1/* $Id: tif_pixarlog.c 276 2010-06-30 12:18:30Z nijtmans $ */
2
3/*
4 * Copyright (c) 1996-1997 Sam Leffler
5 * Copyright (c) 1996 Pixar
6 *
7 * Permission to use, copy, modify, distribute, and sell this software and
8 * its documentation for any purpose is hereby granted without fee, provided
9 * that (i) the above copyright notices and this permission notice appear in
10 * all copies of the software and related documentation, and (ii) the names of
11 * Pixar, Sam Leffler and Silicon Graphics may not be used in any advertising or
12 * publicity relating to the software without the specific, prior written
13 * permission of Pixar, Sam Leffler and Silicon Graphics.
14 *
15 * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
16 * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
17 * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
18 *
19 * IN NO EVENT SHALL PIXAR, SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR
20 * ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND,
21 * OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
22 * WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
23 * LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
24 * OF THIS SOFTWARE.
25 */
26
27#include "tiffiop.h"
28#ifdef PIXARLOG_SUPPORT
29
30/*
31 * TIFF Library.
32 * PixarLog Compression Support
33 *
34 * Contributed by Dan McCoy.
35 *
36 * PixarLog film support uses the TIFF library to store companded
37 * 11 bit values into a tiff file, which are compressed using the
38 * zip compressor.
39 *
40 * The codec can take as input and produce as output 32-bit IEEE float values
41 * as well as 16-bit or 8-bit unsigned integer values.
42 *
43 * On writing any of the above are converted into the internal
44 * 11-bit log format.   In the case of  8 and 16 bit values, the
45 * input is assumed to be unsigned linear color values that represent
46 * the range 0-1.  In the case of IEEE values, the 0-1 range is assumed to
47 * be the normal linear color range, in addition over 1 values are
48 * accepted up to a value of about 25.0 to encode "hot" hightlights and such.
49 * The encoding is lossless for 8-bit values, slightly lossy for the
50 * other bit depths.  The actual color precision should be better
51 * than the human eye can perceive with extra room to allow for
52 * error introduced by further image computation.  As with any quantized
53 * color format, it is possible to perform image calculations which
54 * expose the quantization error. This format should certainly be less
55 * susceptable to such errors than standard 8-bit encodings, but more
56 * susceptable than straight 16-bit or 32-bit encodings.
57 *
58 * On reading the internal format is converted to the desired output format.
59 * The program can request which format it desires by setting the internal
60 * pseudo tag TIFFTAG_PIXARLOGDATAFMT to one of these possible values:
61 *  PIXARLOGDATAFMT_FLOAT     = provide IEEE float values.
62 *  PIXARLOGDATAFMT_16BIT     = provide unsigned 16-bit integer values
63 *  PIXARLOGDATAFMT_8BIT      = provide unsigned 8-bit integer values
64 *
65 * alternately PIXARLOGDATAFMT_8BITABGR provides unsigned 8-bit integer
66 * values with the difference that if there are exactly three or four channels
67 * (rgb or rgba) it swaps the channel order (bgr or abgr).
68 *
69 * PIXARLOGDATAFMT_11BITLOG provides the internal encoding directly
70 * packed in 16-bit values.   However no tools are supplied for interpreting
71 * these values.
72 *
73 * "hot" (over 1.0) areas written in floating point get clamped to
74 * 1.0 in the integer data types.
75 *
76 * When the file is closed after writing, the bit depth and sample format
77 * are set always to appear as if 8-bit data has been written into it.
78 * That way a naive program unaware of the particulars of the encoding
79 * gets the format it is most likely able to handle.
80 *
81 * The codec does it's own horizontal differencing step on the coded
82 * values so the libraries predictor stuff should be turned off.
83 * The codec also handle byte swapping the encoded values as necessary
84 * since the library does not have the information necessary
85 * to know the bit depth of the raw unencoded buffer.
86 *
87 */
88
89#include "tif_predict.h"
90#include "zlib.h"
91
92#include <stdio.h>
93#include <stdlib.h>
94#include <math.h>
95
96/* Tables for converting to/from 11 bit coded values */
97
98#define  TSIZE	 2048		/* decode table size (11-bit tokens) */
99#define  TSIZEP1 2049		/* Plus one for slop */
100#define  ONE	 1250		/* token value of 1.0 exactly */
101#define  RATIO	 1.004		/* nominal ratio for log part */
102
103#define CODE_MASK 0x7ff         /* 11 bits. */
104
105static float  Fltsize;
106static float  LogK1, LogK2;
107
108#define REPEAT(n, op)   { int i; i=n; do { i--; op; } while (i>0); }
109
110static void
111horizontalAccumulateF(uint16 *wp, int n, int stride, float *op,
112	float *ToLinearF)
113{
114    register unsigned int  cr, cg, cb, ca, mask;
115    register float  t0, t1, t2, t3;
116
117    if (n >= stride) {
118	mask = CODE_MASK;
119	if (stride == 3) {
120	    t0 = ToLinearF[cr = wp[0]];
121	    t1 = ToLinearF[cg = wp[1]];
122	    t2 = ToLinearF[cb = wp[2]];
123	    op[0] = t0;
124	    op[1] = t1;
125	    op[2] = t2;
126	    n -= 3;
127	    while (n > 0) {
128		wp += 3;
129		op += 3;
130		n -= 3;
131		t0 = ToLinearF[(cr += wp[0]) & mask];
132		t1 = ToLinearF[(cg += wp[1]) & mask];
133		t2 = ToLinearF[(cb += wp[2]) & mask];
134		op[0] = t0;
135		op[1] = t1;
136		op[2] = t2;
137	    }
138	} else if (stride == 4) {
139	    t0 = ToLinearF[cr = wp[0]];
140	    t1 = ToLinearF[cg = wp[1]];
141	    t2 = ToLinearF[cb = wp[2]];
142	    t3 = ToLinearF[ca = wp[3]];
143	    op[0] = t0;
144	    op[1] = t1;
145	    op[2] = t2;
146	    op[3] = t3;
147	    n -= 4;
148	    while (n > 0) {
149		wp += 4;
150		op += 4;
151		n -= 4;
152		t0 = ToLinearF[(cr += wp[0]) & mask];
153		t1 = ToLinearF[(cg += wp[1]) & mask];
154		t2 = ToLinearF[(cb += wp[2]) & mask];
155		t3 = ToLinearF[(ca += wp[3]) & mask];
156		op[0] = t0;
157		op[1] = t1;
158		op[2] = t2;
159		op[3] = t3;
160	    }
161	} else {
162	    REPEAT(stride, *op = ToLinearF[*wp&mask]; wp++; op++)
163	    n -= stride;
164	    while (n > 0) {
165		REPEAT(stride,
166		    wp[stride] += *wp; *op = ToLinearF[*wp&mask]; wp++; op++)
167		n -= stride;
168	    }
169	}
170    }
171}
172
173static void
174horizontalAccumulate12(uint16 *wp, int n, int stride, int16 *op,
175	float *ToLinearF)
176{
177    register unsigned int  cr, cg, cb, ca, mask;
178    register float  t0, t1, t2, t3;
179
180#define SCALE12 2048.0F
181#define CLAMP12(t) (((t) < 3071) ? (uint16) (t) : 3071)
182
183    if (n >= stride) {
184	mask = CODE_MASK;
185	if (stride == 3) {
186	    t0 = ToLinearF[cr = wp[0]] * SCALE12;
187	    t1 = ToLinearF[cg = wp[1]] * SCALE12;
188	    t2 = ToLinearF[cb = wp[2]] * SCALE12;
189	    op[0] = CLAMP12(t0);
190	    op[1] = CLAMP12(t1);
191	    op[2] = CLAMP12(t2);
192	    n -= 3;
193	    while (n > 0) {
194		wp += 3;
195		op += 3;
196		n -= 3;
197		t0 = ToLinearF[(cr += wp[0]) & mask] * SCALE12;
198		t1 = ToLinearF[(cg += wp[1]) & mask] * SCALE12;
199		t2 = ToLinearF[(cb += wp[2]) & mask] * SCALE12;
200		op[0] = CLAMP12(t0);
201		op[1] = CLAMP12(t1);
202		op[2] = CLAMP12(t2);
203	    }
204	} else if (stride == 4) {
205	    t0 = ToLinearF[cr = wp[0]] * SCALE12;
206	    t1 = ToLinearF[cg = wp[1]] * SCALE12;
207	    t2 = ToLinearF[cb = wp[2]] * SCALE12;
208	    t3 = ToLinearF[ca = wp[3]] * SCALE12;
209	    op[0] = CLAMP12(t0);
210	    op[1] = CLAMP12(t1);
211	    op[2] = CLAMP12(t2);
212	    op[3] = CLAMP12(t3);
213	    n -= 4;
214	    while (n > 0) {
215		wp += 4;
216		op += 4;
217		n -= 4;
218		t0 = ToLinearF[(cr += wp[0]) & mask] * SCALE12;
219		t1 = ToLinearF[(cg += wp[1]) & mask] * SCALE12;
220		t2 = ToLinearF[(cb += wp[2]) & mask] * SCALE12;
221		t3 = ToLinearF[(ca += wp[3]) & mask] * SCALE12;
222		op[0] = CLAMP12(t0);
223		op[1] = CLAMP12(t1);
224		op[2] = CLAMP12(t2);
225		op[3] = CLAMP12(t3);
226	    }
227	} else {
228	    REPEAT(stride, t0 = ToLinearF[*wp&mask] * SCALE12;
229                           *op = CLAMP12(t0); wp++; op++)
230	    n -= stride;
231	    while (n > 0) {
232		REPEAT(stride,
233		    wp[stride] += *wp; t0 = ToLinearF[wp[stride]&mask]*SCALE12;
234		    *op = CLAMP12(t0);  wp++; op++)
235		n -= stride;
236	    }
237	}
238    }
239}
240
241static void
242horizontalAccumulate16(uint16 *wp, int n, int stride, uint16 *op,
243	uint16 *ToLinear16)
244{
245    register unsigned int  cr, cg, cb, ca, mask;
246
247    if (n >= stride) {
248	mask = CODE_MASK;
249	if (stride == 3) {
250	    op[0] = ToLinear16[cr = wp[0]];
251	    op[1] = ToLinear16[cg = wp[1]];
252	    op[2] = ToLinear16[cb = wp[2]];
253	    n -= 3;
254	    while (n > 0) {
255		wp += 3;
256		op += 3;
257		n -= 3;
258		op[0] = ToLinear16[(cr += wp[0]) & mask];
259		op[1] = ToLinear16[(cg += wp[1]) & mask];
260		op[2] = ToLinear16[(cb += wp[2]) & mask];
261	    }
262	} else if (stride == 4) {
263	    op[0] = ToLinear16[cr = wp[0]];
264	    op[1] = ToLinear16[cg = wp[1]];
265	    op[2] = ToLinear16[cb = wp[2]];
266	    op[3] = ToLinear16[ca = wp[3]];
267	    n -= 4;
268	    while (n > 0) {
269		wp += 4;
270		op += 4;
271		n -= 4;
272		op[0] = ToLinear16[(cr += wp[0]) & mask];
273		op[1] = ToLinear16[(cg += wp[1]) & mask];
274		op[2] = ToLinear16[(cb += wp[2]) & mask];
275		op[3] = ToLinear16[(ca += wp[3]) & mask];
276	    }
277	} else {
278	    REPEAT(stride, *op = ToLinear16[*wp&mask]; wp++; op++)
279	    n -= stride;
280	    while (n > 0) {
281		REPEAT(stride,
282		    wp[stride] += *wp; *op = ToLinear16[*wp&mask]; wp++; op++)
283		n -= stride;
284	    }
285	}
286    }
287}
288
289/*
290 * Returns the log encoded 11-bit values with the horizontal
291 * differencing undone.
292 */
293static void
294horizontalAccumulate11(uint16 *wp, int n, int stride, uint16 *op)
295{
296    register unsigned int  cr, cg, cb, ca, mask;
297
298    if (n >= stride) {
299	mask = CODE_MASK;
300	if (stride == 3) {
301	    op[0] = cr = wp[0];  op[1] = cg = wp[1];  op[2] = cb = wp[2];
302	    n -= 3;
303	    while (n > 0) {
304		wp += 3;
305		op += 3;
306		n -= 3;
307		op[0] = (cr += wp[0]) & mask;
308		op[1] = (cg += wp[1]) & mask;
309		op[2] = (cb += wp[2]) & mask;
310	    }
311	} else if (stride == 4) {
312	    op[0] = cr = wp[0];  op[1] = cg = wp[1];
313	    op[2] = cb = wp[2];  op[3] = ca = wp[3];
314	    n -= 4;
315	    while (n > 0) {
316		wp += 4;
317		op += 4;
318		n -= 4;
319		op[0] = (cr += wp[0]) & mask;
320		op[1] = (cg += wp[1]) & mask;
321		op[2] = (cb += wp[2]) & mask;
322		op[3] = (ca += wp[3]) & mask;
323	    }
324	} else {
325	    REPEAT(stride, *op = *wp&mask; wp++; op++)
326	    n -= stride;
327	    while (n > 0) {
328		REPEAT(stride,
329		    wp[stride] += *wp; *op = *wp&mask; wp++; op++)
330		n -= stride;
331	    }
332	}
333    }
334}
335
336static void
337horizontalAccumulate8(uint16 *wp, int n, int stride, unsigned char *op,
338	unsigned char *ToLinear8)
339{
340    register unsigned int  cr, cg, cb, ca, mask;
341
342    if (n >= stride) {
343	mask = CODE_MASK;
344	if (stride == 3) {
345	    op[0] = ToLinear8[cr = wp[0]];
346	    op[1] = ToLinear8[cg = wp[1]];
347	    op[2] = ToLinear8[cb = wp[2]];
348	    n -= 3;
349	    while (n > 0) {
350		n -= 3;
351		wp += 3;
352		op += 3;
353		op[0] = ToLinear8[(cr += wp[0]) & mask];
354		op[1] = ToLinear8[(cg += wp[1]) & mask];
355		op[2] = ToLinear8[(cb += wp[2]) & mask];
356	    }
357	} else if (stride == 4) {
358	    op[0] = ToLinear8[cr = wp[0]];
359	    op[1] = ToLinear8[cg = wp[1]];
360	    op[2] = ToLinear8[cb = wp[2]];
361	    op[3] = ToLinear8[ca = wp[3]];
362	    n -= 4;
363	    while (n > 0) {
364		n -= 4;
365		wp += 4;
366		op += 4;
367		op[0] = ToLinear8[(cr += wp[0]) & mask];
368		op[1] = ToLinear8[(cg += wp[1]) & mask];
369		op[2] = ToLinear8[(cb += wp[2]) & mask];
370		op[3] = ToLinear8[(ca += wp[3]) & mask];
371	    }
372	} else {
373	    REPEAT(stride, *op = ToLinear8[*wp&mask]; wp++; op++)
374	    n -= stride;
375	    while (n > 0) {
376		REPEAT(stride,
377		    wp[stride] += *wp; *op = ToLinear8[*wp&mask]; wp++; op++)
378		n -= stride;
379	    }
380	}
381    }
382}
383
384
385static void
386horizontalAccumulate8abgr(uint16 *wp, int n, int stride, unsigned char *op,
387	unsigned char *ToLinear8)
388{
389    register unsigned int  cr, cg, cb, ca, mask;
390    register unsigned char  t0, t1, t2, t3;
391
392    if (n >= stride) {
393	mask = CODE_MASK;
394	if (stride == 3) {
395	    op[0] = 0;
396	    t1 = ToLinear8[cb = wp[2]];
397	    t2 = ToLinear8[cg = wp[1]];
398	    t3 = ToLinear8[cr = wp[0]];
399	    op[1] = t1;
400	    op[2] = t2;
401	    op[3] = t3;
402	    n -= 3;
403	    while (n > 0) {
404		n -= 3;
405		wp += 3;
406		op += 4;
407		op[0] = 0;
408		t1 = ToLinear8[(cb += wp[2]) & mask];
409		t2 = ToLinear8[(cg += wp[1]) & mask];
410		t3 = ToLinear8[(cr += wp[0]) & mask];
411		op[1] = t1;
412		op[2] = t2;
413		op[3] = t3;
414	    }
415	} else if (stride == 4) {
416	    t0 = ToLinear8[ca = wp[3]];
417	    t1 = ToLinear8[cb = wp[2]];
418	    t2 = ToLinear8[cg = wp[1]];
419	    t3 = ToLinear8[cr = wp[0]];
420	    op[0] = t0;
421	    op[1] = t1;
422	    op[2] = t2;
423	    op[3] = t3;
424	    n -= 4;
425	    while (n > 0) {
426		n -= 4;
427		wp += 4;
428		op += 4;
429		t0 = ToLinear8[(ca += wp[3]) & mask];
430		t1 = ToLinear8[(cb += wp[2]) & mask];
431		t2 = ToLinear8[(cg += wp[1]) & mask];
432		t3 = ToLinear8[(cr += wp[0]) & mask];
433		op[0] = t0;
434		op[1] = t1;
435		op[2] = t2;
436		op[3] = t3;
437	    }
438	} else {
439	    REPEAT(stride, *op = ToLinear8[*wp&mask]; wp++; op++)
440	    n -= stride;
441	    while (n > 0) {
442		REPEAT(stride,
443		    wp[stride] += *wp; *op = ToLinear8[*wp&mask]; wp++; op++)
444		n -= stride;
445	    }
446	}
447    }
448}
449
450/*
451 * State block for each open TIFF
452 * file using PixarLog compression/decompression.
453 */
454typedef	struct {
455	TIFFPredictorState	predict;
456	z_stream		stream;
457	uint16			*tbuf;
458	uint16			stride;
459	int			state;
460	int			user_datafmt;
461	int			quality;
462#define PLSTATE_INIT 1
463
464	TIFFVSetMethod		vgetparent;	/* super-class method */
465	TIFFVSetMethod		vsetparent;	/* super-class method */
466
467	float *ToLinearF;
468	uint16 *ToLinear16;
469	unsigned char *ToLinear8;
470	uint16  *FromLT2;
471	uint16  *From14; /* Really for 16-bit data, but we shift down 2 */
472	uint16  *From8;
473
474} PixarLogState;
475
476static int
477PixarLogMakeTables(PixarLogState *sp)
478{
479
480/*
481 *    We make several tables here to convert between various external
482 *    representations (float, 16-bit, and 8-bit) and the internal
483 *    11-bit companded representation.  The 11-bit representation has two
484 *    distinct regions.  A linear bottom end up through .018316 in steps
485 *    of about .000073, and a region of constant ratio up to about 25.
486 *    These floating point numbers are stored in the main table ToLinearF.
487 *    All other tables are derived from this one.  The tables (and the
488 *    ratios) are continuous at the internal seam.
489 */
490
491    int  nlin, lt2size;
492    int  i, j;
493    double  b, c, linstep, v;
494    float *ToLinearF;
495    uint16 *ToLinear16;
496    unsigned char *ToLinear8;
497    uint16  *FromLT2;
498    uint16  *From14; /* Really for 16-bit data, but we shift down 2 */
499    uint16  *From8;
500
501    c = log(RATIO);
502    nlin = (int)(1./c);	/* nlin must be an integer */
503    c = 1./nlin;
504    b = exp(-c*ONE);	/* multiplicative scale factor [b*exp(c*ONE) = 1] */
505    linstep = b*c*exp(1.);
506
507    LogK1 = (float)(1./c);	/* if (v >= 2)  token = k1*log(v*k2) */
508    LogK2 = (float)(1./b);
509    lt2size = (int)(2./linstep) + 1;
510    FromLT2 = (uint16 *)_TIFFmalloc(lt2size*sizeof(uint16));
511    From14 = (uint16 *)_TIFFmalloc(16384*sizeof(uint16));
512    From8 = (uint16 *)_TIFFmalloc(256*sizeof(uint16));
513    ToLinearF = (float *)_TIFFmalloc(TSIZEP1 * sizeof(float));
514    ToLinear16 = (uint16 *)_TIFFmalloc(TSIZEP1 * sizeof(uint16));
515    ToLinear8 = (unsigned char *)_TIFFmalloc(TSIZEP1 * sizeof(unsigned char));
516    if (FromLT2 == NULL || From14  == NULL || From8   == NULL ||
517	 ToLinearF == NULL || ToLinear16 == NULL || ToLinear8 == NULL) {
518	if (FromLT2) _TIFFfree(FromLT2);
519	if (From14) _TIFFfree(From14);
520	if (From8) _TIFFfree(From8);
521	if (ToLinearF) _TIFFfree(ToLinearF);
522	if (ToLinear16) _TIFFfree(ToLinear16);
523	if (ToLinear8) _TIFFfree(ToLinear8);
524	sp->FromLT2 = NULL;
525	sp->From14 = NULL;
526	sp->From8 = NULL;
527	sp->ToLinearF = NULL;
528	sp->ToLinear16 = NULL;
529	sp->ToLinear8 = NULL;
530	return 0;
531    }
532
533    j = 0;
534
535    for (i = 0; i < nlin; i++)  {
536	v = i * linstep;
537	ToLinearF[j++] = (float)v;
538    }
539
540    for (i = nlin; i < TSIZE; i++)
541	ToLinearF[j++] = (float)(b*exp(c*i));
542
543    ToLinearF[2048] = ToLinearF[2047];
544
545    for (i = 0; i < TSIZEP1; i++)  {
546	v = ToLinearF[i]*65535.0 + 0.5;
547	ToLinear16[i] = (v > 65535.0) ? 65535 : (uint16)v;
548	v = ToLinearF[i]*255.0  + 0.5;
549	ToLinear8[i]  = (v > 255.0) ? 255 : (unsigned char)v;
550    }
551
552    j = 0;
553    for (i = 0; i < lt2size; i++)  {
554	if ((i*linstep)*(i*linstep) > ToLinearF[j]*ToLinearF[j+1])
555	    j++;
556	FromLT2[i] = j;
557    }
558
559    /*
560     * Since we lose info anyway on 16-bit data, we set up a 14-bit
561     * table and shift 16-bit values down two bits on input.
562     * saves a little table space.
563     */
564    j = 0;
565    for (i = 0; i < 16384; i++)  {
566	while ((i/16383.)*(i/16383.) > ToLinearF[j]*ToLinearF[j+1])
567	    j++;
568	From14[i] = j;
569    }
570
571    j = 0;
572    for (i = 0; i < 256; i++)  {
573	while ((i/255.)*(i/255.) > ToLinearF[j]*ToLinearF[j+1])
574	    j++;
575	From8[i] = j;
576    }
577
578    Fltsize = (float)(lt2size/2);
579
580    sp->ToLinearF = ToLinearF;
581    sp->ToLinear16 = ToLinear16;
582    sp->ToLinear8 = ToLinear8;
583    sp->FromLT2 = FromLT2;
584    sp->From14 = From14;
585    sp->From8 = From8;
586
587    return 1;
588}
589
590#define	DecoderState(tif)	((PixarLogState*) (tif)->tif_data)
591#define	EncoderState(tif)	((PixarLogState*) (tif)->tif_data)
592
593static	int PixarLogEncode(TIFF*, tidata_t, tsize_t, tsample_t);
594static	int PixarLogDecode(TIFF*, tidata_t, tsize_t, tsample_t);
595
596#define PIXARLOGDATAFMT_UNKNOWN	-1
597
598static int
599PixarLogGuessDataFmt(TIFFDirectory *td)
600{
601	int guess = PIXARLOGDATAFMT_UNKNOWN;
602	int format = td->td_sampleformat;
603
604	/* If the user didn't tell us his datafmt,
605	 * take our best guess from the bitspersample.
606	 */
607	switch (td->td_bitspersample) {
608	 case 32:
609		if (format == SAMPLEFORMAT_IEEEFP)
610			guess = PIXARLOGDATAFMT_FLOAT;
611		break;
612	 case 16:
613		if (format == SAMPLEFORMAT_VOID || format == SAMPLEFORMAT_UINT)
614			guess = PIXARLOGDATAFMT_16BIT;
615		break;
616	 case 12:
617		if (format == SAMPLEFORMAT_VOID || format == SAMPLEFORMAT_INT)
618			guess = PIXARLOGDATAFMT_12BITPICIO;
619		break;
620	 case 11:
621		if (format == SAMPLEFORMAT_VOID || format == SAMPLEFORMAT_UINT)
622			guess = PIXARLOGDATAFMT_11BITLOG;
623		break;
624	 case 8:
625		if (format == SAMPLEFORMAT_VOID || format == SAMPLEFORMAT_UINT)
626			guess = PIXARLOGDATAFMT_8BIT;
627		break;
628	}
629
630	return guess;
631}
632
633static uint32
634multiply(size_t m1, size_t m2)
635{
636	uint32	bytes = m1 * m2;
637
638	if (m1 && bytes / m1 != m2)
639		bytes = 0;
640
641	return bytes;
642}
643
644static int
645PixarLogSetupDecode(TIFF* tif)
646{
647	TIFFDirectory *td = &tif->tif_dir;
648	PixarLogState* sp = DecoderState(tif);
649	tsize_t tbuf_size;
650	static const char module[] = "PixarLogSetupDecode";
651
652	assert(sp != NULL);
653
654	/* Make sure no byte swapping happens on the data
655	 * after decompression. */
656	tif->tif_postdecode = _TIFFNoPostDecode;
657
658	/* for some reason, we can't do this in TIFFInitPixarLog */
659
660	sp->stride = (td->td_planarconfig == PLANARCONFIG_CONTIG ?
661	    td->td_samplesperpixel : 1);
662	tbuf_size = multiply(multiply(multiply(sp->stride, td->td_imagewidth),
663				      td->td_rowsperstrip), sizeof(uint16));
664	if (tbuf_size == 0)
665		return (0);
666	sp->tbuf = (uint16 *) _TIFFmalloc(tbuf_size);
667	if (sp->tbuf == NULL)
668		return (0);
669	if (sp->user_datafmt == PIXARLOGDATAFMT_UNKNOWN)
670		sp->user_datafmt = PixarLogGuessDataFmt(td);
671	if (sp->user_datafmt == PIXARLOGDATAFMT_UNKNOWN) {
672		TIFFErrorExt(tif->tif_clientdata, module,
673			"PixarLog compression can't handle bits depth/data format combination (depth: %d)",
674			td->td_bitspersample);
675		return (0);
676	}
677
678	if (inflateInit(&sp->stream) != Z_OK) {
679		TIFFErrorExt(tif->tif_clientdata, module, "%s: %s", tif->tif_name, sp->stream.msg);
680		return (0);
681	} else {
682		sp->state |= PLSTATE_INIT;
683		return (1);
684	}
685}
686
687/*
688 * Setup state for decoding a strip.
689 */
690static int
691PixarLogPreDecode(TIFF* tif, tsample_t s)
692{
693	PixarLogState* sp = DecoderState(tif);
694
695	(void) s;
696	assert(sp != NULL);
697	sp->stream.next_in = tif->tif_rawdata;
698	sp->stream.avail_in = tif->tif_rawcc;
699	return (inflateReset(&sp->stream) == Z_OK);
700}
701
702static int
703PixarLogDecode(TIFF* tif, tidata_t op, tsize_t occ, tsample_t s)
704{
705	TIFFDirectory *td = &tif->tif_dir;
706	PixarLogState* sp = DecoderState(tif);
707	static const char module[] = "PixarLogDecode";
708	int i, nsamples, llen;
709	uint16 *up;
710
711	switch (sp->user_datafmt) {
712	case PIXARLOGDATAFMT_FLOAT:
713		nsamples = occ / sizeof(float);	/* XXX float == 32 bits */
714		break;
715	case PIXARLOGDATAFMT_16BIT:
716	case PIXARLOGDATAFMT_12BITPICIO:
717	case PIXARLOGDATAFMT_11BITLOG:
718		nsamples = occ / sizeof(uint16); /* XXX uint16 == 16 bits */
719		break;
720	case PIXARLOGDATAFMT_8BIT:
721	case PIXARLOGDATAFMT_8BITABGR:
722		nsamples = occ;
723		break;
724	default:
725		TIFFErrorExt(tif->tif_clientdata, tif->tif_name,
726			"%d bit input not supported in PixarLog",
727			td->td_bitspersample);
728		return 0;
729	}
730
731	llen = sp->stride * td->td_imagewidth;
732
733	(void) s;
734	assert(sp != NULL);
735	sp->stream.next_out = (unsigned char *) sp->tbuf;
736	sp->stream.avail_out = nsamples * sizeof(uint16);
737	do {
738		int state = inflate(&sp->stream, Z_PARTIAL_FLUSH);
739		if (state == Z_STREAM_END) {
740			break;			/* XXX */
741		}
742		if (state == Z_DATA_ERROR) {
743			TIFFErrorExt(tif->tif_clientdata, module,
744			    "%s: Decoding error at scanline %d, %s",
745			    tif->tif_name, tif->tif_row, sp->stream.msg);
746			if (inflateSync(&sp->stream) != Z_OK)
747				return (0);
748			continue;
749		}
750		if (state != Z_OK) {
751			TIFFErrorExt(tif->tif_clientdata, module, "%s: zlib error: %s",
752			    tif->tif_name, sp->stream.msg);
753			return (0);
754		}
755	} while (sp->stream.avail_out > 0);
756
757	/* hopefully, we got all the bytes we needed */
758	if (sp->stream.avail_out != 0) {
759		TIFFErrorExt(tif->tif_clientdata, module,
760		    "%s: Not enough data at scanline %d (short %d bytes)",
761		    tif->tif_name, tif->tif_row, sp->stream.avail_out);
762		return (0);
763	}
764
765	up = sp->tbuf;
766	/* Swap bytes in the data if from a different endian machine. */
767	if (tif->tif_flags & TIFF_SWAB)
768		TIFFSwabArrayOfShort(up, nsamples);
769
770	/*
771	 * if llen is not an exact multiple of nsamples, the decode operation
772	 * may overflow the output buffer, so truncate it enough to prevent
773	 * that but still salvage as much data as possible.
774	 */
775	if (nsamples % llen) {
776		TIFFWarningExt(tif->tif_clientdata, module,
777			"%s: stride %d is not a multiple of sample count, "
778			"%d, data truncated.", tif->tif_name, llen, nsamples);
779		nsamples -= nsamples % llen;
780	}
781
782	for (i = 0; i < nsamples; i += llen, up += llen) {
783		switch (sp->user_datafmt)  {
784		case PIXARLOGDATAFMT_FLOAT:
785			horizontalAccumulateF(up, llen, sp->stride,
786					(float *)op, sp->ToLinearF);
787			op += llen * sizeof(float);
788			break;
789		case PIXARLOGDATAFMT_16BIT:
790			horizontalAccumulate16(up, llen, sp->stride,
791					(uint16 *)op, sp->ToLinear16);
792			op += llen * sizeof(uint16);
793			break;
794		case PIXARLOGDATAFMT_12BITPICIO:
795			horizontalAccumulate12(up, llen, sp->stride,
796					(int16 *)op, sp->ToLinearF);
797			op += llen * sizeof(int16);
798			break;
799		case PIXARLOGDATAFMT_11BITLOG:
800			horizontalAccumulate11(up, llen, sp->stride,
801					(uint16 *)op);
802			op += llen * sizeof(uint16);
803			break;
804		case PIXARLOGDATAFMT_8BIT:
805			horizontalAccumulate8(up, llen, sp->stride,
806					(unsigned char *)op, sp->ToLinear8);
807			op += llen * sizeof(unsigned char);
808			break;
809		case PIXARLOGDATAFMT_8BITABGR:
810			horizontalAccumulate8abgr(up, llen, sp->stride,
811					(unsigned char *)op, sp->ToLinear8);
812			op += llen * sizeof(unsigned char);
813			break;
814		default:
815			TIFFErrorExt(tif->tif_clientdata, tif->tif_name,
816				  "PixarLogDecode: unsupported bits/sample: %d",
817				  td->td_bitspersample);
818			return (0);
819		}
820	}
821
822	return (1);
823}
824
825static int
826PixarLogSetupEncode(TIFF* tif)
827{
828	TIFFDirectory *td = &tif->tif_dir;
829	PixarLogState* sp = EncoderState(tif);
830	tsize_t tbuf_size;
831	static const char module[] = "PixarLogSetupEncode";
832
833	assert(sp != NULL);
834
835	/* for some reason, we can't do this in TIFFInitPixarLog */
836
837	sp->stride = (td->td_planarconfig == PLANARCONFIG_CONTIG ?
838	    td->td_samplesperpixel : 1);
839	tbuf_size = multiply(multiply(multiply(sp->stride, td->td_imagewidth),
840				      td->td_rowsperstrip), sizeof(uint16));
841	if (tbuf_size == 0)
842		return (0);
843	sp->tbuf = (uint16 *) _TIFFmalloc(tbuf_size);
844	if (sp->tbuf == NULL)
845		return (0);
846	if (sp->user_datafmt == PIXARLOGDATAFMT_UNKNOWN)
847		sp->user_datafmt = PixarLogGuessDataFmt(td);
848	if (sp->user_datafmt == PIXARLOGDATAFMT_UNKNOWN) {
849		TIFFErrorExt(tif->tif_clientdata, module, "PixarLog compression can't handle %d bit linear encodings", td->td_bitspersample);
850		return (0);
851	}
852
853	if (deflateInit(&sp->stream, sp->quality) != Z_OK) {
854		TIFFErrorExt(tif->tif_clientdata, module, "%s: %s", tif->tif_name, sp->stream.msg);
855		return (0);
856	} else {
857		sp->state |= PLSTATE_INIT;
858		return (1);
859	}
860}
861
862/*
863 * Reset encoding state at the start of a strip.
864 */
865static int
866PixarLogPreEncode(TIFF* tif, tsample_t s)
867{
868	PixarLogState *sp = EncoderState(tif);
869
870	(void) s;
871	assert(sp != NULL);
872	sp->stream.next_out = tif->tif_rawdata;
873	sp->stream.avail_out = tif->tif_rawdatasize;
874	return (deflateReset(&sp->stream) == Z_OK);
875}
876
877static void
878horizontalDifferenceF(float *ip, int n, int stride, uint16 *wp, uint16 *FromLT2)
879{
880
881    int32 r1, g1, b1, a1, r2, g2, b2, a2, mask;
882    float fltsize = Fltsize;
883
884#define  CLAMP(v) ( (v<(float)0.)   ? 0				\
885		  : (v<(float)2.)   ? FromLT2[(int)(v*fltsize)]	\
886		  : (v>(float)24.2) ? 2047			\
887		  : LogK1*log(v*LogK2) + 0.5 )
888
889    mask = CODE_MASK;
890    if (n >= stride) {
891	if (stride == 3) {
892	    r2 = wp[0] = (uint16) CLAMP(ip[0]);
893	    g2 = wp[1] = (uint16) CLAMP(ip[1]);
894	    b2 = wp[2] = (uint16) CLAMP(ip[2]);
895	    n -= 3;
896	    while (n > 0) {
897		n -= 3;
898		wp += 3;
899		ip += 3;
900		r1 = (int32) CLAMP(ip[0]); wp[0] = (r1-r2) & mask; r2 = r1;
901		g1 = (int32) CLAMP(ip[1]); wp[1] = (g1-g2) & mask; g2 = g1;
902		b1 = (int32) CLAMP(ip[2]); wp[2] = (b1-b2) & mask; b2 = b1;
903	    }
904	} else if (stride == 4) {
905	    r2 = wp[0] = (uint16) CLAMP(ip[0]);
906	    g2 = wp[1] = (uint16) CLAMP(ip[1]);
907	    b2 = wp[2] = (uint16) CLAMP(ip[2]);
908	    a2 = wp[3] = (uint16) CLAMP(ip[3]);
909	    n -= 4;
910	    while (n > 0) {
911		n -= 4;
912		wp += 4;
913		ip += 4;
914		r1 = (int32) CLAMP(ip[0]); wp[0] = (r1-r2) & mask; r2 = r1;
915		g1 = (int32) CLAMP(ip[1]); wp[1] = (g1-g2) & mask; g2 = g1;
916		b1 = (int32) CLAMP(ip[2]); wp[2] = (b1-b2) & mask; b2 = b1;
917		a1 = (int32) CLAMP(ip[3]); wp[3] = (a1-a2) & mask; a2 = a1;
918	    }
919	} else {
920	    ip += n - 1;	/* point to last one */
921	    wp += n - 1;	/* point to last one */
922	    n -= stride;
923	    while (n > 0) {
924		REPEAT(stride, wp[0] = (uint16) CLAMP(ip[0]);
925				wp[stride] -= wp[0];
926				wp[stride] &= mask;
927				wp--; ip--)
928		n -= stride;
929	    }
930	    REPEAT(stride, wp[0] = (uint16) CLAMP(ip[0]); wp--; ip--)
931	}
932    }
933}
934
935static void
936horizontalDifference16(unsigned short *ip, int n, int stride,
937	unsigned short *wp, uint16 *From14)
938{
939    register int  r1, g1, b1, a1, r2, g2, b2, a2, mask;
940
941/* assumption is unsigned pixel values */
942#undef   CLAMP
943#define  CLAMP(v) From14[(v) >> 2]
944
945    mask = CODE_MASK;
946    if (n >= stride) {
947	if (stride == 3) {
948	    r2 = wp[0] = CLAMP(ip[0]);  g2 = wp[1] = CLAMP(ip[1]);
949	    b2 = wp[2] = CLAMP(ip[2]);
950	    n -= 3;
951	    while (n > 0) {
952		n -= 3;
953		wp += 3;
954		ip += 3;
955		r1 = CLAMP(ip[0]); wp[0] = (r1-r2) & mask; r2 = r1;
956		g1 = CLAMP(ip[1]); wp[1] = (g1-g2) & mask; g2 = g1;
957		b1 = CLAMP(ip[2]); wp[2] = (b1-b2) & mask; b2 = b1;
958	    }
959	} else if (stride == 4) {
960	    r2 = wp[0] = CLAMP(ip[0]);  g2 = wp[1] = CLAMP(ip[1]);
961	    b2 = wp[2] = CLAMP(ip[2]);  a2 = wp[3] = CLAMP(ip[3]);
962	    n -= 4;
963	    while (n > 0) {
964		n -= 4;
965		wp += 4;
966		ip += 4;
967		r1 = CLAMP(ip[0]); wp[0] = (r1-r2) & mask; r2 = r1;
968		g1 = CLAMP(ip[1]); wp[1] = (g1-g2) & mask; g2 = g1;
969		b1 = CLAMP(ip[2]); wp[2] = (b1-b2) & mask; b2 = b1;
970		a1 = CLAMP(ip[3]); wp[3] = (a1-a2) & mask; a2 = a1;
971	    }
972	} else {
973	    ip += n - 1;	/* point to last one */
974	    wp += n - 1;	/* point to last one */
975	    n -= stride;
976	    while (n > 0) {
977		REPEAT(stride, wp[0] = CLAMP(ip[0]);
978				wp[stride] -= wp[0];
979				wp[stride] &= mask;
980				wp--; ip--)
981		n -= stride;
982	    }
983	    REPEAT(stride, wp[0] = CLAMP(ip[0]); wp--; ip--)
984	}
985    }
986}
987
988
989static void
990horizontalDifference8(unsigned char *ip, int n, int stride,
991	unsigned short *wp, uint16 *From8)
992{
993    register int  r1, g1, b1, a1, r2, g2, b2, a2, mask;
994
995#undef	 CLAMP
996#define  CLAMP(v) (From8[(v)])
997
998    mask = CODE_MASK;
999    if (n >= stride) {
1000	if (stride == 3) {
1001	    r2 = wp[0] = CLAMP(ip[0]);  g2 = wp[1] = CLAMP(ip[1]);
1002	    b2 = wp[2] = CLAMP(ip[2]);
1003	    n -= 3;
1004	    while (n > 0) {
1005		n -= 3;
1006		r1 = CLAMP(ip[3]); wp[3] = (r1-r2) & mask; r2 = r1;
1007		g1 = CLAMP(ip[4]); wp[4] = (g1-g2) & mask; g2 = g1;
1008		b1 = CLAMP(ip[5]); wp[5] = (b1-b2) & mask; b2 = b1;
1009		wp += 3;
1010		ip += 3;
1011	    }
1012	} else if (stride == 4) {
1013	    r2 = wp[0] = CLAMP(ip[0]);  g2 = wp[1] = CLAMP(ip[1]);
1014	    b2 = wp[2] = CLAMP(ip[2]);  a2 = wp[3] = CLAMP(ip[3]);
1015	    n -= 4;
1016	    while (n > 0) {
1017		n -= 4;
1018		r1 = CLAMP(ip[4]); wp[4] = (r1-r2) & mask; r2 = r1;
1019		g1 = CLAMP(ip[5]); wp[5] = (g1-g2) & mask; g2 = g1;
1020		b1 = CLAMP(ip[6]); wp[6] = (b1-b2) & mask; b2 = b1;
1021		a1 = CLAMP(ip[7]); wp[7] = (a1-a2) & mask; a2 = a1;
1022		wp += 4;
1023		ip += 4;
1024	    }
1025	} else {
1026	    wp += n + stride - 1;	/* point to last one */
1027	    ip += n + stride - 1;	/* point to last one */
1028	    n -= stride;
1029	    while (n > 0) {
1030		REPEAT(stride, wp[0] = CLAMP(ip[0]);
1031				wp[stride] -= wp[0];
1032				wp[stride] &= mask;
1033				wp--; ip--)
1034		n -= stride;
1035	    }
1036	    REPEAT(stride, wp[0] = CLAMP(ip[0]); wp--; ip--)
1037	}
1038    }
1039}
1040
1041/*
1042 * Encode a chunk of pixels.
1043 */
1044static int
1045PixarLogEncode(TIFF* tif, tidata_t bp, tsize_t cc, tsample_t s)
1046{
1047	TIFFDirectory *td = &tif->tif_dir;
1048	PixarLogState *sp = EncoderState(tif);
1049	static const char module[] = "PixarLogEncode";
1050	int	i, n, llen;
1051	unsigned short * up;
1052
1053	(void) s;
1054
1055	switch (sp->user_datafmt) {
1056	case PIXARLOGDATAFMT_FLOAT:
1057		n = cc / sizeof(float);		/* XXX float == 32 bits */
1058		break;
1059	case PIXARLOGDATAFMT_16BIT:
1060	case PIXARLOGDATAFMT_12BITPICIO:
1061	case PIXARLOGDATAFMT_11BITLOG:
1062		n = cc / sizeof(uint16);	/* XXX uint16 == 16 bits */
1063		break;
1064	case PIXARLOGDATAFMT_8BIT:
1065	case PIXARLOGDATAFMT_8BITABGR:
1066		n = cc;
1067		break;
1068	default:
1069		TIFFErrorExt(tif->tif_clientdata, tif->tif_name,
1070			"%d bit input not supported in PixarLog",
1071			td->td_bitspersample);
1072		return 0;
1073	}
1074
1075	llen = sp->stride * td->td_imagewidth;
1076
1077	for (i = 0, up = sp->tbuf; i < n; i += llen, up += llen) {
1078		switch (sp->user_datafmt)  {
1079		case PIXARLOGDATAFMT_FLOAT:
1080			horizontalDifferenceF((float *)bp, llen,
1081				sp->stride, up, sp->FromLT2);
1082			bp += llen * sizeof(float);
1083			break;
1084		case PIXARLOGDATAFMT_16BIT:
1085			horizontalDifference16((uint16 *)bp, llen,
1086				sp->stride, up, sp->From14);
1087			bp += llen * sizeof(uint16);
1088			break;
1089		case PIXARLOGDATAFMT_8BIT:
1090			horizontalDifference8((unsigned char *)bp, llen,
1091				sp->stride, up, sp->From8);
1092			bp += llen * sizeof(unsigned char);
1093			break;
1094		default:
1095			TIFFErrorExt(tif->tif_clientdata, tif->tif_name,
1096				"%d bit input not supported in PixarLog",
1097				td->td_bitspersample);
1098			return 0;
1099		}
1100	}
1101
1102	sp->stream.next_in = (unsigned char *) sp->tbuf;
1103	sp->stream.avail_in = n * sizeof(uint16);
1104
1105	do {
1106		if (deflate(&sp->stream, Z_NO_FLUSH) != Z_OK) {
1107			TIFFErrorExt(tif->tif_clientdata, module, "%s: Encoder error: %s",
1108			    tif->tif_name, sp->stream.msg);
1109			return (0);
1110		}
1111		if (sp->stream.avail_out == 0) {
1112			tif->tif_rawcc = tif->tif_rawdatasize;
1113			TIFFFlushData1(tif);
1114			sp->stream.next_out = tif->tif_rawdata;
1115			sp->stream.avail_out = tif->tif_rawdatasize;
1116		}
1117	} while (sp->stream.avail_in > 0);
1118	return (1);
1119}
1120
1121/*
1122 * Finish off an encoded strip by flushing the last
1123 * string and tacking on an End Of Information code.
1124 */
1125
1126static int
1127PixarLogPostEncode(TIFF* tif)
1128{
1129	PixarLogState *sp = EncoderState(tif);
1130	static const char module[] = "PixarLogPostEncode";
1131	int state;
1132
1133	sp->stream.avail_in = 0;
1134
1135	do {
1136		state = deflate(&sp->stream, Z_FINISH);
1137		switch (state) {
1138		case Z_STREAM_END:
1139		case Z_OK:
1140		    if (sp->stream.avail_out != (uint32)tif->tif_rawdatasize) {
1141			    tif->tif_rawcc =
1142				tif->tif_rawdatasize - sp->stream.avail_out;
1143			    TIFFFlushData1(tif);
1144			    sp->stream.next_out = tif->tif_rawdata;
1145			    sp->stream.avail_out = tif->tif_rawdatasize;
1146		    }
1147		    break;
1148		default:
1149			TIFFErrorExt(tif->tif_clientdata, module, "%s: zlib error: %s",
1150			tif->tif_name, sp->stream.msg);
1151		    return (0);
1152		}
1153	} while (state != Z_STREAM_END);
1154	return (1);
1155}
1156
1157static void
1158PixarLogClose(TIFF* tif)
1159{
1160	TIFFDirectory *td = &tif->tif_dir;
1161
1162	/* In a really sneaky maneuver, on close, we covertly modify both
1163	 * bitspersample and sampleformat in the directory to indicate
1164	 * 8-bit linear.  This way, the decode "just works" even for
1165	 * readers that don't know about PixarLog, or how to set
1166	 * the PIXARLOGDATFMT pseudo-tag.
1167	 */
1168	td->td_bitspersample = 8;
1169	td->td_sampleformat = SAMPLEFORMAT_UINT;
1170}
1171
1172static void
1173PixarLogCleanup(TIFF* tif)
1174{
1175	PixarLogState* sp = (PixarLogState*) tif->tif_data;
1176
1177	assert(sp != 0);
1178
1179	(void)TIFFPredictorCleanup(tif);
1180
1181	tif->tif_tagmethods.vgetfield = sp->vgetparent;
1182	tif->tif_tagmethods.vsetfield = sp->vsetparent;
1183
1184	if (sp->FromLT2) _TIFFfree(sp->FromLT2);
1185	if (sp->From14) _TIFFfree(sp->From14);
1186	if (sp->From8) _TIFFfree(sp->From8);
1187	if (sp->ToLinearF) _TIFFfree(sp->ToLinearF);
1188	if (sp->ToLinear16) _TIFFfree(sp->ToLinear16);
1189	if (sp->ToLinear8) _TIFFfree(sp->ToLinear8);
1190	if (sp->state&PLSTATE_INIT) {
1191		if (tif->tif_mode == O_RDONLY)
1192			inflateEnd(&sp->stream);
1193		else
1194			deflateEnd(&sp->stream);
1195	}
1196	if (sp->tbuf)
1197		_TIFFfree(sp->tbuf);
1198	_TIFFfree(sp);
1199	tif->tif_data = NULL;
1200
1201	_TIFFSetDefaultCompressionState(tif);
1202}
1203
1204static int
1205PixarLogVSetField(TIFF* tif, ttag_t tag, va_list ap)
1206{
1207    PixarLogState *sp = (PixarLogState *)tif->tif_data;
1208    int result;
1209    static const char module[] = "PixarLogVSetField";
1210
1211    switch (tag) {
1212     case TIFFTAG_PIXARLOGQUALITY:
1213		sp->quality = va_arg(ap, int);
1214		if (tif->tif_mode != O_RDONLY && (sp->state&PLSTATE_INIT)) {
1215			if (deflateParams(&sp->stream,
1216			    sp->quality, Z_DEFAULT_STRATEGY) != Z_OK) {
1217				TIFFErrorExt(tif->tif_clientdata, module, "%s: zlib error: %s",
1218					tif->tif_name, sp->stream.msg);
1219				return (0);
1220			}
1221		}
1222		return (1);
1223     case TIFFTAG_PIXARLOGDATAFMT:
1224	sp->user_datafmt = va_arg(ap, int);
1225	/* Tweak the TIFF header so that the rest of libtiff knows what
1226	 * size of data will be passed between app and library, and
1227	 * assume that the app knows what it is doing and is not
1228	 * confused by these header manipulations...
1229	 */
1230	switch (sp->user_datafmt) {
1231	 case PIXARLOGDATAFMT_8BIT:
1232	 case PIXARLOGDATAFMT_8BITABGR:
1233	    TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 8);
1234	    TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_UINT);
1235	    break;
1236	 case PIXARLOGDATAFMT_11BITLOG:
1237	    TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 16);
1238	    TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_UINT);
1239	    break;
1240	 case PIXARLOGDATAFMT_12BITPICIO:
1241	    TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 16);
1242	    TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_INT);
1243	    break;
1244	 case PIXARLOGDATAFMT_16BIT:
1245	    TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 16);
1246	    TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_UINT);
1247	    break;
1248	 case PIXARLOGDATAFMT_FLOAT:
1249	    TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 32);
1250	    TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_IEEEFP);
1251	    break;
1252	}
1253	/*
1254	 * Must recalculate sizes should bits/sample change.
1255	 */
1256	tif->tif_tilesize = isTiled(tif) ? TIFFTileSize(tif) : (tsize_t) -1;
1257	tif->tif_scanlinesize = TIFFScanlineSize(tif);
1258	result = 1;		/* NB: pseudo tag */
1259	break;
1260     default:
1261	result = (*sp->vsetparent)(tif, tag, ap);
1262    }
1263    return (result);
1264}
1265
1266static int
1267PixarLogVGetField(TIFF* tif, ttag_t tag, va_list ap)
1268{
1269    PixarLogState *sp = (PixarLogState *)tif->tif_data;
1270
1271    switch (tag) {
1272     case TIFFTAG_PIXARLOGQUALITY:
1273	*va_arg(ap, int*) = sp->quality;
1274	break;
1275     case TIFFTAG_PIXARLOGDATAFMT:
1276	*va_arg(ap, int*) = sp->user_datafmt;
1277	break;
1278     default:
1279	return (*sp->vgetparent)(tif, tag, ap);
1280    }
1281    return (1);
1282}
1283
1284static const TIFFFieldInfo pixarlogFieldInfo[] = {
1285    {TIFFTAG_PIXARLOGDATAFMT,0,0,TIFF_ANY,  FIELD_PSEUDO,FALSE,FALSE,""},
1286    {TIFFTAG_PIXARLOGQUALITY,0,0,TIFF_ANY,  FIELD_PSEUDO,FALSE,FALSE,""}
1287};
1288
1289int
1290TIFFInitPixarLog(TIFF* tif, int scheme)
1291{
1292	static const char module[] = "TIFFInitPixarLog";
1293
1294	PixarLogState* sp;
1295
1296	assert(scheme == COMPRESSION_PIXARLOG);
1297
1298	/*
1299	 * Merge codec-specific tag information.
1300	 */
1301	if (!_TIFFMergeFieldInfo(tif, pixarlogFieldInfo,
1302				 TIFFArrayCount(pixarlogFieldInfo))) {
1303		TIFFErrorExt(tif->tif_clientdata, module,
1304			     "Merging PixarLog codec-specific tags failed");
1305		return 0;
1306	}
1307
1308	/*
1309	 * Allocate state block so tag methods have storage to record values.
1310	 */
1311	tif->tif_data = (tidata_t) _TIFFmalloc(sizeof (PixarLogState));
1312	if (tif->tif_data == NULL)
1313		goto bad;
1314	sp = (PixarLogState*) tif->tif_data;
1315	_TIFFmemset(sp, 0, sizeof (*sp));
1316	sp->stream.data_type = Z_BINARY;
1317	sp->user_datafmt = PIXARLOGDATAFMT_UNKNOWN;
1318
1319	/*
1320	 * Install codec methods.
1321	 */
1322	tif->tif_setupdecode = PixarLogSetupDecode;
1323	tif->tif_predecode = PixarLogPreDecode;
1324	tif->tif_decoderow = PixarLogDecode;
1325	tif->tif_decodestrip = PixarLogDecode;
1326	tif->tif_decodetile = PixarLogDecode;
1327	tif->tif_setupencode = PixarLogSetupEncode;
1328	tif->tif_preencode = PixarLogPreEncode;
1329	tif->tif_postencode = PixarLogPostEncode;
1330	tif->tif_encoderow = PixarLogEncode;
1331	tif->tif_encodestrip = PixarLogEncode;
1332	tif->tif_encodetile = PixarLogEncode;
1333	tif->tif_close = PixarLogClose;
1334	tif->tif_cleanup = PixarLogCleanup;
1335
1336	/* Override SetField so we can handle our private pseudo-tag */
1337	sp->vgetparent = tif->tif_tagmethods.vgetfield;
1338	tif->tif_tagmethods.vgetfield = PixarLogVGetField;   /* hook for codec tags */
1339	sp->vsetparent = tif->tif_tagmethods.vsetfield;
1340	tif->tif_tagmethods.vsetfield = PixarLogVSetField;   /* hook for codec tags */
1341
1342	/* Default values for codec-specific fields */
1343	sp->quality = Z_DEFAULT_COMPRESSION; /* default comp. level */
1344	sp->state = 0;
1345
1346	/* we don't wish to use the predictor,
1347	 * the default is none, which predictor value 1
1348	 */
1349	(void) TIFFPredictorInit(tif);
1350
1351	/*
1352	 * build the companding tables
1353	 */
1354	PixarLogMakeTables(sp);
1355
1356	return (1);
1357bad:
1358	TIFFErrorExt(tif->tif_clientdata, module,
1359		     "No space for PixarLog state block");
1360	return (0);
1361}
1362#endif /* PIXARLOG_SUPPORT */
1363
1364/* vim: set ts=8 sts=8 sw=8 noet: */
1365/*
1366 * Local Variables:
1367 * mode: c
1368 * c-basic-offset: 8
1369 * fill-column: 78
1370 * End:
1371 */
1372