1/*
2 * Copyright (c) 2002-2014 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28#include <sys/param.h>
29#include <sys/systm.h>
30#include <sys/proc.h>
31#include <sys/vnode.h>
32#include <sys/mount.h>
33#include <sys/kernel.h>
34#include <sys/malloc.h>
35#include <sys/time.h>
36#include <sys/ubc.h>
37#include <sys/quota.h>
38#include <sys/kdebug.h>
39#include <libkern/OSByteOrder.h>
40#include <sys/buf_internal.h>
41
42#include <kern/locks.h>
43
44#include <miscfs/specfs/specdev.h>
45#include <miscfs/fifofs/fifo.h>
46
47#include <hfs/hfs.h>
48#include <hfs/hfs_catalog.h>
49#include <hfs/hfs_cnode.h>
50#include <hfs/hfs_quota.h>
51#include <hfs/hfs_format.h>
52#include <hfs/hfs_kdebug.h>
53
54extern int prtactive;
55
56extern lck_attr_t *  hfs_lock_attr;
57extern lck_grp_t *  hfs_mutex_group;
58extern lck_grp_t *  hfs_rwlock_group;
59
60static void  hfs_reclaim_cnode(struct cnode *);
61static int hfs_cnode_teardown (struct vnode *vp, vfs_context_t ctx, int reclaim);
62static int hfs_isordered(struct cnode *, struct cnode *);
63
64extern int hfs_removefile_callback(struct buf *bp, void *hfsmp);
65
66
67__inline__ int hfs_checkdeleted (struct cnode *cp) {
68	return ((cp->c_flag & (C_DELETED | C_NOEXISTS)) ? ENOENT : 0);
69}
70
71/*
72 * Function used by a special fcntl() that decorates a cnode/vnode that
73 * indicates it is backing another filesystem, like a disk image.
74 *
75 * the argument 'val' indicates whether or not to set the bit in the cnode flags
76 *
77 * Returns non-zero on failure. 0 on success
78 */
79int hfs_set_backingstore (struct vnode *vp, int val) {
80	struct cnode *cp = NULL;
81	int err = 0;
82
83	cp = VTOC(vp);
84	if (!vnode_isreg(vp) && !vnode_isdir(vp)) {
85		return EINVAL;
86	}
87
88	/* lock the cnode */
89	err = hfs_lock (cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
90	if (err) {
91		return err;
92	}
93
94	if (val) {
95		cp->c_flag |= C_BACKINGSTORE;
96	}
97	else {
98		cp->c_flag &= ~C_BACKINGSTORE;
99	}
100
101	/* unlock everything */
102	hfs_unlock (cp);
103
104	return err;
105}
106
107/*
108 * Function used by a special fcntl() that check to see if a cnode/vnode
109 * indicates it is backing another filesystem, like a disk image.
110 *
111 * the argument 'val' is an output argument for whether or not the bit is set
112 *
113 * Returns non-zero on failure. 0 on success
114 */
115
116int hfs_is_backingstore (struct vnode *vp, int *val) {
117	struct cnode *cp = NULL;
118	int err = 0;
119
120	if (!vnode_isreg(vp) && !vnode_isdir(vp)) {
121		*val = 0;
122		return 0;
123	}
124
125	cp = VTOC(vp);
126
127	/* lock the cnode */
128	err = hfs_lock (cp, HFS_SHARED_LOCK, HFS_LOCK_DEFAULT);
129	if (err) {
130		return err;
131	}
132
133	if (cp->c_flag & C_BACKINGSTORE) {
134		*val = 1;
135	}
136	else {
137		*val = 0;
138	}
139
140	/* unlock everything */
141	hfs_unlock (cp);
142
143	return err;
144}
145
146
147/*
148 * hfs_cnode_teardown
149 *
150 * This is an internal function that is invoked from both hfs_vnop_inactive
151 * and hfs_vnop_reclaim.  As VNOP_INACTIVE is not necessarily called from vnodes
152 * being recycled and reclaimed, it is important that we do any post-processing
153 * necessary for the cnode in both places.  Important tasks include things such as
154 * releasing the blocks from an open-unlinked file when all references to it have dropped,
155 * and handling resource forks separately from data forks.
156 *
157 * Note that we take only the vnode as an argument here (rather than the cnode).
158 * Recall that each cnode supports two forks (rsrc/data), and we can always get the right
159 * cnode from either of the vnodes, but the reverse is not true -- we can't determine which
160 * vnode we need to reclaim if only the cnode is supplied.
161 *
162 * This function is idempotent and safe to call from both hfs_vnop_inactive and hfs_vnop_reclaim
163 * if both are invoked right after the other.  In the second call, most of this function's if()
164 * conditions will fail, since they apply generally to cnodes still marked with C_DELETED.
165 * As a quick check to see if this function is necessary, determine if the cnode is already
166 * marked C_NOEXISTS.  If it is, then it is safe to skip this function.  The only tasks that
167 * remain for cnodes marked in such a fashion is to teardown their fork references and
168 * release all directory hints and hardlink origins.  However, both of those are done
169 * in hfs_vnop_reclaim.  hfs_update, by definition, is not necessary if the cnode's catalog
170 * entry is no longer there.
171 *
172 * 'reclaim' argument specifies whether or not we were called from hfs_vnop_reclaim.  If we are
173 * invoked from hfs_vnop_reclaim, we can not call functions that cluster_push since the UBC info
174 * is totally gone by that point.
175 *
176 * Assumes that both truncate and cnode locks for 'cp' are held.
177 */
178static
179int hfs_cnode_teardown (struct vnode *vp, vfs_context_t ctx, int reclaim)
180{
181	int forkcount = 0;
182	enum vtype v_type;
183	struct cnode *cp;
184	int error = 0;
185	int started_tr = 0;
186	struct hfsmount *hfsmp = VTOHFS(vp);
187	struct proc *p = vfs_context_proc(ctx);
188	int truncated = 0;
189    cat_cookie_t cookie;
190    int cat_reserve = 0;
191    int lockflags;
192	int ea_error = 0;
193
194	v_type = vnode_vtype(vp);
195	cp = VTOC(vp);
196
197	if (cp->c_datafork) {
198		++forkcount;
199	}
200	if (cp->c_rsrcfork) {
201		++forkcount;
202	}
203
204
205	/*
206	 * Skip the call to ubc_setsize if we're being invoked on behalf of reclaim.
207	 * The dirty regions would have already been synced to disk, so informing UBC
208	 * that they can toss the pages doesn't help anyone at this point.
209	 *
210	 * Note that this is a performance problem if the vnode goes straight to reclaim
211	 * (and skips inactive), since there would be no way for anyone to notify the UBC
212	 * that all pages in this file are basically useless.
213	 */
214	if (reclaim == 0) {
215		/*
216		 * Check whether we are tearing down a cnode with only one remaining fork.
217		 * If there are blocks in its filefork, then we need to unlock the cnode
218		 * before calling ubc_setsize.  The cluster layer may re-enter the filesystem
219		 * (i.e. VNOP_BLOCKMAP), and if we retain the cnode lock, we could double-lock
220		 * panic.
221		 */
222
223		if ((v_type == VREG || v_type == VLNK) &&
224			(cp->c_flag & C_DELETED) &&
225			(VTOF(vp)->ff_blocks != 0) && (forkcount == 1)) {
226			hfs_unlock(cp);
227			/* ubc_setsize just fails if we were to call this from VNOP_RECLAIM */
228			ubc_setsize(vp, 0);
229			(void) hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS);
230		}
231	}
232
233	/*
234	 * Push file data out for normal files that haven't been evicted from
235	 * the namespace.  We only do this if this function was not called from reclaim,
236	 * because by that point the UBC information has been totally torn down.
237	 *
238	 * There should also be no way that a normal file that has NOT been deleted from
239	 * the namespace to skip INACTIVE and go straight to RECLAIM.  That race only happens
240	 * when the file becomes open-unlinked.
241	 */
242	if ((v_type == VREG) &&
243		(!ISSET(cp->c_flag, C_DELETED)) &&
244		(!ISSET(cp->c_flag, C_NOEXISTS)) &&
245		(VTOF(vp)->ff_blocks) &&
246		(reclaim == 0)) {
247		/*
248		 * Note that if content protection is enabled, then this is where we will
249		 * attempt to issue IOs for all dirty regions of this file.
250		 *
251		 * If we're called from hfs_vnop_inactive, all this means is at the time
252		 * the logic for deciding to call this function, there were not any lingering
253		 * mmap/fd references for this file.  However, there is nothing preventing the system
254		 * from creating a new reference in between the time that logic was checked
255		 * and we entered hfs_vnop_inactive.  As a result, the only time we can guarantee
256		 * that there aren't any references is during vnop_reclaim.
257		 */
258		hfs_filedone(vp, ctx, 0);
259	}
260
261	/*
262	 * We're holding the cnode lock now.  Stall behind any shadow BPs that may
263	 * be involved with this vnode if it is a symlink.  We don't want to allow
264	 * the blocks that we're about to release to be put back into the pool if there
265	 * is pending I/O to them.
266	 */
267	if (v_type == VLNK) {
268		/*
269		 * This will block if the asynchronous journal flush is in progress.
270		 * If this symlink is not being renamed over and doesn't have any open FDs,
271		 * then we'll remove it from the journal's bufs below in kill_block.
272		 */
273		buf_wait_for_shadow_io (vp, 0);
274	}
275
276	/*
277	 * Remove any directory hints or cached origins
278	 */
279	if (v_type == VDIR) {
280		hfs_reldirhints(cp, 0);
281	}
282	if (cp->c_flag & C_HARDLINK) {
283		hfs_relorigins(cp);
284	}
285
286	/*
287	 * This check is slightly complicated.  We should only truncate data
288	 * in very specific cases for open-unlinked files.  This is because
289	 * we want to ensure that the resource fork continues to be available
290	 * if the caller has the data fork open.  However, this is not symmetric;
291	 * someone who has the resource fork open need not be able to access the data
292	 * fork once the data fork has gone inactive.
293	 *
294	 * If we're the last fork, then we have cleaning up to do.
295	 *
296	 * A) last fork, and vp == c_vp
297	 *	Truncate away own fork data. If rsrc fork is not in core, truncate it too.
298	 *
299	 * B) last fork, and vp == c_rsrc_vp
300	 *	Truncate ourselves, assume data fork has been cleaned due to C).
301	 *
302	 * If we're not the last fork, then things are a little different:
303	 *
304	 * C) not the last fork, vp == c_vp
305	 *	Truncate ourselves.  Once the file has gone out of the namespace,
306	 *	it cannot be further opened.  Further access to the rsrc fork may
307	 *	continue, however.
308	 *
309	 * D) not the last fork, vp == c_rsrc_vp
310	 *	Don't enter the block below, just clean up vnode and push it out of core.
311	 */
312
313	if ((v_type == VREG || v_type == VLNK) &&
314			(cp->c_flag & C_DELETED) &&
315			((forkcount == 1) || (!VNODE_IS_RSRC(vp)))) {
316
317		/* Truncate away our own fork data. (Case A, B, C above) */
318		if (VTOF(vp)->ff_blocks != 0) {
319
320			/*
321			 * SYMLINKS only:
322			 *
323			 * Encapsulate the entire change (including truncating the link) in
324			 * nested transactions if we are modifying a symlink, because we know that its
325			 * file length will be at most 4k, and we can fit both the truncation and
326			 * any relevant bitmap changes into a single journal transaction.  We also want
327			 * the kill_block code to execute in the same transaction so that any dirty symlink
328			 * blocks will not be written. Otherwise, rely on
329			 * hfs_truncate doing its own transactions to ensure that we don't blow up
330			 * the journal.
331			 */
332			if ((started_tr == 0) && (v_type == VLNK)) {
333				if (hfs_start_transaction(hfsmp) != 0) {
334					error = EINVAL;
335					goto out;
336				}
337				else {
338					started_tr = 1;
339				}
340			}
341
342			/*
343			 * At this point, we have decided that this cnode is
344			 * suitable for full removal.  We are about to deallocate
345			 * its blocks and remove its entry from the catalog.
346			 * If it was a symlink, then it's possible that the operation
347			 * which created it is still in the current transaction group
348			 * due to coalescing.  Take action here to kill the data blocks
349			 * of the symlink out of the journal before moving to
350			 * deallocate the blocks.  We need to be in the middle of
351			 * a transaction before calling buf_iterate like this.
352			 *
353			 * Note: we have to kill any potential symlink buffers out of
354			 * the journal prior to deallocating their blocks.  This is so
355			 * that we don't race with another thread that may be doing an
356			 * an allocation concurrently and pick up these blocks. It could
357			 * generate I/O against them which could go out ahead of our journal
358			 * transaction.
359			 */
360
361			if (hfsmp->jnl && vnode_islnk(vp)) {
362				buf_iterate(vp, hfs_removefile_callback, BUF_SKIP_NONLOCKED, (void *)hfsmp);
363			}
364
365
366			/*
367			 * This truncate call (and the one below) is fine from VNOP_RECLAIM's
368			 * context because we're only removing blocks, not zero-filling new
369			 * ones.  The C_DELETED check above makes things much simpler.
370			 */
371			error = hfs_truncate(vp, (off_t)0, IO_NDELAY, 0, ctx);
372			if (error) {
373				goto out;
374			}
375			truncated = 1;
376
377			/* (SYMLINKS ONLY): Close/End our transaction after truncating the file record */
378			if (started_tr) {
379				hfs_end_transaction(hfsmp);
380				started_tr = 0;
381			}
382
383		}
384
385		/*
386		 * Truncate away the resource fork, if we represent the data fork and
387		 * it is the last fork.  That means, by definition, the rsrc fork is not in
388		 * core.  To avoid bringing a vnode into core for the sole purpose of deleting the
389		 * data in the resource fork, we call cat_lookup directly, then hfs_release_storage
390		 * to get rid of the resource fork's data. Note that because we are holding the
391		 * cnode lock, it is impossible for a competing thread to create the resource fork
392		 * vnode from underneath us while we do this.
393		 *
394		 * This is invoked via case A above only.
395		 */
396		if ((cp->c_blocks > 0) && (forkcount == 1) && (vp != cp->c_rsrc_vp)) {
397			struct cat_lookup_buffer *lookup_rsrc = NULL;
398			struct cat_desc *desc_ptr = NULL;
399			lockflags = 0;
400
401			MALLOC(lookup_rsrc, struct cat_lookup_buffer*, sizeof (struct cat_lookup_buffer), M_TEMP, M_WAITOK);
402			if (lookup_rsrc == NULL) {
403				printf("hfs_cnode_teardown: ENOMEM from MALLOC\n");
404				error = ENOMEM;
405				goto out;
406			}
407			else {
408				bzero (lookup_rsrc, sizeof (struct cat_lookup_buffer));
409			}
410
411			if (cp->c_desc.cd_namelen == 0) {
412				/* Initialize the rsrc descriptor for lookup if necessary*/
413				MAKE_DELETED_NAME (lookup_rsrc->lookup_name, HFS_TEMPLOOKUP_NAMELEN, cp->c_fileid);
414
415				lookup_rsrc->lookup_desc.cd_nameptr = (const uint8_t*) lookup_rsrc->lookup_name;
416				lookup_rsrc->lookup_desc.cd_namelen = strlen (lookup_rsrc->lookup_name);
417				lookup_rsrc->lookup_desc.cd_parentcnid = hfsmp->hfs_private_desc[FILE_HARDLINKS].cd_cnid;
418				lookup_rsrc->lookup_desc.cd_cnid = cp->c_cnid;
419
420				desc_ptr = &lookup_rsrc->lookup_desc;
421			}
422			else {
423				desc_ptr = &cp->c_desc;
424			}
425
426			lockflags = hfs_systemfile_lock (hfsmp, SFL_CATALOG, HFS_SHARED_LOCK);
427
428			error = cat_lookup (hfsmp, desc_ptr, 1, 0, (struct cat_desc *) NULL,
429					(struct cat_attr*) NULL, &lookup_rsrc->lookup_fork.ff_data, NULL);
430
431			hfs_systemfile_unlock (hfsmp, lockflags);
432
433			if (error) {
434				FREE (lookup_rsrc, M_TEMP);
435				goto out;
436			}
437
438			/*
439			 * Make the filefork in our temporary struct look like a real
440			 * filefork.  Fill in the cp, sysfileinfo and rangelist fields..
441			 */
442			rl_init (&lookup_rsrc->lookup_fork.ff_invalidranges);
443			lookup_rsrc->lookup_fork.ff_cp = cp;
444
445			/*
446			 * If there were no errors, then we have the catalog's fork information
447			 * for the resource fork in question.  Go ahead and delete the data in it now.
448			 */
449
450			error = hfs_release_storage (hfsmp, NULL, &lookup_rsrc->lookup_fork, cp->c_fileid);
451			FREE(lookup_rsrc, M_TEMP);
452
453			if (error) {
454				goto out;
455			}
456
457			/*
458			 * This fileid's resource fork extents have now been fully deleted on-disk
459			 * and this CNID is no longer valid. At this point, we should be able to
460			 * zero out cp->c_blocks to indicate there is no data left in this file.
461			 */
462			cp->c_blocks = 0;
463		}
464	}
465
466	/*
467	 * If we represent the last fork (or none in the case of a dir),
468	 * and the cnode has become open-unlinked,
469	 * AND it has EA's, then we need to get rid of them.
470	 *
471	 * Note that this must happen outside of any other transactions
472	 * because it starts/ends its own transactions and grabs its
473	 * own locks.  This is to prevent a file with a lot of attributes
474	 * from creating a transaction that is too large (which panics).
475	 */
476    if ((cp->c_attr.ca_recflags & kHFSHasAttributesMask) != 0 &&
477		(cp->c_flag & C_DELETED) &&
478		(forkcount <= 1)) {
479
480        ea_error = hfs_removeallattr(hfsmp, cp->c_fileid);
481    }
482
483
484	/*
485	 * If the cnode represented an open-unlinked file, then now
486	 * actually remove the cnode's catalog entry and release all blocks
487	 * it may have been using.
488	 */
489    if ((cp->c_flag & C_DELETED) && (forkcount <= 1)) {
490        /*
491         * Mark cnode in transit so that no one can get this
492         * cnode from cnode hash.
493         */
494		// hfs_chash_mark_in_transit(hfsmp, cp);
495		// XXXdbg - remove the cnode from the hash table since it's deleted
496		//          otherwise someone could go to sleep on the cnode and not
497		//          be woken up until this vnode gets recycled which could be
498		//          a very long time...
499        hfs_chashremove(hfsmp, cp);
500
501        cp->c_flag |= C_NOEXISTS;   // XXXdbg
502        cp->c_rdev = 0;
503
504        if (started_tr == 0) {
505            if (hfs_start_transaction(hfsmp) != 0) {
506				error = EINVAL;
507				goto out;
508            }
509            started_tr = 1;
510        }
511
512        /*
513         * Reserve some space in the Catalog file.
514         */
515        if ((error = cat_preflight(hfsmp, CAT_DELETE, &cookie, p))) {
516            goto out;
517        }
518        cat_reserve = 1;
519
520        lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG | SFL_ATTRIBUTE, HFS_EXCLUSIVE_LOCK);
521
522        if (cp->c_blocks > 0) {
523            printf("hfs_inactive: deleting non-empty%sfile %d, "
524                   "blks %d\n", VNODE_IS_RSRC(vp) ? " rsrc " : " ",
525                   (int)cp->c_fileid, (int)cp->c_blocks);
526        }
527
528		//
529        // release the name pointer in the descriptor so that
530        // cat_delete() will use the file-id to do the deletion.
531        // in the case of hard links this is imperative (in the
532        // case of regular files the fileid and cnid are the
533        // same so it doesn't matter).
534        //
535        cat_releasedesc(&cp->c_desc);
536
537        /*
538         * The descriptor name may be zero,
539         * in which case the fileid is used.
540         */
541        error = cat_delete(hfsmp, &cp->c_desc, &cp->c_attr);
542
543        if (error && truncated && (error != ENXIO)) {
544            printf("hfs_inactive: couldn't delete a truncated file!");
545	}
546
547        /* Update HFS Private Data dir */
548        if (error == 0) {
549            hfsmp->hfs_private_attr[FILE_HARDLINKS].ca_entries--;
550            if (vnode_isdir(vp)) {
551                DEC_FOLDERCOUNT(hfsmp, hfsmp->hfs_private_attr[FILE_HARDLINKS]);
552            }
553            (void)cat_update(hfsmp, &hfsmp->hfs_private_desc[FILE_HARDLINKS],
554							 &hfsmp->hfs_private_attr[FILE_HARDLINKS], NULL, NULL);
555        }
556
557        hfs_systemfile_unlock(hfsmp, lockflags);
558
559        if (error) {
560			goto out;
561		}
562
563#if QUOTA
564        if (hfsmp->hfs_flags & HFS_QUOTAS)
565            (void)hfs_chkiq(cp, -1, NOCRED, 0);
566#endif /* QUOTA */
567
568        /* Already set C_NOEXISTS at the beginning of this block */
569        cp->c_flag &= ~C_DELETED;
570        cp->c_touch_chgtime = TRUE;
571        cp->c_touch_modtime = TRUE;
572
573        if (error == 0)
574            hfs_volupdate(hfsmp, (v_type == VDIR) ? VOL_RMDIR : VOL_RMFILE, 0);
575    }
576
577	/*
578     * A file may have had delayed allocations, in which case hfs_update
579     * would not have updated the catalog record (cat_update).  We need
580     * to do that now, before we lose our fork data.  We also need to
581     * force the update, or hfs_update will again skip the cat_update.
582	 *
583	 * If the file has C_NOEXISTS set, then we can skip the hfs_update call
584	 * because the catalog entry has already been removed.  There would be no point
585     * to looking up the entry in the catalog to modify it when we already know it's gone
586	 */
587    if ((!ISSET(cp->c_flag, C_NOEXISTS)) &&
588		((cp->c_flag & C_MODIFIED) || cp->c_touch_acctime ||
589		 cp->c_touch_chgtime || cp->c_touch_modtime)) {
590
591			if ((cp->c_flag & C_MODIFIED) || cp->c_touch_modtime){
592				cp->c_flag |= C_FORCEUPDATE;
593			}
594			hfs_update(vp, 0);
595		}
596
597	/*
598	 * Since we are about to finish what might be an inactive call, propagate
599	 * any remaining modified or touch bits from the cnode to the vnode.  This
600	 * serves as a hint to vnode recycling that we shouldn't recycle this vnode
601	 * synchronously.
602	 */
603	if (ISSET(cp->c_flag, C_MODIFIED) || ISSET(cp->c_flag, C_FORCEUPDATE) ||
604		cp->c_touch_acctime || cp->c_touch_chgtime ||
605		cp->c_touch_modtime || ISSET(cp->c_flag, C_NEEDS_DATEADDED) ||
606		ISSET(cp->c_flag, C_DELETED)) {
607		vnode_setdirty(vp);
608	} else {
609		vnode_cleardirty(vp);
610	}
611
612out:
613    if (cat_reserve)
614        cat_postflight(hfsmp, &cookie, p);
615
616    // XXXdbg - have to do this because a goto could have come here
617    if (started_tr) {
618        hfs_end_transaction(hfsmp);
619        started_tr = 0;
620    }
621
622#if 0
623#if CONFIG_PROTECT
624	/*
625	 * cnode truncate lock and cnode lock are both held exclusive here.
626	 *
627	 * Go ahead and flush the keys out if this cnode is the last fork
628	 * and it is not class F.  Class F keys should not be purged because they only
629	 * exist in memory and have no persistent keys.  Only do this
630	 * if we haven't already done it yet (maybe a vnode skipped inactive
631	 * and went straight to reclaim).  This function gets called from both reclaim and
632	 * inactive, so it will happen first in inactive if possible.
633	 *
634	 * We need to be mindful that all pending IO for this file has already been
635	 * issued and completed before we bzero out the key.  This is because
636	 * if it isn't, tossing the key here could result in garbage IO being
637	 * written (by using the bzero'd key) if the writes are happening asynchronously.
638	 *
639	 * In addition, class A files may have already been purged due to the
640	 * lock event occurring.
641	 */
642	if (forkcount == 1) {
643		struct cprotect *entry = cp->c_cpentry;
644		if ((entry) && ( CP_CLASS(entry->cp_pclass) != PROTECTION_CLASS_F)) {
645			if ((cp->c_cpentry->cp_flags & CP_KEY_FLUSHED) == 0) {
646				cp->c_cpentry->cp_flags |= CP_KEY_FLUSHED;
647				bzero (cp->c_cpentry->cp_cache_key, cp->c_cpentry->cp_cache_key_len);
648				bzero (cp->c_cpentry->cp_cache_iv_ctx, sizeof(aes_encrypt_ctx));
649			}
650		}
651	}
652#endif
653#endif
654
655	return error;
656}
657
658
659/*
660 * hfs_vnop_inactive
661 *
662 * The last usecount on the vnode has gone away, so we need to tear down
663 * any remaining data still residing in the cnode.  If necessary, write out
664 * remaining blocks or delete the cnode's entry in the catalog.
665 */
666int
667hfs_vnop_inactive(struct vnop_inactive_args *ap)
668{
669	struct vnode *vp = ap->a_vp;
670	struct cnode *cp;
671	struct hfsmount *hfsmp = VTOHFS(vp);
672	struct proc *p = vfs_context_proc(ap->a_context);
673	int error = 0;
674	int took_trunc_lock = 0;
675	enum vtype v_type;
676
677	v_type = vnode_vtype(vp);
678	cp = VTOC(vp);
679
680	if ((hfsmp->hfs_flags & HFS_READ_ONLY) || vnode_issystem(vp) ||
681	    (hfsmp->hfs_freezing_proc == p)) {
682		error = 0;
683		goto inactive_done;
684	}
685
686	/*
687	 * For safety, do NOT call vnode_recycle from inside this function.  This can cause
688	 * problems in the following scenario:
689	 *
690	 * vnode_create -> vnode_reclaim_internal -> vclean -> VNOP_INACTIVE
691	 *
692	 * If we're being invoked as a result of a reclaim that was already in-flight, then we
693	 * cannot call vnode_recycle again.  Being in reclaim means that there are no usecounts or
694	 * iocounts by definition.  As a result, if we were to call vnode_recycle, it would immediately
695	 * try to re-enter reclaim again and panic.
696	 *
697	 * Currently, there are three things that can cause us (VNOP_INACTIVE) to get called.
698	 * 1) last usecount goes away on the vnode (vnode_rele)
699	 * 2) last iocount goes away on a vnode that previously had usecounts but didn't have
700	 * 		vnode_recycle called (vnode_put)
701	 * 3) vclean by way of reclaim
702	 *
703	 * In this function we would generally want to call vnode_recycle to speed things
704	 * along to ensure that we don't leak blocks due to open-unlinked files.  However, by
705	 * virtue of being in this function already, we can call hfs_cnode_teardown, which
706	 * will release blocks held by open-unlinked files, and mark them C_NOEXISTS so that
707	 * there's no entry in the catalog and no backing store anymore.  If that's the case,
708	 * then we really don't care all that much when the vnode actually goes through reclaim.
709	 * Further, the HFS VNOPs that manipulated the namespace in order to create the open-
710	 * unlinked file in the first place should have already called vnode_recycle on the vnode
711	 * to guarantee that it would go through reclaim in a speedy way.
712	 */
713
714	if (cp->c_flag & C_NOEXISTS) {
715		/*
716		 * If the cnode has already had its cat entry removed, then
717		 * just skip to the end. We don't need to do anything here.
718		 */
719		error = 0;
720		goto inactive_done;
721	}
722
723	if ((v_type == VREG || v_type == VLNK)) {
724		hfs_lock_truncate(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
725		took_trunc_lock = 1;
726	}
727
728	(void) hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS);
729
730	/*
731	 * Call cnode_teardown to push out dirty blocks to disk, release open-unlinked
732	 * files' blocks from being in use, and move the cnode from C_DELETED to C_NOEXISTS.
733	 */
734	error = hfs_cnode_teardown (vp, ap->a_context, 0);
735
736    /*
737     * Drop the truncate lock before unlocking the cnode
738     * (which can potentially perform a vnode_put and
739     * recycle the vnode which in turn might require the
740     * truncate lock)
741     */
742	if (took_trunc_lock) {
743	    hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT);
744	}
745
746	hfs_unlock(cp);
747
748inactive_done:
749
750	return error;
751}
752
753
754/*
755 * File clean-up (zero fill and shrink peof).
756 */
757
758int
759hfs_filedone(struct vnode *vp, vfs_context_t context,
760			 hfs_file_done_opts_t opts)
761{
762	struct cnode *cp;
763	struct filefork *fp;
764	struct hfsmount *hfsmp;
765	struct rl_entry *invalid_range;
766	off_t leof;
767	u_int32_t blks, blocksize;
768	/* flags for zero-filling sparse ranges */
769	int cluster_flags = IO_CLOSE;
770	int cluster_zero_flags = IO_HEADZEROFILL | IO_NOZERODIRTY | IO_NOCACHE;
771
772	cp = VTOC(vp);
773	fp = VTOF(vp);
774	hfsmp = VTOHFS(vp);
775	leof = fp->ff_size;
776
777	if ((hfsmp->hfs_flags & HFS_READ_ONLY) || (fp->ff_blocks == 0))
778		return (0);
779
780	if (!ISSET(opts, HFS_FILE_DONE_NO_SYNC)) {
781#if CONFIG_PROTECT
782		/*
783		 * Figure out if we need to do synchronous IO.
784		 *
785		 * If the file represents a content-protected file, we may need
786		 * to issue synchronous IO when we dispatch to the cluster layer.
787		 * If we didn't, then the IO would go out to the disk asynchronously.
788		 * If the vnode hits the end of inactive before getting reclaimed, the
789		 * content protection keys would be wiped/bzeroed out, and we'd end up
790		 * trying to issue the IO with an invalid key.  This will lead to file
791		 * corruption.  IO_SYNC will force the cluster_push to wait until all IOs
792		 * have completed (though they may be in the track cache).
793		 */
794		if (cp_fs_protected(VTOVFS(vp))) {
795			cluster_flags |= IO_SYNC;
796			cluster_zero_flags |= IO_SYNC;
797		}
798#endif
799
800		hfs_unlock(cp);
801		(void) cluster_push(vp, cluster_flags);
802		hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS);
803	}
804
805	/*
806	 * Explicitly zero out the areas of file
807	 * that are currently marked invalid.
808	 */
809	while ((invalid_range = TAILQ_FIRST(&fp->ff_invalidranges))) {
810		off_t start = invalid_range->rl_start;
811		off_t end = invalid_range->rl_end;
812
813		/* The range about to be written must be validated
814		 * first, so that VNOP_BLOCKMAP() will return the
815		 * appropriate mapping for the cluster code:
816		 */
817		rl_remove(start, end, &fp->ff_invalidranges);
818
819		hfs_unlock(cp);
820		(void) cluster_write(vp, (struct uio *) 0,
821				     leof, end + 1, start, (off_t)0, cluster_zero_flags);
822		hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS);
823		cp->c_flag |= C_MODIFIED;
824	}
825	cp->c_flag &= ~C_ZFWANTSYNC;
826	cp->c_zftimeout = 0;
827	blocksize = VTOVCB(vp)->blockSize;
828	blks = leof / blocksize;
829	if (((off_t)blks * (off_t)blocksize) != leof)
830		blks++;
831	/*
832	 * Shrink the peof to the smallest size neccessary to contain the leof.
833	 */
834	if (blks < fp->ff_blocks) {
835		(void) hfs_truncate(vp, leof, IO_NDELAY, HFS_TRUNCATE_SKIPTIMES, context);
836	}
837
838	if (!ISSET(opts, HFS_FILE_DONE_NO_SYNC)) {
839		hfs_unlock(cp);
840		(void) cluster_push(vp, cluster_flags);
841		hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS);
842
843		/*
844		 * If the hfs_truncate didn't happen to flush the vnode's
845		 * information out to disk, force it to be updated now that
846		 * all invalid ranges have been zero-filled and validated:
847		 */
848		if (cp->c_flag & C_MODIFIED) {
849			hfs_update(vp, 0);
850		}
851	}
852
853	return (0);
854}
855
856
857/*
858 * Reclaim a cnode so that it can be used for other purposes.
859 */
860int
861hfs_vnop_reclaim(struct vnop_reclaim_args *ap)
862{
863	struct vnode *vp = ap->a_vp;
864	struct cnode *cp;
865	struct filefork *fp = NULL;
866	struct filefork *altfp = NULL;
867	struct hfsmount *hfsmp = VTOHFS(vp);
868	vfs_context_t ctx = ap->a_context;
869	int reclaim_cnode = 0;
870	int err = 0;
871	enum vtype v_type;
872
873	v_type = vnode_vtype(vp);
874	cp = VTOC(vp);
875
876	/*
877	 * We don't take the truncate lock since by the time reclaim comes along,
878	 * all dirty pages have been synced and nobody should be competing
879	 * with us for this thread.
880	 */
881	(void) hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS);
882
883	/*
884	 * Sync to disk any remaining data in the cnode/vnode.  This includes
885	 * a call to hfs_update if the cnode has outbound data.
886	 *
887	 * If C_NOEXISTS is set on the cnode, then there's nothing teardown needs to do
888	 * because the catalog entry for this cnode is already gone.
889	 */
890	if (!ISSET(cp->c_flag, C_NOEXISTS)) {
891		err = hfs_cnode_teardown(vp, ctx, 1);
892	}
893
894	/*
895	 * Keep track of an inactive hot file.
896	 */
897	if (!vnode_isdir(vp) &&
898	    !vnode_issystem(vp) &&
899	    !(cp->c_flag & (C_DELETED | C_NOEXISTS)) ) {
900  		(void) hfs_addhotfile(vp);
901	}
902	vnode_removefsref(vp);
903
904	/*
905	 * Find file fork for this vnode (if any)
906	 * Also check if another fork is active
907	 */
908	if (cp->c_vp == vp) {
909	        fp = cp->c_datafork;
910		altfp = cp->c_rsrcfork;
911
912		cp->c_datafork = NULL;
913		cp->c_vp = NULL;
914	} else if (cp->c_rsrc_vp == vp) {
915	        fp = cp->c_rsrcfork;
916		altfp = cp->c_datafork;
917
918		cp->c_rsrcfork = NULL;
919		cp->c_rsrc_vp = NULL;
920	} else {
921	        panic("hfs_vnop_reclaim: vp points to wrong cnode (vp=%p cp->c_vp=%p cp->c_rsrc_vp=%p)\n", vp, cp->c_vp, cp->c_rsrc_vp);
922	}
923	/*
924	 * On the last fork, remove the cnode from its hash chain.
925	 */
926	if (altfp == NULL) {
927		/* If we can't remove it then the cnode must persist! */
928		if (hfs_chashremove(hfsmp, cp) == 0)
929			reclaim_cnode = 1;
930		/*
931		 * Remove any directory hints
932		 */
933		if (vnode_isdir(vp)) {
934			hfs_reldirhints(cp, 0);
935		}
936
937		if(cp->c_flag & C_HARDLINK) {
938			hfs_relorigins(cp);
939		}
940	}
941	/* Release the file fork and related data */
942	if (fp) {
943		/* Dump cached symlink data */
944		if (vnode_islnk(vp) && (fp->ff_symlinkptr != NULL)) {
945			FREE(fp->ff_symlinkptr, M_TEMP);
946		}
947		FREE_ZONE(fp, sizeof(struct filefork), M_HFSFORK);
948	}
949
950	/*
951	 * If there was only one active fork then we can release the cnode.
952	 */
953	if (reclaim_cnode) {
954		hfs_chashwakeup(hfsmp, cp, H_ALLOC | H_TRANSIT);
955		hfs_unlock(cp);
956		hfs_reclaim_cnode(cp);
957	}
958	else  {
959		/*
960		 * cnode in use.  If it is a directory, it could have
961		 * no live forks. Just release the lock.
962		 */
963		hfs_unlock(cp);
964	}
965
966	vnode_clearfsnode(vp);
967	return (0);
968}
969
970
971extern int (**hfs_vnodeop_p) (void *);
972extern int (**hfs_specop_p)  (void *);
973#if FIFO
974extern int (**hfs_fifoop_p)  (void *);
975#endif
976
977#if CONFIG_HFS_STD
978extern int (**hfs_std_vnodeop_p) (void *);
979#endif
980
981/*
982 * hfs_getnewvnode - get new default vnode
983 *
984 * The vnode is returned with an iocount and the cnode locked
985 */
986int
987hfs_getnewvnode(
988	struct hfsmount *hfsmp,
989	struct vnode *dvp,
990	struct componentname *cnp,
991	struct cat_desc *descp,
992	int flags,
993	struct cat_attr *attrp,
994	struct cat_fork *forkp,
995	struct vnode **vpp,
996	int *out_flags)
997{
998	struct mount *mp = HFSTOVFS(hfsmp);
999	struct vnode *vp = NULL;
1000	struct vnode **cvpp;
1001	struct vnode *tvp = NULLVP;
1002	struct cnode *cp = NULL;
1003	struct filefork *fp = NULL;
1004	int hfs_standard = 0;
1005	int retval;
1006	int issystemfile;
1007	int wantrsrc;
1008	int hflags = 0;
1009	struct vnode_fsparam vfsp;
1010	enum vtype vtype;
1011#if QUOTA
1012	int i;
1013#endif /* QUOTA */
1014
1015	hfs_standard = (hfsmp->hfs_flags & HFS_STANDARD);
1016
1017	if (attrp->ca_fileid == 0) {
1018		*vpp = NULL;
1019		return (ENOENT);
1020	}
1021
1022#if !FIFO
1023	if (IFTOVT(attrp->ca_mode) == VFIFO) {
1024		*vpp = NULL;
1025		return (ENOTSUP);
1026	}
1027#endif /* !FIFO */
1028	vtype = IFTOVT(attrp->ca_mode);
1029	issystemfile = (descp->cd_flags & CD_ISMETA) && (vtype == VREG);
1030	wantrsrc = flags & GNV_WANTRSRC;
1031
1032	/* Sanity check the vtype and mode */
1033	if (vtype == VBAD) {
1034		/* Mark the FS as corrupt and bail out */
1035		hfs_mark_inconsistent(hfsmp, HFS_INCONSISTENCY_DETECTED);
1036		return EINVAL;
1037	}
1038
1039	/* Zero out the out_flags */
1040	*out_flags = 0;
1041
1042#ifdef HFS_CHECK_LOCK_ORDER
1043	/*
1044	 * The only case were its permissible to hold the parent cnode
1045	 * lock is during a create operation (hfs_makenode) or when
1046	 * we don't need the cnode lock (GNV_SKIPLOCK).
1047	 */
1048	if ((dvp != NULL) &&
1049	    (flags & (GNV_CREATE | GNV_SKIPLOCK)) == 0 &&
1050	    VTOC(dvp)->c_lockowner == current_thread()) {
1051		panic("hfs_getnewvnode: unexpected hold of parent cnode %p", VTOC(dvp));
1052	}
1053#endif /* HFS_CHECK_LOCK_ORDER */
1054
1055	/*
1056	 * Get a cnode (new or existing)
1057	 */
1058	cp = hfs_chash_getcnode(hfsmp, attrp->ca_fileid, vpp, wantrsrc,
1059							(flags & GNV_SKIPLOCK), out_flags, &hflags);
1060
1061	/*
1062	 * If the id is no longer valid for lookups we'll get back a NULL cp.
1063	 */
1064	if (cp == NULL) {
1065		return (ENOENT);
1066	}
1067
1068	/*
1069	 * If we get a cnode/vnode pair out of hfs_chash_getcnode, then update the
1070	 * descriptor in the cnode as needed if the cnode represents a hardlink.
1071	 * We want the caller to get the most up-to-date copy of the descriptor
1072	 * as possible. However, we only do anything here if there was a valid vnode.
1073	 * If there isn't a vnode, then the cnode is brand new and needs to be initialized
1074	 * as it doesn't have a descriptor or cat_attr yet.
1075	 *
1076	 * If we are about to replace the descriptor with the user-supplied one, then validate
1077	 * that the descriptor correctly acknowledges this item is a hardlink.  We could be
1078	 * subject to a race where the calling thread invoked cat_lookup, got a valid lookup
1079	 * result but the file was not yet a hardlink. With sufficient delay between there
1080	 * and here, we might accidentally copy in the raw inode ID into the descriptor in the
1081	 * call below.  If the descriptor's CNID is the same as the fileID then it must
1082	 * not yet have been a hardlink when the lookup occurred.
1083	 */
1084
1085	if (!(hfs_checkdeleted(cp))) {
1086		if ((cp->c_flag & C_HARDLINK) && descp->cd_nameptr && descp->cd_namelen > 0) {
1087			/* If cnode is uninitialized, its c_attr will be zeroed out; cnids wont match. */
1088			if ((descp->cd_cnid == cp->c_attr.ca_fileid)  &&
1089					(attrp->ca_linkcount != cp->c_attr.ca_linkcount)){
1090				if ((flags & GNV_SKIPLOCK) == 0) {
1091					/*
1092					 * Then we took the lock. Drop it before calling
1093					 * vnode_put, which may invoke hfs_vnop_inactive and need to take
1094					 * the cnode lock again.
1095					 */
1096					hfs_unlock(cp);
1097				}
1098
1099				/*
1100				 * Emit ERECYCLE and GNV_CAT_ATTRCHANGED to
1101				 * force a re-drive in the lookup routine.
1102				 * Drop the iocount on the vnode obtained from
1103				 * chash_getcnode if needed.
1104				 */
1105				if (*vpp != NULL) {
1106					vnode_put (*vpp);
1107					*vpp = NULL;
1108				}
1109
1110				/*
1111				 * If we raced with VNOP_RECLAIM for this vnode, the hash code could
1112				 * have observed it after the c_vp or c_rsrc_vp fields had been torn down;
1113				 * the hash code peeks at those fields without holding the cnode lock because
1114				 * it needs to be fast.  As a result, we may have set H_ATTACH in the chash
1115				 * call above.  Since we're bailing out, unset whatever flags we just set, and
1116				 * wake up all waiters for this cnode.
1117				 */
1118				if (hflags) {
1119					hfs_chashwakeup(hfsmp, cp, hflags);
1120				}
1121
1122				*out_flags = GNV_CAT_ATTRCHANGED;
1123				return ERECYCLE;
1124			}
1125			else {
1126				/*
1127				 * Otherwise, CNID != fileid. Go ahead and copy in the new descriptor.
1128				 *
1129				 * Replacing the descriptor here is fine because we looked up the item without
1130				 * a vnode in hand before.  If a vnode existed, its identity must be attached to this
1131				 * item.  We are not susceptible to the lookup fastpath issue at this point.
1132				 */
1133				replace_desc(cp, descp);
1134
1135				/*
1136				 * This item was a hardlink, and its name needed to be updated. By replacing the
1137				 * descriptor above, we've now updated the cnode's internal representation of
1138				 * its link ID/CNID, parent ID, and its name.  However, VFS must now be alerted
1139				 * to the fact that this vnode now has a new parent, since we cannot guarantee
1140				 * that the new link lived in the same directory as the alternative name for
1141				 * this item.
1142				 */
1143				if ((*vpp != NULL) && (cnp)) {
1144					/* we could be requesting the rsrc of a hardlink file... */
1145					vnode_update_identity (*vpp, dvp, cnp->cn_nameptr, cnp->cn_namelen, cnp->cn_hash,
1146							(VNODE_UPDATE_PARENT | VNODE_UPDATE_NAME));
1147				}
1148			}
1149		}
1150	}
1151
1152	/* Check if we found a matching vnode */
1153	if (*vpp != NULL) {
1154		return (0);
1155	}
1156
1157	/*
1158	 * If this is a new cnode then initialize it.
1159	 */
1160	if (ISSET(cp->c_hflag, H_ALLOC)) {
1161		lck_rw_init(&cp->c_truncatelock, hfs_rwlock_group, hfs_lock_attr);
1162#if HFS_COMPRESSION
1163		cp->c_decmp = NULL;
1164#endif
1165
1166		/* Make sure its still valid (ie exists on disk). */
1167		if (!(flags & GNV_CREATE)) {
1168			int error = 0;
1169			if (!hfs_valid_cnode (hfsmp, dvp, (wantrsrc ? NULL : cnp), cp->c_fileid, attrp, &error)) {
1170				hfs_chash_abort(hfsmp, cp);
1171				if ((flags & GNV_SKIPLOCK) == 0) {
1172					hfs_unlock(cp);
1173				}
1174				hfs_reclaim_cnode(cp);
1175				*vpp = NULL;
1176				/*
1177				 * If we hit this case, that means that the entry was there in the catalog when
1178				 * we did a cat_lookup earlier.  Think hfs_lookup.  However, in between the time
1179				 * that we checked the catalog and the time we went to get a vnode/cnode for it,
1180				 * it had been removed from the namespace and the vnode totally reclaimed.  As a result,
1181				 * it's not there in the catalog during the check in hfs_valid_cnode and we bubble out
1182				 * an ENOENT.  To indicate to the caller that they should really double-check the
1183				 * entry (it could have been renamed over and gotten a new fileid), we mark a bit
1184				 * in the output flags.
1185				 */
1186				if (error == ENOENT) {
1187					*out_flags = GNV_CAT_DELETED;
1188					return ENOENT;
1189				}
1190
1191				/*
1192				 * Also, we need to protect the cat_attr acquired during hfs_lookup and passed into
1193				 * this function as an argument because the catalog may have changed w.r.t hardlink
1194				 * link counts and the firstlink field.  If that validation check fails, then let
1195				 * lookup re-drive itself to get valid/consistent data with the same failure condition below.
1196				 */
1197				if (error == ERECYCLE) {
1198					*out_flags = GNV_CAT_ATTRCHANGED;
1199					return (ERECYCLE);
1200				}
1201			}
1202		}
1203		bcopy(attrp, &cp->c_attr, sizeof(struct cat_attr));
1204		bcopy(descp, &cp->c_desc, sizeof(struct cat_desc));
1205
1206		/* The name was inherited so clear descriptor state... */
1207		descp->cd_namelen = 0;
1208		descp->cd_nameptr = NULL;
1209		descp->cd_flags &= ~CD_HASBUF;
1210
1211		/* Tag hardlinks */
1212		if ((vtype == VREG || vtype == VDIR) &&
1213		    ((descp->cd_cnid != attrp->ca_fileid) ||
1214		     (attrp->ca_recflags & kHFSHasLinkChainMask))) {
1215			cp->c_flag |= C_HARDLINK;
1216		}
1217		/*
1218		 * Fix-up dir link counts.
1219		 *
1220		 * Earlier versions of Leopard used ca_linkcount for posix
1221		 * nlink support (effectively the sub-directory count + 2).
1222		 * That is now accomplished using the ca_dircount field with
1223		 * the corresponding kHFSHasFolderCountMask flag.
1224		 *
1225		 * For directories the ca_linkcount is the true link count,
1226		 * tracking the number of actual hardlinks to a directory.
1227		 *
1228		 * We only do this if the mount has HFS_FOLDERCOUNT set;
1229		 * at the moment, we only set that for HFSX volumes.
1230		 */
1231		if ((hfsmp->hfs_flags & HFS_FOLDERCOUNT) &&
1232		    (vtype == VDIR) &&
1233		    !(attrp->ca_recflags & kHFSHasFolderCountMask) &&
1234		    (cp->c_attr.ca_linkcount > 1)) {
1235			if (cp->c_attr.ca_entries == 0)
1236				cp->c_attr.ca_dircount = 0;
1237			else
1238				cp->c_attr.ca_dircount = cp->c_attr.ca_linkcount - 2;
1239
1240			cp->c_attr.ca_linkcount = 1;
1241			cp->c_attr.ca_recflags |= kHFSHasFolderCountMask;
1242			if ( !(hfsmp->hfs_flags & HFS_READ_ONLY) )
1243				cp->c_flag |= C_MODIFIED;
1244		}
1245#if QUOTA
1246		if (hfsmp->hfs_flags & HFS_QUOTAS) {
1247			for (i = 0; i < MAXQUOTAS; i++)
1248				cp->c_dquot[i] = NODQUOT;
1249		}
1250#endif /* QUOTA */
1251		/* Mark the output flag that we're vending a new cnode */
1252		*out_flags |= GNV_NEW_CNODE;
1253	}
1254
1255	if (vtype == VDIR) {
1256	        if (cp->c_vp != NULL)
1257		        panic("hfs_getnewvnode: orphaned vnode (data)");
1258		cvpp = &cp->c_vp;
1259	} else {
1260		if (forkp && attrp->ca_blocks < forkp->cf_blocks)
1261			panic("hfs_getnewvnode: bad ca_blocks (too small)");
1262		/*
1263		 * Allocate and initialize a file fork...
1264		 */
1265		MALLOC_ZONE(fp, struct filefork *, sizeof(struct filefork),
1266			M_HFSFORK, M_WAITOK);
1267		fp->ff_cp = cp;
1268		if (forkp)
1269			bcopy(forkp, &fp->ff_data, sizeof(struct cat_fork));
1270		else
1271			bzero(&fp->ff_data, sizeof(struct cat_fork));
1272		rl_init(&fp->ff_invalidranges);
1273		fp->ff_sysfileinfo = 0;
1274
1275		if (wantrsrc) {
1276			if (cp->c_rsrcfork != NULL)
1277				panic("hfs_getnewvnode: orphaned rsrc fork");
1278			if (cp->c_rsrc_vp != NULL)
1279			        panic("hfs_getnewvnode: orphaned vnode (rsrc)");
1280			cp->c_rsrcfork = fp;
1281			cvpp = &cp->c_rsrc_vp;
1282			if ( (tvp = cp->c_vp) != NULLVP )
1283			        cp->c_flag |= C_NEED_DVNODE_PUT;
1284		} else {
1285			if (cp->c_datafork != NULL)
1286				panic("hfs_getnewvnode: orphaned data fork");
1287			if (cp->c_vp != NULL)
1288			        panic("hfs_getnewvnode: orphaned vnode (data)");
1289			cp->c_datafork = fp;
1290			cvpp = &cp->c_vp;
1291			if ( (tvp = cp->c_rsrc_vp) != NULLVP)
1292			        cp->c_flag |= C_NEED_RVNODE_PUT;
1293		}
1294	}
1295	if (tvp != NULLVP) {
1296	        /*
1297		 * grab an iocount on the vnode we weren't
1298		 * interested in (i.e. we want the resource fork
1299		 * but the cnode already has the data fork)
1300		 * to prevent it from being
1301		 * recycled by us when we call vnode_create
1302		 * which will result in a deadlock when we
1303		 * try to take the cnode lock in hfs_vnop_fsync or
1304		 * hfs_vnop_reclaim... vnode_get can be called here
1305		 * because we already hold the cnode lock which will
1306		 * prevent the vnode from changing identity until
1307		 * we drop it.. vnode_get will not block waiting for
1308		 * a change of state... however, it will return an
1309		 * error if the current iocount == 0 and we've already
1310		 * started to terminate the vnode... we don't need/want to
1311		 * grab an iocount in the case since we can't cause
1312		 * the fileystem to be re-entered on this thread for this vp
1313		 *
1314		 * the matching vnode_put will happen in hfs_unlock
1315		 * after we've dropped the cnode lock
1316		 */
1317	        if ( vnode_get(tvp) != 0)
1318		        cp->c_flag &= ~(C_NEED_RVNODE_PUT | C_NEED_DVNODE_PUT);
1319	}
1320	vfsp.vnfs_mp = mp;
1321	vfsp.vnfs_vtype = vtype;
1322	vfsp.vnfs_str = "hfs";
1323	if ((cp->c_flag & C_HARDLINK) && (vtype == VDIR)) {
1324		vfsp.vnfs_dvp = NULL;  /* no parent for me! */
1325		vfsp.vnfs_cnp = NULL;  /* no name for me! */
1326	} else {
1327		vfsp.vnfs_dvp = dvp;
1328		vfsp.vnfs_cnp = cnp;
1329	}
1330	vfsp.vnfs_fsnode = cp;
1331
1332	/*
1333	 * Special Case HFS Standard VNOPs from HFS+, since
1334	 * HFS standard is readonly/deprecated as of 10.6
1335	 */
1336
1337#if FIFO
1338	if (vtype == VFIFO )
1339		vfsp.vnfs_vops = hfs_fifoop_p;
1340	else
1341#endif
1342	if (vtype == VBLK || vtype == VCHR)
1343		vfsp.vnfs_vops = hfs_specop_p;
1344#if CONFIG_HFS_STD
1345	else if (hfs_standard)
1346		vfsp.vnfs_vops = hfs_std_vnodeop_p;
1347#endif
1348	else
1349		vfsp.vnfs_vops = hfs_vnodeop_p;
1350
1351	if (vtype == VBLK || vtype == VCHR)
1352		vfsp.vnfs_rdev = attrp->ca_rdev;
1353	else
1354		vfsp.vnfs_rdev = 0;
1355
1356	if (forkp)
1357		vfsp.vnfs_filesize = forkp->cf_size;
1358	else
1359		vfsp.vnfs_filesize = 0;
1360
1361	vfsp.vnfs_flags = VNFS_ADDFSREF;
1362	if (dvp == NULLVP || cnp == NULL || !(cnp->cn_flags & MAKEENTRY) || (flags & GNV_NOCACHE))
1363		vfsp.vnfs_flags |= VNFS_NOCACHE;
1364
1365	/* Tag system files */
1366	vfsp.vnfs_marksystem = issystemfile;
1367
1368	/* Tag root directory */
1369	if (descp->cd_cnid == kHFSRootFolderID)
1370		vfsp.vnfs_markroot = 1;
1371	else
1372		vfsp.vnfs_markroot = 0;
1373
1374	if ((retval = vnode_create(VNCREATE_FLAVOR, VCREATESIZE, &vfsp, cvpp))) {
1375	        if (fp) {
1376			if (fp == cp->c_datafork)
1377			        cp->c_datafork = NULL;
1378			else
1379			        cp->c_rsrcfork = NULL;
1380
1381		        FREE_ZONE(fp, sizeof(struct filefork), M_HFSFORK);
1382		}
1383		/*
1384		 * If this is a newly created cnode or a vnode reclaim
1385		 * occurred during the attachment, then cleanup the cnode.
1386		 */
1387		if ((cp->c_vp == NULL) && (cp->c_rsrc_vp == NULL)) {
1388			hfs_chash_abort(hfsmp, cp);
1389			hfs_reclaim_cnode(cp);
1390		}
1391		else {
1392			hfs_chashwakeup(hfsmp, cp, H_ALLOC | H_ATTACH);
1393			if ((flags & GNV_SKIPLOCK) == 0){
1394				hfs_unlock(cp);
1395			}
1396		}
1397		*vpp = NULL;
1398		return (retval);
1399	}
1400	vp = *cvpp;
1401	vnode_settag(vp, VT_HFS);
1402	if (cp->c_flag & C_HARDLINK) {
1403		vnode_setmultipath(vp);
1404	}
1405	/*
1406	 * Tag resource fork vnodes as needing an VNOP_INACTIVE
1407	 * so that any deferred removes (open unlinked files)
1408	 * have the chance to process the resource fork.
1409	 */
1410	if (VNODE_IS_RSRC(vp)) {
1411		int err;
1412
1413		KERNEL_DEBUG_CONSTANT(HFSDBG_GETNEWVNODE, VM_KERNEL_ADDRPERM(cp->c_vp), VM_KERNEL_ADDRPERM(cp->c_rsrc_vp), 0, 0, 0);
1414
1415		/* Force VL_NEEDINACTIVE on this vnode */
1416		err = vnode_ref(vp);
1417		if (err == 0) {
1418			vnode_rele(vp);
1419		}
1420	}
1421	hfs_chashwakeup(hfsmp, cp, H_ALLOC | H_ATTACH);
1422
1423	/*
1424	 * Stop tracking an active hot file.
1425	 */
1426	if (!(flags & GNV_CREATE) && (vtype != VDIR) && !issystemfile) {
1427		(void) hfs_removehotfile(vp);
1428	}
1429
1430#if CONFIG_PROTECT
1431	/* Initialize the cp data structures. The key should be in place now. */
1432	if (!issystemfile && (*out_flags & GNV_NEW_CNODE)) {
1433		cp_entry_init(cp, mp);
1434	}
1435#endif
1436
1437	*vpp = vp;
1438	return (0);
1439}
1440
1441
1442static void
1443hfs_reclaim_cnode(struct cnode *cp)
1444{
1445#if QUOTA
1446	int i;
1447
1448	for (i = 0; i < MAXQUOTAS; i++) {
1449		if (cp->c_dquot[i] != NODQUOT) {
1450			dqreclaim(cp->c_dquot[i]);
1451			cp->c_dquot[i] = NODQUOT;
1452		}
1453	}
1454#endif /* QUOTA */
1455
1456	/*
1457	 * If the descriptor has a name then release it
1458	 */
1459	if ((cp->c_desc.cd_flags & CD_HASBUF) && (cp->c_desc.cd_nameptr != 0)) {
1460		const char *nameptr;
1461
1462		nameptr = (const char *) cp->c_desc.cd_nameptr;
1463		cp->c_desc.cd_nameptr = 0;
1464		cp->c_desc.cd_flags &= ~CD_HASBUF;
1465		cp->c_desc.cd_namelen = 0;
1466		vfs_removename(nameptr);
1467	}
1468
1469	/*
1470	 * We only call this function if we are in hfs_vnop_reclaim and
1471	 * attempting to reclaim a cnode with only one live fork.  Because the vnode
1472	 * went through reclaim, any future attempts to use this item will have to
1473	 * go through lookup again, which will need to create a new vnode.  Thus,
1474	 * destroying the locks below is safe.
1475	 */
1476
1477	lck_rw_destroy(&cp->c_rwlock, hfs_rwlock_group);
1478	lck_rw_destroy(&cp->c_truncatelock, hfs_rwlock_group);
1479#if HFS_COMPRESSION
1480	if (cp->c_decmp) {
1481		decmpfs_cnode_destroy(cp->c_decmp);
1482		FREE_ZONE(cp->c_decmp, sizeof(*(cp->c_decmp)), M_DECMPFS_CNODE);
1483	}
1484#endif
1485#if CONFIG_PROTECT
1486	cp_entry_destroy(cp->c_cpentry);
1487	cp->c_cpentry = NULL;
1488#endif
1489
1490
1491	bzero(cp, sizeof(struct cnode));
1492	FREE_ZONE(cp, sizeof(struct cnode), M_HFSNODE);
1493}
1494
1495
1496/*
1497 * hfs_valid_cnode
1498 *
1499 * This function is used to validate data that is stored in-core against what is contained
1500 * in the catalog.  Common uses include validating that the parent-child relationship still exist
1501 * for a specific directory entry (guaranteeing it has not been renamed into a different spot) at
1502 * the point of the check.
1503 */
1504int
1505hfs_valid_cnode(struct hfsmount *hfsmp, struct vnode *dvp, struct componentname *cnp,
1506		cnid_t cnid, struct cat_attr *cattr, int *error)
1507{
1508	struct cat_attr attr;
1509	struct cat_desc cndesc;
1510	int stillvalid = 0;
1511	int lockflags;
1512
1513	/* System files are always valid */
1514	if (cnid < kHFSFirstUserCatalogNodeID) {
1515		*error = 0;
1516		return (1);
1517	}
1518
1519	/* XXX optimization:  check write count in dvp */
1520
1521	lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_SHARED_LOCK);
1522
1523	if (dvp && cnp) {
1524		int lookup = 0;
1525		struct cat_fork fork;
1526		bzero(&cndesc, sizeof(cndesc));
1527		cndesc.cd_nameptr = (const u_int8_t *)cnp->cn_nameptr;
1528		cndesc.cd_namelen = cnp->cn_namelen;
1529		cndesc.cd_parentcnid = VTOC(dvp)->c_fileid;
1530		cndesc.cd_hint = VTOC(dvp)->c_childhint;
1531
1532		/*
1533		 * We have to be careful when calling cat_lookup.  The result argument
1534		 * 'attr' may get different results based on whether or not you ask
1535		 * for the filefork to be supplied as output.  This is because cat_lookupbykey
1536		 * will attempt to do basic validation/smoke tests against the resident
1537		 * extents if there are no overflow extent records, but it needs someplace
1538		 * in memory to store the on-disk fork structures.
1539		 *
1540		 * Since hfs_lookup calls cat_lookup with a filefork argument, we should
1541		 * do the same here, to verify that block count differences are not
1542		 * due to calling the function with different styles.  cat_lookupbykey
1543		 * will request the volume be fsck'd if there is true on-disk corruption
1544		 * where the number of blocks does not match the number generated by
1545		 * summing the number of blocks in the resident extents.
1546		 */
1547
1548		lookup = cat_lookup (hfsmp, &cndesc, 0, 0, NULL, &attr, &fork, NULL);
1549
1550		if ((lookup == 0) && (cnid == attr.ca_fileid)) {
1551			stillvalid = 1;
1552			*error = 0;
1553		}
1554		else {
1555			*error = ENOENT;
1556		}
1557
1558		/*
1559		 * In hfs_getnewvnode, we may encounter a time-of-check vs. time-of-vnode creation
1560		 * race.  Specifically, if there is no vnode/cnode pair for the directory entry
1561		 * being looked up, we have to go to the catalog.  But since we don't hold any locks (aside
1562		 * from the dvp in 'shared' mode) there is nothing to protect us against the catalog record
1563		 * changing in between the time we do the cat_lookup there and the time we re-grab the
1564		 * catalog lock above to do another cat_lookup.
1565		 *
1566		 * However, we need to check more than just the CNID and parent-child name relationships above.
1567		 * Hardlinks can suffer the same race in the following scenario:  Suppose we do a
1568		 * cat_lookup, and find a leaf record and a raw inode for a hardlink.  Now, we have
1569		 * the cat_attr in hand (passed in above).  But in between then and now, the vnode was
1570		 * created by a competing hfs_getnewvnode call, and is manipulated and reclaimed before we get
1571		 * a chance to do anything.  This is possible if there are a lot of threads thrashing around
1572		 * with the cnode hash.  In this case, if we don't check/validate the cat_attr in-hand, we will
1573		 * blindly stuff it into the cnode, which will make the in-core data inconsistent with what is
1574		 * on disk.  So validate the cat_attr below, if required.  This race cannot happen if the cnode/vnode
1575		 * already exists, as it does in the case of rename and delete.
1576		 */
1577		if (stillvalid && cattr != NULL) {
1578			if (cattr->ca_linkcount != attr.ca_linkcount) {
1579				stillvalid = 0;
1580				*error = ERECYCLE;
1581				goto notvalid;
1582			}
1583
1584			if (cattr->ca_union1.cau_linkref != attr.ca_union1.cau_linkref) {
1585				stillvalid = 0;
1586				*error = ERECYCLE;
1587				goto notvalid;
1588			}
1589
1590			if (cattr->ca_union3.cau_firstlink != attr.ca_union3.cau_firstlink) {
1591				stillvalid = 0;
1592				*error = ERECYCLE;
1593				goto notvalid;
1594			}
1595
1596			if (cattr->ca_union2.cau_blocks != attr.ca_union2.cau_blocks) {
1597				stillvalid = 0;
1598				*error = ERECYCLE;
1599				goto notvalid;
1600			}
1601		}
1602	} else {
1603		if (cat_idlookup(hfsmp, cnid, 0, 0, NULL, NULL, NULL) == 0) {
1604			stillvalid = 1;
1605			*error = 0;
1606		}
1607		else {
1608			*error = ENOENT;
1609		}
1610	}
1611notvalid:
1612	hfs_systemfile_unlock(hfsmp, lockflags);
1613
1614	return (stillvalid);
1615}
1616
1617
1618/*
1619 * Per HI and Finder requirements, HFS should add in the
1620 * date/time that a particular directory entry was added
1621 * to the containing directory.
1622 * This is stored in the extended Finder Info for the
1623 * item in question.
1624 *
1625 * Note that this field is also set explicitly in the hfs_vnop_setxattr code.
1626 * We must ignore user attempts to set this part of the finderinfo, and
1627 * so we need to save a local copy of the date added, write in the user
1628 * finderinfo, then stuff the value back in.
1629 */
1630void hfs_write_dateadded (struct cat_attr *attrp, u_int32_t dateadded) {
1631	u_int8_t *finfo = NULL;
1632
1633	/* overlay the FinderInfo to the correct pointer, and advance */
1634	finfo = (u_int8_t*)attrp->ca_finderinfo;
1635	finfo = finfo + 16;
1636
1637	/*
1638	 * Make sure to write it out as big endian, since that's how
1639	 * finder info is defined.
1640	 *
1641	 * NOTE: This is a Unix-epoch timestamp, not a HFS/Traditional Mac timestamp.
1642	 */
1643	if (S_ISREG(attrp->ca_mode)) {
1644		struct FndrExtendedFileInfo *extinfo = (struct FndrExtendedFileInfo *)finfo;
1645		extinfo->date_added = OSSwapHostToBigInt32(dateadded);
1646		attrp->ca_recflags |= kHFSHasDateAddedMask;
1647	}
1648	else if (S_ISDIR(attrp->ca_mode)) {
1649		struct FndrExtendedDirInfo *extinfo = (struct FndrExtendedDirInfo *)finfo;
1650		extinfo->date_added = OSSwapHostToBigInt32(dateadded);
1651				attrp->ca_recflags |= kHFSHasDateAddedMask;
1652	}
1653	/* If it were neither directory/file, then we'd bail out */
1654	return;
1655}
1656
1657static u_int32_t
1658hfs_get_dateadded_internal(const uint8_t *finderinfo, mode_t mode)
1659{
1660	u_int8_t *finfo = NULL;
1661	u_int32_t dateadded = 0;
1662
1663
1664
1665	/* overlay the FinderInfo to the correct pointer, and advance */
1666	finfo = (u_int8_t*)finderinfo + 16;
1667
1668	/*
1669	 * FinderInfo is written out in big endian... make sure to convert it to host
1670	 * native before we use it.
1671	 */
1672	if (S_ISREG(mode)) {
1673		struct FndrExtendedFileInfo *extinfo = (struct FndrExtendedFileInfo *)finfo;
1674		dateadded = OSSwapBigToHostInt32 (extinfo->date_added);
1675	}
1676	else if (S_ISDIR(mode)) {
1677		struct FndrExtendedDirInfo *extinfo = (struct FndrExtendedDirInfo *)finfo;
1678		dateadded = OSSwapBigToHostInt32 (extinfo->date_added);
1679	}
1680
1681	return dateadded;
1682}
1683
1684u_int32_t
1685hfs_get_dateadded(struct cnode *cp)
1686{
1687	if ((cp->c_attr.ca_recflags & kHFSHasDateAddedMask) == 0) {
1688		/* Date added was never set.  Return 0. */
1689		return (0);
1690	}
1691
1692	return (hfs_get_dateadded_internal((u_int8_t*)cp->c_finderinfo,
1693	    cp->c_attr.ca_mode));
1694}
1695
1696u_int32_t
1697hfs_get_dateadded_from_blob(const uint8_t *finderinfo, mode_t mode)
1698{
1699	return (hfs_get_dateadded_internal(finderinfo, mode));
1700}
1701
1702/*
1703 * Per HI and Finder requirements, HFS maintains a "write/generation
1704 * count" for each file that is incremented on any write & pageout.
1705 * It should start at 1 to reserve "0" as a special value.  If it
1706 * should ever wrap around, it will skip using 0.
1707 *
1708 * Note that finderinfo is manipulated in hfs_vnop_setxattr and care
1709 * is and should be taken to ignore user attempts to set the part of
1710 * the finderinfo that records the generation counter.
1711 *
1712 * Any change to the generation counter *must* not be visible before
1713 * the change that caused it (for obvious reasons), and given the
1714 * limitations of our current architecture, the change to the
1715 * generation counter may occur some time afterwards (particularly in
1716 * the case where a file is mapped writable---more on that below).
1717 *
1718 * We make no guarantees about the consistency of a file.  In other
1719 * words, a reader that is operating concurrently with a writer might
1720 * see some, but not all of writer's changes, and the generation
1721 * counter will *not* necessarily tell you this has happened.  To
1722 * enforce consistency, clients must make their own arrangements
1723 * e.g. use file locking.
1724 *
1725 * We treat files that are mapped writable as a special case: when
1726 * that happens, clients requesting the generation count will be told
1727 * it has a generation count of zero and they use that knowledge as a
1728 * hint that the file is changing and it therefore might be prudent to
1729 * wait until it is no longer mapped writable.  Clients should *not*
1730 * rely on this behaviour however; we might decide that it's better
1731 * for us to publish the fact that a file is mapped writable via
1732 * alternate means and return the generation counter when it is mapped
1733 * writable as it still has some, albeit limited, use.  We reserve the
1734 * right to make this change.
1735 *
1736 * Lastly, it's important to realise that because data and metadata
1737 * take different paths through the system, it's possible upon crash
1738 * or sudden power loss and after a restart, that a change may be
1739 * visible to the rest of the system without a corresponding change to
1740 * the generation counter.  The reverse may also be true, but for all
1741 * practical applications this shouldn't be an issue.
1742 */
1743void hfs_write_gencount (struct cat_attr *attrp, uint32_t gencount) {
1744	u_int8_t *finfo = NULL;
1745
1746	/* overlay the FinderInfo to the correct pointer, and advance */
1747	finfo = (u_int8_t*)attrp->ca_finderinfo;
1748	finfo = finfo + 16;
1749
1750	/*
1751	 * Make sure to write it out as big endian, since that's how
1752	 * finder info is defined.
1753	 *
1754	 * Generation count is only supported for files.
1755	 */
1756	if (S_ISREG(attrp->ca_mode)) {
1757		struct FndrExtendedFileInfo *extinfo = (struct FndrExtendedFileInfo *)finfo;
1758		extinfo->write_gen_counter = OSSwapHostToBigInt32(gencount);
1759	}
1760
1761	/* If it were neither directory/file, then we'd bail out */
1762	return;
1763}
1764
1765/*
1766 * Increase the gen count by 1; if it wraps around to 0, increment by
1767 * two.  The cnode *must* be locked exclusively by the caller.
1768 *
1769 * You may think holding the lock is unnecessary because we only need
1770 * to change the counter, but consider this sequence of events: thread
1771 * A calls hfs_incr_gencount and the generation counter is 2 upon
1772 * entry.  A context switch occurs and thread B increments the counter
1773 * to 3, thread C now gets the generation counter (for whatever
1774 * purpose), and then another thread makes another change and the
1775 * generation counter is incremented again---it's now 4.  Now thread A
1776 * continues and it sets the generation counter back to 3.  So you can
1777 * see, thread C would miss the change that caused the generation
1778 * counter to increment to 4 and for this reason the cnode *must*
1779 * always be locked exclusively.
1780 */
1781uint32_t hfs_incr_gencount (struct cnode *cp) {
1782	u_int8_t *finfo = NULL;
1783	u_int32_t gcount = 0;
1784
1785	/* overlay the FinderInfo to the correct pointer, and advance */
1786	finfo = (u_int8_t*)cp->c_finderinfo;
1787	finfo = finfo + 16;
1788
1789	/*
1790	 * FinderInfo is written out in big endian... make sure to convert it to host
1791	 * native before we use it.
1792	 *
1793	 * NOTE: the write_gen_counter is stored in the same location in both the
1794	 *       FndrExtendedFileInfo and FndrExtendedDirInfo structs (it's the
1795	 *       last 32-bit word) so it is safe to have one code path here.
1796	 */
1797	if (S_ISDIR(cp->c_attr.ca_mode) || S_ISREG(cp->c_attr.ca_mode)) {
1798		struct FndrExtendedFileInfo *extinfo = (struct FndrExtendedFileInfo *)finfo;
1799		gcount = OSSwapBigToHostInt32 (extinfo->write_gen_counter);
1800
1801		/* Was it zero to begin with (file originated in 10.8 or earlier?) */
1802		if (gcount == 0) {
1803			gcount++;
1804		}
1805
1806		/* now bump it */
1807		gcount++;
1808
1809		/* Did it wrap around ? */
1810		if (gcount == 0) {
1811			gcount++;
1812		}
1813		extinfo->write_gen_counter = OSSwapHostToBigInt32 (gcount);
1814
1815		SET(cp->c_flag, C_MODIFIED);
1816	}
1817	else {
1818		gcount = 0;
1819	}
1820
1821	return gcount;
1822}
1823
1824/*
1825 * There is no need for any locks here (other than an iocount on an
1826 * associated vnode) because reading and writing an aligned 32 bit
1827 * integer should be atomic on all platforms we support.
1828 */
1829static u_int32_t
1830hfs_get_gencount_internal(const uint8_t *finderinfo, mode_t mode)
1831{
1832	u_int8_t *finfo = NULL;
1833	u_int32_t gcount = 0;
1834
1835	/* overlay the FinderInfo to the correct pointer, and advance */
1836	finfo = (u_int8_t*)finderinfo;
1837	finfo = finfo + 16;
1838
1839	/*
1840	 * FinderInfo is written out in big endian... make sure to convert it to host
1841	 * native before we use it.
1842	 *
1843	 * NOTE: the write_gen_counter is stored in the same location in both the
1844	 *       FndrExtendedFileInfo and FndrExtendedDirInfo structs (it's the
1845	 *       last 32-bit word) so it is safe to have one code path here.
1846	 */
1847	if (S_ISDIR(mode) || S_ISREG(mode)) {
1848		struct FndrExtendedFileInfo *extinfo = (struct FndrExtendedFileInfo *)finfo;
1849		gcount = OSSwapBigToHostInt32 (extinfo->write_gen_counter);
1850
1851		/*
1852		 * Is it zero?  File might originate in 10.8 or earlier. We lie and bump it to 1,
1853		 * since the incrementer code is able to handle this case and will double-increment
1854		 * for us.
1855		 */
1856		if (gcount == 0) {
1857			gcount++;
1858		}
1859	}
1860
1861	return gcount;
1862}
1863
1864/* Getter for the gen count */
1865u_int32_t hfs_get_gencount (struct cnode *cp) {
1866	return hfs_get_gencount_internal(cp->c_finderinfo, cp->c_attr.ca_mode);
1867}
1868
1869/* Getter for the gen count from a buffer (currently pointer to finderinfo)*/
1870u_int32_t hfs_get_gencount_from_blob (const uint8_t *finfoblob, mode_t mode) {
1871	return hfs_get_gencount_internal(finfoblob, mode);
1872}
1873
1874void hfs_clear_might_be_dirty_flag(cnode_t *cp)
1875{
1876	/*
1877	 * If we're about to touch both mtime and ctime, we can clear the
1878	 * C_MIGHT_BE_DIRTY_FROM_MAPPING since we can guarantee that
1879	 * subsequent page-outs can only be for data made dirty before
1880	 * now.
1881	 */
1882	CLR(cp->c_flag, C_MIGHT_BE_DIRTY_FROM_MAPPING);
1883}
1884
1885/*
1886 * Touch cnode times based on c_touch_xxx flags
1887 *
1888 * cnode must be locked exclusive
1889 *
1890 * This will also update the volume modify time
1891 */
1892void
1893hfs_touchtimes(struct hfsmount *hfsmp, struct cnode* cp)
1894{
1895	vfs_context_t ctx;
1896	/* don't modify times if volume is read-only */
1897	if (hfsmp->hfs_flags & HFS_READ_ONLY) {
1898		cp->c_touch_acctime = FALSE;
1899		cp->c_touch_chgtime = FALSE;
1900		cp->c_touch_modtime = FALSE;
1901		return;
1902	}
1903#if CONFIG_HFS_STD
1904	else if (hfsmp->hfs_flags & HFS_STANDARD) {
1905	/* HFS Standard doesn't support access times */
1906		cp->c_touch_acctime = FALSE;
1907	}
1908#endif
1909
1910	ctx = vfs_context_current();
1911	/*
1912	 * Skip access time updates if:
1913	 *	. MNT_NOATIME is set
1914	 *	. a file system freeze is in progress
1915	 *	. a file system resize is in progress
1916	 *	. the vnode associated with this cnode is marked for rapid aging
1917	 */
1918	if (cp->c_touch_acctime) {
1919		if ((vfs_flags(hfsmp->hfs_mp) & MNT_NOATIME) ||
1920		    hfsmp->hfs_freeze_state != HFS_THAWED ||
1921		    (hfsmp->hfs_flags & HFS_RESIZE_IN_PROGRESS) ||
1922		    (cp->c_vp && ((vnode_israge(cp->c_vp) || (vfs_ctx_skipatime(ctx)))))) {
1923
1924			cp->c_touch_acctime = FALSE;
1925		}
1926	}
1927	if (cp->c_touch_acctime || cp->c_touch_chgtime ||
1928		cp->c_touch_modtime || (cp->c_flag & C_NEEDS_DATEADDED)) {
1929		struct timeval tv;
1930		int touchvol = 0;
1931
1932		if (cp->c_touch_modtime && cp->c_touch_chgtime)
1933			hfs_clear_might_be_dirty_flag(cp);
1934
1935		microtime(&tv);
1936
1937		if (cp->c_touch_acctime) {
1938			cp->c_atime = tv.tv_sec;
1939			/*
1940			 * When the access time is the only thing changing
1941			 * then make sure its sufficiently newer before
1942			 * committing it to disk.
1943			 */
1944			if ((((u_int32_t)cp->c_atime - (u_int32_t)(cp)->c_attr.ca_atimeondisk) >
1945			      ATIME_ONDISK_ACCURACY)) {
1946				cp->c_flag |= C_MODIFIED;
1947			}
1948			cp->c_touch_acctime = FALSE;
1949		}
1950		if (cp->c_touch_modtime) {
1951			cp->c_mtime = tv.tv_sec;
1952			cp->c_touch_modtime = FALSE;
1953			cp->c_flag |= C_MODIFIED;
1954			touchvol = 1;
1955#if CONFIG_HFS_STD
1956			/*
1957			 * HFS dates that WE set must be adjusted for DST
1958			 */
1959			if ((hfsmp->hfs_flags & HFS_STANDARD) && gTimeZone.tz_dsttime) {
1960				cp->c_mtime += 3600;
1961			}
1962#endif
1963		}
1964		if (cp->c_touch_chgtime) {
1965			cp->c_ctime = tv.tv_sec;
1966			cp->c_touch_chgtime = FALSE;
1967			cp->c_flag |= C_MODIFIED;
1968			touchvol = 1;
1969		}
1970
1971		if (cp->c_flag & C_NEEDS_DATEADDED) {
1972			hfs_write_dateadded (&(cp->c_attr), tv.tv_sec);
1973			cp->c_flag |= C_MODIFIED;
1974			/* untwiddle the bit */
1975			cp->c_flag &= ~C_NEEDS_DATEADDED;
1976			touchvol = 1;
1977		}
1978
1979		/* Touch the volume modtime if needed */
1980		if (touchvol) {
1981			MarkVCBDirty(hfsmp);
1982			HFSTOVCB(hfsmp)->vcbLsMod = tv.tv_sec;
1983		}
1984	}
1985}
1986
1987// Use this if you don't want to check the return code
1988void hfs_lock_always(cnode_t *cp, enum hfs_locktype locktype)
1989{
1990	hfs_lock(cp, locktype, HFS_LOCK_ALWAYS);
1991}
1992
1993/*
1994 * Lock a cnode.
1995 * N.B. If you add any failure cases, *make* sure hfs_lock_always works
1996 */
1997int
1998hfs_lock(struct cnode *cp, enum hfs_locktype locktype, enum hfs_lockflags flags)
1999{
2000	thread_t thread = current_thread();
2001
2002	if (cp->c_lockowner == thread) {
2003		/* Only the extents and bitmap files support lock recursion. */
2004		if ((cp->c_fileid == kHFSExtentsFileID) ||
2005		    (cp->c_fileid == kHFSAllocationFileID)) {
2006			cp->c_syslockcount++;
2007		} else {
2008			panic("hfs_lock: locking against myself!");
2009		}
2010	} else if (locktype == HFS_SHARED_LOCK) {
2011		lck_rw_lock_shared(&cp->c_rwlock);
2012		cp->c_lockowner = HFS_SHARED_OWNER;
2013
2014	} else { /* HFS_EXCLUSIVE_LOCK */
2015		lck_rw_lock_exclusive(&cp->c_rwlock);
2016		cp->c_lockowner = thread;
2017
2018		/* Only the extents and bitmap files support lock recursion. */
2019		if ((cp->c_fileid == kHFSExtentsFileID) ||
2020		    (cp->c_fileid == kHFSAllocationFileID)) {
2021			cp->c_syslockcount = 1;
2022		}
2023	}
2024
2025#ifdef HFS_CHECK_LOCK_ORDER
2026	/*
2027	 * Regular cnodes (non-system files) cannot be locked
2028	 * while holding the journal lock or a system file lock.
2029	 */
2030	if (!(cp->c_desc.cd_flags & CD_ISMETA) &&
2031            ((cp->c_fileid > kHFSFirstUserCatalogNodeID) || (cp->c_fileid == kHFSRootFolderID))) {
2032		vnode_t vp = NULLVP;
2033
2034		/* Find corresponding vnode. */
2035		if (cp->c_vp != NULLVP && VTOC(cp->c_vp) == cp) {
2036			vp = cp->c_vp;
2037		} else if (cp->c_rsrc_vp != NULLVP && VTOC(cp->c_rsrc_vp) == cp) {
2038			vp = cp->c_rsrc_vp;
2039		}
2040		if (vp != NULLVP) {
2041			struct hfsmount *hfsmp = VTOHFS(vp);
2042
2043			if (hfsmp->jnl && (journal_owner(hfsmp->jnl) == thread)) {
2044				/* This will eventually be a panic here. */
2045				printf("hfs_lock: bad lock order (cnode after journal)\n");
2046			}
2047			if (hfsmp->hfs_catalog_cp && hfsmp->hfs_catalog_cp->c_lockowner == thread) {
2048				panic("hfs_lock: bad lock order (cnode after catalog)");
2049			}
2050			if (hfsmp->hfs_attribute_cp && hfsmp->hfs_attribute_cp->c_lockowner == thread) {
2051				panic("hfs_lock: bad lock order (cnode after attribute)");
2052			}
2053			if (hfsmp->hfs_extents_cp && hfsmp->hfs_extents_cp->c_lockowner == thread) {
2054				panic("hfs_lock: bad lock order (cnode after extents)");
2055			}
2056		}
2057	}
2058#endif /* HFS_CHECK_LOCK_ORDER */
2059
2060	/*
2061	 * Skip cnodes for regular files that no longer exist
2062	 * (marked deleted, catalog entry gone).
2063	 */
2064	if (((flags & HFS_LOCK_ALLOW_NOEXISTS) == 0) &&
2065	    ((cp->c_desc.cd_flags & CD_ISMETA) == 0) &&
2066	    (cp->c_flag & C_NOEXISTS)) {
2067		hfs_unlock(cp);
2068		return (ENOENT);
2069	}
2070	return (0);
2071}
2072
2073/*
2074 * Lock a pair of cnodes.
2075 */
2076int
2077hfs_lockpair(struct cnode *cp1, struct cnode *cp2, enum hfs_locktype locktype)
2078{
2079	struct cnode *first, *last;
2080	int error;
2081
2082	/*
2083	 * If cnodes match then just lock one.
2084	 */
2085	if (cp1 == cp2) {
2086		return hfs_lock(cp1, locktype, HFS_LOCK_DEFAULT);
2087	}
2088
2089	/*
2090	 * Lock in cnode address order.
2091	 */
2092	if (cp1 < cp2) {
2093		first = cp1;
2094		last = cp2;
2095	} else {
2096		first = cp2;
2097		last = cp1;
2098	}
2099
2100	if ( (error = hfs_lock(first, locktype, HFS_LOCK_DEFAULT))) {
2101		return (error);
2102	}
2103	if ( (error = hfs_lock(last, locktype, HFS_LOCK_DEFAULT))) {
2104		hfs_unlock(first);
2105		return (error);
2106	}
2107	return (0);
2108}
2109
2110/*
2111 * Check ordering of two cnodes. Return true if they are are in-order.
2112 */
2113static int
2114hfs_isordered(struct cnode *cp1, struct cnode *cp2)
2115{
2116	if (cp1 == cp2)
2117		return (0);
2118	if (cp1 == NULL || cp2 == (struct cnode *)0xffffffff)
2119		return (1);
2120	if (cp2 == NULL || cp1 == (struct cnode *)0xffffffff)
2121		return (0);
2122	/*
2123	 * Locking order is cnode address order.
2124	 */
2125	return (cp1 < cp2);
2126}
2127
2128/*
2129 * Acquire 4 cnode locks.
2130 *   - locked in cnode address order (lesser address first).
2131 *   - all or none of the locks are taken
2132 *   - only one lock taken per cnode (dup cnodes are skipped)
2133 *   - some of the cnode pointers may be null
2134 */
2135int
2136hfs_lockfour(struct cnode *cp1, struct cnode *cp2, struct cnode *cp3,
2137             struct cnode *cp4, enum hfs_locktype locktype, struct cnode **error_cnode)
2138{
2139	struct cnode * a[3];
2140	struct cnode * b[3];
2141	struct cnode * list[4];
2142	struct cnode * tmp;
2143	int i, j, k;
2144	int error;
2145	if (error_cnode) {
2146		*error_cnode = NULL;
2147	}
2148
2149	if (hfs_isordered(cp1, cp2)) {
2150		a[0] = cp1; a[1] = cp2;
2151	} else {
2152		a[0] = cp2; a[1] = cp1;
2153	}
2154	if (hfs_isordered(cp3, cp4)) {
2155		b[0] = cp3; b[1] = cp4;
2156	} else {
2157		b[0] = cp4; b[1] = cp3;
2158	}
2159	a[2] = (struct cnode *)0xffffffff;  /* sentinel value */
2160	b[2] = (struct cnode *)0xffffffff;  /* sentinel value */
2161
2162	/*
2163	 * Build the lock list, skipping over duplicates
2164	 */
2165	for (i = 0, j = 0, k = 0; (i < 2 || j < 2); ) {
2166		tmp = hfs_isordered(a[i], b[j]) ? a[i++] : b[j++];
2167		if (k == 0 || tmp != list[k-1])
2168			list[k++] = tmp;
2169	}
2170
2171	/*
2172	 * Now we can lock using list[0 - k].
2173	 * Skip over NULL entries.
2174	 */
2175	for (i = 0; i < k; ++i) {
2176		if (list[i])
2177			if ((error = hfs_lock(list[i], locktype, HFS_LOCK_DEFAULT))) {
2178				/* Only stuff error_cnode if requested */
2179				if (error_cnode) {
2180					*error_cnode = list[i];
2181				}
2182				/* Drop any locks we acquired. */
2183				while (--i >= 0) {
2184					if (list[i])
2185						hfs_unlock(list[i]);
2186				}
2187				return (error);
2188			}
2189	}
2190	return (0);
2191}
2192
2193
2194/*
2195 * Unlock a cnode.
2196 */
2197void
2198hfs_unlock(struct cnode *cp)
2199{
2200	vnode_t rvp = NULLVP;
2201	vnode_t vp = NULLVP;
2202	u_int32_t c_flag;
2203
2204	/*
2205	 * Only the extents and bitmap file's support lock recursion.
2206	 */
2207	if ((cp->c_fileid == kHFSExtentsFileID) ||
2208	    (cp->c_fileid == kHFSAllocationFileID)) {
2209		if (--cp->c_syslockcount > 0) {
2210			return;
2211		}
2212	}
2213
2214	const thread_t thread = current_thread();
2215
2216	if (cp->c_lockowner == thread) {
2217		c_flag = cp->c_flag;
2218
2219		// If we have the truncate lock, we must defer the puts
2220		if (cp->c_truncatelockowner == thread) {
2221			if (ISSET(c_flag, C_NEED_DVNODE_PUT)
2222				&& !cp->c_need_dvnode_put_after_truncate_unlock) {
2223				CLR(c_flag, C_NEED_DVNODE_PUT);
2224				cp->c_need_dvnode_put_after_truncate_unlock = true;
2225			}
2226			if (ISSET(c_flag, C_NEED_RVNODE_PUT)
2227				&& !cp->c_need_rvnode_put_after_truncate_unlock) {
2228				CLR(c_flag, C_NEED_RVNODE_PUT);
2229				cp->c_need_rvnode_put_after_truncate_unlock = true;
2230			}
2231		}
2232
2233		CLR(cp->c_flag, (C_NEED_DATA_SETSIZE | C_NEED_RSRC_SETSIZE
2234						 | C_NEED_DVNODE_PUT | C_NEED_RVNODE_PUT));
2235
2236		if (c_flag & (C_NEED_DVNODE_PUT | C_NEED_DATA_SETSIZE)) {
2237	        vp = cp->c_vp;
2238		}
2239		if (c_flag & (C_NEED_RVNODE_PUT | C_NEED_RSRC_SETSIZE)) {
2240	        rvp = cp->c_rsrc_vp;
2241		}
2242
2243	    cp->c_lockowner = NULL;
2244	    lck_rw_unlock_exclusive(&cp->c_rwlock);
2245	} else {
2246	    lck_rw_unlock_shared(&cp->c_rwlock);
2247	}
2248
2249	/* Perform any vnode post processing after cnode lock is dropped. */
2250	if (vp) {
2251		if (c_flag & C_NEED_DATA_SETSIZE) {
2252			ubc_setsize(vp, VTOF(vp)->ff_size);
2253#if HFS_COMPRESSION
2254			/*
2255			 * If this is a compressed file, we need to reset the
2256			 * compression state.  We will have set the size to zero
2257			 * above and it will get fixed up later (in exactly the
2258			 * same way that new vnodes are fixed up).  Note that we
2259			 * should only be able to get here if the truncate lock is
2260			 * held exclusively and so we do the reset when that's
2261			 * unlocked.
2262			 */
2263			decmpfs_cnode *dp = VTOCMP(vp);
2264			if (dp && decmpfs_cnode_get_vnode_state(dp) != FILE_TYPE_UNKNOWN)
2265				cp->c_need_decmpfs_reset = true;
2266#endif
2267		}
2268		if (c_flag & C_NEED_DVNODE_PUT)
2269			vnode_put(vp);
2270	}
2271	if (rvp) {
2272		if (c_flag & C_NEED_RSRC_SETSIZE)
2273			ubc_setsize(rvp, VTOF(rvp)->ff_size);
2274		if (c_flag & C_NEED_RVNODE_PUT)
2275	        	vnode_put(rvp);
2276	}
2277}
2278
2279/*
2280 * Unlock a pair of cnodes.
2281 */
2282void
2283hfs_unlockpair(struct cnode *cp1, struct cnode *cp2)
2284{
2285	hfs_unlock(cp1);
2286	if (cp2 != cp1)
2287		hfs_unlock(cp2);
2288}
2289
2290/*
2291 * Unlock a group of cnodes.
2292 */
2293void
2294hfs_unlockfour(struct cnode *cp1, struct cnode *cp2, struct cnode *cp3, struct cnode *cp4)
2295{
2296	struct cnode * list[4];
2297	int i, k = 0;
2298
2299	if (cp1) {
2300		hfs_unlock(cp1);
2301		list[k++] = cp1;
2302	}
2303	if (cp2) {
2304		for (i = 0; i < k; ++i) {
2305			if (list[i] == cp2)
2306				goto skip1;
2307		}
2308		hfs_unlock(cp2);
2309		list[k++] = cp2;
2310	}
2311skip1:
2312	if (cp3) {
2313		for (i = 0; i < k; ++i) {
2314			if (list[i] == cp3)
2315				goto skip2;
2316		}
2317		hfs_unlock(cp3);
2318		list[k++] = cp3;
2319	}
2320skip2:
2321	if (cp4) {
2322		for (i = 0; i < k; ++i) {
2323			if (list[i] == cp4)
2324				return;
2325		}
2326		hfs_unlock(cp4);
2327	}
2328}
2329
2330
2331/*
2332 * Protect a cnode against a truncation.
2333 *
2334 * Used mainly by read/write since they don't hold the
2335 * cnode lock across calls to the cluster layer.
2336 *
2337 * The process doing a truncation must take the lock
2338 * exclusive. The read/write processes can take it
2339 * shared.  The locktype argument is the same as supplied to
2340 * hfs_lock.
2341 */
2342void
2343hfs_lock_truncate(struct cnode *cp, enum hfs_locktype locktype, enum hfs_lockflags flags)
2344{
2345	thread_t thread = current_thread();
2346
2347	if (cp->c_truncatelockowner == thread) {
2348		/*
2349		 * Ignore grabbing the lock if it the current thread already
2350		 * holds exclusive lock.
2351		 *
2352		 * This is needed on the hfs_vnop_pagein path where we need to ensure
2353		 * the file does not change sizes while we are paging in.  However,
2354		 * we may already hold the lock exclusive due to another
2355		 * VNOP from earlier in the call stack.  So if we already hold
2356		 * the truncate lock exclusive, allow it to proceed, but ONLY if
2357		 * it's in the recursive case.
2358		 */
2359		if ((flags & HFS_LOCK_SKIP_IF_EXCLUSIVE) == 0) {
2360			panic("hfs_lock_truncate: cnode %p locked!", cp);
2361		}
2362	} else if (locktype == HFS_SHARED_LOCK) {
2363		lck_rw_lock_shared(&cp->c_truncatelock);
2364		cp->c_truncatelockowner = HFS_SHARED_OWNER;
2365	} else { /* HFS_EXCLUSIVE_LOCK */
2366		lck_rw_lock_exclusive(&cp->c_truncatelock);
2367		cp->c_truncatelockowner = thread;
2368	}
2369}
2370
2371
2372/*
2373 * Attempt to get the truncate lock.  If it cannot be acquired, error out.
2374 * This function is needed in the degenerate hfs_vnop_pagein during force unmount
2375 * case.  To prevent deadlocks while a VM copy object is moving pages, HFS vnop pagein will
2376 * temporarily need to disable V2 semantics.
2377 */
2378int hfs_try_trunclock (struct cnode *cp, enum hfs_locktype locktype, enum hfs_lockflags flags)
2379{
2380	thread_t thread = current_thread();
2381	boolean_t didlock = false;
2382
2383	if (cp->c_truncatelockowner == thread) {
2384		/*
2385		 * Ignore grabbing the lock if the current thread already
2386		 * holds exclusive lock.
2387		 *
2388		 * This is needed on the hfs_vnop_pagein path where we need to ensure
2389		 * the file does not change sizes while we are paging in.  However,
2390		 * we may already hold the lock exclusive due to another
2391		 * VNOP from earlier in the call stack.  So if we already hold
2392		 * the truncate lock exclusive, allow it to proceed, but ONLY if
2393		 * it's in the recursive case.
2394		 */
2395		if ((flags & HFS_LOCK_SKIP_IF_EXCLUSIVE) == 0) {
2396			panic("hfs_lock_truncate: cnode %p locked!", cp);
2397		}
2398	} else if (locktype == HFS_SHARED_LOCK) {
2399		didlock = lck_rw_try_lock(&cp->c_truncatelock, LCK_RW_TYPE_SHARED);
2400		if (didlock) {
2401			cp->c_truncatelockowner = HFS_SHARED_OWNER;
2402		}
2403	} else { /* HFS_EXCLUSIVE_LOCK */
2404		didlock = lck_rw_try_lock (&cp->c_truncatelock, LCK_RW_TYPE_EXCLUSIVE);
2405		if (didlock) {
2406			cp->c_truncatelockowner = thread;
2407		}
2408	}
2409
2410	return didlock;
2411}
2412
2413
2414/*
2415 * Unlock the truncate lock, which protects against size changes.
2416 *
2417 * If HFS_LOCK_SKIP_IF_EXCLUSIVE flag was set, it means that a previous
2418 * hfs_lock_truncate() might have skipped grabbing a lock because
2419 * the current thread was already holding the lock exclusive and
2420 * we may need to return from this function without actually unlocking
2421 * the truncate lock.
2422 */
2423void
2424hfs_unlock_truncate(struct cnode *cp, enum hfs_lockflags flags)
2425{
2426	thread_t thread = current_thread();
2427
2428	/*
2429	 * If HFS_LOCK_SKIP_IF_EXCLUSIVE is set in the flags AND the current
2430	 * lock owner of the truncate lock is our current thread, then
2431	 * we must have skipped taking the lock earlier by in
2432	 * hfs_lock_truncate() by setting HFS_LOCK_SKIP_IF_EXCLUSIVE in the
2433	 * flags (as the current thread was current lock owner).
2434	 *
2435	 * If HFS_LOCK_SKIP_IF_EXCLUSIVE is not set (most of the time) then
2436	 * we check the lockowner field to infer whether the lock was taken
2437	 * exclusively or shared in order to know what underlying lock
2438	 * routine to call.
2439	 */
2440	if (flags & HFS_LOCK_SKIP_IF_EXCLUSIVE) {
2441		if (cp->c_truncatelockowner == thread) {
2442			return;
2443		}
2444	}
2445
2446	/* HFS_LOCK_EXCLUSIVE */
2447	if (thread == cp->c_truncatelockowner) {
2448		vnode_t vp = NULL, rvp = NULL;
2449
2450		/*
2451		 * Deal with any pending set sizes.  We need to call
2452		 * ubc_setsize before we drop the exclusive lock.  Ideally,
2453		 * hfs_unlock should be called before hfs_unlock_truncate but
2454		 * that's a lot to ask people to remember :-)
2455		 */
2456		if (cp->c_lockowner == thread
2457			&& ISSET(cp->c_flag, C_NEED_DATA_SETSIZE | C_NEED_RSRC_SETSIZE)) {
2458			// hfs_unlock will do the setsize calls for us
2459			hfs_unlock(cp);
2460			hfs_lock_always(cp, HFS_EXCLUSIVE_LOCK);
2461		}
2462
2463		if (cp->c_need_dvnode_put_after_truncate_unlock) {
2464			vp = cp->c_vp;
2465			cp->c_need_dvnode_put_after_truncate_unlock = false;
2466		}
2467		if (cp->c_need_rvnode_put_after_truncate_unlock) {
2468			rvp = cp->c_rsrc_vp;
2469			cp->c_need_rvnode_put_after_truncate_unlock = false;
2470		}
2471
2472#if HFS_COMPRESSION
2473		bool reset_decmpfs = cp->c_need_decmpfs_reset;
2474		cp->c_need_decmpfs_reset = false;
2475#endif
2476
2477		cp->c_truncatelockowner = NULL;
2478		lck_rw_unlock_exclusive(&cp->c_truncatelock);
2479
2480#if HFS_COMPRESSION
2481		if (reset_decmpfs) {
2482			decmpfs_cnode *dp = cp->c_decmp;
2483			if (dp && decmpfs_cnode_get_vnode_state(dp) != FILE_TYPE_UNKNOWN)
2484				decmpfs_cnode_set_vnode_state(dp, FILE_TYPE_UNKNOWN, 0);
2485		}
2486#endif
2487
2488		// Do the puts now
2489		if (vp)
2490			vnode_put(vp);
2491		if (rvp)
2492			vnode_put(rvp);
2493	} else { /* HFS_LOCK_SHARED */
2494		lck_rw_unlock_shared(&cp->c_truncatelock);
2495	}
2496}
2497