1/*
2 * Copyright (c) 2005-2006 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29
30/*
31 * APPLE NOTE: This file is compiled even if dtrace is unconfig'd. A symbol
32 * from this file (_dtrace_register_anon_DOF) always needs to be exported for
33 * an external kext to link against.
34 */
35
36#if CONFIG_DTRACE
37
38#define MACH__POSIX_C_SOURCE_PRIVATE 1 /* pulls in suitable savearea from mach/ppc/thread_status.h */
39#include <kern/thread.h>
40#include <mach/thread_status.h>
41
42#include <stdarg.h>
43#include <string.h>
44#include <sys/malloc.h>
45#include <sys/time.h>
46#include <sys/proc.h>
47#include <sys/proc_internal.h>
48#include <sys/kauth.h>
49#include <sys/user.h>
50#include <sys/systm.h>
51#include <sys/dtrace.h>
52#include <sys/dtrace_impl.h>
53#include <libkern/OSAtomic.h>
54#include <kern/kern_types.h>
55#include <kern/timer_call.h>
56#include <kern/thread_call.h>
57#include <kern/task.h>
58#include <kern/sched_prim.h>
59#include <kern/queue.h>
60#include <miscfs/devfs/devfs.h>
61#include <kern/kalloc.h>
62
63#include <mach/vm_param.h>
64#include <mach/mach_vm.h>
65#include <mach/task.h>
66#include <vm/pmap.h>
67#include <vm/vm_map.h> /* All the bits we care about are guarded by MACH_KERNEL_PRIVATE :-( */
68
69/* missing prototypes, not exported by Mach */
70extern kern_return_t task_suspend_internal(task_t);
71extern kern_return_t task_resume_internal(task_t);
72
73/*
74 * pid/proc
75 */
76/* Solaris proc_t is the struct. Darwin's proc_t is a pointer to it. */
77#define proc_t struct proc /* Steer clear of the Darwin typedef for proc_t */
78
79/* Not called from probe context */
80proc_t *
81sprlock(pid_t pid)
82{
83	proc_t* p;
84
85	if ((p = proc_find(pid)) == PROC_NULL) {
86		return PROC_NULL;
87	}
88
89	task_suspend_internal(p->task);
90
91	proc_lock(p);
92
93	lck_mtx_lock(&p->p_dtrace_sprlock);
94
95	return p;
96}
97
98/* Not called from probe context */
99void
100sprunlock(proc_t *p)
101{
102	if (p != PROC_NULL) {
103		lck_mtx_unlock(&p->p_dtrace_sprlock);
104
105		proc_unlock(p);
106
107		task_resume_internal(p->task);
108
109		proc_rele(p);
110	}
111}
112
113/*
114 * uread/uwrite
115 */
116
117// These are not exported from vm_map.h.
118extern kern_return_t vm_map_read_user(vm_map_t map, vm_map_address_t src_addr, void *dst_p, vm_size_t size);
119extern kern_return_t vm_map_write_user(vm_map_t map, void *src_p, vm_map_address_t dst_addr, vm_size_t size);
120
121/* Not called from probe context */
122int
123uread(proc_t *p, void *buf, user_size_t len, user_addr_t a)
124{
125	kern_return_t ret;
126
127	ASSERT(p != PROC_NULL);
128	ASSERT(p->task != NULL);
129
130	task_t task = p->task;
131
132	/*
133	 * Grab a reference to the task vm_map_t to make sure
134	 * the map isn't pulled out from under us.
135	 *
136	 * Because the proc_lock is not held at all times on all code
137	 * paths leading here, it is possible for the proc to have
138	 * exited. If the map is null, fail.
139	 */
140	vm_map_t map = get_task_map_reference(task);
141	if (map) {
142		ret = vm_map_read_user( map, (vm_map_address_t)a, buf, (vm_size_t)len);
143		vm_map_deallocate(map);
144	} else
145		ret = KERN_TERMINATED;
146
147	return (int)ret;
148}
149
150
151/* Not called from probe context */
152int
153uwrite(proc_t *p, void *buf, user_size_t len, user_addr_t a)
154{
155	kern_return_t ret;
156
157	ASSERT(p != NULL);
158	ASSERT(p->task != NULL);
159
160	task_t task = p->task;
161
162	/*
163	 * Grab a reference to the task vm_map_t to make sure
164	 * the map isn't pulled out from under us.
165	 *
166	 * Because the proc_lock is not held at all times on all code
167	 * paths leading here, it is possible for the proc to have
168	 * exited. If the map is null, fail.
169	 */
170	vm_map_t map = get_task_map_reference(task);
171	if (map) {
172		/* Find the memory permissions. */
173		uint32_t nestingDepth=999999;
174		vm_region_submap_short_info_data_64_t info;
175		mach_msg_type_number_t count = VM_REGION_SUBMAP_SHORT_INFO_COUNT_64;
176		mach_vm_address_t address = (mach_vm_address_t)a;
177		mach_vm_size_t sizeOfRegion = (mach_vm_size_t)len;
178
179		ret = mach_vm_region_recurse(map, &address, &sizeOfRegion, &nestingDepth, (vm_region_recurse_info_t)&info, &count);
180		if (ret != KERN_SUCCESS)
181			goto done;
182
183		vm_prot_t reprotect;
184
185		if (!(info.protection & VM_PROT_WRITE)) {
186			/* Save the original protection values for restoration later */
187			reprotect = info.protection;
188
189			if (info.max_protection & VM_PROT_WRITE) {
190				/* The memory is not currently writable, but can be made writable. */
191				ret = mach_vm_protect (map, (mach_vm_offset_t)a, (mach_vm_size_t)len, 0, reprotect | VM_PROT_WRITE);
192			} else {
193				/*
194				 * The memory is not currently writable, and cannot be made writable. We need to COW this memory.
195				 *
196				 * Strange, we can't just say "reprotect | VM_PROT_COPY", that fails.
197				 */
198				ret = mach_vm_protect (map, (mach_vm_offset_t)a, (mach_vm_size_t)len, 0, VM_PROT_COPY | VM_PROT_READ | VM_PROT_WRITE);
199			}
200
201			if (ret != KERN_SUCCESS)
202				goto done;
203
204		} else {
205			/* The memory was already writable. */
206			reprotect = VM_PROT_NONE;
207		}
208
209		ret = vm_map_write_user( map,
210					 buf,
211					 (vm_map_address_t)a,
212					 (vm_size_t)len);
213
214		if (ret != KERN_SUCCESS)
215			goto done;
216
217		if (reprotect != VM_PROT_NONE) {
218			ASSERT(reprotect & VM_PROT_EXECUTE);
219			ret = mach_vm_protect (map, (mach_vm_offset_t)a, (mach_vm_size_t)len, 0, reprotect);
220		}
221
222done:
223		vm_map_deallocate(map);
224	} else
225		ret = KERN_TERMINATED;
226
227	return (int)ret;
228}
229
230/*
231 * cpuvar
232 */
233lck_mtx_t cpu_lock;
234lck_mtx_t cyc_lock;
235lck_mtx_t mod_lock;
236
237dtrace_cpu_t *cpu_list;
238cpu_core_t *cpu_core; /* XXX TLB lockdown? */
239
240/*
241 * cred_t
242 */
243
244/*
245 * dtrace_CRED() can be called from probe context. We cannot simply call kauth_cred_get() since
246 * that function may try to resolve a lazy credential binding, which entails taking the proc_lock.
247 */
248cred_t *
249dtrace_CRED(void)
250{
251	struct uthread *uthread = get_bsdthread_info(current_thread());
252
253	if (uthread == NULL)
254		return NULL;
255	else
256		return uthread->uu_ucred; /* May return NOCRED which is defined to be 0 */
257}
258
259#define	HAS_ALLPRIVS(cr)	priv_isfullset(&CR_OEPRIV(cr))
260#define	HAS_PRIVILEGE(cr, pr)	((pr) == PRIV_ALL ? \
261					HAS_ALLPRIVS(cr) : \
262					PRIV_ISASSERT(&CR_OEPRIV(cr), pr))
263
264int PRIV_POLICY_CHOICE(void* cred, int priv, int all)
265{
266#pragma unused(priv, all)
267	return kauth_cred_issuser(cred); /* XXX TODO: How is this different from PRIV_POLICY_ONLY? */
268}
269
270int
271PRIV_POLICY_ONLY(void *cr, int priv, int boolean)
272{
273#pragma unused(priv, boolean)
274	return kauth_cred_issuser(cr); /* XXX TODO: HAS_PRIVILEGE(cr, priv); */
275}
276
277/* XXX Get around const poisoning using structure assigns */
278gid_t
279crgetgid(const cred_t *cr) { cred_t copy_cr = *cr; return kauth_cred_getgid(&copy_cr); }
280
281uid_t
282crgetuid(const cred_t *cr) { cred_t copy_cr = *cr; return kauth_cred_getuid(&copy_cr); }
283
284/*
285 * "cyclic"
286 */
287
288typedef struct wrap_timer_call {
289	/* node attributes */
290	cyc_handler_t		hdlr;
291	cyc_time_t		when;
292	uint64_t		deadline;
293	int			cpuid;
294	boolean_t		suspended;
295	struct timer_call	call;
296
297	/* next item in the linked list */
298	LIST_ENTRY(wrap_timer_call) entries;
299} wrap_timer_call_t;
300
301#define WAKEUP_REAPER		0x7FFFFFFFFFFFFFFFLL
302#define NEARLY_FOREVER		0x7FFFFFFFFFFFFFFELL
303
304/* CPU going online/offline notifications */
305void (*dtrace_cpu_state_changed_hook)(int, boolean_t) = NULL;
306void dtrace_cpu_state_changed(int, boolean_t);
307
308void
309dtrace_install_cpu_hooks(void) {
310	dtrace_cpu_state_changed_hook = dtrace_cpu_state_changed;
311}
312
313void
314dtrace_cpu_state_changed(int cpuid, boolean_t is_running) {
315#pragma unused(cpuid)
316	wrap_timer_call_t	*wrapTC = NULL;
317	boolean_t		suspend = (is_running ? FALSE : TRUE);
318	dtrace_icookie_t	s;
319
320	/* Ensure that we're not going to leave the CPU */
321	s = dtrace_interrupt_disable();
322	assert(cpuid == cpu_number());
323
324	LIST_FOREACH(wrapTC, &(cpu_list[cpu_number()].cpu_cyc_list), entries) {
325		assert(wrapTC->cpuid == cpu_number());
326		if (suspend) {
327			assert(!wrapTC->suspended);
328			/* If this fails, we'll panic anyway, so let's do this now. */
329			if (!timer_call_cancel(&wrapTC->call))
330				panic("timer_call_set_suspend() failed to cancel a timer call");
331			wrapTC->suspended = TRUE;
332		} else {
333			/* Rearm the timer, but ensure it was suspended first. */
334			assert(wrapTC->suspended);
335			clock_deadline_for_periodic_event(wrapTC->when.cyt_interval, mach_absolute_time(),
336			                                  &wrapTC->deadline);
337			timer_call_enter1(&wrapTC->call, (void*) wrapTC, wrapTC->deadline,
338		                          TIMER_CALL_SYS_CRITICAL | TIMER_CALL_LOCAL);
339			wrapTC->suspended = FALSE;
340		}
341
342	}
343
344	/* Restore the previous interrupt state. */
345	dtrace_interrupt_enable(s);
346}
347
348static void
349_timer_call_apply_cyclic( void *ignore, void *vTChdl )
350{
351#pragma unused(ignore)
352	wrap_timer_call_t *wrapTC = (wrap_timer_call_t *)vTChdl;
353
354	(*(wrapTC->hdlr.cyh_func))( wrapTC->hdlr.cyh_arg );
355
356	clock_deadline_for_periodic_event( wrapTC->when.cyt_interval, mach_absolute_time(), &(wrapTC->deadline) );
357	timer_call_enter1( &(wrapTC->call), (void *)wrapTC, wrapTC->deadline, TIMER_CALL_SYS_CRITICAL | TIMER_CALL_LOCAL );
358}
359
360static cyclic_id_t
361timer_call_add_cyclic(wrap_timer_call_t *wrapTC, cyc_handler_t *handler, cyc_time_t *when)
362{
363	uint64_t now;
364	dtrace_icookie_t s;
365
366	timer_call_setup( &(wrapTC->call),  _timer_call_apply_cyclic, NULL );
367	wrapTC->hdlr = *handler;
368	wrapTC->when = *when;
369
370	nanoseconds_to_absolutetime( wrapTC->when.cyt_interval, (uint64_t *)&wrapTC->when.cyt_interval );
371
372	now = mach_absolute_time();
373	wrapTC->deadline = now;
374
375	clock_deadline_for_periodic_event( wrapTC->when.cyt_interval, now, &(wrapTC->deadline) );
376
377	/* Insert the timer to the list of the running timers on this CPU, and start it. */
378	s = dtrace_interrupt_disable();
379		wrapTC->cpuid = cpu_number();
380		LIST_INSERT_HEAD(&cpu_list[wrapTC->cpuid].cpu_cyc_list, wrapTC, entries);
381		timer_call_enter1(&wrapTC->call, (void*) wrapTC, wrapTC->deadline,
382		                  TIMER_CALL_SYS_CRITICAL | TIMER_CALL_LOCAL);
383		wrapTC->suspended = FALSE;
384	dtrace_interrupt_enable(s);
385
386	return (cyclic_id_t)wrapTC;
387}
388
389/*
390 * Executed on the CPU the timer is running on.
391 */
392static void
393timer_call_remove_cyclic(cyclic_id_t cyclic)
394{
395	wrap_timer_call_t *wrapTC = (wrap_timer_call_t *)cyclic;
396
397	assert(wrapTC);
398	assert(cpu_number() == wrapTC->cpuid);
399
400	if (!timer_call_cancel(&wrapTC->call))
401		panic("timer_call_remove_cyclic() failed to cancel a timer call");
402
403	LIST_REMOVE(wrapTC, entries);
404}
405
406static void *
407timer_call_get_cyclic_arg(cyclic_id_t cyclic)
408{
409	wrap_timer_call_t *wrapTC = (wrap_timer_call_t *)cyclic;
410
411	return (wrapTC ? wrapTC->hdlr.cyh_arg : NULL);
412}
413
414cyclic_id_t
415cyclic_timer_add(cyc_handler_t *handler, cyc_time_t *when)
416{
417	wrap_timer_call_t *wrapTC = _MALLOC(sizeof(wrap_timer_call_t), M_TEMP, M_ZERO | M_WAITOK);
418	if (NULL == wrapTC)
419		return CYCLIC_NONE;
420	else
421		return timer_call_add_cyclic( wrapTC, handler, when );
422}
423
424void
425cyclic_timer_remove(cyclic_id_t cyclic)
426{
427	ASSERT( cyclic != CYCLIC_NONE );
428
429	/* Removing a timer call must be done on the CPU the timer is running on. */
430	wrap_timer_call_t *wrapTC = (wrap_timer_call_t *) cyclic;
431	dtrace_xcall(wrapTC->cpuid, (dtrace_xcall_t) timer_call_remove_cyclic, (void*) cyclic);
432
433	_FREE((void *)cyclic, M_TEMP);
434}
435
436static void
437_cyclic_add_omni(cyclic_id_list_t cyc_list)
438{
439	cyc_time_t cT;
440	cyc_handler_t cH;
441	wrap_timer_call_t *wrapTC;
442	cyc_omni_handler_t *omni = (cyc_omni_handler_t *)cyc_list;
443	char *t;
444
445	(omni->cyo_online)(omni->cyo_arg, CPU, &cH, &cT);
446
447	t = (char *)cyc_list;
448	t += sizeof(cyc_omni_handler_t);
449	cyc_list = (cyclic_id_list_t)(uintptr_t)t;
450
451	t += sizeof(cyclic_id_t)*NCPU;
452	t += (sizeof(wrap_timer_call_t))*cpu_number();
453	wrapTC = (wrap_timer_call_t *)(uintptr_t)t;
454
455	cyc_list[cpu_number()] = timer_call_add_cyclic(wrapTC, &cH, &cT);
456}
457
458cyclic_id_list_t
459cyclic_add_omni(cyc_omni_handler_t *omni)
460{
461	cyclic_id_list_t cyc_list =
462		_MALLOC( (sizeof(wrap_timer_call_t))*NCPU +
463				 sizeof(cyclic_id_t)*NCPU +
464				 sizeof(cyc_omni_handler_t), M_TEMP, M_ZERO | M_WAITOK);
465	if (NULL == cyc_list)
466		return (cyclic_id_list_t)CYCLIC_NONE;
467
468	*(cyc_omni_handler_t *)cyc_list = *omni;
469	dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)_cyclic_add_omni, (void *)cyc_list);
470
471	return cyc_list;
472}
473
474static void
475_cyclic_remove_omni(cyclic_id_list_t cyc_list)
476{
477	cyc_omni_handler_t *omni = (cyc_omni_handler_t *)cyc_list;
478	void *oarg;
479	cyclic_id_t cid;
480	char *t;
481
482	t = (char *)cyc_list;
483	t += sizeof(cyc_omni_handler_t);
484	cyc_list = (cyclic_id_list_t)(uintptr_t)t;
485
486	/*
487	 * If the processor was offline when dtrace started, we did not allocate
488	 * a cyclic timer for this CPU.
489	 */
490	if ((cid = cyc_list[cpu_number()]) != CYCLIC_NONE) {
491		oarg = timer_call_get_cyclic_arg(cid);
492		timer_call_remove_cyclic(cid);
493		(omni->cyo_offline)(omni->cyo_arg, CPU, oarg);
494	}
495}
496
497void
498cyclic_remove_omni(cyclic_id_list_t cyc_list)
499{
500	ASSERT( cyc_list != (cyclic_id_list_t)CYCLIC_NONE );
501
502	dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)_cyclic_remove_omni, (void *)cyc_list);
503	_FREE(cyc_list, M_TEMP);
504}
505
506typedef struct wrap_thread_call {
507	thread_call_t TChdl;
508	cyc_handler_t hdlr;
509	cyc_time_t when;
510	uint64_t deadline;
511} wrap_thread_call_t;
512
513/*
514 * _cyclic_apply will run on some thread under kernel_task. That's OK for the
515 * cleaner and the deadman, but too distant in time and place for the profile provider.
516 */
517static void
518_cyclic_apply( void *ignore, void *vTChdl )
519{
520#pragma unused(ignore)
521	wrap_thread_call_t *wrapTC = (wrap_thread_call_t *)vTChdl;
522
523	(*(wrapTC->hdlr.cyh_func))( wrapTC->hdlr.cyh_arg );
524
525	clock_deadline_for_periodic_event( wrapTC->when.cyt_interval, mach_absolute_time(), &(wrapTC->deadline) );
526	(void)thread_call_enter1_delayed( wrapTC->TChdl, (void *)wrapTC, wrapTC->deadline );
527
528	/* Did cyclic_remove request a wakeup call when this thread call was re-armed? */
529	if (wrapTC->when.cyt_interval == WAKEUP_REAPER)
530		thread_wakeup((event_t)wrapTC);
531}
532
533cyclic_id_t
534cyclic_add(cyc_handler_t *handler, cyc_time_t *when)
535{
536	uint64_t now;
537
538	wrap_thread_call_t *wrapTC = _MALLOC(sizeof(wrap_thread_call_t), M_TEMP, M_ZERO | M_WAITOK);
539	if (NULL == wrapTC)
540		return CYCLIC_NONE;
541
542	wrapTC->TChdl = thread_call_allocate( _cyclic_apply, NULL );
543	wrapTC->hdlr = *handler;
544	wrapTC->when = *when;
545
546	ASSERT(when->cyt_when == 0);
547	ASSERT(when->cyt_interval < WAKEUP_REAPER);
548
549	nanoseconds_to_absolutetime(wrapTC->when.cyt_interval, (uint64_t *)&wrapTC->when.cyt_interval);
550
551	now = mach_absolute_time();
552	wrapTC->deadline = now;
553
554	clock_deadline_for_periodic_event( wrapTC->when.cyt_interval, now, &(wrapTC->deadline) );
555	(void)thread_call_enter1_delayed( wrapTC->TChdl, (void *)wrapTC, wrapTC->deadline );
556
557	return (cyclic_id_t)wrapTC;
558}
559
560static void
561noop_cyh_func(void * ignore)
562{
563#pragma unused(ignore)
564}
565
566void
567cyclic_remove(cyclic_id_t cyclic)
568{
569	wrap_thread_call_t *wrapTC = (wrap_thread_call_t *)cyclic;
570
571	ASSERT(cyclic != CYCLIC_NONE);
572
573	while (!thread_call_cancel(wrapTC->TChdl)) {
574		int ret = assert_wait(wrapTC, THREAD_UNINT);
575		ASSERT(ret == THREAD_WAITING);
576
577		wrapTC->when.cyt_interval = WAKEUP_REAPER;
578
579		ret = thread_block(THREAD_CONTINUE_NULL);
580		ASSERT(ret == THREAD_AWAKENED);
581	}
582
583	if (thread_call_free(wrapTC->TChdl))
584		_FREE(wrapTC, M_TEMP);
585	else {
586		/* Gut this cyclic and move on ... */
587		wrapTC->hdlr.cyh_func = noop_cyh_func;
588		wrapTC->when.cyt_interval = NEARLY_FOREVER;
589	}
590}
591
592/*
593 * timeout / untimeout (converted to dtrace_timeout / dtrace_untimeout due to name collision)
594 */
595
596thread_call_t
597dtrace_timeout(void (*func)(void *, void *), void* arg, uint64_t nanos)
598{
599#pragma unused(arg)
600	thread_call_t call = thread_call_allocate(func, NULL);
601
602	nanoseconds_to_absolutetime(nanos, &nanos);
603
604	/*
605	 * This method does not use clock_deadline_for_periodic_event() because it is a one-shot,
606	 * and clock drift on later invocations is not a worry.
607	 */
608	uint64_t deadline = mach_absolute_time() + nanos;
609	/* DRK: consider using a lower priority callout here */
610	thread_call_enter_delayed(call, deadline);
611
612	return call;
613}
614
615/*
616 * ddi
617 */
618void
619ddi_report_dev(dev_info_t *devi)
620{
621#pragma unused(devi)
622}
623
624#define NSOFT_STATES 32 /* XXX No more than 32 clients at a time, please. */
625static void *soft[NSOFT_STATES];
626
627int
628ddi_soft_state_init(void **state_p, size_t size, size_t n_items)
629{
630#pragma unused(n_items)
631	int i;
632
633	for (i = 0; i < NSOFT_STATES; ++i) soft[i] = _MALLOC(size, M_TEMP, M_ZERO | M_WAITOK);
634	*(size_t *)state_p = size;
635	return 0;
636}
637
638int
639ddi_soft_state_zalloc(void *state, int item)
640{
641#pragma unused(state)
642	if (item < NSOFT_STATES)
643		return DDI_SUCCESS;
644	else
645		return DDI_FAILURE;
646}
647
648void *
649ddi_get_soft_state(void *state, int item)
650{
651#pragma unused(state)
652	ASSERT(item < NSOFT_STATES);
653	return soft[item];
654}
655
656int
657ddi_soft_state_free(void *state, int item)
658{
659	ASSERT(item < NSOFT_STATES);
660	bzero( soft[item], (size_t)state );
661	return DDI_SUCCESS;
662}
663
664void
665ddi_soft_state_fini(void **state_p)
666{
667#pragma unused(state_p)
668	int i;
669
670	for (i = 0; i < NSOFT_STATES; ++i) _FREE( soft[i], M_TEMP );
671}
672
673static unsigned int gRegisteredProps = 0;
674static struct {
675	char name[32];		/* enough for "dof-data-" + digits */
676	int *data;
677	uint_t nelements;
678} gPropTable[16];
679
680kern_return_t _dtrace_register_anon_DOF(char *, uchar_t *, uint_t);
681
682kern_return_t
683_dtrace_register_anon_DOF(char *name, uchar_t *data, uint_t nelements)
684{
685	if (gRegisteredProps < sizeof(gPropTable)/sizeof(gPropTable[0])) {
686		int *p = (int *)_MALLOC(nelements*sizeof(int), M_TEMP, M_WAITOK);
687
688		if (NULL == p)
689			return KERN_FAILURE;
690
691		strlcpy(gPropTable[gRegisteredProps].name, name, sizeof(gPropTable[0].name));
692		gPropTable[gRegisteredProps].nelements = nelements;
693		gPropTable[gRegisteredProps].data = p;
694
695		while (nelements-- > 0) {
696			*p++ = (int)(*data++);
697		}
698
699		gRegisteredProps++;
700		return KERN_SUCCESS;
701	}
702	else
703		return KERN_FAILURE;
704}
705
706int
707ddi_prop_lookup_int_array(dev_t match_dev, dev_info_t *dip, uint_t flags,
708    const char *name, int **data, uint_t *nelements)
709{
710#pragma unused(match_dev,dip,flags)
711	unsigned int i;
712	for (i = 0; i < gRegisteredProps; ++i)
713	{
714		if (0 == strncmp(name, gPropTable[i].name,
715					sizeof(gPropTable[i].name))) {
716			*data = gPropTable[i].data;
717			*nelements = gPropTable[i].nelements;
718			return DDI_SUCCESS;
719		}
720	}
721	return DDI_FAILURE;
722}
723
724int
725ddi_prop_free(void *buf)
726{
727	_FREE(buf, M_TEMP);
728	return DDI_SUCCESS;
729}
730
731int
732ddi_driver_major(dev_info_t	*devi) { return (int)major(CAST_DOWN_EXPLICIT(int,devi)); }
733
734int
735ddi_create_minor_node(dev_info_t *dip, const char *name, int spec_type,
736    minor_t minor_num, const char *node_type, int flag)
737{
738#pragma unused(spec_type,node_type,flag)
739	dev_t dev = makedev( ddi_driver_major(dip), minor_num );
740
741	if (NULL == devfs_make_node( dev, DEVFS_CHAR, UID_ROOT, GID_WHEEL, 0666, name, 0 ))
742		return DDI_FAILURE;
743	else
744		return DDI_SUCCESS;
745}
746
747void
748ddi_remove_minor_node(dev_info_t *dip, char *name)
749{
750#pragma unused(dip,name)
751/* XXX called from dtrace_detach, so NOTREACHED for now. */
752}
753
754major_t
755getemajor( dev_t d )
756{
757	return (major_t) major(d);
758}
759
760minor_t
761getminor ( dev_t d )
762{
763	return (minor_t) minor(d);
764}
765
766dev_t
767makedevice(major_t major, minor_t minor)
768{
769	return makedev( major, minor );
770}
771
772int ddi_getprop(dev_t dev, dev_info_t *dip, int flags, const char *name, int defvalue)
773{
774#pragma unused(dev, dip, flags, name)
775
776	return defvalue;
777}
778
779/*
780 * Kernel Debug Interface
781 */
782int
783kdi_dtrace_set(kdi_dtrace_set_t ignore)
784{
785#pragma unused(ignore)
786	return 0; /* Success */
787}
788
789extern void Debugger(const char*);
790
791void
792debug_enter(char *c) { Debugger(c); }
793
794/*
795 * kmem
796 */
797
798void *
799dt_kmem_alloc(size_t size, int kmflag)
800{
801#pragma unused(kmflag)
802
803/*
804 * We ignore the M_NOWAIT bit in kmflag (all of kmflag, in fact).
805 * Requests larger than 8K with M_NOWAIT fail in kalloc_canblock.
806 */
807#if defined(DTRACE_MEMORY_ZONES)
808	return dtrace_alloc(size);
809#else
810	return kalloc(size);
811#endif
812}
813
814void *
815dt_kmem_zalloc(size_t size, int kmflag)
816{
817#pragma unused(kmflag)
818
819/*
820 * We ignore the M_NOWAIT bit in kmflag (all of kmflag, in fact).
821 * Requests larger than 8K with M_NOWAIT fail in kalloc_canblock.
822 */
823#if defined(DTRACE_MEMORY_ZONES)
824	void* buf = dtrace_alloc(size);
825#else
826	void* buf = kalloc(size);
827#endif
828
829	if(!buf)
830		return NULL;
831
832	bzero(buf, size);
833
834	return buf;
835}
836
837void
838dt_kmem_free(void *buf, size_t size)
839{
840#pragma unused(size)
841	/*
842	 * DTrace relies on this, its doing a lot of NULL frees.
843	 * A null free causes the debug builds to panic.
844	 */
845	if (buf == NULL) return;
846
847	ASSERT(size > 0);
848
849#if defined(DTRACE_MEMORY_ZONES)
850	dtrace_free(buf, size);
851#else
852	kfree(buf, size);
853#endif
854}
855
856
857
858/*
859 * aligned kmem allocator
860 * align should be a power of two
861 */
862
863void* dt_kmem_alloc_aligned(size_t size, size_t align, int kmflag)
864{
865	void *mem, **addr_to_free;
866	intptr_t mem_aligned;
867	size_t *size_to_free, hdr_size;
868
869	/* Must be a power of two. */
870	assert(align != 0);
871	assert((align & (align - 1)) == 0);
872
873	/*
874	 * We are going to add a header to the allocation. It contains
875	 * the address to free and the total size of the buffer.
876	 */
877	hdr_size = sizeof(size_t) + sizeof(void*);
878	mem = dt_kmem_alloc(size + align + hdr_size, kmflag);
879	if (mem == NULL)
880		return NULL;
881
882	mem_aligned = (intptr_t) (((intptr_t) mem + align + hdr_size) & ~(align - 1));
883
884	/* Write the address to free in the header. */
885	addr_to_free = (void**) (mem_aligned - sizeof(void*));
886	*addr_to_free = mem;
887
888	/* Write the size to free in the header. */
889	size_to_free = (size_t*) (mem_aligned - hdr_size);
890	*size_to_free = size + align + hdr_size;
891
892	return (void*) mem_aligned;
893}
894
895void* dt_kmem_zalloc_aligned(size_t size, size_t align, int kmflag)
896{
897	void* buf;
898
899	buf = dt_kmem_alloc_aligned(size, align, kmflag);
900
901	if(!buf)
902		return NULL;
903
904	bzero(buf, size);
905
906	return buf;
907}
908
909void dt_kmem_free_aligned(void* buf, size_t size)
910{
911#pragma unused(size)
912	intptr_t ptr = (intptr_t) buf;
913	void **addr_to_free = (void**) (ptr - sizeof(void*));
914	size_t *size_to_free = (size_t*) (ptr - (sizeof(size_t) + sizeof(void*)));
915
916	if (buf == NULL)
917		return;
918
919	dt_kmem_free(*addr_to_free, *size_to_free);
920}
921
922/*
923 * dtrace wants to manage just a single block: dtrace_state_percpu_t * NCPU, and
924 * doesn't specify constructor, destructor, or reclaim methods.
925 * At present, it always zeroes the block it obtains from kmem_cache_alloc().
926 * We'll manage this constricted use of kmem_cache with ordinary _MALLOC and _FREE.
927 */
928kmem_cache_t *
929kmem_cache_create(
930    const char *name,		/* descriptive name for this cache */
931    size_t bufsize,		/* size of the objects it manages */
932    size_t align,		/* required object alignment */
933    int (*constructor)(void *, void *, int), /* object constructor */
934    void (*destructor)(void *, void *),	/* object destructor */
935    void (*reclaim)(void *), /* memory reclaim callback */
936    void *private,		/* pass-thru arg for constr/destr/reclaim */
937    vmem_t *vmp,		/* vmem source for slab allocation */
938    int cflags)		/* cache creation flags */
939{
940#pragma unused(name,align,constructor,destructor,reclaim,private,vmp,cflags)
941	return (kmem_cache_t *)bufsize; /* A cookie that tracks the single object size. */
942}
943
944void *
945kmem_cache_alloc(kmem_cache_t *cp, int kmflag)
946{
947#pragma unused(kmflag)
948	size_t bufsize = (size_t)cp;
949	return (void *)_MALLOC(bufsize, M_TEMP, M_WAITOK);
950}
951
952void
953kmem_cache_free(kmem_cache_t *cp, void *buf)
954{
955#pragma unused(cp)
956	_FREE(buf, M_TEMP);
957}
958
959void
960kmem_cache_destroy(kmem_cache_t *cp)
961{
962#pragma unused(cp)
963}
964
965/*
966 * taskq
967 */
968extern void thread_call_setup(thread_call_t, thread_call_func_t, thread_call_param_t); /* XXX MACH_KERNEL_PRIVATE */
969
970static void
971_taskq_apply( task_func_t func, thread_call_param_t arg )
972{
973	func( (void *)arg );
974}
975
976taskq_t *
977taskq_create(const char *name, int nthreads, pri_t pri, int minalloc,
978    int maxalloc, uint_t flags)
979{
980#pragma unused(name,nthreads,pri,minalloc,maxalloc,flags)
981
982	return (taskq_t *)thread_call_allocate( (thread_call_func_t)_taskq_apply, NULL );
983}
984
985taskqid_t
986taskq_dispatch(taskq_t *tq, task_func_t func, void *arg, uint_t flags)
987{
988#pragma unused(flags)
989	thread_call_setup( (thread_call_t) tq, (thread_call_func_t)_taskq_apply, (thread_call_param_t)func );
990	thread_call_enter1( (thread_call_t) tq, (thread_call_param_t)arg );
991	return (taskqid_t) tq /* for lack of anything better */;
992}
993
994void
995taskq_destroy(taskq_t *tq)
996{
997	thread_call_cancel( (thread_call_t) tq );
998	thread_call_free( (thread_call_t) tq );
999}
1000
1001pri_t maxclsyspri;
1002
1003/*
1004 * vmem (Solaris "slab" allocator) used by DTrace solely to hand out resource ids
1005 */
1006typedef unsigned int u_daddr_t;
1007#include "blist.h"
1008
1009/* By passing around blist *handles*, the underlying blist can be resized as needed. */
1010struct blist_hdl {
1011	blist_t blist;
1012};
1013
1014vmem_t *
1015vmem_create(const char *name, void *base, size_t size, size_t quantum, void *ignore5,
1016					void *ignore6, vmem_t *source, size_t qcache_max, int vmflag)
1017{
1018#pragma unused(name,quantum,ignore5,ignore6,source,qcache_max,vmflag)
1019	blist_t bl;
1020	struct blist_hdl *p = _MALLOC(sizeof(struct blist_hdl), M_TEMP, M_WAITOK);
1021
1022	ASSERT(quantum == 1);
1023	ASSERT(NULL == ignore5);
1024	ASSERT(NULL == ignore6);
1025	ASSERT(NULL == source);
1026	ASSERT(0 == qcache_max);
1027	ASSERT(vmflag & VMC_IDENTIFIER);
1028
1029	size = MIN(128, size); /* Clamp to 128 initially, since the underlying data structure is pre-allocated */
1030
1031	p->blist = bl = blist_create( size );
1032	blist_free(bl, 0, size);
1033	if (base) blist_alloc( bl, (daddr_t)(uintptr_t)base ); /* Chomp off initial ID(s) */
1034
1035	return (vmem_t *)p;
1036}
1037
1038void *
1039vmem_alloc(vmem_t *vmp, size_t size, int vmflag)
1040{
1041#pragma unused(vmflag)
1042	struct blist_hdl *q = (struct blist_hdl *)vmp;
1043	blist_t bl = q->blist;
1044	daddr_t p;
1045
1046	p = blist_alloc(bl, (daddr_t)size);
1047
1048	if ((daddr_t)-1 == p) {
1049		blist_resize(&bl, (bl->bl_blocks) << 1, 1);
1050		q->blist = bl;
1051		p = blist_alloc(bl, (daddr_t)size);
1052		if ((daddr_t)-1 == p)
1053			panic("vmem_alloc: failure after blist_resize!");
1054	}
1055
1056	return (void *)(uintptr_t)p;
1057}
1058
1059void
1060vmem_free(vmem_t *vmp, void *vaddr, size_t size)
1061{
1062	struct blist_hdl *p = (struct blist_hdl *)vmp;
1063
1064	blist_free( p->blist, (daddr_t)(uintptr_t)vaddr, (daddr_t)size );
1065}
1066
1067void
1068vmem_destroy(vmem_t *vmp)
1069{
1070	struct blist_hdl *p = (struct blist_hdl *)vmp;
1071
1072	blist_destroy( p->blist );
1073	_FREE( p, sizeof(struct blist_hdl) );
1074}
1075
1076/*
1077 * Timing
1078 */
1079
1080/*
1081 * dtrace_gethrestime() provides the "walltimestamp", a value that is anchored at
1082 * January 1, 1970. Because it can be called from probe context, it must take no locks.
1083 */
1084
1085hrtime_t
1086dtrace_gethrestime(void)
1087{
1088	clock_sec_t		secs;
1089	clock_nsec_t	nanosecs;
1090	uint64_t		secs64, ns64;
1091
1092	clock_get_calendar_nanotime_nowait(&secs, &nanosecs);
1093	secs64 = (uint64_t)secs;
1094	ns64 = (uint64_t)nanosecs;
1095
1096	ns64 = ns64 + (secs64 * 1000000000LL);
1097	return ns64;
1098}
1099
1100/*
1101 * dtrace_gethrtime() provides high-resolution timestamps with machine-dependent origin.
1102 * Hence its primary use is to specify intervals.
1103 */
1104
1105hrtime_t
1106dtrace_abs_to_nano(uint64_t elapsed)
1107{
1108	static mach_timebase_info_data_t    sTimebaseInfo = { 0, 0 };
1109
1110	/*
1111	 * If this is the first time we've run, get the timebase.
1112	 * We can use denom == 0 to indicate that sTimebaseInfo is
1113	 * uninitialised because it makes no sense to have a zero
1114	 * denominator in a fraction.
1115	 */
1116
1117	if ( sTimebaseInfo.denom == 0 ) {
1118		(void) clock_timebase_info(&sTimebaseInfo);
1119	}
1120
1121	/*
1122	 * Convert to nanoseconds.
1123	 * return (elapsed * (uint64_t)sTimebaseInfo.numer)/(uint64_t)sTimebaseInfo.denom;
1124	 *
1125	 * Provided the final result is representable in 64 bits the following maneuver will
1126	 * deliver that result without intermediate overflow.
1127	 */
1128	if (sTimebaseInfo.denom == sTimebaseInfo.numer)
1129		return elapsed;
1130	else if (sTimebaseInfo.denom == 1)
1131		return elapsed * (uint64_t)sTimebaseInfo.numer;
1132	else {
1133		/* Decompose elapsed = eta32 * 2^32 + eps32: */
1134		uint64_t eta32 = elapsed >> 32;
1135		uint64_t eps32 = elapsed & 0x00000000ffffffffLL;
1136
1137		uint32_t numer = sTimebaseInfo.numer, denom = sTimebaseInfo.denom;
1138
1139		/* Form product of elapsed64 (decomposed) and numer: */
1140		uint64_t mu64 = numer * eta32;
1141		uint64_t lambda64 = numer * eps32;
1142
1143		/* Divide the constituents by denom: */
1144		uint64_t q32 = mu64/denom;
1145		uint64_t r32 = mu64 - (q32 * denom); /* mu64 % denom */
1146
1147		return (q32 << 32) + ((r32 << 32) + lambda64)/denom;
1148	}
1149}
1150
1151hrtime_t
1152dtrace_gethrtime(void)
1153{
1154    static uint64_t        start = 0;
1155
1156	if (start == 0)
1157		start = mach_absolute_time();
1158
1159    return dtrace_abs_to_nano(mach_absolute_time() - start);
1160}
1161
1162/*
1163 * Atomicity and synchronization
1164 */
1165uint32_t
1166dtrace_cas32(uint32_t *target, uint32_t cmp, uint32_t new)
1167{
1168    if (OSCompareAndSwap( (UInt32)cmp, (UInt32)new, (volatile UInt32 *)target ))
1169		return cmp;
1170	else
1171		return ~cmp; /* Must return something *other* than cmp */
1172}
1173
1174void *
1175dtrace_casptr(void *target, void *cmp, void *new)
1176{
1177	if (OSCompareAndSwapPtr( cmp, new, (void**)target ))
1178		return cmp;
1179	else
1180		return (void *)(~(uintptr_t)cmp); /* Must return something *other* than cmp */
1181}
1182
1183/*
1184 * Interrupt manipulation
1185 */
1186dtrace_icookie_t
1187dtrace_interrupt_disable(void)
1188{
1189	return (dtrace_icookie_t)ml_set_interrupts_enabled(FALSE);
1190}
1191
1192void
1193dtrace_interrupt_enable(dtrace_icookie_t reenable)
1194{
1195	(void)ml_set_interrupts_enabled((boolean_t)reenable);
1196}
1197
1198/*
1199 * MP coordination
1200 */
1201static void
1202dtrace_sync_func(void) {}
1203
1204/*
1205 * dtrace_sync() is not called from probe context.
1206 */
1207void
1208dtrace_sync(void)
1209{
1210	dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)dtrace_sync_func, NULL);
1211}
1212
1213/*
1214 * The dtrace_copyin/out/instr and dtrace_fuword* routines can be called from probe context.
1215 */
1216
1217extern kern_return_t dtrace_copyio_preflight(addr64_t);
1218extern kern_return_t dtrace_copyio_postflight(addr64_t);
1219
1220static int
1221dtrace_copycheck(user_addr_t uaddr, uintptr_t kaddr, size_t size)
1222{
1223#pragma unused(kaddr)
1224
1225	vm_offset_t recover = dtrace_set_thread_recover( current_thread(), 0 ); /* Snare any extant recovery point. */
1226	dtrace_set_thread_recover( current_thread(), recover ); /* Put it back. We *must not* re-enter and overwrite. */
1227
1228	ASSERT(kaddr + size >= kaddr);
1229
1230	if (	uaddr + size < uaddr ||		/* Avoid address wrap. */
1231		KERN_FAILURE == dtrace_copyio_preflight(uaddr)) /* Machine specific setup/constraints. */
1232	{
1233		DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1234		cpu_core[CPU->cpu_id].cpuc_dtrace_illval = uaddr;
1235		return (0);
1236	}
1237	return (1);
1238}
1239
1240void
1241dtrace_copyin(user_addr_t src, uintptr_t dst, size_t len, volatile uint16_t *flags)
1242{
1243#pragma unused(flags)
1244
1245	if (dtrace_copycheck( src, dst, len )) {
1246		if (copyin((const user_addr_t)src, (char *)dst, (vm_size_t)len)) {
1247			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1248			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = src;
1249		}
1250		dtrace_copyio_postflight(src);
1251	}
1252}
1253
1254void
1255dtrace_copyinstr(user_addr_t src, uintptr_t dst, size_t len, volatile uint16_t *flags)
1256{
1257#pragma unused(flags)
1258
1259	size_t actual;
1260
1261	if (dtrace_copycheck( src, dst, len )) {
1262		/*  copyin as many as 'len' bytes. */
1263		int error = copyinstr((const user_addr_t)src, (char *)dst, (vm_size_t)len, &actual);
1264
1265		/*
1266		 * ENAMETOOLONG is returned when 'len' bytes have been copied in but the NUL terminator was
1267		 * not encountered. That does not require raising CPU_DTRACE_BADADDR, and we press on.
1268		 * Note that we do *not* stuff a NUL terminator when returning ENAMETOOLONG, that's left
1269		 * to the caller.
1270		 */
1271		if (error && error != ENAMETOOLONG) {
1272			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1273			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = src;
1274		}
1275		dtrace_copyio_postflight(src);
1276	}
1277}
1278
1279void
1280dtrace_copyout(uintptr_t src, user_addr_t dst, size_t len, volatile uint16_t *flags)
1281{
1282#pragma unused(flags)
1283
1284	if (dtrace_copycheck( dst, src, len )) {
1285		if (copyout((const void *)src, dst, (vm_size_t)len)) {
1286			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1287			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = dst;
1288		}
1289		dtrace_copyio_postflight(dst);
1290	}
1291}
1292
1293void
1294dtrace_copyoutstr(uintptr_t src, user_addr_t dst, size_t len, volatile uint16_t *flags)
1295{
1296#pragma unused(flags)
1297
1298	size_t actual;
1299
1300	if (dtrace_copycheck( dst, src, len )) {
1301
1302		/*
1303		 * ENAMETOOLONG is returned when 'len' bytes have been copied out but the NUL terminator was
1304		 * not encountered. We raise CPU_DTRACE_BADADDR in that case.
1305		 * Note that we do *not* stuff a NUL terminator when returning ENAMETOOLONG, that's left
1306		 * to the caller.
1307		 */
1308		if (copyoutstr((const void *)src, dst, (size_t)len, &actual)) {
1309			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1310			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = dst;
1311		}
1312		dtrace_copyio_postflight(dst);
1313	}
1314}
1315
1316uint8_t
1317dtrace_fuword8(user_addr_t uaddr)
1318{
1319	uint8_t ret = 0;
1320
1321	DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
1322	if (dtrace_copycheck( uaddr, (uintptr_t)&ret, sizeof(ret))) {
1323		if (copyin((const user_addr_t)uaddr, (char *)&ret, sizeof(ret))) {
1324			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1325			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = uaddr;
1326		}
1327		dtrace_copyio_postflight(uaddr);
1328	}
1329	DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
1330
1331	return(ret);
1332}
1333
1334uint16_t
1335dtrace_fuword16(user_addr_t uaddr)
1336{
1337	uint16_t ret = 0;
1338
1339	DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
1340	if (dtrace_copycheck( uaddr, (uintptr_t)&ret, sizeof(ret))) {
1341		if (copyin((const user_addr_t)uaddr, (char *)&ret, sizeof(ret))) {
1342			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1343			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = uaddr;
1344		}
1345		dtrace_copyio_postflight(uaddr);
1346	}
1347	DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
1348
1349	return(ret);
1350}
1351
1352uint32_t
1353dtrace_fuword32(user_addr_t uaddr)
1354{
1355	uint32_t ret = 0;
1356
1357	DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
1358	if (dtrace_copycheck( uaddr, (uintptr_t)&ret, sizeof(ret))) {
1359		if (copyin((const user_addr_t)uaddr, (char *)&ret, sizeof(ret))) {
1360			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1361			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = uaddr;
1362		}
1363		dtrace_copyio_postflight(uaddr);
1364	}
1365	DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
1366
1367	return(ret);
1368}
1369
1370uint64_t
1371dtrace_fuword64(user_addr_t uaddr)
1372{
1373	uint64_t ret = 0;
1374
1375	DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
1376	if (dtrace_copycheck( uaddr, (uintptr_t)&ret, sizeof(ret))) {
1377		if (copyin((const user_addr_t)uaddr, (char *)&ret, sizeof(ret))) {
1378			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1379			cpu_core[CPU->cpu_id].cpuc_dtrace_illval = uaddr;
1380		}
1381		dtrace_copyio_postflight(uaddr);
1382	}
1383	DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
1384
1385	return(ret);
1386}
1387
1388/*
1389 * Emulation of Solaris fuword / suword
1390 * Called from the fasttrap provider, so the use of copyin/out requires fewer safegaurds.
1391 */
1392
1393int
1394fuword8(user_addr_t uaddr, uint8_t *value)
1395{
1396	if (copyin((const user_addr_t)uaddr, (char *)value, sizeof(uint8_t)) != 0) {
1397		return -1;
1398	}
1399
1400	return 0;
1401}
1402
1403int
1404fuword16(user_addr_t uaddr, uint16_t *value)
1405{
1406	if (copyin((const user_addr_t)uaddr, (char *)value, sizeof(uint16_t)) != 0) {
1407		return -1;
1408	}
1409
1410	return 0;
1411}
1412
1413int
1414fuword32(user_addr_t uaddr, uint32_t *value)
1415{
1416	if (copyin((const user_addr_t)uaddr, (char *)value, sizeof(uint32_t)) != 0) {
1417		return -1;
1418	}
1419
1420	return 0;
1421}
1422
1423int
1424fuword64(user_addr_t uaddr, uint64_t *value)
1425{
1426	if (copyin((const user_addr_t)uaddr, (char *)value, sizeof(uint64_t)) != 0) {
1427		return -1;
1428	}
1429
1430	return 0;
1431}
1432
1433void
1434fuword8_noerr(user_addr_t uaddr, uint8_t *value)
1435{
1436	if (copyin((const user_addr_t)uaddr, (char *)value, sizeof(uint8_t))) {
1437		*value = 0;
1438	}
1439}
1440
1441void
1442fuword16_noerr(user_addr_t uaddr, uint16_t *value)
1443{
1444	if (copyin((const user_addr_t)uaddr, (char *)value, sizeof(uint16_t))) {
1445		*value = 0;
1446	}
1447}
1448
1449void
1450fuword32_noerr(user_addr_t uaddr, uint32_t *value)
1451{
1452	if (copyin((const user_addr_t)uaddr, (char *)value, sizeof(uint32_t))) {
1453		*value = 0;
1454	}
1455}
1456
1457void
1458fuword64_noerr(user_addr_t uaddr, uint64_t *value)
1459{
1460	if (copyin((const user_addr_t)uaddr, (char *)value, sizeof(uint64_t))) {
1461		*value = 0;
1462	}
1463}
1464
1465int
1466suword64(user_addr_t addr, uint64_t value)
1467{
1468	if (copyout((const void *)&value, addr, sizeof(value)) != 0) {
1469		return -1;
1470	}
1471
1472	return 0;
1473}
1474
1475int
1476suword32(user_addr_t addr, uint32_t value)
1477{
1478	if (copyout((const void *)&value, addr, sizeof(value)) != 0) {
1479		return -1;
1480	}
1481
1482	return 0;
1483}
1484
1485int
1486suword16(user_addr_t addr, uint16_t value)
1487{
1488	if (copyout((const void *)&value, addr, sizeof(value)) != 0) {
1489		return -1;
1490	}
1491
1492	return 0;
1493}
1494
1495int
1496suword8(user_addr_t addr, uint8_t value)
1497{
1498	if (copyout((const void *)&value, addr, sizeof(value)) != 0) {
1499		return -1;
1500	}
1501
1502	return 0;
1503}
1504
1505
1506/*
1507 * Miscellaneous
1508 */
1509extern boolean_t dtrace_tally_fault(user_addr_t);
1510
1511boolean_t
1512dtrace_tally_fault(user_addr_t uaddr)
1513{
1514	DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1515	cpu_core[CPU->cpu_id].cpuc_dtrace_illval = uaddr;
1516	return( DTRACE_CPUFLAG_ISSET(CPU_DTRACE_NOFAULT) ? TRUE : FALSE );
1517}
1518
1519#define TOTTY   0x02
1520extern int prf(const char *, va_list, int, struct tty *); /* bsd/kern/subr_prf.h */
1521
1522int
1523vuprintf(const char *format, va_list ap)
1524{
1525	return prf(format, ap, TOTTY, NULL);
1526}
1527
1528/* Not called from probe context */
1529void cmn_err( int level, const char *format, ... )
1530{
1531#pragma unused(level)
1532	va_list alist;
1533
1534	va_start(alist, format);
1535	vuprintf(format, alist);
1536	va_end(alist);
1537	uprintf("\n");
1538}
1539
1540/*
1541 * History:
1542 *  2002-01-24 	gvdl	Initial implementation of strstr
1543 */
1544
1545__private_extern__ const char *
1546strstr(const char *in, const char *str)
1547{
1548    char c;
1549    size_t len;
1550
1551    c = *str++;
1552    if (!c)
1553        return (const char *) in;	// Trivial empty string case
1554
1555    len = strlen(str);
1556    do {
1557        char sc;
1558
1559        do {
1560            sc = *in++;
1561            if (!sc)
1562                return (char *) 0;
1563        } while (sc != c);
1564    } while (strncmp(in, str, len) != 0);
1565
1566    return (const char *) (in - 1);
1567}
1568
1569/*
1570 * Runtime and ABI
1571 */
1572uintptr_t
1573dtrace_caller(int ignore)
1574{
1575#pragma unused(ignore)
1576	return -1; /* Just as in Solaris dtrace_asm.s */
1577}
1578
1579int
1580dtrace_getstackdepth(int aframes)
1581{
1582	struct frame *fp = (struct frame *)__builtin_frame_address(0);
1583	struct frame *nextfp, *minfp, *stacktop;
1584	int depth = 0;
1585	int on_intr;
1586
1587	if ((on_intr = CPU_ON_INTR(CPU)) != 0)
1588		stacktop = (struct frame *)dtrace_get_cpu_int_stack_top();
1589	else
1590		stacktop = (struct frame *)(dtrace_get_kernel_stack(current_thread()) + kernel_stack_size);
1591
1592	minfp = fp;
1593
1594	aframes++;
1595
1596	for (;;) {
1597		depth++;
1598
1599		nextfp = *(struct frame **)fp;
1600
1601		if (nextfp <= minfp || nextfp >= stacktop) {
1602			if (on_intr) {
1603				/*
1604				 * Hop from interrupt stack to thread stack.
1605				 */
1606                                vm_offset_t kstack_base = dtrace_get_kernel_stack(current_thread());
1607
1608                                minfp = (struct frame *)kstack_base;
1609                                stacktop = (struct frame *)(kstack_base + kernel_stack_size);
1610
1611				on_intr = 0;
1612				continue;
1613			}
1614			break;
1615		}
1616
1617		fp = nextfp;
1618		minfp = fp;
1619	}
1620
1621	if (depth <= aframes)
1622		return (0);
1623
1624	return (depth - aframes);
1625}
1626
1627/*
1628 * Unconsidered
1629 */
1630void
1631dtrace_vtime_enable(void) {}
1632
1633void
1634dtrace_vtime_disable(void) {}
1635
1636#else /* else ! CONFIG_DTRACE */
1637
1638#include <sys/types.h>
1639#include <mach/vm_types.h>
1640#include <mach/kmod.h>
1641
1642/*
1643 * This exists to prevent build errors when dtrace is unconfigured.
1644 */
1645
1646kern_return_t _dtrace_register_anon_DOF(char *, unsigned char *, uint32_t);
1647
1648kern_return_t _dtrace_register_anon_DOF(char *arg1, unsigned char *arg2, uint32_t arg3) {
1649#pragma unused(arg1, arg2, arg3)
1650
1651        return KERN_FAILURE;
1652}
1653
1654#endif /* CONFIG_DTRACE */
1655