
1752    vlan_lock();
1753    ifv = ifnet_get_ifvlan_retained(ifp);
1754    if (ifv == NULL) {
1755	vlan_unlock();
1756	return (EBUSY);
1757    }
1758    vlp = ifvlan_get_vlan_parent_retained(ifv);
1759    if (vlp == NULL) {
1760	vlan_unlock();
1761	ifvlan_release(ifv);
1762	if (mtu != 0) {
1763	    return (EINVAL);
1764	}
1765	return (0);
1766    }
1767    vlan_parent_wait(vlp, "vlan_set_mtu");
1768
1769    /* check again, something might have changed */
1770    if (ifnet_get_ifvlan(ifp) != ifv
1771	|| ifvlan_flags_detaching(ifv)) {
1772	error = EBUSY;
1773	goto signal_done;
1774    }
1775    if (ifv->ifv_vlp != vlp) {
1776	/* vlan parent changed */
1777	goto signal_done;
1778    }
1779    if (vlan_parent_flags_detaching(vlp)) {
1780	if (mtu != 0) {
1781	    error = EINVAL;
1782	}
1783	goto signal_done;
1784    }
1785    error = ifvlan_new_mtu(ifv, mtu);
1786
1787 signal_done:
1788    vlan_parent_signal(vlp, "vlan_set_mtu");
1789    vlan_unlock();
1790    vlan_parent_release(vlp);
1791    ifvlan_release(ifv);
1792
1793    return (error);
1794}
1795
1796static int
1797vlan_ioctl(ifnet_t ifp, u_long cmd, void * data)
1798{
1799    struct ifdevmtu *	devmtu_p;
1800    int 		error = 0;
1801    struct ifaddr *	ifa;
1802    struct ifmediareq	*ifmr;
1803    struct ifreq *	ifr;
1804    ifvlan_ref		ifv;
1805    struct ifnet *	p;
1806    u_short		tag;
1807    user_addr_t		user_addr;
1808    vlan_parent_ref	vlp;
1809    struct vlanreq 	vlr;
1810
1811    if (ifnet_type(ifp) != IFT_L2VLAN) {
1812	return (EOPNOTSUPP);
1813    }
1814    ifr = (struct ifreq *)data;
1815    ifa = (struct ifaddr *)data;
1816
1817    switch (cmd) {
1818    case SIOCSIFADDR:
1819    ifnet_set_flags(ifp, IFF_UP, IFF_UP);
1820	break;
1821
1822    case SIOCGIFMEDIA32:
1823    case SIOCGIFMEDIA64:
1824	vlan_lock();
1825	ifv = (ifvlan_ref)ifnet_softc(ifp);
1826	if (ifv == NULL || ifvlan_flags_detaching(ifv)) {
1827	    vlan_unlock();
1828	    return (ifv == NULL ? EOPNOTSUPP : EBUSY);
1829	}
1830	p = (ifv->ifv_vlp == NULL) ? NULL : ifv->ifv_vlp->vlp_ifp;
1831	vlan_unlock();
1832	ifmr = (struct ifmediareq *)data;
1833	user_addr =  (cmd == SIOCGIFMEDIA64) ?
1834	    ((struct ifmediareq64 *)ifmr)->ifmu_ulist :
1835	    CAST_USER_ADDR_T(((struct ifmediareq32 *)ifmr)->ifmu_ulist);
1836	if (p != NULL) {
1837	    struct ifmediareq p_ifmr;
1838
1839	    bzero(&p_ifmr, sizeof(p_ifmr));
1840	    error = ifnet_ioctl(p, 0, SIOCGIFMEDIA, &p_ifmr);
1841	    if (error == 0) {
1842		ifmr->ifm_active = p_ifmr.ifm_active;
1843		ifmr->ifm_current = p_ifmr.ifm_current;
1844		ifmr->ifm_mask = p_ifmr.ifm_mask;
1845		ifmr->ifm_status = p_ifmr.ifm_status;
1846		ifmr->ifm_count = p_ifmr.ifm_count;
1847		/* Limit the result to the parent's current config. */
1848		if (ifmr->ifm_count >= 1 && user_addr != USER_ADDR_NULL) {
1849		    ifmr->ifm_count = 1;
1850		    error = copyout(&ifmr->ifm_current, user_addr,
1851				    sizeof(int));
1852		}
1853	    }
1854	} else {
1855	    ifmr->ifm_active = ifmr->ifm_current = IFM_NONE;
1856	    ifmr->ifm_mask = 0;
1857	    ifmr->ifm_status = IFM_AVALID;
1858	    ifmr->ifm_count = 1;
1859	    if (user_addr != USER_ADDR_NULL) {
1860		error = copyout(&ifmr->ifm_current, user_addr, sizeof(int));
1861	    }
1862	}
1863	break;
1864
1865    case SIOCSIFMEDIA:
1866	error = EOPNOTSUPP;
1867	break;
1868
1869    case SIOCGIFDEVMTU:
1870	vlan_lock();
1871	ifv = (ifvlan_ref)ifnet_softc(ifp);
1872	if (ifv == NULL || ifvlan_flags_detaching(ifv)) {
1873	    vlan_unlock();
1874	    return (ifv == NULL ? EOPNOTSUPP : EBUSY);
1875	}
1876	vlp = ifv->ifv_vlp;
1877	if (vlp != NULL) {
1878	    int		min_mtu = vlp->vlp_devmtu.ifdm_min - ifv->ifv_mtufudge;
1879	    devmtu_p = &ifr->ifr_devmtu;
1880	    devmtu_p->ifdm_current = ifnet_mtu(ifp);
1881	    devmtu_p->ifdm_min = max(min_mtu, IF_MINMTU);
1882	    devmtu_p->ifdm_max = vlp->vlp_devmtu.ifdm_max - ifv->ifv_mtufudge;
1883	}
1884	else {
1885	    devmtu_p = &ifr->ifr_devmtu;
1886	    devmtu_p->ifdm_current = 0;
1887	    devmtu_p->ifdm_min = 0;
1888	    devmtu_p->ifdm_max = 0;
1889	}
1890	vlan_unlock();
1891	break;
1892
1893    case SIOCSIFMTU:
1894	error = vlan_set_mtu(ifp, ifr->ifr_mtu);
1895	break;
1896
1897    case SIOCSIFVLAN:
1898	user_addr = proc_is64bit(current_proc())
1899	    ? ifr->ifr_data64 : CAST_USER_ADDR_T(ifr->ifr_data);
1900	error = copyin(user_addr, &vlr, sizeof(vlr));
1901	if (error) {
1902	    break;
1903	}
1904	p = NULL;
1905	if (vlr.vlr_parent[0] != '\0') {
1906	    if (vlr.vlr_tag & ~EVL_VLID_MASK) {
1907		/*
1908		 * Don't let the caller set up a VLAN tag with
1909		 * anything except VLID bits.
1910		 */
1911		error = EINVAL;
1912		break;
1913	    }
1914	    p = ifunit(vlr.vlr_parent);
1915	    if (p == NULL) {
1916		error = ENXIO;
1917		break;
1918	    }
1919	    /* can't do VLAN over anything but ethernet or ethernet aggregate */
1920	    if (ifnet_type(p) != IFT_ETHER
1921		&& ifnet_type(p) != IFT_IEEE8023ADLAG) {
1922		error = EPROTONOSUPPORT;
1923		break;
1924	    }
1925	    error = vlan_config(ifp, p, vlr.vlr_tag);
1926	    if (error) {
1927		break;
1928	    }
1929
1930	    /* Update promiscuous mode, if necessary. */
1931	    (void)vlan_set_promisc(ifp);
1932
1933	    /* generate a link event based on the state of the parent */
1934	    vlan_link_event(ifp, p);
1935	}
1936	else {
1937	    int		need_link_event = FALSE;
1938
1939	    vlan_lock();
1940	    ifv = (ifvlan_ref)ifnet_softc(ifp);
1941	    if (ifv == NULL || ifvlan_flags_detaching(ifv)) {
1942		vlan_unlock();
1943		error = (ifv == NULL ? EOPNOTSUPP : EBUSY);
1944		break;
1945	    }
1946	    need_link_event = vlan_remove(ifv, TRUE);
1947	    vlan_unlock();
1948	    if (need_link_event) {
1949		interface_link_event(ifp, KEV_DL_LINK_OFF);
1950	    }
1951	}
1952	break;
1953
1954    case SIOCGIFVLAN:
1955	bzero(&vlr, sizeof vlr);
1956	vlan_lock();
1957	ifv = (ifvlan_ref)ifnet_softc(ifp);
1958	if (ifv == NULL || ifvlan_flags_detaching(ifv)) {
1959	    vlan_unlock();
1960	    return (ifv == NULL ? EOPNOTSUPP : EBUSY);
1961	}
1962	p = (ifv->ifv_vlp == NULL) ? NULL : ifv->ifv_vlp->vlp_ifp;
1963	tag = ifv->ifv_tag;
1964	vlan_unlock();
1965	if (p != NULL) {
1966	    snprintf(vlr.vlr_parent, sizeof(vlr.vlr_parent),
1967		     "%s%d", ifnet_name(p), ifnet_unit(p));
1968	    vlr.vlr_tag = tag;
1969	}
1970	user_addr = proc_is64bit(current_proc())
1971	    ? ifr->ifr_data64 : CAST_USER_ADDR_T(ifr->ifr_data);
1972	error = copyout(&vlr, user_addr, sizeof(vlr));
1973	break;
1974
1975    case SIOCSIFFLAGS:
1976	/*
1977	 * For promiscuous mode, we enable promiscuous mode on
1978	 * the parent if we need promiscuous on the VLAN interface.
1979	 */
1980	error = vlan_set_promisc(ifp);
1981	break;
1982
1983    case SIOCADDMULTI:
1984    case SIOCDELMULTI:
1985	error = vlan_setmulti(ifp);
1986	break;
1987    default:
1988	error = EOPNOTSUPP;
1989    }
1990    return error;
1991}
1992
1993static void
1994vlan_if_free(struct ifnet * ifp)
1995{
1996    ifvlan_ref	ifv;
1997
1998    if (ifp == NULL) {
1999	return;
2000    }
2001    ifv = (ifvlan_ref)ifnet_softc(ifp);
2002    if (ifv == NULL) {
2003	return;
2004    }
2005    ifvlan_release(ifv);
2006    ifnet_release(ifp);
2007    return;
2008}
2009
2010static void
2011vlan_event(struct ifnet	* p, __unused protocol_family_t protocol,
2012		   const struct kev_msg * event)
2013{
2014    int			event_code;
2015
2016    /* Check if the interface we are attached to is being detached */
2017    if (event->vendor_code != KEV_VENDOR_APPLE
2018	|| event->kev_class != KEV_NETWORK_CLASS
2019	|| event->kev_subclass != KEV_DL_SUBCLASS) {
2020	return;
2021    }
2022    event_code = event->event_code;
2023    switch (event_code) {
2024    case KEV_DL_LINK_OFF:
2025    case KEV_DL_LINK_ON:
2026	vlan_parent_link_event(p, event_code);
2027	break;
2028    default:
2029	return;
2030    }
2031    return;
2032}
2033
2034static errno_t
2035vlan_detached(ifnet_t p, __unused protocol_family_t protocol)
2036{
2037    if (ifnet_is_attached(p, 0) == 0) {
2038	/* if the parent isn't attached, remove all VLANs */
2039	vlan_parent_remove_all_vlans(p);
2040    }
2041    return (0);
2042}
2043
2044static void
2045interface_link_event(struct ifnet * ifp, u_int32_t event_code)
2046{
2047    struct {
2048	struct kern_event_msg	header;
2049	u_int32_t			unit;
2050	char			if_name[IFNAMSIZ];
2051    } event;
2052
2053    bzero(&event, sizeof(event));
2054    event.header.total_size    = sizeof(event);
2055    event.header.vendor_code   = KEV_VENDOR_APPLE;
2056    event.header.kev_class     = KEV_NETWORK_CLASS;
2057    event.header.kev_subclass  = KEV_DL_SUBCLASS;
2058    event.header.event_code    = event_code;
2059    event.header.event_data[0] = ifnet_family(ifp);
2060    event.unit                 = (u_int32_t) ifnet_unit(ifp);
2061    strlcpy(event.if_name, ifnet_name(ifp), IFNAMSIZ);
2062    ifnet_event(ifp, &event.header);
2063    return;
2064}
2065
2066static void
2067vlan_parent_link_event(struct ifnet * p, u_int32_t event_code)
2068{
2069    vlan_parent_ref 	vlp;
2070
2071    vlan_lock();
2072    if ((ifnet_eflags(p) & IFEF_VLAN) == 0) {
2073	vlan_unlock();
2074	/* no VLAN's */
2075	return;
2076    }
2077    vlp = parent_list_lookup(p);
2078    if (vlp == NULL) {
2079	/* no VLAN's */
2080	vlan_unlock();
2081	return;
2082    }
2083    vlan_parent_flags_set_link_event_required(vlp);
2084    vlp->vlp_event_code = event_code;
2085    if (vlan_parent_flags_change_in_progress(vlp)) {
2086	/* don't block waiting to generate an event */
2087	vlan_unlock();
2088	return;
2089    }
2090    vlan_parent_retain(vlp);
2091    vlan_parent_wait(vlp, "vlan_parent_link_event");
2092    vlan_parent_signal(vlp, "vlan_parent_link_event");
2093    vlan_unlock();
2094    vlan_parent_release(vlp);
2095    return;
2096
2097}
2098
2099/*
2100 * Function: vlan_attach_protocol
2101 * Purpose:
2102 *   Attach a DLIL protocol to the interface, using the ETHERTYPE_VLAN
2103 *   demux ether type.
2104 *
2105 *	 The ethernet demux actually special cases VLAN to support hardware.
2106 *	 The demux here isn't used. The demux will return PF_VLAN for the
2107 *	 appropriate packets and our vlan_input function will be called.
2108 */
2109static int
2110vlan_attach_protocol(struct ifnet *ifp)
2111{
2112    int								error;
2113    struct ifnet_attach_proto_param	reg;
2114
2115    bzero(&reg, sizeof(reg));
2116    reg.input            = vlan_input;
2117    reg.event            = vlan_event;
2118    reg.detached         = vlan_detached;
2119    error = ifnet_attach_protocol(ifp, PF_VLAN, &reg);
2120    if (error) {
2121	printf("vlan_proto_attach(%s%d) ifnet_attach_protocol failed, %d\n",
2122	       ifnet_name(ifp), ifnet_unit(ifp), error);
2123    }
2124    return (error);
2125}
2126
2127/*
2128 * Function: vlan_detach_protocol
2129 * Purpose:
2130 *   Detach our DLIL protocol from an interface
2131 */
2132static int
2133vlan_detach_protocol(struct ifnet *ifp)
2134{
2135    int         error;
2136
2137    error = ifnet_detach_protocol(ifp, PF_VLAN);
2138    if (error) {
2139	printf("vlan_proto_detach(%s%d) ifnet_detach_protocol failed, %d\n",
2140	       ifnet_name(ifp), ifnet_unit(ifp), error);
2141    }
2142
2143    return (error);
2144}
2145
2146/*
2147 * DLIL interface family functions
2148 *   We use the ethernet plumb functions, since that's all we support.
2149 *   If we wanted to handle multiple LAN types (tokenring, etc.), we'd
2150 *   call the appropriate routines for that LAN type instead of hard-coding
2151 *   ethernet.
2152 */
2153static errno_t
2154vlan_attach_inet(struct ifnet *ifp, protocol_family_t protocol_family)
2155{
2156    return (ether_attach_inet(ifp, protocol_family));
2157}
2158
2159static void
2160vlan_detach_inet(struct ifnet *ifp, protocol_family_t protocol_family)
2161{
2162    ether_detach_inet(ifp, protocol_family);
2163}
2164
2165#if INET6
2166static errno_t
2167vlan_attach_inet6(struct ifnet *ifp, protocol_family_t protocol_family)
2168{
2169    return (ether_attach_inet6(ifp, protocol_family));
2170}
2171
2172static void
2173vlan_detach_inet6(struct ifnet *ifp, protocol_family_t protocol_family)
2174{
2175    ether_detach_inet6(ifp, protocol_family);
2176}
2177#endif /* INET6 */
2178
2179__private_extern__ int
2180vlan_family_init(void)
2181{
2182    int error=0;
2183
2184    error = proto_register_plumber(PF_INET, IFNET_FAMILY_VLAN,
2185				   vlan_attach_inet, vlan_detach_inet);
2186    if (error != 0) {
2187	printf("proto_register_plumber failed for AF_INET error=%d\n",
2188	       error);
2189	goto done;
2190    }
2191#if INET6
2192    error = proto_register_plumber(PF_INET6, IFNET_FAMILY_VLAN,
2193				   vlan_attach_inet6, vlan_detach_inet6);
2194    if (error != 0) {
2195	printf("proto_register_plumber failed for AF_INET6 error=%d\n",
2196	       error);
2197	goto done;
2198    }
2199#endif
2200    error = vlan_clone_attach();
2201    if (error != 0) {
2202        printf("proto_register_plumber failed vlan_clone_attach error=%d\n",
2203               error);
2204        goto done;
2205    }
2206
2207
2208 done:
2209    return (error);
2210}
2211