1/*
2 * Copyright (c) 2003 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. Please obtain a copy of the License at
10 * http://www.opensource.apple.com/apsl/ and read it before using this
11 * file.
12 *
13 * The Original Code and all software distributed under the License are
14 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
15 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
16 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
18 * Please see the License for the specific language governing rights and
19 * limitations under the License.
20 *
21 * @APPLE_LICENSE_HEADER_END@
22 */
23/*
24 * This file is derived from various .h and .c files from the zlib-0.95
25 * distribution by Jean-loup Gailly and Mark Adler, with some additions
26 * by Paul Mackerras to aid in implementing Deflate compression and
27 * decompression for PPP packets.  See zlib.h for conditions of
28 * distribution and use.
29 *
30 * Changes that have been made include:
31 * - changed functions not used outside this file to "local"
32 * - added minCompression parameter to deflateInit2
33 * - added Z_PACKET_FLUSH (see zlib.h for details)
34 * - added inflateIncomp
35 *
36 * $Id: zlib.c,v 1.3 2003/08/14 00:00:39 callie Exp $
37 */
38
39
40/*+++++*/
41/* zutil.h -- internal interface and configuration of the compression library
42 * Copyright (C) 1995 Jean-loup Gailly.
43 * For conditions of distribution and use, see copyright notice in zlib.h
44 */
45
46/* WARNING: this file should *not* be used by applications. It is
47   part of the implementation of the compression library and is
48   subject to change. Applications should only use zlib.h.
49 */
50
51/* From: zutil.h,v 1.9 1995/05/03 17:27:12 jloup Exp */
52
53#define _Z_UTIL_H
54
55#include "zlib.h"
56
57#ifdef STDC
58#  include <string.h>
59#endif
60
61#ifndef local
62#  define local static
63#endif
64/* compile with -Dlocal if your debugger can't find static symbols */
65
66#define FAR
67
68typedef unsigned char  uch;
69typedef uch FAR uchf;
70typedef unsigned short ush;
71typedef ush FAR ushf;
72typedef unsigned long  ulg;
73
74extern char *z_errmsg[]; /* indexed by 1-zlib_error */
75
76#define ERR_RETURN(strm,err) return (strm->msg=z_errmsg[1-err], err)
77/* To be used only when the state is known to be valid */
78
79#ifndef NULL
80#define NULL	((void *) 0)
81#endif
82
83        /* common constants */
84
85#define DEFLATED   8
86
87#ifndef DEF_WBITS
88#  define DEF_WBITS MAX_WBITS
89#endif
90/* default windowBits for decompression. MAX_WBITS is for compression only */
91
92#if MAX_MEM_LEVEL >= 8
93#  define DEF_MEM_LEVEL 8
94#else
95#  define DEF_MEM_LEVEL  MAX_MEM_LEVEL
96#endif
97/* default memLevel */
98
99#define STORED_BLOCK 0
100#define STATIC_TREES 1
101#define DYN_TREES    2
102/* The three kinds of block type */
103
104#define MIN_MATCH  3
105#define MAX_MATCH  258
106/* The minimum and maximum match lengths */
107
108         /* functions */
109
110#if defined(STDC) && !defined(HAVE_MEMCPY) && !defined(NO_MEMCPY)
111#  define HAVE_MEMCPY
112#endif
113#ifdef HAVE_MEMCPY
114#  define zmemcpy memcpy
115#  define zmemzero(dest, len) memset(dest, 0, len)
116#else
117#  define zmemcpy(d, s, n)	bcopy((s), (d), (n))
118#  define zmemzero		bzero
119#endif
120
121/* Diagnostic functions */
122#ifdef DEBUG_ZLIB
123#  include <stdio.h>
124#  ifndef verbose
125#    define verbose 0
126#  endif
127#  define Assert(cond,msg) {if(!(cond)) z_error(msg);}
128#  define Trace(x) fprintf x
129#  define Tracev(x) {if (verbose) fprintf x ;}
130#  define Tracevv(x) {if (verbose>1) fprintf x ;}
131#  define Tracec(c,x) {if (verbose && (c)) fprintf x ;}
132#  define Tracecv(c,x) {if (verbose>1 && (c)) fprintf x ;}
133#else
134#  define Assert(cond,msg)
135#  define Trace(x)
136#  define Tracev(x)
137#  define Tracevv(x)
138#  define Tracec(c,x)
139#  define Tracecv(c,x)
140#endif
141
142
143typedef uLong (*check_func) OF((uLong check, Bytef *buf, uInt len));
144
145/* voidpf zcalloc OF((voidpf opaque, unsigned items, unsigned size)); */
146/* void   zcfree  OF((voidpf opaque, voidpf ptr)); */
147
148#define ZALLOC(strm, items, size) \
149           (*((strm)->zalloc))((strm)->opaque, (items), (size))
150#define ZFREE(strm, addr, size)	\
151	   (*((strm)->zfree))((strm)->opaque, (voidpf)(addr), (size))
152#define TRY_FREE(s, p, n) {if (p) ZFREE(s, p, n);}
153
154/* deflate.h -- internal compression state
155 * Copyright (C) 1995 Jean-loup Gailly
156 * For conditions of distribution and use, see copyright notice in zlib.h
157 */
158
159/* WARNING: this file should *not* be used by applications. It is
160   part of the implementation of the compression library and is
161   subject to change. Applications should only use zlib.h.
162 */
163
164
165/*+++++*/
166/* From: deflate.h,v 1.5 1995/05/03 17:27:09 jloup Exp */
167
168/* ===========================================================================
169 * Internal compression state.
170 */
171
172/* Data type */
173#define BINARY  0
174#define ASCII   1
175#define UNKNOWN 2
176
177#define LENGTH_CODES 29
178/* number of length codes, not counting the special END_BLOCK code */
179
180#define LITERALS  256
181/* number of literal bytes 0..255 */
182
183#define L_CODES (LITERALS+1+LENGTH_CODES)
184/* number of Literal or Length codes, including the END_BLOCK code */
185
186#define D_CODES   30
187/* number of distance codes */
188
189#define BL_CODES  19
190/* number of codes used to transfer the bit lengths */
191
192#define HEAP_SIZE (2*L_CODES+1)
193/* maximum heap size */
194
195#define MAX_BITS 15
196/* All codes must not exceed MAX_BITS bits */
197
198#define INIT_STATE    42
199#define BUSY_STATE   113
200#define FLUSH_STATE  124
201#define FINISH_STATE 666
202/* Stream status */
203
204
205/* Data structure describing a single value and its code string. */
206typedef struct ct_data_s {
207    union {
208        ush  freq;       /* frequency count */
209        ush  code;       /* bit string */
210    } fc;
211    union {
212        ush  dad;        /* father node in Huffman tree */
213        ush  len;        /* length of bit string */
214    } dl;
215} FAR ct_data;
216
217#define Freq fc.freq
218#define Code fc.code
219#define Dad  dl.dad
220#define Len  dl.len
221
222typedef struct static_tree_desc_s  static_tree_desc;
223
224typedef struct tree_desc_s {
225    ct_data *dyn_tree;           /* the dynamic tree */
226    int     max_code;            /* largest code with non zero frequency */
227    static_tree_desc *stat_desc; /* the corresponding static tree */
228} FAR tree_desc;
229
230typedef ush Pos;
231typedef Pos FAR Posf;
232typedef unsigned IPos;
233
234/* A Pos is an index in the character window. We use short instead of int to
235 * save space in the various tables. IPos is used only for parameter passing.
236 */
237
238typedef struct deflate_state {
239    z_stream *strm;      /* pointer back to this zlib stream */
240    int   status;        /* as the name implies */
241    Bytef *pending_buf;  /* output still pending */
242    Bytef *pending_out;  /* next pending byte to output to the stream */
243    int   pending;       /* nb of bytes in the pending buffer */
244    uLong adler;         /* adler32 of uncompressed data */
245    int   noheader;      /* suppress zlib header and adler32 */
246    Byte  data_type;     /* UNKNOWN, BINARY or ASCII */
247    Byte  method;        /* STORED (for zip only) or DEFLATED */
248    int	  minCompr;	 /* min size decrease for Z_FLUSH_NOSTORE */
249
250                /* used by deflate.c: */
251
252    uInt  w_size;        /* LZ77 window size (32K by default) */
253    uInt  w_bits;        /* log2(w_size)  (8..16) */
254    uInt  w_mask;        /* w_size - 1 */
255
256    Bytef *window;
257    /* Sliding window. Input bytes are read into the second half of the window,
258     * and move to the first half later to keep a dictionary of at least wSize
259     * bytes. With this organization, matches are limited to a distance of
260     * wSize-MAX_MATCH bytes, but this ensures that IO is always
261     * performed with a length multiple of the block size. Also, it limits
262     * the window size to 64K, which is quite useful on MSDOS.
263     * To do: use the user input buffer as sliding window.
264     */
265
266    ulg window_size;
267    /* Actual size of window: 2*wSize, except when the user input buffer
268     * is directly used as sliding window.
269     */
270
271    Posf *prev;
272    /* Link to older string with same hash index. To limit the size of this
273     * array to 64K, this link is maintained only for the last 32K strings.
274     * An index in this array is thus a window index modulo 32K.
275     */
276
277    Posf *head; /* Heads of the hash chains or NIL. */
278
279    uInt  ins_h;          /* hash index of string to be inserted */
280    uInt  hash_size;      /* number of elements in hash table */
281    uInt  hash_bits;      /* log2(hash_size) */
282    uInt  hash_mask;      /* hash_size-1 */
283
284    uInt  hash_shift;
285    /* Number of bits by which ins_h must be shifted at each input
286     * step. It must be such that after MIN_MATCH steps, the oldest
287     * byte no longer takes part in the hash key, that is:
288     *   hash_shift * MIN_MATCH >= hash_bits
289     */
290
291    long block_start;
292    /* Window position at the beginning of the current output block. Gets
293     * negative when the window is moved backwards.
294     */
295
296    uInt match_length;           /* length of best match */
297    IPos prev_match;             /* previous match */
298    int match_available;         /* set if previous match exists */
299    uInt strstart;               /* start of string to insert */
300    uInt match_start;            /* start of matching string */
301    uInt lookahead;              /* number of valid bytes ahead in window */
302
303    uInt prev_length;
304    /* Length of the best match at previous step. Matches not greater than this
305     * are discarded. This is used in the lazy match evaluation.
306     */
307
308    uInt max_chain_length;
309    /* To speed up deflation, hash chains are never searched beyond this
310     * length.  A higher limit improves compression ratio but degrades the
311     * speed.
312     */
313
314    uInt max_lazy_match;
315    /* Attempt to find a better match only when the current match is strictly
316     * smaller than this value. This mechanism is used only for compression
317     * levels >= 4.
318     */
319#   define max_insert_length  max_lazy_match
320    /* Insert new strings in the hash table only if the match length is not
321     * greater than this length. This saves time but degrades compression.
322     * max_insert_length is used only for compression levels <= 3.
323     */
324
325    int level;    /* compression level (1..9) */
326    int strategy; /* favor or force Huffman coding*/
327
328    uInt good_match;
329    /* Use a faster search when the previous match is longer than this */
330
331     int nice_match; /* Stop searching when current match exceeds this */
332
333                /* used by trees.c: */
334    /* Didn't use ct_data typedef below to supress compiler warning */
335    struct ct_data_s dyn_ltree[HEAP_SIZE];   /* literal and length tree */
336    struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */
337    struct ct_data_s bl_tree[2*BL_CODES+1];  /* Huffman tree for bit lengths */
338
339    struct tree_desc_s l_desc;               /* desc. for literal tree */
340    struct tree_desc_s d_desc;               /* desc. for distance tree */
341    struct tree_desc_s bl_desc;              /* desc. for bit length tree */
342
343    ush bl_count[MAX_BITS+1];
344    /* number of codes at each bit length for an optimal tree */
345
346    int heap[2*L_CODES+1];      /* heap used to build the Huffman trees */
347    int heap_len;               /* number of elements in the heap */
348    int heap_max;               /* element of largest frequency */
349    /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
350     * The same heap array is used to build all trees.
351     */
352
353    uch depth[2*L_CODES+1];
354    /* Depth of each subtree used as tie breaker for trees of equal frequency
355     */
356
357    uchf *l_buf;          /* buffer for literals or lengths */
358
359    uInt  lit_bufsize;
360    /* Size of match buffer for literals/lengths.  There are 4 reasons for
361     * limiting lit_bufsize to 64K:
362     *   - frequencies can be kept in 16 bit counters
363     *   - if compression is not successful for the first block, all input
364     *     data is still in the window so we can still emit a stored block even
365     *     when input comes from standard input.  (This can also be done for
366     *     all blocks if lit_bufsize is not greater than 32K.)
367     *   - if compression is not successful for a file smaller than 64K, we can
368     *     even emit a stored file instead of a stored block (saving 5 bytes).
369     *     This is applicable only for zip (not gzip or zlib).
370     *   - creating new Huffman trees less frequently may not provide fast
371     *     adaptation to changes in the input data statistics. (Take for
372     *     example a binary file with poorly compressible code followed by
373     *     a highly compressible string table.) Smaller buffer sizes give
374     *     fast adaptation but have of course the overhead of transmitting
375     *     trees more frequently.
376     *   - I can't count above 4
377     */
378
379    uInt last_lit;      /* running index in l_buf */
380
381    ushf *d_buf;
382    /* Buffer for distances. To simplify the code, d_buf and l_buf have
383     * the same number of elements. To use different lengths, an extra flag
384     * array would be necessary.
385     */
386
387    ulg opt_len;        /* bit length of current block with optimal trees */
388    ulg static_len;     /* bit length of current block with static trees */
389    ulg compressed_len; /* total bit length of compressed file */
390    uInt matches;       /* number of string matches in current block */
391    int last_eob_len;   /* bit length of EOB code for last block */
392
393#ifdef DEBUG_ZLIB
394    ulg bits_sent;      /* bit length of the compressed data */
395#endif
396
397    ush bi_buf;
398    /* Output buffer. bits are inserted starting at the bottom (least
399     * significant bits).
400     */
401    int bi_valid;
402    /* Number of valid bits in bi_buf.  All bits above the last valid bit
403     * are always zero.
404     */
405
406    uInt blocks_in_packet;
407    /* Number of blocks produced since the last time Z_PACKET_FLUSH
408     * was used.
409     */
410
411} FAR deflate_state;
412
413/* Output a byte on the stream.
414 * IN assertion: there is enough room in pending_buf.
415 */
416#define put_byte(s, c) {s->pending_buf[s->pending++] = (c);}
417
418
419#define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
420/* Minimum amount of lookahead, except at the end of the input file.
421 * See deflate.c for comments about the MIN_MATCH+1.
422 */
423
424#define MAX_DIST(s)  ((s)->w_size-MIN_LOOKAHEAD)
425/* In order to simplify the code, particularly on 16 bit machines, match
426 * distances are limited to MAX_DIST instead of WSIZE.
427 */
428
429        /* in trees.c */
430local void ct_init       OF((deflate_state *s));
431local int  ct_tally      OF((deflate_state *s, int dist, int lc));
432local ulg ct_flush_block OF((deflate_state *s, charf *buf, ulg stored_len,
433			     int flush));
434local void ct_align      OF((deflate_state *s));
435local void ct_stored_block OF((deflate_state *s, charf *buf, ulg stored_len,
436                          int eof));
437local void ct_stored_type_only OF((deflate_state *s));
438
439
440/*+++++*/
441/* deflate.c -- compress data using the deflation algorithm
442 * Copyright (C) 1995 Jean-loup Gailly.
443 * For conditions of distribution and use, see copyright notice in zlib.h
444 */
445
446/*
447 *  ALGORITHM
448 *
449 *      The "deflation" process depends on being able to identify portions
450 *      of the input text which are identical to earlier input (within a
451 *      sliding window trailing behind the input currently being processed).
452 *
453 *      The most straightforward technique turns out to be the fastest for
454 *      most input files: try all possible matches and select the longest.
455 *      The key feature of this algorithm is that insertions into the string
456 *      dictionary are very simple and thus fast, and deletions are avoided
457 *      completely. Insertions are performed at each input character, whereas
458 *      string matches are performed only when the previous match ends. So it
459 *      is preferable to spend more time in matches to allow very fast string
460 *      insertions and avoid deletions. The matching algorithm for small
461 *      strings is inspired from that of Rabin & Karp. A brute force approach
462 *      is used to find longer strings when a small match has been found.
463 *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
464 *      (by Leonid Broukhis).
465 *         A previous version of this file used a more sophisticated algorithm
466 *      (by Fiala and Greene) which is guaranteed to run in linear amortized
467 *      time, but has a larger average cost, uses more memory and is patented.
468 *      However the F&G algorithm may be faster for some highly redundant
469 *      files if the parameter max_chain_length (described below) is too large.
470 *
471 *  ACKNOWLEDGEMENTS
472 *
473 *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
474 *      I found it in 'freeze' written by Leonid Broukhis.
475 *      Thanks to many people for bug reports and testing.
476 *
477 *  REFERENCES
478 *
479 *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
480 *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
481 *
482 *      A description of the Rabin and Karp algorithm is given in the book
483 *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
484 *
485 *      Fiala,E.R., and Greene,D.H.
486 *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
487 *
488 */
489
490/* From: deflate.c,v 1.8 1995/05/03 17:27:08 jloup Exp */
491
492local char zlib_copyright[] = " deflate Copyright 1995 Jean-loup Gailly ";
493/*
494  If you use the zlib library in a product, an acknowledgment is welcome
495  in the documentation of your product. If for some reason you cannot
496  include such an acknowledgment, I would appreciate that you keep this
497  copyright string in the executable of your product.
498 */
499
500#define NIL 0
501/* Tail of hash chains */
502
503#ifndef TOO_FAR
504#  define TOO_FAR 4096
505#endif
506/* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
507
508#define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
509/* Minimum amount of lookahead, except at the end of the input file.
510 * See deflate.c for comments about the MIN_MATCH+1.
511 */
512
513/* Values for max_lazy_match, good_match and max_chain_length, depending on
514 * the desired pack level (0..9). The values given below have been tuned to
515 * exclude worst case performance for pathological files. Better values may be
516 * found for specific files.
517 */
518
519typedef struct config_s {
520   ush good_length; /* reduce lazy search above this match length */
521   ush max_lazy;    /* do not perform lazy search above this match length */
522   ush nice_length; /* quit search above this match length */
523   ush max_chain;
524} config;
525
526local config configuration_table[10] = {
527/*      good lazy nice chain */
528/* 0 */ {0,    0,  0,    0},  /* store only */
529/* 1 */ {4,    4,  8,    4},  /* maximum speed, no lazy matches */
530/* 2 */ {4,    5, 16,    8},
531/* 3 */ {4,    6, 32,   32},
532
533/* 4 */ {4,    4, 16,   16},  /* lazy matches */
534/* 5 */ {8,   16, 32,   32},
535/* 6 */ {8,   16, 128, 128},
536/* 7 */ {8,   32, 128, 256},
537/* 8 */ {32, 128, 258, 1024},
538/* 9 */ {32, 258, 258, 4096}}; /* maximum compression */
539
540/* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
541 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
542 * meaning.
543 */
544
545#define EQUAL 0
546/* result of memcmp for equal strings */
547
548/* ===========================================================================
549 *  Prototypes for local functions.
550 */
551
552local void fill_window   OF((deflate_state *s));
553local int  deflate_fast  OF((deflate_state *s, int flush));
554local int  deflate_slow  OF((deflate_state *s, int flush));
555local void lm_init       OF((deflate_state *s));
556local int longest_match  OF((deflate_state *s, IPos cur_match));
557local void putShortMSB   OF((deflate_state *s, uInt b));
558local void flush_pending OF((z_stream *strm));
559local int read_buf       OF((z_stream *strm, charf *buf, unsigned size));
560#ifdef ASMV
561      void match_init OF((void)); /* asm code initialization */
562#endif
563
564#ifdef DEBUG_ZLIB
565local  void check_match OF((deflate_state *s, IPos start, IPos match,
566                            int length));
567#endif
568
569
570/* ===========================================================================
571 * Update a hash value with the given input byte
572 * IN  assertion: all calls to to UPDATE_HASH are made with consecutive
573 *    input characters, so that a running hash key can be computed from the
574 *    previous key instead of complete recalculation each time.
575 */
576#define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
577
578
579/* ===========================================================================
580 * Insert string str in the dictionary and set match_head to the previous head
581 * of the hash chain (the most recent string with same hash key). Return
582 * the previous length of the hash chain.
583 * IN  assertion: all calls to to INSERT_STRING are made with consecutive
584 *    input characters and the first MIN_MATCH bytes of str are valid
585 *    (except for the last MIN_MATCH-1 bytes of the input file).
586 */
587#define INSERT_STRING(s, str, match_head) \
588   (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
589    s->prev[(str) & s->w_mask] = match_head = s->head[s->ins_h], \
590    s->head[s->ins_h] = (str))
591
592/* ===========================================================================
593 * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
594 * prev[] will be initialized on the fly.
595 */
596#define CLEAR_HASH(s) \
597    s->head[s->hash_size-1] = NIL; \
598    zmemzero((charf *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
599
600/* ========================================================================= */
601int deflateInit (strm, level)
602    z_stream *strm;
603    int level;
604{
605    return deflateInit2 (strm, level, DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
606			 0, 0);
607    /* To do: ignore strm->next_in if we use it as window */
608}
609
610/* ========================================================================= */
611int deflateInit2 (strm, level, method, windowBits, memLevel,
612		  strategy, minCompression)
613    z_stream *strm;
614    int  level;
615    int  method;
616    int  windowBits;
617    int  memLevel;
618    int  strategy;
619    int  minCompression;
620{
621    deflate_state *s;
622    int noheader = 0;
623
624    if (strm == Z_NULL) return Z_STREAM_ERROR;
625
626    strm->msg = Z_NULL;
627/*    if (strm->zalloc == Z_NULL) strm->zalloc = zcalloc; */
628/*    if (strm->zfree == Z_NULL) strm->zfree = zcfree; */
629
630    if (level == Z_DEFAULT_COMPRESSION) level = 6;
631
632    if (windowBits < 0) { /* undocumented feature: suppress zlib header */
633        noheader = 1;
634        windowBits = -windowBits;
635    }
636    if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != DEFLATED ||
637        windowBits < 8 || windowBits > 15 || level < 1 || level > 9) {
638        return Z_STREAM_ERROR;
639    }
640    s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
641    if (s == Z_NULL) return Z_MEM_ERROR;
642    strm->state = (struct internal_state FAR *)s;
643    s->strm = strm;
644
645    s->noheader = noheader;
646    s->w_bits = windowBits;
647    s->w_size = 1 << s->w_bits;
648    s->w_mask = s->w_size - 1;
649
650    s->hash_bits = memLevel + 7;
651    s->hash_size = 1 << s->hash_bits;
652    s->hash_mask = s->hash_size - 1;
653    s->hash_shift =  ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
654
655    s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
656    s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
657    s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));
658
659    s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
660
661    s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, 2*sizeof(ush));
662
663    if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
664        s->pending_buf == Z_NULL) {
665        strm->msg = z_errmsg[1-Z_MEM_ERROR];
666        deflateEnd (strm);
667        return Z_MEM_ERROR;
668    }
669    s->d_buf = (ushf *) &(s->pending_buf[s->lit_bufsize]);
670    s->l_buf = (uchf *) &(s->pending_buf[3*s->lit_bufsize]);
671    /* We overlay pending_buf and d_buf+l_buf. This works since the average
672     * output size for (length,distance) codes is <= 32 bits (worst case
673     * is 15+15+13=33).
674     */
675
676    s->level = level;
677    s->strategy = strategy;
678    s->method = (Byte)method;
679    s->minCompr = minCompression;
680    s->blocks_in_packet = 0;
681
682    return deflateReset(strm);
683}
684
685/* ========================================================================= */
686int deflateReset (strm)
687    z_stream *strm;
688{
689    deflate_state *s;
690
691    if (strm == Z_NULL || strm->state == Z_NULL ||
692        strm->zalloc == Z_NULL || strm->zfree == Z_NULL) return Z_STREAM_ERROR;
693
694    strm->total_in = strm->total_out = 0;
695    strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
696    strm->data_type = Z_UNKNOWN;
697
698    s = (deflate_state *)strm->state;
699    s->pending = 0;
700    s->pending_out = s->pending_buf;
701
702    if (s->noheader < 0) {
703        s->noheader = 0; /* was set to -1 by deflate(..., Z_FINISH); */
704    }
705    s->status = s->noheader ? BUSY_STATE : INIT_STATE;
706    s->adler = 1;
707
708    ct_init(s);
709    lm_init(s);
710
711    return Z_OK;
712}
713
714/* =========================================================================
715 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
716 * IN assertion: the stream state is correct and there is enough room in
717 * pending_buf.
718 */
719local void putShortMSB (s, b)
720    deflate_state *s;
721    uInt b;
722{
723    put_byte(s, (Byte)(b >> 8));
724    put_byte(s, (Byte)(b & 0xff));
725}
726
727/* =========================================================================
728 * Flush as much pending output as possible.
729 */
730local void flush_pending(strm)
731    z_stream *strm;
732{
733    deflate_state *state = (deflate_state *) strm->state;
734    unsigned len = state->pending;
735
736    if (len > strm->avail_out) len = strm->avail_out;
737    if (len == 0) return;
738
739    if (strm->next_out != NULL) {
740	zmemcpy(strm->next_out, state->pending_out, len);
741	strm->next_out += len;
742    }
743    state->pending_out += len;
744    strm->total_out += len;
745    strm->avail_out -= len;
746    state->pending -= len;
747    if (state->pending == 0) {
748        state->pending_out = state->pending_buf;
749    }
750}
751
752/* ========================================================================= */
753int deflate (strm, flush)
754    z_stream *strm;
755    int flush;
756{
757    deflate_state *state = (deflate_state *) strm->state;
758
759    if (strm == Z_NULL || state == Z_NULL) return Z_STREAM_ERROR;
760
761    if (strm->next_in == Z_NULL && strm->avail_in != 0) {
762        ERR_RETURN(strm, Z_STREAM_ERROR);
763    }
764    if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
765
766    state->strm = strm; /* just in case */
767
768    /* Write the zlib header */
769    if (state->status == INIT_STATE) {
770
771        uInt header = (DEFLATED + ((state->w_bits-8)<<4)) << 8;
772        uInt level_flags = (state->level-1) >> 1;
773
774        if (level_flags > 3) level_flags = 3;
775        header |= (level_flags << 6);
776        header += 31 - (header % 31);
777
778        state->status = BUSY_STATE;
779        putShortMSB(state, header);
780    }
781
782    /* Flush as much pending output as possible */
783    if (state->pending != 0) {
784        flush_pending(strm);
785        if (strm->avail_out == 0) return Z_OK;
786    }
787
788    /* If we came back in here to get the last output from
789     * a previous flush, we're done for now.
790     */
791    if (state->status == FLUSH_STATE) {
792	state->status = BUSY_STATE;
793	if (flush != Z_NO_FLUSH && flush != Z_FINISH)
794	    return Z_OK;
795    }
796
797    /* User must not provide more input after the first FINISH: */
798    if (state->status == FINISH_STATE && strm->avail_in != 0) {
799        ERR_RETURN(strm, Z_BUF_ERROR);
800    }
801
802    /* Start a new block or continue the current one.
803     */
804    if (strm->avail_in != 0 || state->lookahead != 0 ||
805        (flush == Z_FINISH && state->status != FINISH_STATE)) {
806        int quit;
807
808        if (flush == Z_FINISH) {
809            state->status = FINISH_STATE;
810        }
811        if (state->level <= 3) {
812            quit = deflate_fast(state, flush);
813        } else {
814            quit = deflate_slow(state, flush);
815        }
816        if (quit || strm->avail_out == 0)
817	    return Z_OK;
818        /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
819         * of deflate should use the same flush parameter to make sure
820         * that the flush is complete. So we don't have to output an
821         * empty block here, this will be done at next call. This also
822         * ensures that for a very small output buffer, we emit at most
823         * one empty block.
824         */
825    }
826
827    /* If a flush was requested, we have a little more to output now. */
828    if (flush != Z_NO_FLUSH && flush != Z_FINISH
829	&& state->status != FINISH_STATE) {
830	switch (flush) {
831	case Z_PARTIAL_FLUSH:
832	    ct_align(state);
833	    break;
834	case Z_PACKET_FLUSH:
835	    /* Output just the 3-bit `stored' block type value,
836	       but not a zero length. */
837	    ct_stored_type_only(state);
838	    break;
839	default:
840	    ct_stored_block(state, (char*)0, 0L, 0);
841	    /* For a full flush, this empty block will be recognized
842	     * as a special marker by inflate_sync().
843	     */
844	    if (flush == Z_FULL_FLUSH) {
845		CLEAR_HASH(state);             /* forget history */
846	    }
847	}
848	flush_pending(strm);
849	if (strm->avail_out == 0) {
850	    /* We'll have to come back to get the rest of the output;
851	     * this ensures we don't output a second zero-length stored
852	     * block (or whatever).
853	     */
854	    state->status = FLUSH_STATE;
855	    return Z_OK;
856	}
857    }
858
859    Assert(strm->avail_out > 0, "bug2");
860
861    if (flush != Z_FINISH) return Z_OK;
862    if (state->noheader) return Z_STREAM_END;
863
864    /* Write the zlib trailer (adler32) */
865    putShortMSB(state, (uInt)(state->adler >> 16));
866    putShortMSB(state, (uInt)(state->adler & 0xffff));
867    flush_pending(strm);
868    /* If avail_out is zero, the application will call deflate again
869     * to flush the rest.
870     */
871    state->noheader = -1; /* write the trailer only once! */
872    return state->pending != 0 ? Z_OK : Z_STREAM_END;
873}
874
875/* ========================================================================= */
876int deflateEnd (strm)
877    z_stream *strm;
878{
879    deflate_state *state = (deflate_state *) strm->state;
880
881    if (strm == Z_NULL || state == Z_NULL) return Z_STREAM_ERROR;
882
883    TRY_FREE(strm, state->window, state->w_size * 2 * sizeof(Byte));
884    TRY_FREE(strm, state->prev, state->w_size * sizeof(Pos));
885    TRY_FREE(strm, state->head, state->hash_size * sizeof(Pos));
886    TRY_FREE(strm, state->pending_buf, state->lit_bufsize * 2 * sizeof(ush));
887
888    ZFREE(strm, state, sizeof(deflate_state));
889    strm->state = Z_NULL;
890
891    return Z_OK;
892}
893
894/* ===========================================================================
895 * Read a new buffer from the current input stream, update the adler32
896 * and total number of bytes read.
897 */
898local int read_buf(strm, buf, size)
899    z_stream *strm;
900    charf *buf;
901    unsigned size;
902{
903    unsigned len = strm->avail_in;
904    deflate_state *state = (deflate_state *) strm->state;
905
906    if (len > size) len = size;
907    if (len == 0) return 0;
908
909    strm->avail_in  -= len;
910
911    if (!state->noheader) {
912        state->adler = adler32(state->adler, strm->next_in, len);
913    }
914    zmemcpy(buf, strm->next_in, len);
915    strm->next_in  += len;
916    strm->total_in += len;
917
918    return (int)len;
919}
920
921/* ===========================================================================
922 * Initialize the "longest match" routines for a new zlib stream
923 */
924local void lm_init (s)
925    deflate_state *s;
926{
927    s->window_size = (ulg)2L*s->w_size;
928
929    CLEAR_HASH(s);
930
931    /* Set the default configuration parameters:
932     */
933    s->max_lazy_match   = configuration_table[s->level].max_lazy;
934    s->good_match       = configuration_table[s->level].good_length;
935    s->nice_match       = configuration_table[s->level].nice_length;
936    s->max_chain_length = configuration_table[s->level].max_chain;
937
938    s->strstart = 0;
939    s->block_start = 0L;
940    s->lookahead = 0;
941    s->match_length = MIN_MATCH-1;
942    s->match_available = 0;
943    s->ins_h = 0;
944#ifdef ASMV
945    match_init(); /* initialize the asm code */
946#endif
947}
948
949/* ===========================================================================
950 * Set match_start to the longest match starting at the given string and
951 * return its length. Matches shorter or equal to prev_length are discarded,
952 * in which case the result is equal to prev_length and match_start is
953 * garbage.
954 * IN assertions: cur_match is the head of the hash chain for the current
955 *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
956 */
957#ifndef ASMV
958/* For 80x86 and 680x0, an optimized version will be provided in match.asm or
959 * match.S. The code will be functionally equivalent.
960 */
961local int longest_match(s, cur_match)
962    deflate_state *s;
963    IPos cur_match;                             /* current match */
964{
965    unsigned chain_length = s->max_chain_length;/* max hash chain length */
966    register Bytef *scan = s->window + s->strstart; /* current string */
967    register Bytef *match;                       /* matched string */
968    register int len;                           /* length of current match */
969    int best_len = s->prev_length;              /* best match length so far */
970    IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
971        s->strstart - (IPos)MAX_DIST(s) : NIL;
972    /* Stop when cur_match becomes <= limit. To simplify the code,
973     * we prevent matches with the string of window index 0.
974     */
975    Posf *prev = s->prev;
976    uInt wmask = s->w_mask;
977
978#ifdef UNALIGNED_OK
979    /* Compare two bytes at a time. Note: this is not always beneficial.
980     * Try with and without -DUNALIGNED_OK to check.
981     */
982    register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
983    register ush scan_start = *(ushf*)scan;
984    register ush scan_end   = *(ushf*)(scan+best_len-1);
985#else
986    register Bytef *strend = s->window + s->strstart + MAX_MATCH;
987    register Byte scan_end1  = scan[best_len-1];
988    register Byte scan_end   = scan[best_len];
989#endif
990
991    /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
992     * It is easy to get rid of this optimization if necessary.
993     */
994    Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
995
996    /* Do not waste too much time if we already have a good match: */
997    if (s->prev_length >= s->good_match) {
998        chain_length >>= 2;
999    }
1000    Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1001
1002    do {
1003        Assert(cur_match < s->strstart, "no future");
1004        match = s->window + cur_match;
1005
1006        /* Skip to next match if the match length cannot increase
1007         * or if the match length is less than 2:
1008         */
1009#if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1010        /* This code assumes sizeof(unsigned short) == 2. Do not use
1011         * UNALIGNED_OK if your compiler uses a different size.
1012         */
1013        if (*(ushf*)(match+best_len-1) != scan_end ||
1014            *(ushf*)match != scan_start) continue;
1015
1016        /* It is not necessary to compare scan[2] and match[2] since they are
1017         * always equal when the other bytes match, given that the hash keys
1018         * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1019         * strstart+3, +5, ... up to strstart+257. We check for insufficient
1020         * lookahead only every 4th comparison; the 128th check will be made
1021         * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1022         * necessary to put more guard bytes at the end of the window, or
1023         * to check more often for insufficient lookahead.
1024         */
1025        Assert(scan[2] == match[2], "scan[2]?");
1026        scan++, match++;
1027        do {
1028        } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1029                 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1030                 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1031                 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1032                 scan < strend);
1033        /* The funny "do {}" generates better code on most compilers */
1034
1035        /* Here, scan <= window+strstart+257 */
1036        Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1037        if (*scan == *match) scan++;
1038
1039        len = (MAX_MATCH - 1) - (int)(strend-scan);
1040        scan = strend - (MAX_MATCH-1);
1041
1042#else /* UNALIGNED_OK */
1043
1044        if (match[best_len]   != scan_end  ||
1045            match[best_len-1] != scan_end1 ||
1046            *match            != *scan     ||
1047            *++match          != scan[1])      continue;
1048
1049        /* The check at best_len-1 can be removed because it will be made
1050         * again later. (This heuristic is not always a win.)
1051         * It is not necessary to compare scan[2] and match[2] since they
1052         * are always equal when the other bytes match, given that
1053         * the hash keys are equal and that HASH_BITS >= 8.
1054         */
1055        scan += 2, match++;
1056        Assert(*scan == *match, "match[2]?");
1057
1058        /* We check for insufficient lookahead only every 8th comparison;
1059         * the 256th check will be made at strstart+258.
1060         */
1061        do {
1062        } while (*++scan == *++match && *++scan == *++match &&
1063                 *++scan == *++match && *++scan == *++match &&
1064                 *++scan == *++match && *++scan == *++match &&
1065                 *++scan == *++match && *++scan == *++match &&
1066                 scan < strend);
1067
1068        Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1069
1070        len = MAX_MATCH - (int)(strend - scan);
1071        scan = strend - MAX_MATCH;
1072
1073#endif /* UNALIGNED_OK */
1074
1075        if (len > best_len) {
1076            s->match_start = cur_match;
1077            best_len = len;
1078            if (len >= s->nice_match) break;
1079#ifdef UNALIGNED_OK
1080            scan_end = *(ushf*)(scan+best_len-1);
1081#else
1082            scan_end1  = scan[best_len-1];
1083            scan_end   = scan[best_len];
1084#endif
1085        }
1086    } while ((cur_match = prev[cur_match & wmask]) > limit
1087             && --chain_length != 0);
1088
1089    return best_len;
1090}
1091#endif /* ASMV */
1092
1093#ifdef DEBUG_ZLIB
1094/* ===========================================================================
1095 * Check that the match at match_start is indeed a match.
1096 */
1097local void check_match(s, start, match, length)
1098    deflate_state *s;
1099    IPos start, match;
1100    int length;
1101{
1102    /* check that the match is indeed a match */
1103    if (memcmp((charf *)s->window + match,
1104                (charf *)s->window + start, length) != EQUAL) {
1105        fprintf(stderr,
1106            " start %u, match %u, length %d\n",
1107            start, match, length);
1108        do { fprintf(stderr, "%c%c", s->window[match++],
1109                     s->window[start++]); } while (--length != 0);
1110        z_error("invalid match");
1111    }
1112    if (verbose > 1) {
1113        fprintf(stderr,"\\[%d,%d]", start-match, length);
1114        do { putc(s->window[start++], stderr); } while (--length != 0);
1115    }
1116}
1117#else
1118#  define check_match(s, start, match, length)
1119#endif
1120
1121/* ===========================================================================
1122 * Fill the window when the lookahead becomes insufficient.
1123 * Updates strstart and lookahead.
1124 *
1125 * IN assertion: lookahead < MIN_LOOKAHEAD
1126 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1127 *    At least one byte has been read, or avail_in == 0; reads are
1128 *    performed for at least two bytes (required for the zip translate_eol
1129 *    option -- not supported here).
1130 */
1131local void fill_window(s)
1132    deflate_state *s;
1133{
1134    register unsigned n, m;
1135    register Posf *p;
1136    unsigned more;    /* Amount of free space at the end of the window. */
1137    uInt wsize = s->w_size;
1138
1139    do {
1140        more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1141
1142        /* Deal with !@#$% 64K limit: */
1143        if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1144            more = wsize;
1145        } else if (more == (unsigned)(-1)) {
1146            /* Very unlikely, but possible on 16 bit machine if strstart == 0
1147             * and lookahead == 1 (input done one byte at time)
1148             */
1149            more--;
1150
1151        /* If the window is almost full and there is insufficient lookahead,
1152         * move the upper half to the lower one to make room in the upper half.
1153         */
1154        } else if (s->strstart >= wsize+MAX_DIST(s)) {
1155
1156            /* By the IN assertion, the window is not empty so we can't confuse
1157             * more == 0 with more == 64K on a 16 bit machine.
1158             */
1159            zmemcpy((charf *)s->window, (charf *)s->window+wsize,
1160                   (unsigned)wsize);
1161            s->match_start -= wsize;
1162            s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
1163
1164            s->block_start -= (long) wsize;
1165
1166            /* Slide the hash table (could be avoided with 32 bit values
1167               at the expense of memory usage):
1168             */
1169            n = s->hash_size;
1170            p = &s->head[n];
1171            do {
1172                m = *--p;
1173                *p = (Pos)(m >= wsize ? m-wsize : NIL);
1174            } while (--n);
1175
1176            n = wsize;
1177            p = &s->prev[n];
1178            do {
1179                m = *--p;
1180                *p = (Pos)(m >= wsize ? m-wsize : NIL);
1181                /* If n is not on any hash chain, prev[n] is garbage but
1182                 * its value will never be used.
1183                 */
1184            } while (--n);
1185
1186            more += wsize;
1187        }
1188        if (s->strm->avail_in == 0) return;
1189
1190        /* If there was no sliding:
1191         *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1192         *    more == window_size - lookahead - strstart
1193         * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1194         * => more >= window_size - 2*WSIZE + 2
1195         * In the BIG_MEM or MMAP case (not yet supported),
1196         *   window_size == input_size + MIN_LOOKAHEAD  &&
1197         *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1198         * Otherwise, window_size == 2*WSIZE so more >= 2.
1199         * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1200         */
1201        Assert(more >= 2, "more < 2");
1202
1203        n = read_buf(s->strm, (charf *)s->window + s->strstart + s->lookahead,
1204                     more);
1205        s->lookahead += n;
1206
1207        /* Initialize the hash value now that we have some input: */
1208        if (s->lookahead >= MIN_MATCH) {
1209            s->ins_h = s->window[s->strstart];
1210            UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1211#if MIN_MATCH != 3
1212            Call UPDATE_HASH() MIN_MATCH-3 more times
1213#endif
1214        }
1215        /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1216         * but this is not important since only literal bytes will be emitted.
1217         */
1218
1219    } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1220}
1221
1222/* ===========================================================================
1223 * Flush the current block, with given end-of-file flag.
1224 * IN assertion: strstart is set to the end of the current match.
1225 */
1226#define FLUSH_BLOCK_ONLY(s, flush) { \
1227   ct_flush_block(s, (s->block_start >= 0L ? \
1228           (charf *)&s->window[(unsigned)s->block_start] : \
1229           (charf *)Z_NULL), (long)s->strstart - s->block_start, (flush)); \
1230   s->block_start = s->strstart; \
1231   flush_pending(s->strm); \
1232   Tracev((stderr,"[FLUSH]")); \
1233}
1234
1235/* Same but force premature exit if necessary. */
1236#define FLUSH_BLOCK(s, flush) { \
1237   FLUSH_BLOCK_ONLY(s, flush); \
1238   if (s->strm->avail_out == 0) return 1; \
1239}
1240
1241/* ===========================================================================
1242 * Compress as much as possible from the input stream, return true if
1243 * processing was terminated prematurely (no more input or output space).
1244 * This function does not perform lazy evaluationof matches and inserts
1245 * new strings in the dictionary only for unmatched strings or for short
1246 * matches. It is used only for the fast compression options.
1247 */
1248local int deflate_fast(s, flush)
1249    deflate_state *s;
1250    int flush;
1251{
1252    IPos hash_head = NIL; /* head of the hash chain */
1253    int bflush;     /* set if current block must be flushed */
1254
1255    s->prev_length = MIN_MATCH-1;
1256
1257    for (;;) {
1258        /* Make sure that we always have enough lookahead, except
1259         * at the end of the input file. We need MAX_MATCH bytes
1260         * for the next match, plus MIN_MATCH bytes to insert the
1261         * string following the next match.
1262         */
1263        if (s->lookahead < MIN_LOOKAHEAD) {
1264            fill_window(s);
1265            if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) return 1;
1266
1267            if (s->lookahead == 0) break; /* flush the current block */
1268        }
1269
1270        /* Insert the string window[strstart .. strstart+2] in the
1271         * dictionary, and set hash_head to the head of the hash chain:
1272         */
1273        if (s->lookahead >= MIN_MATCH) {
1274            INSERT_STRING(s, s->strstart, hash_head);
1275        }
1276
1277        /* Find the longest match, discarding those <= prev_length.
1278         * At this point we have always match_length < MIN_MATCH
1279         */
1280        if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1281            /* To simplify the code, we prevent matches with the string
1282             * of window index 0 (in particular we have to avoid a match
1283             * of the string with itself at the start of the input file).
1284             */
1285            if (s->strategy != Z_HUFFMAN_ONLY) {
1286                s->match_length = longest_match (s, hash_head);
1287            }
1288            /* longest_match() sets match_start */
1289
1290            if (s->match_length > s->lookahead) s->match_length = s->lookahead;
1291        }
1292        if (s->match_length >= MIN_MATCH) {
1293            check_match(s, s->strstart, s->match_start, s->match_length);
1294
1295            bflush = ct_tally(s, s->strstart - s->match_start,
1296                              s->match_length - MIN_MATCH);
1297
1298            s->lookahead -= s->match_length;
1299
1300            /* Insert new strings in the hash table only if the match length
1301             * is not too large. This saves time but degrades compression.
1302             */
1303            if (s->match_length <= s->max_insert_length &&
1304                s->lookahead >= MIN_MATCH) {
1305                s->match_length--; /* string at strstart already in hash table */
1306                do {
1307                    s->strstart++;
1308                    INSERT_STRING(s, s->strstart, hash_head);
1309                    /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1310                     * always MIN_MATCH bytes ahead.
1311                     */
1312                } while (--s->match_length != 0);
1313                s->strstart++;
1314            } else {
1315                s->strstart += s->match_length;
1316                s->match_length = 0;
1317                s->ins_h = s->window[s->strstart];
1318                UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1319#if MIN_MATCH != 3
1320                Call UPDATE_HASH() MIN_MATCH-3 more times
1321#endif
1322                /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1323                 * matter since it will be recomputed at next deflate call.
1324                 */
1325            }
1326        } else {
1327            /* No match, output a literal byte */
1328            Tracevv((stderr,"%c", s->window[s->strstart]));
1329            bflush = ct_tally (s, 0, s->window[s->strstart]);
1330            s->lookahead--;
1331            s->strstart++;
1332        }
1333        if (bflush) FLUSH_BLOCK(s, Z_NO_FLUSH);
1334    }
1335    FLUSH_BLOCK(s, flush);
1336    return 0; /* normal exit */
1337}
1338
1339/* ===========================================================================
1340 * Same as above, but achieves better compression. We use a lazy
1341 * evaluation for matches: a match is finally adopted only if there is
1342 * no better match at the next window position.
1343 */
1344local int deflate_slow(s, flush)
1345    deflate_state *s;
1346    int flush;
1347{
1348    IPos hash_head = NIL;    /* head of hash chain */
1349    int bflush;              /* set if current block must be flushed */
1350
1351    /* Process the input block. */
1352    for (;;) {
1353        /* Make sure that we always have enough lookahead, except
1354         * at the end of the input file. We need MAX_MATCH bytes
1355         * for the next match, plus MIN_MATCH bytes to insert the
1356         * string following the next match.
1357         */
1358        if (s->lookahead < MIN_LOOKAHEAD) {
1359            fill_window(s);
1360            if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) return 1;
1361
1362            if (s->lookahead == 0) break; /* flush the current block */
1363        }
1364
1365        /* Insert the string window[strstart .. strstart+2] in the
1366         * dictionary, and set hash_head to the head of the hash chain:
1367         */
1368        if (s->lookahead >= MIN_MATCH) {
1369            INSERT_STRING(s, s->strstart, hash_head);
1370        }
1371
1372        /* Find the longest match, discarding those <= prev_length.
1373         */
1374        s->prev_length = s->match_length, s->prev_match = s->match_start;
1375        s->match_length = MIN_MATCH-1;
1376
1377        if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1378            s->strstart - hash_head <= MAX_DIST(s)) {
1379            /* To simplify the code, we prevent matches with the string
1380             * of window index 0 (in particular we have to avoid a match
1381             * of the string with itself at the start of the input file).
1382             */
1383            if (s->strategy != Z_HUFFMAN_ONLY) {
1384                s->match_length = longest_match (s, hash_head);
1385            }
1386            /* longest_match() sets match_start */
1387            if (s->match_length > s->lookahead) s->match_length = s->lookahead;
1388
1389            if (s->match_length <= 5 && (s->strategy == Z_FILTERED ||
1390                 (s->match_length == MIN_MATCH &&
1391                  s->strstart - s->match_start > TOO_FAR))) {
1392
1393                /* If prev_match is also MIN_MATCH, match_start is garbage
1394                 * but we will ignore the current match anyway.
1395                 */
1396                s->match_length = MIN_MATCH-1;
1397            }
1398        }
1399        /* If there was a match at the previous step and the current
1400         * match is not better, output the previous match:
1401         */
1402        if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1403            uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1404            /* Do not insert strings in hash table beyond this. */
1405
1406            check_match(s, s->strstart-1, s->prev_match, s->prev_length);
1407
1408            bflush = ct_tally(s, s->strstart -1 - s->prev_match,
1409                              s->prev_length - MIN_MATCH);
1410
1411            /* Insert in hash table all strings up to the end of the match.
1412             * strstart-1 and strstart are already inserted. If there is not
1413             * enough lookahead, the last two strings are not inserted in
1414             * the hash table.
1415             */
1416            s->lookahead -= s->prev_length-1;
1417            s->prev_length -= 2;
1418            do {
1419                if (++s->strstart <= max_insert) {
1420                    INSERT_STRING(s, s->strstart, hash_head);
1421                }
1422            } while (--s->prev_length != 0);
1423            s->match_available = 0;
1424            s->match_length = MIN_MATCH-1;
1425            s->strstart++;
1426
1427            if (bflush) FLUSH_BLOCK(s, Z_NO_FLUSH);
1428
1429        } else if (s->match_available) {
1430            /* If there was no match at the previous position, output a
1431             * single literal. If there was a match but the current match
1432             * is longer, truncate the previous match to a single literal.
1433             */
1434            Tracevv((stderr,"%c", s->window[s->strstart-1]));
1435            if (ct_tally (s, 0, s->window[s->strstart-1])) {
1436                FLUSH_BLOCK_ONLY(s, Z_NO_FLUSH);
1437            }
1438            s->strstart++;
1439            s->lookahead--;
1440            if (s->strm->avail_out == 0) return 1;
1441        } else {
1442            /* There is no previous match to compare with, wait for
1443             * the next step to decide.
1444             */
1445            s->match_available = 1;
1446            s->strstart++;
1447            s->lookahead--;
1448        }
1449    }
1450    Assert (flush != Z_NO_FLUSH, "no flush?");
1451    if (s->match_available) {
1452        Tracevv((stderr,"%c", s->window[s->strstart-1]));
1453        ct_tally (s, 0, s->window[s->strstart-1]);
1454        s->match_available = 0;
1455    }
1456    FLUSH_BLOCK(s, flush);
1457    return 0;
1458}
1459
1460
1461/*+++++*/
1462/* trees.c -- output deflated data using Huffman coding
1463 * Copyright (C) 1995 Jean-loup Gailly
1464 * For conditions of distribution and use, see copyright notice in zlib.h
1465 */
1466
1467/*
1468 *  ALGORITHM
1469 *
1470 *      The "deflation" process uses several Huffman trees. The more
1471 *      common source values are represented by shorter bit sequences.
1472 *
1473 *      Each code tree is stored in a compressed form which is itself
1474 * a Huffman encoding of the lengths of all the code strings (in
1475 * ascending order by source values).  The actual code strings are
1476 * reconstructed from the lengths in the inflate process, as described
1477 * in the deflate specification.
1478 *
1479 *  REFERENCES
1480 *
1481 *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
1482 *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
1483 *
1484 *      Storer, James A.
1485 *          Data Compression:  Methods and Theory, pp. 49-50.
1486 *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
1487 *
1488 *      Sedgewick, R.
1489 *          Algorithms, p290.
1490 *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
1491 */
1492
1493/* From: trees.c,v 1.5 1995/05/03 17:27:12 jloup Exp */
1494
1495#ifdef DEBUG_ZLIB
1496#  include <ctype.h>
1497#endif
1498
1499/* ===========================================================================
1500 * Constants
1501 */
1502
1503#define MAX_BL_BITS 7
1504/* Bit length codes must not exceed MAX_BL_BITS bits */
1505
1506#define END_BLOCK 256
1507/* end of block literal code */
1508
1509#define REP_3_6      16
1510/* repeat previous bit length 3-6 times (2 bits of repeat count) */
1511
1512#define REPZ_3_10    17
1513/* repeat a zero length 3-10 times  (3 bits of repeat count) */
1514
1515#define REPZ_11_138  18
1516/* repeat a zero length 11-138 times  (7 bits of repeat count) */
1517
1518local int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
1519   = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
1520
1521local int extra_dbits[D_CODES] /* extra bits for each distance code */
1522   = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
1523
1524local int extra_blbits[BL_CODES]/* extra bits for each bit length code */
1525   = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
1526
1527local uch bl_order[BL_CODES]
1528   = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
1529/* The lengths of the bit length codes are sent in order of decreasing
1530 * probability, to avoid transmitting the lengths for unused bit length codes.
1531 */
1532
1533#define Buf_size (8 * 2*sizeof(char))
1534/* Number of bits used within bi_buf. (bi_buf might be implemented on
1535 * more than 16 bits on some systems.)
1536 */
1537
1538/* ===========================================================================
1539 * Local data. These are initialized only once.
1540 * To do: initialize at compile time to be completely reentrant. ???
1541 */
1542
1543local ct_data static_ltree[L_CODES+2];
1544/* The static literal tree. Since the bit lengths are imposed, there is no
1545 * need for the L_CODES extra codes used during heap construction. However
1546 * The codes 286 and 287 are needed to build a canonical tree (see ct_init
1547 * below).
1548 */
1549
1550local ct_data static_dtree[D_CODES];
1551/* The static distance tree. (Actually a trivial tree since all codes use
1552 * 5 bits.)
1553 */
1554
1555local uch dist_code[512];
1556/* distance codes. The first 256 values correspond to the distances
1557 * 3 .. 258, the last 256 values correspond to the top 8 bits of
1558 * the 15 bit distances.
1559 */
1560
1561local uch length_code[MAX_MATCH-MIN_MATCH+1];
1562/* length code for each normalized match length (0 == MIN_MATCH) */
1563
1564local int base_length[LENGTH_CODES];
1565/* First normalized length for each code (0 = MIN_MATCH) */
1566
1567local int base_dist[D_CODES];
1568/* First normalized distance for each code (0 = distance of 1) */
1569
1570struct static_tree_desc_s {
1571    ct_data *static_tree;        /* static tree or NULL */
1572    intf    *extra_bits;         /* extra bits for each code or NULL */
1573    int     extra_base;          /* base index for extra_bits */
1574    int     elems;               /* max number of elements in the tree */
1575    int     max_length;          /* max bit length for the codes */
1576};
1577
1578local static_tree_desc  static_l_desc =
1579{static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
1580
1581local static_tree_desc  static_d_desc =
1582{static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
1583
1584local static_tree_desc  static_bl_desc =
1585{(ct_data *)0, extra_blbits, 0,      BL_CODES, MAX_BL_BITS};
1586
1587/* ===========================================================================
1588 * Local (static) routines in this file.
1589 */
1590
1591local void ct_static_init OF((void));
1592local void init_block     OF((deflate_state *s));
1593local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k));
1594local void gen_bitlen     OF((deflate_state *s, tree_desc *desc));
1595local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count));
1596local void build_tree     OF((deflate_state *s, tree_desc *desc));
1597local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));
1598local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));
1599local int  build_bl_tree  OF((deflate_state *s));
1600local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
1601                              int blcodes));
1602local void compress_block OF((deflate_state *s, ct_data *ltree,
1603                              ct_data *dtree));
1604local void set_data_type  OF((deflate_state *s));
1605local unsigned bi_reverse OF((unsigned value, int length));
1606local void bi_windup      OF((deflate_state *s));
1607local void bi_flush       OF((deflate_state *s));
1608local void copy_block     OF((deflate_state *s, charf *buf, unsigned len,
1609                              int header));
1610
1611#ifndef DEBUG_ZLIB
1612#  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
1613   /* Send a code of the given tree. c and tree must not have side effects */
1614
1615#else /* DEBUG_ZLIB */
1616#  define send_code(s, c, tree) \
1617     { if (verbose>1) fprintf(stderr,"\ncd %3d ",(c)); \
1618       send_bits(s, tree[c].Code, tree[c].Len); }
1619#endif
1620
1621#define d_code(dist) \
1622   ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)])
1623/* Mapping from a distance to a distance code. dist is the distance - 1 and
1624 * must not have side effects. dist_code[256] and dist_code[257] are never
1625 * used.
1626 */
1627
1628/* ===========================================================================
1629 * Output a short LSB first on the stream.
1630 * IN assertion: there is enough room in pendingBuf.
1631 */
1632#define put_short(s, w) { \
1633    put_byte(s, (uch)((w) & 0xff)); \
1634    put_byte(s, (uch)((ush)(w) >> 8)); \
1635}
1636
1637/* ===========================================================================
1638 * Send a value on a given number of bits.
1639 * IN assertion: length <= 16 and value fits in length bits.
1640 */
1641#ifdef DEBUG_ZLIB
1642local void send_bits      OF((deflate_state *s, int value, int length));
1643
1644local void send_bits(s, value, length)
1645    deflate_state *s;
1646    int value;  /* value to send */
1647    int length; /* number of bits */
1648{
1649    Tracev((stderr," l %2d v %4x ", length, value));
1650    Assert(length > 0 && length <= 15, "invalid length");
1651    s->bits_sent += (ulg)length;
1652
1653    /* If not enough room in bi_buf, use (valid) bits from bi_buf and
1654     * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
1655     * unused bits in value.
1656     */
1657    if (s->bi_valid > (int)Buf_size - length) {
1658        s->bi_buf |= (value << s->bi_valid);
1659        put_short(s, s->bi_buf);
1660        s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
1661        s->bi_valid += length - Buf_size;
1662    } else {
1663        s->bi_buf |= value << s->bi_valid;
1664        s->bi_valid += length;
1665    }
1666}
1667#else /* !DEBUG_ZLIB */
1668
1669#define send_bits(s, value, length) \
1670{ int len = length;\
1671  if (s->bi_valid > (int)Buf_size - len) {\
1672    int val = value;\
1673    s->bi_buf |= (val << s->bi_valid);\
1674    put_short(s, s->bi_buf);\
1675    s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
1676    s->bi_valid += len - Buf_size;\
1677  } else {\
1678    s->bi_buf |= (value) << s->bi_valid;\
1679    s->bi_valid += len;\
1680  }\
1681}
1682#endif /* DEBUG_ZLIB */
1683
1684
1685#define MAX(a,b) (a >= b ? a : b)
1686/* the arguments must not have side effects */
1687
1688/* ===========================================================================
1689 * Initialize the various 'constant' tables.
1690 * To do: do this at compile time.
1691 */
1692local void ct_static_init()
1693{
1694    int n;        /* iterates over tree elements */
1695    int bits;     /* bit counter */
1696    int length;   /* length value */
1697    int code;     /* code value */
1698    int dist;     /* distance index */
1699    ush bl_count[MAX_BITS+1];
1700    /* number of codes at each bit length for an optimal tree */
1701
1702    /* Initialize the mapping length (0..255) -> length code (0..28) */
1703    length = 0;
1704    for (code = 0; code < LENGTH_CODES-1; code++) {
1705        base_length[code] = length;
1706        for (n = 0; n < (1<<extra_lbits[code]); n++) {
1707            length_code[length++] = (uch)code;
1708        }
1709    }
1710    Assert (length == 256, "ct_static_init: length != 256");
1711    /* Note that the length 255 (match length 258) can be represented
1712     * in two different ways: code 284 + 5 bits or code 285, so we
1713     * overwrite length_code[255] to use the best encoding:
1714     */
1715    length_code[length-1] = (uch)code;
1716
1717    /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
1718    dist = 0;
1719    for (code = 0 ; code < 16; code++) {
1720        base_dist[code] = dist;
1721        for (n = 0; n < (1<<extra_dbits[code]); n++) {
1722            dist_code[dist++] = (uch)code;
1723        }
1724    }
1725    Assert (dist == 256, "ct_static_init: dist != 256");
1726    dist >>= 7; /* from now on, all distances are divided by 128 */
1727    for ( ; code < D_CODES; code++) {
1728        base_dist[code] = dist << 7;
1729        for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
1730            dist_code[256 + dist++] = (uch)code;
1731        }
1732    }
1733    Assert (dist == 256, "ct_static_init: 256+dist != 512");
1734
1735    /* Construct the codes of the static literal tree */
1736    for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
1737    n = 0;
1738    while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
1739    while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
1740    while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
1741    while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
1742    /* Codes 286 and 287 do not exist, but we must include them in the
1743     * tree construction to get a canonical Huffman tree (longest code
1744     * all ones)
1745     */
1746    gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
1747
1748    /* The static distance tree is trivial: */
1749    for (n = 0; n < D_CODES; n++) {
1750        static_dtree[n].Len = 5;
1751        static_dtree[n].Code = bi_reverse(n, 5);
1752    }
1753}
1754
1755/* ===========================================================================
1756 * Initialize the tree data structures for a new zlib stream.
1757 */
1758local void ct_init(s)
1759    deflate_state *s;
1760{
1761    if (static_dtree[0].Len == 0) {
1762        ct_static_init();              /* To do: at compile time */
1763    }
1764
1765    s->compressed_len = 0L;
1766
1767    s->l_desc.dyn_tree = s->dyn_ltree;
1768    s->l_desc.stat_desc = &static_l_desc;
1769
1770    s->d_desc.dyn_tree = s->dyn_dtree;
1771    s->d_desc.stat_desc = &static_d_desc;
1772
1773    s->bl_desc.dyn_tree = s->bl_tree;
1774    s->bl_desc.stat_desc = &static_bl_desc;
1775
1776    s->bi_buf = 0;
1777    s->bi_valid = 0;
1778    s->last_eob_len = 8; /* enough lookahead for inflate */
1779#ifdef DEBUG_ZLIB
1780    s->bits_sent = 0L;
1781#endif
1782    s->blocks_in_packet = 0;
1783
1784    /* Initialize the first block of the first file: */
1785    init_block(s);
1786}
1787
1788/* ===========================================================================
1789 * Initialize a new block.
1790 */
1791local void init_block(s)
1792    deflate_state *s;
1793{
1794    int n; /* iterates over tree elements */
1795
1796    /* Initialize the trees. */
1797    for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
1798    for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
1799    for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
1800
1801    s->dyn_ltree[END_BLOCK].Freq = 1;
1802    s->opt_len = s->static_len = 0L;
1803    s->last_lit = s->matches = 0;
1804}
1805
1806#define SMALLEST 1
1807/* Index within the heap array of least frequent node in the Huffman tree */
1808
1809
1810/* ===========================================================================
1811 * Remove the smallest element from the heap and recreate the heap with
1812 * one less element. Updates heap and heap_len.
1813 */
1814#define pqremove(s, tree, top) \
1815{\
1816    top = s->heap[SMALLEST]; \
1817    s->heap[SMALLEST] = s->heap[s->heap_len--]; \
1818    pqdownheap(s, tree, SMALLEST); \
1819}
1820
1821/* ===========================================================================
1822 * Compares to subtrees, using the tree depth as tie breaker when
1823 * the subtrees have equal frequency. This minimizes the worst case length.
1824 */
1825#define smaller(tree, n, m, depth) \
1826   (tree[n].Freq < tree[m].Freq || \
1827   (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
1828
1829/* ===========================================================================
1830 * Restore the heap property by moving down the tree starting at node k,
1831 * exchanging a node with the smallest of its two sons if necessary, stopping
1832 * when the heap property is re-established (each father smaller than its
1833 * two sons).
1834 */
1835local void pqdownheap(s, tree, k)
1836    deflate_state *s;
1837    ct_data *tree;  /* the tree to restore */
1838    int k;               /* node to move down */
1839{
1840    int v = s->heap[k];
1841    int j = k << 1;  /* left son of k */
1842    while (j <= s->heap_len) {
1843        /* Set j to the smallest of the two sons: */
1844        if (j < s->heap_len &&
1845            smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
1846            j++;
1847        }
1848        /* Exit if v is smaller than both sons */
1849        if (smaller(tree, v, s->heap[j], s->depth)) break;
1850
1851        /* Exchange v with the smallest son */
1852        s->heap[k] = s->heap[j];  k = j;
1853
1854        /* And continue down the tree, setting j to the left son of k */
1855        j <<= 1;
1856    }
1857    s->heap[k] = v;
1858}
1859
1860/* ===========================================================================
1861 * Compute the optimal bit lengths for a tree and update the total bit length
1862 * for the current block.
1863 * IN assertion: the fields freq and dad are set, heap[heap_max] and
1864 *    above are the tree nodes sorted by increasing frequency.
1865 * OUT assertions: the field len is set to the optimal bit length, the
1866 *     array bl_count contains the frequencies for each bit length.
1867 *     The length opt_len is updated; static_len is also updated if stree is
1868 *     not null.
1869 */
1870local void gen_bitlen(s, desc)
1871    deflate_state *s;
1872    tree_desc *desc;    /* the tree descriptor */
1873{
1874    ct_data *tree  = desc->dyn_tree;
1875    int max_code   = desc->max_code;
1876    ct_data *stree = desc->stat_desc->static_tree;
1877    intf *extra    = desc->stat_desc->extra_bits;
1878    int base       = desc->stat_desc->extra_base;
1879    int max_length = desc->stat_desc->max_length;
1880    int h;              /* heap index */
1881    int n, m;           /* iterate over the tree elements */
1882    int bits;           /* bit length */
1883    int xbits;          /* extra bits */
1884    ush f;              /* frequency */
1885    int overflow = 0;   /* number of elements with bit length too large */
1886
1887    for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
1888
1889    /* In a first pass, compute the optimal bit lengths (which may
1890     * overflow in the case of the bit length tree).
1891     */
1892    tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
1893
1894    for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
1895        n = s->heap[h];
1896        bits = tree[tree[n].Dad].Len + 1;
1897        if (bits > max_length) bits = max_length, overflow++;
1898        tree[n].Len = (ush)bits;
1899        /* We overwrite tree[n].Dad which is no longer needed */
1900
1901        if (n > max_code) continue; /* not a leaf node */
1902
1903        s->bl_count[bits]++;
1904        xbits = 0;
1905        if (n >= base) xbits = extra[n-base];
1906        f = tree[n].Freq;
1907        s->opt_len += (ulg)f * (bits + xbits);
1908        if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
1909    }
1910    if (overflow == 0) return;
1911
1912    Trace((stderr,"\nbit length overflow\n"));
1913    /* This happens for example on obj2 and pic of the Calgary corpus */
1914
1915    /* Find the first bit length which could increase: */
1916    do {
1917        bits = max_length-1;
1918        while (s->bl_count[bits] == 0) bits--;
1919        s->bl_count[bits]--;      /* move one leaf down the tree */
1920        s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
1921        s->bl_count[max_length]--;
1922        /* The brother of the overflow item also moves one step up,
1923         * but this does not affect bl_count[max_length]
1924         */
1925        overflow -= 2;
1926    } while (overflow > 0);
1927
1928    /* Now recompute all bit lengths, scanning in increasing frequency.
1929     * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
1930     * lengths instead of fixing only the wrong ones. This idea is taken
1931     * from 'ar' written by Haruhiko Okumura.)
1932     */
1933    for (bits = max_length; bits != 0; bits--) {
1934        n = s->bl_count[bits];
1935        while (n != 0) {
1936            m = s->heap[--h];
1937            if (m > max_code) continue;
1938            if (tree[m].Len != (unsigned) bits) {
1939                Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
1940                s->opt_len += ((long)bits - (long)tree[m].Len)
1941                              *(long)tree[m].Freq;
1942                tree[m].Len = (ush)bits;
1943            }
1944            n--;
1945        }
1946    }
1947}
1948
1949/* ===========================================================================
1950 * Generate the codes for a given tree and bit counts (which need not be
1951 * optimal).
1952 * IN assertion: the array bl_count contains the bit length statistics for
1953 * the given tree and the field len is set for all tree elements.
1954 * OUT assertion: the field code is set for all tree elements of non
1955 *     zero code length.
1956 */
1957local void gen_codes (tree, max_code, bl_count)
1958    ct_data *tree;             /* the tree to decorate */
1959    int max_code;              /* largest code with non zero frequency */
1960    ushf *bl_count;            /* number of codes at each bit length */
1961{
1962    ush next_code[MAX_BITS+1]; /* next code value for each bit length */
1963    ush code = 0;              /* running code value */
1964    int bits;                  /* bit index */
1965    int n;                     /* code index */
1966
1967    /* The distribution counts are first used to generate the code values
1968     * without bit reversal.
1969     */
1970    for (bits = 1; bits <= MAX_BITS; bits++) {
1971        next_code[bits] = code = (code + bl_count[bits-1]) << 1;
1972    }
1973    /* Check that the bit counts in bl_count are consistent. The last code
1974     * must be all ones.
1975     */
1976    Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
1977            "inconsistent bit counts");
1978    Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
1979
1980    for (n = 0;  n <= max_code; n++) {
1981        int len = tree[n].Len;
1982        if (len == 0) continue;
1983        /* Now reverse the bits */
1984        tree[n].Code = bi_reverse(next_code[len]++, len);
1985
1986        Tracec(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
1987             n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
1988    }
1989}
1990
1991/* ===========================================================================
1992 * Construct one Huffman tree and assigns the code bit strings and lengths.
1993 * Update the total bit length for the current block.
1994 * IN assertion: the field freq is set for all tree elements.
1995 * OUT assertions: the fields len and code are set to the optimal bit length
1996 *     and corresponding code. The length opt_len is updated; static_len is
1997 *     also updated if stree is not null. The field max_code is set.
1998 */
1999local void build_tree(s, desc)
2000    deflate_state *s;
2001    tree_desc *desc; /* the tree descriptor */
2002{
2003    ct_data *tree   = desc->dyn_tree;
2004    ct_data *stree  = desc->stat_desc->static_tree;
2005    int elems       = desc->stat_desc->elems;
2006    int n, m;          /* iterate over heap elements */
2007    int max_code = -1; /* largest code with non zero frequency */
2008    int node;          /* new node being created */
2009
2010    /* Construct the initial heap, with least frequent element in
2011     * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
2012     * heap[0] is not used.
2013     */
2014    s->heap_len = 0, s->heap_max = HEAP_SIZE;
2015
2016    for (n = 0; n < elems; n++) {
2017        if (tree[n].Freq != 0) {
2018            s->heap[++(s->heap_len)] = max_code = n;
2019            s->depth[n] = 0;
2020        } else {
2021            tree[n].Len = 0;
2022        }
2023    }
2024
2025    /* The pkzip format requires that at least one distance code exists,
2026     * and that at least one bit should be sent even if there is only one
2027     * possible code. So to avoid special checks later on we force at least
2028     * two codes of non zero frequency.
2029     */
2030    while (s->heap_len < 2) {
2031        node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
2032        tree[node].Freq = 1;
2033        s->depth[node] = 0;
2034        s->opt_len--; if (stree) s->static_len -= stree[node].Len;
2035        /* node is 0 or 1 so it does not have extra bits */
2036    }
2037    desc->max_code = max_code;
2038
2039    /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
2040     * establish sub-heaps of increasing lengths:
2041     */
2042    for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
2043
2044    /* Construct the Huffman tree by repeatedly combining the least two
2045     * frequent nodes.
2046     */
2047    node = elems;              /* next internal node of the tree */
2048    do {
2049        pqremove(s, tree, n);  /* n = node of least frequency */
2050        m = s->heap[SMALLEST]; /* m = node of next least frequency */
2051
2052        s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
2053        s->heap[--(s->heap_max)] = m;
2054
2055        /* Create a new node father of n and m */
2056        tree[node].Freq = tree[n].Freq + tree[m].Freq;
2057        s->depth[node] = (uch) (MAX(s->depth[n], s->depth[m]) + 1);
2058        tree[n].Dad = tree[m].Dad = (ush)node;
2059#ifdef DUMP_BL_TREE
2060        if (tree == s->bl_tree) {
2061            fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
2062                    node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
2063        }
2064#endif
2065        /* and insert the new node in the heap */
2066        s->heap[SMALLEST] = node++;
2067        pqdownheap(s, tree, SMALLEST);
2068
2069    } while (s->heap_len >= 2);
2070
2071    s->heap[--(s->heap_max)] = s->heap[SMALLEST];
2072
2073    /* At this point, the fields freq and dad are set. We can now
2074     * generate the bit lengths.
2075     */
2076    gen_bitlen(s, (tree_desc *)desc);
2077
2078    /* The field len is now set, we can generate the bit codes */
2079    gen_codes ((ct_data *)tree, max_code, s->bl_count);
2080}
2081
2082/* ===========================================================================
2083 * Scan a literal or distance tree to determine the frequencies of the codes
2084 * in the bit length tree.
2085 */
2086local void scan_tree (s, tree, max_code)
2087    deflate_state *s;
2088    ct_data *tree;   /* the tree to be scanned */
2089    int max_code;    /* and its largest code of non zero frequency */
2090{
2091    int n;                     /* iterates over all tree elements */
2092    int prevlen = -1;          /* last emitted length */
2093    int curlen;                /* length of current code */
2094    int nextlen = tree[0].Len; /* length of next code */
2095    int count = 0;             /* repeat count of the current code */
2096    int max_count = 7;         /* max repeat count */
2097    int min_count = 4;         /* min repeat count */
2098
2099    if (nextlen == 0) max_count = 138, min_count = 3;
2100    tree[max_code+1].Len = (ush)0xffff; /* guard */
2101
2102    for (n = 0; n <= max_code; n++) {
2103        curlen = nextlen; nextlen = tree[n+1].Len;
2104        if (++count < max_count && curlen == nextlen) {
2105            continue;
2106        } else if (count < min_count) {
2107            s->bl_tree[curlen].Freq += count;
2108        } else if (curlen != 0) {
2109            if (curlen != prevlen) s->bl_tree[curlen].Freq++;
2110            s->bl_tree[REP_3_6].Freq++;
2111        } else if (count <= 10) {
2112            s->bl_tree[REPZ_3_10].Freq++;
2113        } else {
2114            s->bl_tree[REPZ_11_138].Freq++;
2115        }
2116        count = 0; prevlen = curlen;
2117        if (nextlen == 0) {
2118            max_count = 138, min_count = 3;
2119        } else if (curlen == nextlen) {
2120            max_count = 6, min_count = 3;
2121        } else {
2122            max_count = 7, min_count = 4;
2123        }
2124    }
2125}
2126
2127/* ===========================================================================
2128 * Send a literal or distance tree in compressed form, using the codes in
2129 * bl_tree.
2130 */
2131local void send_tree (s, tree, max_code)
2132    deflate_state *s;
2133    ct_data *tree; /* the tree to be scanned */
2134    int max_code;       /* and its largest code of non zero frequency */
2135{
2136    int n;                     /* iterates over all tree elements */
2137    int prevlen = -1;          /* last emitted length */
2138    int curlen;                /* length of current code */
2139    int nextlen = tree[0].Len; /* length of next code */
2140    int count = 0;             /* repeat count of the current code */
2141    int max_count = 7;         /* max repeat count */
2142    int min_count = 4;         /* min repeat count */
2143
2144    /* tree[max_code+1].Len = -1; */  /* guard already set */
2145    if (nextlen == 0) max_count = 138, min_count = 3;
2146
2147    for (n = 0; n <= max_code; n++) {
2148        curlen = nextlen; nextlen = tree[n+1].Len;
2149        if (++count < max_count && curlen == nextlen) {
2150            continue;
2151        } else if (count < min_count) {
2152            do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
2153
2154        } else if (curlen != 0) {
2155            if (curlen != prevlen) {
2156                send_code(s, curlen, s->bl_tree); count--;
2157            }
2158            Assert(count >= 3 && count <= 6, " 3_6?");
2159            send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
2160
2161        } else if (count <= 10) {
2162            send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
2163
2164        } else {
2165            send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
2166        }
2167        count = 0; prevlen = curlen;
2168        if (nextlen == 0) {
2169            max_count = 138, min_count = 3;
2170        } else if (curlen == nextlen) {
2171            max_count = 6, min_count = 3;
2172        } else {
2173            max_count = 7, min_count = 4;
2174        }
2175    }
2176}
2177
2178/* ===========================================================================
2179 * Construct the Huffman tree for the bit lengths and return the index in
2180 * bl_order of the last bit length code to send.
2181 */
2182local int build_bl_tree(s)
2183    deflate_state *s;
2184{
2185    int max_blindex;  /* index of last bit length code of non zero freq */
2186
2187    /* Determine the bit length frequencies for literal and distance trees */
2188    scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
2189    scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
2190
2191    /* Build the bit length tree: */
2192    build_tree(s, (tree_desc *)(&(s->bl_desc)));
2193    /* opt_len now includes the length of the tree representations, except
2194     * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
2195     */
2196
2197    /* Determine the number of bit length codes to send. The pkzip format
2198     * requires that at least 4 bit length codes be sent. (appnote.txt says
2199     * 3 but the actual value used is 4.)
2200     */
2201    for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
2202        if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
2203    }
2204    /* Update opt_len to include the bit length tree and counts */
2205    s->opt_len += 3*(max_blindex+1) + 5+5+4;
2206    Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
2207            s->opt_len, s->static_len));
2208
2209    return max_blindex;
2210}
2211
2212/* ===========================================================================
2213 * Send the header for a block using dynamic Huffman trees: the counts, the
2214 * lengths of the bit length codes, the literal tree and the distance tree.
2215 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
2216 */
2217local void send_all_trees(s, lcodes, dcodes, blcodes)
2218    deflate_state *s;
2219    int lcodes, dcodes, blcodes; /* number of codes for each tree */
2220{
2221    int rank;                    /* index in bl_order */
2222
2223    Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
2224    Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
2225            "too many codes");
2226    Tracev((stderr, "\nbl counts: "));
2227    send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
2228    send_bits(s, dcodes-1,   5);
2229    send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
2230    for (rank = 0; rank < blcodes; rank++) {
2231        Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
2232        send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
2233    }
2234    Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
2235
2236    send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
2237    Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
2238
2239    send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
2240    Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
2241}
2242
2243/* ===========================================================================
2244 * Send a stored block
2245 */
2246local void ct_stored_block(s, buf, stored_len, eof)
2247    deflate_state *s;
2248    charf *buf;       /* input block */
2249    ulg stored_len;   /* length of input block */
2250    int eof;          /* true if this is the last block for a file */
2251{
2252    send_bits(s, (STORED_BLOCK<<1)+eof, 3);  /* send block type */
2253    s->compressed_len = (s->compressed_len + 3 + 7) & ~7L;
2254    s->compressed_len += (stored_len + 4) << 3;
2255
2256    copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
2257}
2258
2259/* Send just the `stored block' type code without any length bytes or data.
2260 */
2261local void ct_stored_type_only(s)
2262    deflate_state *s;
2263{
2264    send_bits(s, (STORED_BLOCK << 1), 3);
2265    bi_windup(s);
2266    s->compressed_len = (s->compressed_len + 3) & ~7L;
2267}
2268
2269
2270/* ===========================================================================
2271 * Send one empty static block to give enough lookahead for inflate.
2272 * This takes 10 bits, of which 7 may remain in the bit buffer.
2273 * The current inflate code requires 9 bits of lookahead. If the EOB
2274 * code for the previous block was coded on 5 bits or less, inflate
2275 * may have only 5+3 bits of lookahead to decode this EOB.
2276 * (There are no problems if the previous block is stored or fixed.)
2277 */
2278local void ct_align(s)
2279    deflate_state *s;
2280{
2281    send_bits(s, STATIC_TREES<<1, 3);
2282    send_code(s, END_BLOCK, static_ltree);
2283    s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
2284    bi_flush(s);
2285    /* Of the 10 bits for the empty block, we have already sent
2286     * (10 - bi_valid) bits. The lookahead for the EOB of the previous
2287     * block was thus its length plus what we have just sent.
2288     */
2289    if (s->last_eob_len + 10 - s->bi_valid < 9) {
2290        send_bits(s, STATIC_TREES<<1, 3);
2291        send_code(s, END_BLOCK, static_ltree);
2292        s->compressed_len += 10L;
2293        bi_flush(s);
2294    }
2295    s->last_eob_len = 7;
2296}
2297
2298/* ===========================================================================
2299 * Determine the best encoding for the current block: dynamic trees, static
2300 * trees or store, and output the encoded block to the zip file. This function
2301 * returns the total compressed length for the file so far.
2302 */
2303local ulg ct_flush_block(s, buf, stored_len, flush)
2304    deflate_state *s;
2305    charf *buf;       /* input block, or NULL if too old */
2306    ulg stored_len;   /* length of input block */
2307    int flush;        /* Z_FINISH if this is the last block for a file */
2308{
2309    ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
2310    int max_blindex;  /* index of last bit length code of non zero freq */
2311    int eof = flush == Z_FINISH;
2312
2313    ++s->blocks_in_packet;
2314
2315    /* Check if the file is ascii or binary */
2316    if (s->data_type == UNKNOWN) set_data_type(s);
2317
2318    /* Construct the literal and distance trees */
2319    build_tree(s, (tree_desc *)(&(s->l_desc)));
2320    Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
2321            s->static_len));
2322
2323    build_tree(s, (tree_desc *)(&(s->d_desc)));
2324    Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
2325            s->static_len));
2326    /* At this point, opt_len and static_len are the total bit lengths of
2327     * the compressed block data, excluding the tree representations.
2328     */
2329
2330    /* Build the bit length tree for the above two trees, and get the index
2331     * in bl_order of the last bit length code to send.
2332     */
2333    max_blindex = build_bl_tree(s);
2334
2335    /* Determine the best encoding. Compute first the block length in bytes */
2336    opt_lenb = (s->opt_len+3+7)>>3;
2337    static_lenb = (s->static_len+3+7)>>3;
2338
2339    Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
2340            opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
2341            s->last_lit));
2342
2343    if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
2344
2345    /* If compression failed and this is the first and last block,
2346     * and if the .zip file can be seeked (to rewrite the local header),
2347     * the whole file is transformed into a stored file:
2348     */
2349#ifdef STORED_FILE_OK
2350#  ifdef FORCE_STORED_FILE
2351    if (eof && compressed_len == 0L) /* force stored file */
2352#  else
2353    if (stored_len <= opt_lenb && eof && s->compressed_len==0L && seekable())
2354#  endif
2355    {
2356        /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
2357        if (buf == (charf*)0) error ("block vanished");
2358
2359        copy_block(buf, (unsigned)stored_len, 0); /* without header */
2360        s->compressed_len = stored_len << 3;
2361        s->method = STORED;
2362    } else
2363#endif /* STORED_FILE_OK */
2364
2365    /* For Z_PACKET_FLUSH, if we don't achieve the required minimum
2366     * compression, and this block contains all the data since the last
2367     * time we used Z_PACKET_FLUSH, then just omit this block completely
2368     * from the output.
2369     */
2370    if (flush == Z_PACKET_FLUSH && s->blocks_in_packet == 1
2371	&& opt_lenb > stored_len - s->minCompr) {
2372	s->blocks_in_packet = 0;
2373	/* output nothing */
2374    } else
2375
2376#ifdef FORCE_STORED
2377    if (buf != (char*)0) /* force stored block */
2378#else
2379    if (stored_len+4 <= opt_lenb && buf != (char*)0)
2380                       /* 4: two words for the lengths */
2381#endif
2382    {
2383        /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
2384         * Otherwise we can't have processed more than WSIZE input bytes since
2385         * the last block flush, because compression would have been
2386         * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
2387         * transform a block into a stored block.
2388         */
2389        ct_stored_block(s, buf, stored_len, eof);
2390    } else
2391
2392#ifdef FORCE_STATIC
2393    if (static_lenb >= 0) /* force static trees */
2394#else
2395    if (static_lenb == opt_lenb)
2396#endif
2397    {
2398        send_bits(s, (STATIC_TREES<<1)+eof, 3);
2399        compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
2400        s->compressed_len += 3 + s->static_len;
2401    } else {
2402        send_bits(s, (DYN_TREES<<1)+eof, 3);
2403        send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
2404                       max_blindex+1);
2405        compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
2406        s->compressed_len += 3 + s->opt_len;
2407    }
2408    Assert (s->compressed_len == s->bits_sent, "bad compressed size");
2409    init_block(s);
2410
2411    if (eof) {
2412        bi_windup(s);
2413        s->compressed_len += 7;  /* align on byte boundary */
2414    }
2415    Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
2416           s->compressed_len-7*eof));
2417
2418    return s->compressed_len >> 3;
2419}
2420
2421/* ===========================================================================
2422 * Save the match info and tally the frequency counts. Return true if
2423 * the current block must be flushed.
2424 */
2425local int ct_tally (s, dist, lc)
2426    deflate_state *s;
2427    int dist;  /* distance of matched string */
2428    int lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
2429{
2430    s->d_buf[s->last_lit] = (ush)dist;
2431    s->l_buf[s->last_lit++] = (uch)lc;
2432    if (dist == 0) {
2433        /* lc is the unmatched char */
2434        s->dyn_ltree[lc].Freq++;
2435    } else {
2436        s->matches++;
2437        /* Here, lc is the match length - MIN_MATCH */
2438        dist--;             /* dist = match distance - 1 */
2439        Assert((ush)dist < (ush)MAX_DIST(s) &&
2440               (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
2441               (ush)d_code(dist) < (ush)D_CODES,  "ct_tally: bad match");
2442
2443        s->dyn_ltree[length_code[lc]+LITERALS+1].Freq++;
2444        s->dyn_dtree[d_code(dist)].Freq++;
2445    }
2446
2447    /* Try to guess if it is profitable to stop the current block here */
2448    if (s->level > 2 && (s->last_lit & 0xfff) == 0) {
2449        /* Compute an upper bound for the compressed length */
2450        ulg out_length = (ulg)s->last_lit*8L;
2451        ulg in_length = (ulg)s->strstart - s->block_start;
2452        int dcode;
2453        for (dcode = 0; dcode < D_CODES; dcode++) {
2454            out_length += (ulg)s->dyn_dtree[dcode].Freq *
2455                (5L+extra_dbits[dcode]);
2456        }
2457        out_length >>= 3;
2458        Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
2459               s->last_lit, in_length, out_length,
2460               100L - out_length*100L/in_length));
2461        if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
2462    }
2463    return (s->last_lit == s->lit_bufsize-1);
2464    /* We avoid equality with lit_bufsize because of wraparound at 64K
2465     * on 16 bit machines and because stored blocks are restricted to
2466     * 64K-1 bytes.
2467     */
2468}
2469
2470/* ===========================================================================
2471 * Send the block data compressed using the given Huffman trees
2472 */
2473local void compress_block(s, ltree, dtree)
2474    deflate_state *s;
2475    ct_data *ltree; /* literal tree */
2476    ct_data *dtree; /* distance tree */
2477{
2478    unsigned dist;      /* distance of matched string */
2479    int lc;             /* match length or unmatched char (if dist == 0) */
2480    unsigned lx = 0;    /* running index in l_buf */
2481    unsigned code;      /* the code to send */
2482    int extra;          /* number of extra bits to send */
2483
2484    if (s->last_lit != 0) do {
2485        dist = s->d_buf[lx];
2486        lc = s->l_buf[lx++];
2487        if (dist == 0) {
2488            send_code(s, lc, ltree); /* send a literal byte */
2489            Tracecv(isgraph(lc), (stderr," '%c' ", lc));
2490        } else {
2491            /* Here, lc is the match length - MIN_MATCH */
2492            code = length_code[lc];
2493            send_code(s, code+LITERALS+1, ltree); /* send the length code */
2494            extra = extra_lbits[code];
2495            if (extra != 0) {
2496                lc -= base_length[code];
2497                send_bits(s, lc, extra);       /* send the extra length bits */
2498            }
2499            dist--; /* dist is now the match distance - 1 */
2500            code = d_code(dist);
2501            Assert (code < D_CODES, "bad d_code");
2502
2503            send_code(s, code, dtree);       /* send the distance code */
2504            extra = extra_dbits[code];
2505            if (extra != 0) {
2506                dist -= base_dist[code];
2507                send_bits(s, dist, extra);   /* send the extra distance bits */
2508            }
2509        } /* literal or match pair ? */
2510
2511        /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
2512        Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow");
2513
2514    } while (lx < s->last_lit);
2515
2516    send_code(s, END_BLOCK, ltree);
2517    s->last_eob_len = ltree[END_BLOCK].Len;
2518}
2519
2520/* ===========================================================================
2521 * Set the data type to ASCII or BINARY, using a crude approximation:
2522 * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
2523 * IN assertion: the fields freq of dyn_ltree are set and the total of all
2524 * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
2525 */
2526local void set_data_type(s)
2527    deflate_state *s;
2528{
2529    int n = 0;
2530    unsigned ascii_freq = 0;
2531    unsigned bin_freq = 0;
2532    while (n < 7)        bin_freq += s->dyn_ltree[n++].Freq;
2533    while (n < 128)    ascii_freq += s->dyn_ltree[n++].Freq;
2534    while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq;
2535    s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? BINARY : ASCII);
2536}
2537
2538/* ===========================================================================
2539 * Reverse the first len bits of a code, using straightforward code (a faster
2540 * method would use a table)
2541 * IN assertion: 1 <= len <= 15
2542 */
2543local unsigned bi_reverse(code, len)
2544    unsigned code; /* the value to invert */
2545    int len;       /* its bit length */
2546{
2547    register unsigned res = 0;
2548    do {
2549        res |= code & 1;
2550        code >>= 1, res <<= 1;
2551    } while (--len > 0);
2552    return res >> 1;
2553}
2554
2555/* ===========================================================================
2556 * Flush the bit buffer, keeping at most 7 bits in it.
2557 */
2558local void bi_flush(s)
2559    deflate_state *s;
2560{
2561    if (s->bi_valid == 16) {
2562        put_short(s, s->bi_buf);
2563        s->bi_buf = 0;
2564        s->bi_valid = 0;
2565    } else if (s->bi_valid >= 8) {
2566        put_byte(s, (Byte)s->bi_buf);
2567        s->bi_buf >>= 8;
2568        s->bi_valid -= 8;
2569    }
2570}
2571
2572/* ===========================================================================
2573 * Flush the bit buffer and align the output on a byte boundary
2574 */
2575local void bi_windup(s)
2576    deflate_state *s;
2577{
2578    if (s->bi_valid > 8) {
2579        put_short(s, s->bi_buf);
2580    } else if (s->bi_valid > 0) {
2581        put_byte(s, (Byte)s->bi_buf);
2582    }
2583    s->bi_buf = 0;
2584    s->bi_valid = 0;
2585#ifdef DEBUG_ZLIB
2586    s->bits_sent = (s->bits_sent+7) & ~7;
2587#endif
2588}
2589
2590/* ===========================================================================
2591 * Copy a stored block, storing first the length and its
2592 * one's complement if requested.
2593 */
2594local void copy_block(s, buf, len, header)
2595    deflate_state *s;
2596    charf    *buf;    /* the input data */
2597    unsigned len;     /* its length */
2598    int      header;  /* true if block header must be written */
2599{
2600    bi_windup(s);        /* align on byte boundary */
2601    s->last_eob_len = 8; /* enough lookahead for inflate */
2602
2603    if (header) {
2604        put_short(s, (ush)len);
2605        put_short(s, (ush)~len);
2606#ifdef DEBUG_ZLIB
2607        s->bits_sent += 2*16;
2608#endif
2609    }
2610#ifdef DEBUG_ZLIB
2611    s->bits_sent += (ulg)len<<3;
2612#endif
2613    while (len--) {
2614        put_byte(s, *buf++);
2615    }
2616}
2617
2618
2619/*+++++*/
2620/* infblock.h -- header to use infblock.c
2621 * Copyright (C) 1995 Mark Adler
2622 * For conditions of distribution and use, see copyright notice in zlib.h
2623 */
2624
2625/* WARNING: this file should *not* be used by applications. It is
2626   part of the implementation of the compression library and is
2627   subject to change. Applications should only use zlib.h.
2628 */
2629
2630struct inflate_blocks_state;
2631typedef struct inflate_blocks_state FAR inflate_blocks_statef;
2632
2633local inflate_blocks_statef * inflate_blocks_new OF((
2634    z_stream *z,
2635    check_func c,               /* check function */
2636    uInt w));                   /* window size */
2637
2638local int inflate_blocks OF((
2639    inflate_blocks_statef *,
2640    z_stream *,
2641    int));                      /* initial return code */
2642
2643local void inflate_blocks_reset OF((
2644    inflate_blocks_statef *,
2645    z_stream *,
2646    uLongf *));                  /* check value on output */
2647
2648local int inflate_blocks_free OF((
2649    inflate_blocks_statef *,
2650    z_stream *,
2651    uLongf *));                  /* check value on output */
2652
2653local int inflate_addhistory OF((
2654    inflate_blocks_statef *,
2655    z_stream *));
2656
2657local int inflate_packet_flush OF((
2658    inflate_blocks_statef *));
2659
2660/*+++++*/
2661/* inftrees.h -- header to use inftrees.c
2662 * Copyright (C) 1995 Mark Adler
2663 * For conditions of distribution and use, see copyright notice in zlib.h
2664 */
2665
2666/* WARNING: this file should *not* be used by applications. It is
2667   part of the implementation of the compression library and is
2668   subject to change. Applications should only use zlib.h.
2669 */
2670
2671/* Huffman code lookup table entry--this entry is four bytes for machines
2672   that have 16-bit pointers (e.g. PC's in the small or medium model). */
2673
2674typedef struct inflate_huft_s FAR inflate_huft;
2675
2676struct inflate_huft_s {
2677  union {
2678    struct {
2679      Byte Exop;        /* number of extra bits or operation */
2680      Byte Bits;        /* number of bits in this code or subcode */
2681    } what;
2682    uInt Nalloc;	/* number of these allocated here */
2683    Bytef *pad;         /* pad structure to a power of 2 (4 bytes for */
2684  } word;               /*  16-bit, 8 bytes for 32-bit machines) */
2685  union {
2686    uInt Base;          /* literal, length base, or distance base */
2687    inflate_huft *Next; /* pointer to next level of table */
2688  } more;
2689};
2690
2691#ifdef DEBUG_ZLIB
2692  local uInt inflate_hufts;
2693#endif
2694
2695local int inflate_trees_bits OF((
2696    uIntf *,                    /* 19 code lengths */
2697    uIntf *,                    /* bits tree desired/actual depth */
2698    inflate_huft * FAR *,       /* bits tree result */
2699    z_stream *));               /* for zalloc, zfree functions */
2700
2701local int inflate_trees_dynamic OF((
2702    uInt,                       /* number of literal/length codes */
2703    uInt,                       /* number of distance codes */
2704    uIntf *,                    /* that many (total) code lengths */
2705    uIntf *,                    /* literal desired/actual bit depth */
2706    uIntf *,                    /* distance desired/actual bit depth */
2707    inflate_huft * FAR *,       /* literal/length tree result */
2708    inflate_huft * FAR *,       /* distance tree result */
2709    z_stream *));               /* for zalloc, zfree functions */
2710
2711local int inflate_trees_fixed OF((
2712    uIntf *,                    /* literal desired/actual bit depth */
2713    uIntf *,                    /* distance desired/actual bit depth */
2714    inflate_huft * FAR *,       /* literal/length tree result */
2715    inflate_huft * FAR *));     /* distance tree result */
2716
2717local int inflate_trees_free OF((
2718    inflate_huft *,             /* tables to free */
2719    z_stream *));               /* for zfree function */
2720
2721
2722/*+++++*/
2723/* infcodes.h -- header to use infcodes.c
2724 * Copyright (C) 1995 Mark Adler
2725 * For conditions of distribution and use, see copyright notice in zlib.h
2726 */
2727
2728/* WARNING: this file should *not* be used by applications. It is
2729   part of the implementation of the compression library and is
2730   subject to change. Applications should only use zlib.h.
2731 */
2732
2733struct inflate_codes_state;
2734typedef struct inflate_codes_state FAR inflate_codes_statef;
2735
2736local inflate_codes_statef *inflate_codes_new OF((
2737    uInt, uInt,
2738    inflate_huft *, inflate_huft *,
2739    z_stream *));
2740
2741local int inflate_codes OF((
2742    inflate_blocks_statef *,
2743    z_stream *,
2744    int));
2745
2746local void inflate_codes_free OF((
2747    inflate_codes_statef *,
2748    z_stream *));
2749
2750
2751/*+++++*/
2752/* inflate.c -- zlib interface to inflate modules
2753 * Copyright (C) 1995 Mark Adler
2754 * For conditions of distribution and use, see copyright notice in zlib.h
2755 */
2756
2757/* inflate private state */
2758struct internal_state {
2759
2760  /* mode */
2761  enum {
2762      METHOD,   /* waiting for method byte */
2763      FLAG,     /* waiting for flag byte */
2764      BLOCKS,   /* decompressing blocks */
2765      CHECK4,   /* four check bytes to go */
2766      CHECK3,   /* three check bytes to go */
2767      CHECK2,   /* two check bytes to go */
2768      CHECK1,   /* one check byte to go */
2769      DONE,     /* finished check, done */
2770      BAD}      /* got an error--stay here */
2771    mode;               /* current inflate mode */
2772
2773  /* mode dependent information */
2774  union {
2775    uInt method;        /* if FLAGS, method byte */
2776    struct {
2777      uLong was;                /* computed check value */
2778      uLong need;               /* stream check value */
2779    } check;            /* if CHECK, check values to compare */
2780    uInt marker;        /* if BAD, inflateSync's marker bytes count */
2781  } sub;        /* submode */
2782
2783  /* mode independent information */
2784  int  nowrap;          /* flag for no wrapper */
2785  uInt wbits;           /* log2(window size)  (8..15, defaults to 15) */
2786  inflate_blocks_statef
2787    *blocks;            /* current inflate_blocks state */
2788
2789};
2790
2791
2792int inflateReset(z)
2793z_stream *z;
2794{
2795  uLong c;
2796
2797  if (z == Z_NULL || z->state == Z_NULL)
2798    return Z_STREAM_ERROR;
2799  z->total_in = z->total_out = 0;
2800  z->msg = Z_NULL;
2801  z->state->mode = z->state->nowrap ? BLOCKS : METHOD;
2802  inflate_blocks_reset(z->state->blocks, z, &c);
2803  Trace((stderr, "inflate: reset\n"));
2804  return Z_OK;
2805}
2806
2807
2808int inflateEnd(z)
2809z_stream *z;
2810{
2811  uLong c;
2812
2813  if (z == Z_NULL || z->state == Z_NULL || z->zfree == Z_NULL)
2814    return Z_STREAM_ERROR;
2815  if (z->state->blocks != Z_NULL)
2816    inflate_blocks_free(z->state->blocks, z, &c);
2817  ZFREE(z, z->state, sizeof(struct internal_state));
2818  z->state = Z_NULL;
2819  Trace((stderr, "inflate: end\n"));
2820  return Z_OK;
2821}
2822
2823
2824int inflateInit2(z, w)
2825z_stream *z;
2826int w;
2827{
2828  /* initialize state */
2829  if (z == Z_NULL)
2830    return Z_STREAM_ERROR;
2831/*  if (z->zalloc == Z_NULL) z->zalloc = zcalloc; */
2832/*  if (z->zfree == Z_NULL) z->zfree = zcfree; */
2833  if ((z->state = (struct internal_state FAR *)
2834       ZALLOC(z,1,sizeof(struct internal_state))) == Z_NULL)
2835    return Z_MEM_ERROR;
2836  z->state->blocks = Z_NULL;
2837
2838  /* handle undocumented nowrap option (no zlib header or check) */
2839  z->state->nowrap = 0;
2840  if (w < 0)
2841  {
2842    w = - w;
2843    z->state->nowrap = 1;
2844  }
2845
2846  /* set window size */
2847  if (w < 8 || w > 15)
2848  {
2849    inflateEnd(z);
2850    return Z_STREAM_ERROR;
2851  }
2852  z->state->wbits = (uInt)w;
2853
2854  /* create inflate_blocks state */
2855  if ((z->state->blocks =
2856       inflate_blocks_new(z, z->state->nowrap ? Z_NULL : adler32, 1 << w))
2857      == Z_NULL)
2858  {
2859    inflateEnd(z);
2860    return Z_MEM_ERROR;
2861  }
2862  Trace((stderr, "inflate: allocated\n"));
2863
2864  /* reset state */
2865  inflateReset(z);
2866  return Z_OK;
2867}
2868
2869
2870int inflateInit(z)
2871z_stream *z;
2872{
2873  return inflateInit2(z, DEF_WBITS);
2874}
2875
2876
2877#define NEEDBYTE {if(z->avail_in==0)goto empty;r=Z_OK;}
2878#define NEXTBYTE (z->avail_in--,z->total_in++,*z->next_in++)
2879
2880int inflate(z, f)
2881z_stream *z;
2882int f;
2883{
2884  int r;
2885  uInt b;
2886
2887  if (z == Z_NULL || z->next_in == Z_NULL)
2888    return Z_STREAM_ERROR;
2889  r = Z_BUF_ERROR;
2890  while (1) switch (z->state->mode)
2891  {
2892    case METHOD:
2893      NEEDBYTE
2894      if (((z->state->sub.method = NEXTBYTE) & 0xf) != DEFLATED)
2895      {
2896        z->state->mode = BAD;
2897        z->msg = "unknown compression method";
2898        z->state->sub.marker = 5;       /* can't try inflateSync */
2899        break;
2900      }
2901      if ((z->state->sub.method >> 4) + 8 > z->state->wbits)
2902      {
2903        z->state->mode = BAD;
2904        z->msg = "invalid window size";
2905        z->state->sub.marker = 5;       /* can't try inflateSync */
2906        break;
2907      }
2908      z->state->mode = FLAG;
2909    case FLAG:
2910      NEEDBYTE
2911      if ((b = NEXTBYTE) & 0x20)
2912      {
2913        z->state->mode = BAD;
2914        z->msg = "invalid reserved bit";
2915        z->state->sub.marker = 5;       /* can't try inflateSync */
2916        break;
2917      }
2918      if (((z->state->sub.method << 8) + b) % 31)
2919      {
2920        z->state->mode = BAD;
2921        z->msg = "incorrect header check";
2922        z->state->sub.marker = 5;       /* can't try inflateSync */
2923        break;
2924      }
2925      Trace((stderr, "inflate: zlib header ok\n"));
2926      z->state->mode = BLOCKS;
2927    case BLOCKS:
2928      r = inflate_blocks(z->state->blocks, z, r);
2929      if (f == Z_PACKET_FLUSH && z->avail_in == 0 && z->avail_out != 0)
2930	  r = inflate_packet_flush(z->state->blocks);
2931      if (r == Z_DATA_ERROR)
2932      {
2933        z->state->mode = BAD;
2934        z->state->sub.marker = 0;       /* can try inflateSync */
2935        break;
2936      }
2937      if (r != Z_STREAM_END)
2938        return r;
2939      r = Z_OK;
2940      inflate_blocks_reset(z->state->blocks, z, &z->state->sub.check.was);
2941      if (z->state->nowrap)
2942      {
2943        z->state->mode = DONE;
2944        break;
2945      }
2946      z->state->mode = CHECK4;
2947    case CHECK4:
2948      NEEDBYTE
2949      z->state->sub.check.need = (uLong)NEXTBYTE << 24;
2950      z->state->mode = CHECK3;
2951    case CHECK3:
2952      NEEDBYTE
2953      z->state->sub.check.need += (uLong)NEXTBYTE << 16;
2954      z->state->mode = CHECK2;
2955    case CHECK2:
2956      NEEDBYTE
2957      z->state->sub.check.need += (uLong)NEXTBYTE << 8;
2958      z->state->mode = CHECK1;
2959    case CHECK1:
2960      NEEDBYTE
2961      z->state->sub.check.need += (uLong)NEXTBYTE;
2962
2963      if (z->state->sub.check.was != z->state->sub.check.need)
2964      {
2965        z->state->mode = BAD;
2966        z->msg = "incorrect data check";
2967        z->state->sub.marker = 5;       /* can't try inflateSync */
2968        break;
2969      }
2970      Trace((stderr, "inflate: zlib check ok\n"));
2971      z->state->mode = DONE;
2972    case DONE:
2973      return Z_STREAM_END;
2974    case BAD:
2975      return Z_DATA_ERROR;
2976    default:
2977      return Z_STREAM_ERROR;
2978  }
2979
2980 empty:
2981  if (f != Z_PACKET_FLUSH)
2982    return r;
2983  z->state->mode = BAD;
2984  z->state->sub.marker = 0;       /* can try inflateSync */
2985  return Z_DATA_ERROR;
2986}
2987
2988/*
2989 * This subroutine adds the data at next_in/avail_in to the output history
2990 * without performing any output.  The output buffer must be "caught up";
2991 * i.e. no pending output (hence s->read equals s->write), and the state must
2992 * be BLOCKS (i.e. we should be willing to see the start of a series of
2993 * BLOCKS).  On exit, the output will also be caught up, and the checksum
2994 * will have been updated if need be.
2995 */
2996
2997int inflateIncomp(z)
2998z_stream *z;
2999{
3000    if (z->state->mode != BLOCKS)
3001	return Z_DATA_ERROR;
3002    return inflate_addhistory(z->state->blocks, z);
3003}
3004
3005
3006int inflateSync(z)
3007z_stream *z;
3008{
3009  uInt n;       /* number of bytes to look at */
3010  Bytef *p;     /* pointer to bytes */
3011  uInt m;       /* number of marker bytes found in a row */
3012  uLong r, w;   /* temporaries to save total_in and total_out */
3013
3014  /* set up */
3015  if (z == Z_NULL || z->state == Z_NULL)
3016    return Z_STREAM_ERROR;
3017  if (z->state->mode != BAD)
3018  {
3019    z->state->mode = BAD;
3020    z->state->sub.marker = 0;
3021  }
3022  if ((n = z->avail_in) == 0)
3023    return Z_BUF_ERROR;
3024  p = z->next_in;
3025  m = z->state->sub.marker;
3026
3027  /* search */
3028  while (n && m < 4)
3029  {
3030    if (*p == (Byte)(m < 2 ? 0 : 0xff))
3031      m++;
3032    else if (*p)
3033      m = 0;
3034    else
3035      m = 4 - m;
3036    p++, n--;
3037  }
3038
3039  /* restore */
3040  z->total_in += p - z->next_in;
3041  z->next_in = p;
3042  z->avail_in = n;
3043  z->state->sub.marker = m;
3044
3045  /* return no joy or set up to restart on a new block */
3046  if (m != 4)
3047    return Z_DATA_ERROR;
3048  r = z->total_in;  w = z->total_out;
3049  inflateReset(z);
3050  z->total_in = r;  z->total_out = w;
3051  z->state->mode = BLOCKS;
3052  return Z_OK;
3053}
3054
3055#undef NEEDBYTE
3056#undef NEXTBYTE
3057
3058/*+++++*/
3059/* infutil.h -- types and macros common to blocks and codes
3060 * Copyright (C) 1995 Mark Adler
3061 * For conditions of distribution and use, see copyright notice in zlib.h
3062 */
3063
3064/* WARNING: this file should *not* be used by applications. It is
3065   part of the implementation of the compression library and is
3066   subject to change. Applications should only use zlib.h.
3067 */
3068
3069/* inflate blocks semi-private state */
3070struct inflate_blocks_state {
3071
3072  /* mode */
3073  enum {
3074      TYPE,     /* get type bits (3, including end bit) */
3075      LENS,     /* get lengths for stored */
3076      STORED,   /* processing stored block */
3077      TABLE,    /* get table lengths */
3078      BTREE,    /* get bit lengths tree for a dynamic block */
3079      DTREE,    /* get length, distance trees for a dynamic block */
3080      CODES,    /* processing fixed or dynamic block */
3081      DRY,      /* output remaining window bytes */
3082      DONEB,     /* finished last block, done */
3083      BADB}      /* got a data error--stuck here */
3084    mode;               /* current inflate_block mode */
3085
3086  /* mode dependent information */
3087  union {
3088    uInt left;          /* if STORED, bytes left to copy */
3089    struct {
3090      uInt table;               /* table lengths (14 bits) */
3091      uInt index;               /* index into blens (or border) */
3092      uIntf *blens;             /* bit lengths of codes */
3093      uInt bb;                  /* bit length tree depth */
3094      inflate_huft *tb;         /* bit length decoding tree */
3095      int nblens;		/* # elements allocated at blens */
3096    } trees;            /* if DTREE, decoding info for trees */
3097    struct {
3098      inflate_huft *tl, *td;    /* trees to free */
3099      inflate_codes_statef
3100         *codes;
3101    } decode;           /* if CODES, current state */
3102  } sub;                /* submode */
3103  uInt last;            /* true if this block is the last block */
3104
3105  /* mode independent information */
3106  uInt bitk;            /* bits in bit buffer */
3107  uLong bitb;           /* bit buffer */
3108  Bytef *window;        /* sliding window */
3109  Bytef *end;           /* one byte after sliding window */
3110  Bytef *read;          /* window read pointer */
3111  Bytef *write;         /* window write pointer */
3112  check_func checkfn;   /* check function */
3113  uLong check;          /* check on output */
3114
3115};
3116
3117
3118/* defines for inflate input/output */
3119/*   update pointers and return */
3120#define UPDBITS {s->bitb=b;s->bitk=k;}
3121#define UPDIN {z->avail_in=n;z->total_in+=p-z->next_in;z->next_in=p;}
3122#define UPDOUT {s->write=q;}
3123#define UPDATE {UPDBITS UPDIN UPDOUT}
3124#define LEAVE {UPDATE return inflate_flush(s,z,r);}
3125/*   get bytes and bits */
3126#define LOADIN {p=z->next_in;n=z->avail_in;b=s->bitb;k=s->bitk;}
3127#define NEEDBYTE {if(n)r=Z_OK;else LEAVE}
3128#define NEXTBYTE (n--,*p++)
3129#define NEEDBITS(j) {while(k<(j)){NEEDBYTE;b|=((uLong)NEXTBYTE)<<k;k+=8;}}
3130#define DUMPBITS(j) {b>>=(j);k-=(j);}
3131/*   output bytes */
3132#define WAVAIL (q<s->read?s->read-q-1:s->end-q)
3133#define LOADOUT {q=s->write;m=WAVAIL;}
3134#define WRAP {if(q==s->end&&s->read!=s->window){q=s->window;m=WAVAIL;}}
3135#define FLUSH {UPDOUT r=inflate_flush(s,z,r); LOADOUT}
3136#define NEEDOUT {if(m==0){WRAP if(m==0){FLUSH WRAP if(m==0) LEAVE}}r=Z_OK;}
3137#define OUTBYTE(a) {*q++=(Byte)(a);m--;}
3138/*   load local pointers */
3139#define LOAD {LOADIN LOADOUT}
3140
3141/* And'ing with mask[n] masks the lower n bits */
3142local uInt inflate_mask[] = {
3143    0x0000,
3144    0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
3145    0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
3146};
3147
3148/* copy as much as possible from the sliding window to the output area */
3149local int inflate_flush OF((
3150    inflate_blocks_statef *,
3151    z_stream *,
3152    int));
3153
3154/*+++++*/
3155/* inffast.h -- header to use inffast.c
3156 * Copyright (C) 1995 Mark Adler
3157 * For conditions of distribution and use, see copyright notice in zlib.h
3158 */
3159
3160/* WARNING: this file should *not* be used by applications. It is
3161   part of the implementation of the compression library and is
3162   subject to change. Applications should only use zlib.h.
3163 */
3164
3165local int inflate_fast OF((
3166    uInt,
3167    uInt,
3168    inflate_huft *,
3169    inflate_huft *,
3170    inflate_blocks_statef *,
3171    z_stream *));
3172
3173
3174/*+++++*/
3175/* infblock.c -- interpret and process block types to last block
3176 * Copyright (C) 1995 Mark Adler
3177 * For conditions of distribution and use, see copyright notice in zlib.h
3178 */
3179
3180/* Table for deflate from PKZIP's appnote.txt. */
3181local uInt border[] = { /* Order of the bit length code lengths */
3182        16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
3183
3184/*
3185   Notes beyond the 1.93a appnote.txt:
3186
3187   1. Distance pointers never point before the beginning of the output
3188      stream.
3189   2. Distance pointers can point back across blocks, up to 32k away.
3190   3. There is an implied maximum of 7 bits for the bit length table and
3191      15 bits for the actual data.
3192   4. If only one code exists, then it is encoded using one bit.  (Zero
3193      would be more efficient, but perhaps a little confusing.)  If two
3194      codes exist, they are coded using one bit each (0 and 1).
3195   5. There is no way of sending zero distance codes--a dummy must be
3196      sent if there are none.  (History: a pre 2.0 version of PKZIP would
3197      store blocks with no distance codes, but this was discovered to be
3198      too harsh a criterion.)  Valid only for 1.93a.  2.04c does allow
3199      zero distance codes, which is sent as one code of zero bits in
3200      length.
3201   6. There are up to 286 literal/length codes.  Code 256 represents the
3202      end-of-block.  Note however that the static length tree defines
3203      288 codes just to fill out the Huffman codes.  Codes 286 and 287
3204      cannot be used though, since there is no length base or extra bits
3205      defined for them.  Similarily, there are up to 30 distance codes.
3206      However, static trees define 32 codes (all 5 bits) to fill out the
3207      Huffman codes, but the last two had better not show up in the data.
3208   7. Unzip can check dynamic Huffman blocks for complete code sets.
3209      The exception is that a single code would not be complete (see #4).
3210   8. The five bits following the block type is really the number of
3211      literal codes sent minus 257.
3212   9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
3213      (1+6+6).  Therefore, to output three times the length, you output
3214      three codes (1+1+1), whereas to output four times the same length,
3215      you only need two codes (1+3).  Hmm.
3216  10. In the tree reconstruction algorithm, Code = Code + Increment
3217      only if BitLength(i) is not zero.  (Pretty obvious.)
3218  11. Correction: 4 Bits: # of Bit Length codes - 4     (4 - 19)
3219  12. Note: length code 284 can represent 227-258, but length code 285
3220      really is 258.  The last length deserves its own, short code
3221      since it gets used a lot in very redundant files.  The length
3222      258 is special since 258 - 3 (the min match length) is 255.
3223  13. The literal/length and distance code bit lengths are read as a
3224      single stream of lengths.  It is possible (and advantageous) for
3225      a repeat code (16, 17, or 18) to go across the boundary between
3226      the two sets of lengths.
3227 */
3228
3229
3230local void inflate_blocks_reset(s, z, c)
3231inflate_blocks_statef *s;
3232z_stream *z;
3233uLongf *c;
3234{
3235  if (s->checkfn != Z_NULL)
3236    *c = s->check;
3237  if (s->mode == BTREE || s->mode == DTREE)
3238    ZFREE(z, s->sub.trees.blens, s->sub.trees.nblens * sizeof(uInt));
3239  if (s->mode == CODES)
3240  {
3241    inflate_codes_free(s->sub.decode.codes, z);
3242    inflate_trees_free(s->sub.decode.td, z);
3243    inflate_trees_free(s->sub.decode.tl, z);
3244  }
3245  s->mode = TYPE;
3246  s->bitk = 0;
3247  s->bitb = 0;
3248  s->read = s->write = s->window;
3249  if (s->checkfn != Z_NULL)
3250    s->check = (*s->checkfn)(0L, Z_NULL, 0);
3251  Trace((stderr, "inflate:   blocks reset\n"));
3252}
3253
3254
3255local inflate_blocks_statef *inflate_blocks_new(z, c, w)
3256z_stream *z;
3257check_func c;
3258uInt w;
3259{
3260  inflate_blocks_statef *s;
3261
3262  if ((s = (inflate_blocks_statef *)ZALLOC
3263       (z,1,sizeof(struct inflate_blocks_state))) == Z_NULL)
3264    return s;
3265  if ((s->window = (Bytef *)ZALLOC(z, 1, w)) == Z_NULL)
3266  {
3267    ZFREE(z, s, sizeof(struct inflate_blocks_state));
3268    return Z_NULL;
3269  }
3270  s->end = s->window + w;
3271  s->checkfn = c;
3272  s->mode = TYPE;
3273  Trace((stderr, "inflate:   blocks allocated\n"));
3274  inflate_blocks_reset(s, z, &s->check);
3275  return s;
3276}
3277
3278
3279local int inflate_blocks(s, z, r)
3280inflate_blocks_statef *s;
3281z_stream *z;
3282int r;
3283{
3284  uInt t;               /* temporary storage */
3285  uLong b;              /* bit buffer */
3286  uInt k;               /* bits in bit buffer */
3287  Bytef *p;             /* input data pointer */
3288  uInt n;               /* bytes available there */
3289  Bytef *q;             /* output window write pointer */
3290  uInt m;               /* bytes to end of window or read pointer */
3291
3292  /* copy input/output information to locals (UPDATE macro restores) */
3293  LOAD
3294
3295  /* process input based on current state */
3296  while (1) switch (s->mode)
3297  {
3298    case TYPE:
3299      NEEDBITS(3)
3300      t = (uInt)b & 7;
3301      s->last = t & 1;
3302      switch (t >> 1)
3303      {
3304        case 0:                         /* stored */
3305          Trace((stderr, "inflate:     stored block%s\n",
3306                 s->last ? " (last)" : ""));
3307          DUMPBITS(3)
3308          t = k & 7;                    /* go to byte boundary */
3309          DUMPBITS(t)
3310          s->mode = LENS;               /* get length of stored block */
3311          break;
3312        case 1:                         /* fixed */
3313          Trace((stderr, "inflate:     fixed codes block%s\n",
3314                 s->last ? " (last)" : ""));
3315          {
3316            uInt bl, bd;
3317            inflate_huft *tl, *td;
3318
3319            inflate_trees_fixed(&bl, &bd, &tl, &td);
3320            s->sub.decode.codes = inflate_codes_new(bl, bd, tl, td, z);
3321            if (s->sub.decode.codes == Z_NULL)
3322            {
3323              r = Z_MEM_ERROR;
3324              LEAVE
3325            }
3326            s->sub.decode.tl = Z_NULL;  /* don't try to free these */
3327            s->sub.decode.td = Z_NULL;
3328          }
3329          DUMPBITS(3)
3330          s->mode = CODES;
3331          break;
3332        case 2:                         /* dynamic */
3333          Trace((stderr, "inflate:     dynamic codes block%s\n",
3334                 s->last ? " (last)" : ""));
3335          DUMPBITS(3)
3336          s->mode = TABLE;
3337          break;
3338        case 3:                         /* illegal */
3339          DUMPBITS(3)
3340          s->mode = BADB;
3341          z->msg = "invalid block type";
3342          r = Z_DATA_ERROR;
3343          LEAVE
3344      }
3345      break;
3346    case LENS:
3347      NEEDBITS(32)
3348      if (((~b) >> 16) != (b & 0xffff))
3349      {
3350        s->mode = BADB;
3351        z->msg = "invalid stored block lengths";
3352        r = Z_DATA_ERROR;
3353        LEAVE
3354      }
3355      s->sub.left = (uInt)b & 0xffff;
3356      b = k = 0;                      /* dump bits */
3357      Tracev((stderr, "inflate:       stored length %u\n", s->sub.left));
3358      s->mode = s->sub.left ? STORED : TYPE;
3359      break;
3360    case STORED:
3361      if (n == 0)
3362        LEAVE
3363      NEEDOUT
3364      t = s->sub.left;
3365      if (t > n) t = n;
3366      if (t > m) t = m;
3367      zmemcpy(q, p, t);
3368      p += t;  n -= t;
3369      q += t;  m -= t;
3370      if ((s->sub.left -= t) != 0)
3371        break;
3372      Tracev((stderr, "inflate:       stored end, %lu total out\n",
3373              z->total_out + (q >= s->read ? q - s->read :
3374              (s->end - s->read) + (q - s->window))));
3375      s->mode = s->last ? DRY : TYPE;
3376      break;
3377    case TABLE:
3378      NEEDBITS(14)
3379      s->sub.trees.table = t = (uInt)b & 0x3fff;
3380#ifndef PKZIP_BUG_WORKAROUND
3381      if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29)
3382      {
3383        s->mode = BADB;
3384        z->msg = "too many length or distance symbols";
3385        r = Z_DATA_ERROR;
3386        LEAVE
3387      }
3388#endif
3389      t = 258 + (t & 0x1f) + ((t >> 5) & 0x1f);
3390      if (t < 19)
3391        t = 19;
3392      if ((s->sub.trees.blens = (uIntf*)ZALLOC(z, t, sizeof(uInt))) == Z_NULL)
3393      {
3394        r = Z_MEM_ERROR;
3395        LEAVE
3396      }
3397      s->sub.trees.nblens = t;
3398      DUMPBITS(14)
3399      s->sub.trees.index = 0;
3400      Tracev((stderr, "inflate:       table sizes ok\n"));
3401      s->mode = BTREE;
3402    case BTREE:
3403      while (s->sub.trees.index < 4 + (s->sub.trees.table >> 10))
3404      {
3405        NEEDBITS(3)
3406        s->sub.trees.blens[border[s->sub.trees.index++]] = (uInt)b & 7;
3407        DUMPBITS(3)
3408      }
3409      while (s->sub.trees.index < 19)
3410        s->sub.trees.blens[border[s->sub.trees.index++]] = 0;
3411      s->sub.trees.bb = 7;
3412      t = inflate_trees_bits(s->sub.trees.blens, &s->sub.trees.bb,
3413                             &s->sub.trees.tb, z);
3414      if (t != Z_OK)
3415      {
3416        r = t;
3417        if (r == Z_DATA_ERROR)
3418          s->mode = BADB;
3419        LEAVE
3420      }
3421      s->sub.trees.index = 0;
3422      Tracev((stderr, "inflate:       bits tree ok\n"));
3423      s->mode = DTREE;
3424    case DTREE:
3425      while (t = s->sub.trees.table,
3426             s->sub.trees.index < 258 + (t & 0x1f) + ((t >> 5) & 0x1f))
3427      {
3428        inflate_huft *h;
3429        uInt i, j, c;
3430
3431        t = s->sub.trees.bb;
3432        NEEDBITS(t)
3433        h = s->sub.trees.tb + ((uInt)b & inflate_mask[t]);
3434        t = h->word.what.Bits;
3435        c = h->more.Base;
3436        if (c < 16)
3437        {
3438          DUMPBITS(t)
3439          s->sub.trees.blens[s->sub.trees.index++] = c;
3440        }
3441        else /* c == 16..18 */
3442        {
3443          i = c == 18 ? 7 : c - 14;
3444          j = c == 18 ? 11 : 3;
3445          NEEDBITS(t + i)
3446          DUMPBITS(t)
3447          j += (uInt)b & inflate_mask[i];
3448          DUMPBITS(i)
3449          i = s->sub.trees.index;
3450          t = s->sub.trees.table;
3451          if (i + j > 258 + (t & 0x1f) + ((t >> 5) & 0x1f) ||
3452              (c == 16 && i < 1))
3453          {
3454            s->mode = BADB;
3455            z->msg = "invalid bit length repeat";
3456            r = Z_DATA_ERROR;
3457            LEAVE
3458          }
3459          c = c == 16 ? s->sub.trees.blens[i - 1] : 0;
3460          do {
3461            s->sub.trees.blens[i++] = c;
3462          } while (--j);
3463          s->sub.trees.index = i;
3464        }
3465      }
3466      inflate_trees_free(s->sub.trees.tb, z);
3467      s->sub.trees.tb = Z_NULL;
3468      {
3469        uInt bl, bd;
3470        inflate_huft *tl, *td;
3471        inflate_codes_statef *c;
3472
3473        bl = 9;         /* must be <= 9 for lookahead assumptions */
3474        bd = 6;         /* must be <= 9 for lookahead assumptions */
3475        t = s->sub.trees.table;
3476        t = inflate_trees_dynamic(257 + (t & 0x1f), 1 + ((t >> 5) & 0x1f),
3477                                  s->sub.trees.blens, &bl, &bd, &tl, &td, z);
3478        if (t != Z_OK)
3479        {
3480          if (t == (uInt)Z_DATA_ERROR)
3481            s->mode = BADB;
3482          r = t;
3483          LEAVE
3484        }
3485        Tracev((stderr, "inflate:       trees ok\n"));
3486        if ((c = inflate_codes_new(bl, bd, tl, td, z)) == Z_NULL)
3487        {
3488          inflate_trees_free(td, z);
3489          inflate_trees_free(tl, z);
3490          r = Z_MEM_ERROR;
3491          LEAVE
3492        }
3493        ZFREE(z, s->sub.trees.blens, s->sub.trees.nblens * sizeof(uInt));
3494        s->sub.decode.codes = c;
3495        s->sub.decode.tl = tl;
3496        s->sub.decode.td = td;
3497      }
3498      s->mode = CODES;
3499    case CODES:
3500      UPDATE
3501      if ((r = inflate_codes(s, z, r)) != Z_STREAM_END)
3502        return inflate_flush(s, z, r);
3503      r = Z_OK;
3504      inflate_codes_free(s->sub.decode.codes, z);
3505      inflate_trees_free(s->sub.decode.td, z);
3506      inflate_trees_free(s->sub.decode.tl, z);
3507      LOAD
3508      Tracev((stderr, "inflate:       codes end, %lu total out\n",
3509              z->total_out + (q >= s->read ? q - s->read :
3510              (s->end - s->read) + (q - s->window))));
3511      if (!s->last)
3512      {
3513        s->mode = TYPE;
3514        break;
3515      }
3516      if (k > 7)              /* return unused byte, if any */
3517      {
3518        Assert(k < 16, "inflate_codes grabbed too many bytes")
3519        k -= 8;
3520        n++;
3521        p--;                    /* can always return one */
3522      }
3523      s->mode = DRY;
3524    case DRY:
3525      FLUSH
3526      if (s->read != s->write)
3527        LEAVE
3528      s->mode = DONEB;
3529    case DONEB:
3530      r = Z_STREAM_END;
3531      LEAVE
3532    case BADB:
3533      r = Z_DATA_ERROR;
3534      LEAVE
3535    default:
3536      r = Z_STREAM_ERROR;
3537      LEAVE
3538  }
3539}
3540
3541
3542local int inflate_blocks_free(s, z, c)
3543inflate_blocks_statef *s;
3544z_stream *z;
3545uLongf *c;
3546{
3547  inflate_blocks_reset(s, z, c);
3548  ZFREE(z, s->window, s->end - s->window);
3549  ZFREE(z, s, sizeof(struct inflate_blocks_state));
3550  Trace((stderr, "inflate:   blocks freed\n"));
3551  return Z_OK;
3552}
3553
3554/*
3555 * This subroutine adds the data at next_in/avail_in to the output history
3556 * without performing any output.  The output buffer must be "caught up";
3557 * i.e. no pending output (hence s->read equals s->write), and the state must
3558 * be BLOCKS (i.e. we should be willing to see the start of a series of
3559 * BLOCKS).  On exit, the output will also be caught up, and the checksum
3560 * will have been updated if need be.
3561 */
3562local int inflate_addhistory(s, z)
3563inflate_blocks_statef *s;
3564z_stream *z;
3565{
3566    uLong b;              /* bit buffer */  /* NOT USED HERE */
3567    uInt k;               /* bits in bit buffer */ /* NOT USED HERE */
3568    uInt t;               /* temporary storage */
3569    Bytef *p;             /* input data pointer */
3570    uInt n;               /* bytes available there */
3571    Bytef *q;             /* output window write pointer */
3572    uInt m;               /* bytes to end of window or read pointer */
3573
3574    if (s->read != s->write)
3575	return Z_STREAM_ERROR;
3576    if (s->mode != TYPE)
3577	return Z_DATA_ERROR;
3578
3579    /* we're ready to rock */
3580    LOAD
3581    /* while there is input ready, copy to output buffer, moving
3582     * pointers as needed.
3583     */
3584    while (n) {
3585	t = n;  /* how many to do */
3586	/* is there room until end of buffer? */
3587	if (t > m) t = m;
3588	/* update check information */
3589	if (s->checkfn != Z_NULL)
3590	    s->check = (*s->checkfn)(s->check, q, t);
3591	zmemcpy(q, p, t);
3592	q += t;
3593	p += t;
3594	n -= t;
3595	z->total_out += t;
3596	s->read = q;    /* drag read pointer forward */
3597/*      WRAP  */ 	/* expand WRAP macro by hand to handle s->read */
3598	if (q == s->end) {
3599	    s->read = q = s->window;
3600	    m = WAVAIL;
3601	}
3602    }
3603    UPDATE
3604    return Z_OK;
3605}
3606
3607
3608/*
3609 * At the end of a Deflate-compressed PPP packet, we expect to have seen
3610 * a `stored' block type value but not the (zero) length bytes.
3611 */
3612local int inflate_packet_flush(s)
3613    inflate_blocks_statef *s;
3614{
3615    if (s->mode != LENS)
3616	return Z_DATA_ERROR;
3617    s->mode = TYPE;
3618    return Z_OK;
3619}
3620
3621
3622/*+++++*/
3623/* inftrees.c -- generate Huffman trees for efficient decoding
3624 * Copyright (C) 1995 Mark Adler
3625 * For conditions of distribution and use, see copyright notice in zlib.h
3626 */
3627
3628/* simplify the use of the inflate_huft type with some defines */
3629#define base more.Base
3630#define next more.Next
3631#define exop word.what.Exop
3632#define bits word.what.Bits
3633
3634
3635local int huft_build OF((
3636    uIntf *,            /* code lengths in bits */
3637    uInt,               /* number of codes */
3638    uInt,               /* number of "simple" codes */
3639    uIntf *,            /* list of base values for non-simple codes */
3640    uIntf *,            /* list of extra bits for non-simple codes */
3641    inflate_huft * FAR*,/* result: starting table */
3642    uIntf *,            /* maximum lookup bits (returns actual) */
3643    z_stream *));       /* for zalloc function */
3644
3645local voidpf falloc OF((
3646    voidpf,             /* opaque pointer (not used) */
3647    uInt,               /* number of items */
3648    uInt));             /* size of item */
3649
3650local void ffree OF((
3651    voidpf q,           /* opaque pointer (not used) */
3652    voidpf p,           /* what to free (not used) */
3653    uInt n));		/* number of bytes (not used) */
3654
3655/* Tables for deflate from PKZIP's appnote.txt. */
3656local uInt cplens[] = { /* Copy lengths for literal codes 257..285 */
3657        3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
3658        35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
3659        /* actually lengths - 2; also see note #13 above about 258 */
3660local uInt cplext[] = { /* Extra bits for literal codes 257..285 */
3661        0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
3662        3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 192, 192}; /* 192==invalid */
3663local uInt cpdist[] = { /* Copy offsets for distance codes 0..29 */
3664        1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
3665        257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
3666        8193, 12289, 16385, 24577};
3667local uInt cpdext[] = { /* Extra bits for distance codes */
3668        0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
3669        7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
3670        12, 12, 13, 13};
3671
3672/*
3673   Huffman code decoding is performed using a multi-level table lookup.
3674   The fastest way to decode is to simply build a lookup table whose
3675   size is determined by the longest code.  However, the time it takes
3676   to build this table can also be a factor if the data being decoded
3677   is not very long.  The most common codes are necessarily the
3678   shortest codes, so those codes dominate the decoding time, and hence
3679   the speed.  The idea is you can have a shorter table that decodes the
3680   shorter, more probable codes, and then point to subsidiary tables for
3681   the longer codes.  The time it costs to decode the longer codes is
3682   then traded against the time it takes to make longer tables.
3683
3684   This results of this trade are in the variables lbits and dbits
3685   below.  lbits is the number of bits the first level table for literal/
3686   length codes can decode in one step, and dbits is the same thing for
3687   the distance codes.  Subsequent tables are also less than or equal to
3688   those sizes.  These values may be adjusted either when all of the
3689   codes are shorter than that, in which case the longest code length in
3690   bits is used, or when the shortest code is *longer* than the requested
3691   table size, in which case the length of the shortest code in bits is
3692   used.
3693
3694   There are two different values for the two tables, since they code a
3695   different number of possibilities each.  The literal/length table
3696   codes 286 possible values, or in a flat code, a little over eight
3697   bits.  The distance table codes 30 possible values, or a little less
3698   than five bits, flat.  The optimum values for speed end up being
3699   about one bit more than those, so lbits is 8+1 and dbits is 5+1.
3700   The optimum values may differ though from machine to machine, and
3701   possibly even between compilers.  Your mileage may vary.
3702 */
3703
3704
3705/* If BMAX needs to be larger than 16, then h and x[] should be uLong. */
3706#define BMAX 15         /* maximum bit length of any code */
3707#define N_MAX 288       /* maximum number of codes in any set */
3708
3709#ifdef DEBUG_ZLIB
3710  uInt inflate_hufts;
3711#endif
3712
3713local int huft_build(b, n, s, d, e, t, m, zs)
3714uIntf *b;               /* code lengths in bits (all assumed <= BMAX) */
3715uInt n;                 /* number of codes (assumed <= N_MAX) */
3716uInt s;                 /* number of simple-valued codes (0..s-1) */
3717uIntf *d;               /* list of base values for non-simple codes */
3718uIntf *e;               /* list of extra bits for non-simple codes */
3719inflate_huft * FAR *t;  /* result: starting table */
3720uIntf *m;               /* maximum lookup bits, returns actual */
3721z_stream *zs;           /* for zalloc function */
3722/* Given a list of code lengths and a maximum table size, make a set of
3723   tables to decode that set of codes.  Return Z_OK on success, Z_BUF_ERROR
3724   if the given code set is incomplete (the tables are still built in this
3725   case), Z_DATA_ERROR if the input is invalid (all zero length codes or an
3726   over-subscribed set of lengths), or Z_MEM_ERROR if not enough memory. */
3727{
3728
3729  uInt a;                       /* counter for codes of length k */
3730  uInt c[BMAX+1];               /* bit length count table */
3731  uInt f;                       /* i repeats in table every f entries */
3732  int g;                        /* maximum code length */
3733  int h;                        /* table level */
3734  register uInt i;              /* counter, current code */
3735  register uInt j;              /* counter */
3736  register int k;               /* number of bits in current code */
3737  int l;                        /* bits per table (returned in m) */
3738  register uIntf *p;            /* pointer into c[], b[], or v[] */
3739  inflate_huft *q;              /* points to current table */
3740  struct inflate_huft_s r;      /* table entry for structure assignment */
3741  inflate_huft *u[BMAX];        /* table stack */
3742  uInt v[N_MAX];                /* values in order of bit length */
3743  register int w;               /* bits before this table == (l * h) */
3744  uInt x[BMAX+1];               /* bit offsets, then code stack */
3745  uIntf *xp;                    /* pointer into x */
3746  int y;                        /* number of dummy codes added */
3747  uInt z;                       /* number of entries in current table */
3748
3749
3750  /* Generate counts for each bit length */
3751  p = c;
3752#define C0 *p++ = 0;
3753#define C2 C0 C0 C0 C0
3754#define C4 C2 C2 C2 C2
3755  C4                            /* clear c[]--assume BMAX+1 is 16 */
3756  p = b;  i = n;
3757  do {
3758    c[*p++]++;                  /* assume all entries <= BMAX */
3759  } while (--i);
3760  if (c[0] == n)                /* null input--all zero length codes */
3761  {
3762    *t = (inflate_huft *)Z_NULL;
3763    *m = 0;
3764    return Z_OK;
3765  }
3766
3767
3768  /* Find minimum and maximum length, bound *m by those */
3769  l = *m;
3770  for (j = 1; j <= BMAX; j++)
3771    if (c[j])
3772      break;
3773  k = j;                        /* minimum code length */
3774  if ((uInt)l < j)
3775    l = j;
3776  for (i = BMAX; i; i--)
3777    if (c[i])
3778      break;
3779  g = i;                        /* maximum code length */
3780  if ((uInt)l > i)
3781    l = i;
3782  *m = l;
3783
3784
3785  /* Adjust last length count to fill out codes, if needed */
3786  for (y = 1 << j; j < i; j++, y <<= 1)
3787    if ((y -= c[j]) < 0)
3788      return Z_DATA_ERROR;
3789  if ((y -= c[i]) < 0)
3790    return Z_DATA_ERROR;
3791  c[i] += y;
3792
3793
3794  /* Generate starting offsets into the value table for each length */
3795  x[1] = j = 0;
3796  p = c + 1;  xp = x + 2;
3797  while (--i) {                 /* note that i == g from above */
3798    *xp++ = (j += *p++);
3799  }
3800
3801
3802  /* Make a table of values in order of bit lengths */
3803  p = b;  i = 0;
3804  do {
3805    if ((j = *p++) != 0)
3806      v[x[j]++] = i;
3807  } while (++i < n);
3808
3809
3810  /* Generate the Huffman codes and for each, make the table entries */
3811  x[0] = i = 0;                 /* first Huffman code is zero */
3812  p = v;                        /* grab values in bit order */
3813  h = -1;                       /* no tables yet--level -1 */
3814  w = -l;                       /* bits decoded == (l * h) */
3815  u[0] = (inflate_huft *)Z_NULL;        /* just to keep compilers happy */
3816  q = (inflate_huft *)Z_NULL;   /* ditto */
3817  z = 0;                        /* ditto */
3818
3819  /* go through the bit lengths (k already is bits in shortest code) */
3820  for (; k <= g; k++)
3821  {
3822    a = c[k];
3823    while (a--)
3824    {
3825      /* here i is the Huffman code of length k bits for value *p */
3826      /* make tables up to required level */
3827      while (k > w + l)
3828      {
3829        h++;
3830        w += l;                 /* previous table always l bits */
3831
3832        /* compute minimum size table less than or equal to l bits */
3833        z = (z = g - w) > (uInt)l ? l : z;      /* table size upper limit */
3834        if ((f = 1 << (j = k - w)) > a + 1)     /* try a k-w bit table */
3835        {                       /* too few codes for k-w bit table */
3836          f -= a + 1;           /* deduct codes from patterns left */
3837          xp = c + k;
3838          if (j < z)
3839            while (++j < z)     /* try smaller tables up to z bits */
3840            {
3841              if ((f <<= 1) <= *++xp)
3842                break;          /* enough codes to use up j bits */
3843              f -= *xp;         /* else deduct codes from patterns */
3844            }
3845        }
3846        z = 1 << j;             /* table entries for j-bit table */
3847
3848        /* allocate and link in new table */
3849        if ((q = (inflate_huft *)ZALLOC
3850             (zs,z + 1,sizeof(inflate_huft))) == Z_NULL)
3851        {
3852          if (h)
3853            inflate_trees_free(u[0], zs);
3854          return Z_MEM_ERROR;   /* not enough memory */
3855        }
3856	q->word.Nalloc = z + 1;
3857#ifdef DEBUG_ZLIB
3858        inflate_hufts += z + 1;
3859#endif
3860        *t = q + 1;             /* link to list for huft_free() */
3861        *(t = &(q->next)) = Z_NULL;
3862        u[h] = ++q;             /* table starts after link */
3863
3864        /* connect to last table, if there is one */
3865        if (h)
3866        {
3867          x[h] = i;             /* save pattern for backing up */
3868          r.bits = (Byte)l;     /* bits to dump before this table */
3869          r.exop = (Byte)j;     /* bits in this table */
3870          r.next = q;           /* pointer to this table */
3871          j = i >> (w - l);     /* (get around Turbo C bug) */
3872          u[h-1][j] = r;        /* connect to last table */
3873        }
3874      }
3875
3876      /* set up table entry in r */
3877      r.bits = (Byte)(k - w);
3878      if (p >= v + n)
3879        r.exop = 128 + 64;      /* out of values--invalid code */
3880      else if (*p < s)
3881      {
3882        r.exop = (Byte)(*p < 256 ? 0 : 32 + 64);     /* 256 is end-of-block */
3883        r.base = *p++;          /* simple code is just the value */
3884      }
3885      else
3886      {
3887        r.exop = (Byte)e[*p - s] + 16 + 64; /* non-simple--look up in lists */
3888        r.base = d[*p++ - s];
3889      }
3890
3891      /* fill code-like entries with r */
3892      f = 1 << (k - w);
3893      for (j = i >> w; j < z; j += f)
3894        q[j] = r;
3895
3896      /* backwards increment the k-bit code i */
3897      for (j = 1 << (k - 1); i & j; j >>= 1)
3898        i ^= j;
3899      i ^= j;
3900
3901      /* backup over finished tables */
3902      while ((i & ((1 << w) - 1)) != x[h])
3903      {
3904        h--;                    /* don't need to update q */
3905        w -= l;
3906      }
3907    }
3908  }
3909
3910
3911  /* Return Z_BUF_ERROR if we were given an incomplete table */
3912  return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK;
3913}
3914
3915
3916local int inflate_trees_bits(c, bb, tb, z)
3917uIntf *c;               /* 19 code lengths */
3918uIntf *bb;              /* bits tree desired/actual depth */
3919inflate_huft * FAR *tb; /* bits tree result */
3920z_stream *z;            /* for zfree function */
3921{
3922  int r;
3923
3924  r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL, tb, bb, z);
3925  if (r == Z_DATA_ERROR)
3926    z->msg = "oversubscribed dynamic bit lengths tree";
3927  else if (r == Z_BUF_ERROR)
3928  {
3929    inflate_trees_free(*tb, z);
3930    z->msg = "incomplete dynamic bit lengths tree";
3931    r = Z_DATA_ERROR;
3932  }
3933  return r;
3934}
3935
3936
3937local int inflate_trees_dynamic(nl, nd, c, bl, bd, tl, td, z)
3938uInt nl;                /* number of literal/length codes */
3939uInt nd;                /* number of distance codes */
3940uIntf *c;               /* that many (total) code lengths */
3941uIntf *bl;              /* literal desired/actual bit depth */
3942uIntf *bd;              /* distance desired/actual bit depth */
3943inflate_huft * FAR *tl; /* literal/length tree result */
3944inflate_huft * FAR *td; /* distance tree result */
3945z_stream *z;            /* for zfree function */
3946{
3947  int r;
3948
3949  /* build literal/length tree */
3950  if ((r = huft_build(c, nl, 257, cplens, cplext, tl, bl, z)) != Z_OK)
3951  {
3952    if (r == Z_DATA_ERROR)
3953      z->msg = "oversubscribed literal/length tree";
3954    else if (r == Z_BUF_ERROR)
3955    {
3956      inflate_trees_free(*tl, z);
3957      z->msg = "incomplete literal/length tree";
3958      r = Z_DATA_ERROR;
3959    }
3960    return r;
3961  }
3962
3963  /* build distance tree */
3964  if ((r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, z)) != Z_OK)
3965  {
3966    if (r == Z_DATA_ERROR)
3967      z->msg = "oversubscribed literal/length tree";
3968    else if (r == Z_BUF_ERROR) {
3969#ifdef PKZIP_BUG_WORKAROUND
3970      r = Z_OK;
3971    }
3972#else
3973      inflate_trees_free(*td, z);
3974      z->msg = "incomplete literal/length tree";
3975      r = Z_DATA_ERROR;
3976    }
3977    inflate_trees_free(*tl, z);
3978    return r;
3979#endif
3980  }
3981
3982  /* done */
3983  return Z_OK;
3984}
3985
3986
3987/* build fixed tables only once--keep them here */
3988local int fixed_lock = 0;
3989local int fixed_built = 0;
3990#define FIXEDH 530      /* number of hufts used by fixed tables */
3991local uInt fixed_left = FIXEDH;
3992local inflate_huft fixed_mem[FIXEDH];
3993local uInt fixed_bl;
3994local uInt fixed_bd;
3995local inflate_huft *fixed_tl;
3996local inflate_huft *fixed_td;
3997
3998
3999local voidpf falloc(q, n, s)
4000voidpf q;        /* opaque pointer (not used) */
4001uInt n;         /* number of items */
4002uInt s;         /* size of item */
4003{
4004  Assert(s == sizeof(inflate_huft) && n <= fixed_left,
4005         "inflate_trees falloc overflow");
4006  if (q) s++; /* to make some compilers happy */
4007  fixed_left -= n;
4008  return (voidpf)(fixed_mem + fixed_left);
4009}
4010
4011
4012local void ffree(q, p, n)
4013voidpf q;
4014voidpf p;
4015uInt n;
4016{
4017  Assert(0, "inflate_trees ffree called!");
4018  if (q) q = p; /* to make some compilers happy */
4019}
4020
4021
4022local int inflate_trees_fixed(bl, bd, tl, td)
4023uIntf *bl;               /* literal desired/actual bit depth */
4024uIntf *bd;               /* distance desired/actual bit depth */
4025inflate_huft * FAR *tl;  /* literal/length tree result */
4026inflate_huft * FAR *td;  /* distance tree result */
4027{
4028  /* build fixed tables if not built already--lock out other instances */
4029  while (++fixed_lock > 1)
4030    fixed_lock--;
4031  if (!fixed_built)
4032  {
4033    int k;              /* temporary variable */
4034    unsigned c[288];    /* length list for huft_build */
4035    z_stream z;         /* for falloc function */
4036
4037    /* set up fake z_stream for memory routines */
4038    z.zalloc = falloc;
4039    z.zfree = ffree;
4040    z.opaque = Z_NULL;
4041
4042    /* literal table */
4043    for (k = 0; k < 144; k++)
4044      c[k] = 8;
4045    for (; k < 256; k++)
4046      c[k] = 9;
4047    for (; k < 280; k++)
4048      c[k] = 7;
4049    for (; k < 288; k++)
4050      c[k] = 8;
4051    fixed_bl = 7;
4052    huft_build(c, 288, 257, cplens, cplext, &fixed_tl, &fixed_bl, &z);
4053
4054    /* distance table */
4055    for (k = 0; k < 30; k++)
4056      c[k] = 5;
4057    fixed_bd = 5;
4058    huft_build(c, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd, &z);
4059
4060    /* done */
4061    fixed_built = 1;
4062  }
4063  fixed_lock--;
4064  *bl = fixed_bl;
4065  *bd = fixed_bd;
4066  *tl = fixed_tl;
4067  *td = fixed_td;
4068  return Z_OK;
4069}
4070
4071
4072local int inflate_trees_free(t, z)
4073inflate_huft *t;        /* table to free */
4074z_stream *z;            /* for zfree function */
4075/* Free the malloc'ed tables built by huft_build(), which makes a linked
4076   list of the tables it made, with the links in a dummy first entry of
4077   each table. */
4078{
4079  register inflate_huft *p, *q;
4080
4081  /* Go through linked list, freeing from the malloced (t[-1]) address. */
4082  p = t;
4083  while (p != Z_NULL)
4084  {
4085    q = (--p)->next;
4086    ZFREE(z, p, p->word.Nalloc * sizeof(inflate_huft));
4087    p = q;
4088  }
4089  return Z_OK;
4090}
4091
4092/*+++++*/
4093/* infcodes.c -- process literals and length/distance pairs
4094 * Copyright (C) 1995 Mark Adler
4095 * For conditions of distribution and use, see copyright notice in zlib.h
4096 */
4097
4098/* simplify the use of the inflate_huft type with some defines */
4099#define base more.Base
4100#define next more.Next
4101#define exop word.what.Exop
4102#define bits word.what.Bits
4103
4104/* inflate codes private state */
4105struct inflate_codes_state {
4106
4107  /* mode */
4108  enum {        /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
4109      START,    /* x: set up for LEN */
4110      LEN,      /* i: get length/literal/eob next */
4111      LENEXT,   /* i: getting length extra (have base) */
4112      DIST,     /* i: get distance next */
4113      DISTEXT,  /* i: getting distance extra */
4114      COPY,     /* o: copying bytes in window, waiting for space */
4115      LIT,      /* o: got literal, waiting for output space */
4116      WASH,     /* o: got eob, possibly still output waiting */
4117      END,      /* x: got eob and all data flushed */
4118      BADCODE}  /* x: got error */
4119    mode;               /* current inflate_codes mode */
4120
4121  /* mode dependent information */
4122  uInt len;
4123  union {
4124    struct {
4125      inflate_huft *tree;       /* pointer into tree */
4126      uInt need;                /* bits needed */
4127    } code;             /* if LEN or DIST, where in tree */
4128    uInt lit;           /* if LIT, literal */
4129    struct {
4130      uInt get;                 /* bits to get for extra */
4131      uInt dist;                /* distance back to copy from */
4132    } copy;             /* if EXT or COPY, where and how much */
4133  } sub;                /* submode */
4134
4135  /* mode independent information */
4136  Byte lbits;           /* ltree bits decoded per branch */
4137  Byte dbits;           /* dtree bits decoder per branch */
4138  inflate_huft *ltree;          /* literal/length/eob tree */
4139  inflate_huft *dtree;          /* distance tree */
4140
4141};
4142
4143
4144local inflate_codes_statef *inflate_codes_new(bl, bd, tl, td, z)
4145uInt bl, bd;
4146inflate_huft *tl, *td;
4147z_stream *z;
4148{
4149  inflate_codes_statef *c;
4150
4151  if ((c = (inflate_codes_statef *)
4152       ZALLOC(z,1,sizeof(struct inflate_codes_state))) != Z_NULL)
4153  {
4154    c->mode = START;
4155    c->lbits = (Byte)bl;
4156    c->dbits = (Byte)bd;
4157    c->ltree = tl;
4158    c->dtree = td;
4159    Tracev((stderr, "inflate:       codes new\n"));
4160  }
4161  return c;
4162}
4163
4164
4165local int inflate_codes(s, z, r)
4166inflate_blocks_statef *s;
4167z_stream *z;
4168int r;
4169{
4170  uInt j;               /* temporary storage */
4171  inflate_huft *t;      /* temporary pointer */
4172  uInt e;               /* extra bits or operation */
4173  uLong b;              /* bit buffer */
4174  uInt k;               /* bits in bit buffer */
4175  Bytef *p;             /* input data pointer */
4176  uInt n;               /* bytes available there */
4177  Bytef *q;             /* output window write pointer */
4178  uInt m;               /* bytes to end of window or read pointer */
4179  Bytef *f;             /* pointer to copy strings from */
4180  inflate_codes_statef *c = s->sub.decode.codes;  /* codes state */
4181
4182  /* copy input/output information to locals (UPDATE macro restores) */
4183  LOAD
4184
4185  /* process input and output based on current state */
4186  while (1) switch (c->mode)
4187  {             /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
4188    case START:         /* x: set up for LEN */
4189#ifndef SLOW
4190      if (m >= 258 && n >= 10)
4191      {
4192        UPDATE
4193        r = inflate_fast(c->lbits, c->dbits, c->ltree, c->dtree, s, z);
4194        LOAD
4195        if (r != Z_OK)
4196        {
4197          c->mode = r == Z_STREAM_END ? WASH : BADCODE;
4198          break;
4199        }
4200      }
4201#endif /* !SLOW */
4202      c->sub.code.need = c->lbits;
4203      c->sub.code.tree = c->ltree;
4204      c->mode = LEN;
4205    case LEN:           /* i: get length/literal/eob next */
4206      j = c->sub.code.need;
4207      NEEDBITS(j)
4208      t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
4209      DUMPBITS(t->bits)
4210      e = (uInt)(t->exop);
4211      if (e == 0)               /* literal */
4212      {
4213        c->sub.lit = t->base;
4214        Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
4215                 "inflate:         literal '%c'\n" :
4216                 "inflate:         literal 0x%02x\n", t->base));
4217        c->mode = LIT;
4218        break;
4219      }
4220      if (e & 16)               /* length */
4221      {
4222        c->sub.copy.get = e & 15;
4223        c->len = t->base;
4224        c->mode = LENEXT;
4225        break;
4226      }
4227      if ((e & 64) == 0)        /* next table */
4228      {
4229        c->sub.code.need = e;
4230        c->sub.code.tree = t->next;
4231        break;
4232      }
4233      if (e & 32)               /* end of block */
4234      {
4235        Tracevv((stderr, "inflate:         end of block\n"));
4236        c->mode = WASH;
4237        break;
4238      }
4239      c->mode = BADCODE;        /* invalid code */
4240      z->msg = "invalid literal/length code";
4241      r = Z_DATA_ERROR;
4242      LEAVE
4243    case LENEXT:        /* i: getting length extra (have base) */
4244      j = c->sub.copy.get;
4245      NEEDBITS(j)
4246      c->len += (uInt)b & inflate_mask[j];
4247      DUMPBITS(j)
4248      c->sub.code.need = c->dbits;
4249      c->sub.code.tree = c->dtree;
4250      Tracevv((stderr, "inflate:         length %u\n", c->len));
4251      c->mode = DIST;
4252    case DIST:          /* i: get distance next */
4253      j = c->sub.code.need;
4254      NEEDBITS(j)
4255      t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
4256      DUMPBITS(t->bits)
4257      e = (uInt)(t->exop);
4258      if (e & 16)               /* distance */
4259      {
4260        c->sub.copy.get = e & 15;
4261        c->sub.copy.dist = t->base;
4262        c->mode = DISTEXT;
4263        break;
4264      }
4265      if ((e & 64) == 0)        /* next table */
4266      {
4267        c->sub.code.need = e;
4268        c->sub.code.tree = t->next;
4269        break;
4270      }
4271      c->mode = BADCODE;        /* invalid code */
4272      z->msg = "invalid distance code";
4273      r = Z_DATA_ERROR;
4274      LEAVE
4275    case DISTEXT:       /* i: getting distance extra */
4276      j = c->sub.copy.get;
4277      NEEDBITS(j)
4278      c->sub.copy.dist += (uInt)b & inflate_mask[j];
4279      DUMPBITS(j)
4280      Tracevv((stderr, "inflate:         distance %u\n", c->sub.copy.dist));
4281      c->mode = COPY;
4282    case COPY:          /* o: copying bytes in window, waiting for space */
4283#ifndef __TURBOC__ /* Turbo C bug for following expression */
4284      f = (uInt)(q - s->window) < c->sub.copy.dist ?
4285          s->end - (c->sub.copy.dist - (q - s->window)) :
4286          q - c->sub.copy.dist;
4287#else
4288      f = q - c->sub.copy.dist;
4289      if ((uInt)(q - s->window) < c->sub.copy.dist)
4290        f = s->end - (c->sub.copy.dist - (q - s->window));
4291#endif
4292      while (c->len)
4293      {
4294        NEEDOUT
4295        OUTBYTE(*f++)
4296        if (f == s->end)
4297          f = s->window;
4298        c->len--;
4299      }
4300      c->mode = START;
4301      break;
4302    case LIT:           /* o: got literal, waiting for output space */
4303      NEEDOUT
4304      OUTBYTE(c->sub.lit)
4305      c->mode = START;
4306      break;
4307    case WASH:          /* o: got eob, possibly more output */
4308      FLUSH
4309      if (s->read != s->write)
4310        LEAVE
4311      c->mode = END;
4312    case END:
4313      r = Z_STREAM_END;
4314      LEAVE
4315    case BADCODE:       /* x: got error */
4316      r = Z_DATA_ERROR;
4317      LEAVE
4318    default:
4319      r = Z_STREAM_ERROR;
4320      LEAVE
4321  }
4322}
4323
4324
4325local void inflate_codes_free(c, z)
4326inflate_codes_statef *c;
4327z_stream *z;
4328{
4329  ZFREE(z, c, sizeof(struct inflate_codes_state));
4330  Tracev((stderr, "inflate:       codes free\n"));
4331}
4332
4333/*+++++*/
4334/* inflate_util.c -- data and routines common to blocks and codes
4335 * Copyright (C) 1995 Mark Adler
4336 * For conditions of distribution and use, see copyright notice in zlib.h
4337 */
4338
4339/* copy as much as possible from the sliding window to the output area */
4340local int inflate_flush(s, z, r)
4341inflate_blocks_statef *s;
4342z_stream *z;
4343int r;
4344{
4345  uInt n;
4346  Bytef *p, *q;
4347
4348  /* local copies of source and destination pointers */
4349  p = z->next_out;
4350  q = s->read;
4351
4352  /* compute number of bytes to copy as far as end of window */
4353  n = (uInt)((q <= s->write ? s->write : s->end) - q);
4354  if (n > z->avail_out) n = z->avail_out;
4355  if (n && r == Z_BUF_ERROR) r = Z_OK;
4356
4357  /* update counters */
4358  z->avail_out -= n;
4359  z->total_out += n;
4360
4361  /* update check information */
4362  if (s->checkfn != Z_NULL)
4363    s->check = (*s->checkfn)(s->check, q, n);
4364
4365  /* copy as far as end of window */
4366  if (p != NULL) {
4367    zmemcpy(p, q, n);
4368    p += n;
4369  }
4370  q += n;
4371
4372  /* see if more to copy at beginning of window */
4373  if (q == s->end)
4374  {
4375    /* wrap pointers */
4376    q = s->window;
4377    if (s->write == s->end)
4378      s->write = s->window;
4379
4380    /* compute bytes to copy */
4381    n = (uInt)(s->write - q);
4382    if (n > z->avail_out) n = z->avail_out;
4383    if (n && r == Z_BUF_ERROR) r = Z_OK;
4384
4385    /* update counters */
4386    z->avail_out -= n;
4387    z->total_out += n;
4388
4389    /* update check information */
4390    if (s->checkfn != Z_NULL)
4391      s->check = (*s->checkfn)(s->check, q, n);
4392
4393    /* copy */
4394    if (p != NULL) {
4395      zmemcpy(p, q, n);
4396      p += n;
4397    }
4398    q += n;
4399  }
4400
4401  /* update pointers */
4402  z->next_out = p;
4403  s->read = q;
4404
4405  /* done */
4406  return r;
4407}
4408
4409
4410/*+++++*/
4411/* inffast.c -- process literals and length/distance pairs fast
4412 * Copyright (C) 1995 Mark Adler
4413 * For conditions of distribution and use, see copyright notice in zlib.h
4414 */
4415
4416/* simplify the use of the inflate_huft type with some defines */
4417#define base more.Base
4418#define next more.Next
4419#define exop word.what.Exop
4420#define bits word.what.Bits
4421
4422/* macros for bit input with no checking and for returning unused bytes */
4423#define GRABBITS(j) {while(k<(j)){b|=((uLong)NEXTBYTE)<<k;k+=8;}}
4424#define UNGRAB {n+=(c=k>>3);p-=c;k&=7;}
4425
4426/* Called with number of bytes left to write in window at least 258
4427   (the maximum string length) and number of input bytes available
4428   at least ten.  The ten bytes are six bytes for the longest length/
4429   distance pair plus four bytes for overloading the bit buffer. */
4430
4431local int inflate_fast(bl, bd, tl, td, s, z)
4432uInt bl, bd;
4433inflate_huft *tl, *td;
4434inflate_blocks_statef *s;
4435z_stream *z;
4436{
4437  inflate_huft *t;      /* temporary pointer */
4438  uInt e;               /* extra bits or operation */
4439  uLong b;              /* bit buffer */
4440  uInt k;               /* bits in bit buffer */
4441  Bytef *p;             /* input data pointer */
4442  uInt n;               /* bytes available there */
4443  Bytef *q;             /* output window write pointer */
4444  uInt m;               /* bytes to end of window or read pointer */
4445  uInt ml;              /* mask for literal/length tree */
4446  uInt md;              /* mask for distance tree */
4447  uInt c;               /* bytes to copy */
4448  uInt d;               /* distance back to copy from */
4449  Bytef *r;             /* copy source pointer */
4450
4451  /* load input, output, bit values */
4452  LOAD
4453
4454  /* initialize masks */
4455  ml = inflate_mask[bl];
4456  md = inflate_mask[bd];
4457
4458  /* do until not enough input or output space for fast loop */
4459  do {                          /* assume called with m >= 258 && n >= 10 */
4460    /* get literal/length code */
4461    GRABBITS(20)                /* max bits for literal/length code */
4462    if ((e = (t = tl + ((uInt)b & ml))->exop) == 0)
4463    {
4464      DUMPBITS(t->bits)
4465      Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
4466                "inflate:         * literal '%c'\n" :
4467                "inflate:         * literal 0x%02x\n", t->base));
4468      *q++ = (Byte)t->base;
4469      m--;
4470      continue;
4471    }
4472    do {
4473      DUMPBITS(t->bits)
4474      if (e & 16)
4475      {
4476        /* get extra bits for length */
4477        e &= 15;
4478        c = t->base + ((uInt)b & inflate_mask[e]);
4479        DUMPBITS(e)
4480        Tracevv((stderr, "inflate:         * length %u\n", c));
4481
4482        /* decode distance base of block to copy */
4483        GRABBITS(15);           /* max bits for distance code */
4484        e = (t = td + ((uInt)b & md))->exop;
4485        do {
4486          DUMPBITS(t->bits)
4487          if (e & 16)
4488          {
4489            /* get extra bits to add to distance base */
4490            e &= 15;
4491            GRABBITS(e)         /* get extra bits (up to 13) */
4492            d = t->base + ((uInt)b & inflate_mask[e]);
4493            DUMPBITS(e)
4494            Tracevv((stderr, "inflate:         * distance %u\n", d));
4495
4496            /* do the copy */
4497            m -= c;
4498            if ((uInt)(q - s->window) >= d)     /* offset before dest */
4499            {                                   /*  just copy */
4500              r = q - d;
4501              *q++ = *r++;  c--;        /* minimum count is three, */
4502              *q++ = *r++;  c--;        /*  so unroll loop a little */
4503            }
4504            else                        /* else offset after destination */
4505            {
4506              e = d - (q - s->window);  /* bytes from offset to end */
4507              r = s->end - e;           /* pointer to offset */
4508              if (c > e)                /* if source crosses, */
4509              {
4510                c -= e;                 /* copy to end of window */
4511                do {
4512                  *q++ = *r++;
4513                } while (--e);
4514                r = s->window;          /* copy rest from start of window */
4515              }
4516            }
4517            do {                        /* copy all or what's left */
4518              *q++ = *r++;
4519            } while (--c);
4520            break;
4521          }
4522          else if ((e & 64) == 0)
4523            e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop;
4524          else
4525          {
4526            z->msg = "invalid distance code";
4527            UNGRAB
4528            UPDATE
4529            return Z_DATA_ERROR;
4530          }
4531        } while (1);
4532        break;
4533      }
4534      if ((e & 64) == 0)
4535      {
4536        if ((e = (t = t->next + ((uInt)b & inflate_mask[e]))->exop) == 0)
4537        {
4538          DUMPBITS(t->bits)
4539          Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
4540                    "inflate:         * literal '%c'\n" :
4541                    "inflate:         * literal 0x%02x\n", t->base));
4542          *q++ = (Byte)t->base;
4543          m--;
4544          break;
4545        }
4546      }
4547      else if (e & 32)
4548      {
4549        Tracevv((stderr, "inflate:         * end of block\n"));
4550        UNGRAB
4551        UPDATE
4552        return Z_STREAM_END;
4553      }
4554      else
4555      {
4556        z->msg = "invalid literal/length code";
4557        UNGRAB
4558        UPDATE
4559        return Z_DATA_ERROR;
4560      }
4561    } while (1);
4562  } while (m >= 258 && n >= 10);
4563
4564  /* not enough input or output--restore pointers and return */
4565  UNGRAB
4566  UPDATE
4567  return Z_OK;
4568}
4569
4570
4571/*+++++*/
4572/* zutil.c -- target dependent utility functions for the compression library
4573 * Copyright (C) 1995 Jean-loup Gailly.
4574 * For conditions of distribution and use, see copyright notice in zlib.h
4575 */
4576
4577/* From: zutil.c,v 1.8 1995/05/03 17:27:12 jloup Exp */
4578
4579char *zlib_version = ZLIB_VERSION;
4580
4581char *z_errmsg[] = {
4582"stream end",          /* Z_STREAM_END    1 */
4583"",                    /* Z_OK            0 */
4584"file error",          /* Z_ERRNO        (-1) */
4585"stream error",        /* Z_STREAM_ERROR (-2) */
4586"data error",          /* Z_DATA_ERROR   (-3) */
4587"insufficient memory", /* Z_MEM_ERROR    (-4) */
4588"buffer error",        /* Z_BUF_ERROR    (-5) */
4589""};
4590
4591
4592/*+++++*/
4593/* adler32.c -- compute the Adler-32 checksum of a data stream
4594 * Copyright (C) 1995 Mark Adler
4595 * For conditions of distribution and use, see copyright notice in zlib.h
4596 */
4597
4598/* From: adler32.c,v 1.6 1995/05/03 17:27:08 jloup Exp */
4599
4600#define BASE 65521L /* largest prime smaller than 65536 */
4601#define NMAX 5552
4602/* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
4603
4604#define DO1(buf)  {s1 += *buf++; s2 += s1;}
4605#define DO2(buf)  DO1(buf); DO1(buf);
4606#define DO4(buf)  DO2(buf); DO2(buf);
4607#define DO8(buf)  DO4(buf); DO4(buf);
4608#define DO16(buf) DO8(buf); DO8(buf);
4609
4610/* ========================================================================= */
4611uLong adler32(adler, buf, len)
4612    uLong adler;
4613    Bytef *buf;
4614    uInt len;
4615{
4616    unsigned long s1 = adler & 0xffff;
4617    unsigned long s2 = (adler >> 16) & 0xffff;
4618    int k;
4619
4620    if (buf == Z_NULL) return 1L;
4621
4622    while (len > 0) {
4623        k = len < NMAX ? len : NMAX;
4624        len -= k;
4625        while (k >= 16) {
4626            DO16(buf);
4627            k -= 16;
4628        }
4629        if (k != 0) do {
4630            DO1(buf);
4631        } while (--k);
4632        s1 %= BASE;
4633        s2 %= BASE;
4634    }
4635    return (s2 << 16) | s1;
4636}
4637