1//===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the CodeGenDAGPatterns class, which is used to read and
11// represent the patterns present in a .td file for instructions.
12//
13//===----------------------------------------------------------------------===//
14
15#include "CodeGenDAGPatterns.h"
16#include "llvm/TableGen/Error.h"
17#include "llvm/TableGen/Record.h"
18#include "llvm/ADT/StringExtras.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/Twine.h"
21#include "llvm/Support/Debug.h"
22#include "llvm/Support/ErrorHandling.h"
23#include <algorithm>
24#include <cstdio>
25#include <set>
26using namespace llvm;
27
28//===----------------------------------------------------------------------===//
29//  EEVT::TypeSet Implementation
30//===----------------------------------------------------------------------===//
31
32static inline bool isInteger(MVT::SimpleValueType VT) {
33  return EVT(VT).isInteger();
34}
35static inline bool isFloatingPoint(MVT::SimpleValueType VT) {
36  return EVT(VT).isFloatingPoint();
37}
38static inline bool isVector(MVT::SimpleValueType VT) {
39  return EVT(VT).isVector();
40}
41static inline bool isScalar(MVT::SimpleValueType VT) {
42  return !EVT(VT).isVector();
43}
44
45EEVT::TypeSet::TypeSet(MVT::SimpleValueType VT, TreePattern &TP) {
46  if (VT == MVT::iAny)
47    EnforceInteger(TP);
48  else if (VT == MVT::fAny)
49    EnforceFloatingPoint(TP);
50  else if (VT == MVT::vAny)
51    EnforceVector(TP);
52  else {
53    assert((VT < MVT::LAST_VALUETYPE || VT == MVT::iPTR ||
54            VT == MVT::iPTRAny) && "Not a concrete type!");
55    TypeVec.push_back(VT);
56  }
57}
58
59
60EEVT::TypeSet::TypeSet(const std::vector<MVT::SimpleValueType> &VTList) {
61  assert(!VTList.empty() && "empty list?");
62  TypeVec.append(VTList.begin(), VTList.end());
63
64  if (!VTList.empty())
65    assert(VTList[0] != MVT::iAny && VTList[0] != MVT::vAny &&
66           VTList[0] != MVT::fAny);
67
68  // Verify no duplicates.
69  array_pod_sort(TypeVec.begin(), TypeVec.end());
70  assert(std::unique(TypeVec.begin(), TypeVec.end()) == TypeVec.end());
71}
72
73/// FillWithPossibleTypes - Set to all legal types and return true, only valid
74/// on completely unknown type sets.
75bool EEVT::TypeSet::FillWithPossibleTypes(TreePattern &TP,
76                                          bool (*Pred)(MVT::SimpleValueType),
77                                          const char *PredicateName) {
78  assert(isCompletelyUnknown());
79  const std::vector<MVT::SimpleValueType> &LegalTypes =
80    TP.getDAGPatterns().getTargetInfo().getLegalValueTypes();
81
82  for (unsigned i = 0, e = LegalTypes.size(); i != e; ++i)
83    if (Pred == 0 || Pred(LegalTypes[i]))
84      TypeVec.push_back(LegalTypes[i]);
85
86  // If we have nothing that matches the predicate, bail out.
87  if (TypeVec.empty())
88    TP.error("Type inference contradiction found, no " +
89             std::string(PredicateName) + " types found");
90  // No need to sort with one element.
91  if (TypeVec.size() == 1) return true;
92
93  // Remove duplicates.
94  array_pod_sort(TypeVec.begin(), TypeVec.end());
95  TypeVec.erase(std::unique(TypeVec.begin(), TypeVec.end()), TypeVec.end());
96
97  return true;
98}
99
100/// hasIntegerTypes - Return true if this TypeSet contains iAny or an
101/// integer value type.
102bool EEVT::TypeSet::hasIntegerTypes() const {
103  for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
104    if (isInteger(TypeVec[i]))
105      return true;
106  return false;
107}
108
109/// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or
110/// a floating point value type.
111bool EEVT::TypeSet::hasFloatingPointTypes() const {
112  for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
113    if (isFloatingPoint(TypeVec[i]))
114      return true;
115  return false;
116}
117
118/// hasVectorTypes - Return true if this TypeSet contains a vAny or a vector
119/// value type.
120bool EEVT::TypeSet::hasVectorTypes() const {
121  for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
122    if (isVector(TypeVec[i]))
123      return true;
124  return false;
125}
126
127
128std::string EEVT::TypeSet::getName() const {
129  if (TypeVec.empty()) return "<empty>";
130
131  std::string Result;
132
133  for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) {
134    std::string VTName = llvm::getEnumName(TypeVec[i]);
135    // Strip off MVT:: prefix if present.
136    if (VTName.substr(0,5) == "MVT::")
137      VTName = VTName.substr(5);
138    if (i) Result += ':';
139    Result += VTName;
140  }
141
142  if (TypeVec.size() == 1)
143    return Result;
144  return "{" + Result + "}";
145}
146
147/// MergeInTypeInfo - This merges in type information from the specified
148/// argument.  If 'this' changes, it returns true.  If the two types are
149/// contradictory (e.g. merge f32 into i32) then this throws an exception.
150bool EEVT::TypeSet::MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP){
151  if (InVT.isCompletelyUnknown() || *this == InVT)
152    return false;
153
154  if (isCompletelyUnknown()) {
155    *this = InVT;
156    return true;
157  }
158
159  assert(TypeVec.size() >= 1 && InVT.TypeVec.size() >= 1 && "No unknowns");
160
161  // Handle the abstract cases, seeing if we can resolve them better.
162  switch (TypeVec[0]) {
163  default: break;
164  case MVT::iPTR:
165  case MVT::iPTRAny:
166    if (InVT.hasIntegerTypes()) {
167      EEVT::TypeSet InCopy(InVT);
168      InCopy.EnforceInteger(TP);
169      InCopy.EnforceScalar(TP);
170
171      if (InCopy.isConcrete()) {
172        // If the RHS has one integer type, upgrade iPTR to i32.
173        TypeVec[0] = InVT.TypeVec[0];
174        return true;
175      }
176
177      // If the input has multiple scalar integers, this doesn't add any info.
178      if (!InCopy.isCompletelyUnknown())
179        return false;
180    }
181    break;
182  }
183
184  // If the input constraint is iAny/iPTR and this is an integer type list,
185  // remove non-integer types from the list.
186  if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) &&
187      hasIntegerTypes()) {
188    bool MadeChange = EnforceInteger(TP);
189
190    // If we're merging in iPTR/iPTRAny and the node currently has a list of
191    // multiple different integer types, replace them with a single iPTR.
192    if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) &&
193        TypeVec.size() != 1) {
194      TypeVec.resize(1);
195      TypeVec[0] = InVT.TypeVec[0];
196      MadeChange = true;
197    }
198
199    return MadeChange;
200  }
201
202  // If this is a type list and the RHS is a typelist as well, eliminate entries
203  // from this list that aren't in the other one.
204  bool MadeChange = false;
205  TypeSet InputSet(*this);
206
207  for (unsigned i = 0; i != TypeVec.size(); ++i) {
208    bool InInVT = false;
209    for (unsigned j = 0, e = InVT.TypeVec.size(); j != e; ++j)
210      if (TypeVec[i] == InVT.TypeVec[j]) {
211        InInVT = true;
212        break;
213      }
214
215    if (InInVT) continue;
216    TypeVec.erase(TypeVec.begin()+i--);
217    MadeChange = true;
218  }
219
220  // If we removed all of our types, we have a type contradiction.
221  if (!TypeVec.empty())
222    return MadeChange;
223
224  // FIXME: Really want an SMLoc here!
225  TP.error("Type inference contradiction found, merging '" +
226           InVT.getName() + "' into '" + InputSet.getName() + "'");
227  return true; // unreachable
228}
229
230/// EnforceInteger - Remove all non-integer types from this set.
231bool EEVT::TypeSet::EnforceInteger(TreePattern &TP) {
232  // If we know nothing, then get the full set.
233  if (TypeVec.empty())
234    return FillWithPossibleTypes(TP, isInteger, "integer");
235  if (!hasFloatingPointTypes())
236    return false;
237
238  TypeSet InputSet(*this);
239
240  // Filter out all the fp types.
241  for (unsigned i = 0; i != TypeVec.size(); ++i)
242    if (!isInteger(TypeVec[i]))
243      TypeVec.erase(TypeVec.begin()+i--);
244
245  if (TypeVec.empty())
246    TP.error("Type inference contradiction found, '" +
247             InputSet.getName() + "' needs to be integer");
248  return true;
249}
250
251/// EnforceFloatingPoint - Remove all integer types from this set.
252bool EEVT::TypeSet::EnforceFloatingPoint(TreePattern &TP) {
253  // If we know nothing, then get the full set.
254  if (TypeVec.empty())
255    return FillWithPossibleTypes(TP, isFloatingPoint, "floating point");
256
257  if (!hasIntegerTypes())
258    return false;
259
260  TypeSet InputSet(*this);
261
262  // Filter out all the fp types.
263  for (unsigned i = 0; i != TypeVec.size(); ++i)
264    if (!isFloatingPoint(TypeVec[i]))
265      TypeVec.erase(TypeVec.begin()+i--);
266
267  if (TypeVec.empty())
268    TP.error("Type inference contradiction found, '" +
269             InputSet.getName() + "' needs to be floating point");
270  return true;
271}
272
273/// EnforceScalar - Remove all vector types from this.
274bool EEVT::TypeSet::EnforceScalar(TreePattern &TP) {
275  // If we know nothing, then get the full set.
276  if (TypeVec.empty())
277    return FillWithPossibleTypes(TP, isScalar, "scalar");
278
279  if (!hasVectorTypes())
280    return false;
281
282  TypeSet InputSet(*this);
283
284  // Filter out all the vector types.
285  for (unsigned i = 0; i != TypeVec.size(); ++i)
286    if (!isScalar(TypeVec[i]))
287      TypeVec.erase(TypeVec.begin()+i--);
288
289  if (TypeVec.empty())
290    TP.error("Type inference contradiction found, '" +
291             InputSet.getName() + "' needs to be scalar");
292  return true;
293}
294
295/// EnforceVector - Remove all vector types from this.
296bool EEVT::TypeSet::EnforceVector(TreePattern &TP) {
297  // If we know nothing, then get the full set.
298  if (TypeVec.empty())
299    return FillWithPossibleTypes(TP, isVector, "vector");
300
301  TypeSet InputSet(*this);
302  bool MadeChange = false;
303
304  // Filter out all the scalar types.
305  for (unsigned i = 0; i != TypeVec.size(); ++i)
306    if (!isVector(TypeVec[i])) {
307      TypeVec.erase(TypeVec.begin()+i--);
308      MadeChange = true;
309    }
310
311  if (TypeVec.empty())
312    TP.error("Type inference contradiction found, '" +
313             InputSet.getName() + "' needs to be a vector");
314  return MadeChange;
315}
316
317
318
319/// EnforceSmallerThan - 'this' must be a smaller VT than Other.  Update
320/// this an other based on this information.
321bool EEVT::TypeSet::EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP) {
322  // Both operands must be integer or FP, but we don't care which.
323  bool MadeChange = false;
324
325  if (isCompletelyUnknown())
326    MadeChange = FillWithPossibleTypes(TP);
327
328  if (Other.isCompletelyUnknown())
329    MadeChange = Other.FillWithPossibleTypes(TP);
330
331  // If one side is known to be integer or known to be FP but the other side has
332  // no information, get at least the type integrality info in there.
333  if (!hasFloatingPointTypes())
334    MadeChange |= Other.EnforceInteger(TP);
335  else if (!hasIntegerTypes())
336    MadeChange |= Other.EnforceFloatingPoint(TP);
337  if (!Other.hasFloatingPointTypes())
338    MadeChange |= EnforceInteger(TP);
339  else if (!Other.hasIntegerTypes())
340    MadeChange |= EnforceFloatingPoint(TP);
341
342  assert(!isCompletelyUnknown() && !Other.isCompletelyUnknown() &&
343         "Should have a type list now");
344
345  // If one contains vectors but the other doesn't pull vectors out.
346  if (!hasVectorTypes())
347    MadeChange |= Other.EnforceScalar(TP);
348  if (!hasVectorTypes())
349    MadeChange |= EnforceScalar(TP);
350
351  if (TypeVec.size() == 1 && Other.TypeVec.size() == 1) {
352    // If we are down to concrete types, this code does not currently
353    // handle nodes which have multiple types, where some types are
354    // integer, and some are fp.  Assert that this is not the case.
355    assert(!(hasIntegerTypes() && hasFloatingPointTypes()) &&
356           !(Other.hasIntegerTypes() && Other.hasFloatingPointTypes()) &&
357           "SDTCisOpSmallerThanOp does not handle mixed int/fp types!");
358
359    // Otherwise, if these are both vector types, either this vector
360    // must have a larger bitsize than the other, or this element type
361    // must be larger than the other.
362    EVT Type(TypeVec[0]);
363    EVT OtherType(Other.TypeVec[0]);
364
365    if (hasVectorTypes() && Other.hasVectorTypes()) {
366      if (Type.getSizeInBits() >= OtherType.getSizeInBits())
367        if (Type.getVectorElementType().getSizeInBits()
368            >= OtherType.getVectorElementType().getSizeInBits())
369          TP.error("Type inference contradiction found, '" +
370                   getName() + "' element type not smaller than '" +
371                   Other.getName() +"'!");
372    }
373    else
374      // For scalar types, the bitsize of this type must be larger
375      // than that of the other.
376      if (Type.getSizeInBits() >= OtherType.getSizeInBits())
377        TP.error("Type inference contradiction found, '" +
378                 getName() + "' is not smaller than '" +
379                 Other.getName() +"'!");
380
381  }
382
383
384  // Handle int and fp as disjoint sets.  This won't work for patterns
385  // that have mixed fp/int types but those are likely rare and would
386  // not have been accepted by this code previously.
387
388  // Okay, find the smallest type from the current set and remove it from the
389  // largest set.
390  MVT::SimpleValueType SmallestInt = MVT::LAST_VALUETYPE;
391  for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
392    if (isInteger(TypeVec[i])) {
393      SmallestInt = TypeVec[i];
394      break;
395    }
396  for (unsigned i = 1, e = TypeVec.size(); i != e; ++i)
397    if (isInteger(TypeVec[i]) && TypeVec[i] < SmallestInt)
398      SmallestInt = TypeVec[i];
399
400  MVT::SimpleValueType SmallestFP = MVT::LAST_VALUETYPE;
401  for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
402    if (isFloatingPoint(TypeVec[i])) {
403      SmallestFP = TypeVec[i];
404      break;
405    }
406  for (unsigned i = 1, e = TypeVec.size(); i != e; ++i)
407    if (isFloatingPoint(TypeVec[i]) && TypeVec[i] < SmallestFP)
408      SmallestFP = TypeVec[i];
409
410  int OtherIntSize = 0;
411  int OtherFPSize = 0;
412  for (SmallVector<MVT::SimpleValueType, 2>::iterator TVI =
413         Other.TypeVec.begin();
414       TVI != Other.TypeVec.end();
415       /* NULL */) {
416    if (isInteger(*TVI)) {
417      ++OtherIntSize;
418      if (*TVI == SmallestInt) {
419        TVI = Other.TypeVec.erase(TVI);
420        --OtherIntSize;
421        MadeChange = true;
422        continue;
423      }
424    }
425    else if (isFloatingPoint(*TVI)) {
426      ++OtherFPSize;
427      if (*TVI == SmallestFP) {
428        TVI = Other.TypeVec.erase(TVI);
429        --OtherFPSize;
430        MadeChange = true;
431        continue;
432      }
433    }
434    ++TVI;
435  }
436
437  // If this is the only type in the large set, the constraint can never be
438  // satisfied.
439  if ((Other.hasIntegerTypes() && OtherIntSize == 0)
440      || (Other.hasFloatingPointTypes() && OtherFPSize == 0))
441    TP.error("Type inference contradiction found, '" +
442             Other.getName() + "' has nothing larger than '" + getName() +"'!");
443
444  // Okay, find the largest type in the Other set and remove it from the
445  // current set.
446  MVT::SimpleValueType LargestInt = MVT::Other;
447  for (unsigned i = 0, e = Other.TypeVec.size(); i != e; ++i)
448    if (isInteger(Other.TypeVec[i])) {
449      LargestInt = Other.TypeVec[i];
450      break;
451    }
452  for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i)
453    if (isInteger(Other.TypeVec[i]) && Other.TypeVec[i] > LargestInt)
454      LargestInt = Other.TypeVec[i];
455
456  MVT::SimpleValueType LargestFP = MVT::Other;
457  for (unsigned i = 0, e = Other.TypeVec.size(); i != e; ++i)
458    if (isFloatingPoint(Other.TypeVec[i])) {
459      LargestFP = Other.TypeVec[i];
460      break;
461    }
462  for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i)
463    if (isFloatingPoint(Other.TypeVec[i]) && Other.TypeVec[i] > LargestFP)
464      LargestFP = Other.TypeVec[i];
465
466  int IntSize = 0;
467  int FPSize = 0;
468  for (SmallVector<MVT::SimpleValueType, 2>::iterator TVI =
469         TypeVec.begin();
470       TVI != TypeVec.end();
471       /* NULL */) {
472    if (isInteger(*TVI)) {
473      ++IntSize;
474      if (*TVI == LargestInt) {
475        TVI = TypeVec.erase(TVI);
476        --IntSize;
477        MadeChange = true;
478        continue;
479      }
480    }
481    else if (isFloatingPoint(*TVI)) {
482      ++FPSize;
483      if (*TVI == LargestFP) {
484        TVI = TypeVec.erase(TVI);
485        --FPSize;
486        MadeChange = true;
487        continue;
488      }
489    }
490    ++TVI;
491  }
492
493  // If this is the only type in the small set, the constraint can never be
494  // satisfied.
495  if ((hasIntegerTypes() && IntSize == 0)
496      || (hasFloatingPointTypes() && FPSize == 0))
497    TP.error("Type inference contradiction found, '" +
498             getName() + "' has nothing smaller than '" + Other.getName()+"'!");
499
500  return MadeChange;
501}
502
503/// EnforceVectorEltTypeIs - 'this' is now constrainted to be a vector type
504/// whose element is specified by VTOperand.
505bool EEVT::TypeSet::EnforceVectorEltTypeIs(EEVT::TypeSet &VTOperand,
506                                           TreePattern &TP) {
507  // "This" must be a vector and "VTOperand" must be a scalar.
508  bool MadeChange = false;
509  MadeChange |= EnforceVector(TP);
510  MadeChange |= VTOperand.EnforceScalar(TP);
511
512  // If we know the vector type, it forces the scalar to agree.
513  if (isConcrete()) {
514    EVT IVT = getConcrete();
515    IVT = IVT.getVectorElementType();
516    return MadeChange |
517      VTOperand.MergeInTypeInfo(IVT.getSimpleVT().SimpleTy, TP);
518  }
519
520  // If the scalar type is known, filter out vector types whose element types
521  // disagree.
522  if (!VTOperand.isConcrete())
523    return MadeChange;
524
525  MVT::SimpleValueType VT = VTOperand.getConcrete();
526
527  TypeSet InputSet(*this);
528
529  // Filter out all the types which don't have the right element type.
530  for (unsigned i = 0; i != TypeVec.size(); ++i) {
531    assert(isVector(TypeVec[i]) && "EnforceVector didn't work");
532    if (EVT(TypeVec[i]).getVectorElementType().getSimpleVT().SimpleTy != VT) {
533      TypeVec.erase(TypeVec.begin()+i--);
534      MadeChange = true;
535    }
536  }
537
538  if (TypeVec.empty())  // FIXME: Really want an SMLoc here!
539    TP.error("Type inference contradiction found, forcing '" +
540             InputSet.getName() + "' to have a vector element");
541  return MadeChange;
542}
543
544/// EnforceVectorSubVectorTypeIs - 'this' is now constrainted to be a
545/// vector type specified by VTOperand.
546bool EEVT::TypeSet::EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VTOperand,
547                                                 TreePattern &TP) {
548  // "This" must be a vector and "VTOperand" must be a vector.
549  bool MadeChange = false;
550  MadeChange |= EnforceVector(TP);
551  MadeChange |= VTOperand.EnforceVector(TP);
552
553  // "This" must be larger than "VTOperand."
554  MadeChange |= VTOperand.EnforceSmallerThan(*this, TP);
555
556  // If we know the vector type, it forces the scalar types to agree.
557  if (isConcrete()) {
558    EVT IVT = getConcrete();
559    IVT = IVT.getVectorElementType();
560
561    EEVT::TypeSet EltTypeSet(IVT.getSimpleVT().SimpleTy, TP);
562    MadeChange |= VTOperand.EnforceVectorEltTypeIs(EltTypeSet, TP);
563  } else if (VTOperand.isConcrete()) {
564    EVT IVT = VTOperand.getConcrete();
565    IVT = IVT.getVectorElementType();
566
567    EEVT::TypeSet EltTypeSet(IVT.getSimpleVT().SimpleTy, TP);
568    MadeChange |= EnforceVectorEltTypeIs(EltTypeSet, TP);
569  }
570
571  return MadeChange;
572}
573
574//===----------------------------------------------------------------------===//
575// Helpers for working with extended types.
576
577/// Dependent variable map for CodeGenDAGPattern variant generation
578typedef std::map<std::string, int> DepVarMap;
579
580/// Const iterator shorthand for DepVarMap
581typedef DepVarMap::const_iterator DepVarMap_citer;
582
583static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
584  if (N->isLeaf()) {
585    if (dynamic_cast<DefInit*>(N->getLeafValue()) != NULL)
586      DepMap[N->getName()]++;
587  } else {
588    for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
589      FindDepVarsOf(N->getChild(i), DepMap);
590  }
591}
592
593/// Find dependent variables within child patterns
594static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
595  DepVarMap depcounts;
596  FindDepVarsOf(N, depcounts);
597  for (DepVarMap_citer i = depcounts.begin(); i != depcounts.end(); ++i) {
598    if (i->second > 1)            // std::pair<std::string, int>
599      DepVars.insert(i->first);
600  }
601}
602
603#ifndef NDEBUG
604/// Dump the dependent variable set:
605static void DumpDepVars(MultipleUseVarSet &DepVars) {
606  if (DepVars.empty()) {
607    DEBUG(errs() << "<empty set>");
608  } else {
609    DEBUG(errs() << "[ ");
610    for (MultipleUseVarSet::const_iterator i = DepVars.begin(),
611         e = DepVars.end(); i != e; ++i) {
612      DEBUG(errs() << (*i) << " ");
613    }
614    DEBUG(errs() << "]");
615  }
616}
617#endif
618
619
620//===----------------------------------------------------------------------===//
621// TreePredicateFn Implementation
622//===----------------------------------------------------------------------===//
623
624/// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
625TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
626  assert((getPredCode().empty() || getImmCode().empty()) &&
627        ".td file corrupt: can't have a node predicate *and* an imm predicate");
628}
629
630std::string TreePredicateFn::getPredCode() const {
631  return PatFragRec->getRecord()->getValueAsString("PredicateCode");
632}
633
634std::string TreePredicateFn::getImmCode() const {
635  return PatFragRec->getRecord()->getValueAsString("ImmediateCode");
636}
637
638
639/// isAlwaysTrue - Return true if this is a noop predicate.
640bool TreePredicateFn::isAlwaysTrue() const {
641  return getPredCode().empty() && getImmCode().empty();
642}
643
644/// Return the name to use in the generated code to reference this, this is
645/// "Predicate_foo" if from a pattern fragment "foo".
646std::string TreePredicateFn::getFnName() const {
647  return "Predicate_" + PatFragRec->getRecord()->getName();
648}
649
650/// getCodeToRunOnSDNode - Return the code for the function body that
651/// evaluates this predicate.  The argument is expected to be in "Node",
652/// not N.  This handles casting and conversion to a concrete node type as
653/// appropriate.
654std::string TreePredicateFn::getCodeToRunOnSDNode() const {
655  // Handle immediate predicates first.
656  std::string ImmCode = getImmCode();
657  if (!ImmCode.empty()) {
658    std::string Result =
659      "    int64_t Imm = cast<ConstantSDNode>(Node)->getSExtValue();\n";
660    return Result + ImmCode;
661  }
662
663  // Handle arbitrary node predicates.
664  assert(!getPredCode().empty() && "Don't have any predicate code!");
665  std::string ClassName;
666  if (PatFragRec->getOnlyTree()->isLeaf())
667    ClassName = "SDNode";
668  else {
669    Record *Op = PatFragRec->getOnlyTree()->getOperator();
670    ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName();
671  }
672  std::string Result;
673  if (ClassName == "SDNode")
674    Result = "    SDNode *N = Node;\n";
675  else
676    Result = "    " + ClassName + "*N = cast<" + ClassName + ">(Node);\n";
677
678  return Result + getPredCode();
679}
680
681//===----------------------------------------------------------------------===//
682// PatternToMatch implementation
683//
684
685
686/// getPatternSize - Return the 'size' of this pattern.  We want to match large
687/// patterns before small ones.  This is used to determine the size of a
688/// pattern.
689static unsigned getPatternSize(const TreePatternNode *P,
690                               const CodeGenDAGPatterns &CGP) {
691  unsigned Size = 3;  // The node itself.
692  // If the root node is a ConstantSDNode, increases its size.
693  // e.g. (set R32:$dst, 0).
694  if (P->isLeaf() && dynamic_cast<IntInit*>(P->getLeafValue()))
695    Size += 2;
696
697  // FIXME: This is a hack to statically increase the priority of patterns
698  // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD.
699  // Later we can allow complexity / cost for each pattern to be (optionally)
700  // specified. To get best possible pattern match we'll need to dynamically
701  // calculate the complexity of all patterns a dag can potentially map to.
702  const ComplexPattern *AM = P->getComplexPatternInfo(CGP);
703  if (AM)
704    Size += AM->getNumOperands() * 3;
705
706  // If this node has some predicate function that must match, it adds to the
707  // complexity of this node.
708  if (!P->getPredicateFns().empty())
709    ++Size;
710
711  // Count children in the count if they are also nodes.
712  for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
713    TreePatternNode *Child = P->getChild(i);
714    if (!Child->isLeaf() && Child->getNumTypes() &&
715        Child->getType(0) != MVT::Other)
716      Size += getPatternSize(Child, CGP);
717    else if (Child->isLeaf()) {
718      if (dynamic_cast<IntInit*>(Child->getLeafValue()))
719        Size += 5;  // Matches a ConstantSDNode (+3) and a specific value (+2).
720      else if (Child->getComplexPatternInfo(CGP))
721        Size += getPatternSize(Child, CGP);
722      else if (!Child->getPredicateFns().empty())
723        ++Size;
724    }
725  }
726
727  return Size;
728}
729
730/// Compute the complexity metric for the input pattern.  This roughly
731/// corresponds to the number of nodes that are covered.
732unsigned PatternToMatch::
733getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
734  return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
735}
736
737
738/// getPredicateCheck - Return a single string containing all of this
739/// pattern's predicates concatenated with "&&" operators.
740///
741std::string PatternToMatch::getPredicateCheck() const {
742  std::string PredicateCheck;
743  for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) {
744    if (DefInit *Pred = dynamic_cast<DefInit*>(Predicates->getElement(i))) {
745      Record *Def = Pred->getDef();
746      if (!Def->isSubClassOf("Predicate")) {
747#ifndef NDEBUG
748        Def->dump();
749#endif
750        llvm_unreachable("Unknown predicate type!");
751      }
752      if (!PredicateCheck.empty())
753        PredicateCheck += " && ";
754      PredicateCheck += "(" + Def->getValueAsString("CondString") + ")";
755    }
756  }
757
758  return PredicateCheck;
759}
760
761//===----------------------------------------------------------------------===//
762// SDTypeConstraint implementation
763//
764
765SDTypeConstraint::SDTypeConstraint(Record *R) {
766  OperandNo = R->getValueAsInt("OperandNum");
767
768  if (R->isSubClassOf("SDTCisVT")) {
769    ConstraintType = SDTCisVT;
770    x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT"));
771    if (x.SDTCisVT_Info.VT == MVT::isVoid)
772      throw TGError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
773
774  } else if (R->isSubClassOf("SDTCisPtrTy")) {
775    ConstraintType = SDTCisPtrTy;
776  } else if (R->isSubClassOf("SDTCisInt")) {
777    ConstraintType = SDTCisInt;
778  } else if (R->isSubClassOf("SDTCisFP")) {
779    ConstraintType = SDTCisFP;
780  } else if (R->isSubClassOf("SDTCisVec")) {
781    ConstraintType = SDTCisVec;
782  } else if (R->isSubClassOf("SDTCisSameAs")) {
783    ConstraintType = SDTCisSameAs;
784    x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
785  } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
786    ConstraintType = SDTCisVTSmallerThanOp;
787    x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
788      R->getValueAsInt("OtherOperandNum");
789  } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
790    ConstraintType = SDTCisOpSmallerThanOp;
791    x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
792      R->getValueAsInt("BigOperandNum");
793  } else if (R->isSubClassOf("SDTCisEltOfVec")) {
794    ConstraintType = SDTCisEltOfVec;
795    x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
796  } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
797    ConstraintType = SDTCisSubVecOfVec;
798    x.SDTCisSubVecOfVec_Info.OtherOperandNum =
799      R->getValueAsInt("OtherOpNum");
800  } else {
801    errs() << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n";
802    exit(1);
803  }
804}
805
806/// getOperandNum - Return the node corresponding to operand #OpNo in tree
807/// N, and the result number in ResNo.
808static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
809                                      const SDNodeInfo &NodeInfo,
810                                      unsigned &ResNo) {
811  unsigned NumResults = NodeInfo.getNumResults();
812  if (OpNo < NumResults) {
813    ResNo = OpNo;
814    return N;
815  }
816
817  OpNo -= NumResults;
818
819  if (OpNo >= N->getNumChildren()) {
820    errs() << "Invalid operand number in type constraint "
821           << (OpNo+NumResults) << " ";
822    N->dump();
823    errs() << '\n';
824    exit(1);
825  }
826
827  return N->getChild(OpNo);
828}
829
830/// ApplyTypeConstraint - Given a node in a pattern, apply this type
831/// constraint to the nodes operands.  This returns true if it makes a
832/// change, false otherwise.  If a type contradiction is found, throw an
833/// exception.
834bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
835                                           const SDNodeInfo &NodeInfo,
836                                           TreePattern &TP) const {
837  unsigned ResNo = 0; // The result number being referenced.
838  TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
839
840  switch (ConstraintType) {
841  case SDTCisVT:
842    // Operand must be a particular type.
843    return NodeToApply->UpdateNodeType(ResNo, x.SDTCisVT_Info.VT, TP);
844  case SDTCisPtrTy:
845    // Operand must be same as target pointer type.
846    return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
847  case SDTCisInt:
848    // Require it to be one of the legal integer VTs.
849    return NodeToApply->getExtType(ResNo).EnforceInteger(TP);
850  case SDTCisFP:
851    // Require it to be one of the legal fp VTs.
852    return NodeToApply->getExtType(ResNo).EnforceFloatingPoint(TP);
853  case SDTCisVec:
854    // Require it to be one of the legal vector VTs.
855    return NodeToApply->getExtType(ResNo).EnforceVector(TP);
856  case SDTCisSameAs: {
857    unsigned OResNo = 0;
858    TreePatternNode *OtherNode =
859      getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
860    return NodeToApply->UpdateNodeType(OResNo, OtherNode->getExtType(ResNo),TP)|
861           OtherNode->UpdateNodeType(ResNo,NodeToApply->getExtType(OResNo),TP);
862  }
863  case SDTCisVTSmallerThanOp: {
864    // The NodeToApply must be a leaf node that is a VT.  OtherOperandNum must
865    // have an integer type that is smaller than the VT.
866    if (!NodeToApply->isLeaf() ||
867        !dynamic_cast<DefInit*>(NodeToApply->getLeafValue()) ||
868        !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
869               ->isSubClassOf("ValueType"))
870      TP.error(N->getOperator()->getName() + " expects a VT operand!");
871    MVT::SimpleValueType VT =
872     getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef());
873
874    EEVT::TypeSet TypeListTmp(VT, TP);
875
876    unsigned OResNo = 0;
877    TreePatternNode *OtherNode =
878      getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
879                    OResNo);
880
881    return TypeListTmp.EnforceSmallerThan(OtherNode->getExtType(OResNo), TP);
882  }
883  case SDTCisOpSmallerThanOp: {
884    unsigned BResNo = 0;
885    TreePatternNode *BigOperand =
886      getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
887                    BResNo);
888    return NodeToApply->getExtType(ResNo).
889                  EnforceSmallerThan(BigOperand->getExtType(BResNo), TP);
890  }
891  case SDTCisEltOfVec: {
892    unsigned VResNo = 0;
893    TreePatternNode *VecOperand =
894      getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
895                    VResNo);
896
897    // Filter vector types out of VecOperand that don't have the right element
898    // type.
899    return VecOperand->getExtType(VResNo).
900      EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), TP);
901  }
902  case SDTCisSubVecOfVec: {
903    unsigned VResNo = 0;
904    TreePatternNode *BigVecOperand =
905      getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
906                    VResNo);
907
908    // Filter vector types out of BigVecOperand that don't have the
909    // right subvector type.
910    return BigVecOperand->getExtType(VResNo).
911      EnforceVectorSubVectorTypeIs(NodeToApply->getExtType(ResNo), TP);
912  }
913  }
914  llvm_unreachable("Invalid ConstraintType!");
915}
916
917//===----------------------------------------------------------------------===//
918// SDNodeInfo implementation
919//
920SDNodeInfo::SDNodeInfo(Record *R) : Def(R) {
921  EnumName    = R->getValueAsString("Opcode");
922  SDClassName = R->getValueAsString("SDClass");
923  Record *TypeProfile = R->getValueAsDef("TypeProfile");
924  NumResults = TypeProfile->getValueAsInt("NumResults");
925  NumOperands = TypeProfile->getValueAsInt("NumOperands");
926
927  // Parse the properties.
928  Properties = 0;
929  std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
930  for (unsigned i = 0, e = PropList.size(); i != e; ++i) {
931    if (PropList[i]->getName() == "SDNPCommutative") {
932      Properties |= 1 << SDNPCommutative;
933    } else if (PropList[i]->getName() == "SDNPAssociative") {
934      Properties |= 1 << SDNPAssociative;
935    } else if (PropList[i]->getName() == "SDNPHasChain") {
936      Properties |= 1 << SDNPHasChain;
937    } else if (PropList[i]->getName() == "SDNPOutGlue") {
938      Properties |= 1 << SDNPOutGlue;
939    } else if (PropList[i]->getName() == "SDNPInGlue") {
940      Properties |= 1 << SDNPInGlue;
941    } else if (PropList[i]->getName() == "SDNPOptInGlue") {
942      Properties |= 1 << SDNPOptInGlue;
943    } else if (PropList[i]->getName() == "SDNPMayStore") {
944      Properties |= 1 << SDNPMayStore;
945    } else if (PropList[i]->getName() == "SDNPMayLoad") {
946      Properties |= 1 << SDNPMayLoad;
947    } else if (PropList[i]->getName() == "SDNPSideEffect") {
948      Properties |= 1 << SDNPSideEffect;
949    } else if (PropList[i]->getName() == "SDNPMemOperand") {
950      Properties |= 1 << SDNPMemOperand;
951    } else if (PropList[i]->getName() == "SDNPVariadic") {
952      Properties |= 1 << SDNPVariadic;
953    } else {
954      errs() << "Unknown SD Node property '" << PropList[i]->getName()
955             << "' on node '" << R->getName() << "'!\n";
956      exit(1);
957    }
958  }
959
960
961  // Parse the type constraints.
962  std::vector<Record*> ConstraintList =
963    TypeProfile->getValueAsListOfDefs("Constraints");
964  TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end());
965}
966
967/// getKnownType - If the type constraints on this node imply a fixed type
968/// (e.g. all stores return void, etc), then return it as an
969/// MVT::SimpleValueType.  Otherwise, return EEVT::Other.
970MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
971  unsigned NumResults = getNumResults();
972  assert(NumResults <= 1 &&
973         "We only work with nodes with zero or one result so far!");
974  assert(ResNo == 0 && "Only handles single result nodes so far");
975
976  for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i) {
977    // Make sure that this applies to the correct node result.
978    if (TypeConstraints[i].OperandNo >= NumResults)  // FIXME: need value #
979      continue;
980
981    switch (TypeConstraints[i].ConstraintType) {
982    default: break;
983    case SDTypeConstraint::SDTCisVT:
984      return TypeConstraints[i].x.SDTCisVT_Info.VT;
985    case SDTypeConstraint::SDTCisPtrTy:
986      return MVT::iPTR;
987    }
988  }
989  return MVT::Other;
990}
991
992//===----------------------------------------------------------------------===//
993// TreePatternNode implementation
994//
995
996TreePatternNode::~TreePatternNode() {
997#if 0 // FIXME: implement refcounted tree nodes!
998  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
999    delete getChild(i);
1000#endif
1001}
1002
1003static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
1004  if (Operator->getName() == "set" ||
1005      Operator->getName() == "implicit")
1006    return 0;  // All return nothing.
1007
1008  if (Operator->isSubClassOf("Intrinsic"))
1009    return CDP.getIntrinsic(Operator).IS.RetVTs.size();
1010
1011  if (Operator->isSubClassOf("SDNode"))
1012    return CDP.getSDNodeInfo(Operator).getNumResults();
1013
1014  if (Operator->isSubClassOf("PatFrag")) {
1015    // If we've already parsed this pattern fragment, get it.  Otherwise, handle
1016    // the forward reference case where one pattern fragment references another
1017    // before it is processed.
1018    if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator))
1019      return PFRec->getOnlyTree()->getNumTypes();
1020
1021    // Get the result tree.
1022    DagInit *Tree = Operator->getValueAsDag("Fragment");
1023    Record *Op = 0;
1024    if (Tree && dynamic_cast<DefInit*>(Tree->getOperator()))
1025      Op = dynamic_cast<DefInit*>(Tree->getOperator())->getDef();
1026    assert(Op && "Invalid Fragment");
1027    return GetNumNodeResults(Op, CDP);
1028  }
1029
1030  if (Operator->isSubClassOf("Instruction")) {
1031    CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
1032
1033    // FIXME: Should allow access to all the results here.
1034    unsigned NumDefsToAdd = InstInfo.Operands.NumDefs ? 1 : 0;
1035
1036    // Add on one implicit def if it has a resolvable type.
1037    if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
1038      ++NumDefsToAdd;
1039    return NumDefsToAdd;
1040  }
1041
1042  if (Operator->isSubClassOf("SDNodeXForm"))
1043    return 1;  // FIXME: Generalize SDNodeXForm
1044
1045  Operator->dump();
1046  errs() << "Unhandled node in GetNumNodeResults\n";
1047  exit(1);
1048}
1049
1050void TreePatternNode::print(raw_ostream &OS) const {
1051  if (isLeaf())
1052    OS << *getLeafValue();
1053  else
1054    OS << '(' << getOperator()->getName();
1055
1056  for (unsigned i = 0, e = Types.size(); i != e; ++i)
1057    OS << ':' << getExtType(i).getName();
1058
1059  if (!isLeaf()) {
1060    if (getNumChildren() != 0) {
1061      OS << " ";
1062      getChild(0)->print(OS);
1063      for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
1064        OS << ", ";
1065        getChild(i)->print(OS);
1066      }
1067    }
1068    OS << ")";
1069  }
1070
1071  for (unsigned i = 0, e = PredicateFns.size(); i != e; ++i)
1072    OS << "<<P:" << PredicateFns[i].getFnName() << ">>";
1073  if (TransformFn)
1074    OS << "<<X:" << TransformFn->getName() << ">>";
1075  if (!getName().empty())
1076    OS << ":$" << getName();
1077
1078}
1079void TreePatternNode::dump() const {
1080  print(errs());
1081}
1082
1083/// isIsomorphicTo - Return true if this node is recursively
1084/// isomorphic to the specified node.  For this comparison, the node's
1085/// entire state is considered. The assigned name is ignored, since
1086/// nodes with differing names are considered isomorphic. However, if
1087/// the assigned name is present in the dependent variable set, then
1088/// the assigned name is considered significant and the node is
1089/// isomorphic if the names match.
1090bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
1091                                     const MultipleUseVarSet &DepVars) const {
1092  if (N == this) return true;
1093  if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
1094      getPredicateFns() != N->getPredicateFns() ||
1095      getTransformFn() != N->getTransformFn())
1096    return false;
1097
1098  if (isLeaf()) {
1099    if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) {
1100      if (DefInit *NDI = dynamic_cast<DefInit*>(N->getLeafValue())) {
1101        return ((DI->getDef() == NDI->getDef())
1102                && (DepVars.find(getName()) == DepVars.end()
1103                    || getName() == N->getName()));
1104      }
1105    }
1106    return getLeafValue() == N->getLeafValue();
1107  }
1108
1109  if (N->getOperator() != getOperator() ||
1110      N->getNumChildren() != getNumChildren()) return false;
1111  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1112    if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
1113      return false;
1114  return true;
1115}
1116
1117/// clone - Make a copy of this tree and all of its children.
1118///
1119TreePatternNode *TreePatternNode::clone() const {
1120  TreePatternNode *New;
1121  if (isLeaf()) {
1122    New = new TreePatternNode(getLeafValue(), getNumTypes());
1123  } else {
1124    std::vector<TreePatternNode*> CChildren;
1125    CChildren.reserve(Children.size());
1126    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1127      CChildren.push_back(getChild(i)->clone());
1128    New = new TreePatternNode(getOperator(), CChildren, getNumTypes());
1129  }
1130  New->setName(getName());
1131  New->Types = Types;
1132  New->setPredicateFns(getPredicateFns());
1133  New->setTransformFn(getTransformFn());
1134  return New;
1135}
1136
1137/// RemoveAllTypes - Recursively strip all the types of this tree.
1138void TreePatternNode::RemoveAllTypes() {
1139  for (unsigned i = 0, e = Types.size(); i != e; ++i)
1140    Types[i] = EEVT::TypeSet();  // Reset to unknown type.
1141  if (isLeaf()) return;
1142  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1143    getChild(i)->RemoveAllTypes();
1144}
1145
1146
1147/// SubstituteFormalArguments - Replace the formal arguments in this tree
1148/// with actual values specified by ArgMap.
1149void TreePatternNode::
1150SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) {
1151  if (isLeaf()) return;
1152
1153  for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1154    TreePatternNode *Child = getChild(i);
1155    if (Child->isLeaf()) {
1156      Init *Val = Child->getLeafValue();
1157      if (dynamic_cast<DefInit*>(Val) &&
1158          static_cast<DefInit*>(Val)->getDef()->getName() == "node") {
1159        // We found a use of a formal argument, replace it with its value.
1160        TreePatternNode *NewChild = ArgMap[Child->getName()];
1161        assert(NewChild && "Couldn't find formal argument!");
1162        assert((Child->getPredicateFns().empty() ||
1163                NewChild->getPredicateFns() == Child->getPredicateFns()) &&
1164               "Non-empty child predicate clobbered!");
1165        setChild(i, NewChild);
1166      }
1167    } else {
1168      getChild(i)->SubstituteFormalArguments(ArgMap);
1169    }
1170  }
1171}
1172
1173
1174/// InlinePatternFragments - If this pattern refers to any pattern
1175/// fragments, inline them into place, giving us a pattern without any
1176/// PatFrag references.
1177TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) {
1178  if (isLeaf()) return this;  // nothing to do.
1179  Record *Op = getOperator();
1180
1181  if (!Op->isSubClassOf("PatFrag")) {
1182    // Just recursively inline children nodes.
1183    for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1184      TreePatternNode *Child = getChild(i);
1185      TreePatternNode *NewChild = Child->InlinePatternFragments(TP);
1186
1187      assert((Child->getPredicateFns().empty() ||
1188              NewChild->getPredicateFns() == Child->getPredicateFns()) &&
1189             "Non-empty child predicate clobbered!");
1190
1191      setChild(i, NewChild);
1192    }
1193    return this;
1194  }
1195
1196  // Otherwise, we found a reference to a fragment.  First, look up its
1197  // TreePattern record.
1198  TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
1199
1200  // Verify that we are passing the right number of operands.
1201  if (Frag->getNumArgs() != Children.size())
1202    TP.error("'" + Op->getName() + "' fragment requires " +
1203             utostr(Frag->getNumArgs()) + " operands!");
1204
1205  TreePatternNode *FragTree = Frag->getOnlyTree()->clone();
1206
1207  TreePredicateFn PredFn(Frag);
1208  if (!PredFn.isAlwaysTrue())
1209    FragTree->addPredicateFn(PredFn);
1210
1211  // Resolve formal arguments to their actual value.
1212  if (Frag->getNumArgs()) {
1213    // Compute the map of formal to actual arguments.
1214    std::map<std::string, TreePatternNode*> ArgMap;
1215    for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i)
1216      ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP);
1217
1218    FragTree->SubstituteFormalArguments(ArgMap);
1219  }
1220
1221  FragTree->setName(getName());
1222  for (unsigned i = 0, e = Types.size(); i != e; ++i)
1223    FragTree->UpdateNodeType(i, getExtType(i), TP);
1224
1225  // Transfer in the old predicates.
1226  for (unsigned i = 0, e = getPredicateFns().size(); i != e; ++i)
1227    FragTree->addPredicateFn(getPredicateFns()[i]);
1228
1229  // Get a new copy of this fragment to stitch into here.
1230  //delete this;    // FIXME: implement refcounting!
1231
1232  // The fragment we inlined could have recursive inlining that is needed.  See
1233  // if there are any pattern fragments in it and inline them as needed.
1234  return FragTree->InlinePatternFragments(TP);
1235}
1236
1237/// getImplicitType - Check to see if the specified record has an implicit
1238/// type which should be applied to it.  This will infer the type of register
1239/// references from the register file information, for example.
1240///
1241static EEVT::TypeSet getImplicitType(Record *R, unsigned ResNo,
1242                                     bool NotRegisters, TreePattern &TP) {
1243  // Check to see if this is a register operand.
1244  if (R->isSubClassOf("RegisterOperand")) {
1245    assert(ResNo == 0 && "Regoperand ref only has one result!");
1246    if (NotRegisters)
1247      return EEVT::TypeSet(); // Unknown.
1248    Record *RegClass = R->getValueAsDef("RegClass");
1249    const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1250    return EEVT::TypeSet(T.getRegisterClass(RegClass).getValueTypes());
1251  }
1252
1253  // Check to see if this is a register or a register class.
1254  if (R->isSubClassOf("RegisterClass")) {
1255    assert(ResNo == 0 && "Regclass ref only has one result!");
1256    if (NotRegisters)
1257      return EEVT::TypeSet(); // Unknown.
1258    const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1259    return EEVT::TypeSet(T.getRegisterClass(R).getValueTypes());
1260  }
1261
1262  if (R->isSubClassOf("PatFrag")) {
1263    assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
1264    // Pattern fragment types will be resolved when they are inlined.
1265    return EEVT::TypeSet(); // Unknown.
1266  }
1267
1268  if (R->isSubClassOf("Register")) {
1269    assert(ResNo == 0 && "Registers only produce one result!");
1270    if (NotRegisters)
1271      return EEVT::TypeSet(); // Unknown.
1272    const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1273    return EEVT::TypeSet(T.getRegisterVTs(R));
1274  }
1275
1276  if (R->isSubClassOf("SubRegIndex")) {
1277    assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
1278    return EEVT::TypeSet();
1279  }
1280
1281  if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) {
1282    assert(ResNo == 0 && "This node only has one result!");
1283    // Using a VTSDNode or CondCodeSDNode.
1284    return EEVT::TypeSet(MVT::Other, TP);
1285  }
1286
1287  if (R->isSubClassOf("ComplexPattern")) {
1288    assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
1289    if (NotRegisters)
1290      return EEVT::TypeSet(); // Unknown.
1291   return EEVT::TypeSet(TP.getDAGPatterns().getComplexPattern(R).getValueType(),
1292                         TP);
1293  }
1294  if (R->isSubClassOf("PointerLikeRegClass")) {
1295    assert(ResNo == 0 && "Regclass can only have one result!");
1296    return EEVT::TypeSet(MVT::iPTR, TP);
1297  }
1298
1299  if (R->getName() == "node" || R->getName() == "srcvalue" ||
1300      R->getName() == "zero_reg") {
1301    // Placeholder.
1302    return EEVT::TypeSet(); // Unknown.
1303  }
1304
1305  TP.error("Unknown node flavor used in pattern: " + R->getName());
1306  return EEVT::TypeSet(MVT::Other, TP);
1307}
1308
1309
1310/// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
1311/// CodeGenIntrinsic information for it, otherwise return a null pointer.
1312const CodeGenIntrinsic *TreePatternNode::
1313getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
1314  if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
1315      getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
1316      getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
1317    return 0;
1318
1319  unsigned IID =
1320    dynamic_cast<IntInit*>(getChild(0)->getLeafValue())->getValue();
1321  return &CDP.getIntrinsicInfo(IID);
1322}
1323
1324/// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
1325/// return the ComplexPattern information, otherwise return null.
1326const ComplexPattern *
1327TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
1328  if (!isLeaf()) return 0;
1329
1330  DefInit *DI = dynamic_cast<DefInit*>(getLeafValue());
1331  if (DI && DI->getDef()->isSubClassOf("ComplexPattern"))
1332    return &CGP.getComplexPattern(DI->getDef());
1333  return 0;
1334}
1335
1336/// NodeHasProperty - Return true if this node has the specified property.
1337bool TreePatternNode::NodeHasProperty(SDNP Property,
1338                                      const CodeGenDAGPatterns &CGP) const {
1339  if (isLeaf()) {
1340    if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
1341      return CP->hasProperty(Property);
1342    return false;
1343  }
1344
1345  Record *Operator = getOperator();
1346  if (!Operator->isSubClassOf("SDNode")) return false;
1347
1348  return CGP.getSDNodeInfo(Operator).hasProperty(Property);
1349}
1350
1351
1352
1353
1354/// TreeHasProperty - Return true if any node in this tree has the specified
1355/// property.
1356bool TreePatternNode::TreeHasProperty(SDNP Property,
1357                                      const CodeGenDAGPatterns &CGP) const {
1358  if (NodeHasProperty(Property, CGP))
1359    return true;
1360  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1361    if (getChild(i)->TreeHasProperty(Property, CGP))
1362      return true;
1363  return false;
1364}
1365
1366/// isCommutativeIntrinsic - Return true if the node corresponds to a
1367/// commutative intrinsic.
1368bool
1369TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
1370  if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
1371    return Int->isCommutative;
1372  return false;
1373}
1374
1375
1376/// ApplyTypeConstraints - Apply all of the type constraints relevant to
1377/// this node and its children in the tree.  This returns true if it makes a
1378/// change, false otherwise.  If a type contradiction is found, throw an
1379/// exception.
1380bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
1381  CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
1382  if (isLeaf()) {
1383    if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) {
1384      // If it's a regclass or something else known, include the type.
1385      bool MadeChange = false;
1386      for (unsigned i = 0, e = Types.size(); i != e; ++i)
1387        MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
1388                                                        NotRegisters, TP), TP);
1389      return MadeChange;
1390    }
1391
1392    if (IntInit *II = dynamic_cast<IntInit*>(getLeafValue())) {
1393      assert(Types.size() == 1 && "Invalid IntInit");
1394
1395      // Int inits are always integers. :)
1396      bool MadeChange = Types[0].EnforceInteger(TP);
1397
1398      if (!Types[0].isConcrete())
1399        return MadeChange;
1400
1401      MVT::SimpleValueType VT = getType(0);
1402      if (VT == MVT::iPTR || VT == MVT::iPTRAny)
1403        return MadeChange;
1404
1405      unsigned Size = EVT(VT).getSizeInBits();
1406      // Make sure that the value is representable for this type.
1407      if (Size >= 32) return MadeChange;
1408
1409      // Check that the value doesn't use more bits than we have. It must either
1410      // be a sign- or zero-extended equivalent of the original.
1411      int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
1412      if (SignBitAndAbove == -1 || SignBitAndAbove == 0 || SignBitAndAbove == 1)
1413        return MadeChange;
1414
1415      TP.error("Integer value '" + itostr(II->getValue()) +
1416               "' is out of range for type '" + getEnumName(getType(0)) + "'!");
1417      return MadeChange;
1418    }
1419    return false;
1420  }
1421
1422  // special handling for set, which isn't really an SDNode.
1423  if (getOperator()->getName() == "set") {
1424    assert(getNumTypes() == 0 && "Set doesn't produce a value");
1425    assert(getNumChildren() >= 2 && "Missing RHS of a set?");
1426    unsigned NC = getNumChildren();
1427
1428    TreePatternNode *SetVal = getChild(NC-1);
1429    bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters);
1430
1431    for (unsigned i = 0; i < NC-1; ++i) {
1432      TreePatternNode *Child = getChild(i);
1433      MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
1434
1435      // Types of operands must match.
1436      MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP);
1437      MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP);
1438    }
1439    return MadeChange;
1440  }
1441
1442  if (getOperator()->getName() == "implicit") {
1443    assert(getNumTypes() == 0 && "Node doesn't produce a value");
1444
1445    bool MadeChange = false;
1446    for (unsigned i = 0; i < getNumChildren(); ++i)
1447      MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
1448    return MadeChange;
1449  }
1450
1451  if (getOperator()->getName() == "COPY_TO_REGCLASS") {
1452    bool MadeChange = false;
1453    MadeChange |= getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
1454    MadeChange |= getChild(1)->ApplyTypeConstraints(TP, NotRegisters);
1455
1456    assert(getChild(0)->getNumTypes() == 1 &&
1457           getChild(1)->getNumTypes() == 1 && "Unhandled case");
1458
1459    // child #1 of COPY_TO_REGCLASS should be a register class.  We don't care
1460    // what type it gets, so if it didn't get a concrete type just give it the
1461    // first viable type from the reg class.
1462    if (!getChild(1)->hasTypeSet(0) &&
1463        !getChild(1)->getExtType(0).isCompletelyUnknown()) {
1464      MVT::SimpleValueType RCVT = getChild(1)->getExtType(0).getTypeList()[0];
1465      MadeChange |= getChild(1)->UpdateNodeType(0, RCVT, TP);
1466    }
1467    return MadeChange;
1468  }
1469
1470  if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
1471    bool MadeChange = false;
1472
1473    // Apply the result type to the node.
1474    unsigned NumRetVTs = Int->IS.RetVTs.size();
1475    unsigned NumParamVTs = Int->IS.ParamVTs.size();
1476
1477    for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
1478      MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
1479
1480    if (getNumChildren() != NumParamVTs + 1)
1481      TP.error("Intrinsic '" + Int->Name + "' expects " +
1482               utostr(NumParamVTs) + " operands, not " +
1483               utostr(getNumChildren() - 1) + " operands!");
1484
1485    // Apply type info to the intrinsic ID.
1486    MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
1487
1488    for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
1489      MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
1490
1491      MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
1492      assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case");
1493      MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
1494    }
1495    return MadeChange;
1496  }
1497
1498  if (getOperator()->isSubClassOf("SDNode")) {
1499    const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
1500
1501    // Check that the number of operands is sane.  Negative operands -> varargs.
1502    if (NI.getNumOperands() >= 0 &&
1503        getNumChildren() != (unsigned)NI.getNumOperands())
1504      TP.error(getOperator()->getName() + " node requires exactly " +
1505               itostr(NI.getNumOperands()) + " operands!");
1506
1507    bool MadeChange = NI.ApplyTypeConstraints(this, TP);
1508    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1509      MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
1510    return MadeChange;
1511  }
1512
1513  if (getOperator()->isSubClassOf("Instruction")) {
1514    const DAGInstruction &Inst = CDP.getInstruction(getOperator());
1515    CodeGenInstruction &InstInfo =
1516      CDP.getTargetInfo().getInstruction(getOperator());
1517
1518    bool MadeChange = false;
1519
1520    // Apply the result types to the node, these come from the things in the
1521    // (outs) list of the instruction.
1522    // FIXME: Cap at one result so far.
1523    unsigned NumResultsToAdd = InstInfo.Operands.NumDefs ? 1 : 0;
1524    for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo) {
1525      Record *ResultNode = Inst.getResult(ResNo);
1526
1527      if (ResultNode->isSubClassOf("PointerLikeRegClass")) {
1528        MadeChange |= UpdateNodeType(ResNo, MVT::iPTR, TP);
1529      } else if (ResultNode->isSubClassOf("RegisterOperand")) {
1530        Record *RegClass = ResultNode->getValueAsDef("RegClass");
1531        const CodeGenRegisterClass &RC =
1532          CDP.getTargetInfo().getRegisterClass(RegClass);
1533        MadeChange |= UpdateNodeType(ResNo, RC.getValueTypes(), TP);
1534      } else if (ResultNode->isSubClassOf("unknown_class")) {
1535        // Nothing to do.
1536      } else {
1537        assert(ResultNode->isSubClassOf("RegisterClass") &&
1538               "Operands should be register classes!");
1539        const CodeGenRegisterClass &RC =
1540          CDP.getTargetInfo().getRegisterClass(ResultNode);
1541        MadeChange |= UpdateNodeType(ResNo, RC.getValueTypes(), TP);
1542      }
1543    }
1544
1545    // If the instruction has implicit defs, we apply the first one as a result.
1546    // FIXME: This sucks, it should apply all implicit defs.
1547    if (!InstInfo.ImplicitDefs.empty()) {
1548      unsigned ResNo = NumResultsToAdd;
1549
1550      // FIXME: Generalize to multiple possible types and multiple possible
1551      // ImplicitDefs.
1552      MVT::SimpleValueType VT =
1553        InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
1554
1555      if (VT != MVT::Other)
1556        MadeChange |= UpdateNodeType(ResNo, VT, TP);
1557    }
1558
1559    // If this is an INSERT_SUBREG, constrain the source and destination VTs to
1560    // be the same.
1561    if (getOperator()->getName() == "INSERT_SUBREG") {
1562      assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
1563      MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
1564      MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
1565    }
1566
1567    unsigned ChildNo = 0;
1568    for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
1569      Record *OperandNode = Inst.getOperand(i);
1570
1571      // If the instruction expects a predicate or optional def operand, we
1572      // codegen this by setting the operand to it's default value if it has a
1573      // non-empty DefaultOps field.
1574      if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
1575          !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
1576        continue;
1577
1578      // Verify that we didn't run out of provided operands.
1579      if (ChildNo >= getNumChildren())
1580        TP.error("Instruction '" + getOperator()->getName() +
1581                 "' expects more operands than were provided.");
1582
1583      MVT::SimpleValueType VT;
1584      TreePatternNode *Child = getChild(ChildNo++);
1585      unsigned ChildResNo = 0;  // Instructions always use res #0 of their op.
1586
1587      if (OperandNode->isSubClassOf("RegisterClass")) {
1588        const CodeGenRegisterClass &RC =
1589          CDP.getTargetInfo().getRegisterClass(OperandNode);
1590        MadeChange |= Child->UpdateNodeType(ChildResNo, RC.getValueTypes(), TP);
1591      } else if (OperandNode->isSubClassOf("RegisterOperand")) {
1592        Record *RegClass = OperandNode->getValueAsDef("RegClass");
1593        const CodeGenRegisterClass &RC =
1594          CDP.getTargetInfo().getRegisterClass(RegClass);
1595        MadeChange |= Child->UpdateNodeType(ChildResNo, RC.getValueTypes(), TP);
1596      } else if (OperandNode->isSubClassOf("Operand")) {
1597        VT = getValueType(OperandNode->getValueAsDef("Type"));
1598        MadeChange |= Child->UpdateNodeType(ChildResNo, VT, TP);
1599      } else if (OperandNode->isSubClassOf("PointerLikeRegClass")) {
1600        MadeChange |= Child->UpdateNodeType(ChildResNo, MVT::iPTR, TP);
1601      } else if (OperandNode->isSubClassOf("unknown_class")) {
1602        // Nothing to do.
1603      } else
1604        llvm_unreachable("Unknown operand type!");
1605
1606      MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
1607    }
1608
1609    if (ChildNo != getNumChildren())
1610      TP.error("Instruction '" + getOperator()->getName() +
1611               "' was provided too many operands!");
1612
1613    return MadeChange;
1614  }
1615
1616  assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
1617
1618  // Node transforms always take one operand.
1619  if (getNumChildren() != 1)
1620    TP.error("Node transform '" + getOperator()->getName() +
1621             "' requires one operand!");
1622
1623  bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
1624
1625
1626  // If either the output or input of the xform does not have exact
1627  // type info. We assume they must be the same. Otherwise, it is perfectly
1628  // legal to transform from one type to a completely different type.
1629#if 0
1630  if (!hasTypeSet() || !getChild(0)->hasTypeSet()) {
1631    bool MadeChange = UpdateNodeType(getChild(0)->getExtType(), TP);
1632    MadeChange |= getChild(0)->UpdateNodeType(getExtType(), TP);
1633    return MadeChange;
1634  }
1635#endif
1636  return MadeChange;
1637}
1638
1639/// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
1640/// RHS of a commutative operation, not the on LHS.
1641static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
1642  if (!N->isLeaf() && N->getOperator()->getName() == "imm")
1643    return true;
1644  if (N->isLeaf() && dynamic_cast<IntInit*>(N->getLeafValue()))
1645    return true;
1646  return false;
1647}
1648
1649
1650/// canPatternMatch - If it is impossible for this pattern to match on this
1651/// target, fill in Reason and return false.  Otherwise, return true.  This is
1652/// used as a sanity check for .td files (to prevent people from writing stuff
1653/// that can never possibly work), and to prevent the pattern permuter from
1654/// generating stuff that is useless.
1655bool TreePatternNode::canPatternMatch(std::string &Reason,
1656                                      const CodeGenDAGPatterns &CDP) {
1657  if (isLeaf()) return true;
1658
1659  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1660    if (!getChild(i)->canPatternMatch(Reason, CDP))
1661      return false;
1662
1663  // If this is an intrinsic, handle cases that would make it not match.  For
1664  // example, if an operand is required to be an immediate.
1665  if (getOperator()->isSubClassOf("Intrinsic")) {
1666    // TODO:
1667    return true;
1668  }
1669
1670  // If this node is a commutative operator, check that the LHS isn't an
1671  // immediate.
1672  const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
1673  bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
1674  if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
1675    // Scan all of the operands of the node and make sure that only the last one
1676    // is a constant node, unless the RHS also is.
1677    if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
1678      bool Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
1679      for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
1680        if (OnlyOnRHSOfCommutative(getChild(i))) {
1681          Reason="Immediate value must be on the RHS of commutative operators!";
1682          return false;
1683        }
1684    }
1685  }
1686
1687  return true;
1688}
1689
1690//===----------------------------------------------------------------------===//
1691// TreePattern implementation
1692//
1693
1694TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
1695                         CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
1696  isInputPattern = isInput;
1697  for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i)
1698    Trees.push_back(ParseTreePattern(RawPat->getElement(i), ""));
1699}
1700
1701TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
1702                         CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
1703  isInputPattern = isInput;
1704  Trees.push_back(ParseTreePattern(Pat, ""));
1705}
1706
1707TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
1708                         CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
1709  isInputPattern = isInput;
1710  Trees.push_back(Pat);
1711}
1712
1713void TreePattern::error(const std::string &Msg) const {
1714  dump();
1715  throw TGError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
1716}
1717
1718void TreePattern::ComputeNamedNodes() {
1719  for (unsigned i = 0, e = Trees.size(); i != e; ++i)
1720    ComputeNamedNodes(Trees[i]);
1721}
1722
1723void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
1724  if (!N->getName().empty())
1725    NamedNodes[N->getName()].push_back(N);
1726
1727  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
1728    ComputeNamedNodes(N->getChild(i));
1729}
1730
1731
1732TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){
1733  if (DefInit *DI = dynamic_cast<DefInit*>(TheInit)) {
1734    Record *R = DI->getDef();
1735
1736    // Direct reference to a leaf DagNode or PatFrag?  Turn it into a
1737    // TreePatternNode of its own.  For example:
1738    ///   (foo GPR, imm) -> (foo GPR, (imm))
1739    if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag"))
1740      return ParseTreePattern(
1741        DagInit::get(DI, "",
1742                     std::vector<std::pair<Init*, std::string> >()),
1743        OpName);
1744
1745    // Input argument?
1746    TreePatternNode *Res = new TreePatternNode(DI, 1);
1747    if (R->getName() == "node" && !OpName.empty()) {
1748      if (OpName.empty())
1749        error("'node' argument requires a name to match with operand list");
1750      Args.push_back(OpName);
1751    }
1752
1753    Res->setName(OpName);
1754    return Res;
1755  }
1756
1757  if (IntInit *II = dynamic_cast<IntInit*>(TheInit)) {
1758    if (!OpName.empty())
1759      error("Constant int argument should not have a name!");
1760    return new TreePatternNode(II, 1);
1761  }
1762
1763  if (BitsInit *BI = dynamic_cast<BitsInit*>(TheInit)) {
1764    // Turn this into an IntInit.
1765    Init *II = BI->convertInitializerTo(IntRecTy::get());
1766    if (II == 0 || !dynamic_cast<IntInit*>(II))
1767      error("Bits value must be constants!");
1768    return ParseTreePattern(II, OpName);
1769  }
1770
1771  DagInit *Dag = dynamic_cast<DagInit*>(TheInit);
1772  if (!Dag) {
1773    TheInit->dump();
1774    error("Pattern has unexpected init kind!");
1775  }
1776  DefInit *OpDef = dynamic_cast<DefInit*>(Dag->getOperator());
1777  if (!OpDef) error("Pattern has unexpected operator type!");
1778  Record *Operator = OpDef->getDef();
1779
1780  if (Operator->isSubClassOf("ValueType")) {
1781    // If the operator is a ValueType, then this must be "type cast" of a leaf
1782    // node.
1783    if (Dag->getNumArgs() != 1)
1784      error("Type cast only takes one operand!");
1785
1786    TreePatternNode *New = ParseTreePattern(Dag->getArg(0), Dag->getArgName(0));
1787
1788    // Apply the type cast.
1789    assert(New->getNumTypes() == 1 && "FIXME: Unhandled");
1790    New->UpdateNodeType(0, getValueType(Operator), *this);
1791
1792    if (!OpName.empty())
1793      error("ValueType cast should not have a name!");
1794    return New;
1795  }
1796
1797  // Verify that this is something that makes sense for an operator.
1798  if (!Operator->isSubClassOf("PatFrag") &&
1799      !Operator->isSubClassOf("SDNode") &&
1800      !Operator->isSubClassOf("Instruction") &&
1801      !Operator->isSubClassOf("SDNodeXForm") &&
1802      !Operator->isSubClassOf("Intrinsic") &&
1803      Operator->getName() != "set" &&
1804      Operator->getName() != "implicit")
1805    error("Unrecognized node '" + Operator->getName() + "'!");
1806
1807  //  Check to see if this is something that is illegal in an input pattern.
1808  if (isInputPattern) {
1809    if (Operator->isSubClassOf("Instruction") ||
1810        Operator->isSubClassOf("SDNodeXForm"))
1811      error("Cannot use '" + Operator->getName() + "' in an input pattern!");
1812  } else {
1813    if (Operator->isSubClassOf("Intrinsic"))
1814      error("Cannot use '" + Operator->getName() + "' in an output pattern!");
1815
1816    if (Operator->isSubClassOf("SDNode") &&
1817        Operator->getName() != "imm" &&
1818        Operator->getName() != "fpimm" &&
1819        Operator->getName() != "tglobaltlsaddr" &&
1820        Operator->getName() != "tconstpool" &&
1821        Operator->getName() != "tjumptable" &&
1822        Operator->getName() != "tframeindex" &&
1823        Operator->getName() != "texternalsym" &&
1824        Operator->getName() != "tblockaddress" &&
1825        Operator->getName() != "tglobaladdr" &&
1826        Operator->getName() != "bb" &&
1827        Operator->getName() != "vt")
1828      error("Cannot use '" + Operator->getName() + "' in an output pattern!");
1829  }
1830
1831  std::vector<TreePatternNode*> Children;
1832
1833  // Parse all the operands.
1834  for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
1835    Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgName(i)));
1836
1837  // If the operator is an intrinsic, then this is just syntactic sugar for for
1838  // (intrinsic_* <number>, ..children..).  Pick the right intrinsic node, and
1839  // convert the intrinsic name to a number.
1840  if (Operator->isSubClassOf("Intrinsic")) {
1841    const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
1842    unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
1843
1844    // If this intrinsic returns void, it must have side-effects and thus a
1845    // chain.
1846    if (Int.IS.RetVTs.empty())
1847      Operator = getDAGPatterns().get_intrinsic_void_sdnode();
1848    else if (Int.ModRef != CodeGenIntrinsic::NoMem)
1849      // Has side-effects, requires chain.
1850      Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
1851    else // Otherwise, no chain.
1852      Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
1853
1854    TreePatternNode *IIDNode = new TreePatternNode(IntInit::get(IID), 1);
1855    Children.insert(Children.begin(), IIDNode);
1856  }
1857
1858  unsigned NumResults = GetNumNodeResults(Operator, CDP);
1859  TreePatternNode *Result = new TreePatternNode(Operator, Children, NumResults);
1860  Result->setName(OpName);
1861
1862  if (!Dag->getName().empty()) {
1863    assert(Result->getName().empty());
1864    Result->setName(Dag->getName());
1865  }
1866  return Result;
1867}
1868
1869/// SimplifyTree - See if we can simplify this tree to eliminate something that
1870/// will never match in favor of something obvious that will.  This is here
1871/// strictly as a convenience to target authors because it allows them to write
1872/// more type generic things and have useless type casts fold away.
1873///
1874/// This returns true if any change is made.
1875static bool SimplifyTree(TreePatternNode *&N) {
1876  if (N->isLeaf())
1877    return false;
1878
1879  // If we have a bitconvert with a resolved type and if the source and
1880  // destination types are the same, then the bitconvert is useless, remove it.
1881  if (N->getOperator()->getName() == "bitconvert" &&
1882      N->getExtType(0).isConcrete() &&
1883      N->getExtType(0) == N->getChild(0)->getExtType(0) &&
1884      N->getName().empty()) {
1885    N = N->getChild(0);
1886    SimplifyTree(N);
1887    return true;
1888  }
1889
1890  // Walk all children.
1891  bool MadeChange = false;
1892  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
1893    TreePatternNode *Child = N->getChild(i);
1894    MadeChange |= SimplifyTree(Child);
1895    N->setChild(i, Child);
1896  }
1897  return MadeChange;
1898}
1899
1900
1901
1902/// InferAllTypes - Infer/propagate as many types throughout the expression
1903/// patterns as possible.  Return true if all types are inferred, false
1904/// otherwise.  Throw an exception if a type contradiction is found.
1905bool TreePattern::
1906InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
1907  if (NamedNodes.empty())
1908    ComputeNamedNodes();
1909
1910  bool MadeChange = true;
1911  while (MadeChange) {
1912    MadeChange = false;
1913    for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
1914      MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false);
1915      MadeChange |= SimplifyTree(Trees[i]);
1916    }
1917
1918    // If there are constraints on our named nodes, apply them.
1919    for (StringMap<SmallVector<TreePatternNode*,1> >::iterator
1920         I = NamedNodes.begin(), E = NamedNodes.end(); I != E; ++I) {
1921      SmallVectorImpl<TreePatternNode*> &Nodes = I->second;
1922
1923      // If we have input named node types, propagate their types to the named
1924      // values here.
1925      if (InNamedTypes) {
1926        // FIXME: Should be error?
1927        assert(InNamedTypes->count(I->getKey()) &&
1928               "Named node in output pattern but not input pattern?");
1929
1930        const SmallVectorImpl<TreePatternNode*> &InNodes =
1931          InNamedTypes->find(I->getKey())->second;
1932
1933        // The input types should be fully resolved by now.
1934        for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
1935          // If this node is a register class, and it is the root of the pattern
1936          // then we're mapping something onto an input register.  We allow
1937          // changing the type of the input register in this case.  This allows
1938          // us to match things like:
1939          //  def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
1940          if (Nodes[i] == Trees[0] && Nodes[i]->isLeaf()) {
1941            DefInit *DI = dynamic_cast<DefInit*>(Nodes[i]->getLeafValue());
1942            if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
1943                       DI->getDef()->isSubClassOf("RegisterOperand")))
1944              continue;
1945          }
1946
1947          assert(Nodes[i]->getNumTypes() == 1 &&
1948                 InNodes[0]->getNumTypes() == 1 &&
1949                 "FIXME: cannot name multiple result nodes yet");
1950          MadeChange |= Nodes[i]->UpdateNodeType(0, InNodes[0]->getExtType(0),
1951                                                 *this);
1952        }
1953      }
1954
1955      // If there are multiple nodes with the same name, they must all have the
1956      // same type.
1957      if (I->second.size() > 1) {
1958        for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
1959          TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
1960          assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
1961                 "FIXME: cannot name multiple result nodes yet");
1962
1963          MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
1964          MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
1965        }
1966      }
1967    }
1968  }
1969
1970  bool HasUnresolvedTypes = false;
1971  for (unsigned i = 0, e = Trees.size(); i != e; ++i)
1972    HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType();
1973  return !HasUnresolvedTypes;
1974}
1975
1976void TreePattern::print(raw_ostream &OS) const {
1977  OS << getRecord()->getName();
1978  if (!Args.empty()) {
1979    OS << "(" << Args[0];
1980    for (unsigned i = 1, e = Args.size(); i != e; ++i)
1981      OS << ", " << Args[i];
1982    OS << ")";
1983  }
1984  OS << ": ";
1985
1986  if (Trees.size() > 1)
1987    OS << "[\n";
1988  for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
1989    OS << "\t";
1990    Trees[i]->print(OS);
1991    OS << "\n";
1992  }
1993
1994  if (Trees.size() > 1)
1995    OS << "]\n";
1996}
1997
1998void TreePattern::dump() const { print(errs()); }
1999
2000//===----------------------------------------------------------------------===//
2001// CodeGenDAGPatterns implementation
2002//
2003
2004CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) :
2005  Records(R), Target(R) {
2006
2007  Intrinsics = LoadIntrinsics(Records, false);
2008  TgtIntrinsics = LoadIntrinsics(Records, true);
2009  ParseNodeInfo();
2010  ParseNodeTransforms();
2011  ParseComplexPatterns();
2012  ParsePatternFragments();
2013  ParseDefaultOperands();
2014  ParseInstructions();
2015  ParsePatterns();
2016
2017  // Generate variants.  For example, commutative patterns can match
2018  // multiple ways.  Add them to PatternsToMatch as well.
2019  GenerateVariants();
2020
2021  // Infer instruction flags.  For example, we can detect loads,
2022  // stores, and side effects in many cases by examining an
2023  // instruction's pattern.
2024  InferInstructionFlags();
2025
2026  // Verify that instruction flags match the patterns.
2027  VerifyInstructionFlags();
2028}
2029
2030CodeGenDAGPatterns::~CodeGenDAGPatterns() {
2031  for (pf_iterator I = PatternFragments.begin(),
2032       E = PatternFragments.end(); I != E; ++I)
2033    delete I->second;
2034}
2035
2036
2037Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
2038  Record *N = Records.getDef(Name);
2039  if (!N || !N->isSubClassOf("SDNode")) {
2040    errs() << "Error getting SDNode '" << Name << "'!\n";
2041    exit(1);
2042  }
2043  return N;
2044}
2045
2046// Parse all of the SDNode definitions for the target, populating SDNodes.
2047void CodeGenDAGPatterns::ParseNodeInfo() {
2048  std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
2049  while (!Nodes.empty()) {
2050    SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back()));
2051    Nodes.pop_back();
2052  }
2053
2054  // Get the builtin intrinsic nodes.
2055  intrinsic_void_sdnode     = getSDNodeNamed("intrinsic_void");
2056  intrinsic_w_chain_sdnode  = getSDNodeNamed("intrinsic_w_chain");
2057  intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
2058}
2059
2060/// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
2061/// map, and emit them to the file as functions.
2062void CodeGenDAGPatterns::ParseNodeTransforms() {
2063  std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
2064  while (!Xforms.empty()) {
2065    Record *XFormNode = Xforms.back();
2066    Record *SDNode = XFormNode->getValueAsDef("Opcode");
2067    std::string Code = XFormNode->getValueAsString("XFormFunction");
2068    SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));
2069
2070    Xforms.pop_back();
2071  }
2072}
2073
2074void CodeGenDAGPatterns::ParseComplexPatterns() {
2075  std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
2076  while (!AMs.empty()) {
2077    ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
2078    AMs.pop_back();
2079  }
2080}
2081
2082
2083/// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
2084/// file, building up the PatternFragments map.  After we've collected them all,
2085/// inline fragments together as necessary, so that there are no references left
2086/// inside a pattern fragment to a pattern fragment.
2087///
2088void CodeGenDAGPatterns::ParsePatternFragments() {
2089  std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag");
2090
2091  // First step, parse all of the fragments.
2092  for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
2093    DagInit *Tree = Fragments[i]->getValueAsDag("Fragment");
2094    TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this);
2095    PatternFragments[Fragments[i]] = P;
2096
2097    // Validate the argument list, converting it to set, to discard duplicates.
2098    std::vector<std::string> &Args = P->getArgList();
2099    std::set<std::string> OperandsSet(Args.begin(), Args.end());
2100
2101    if (OperandsSet.count(""))
2102      P->error("Cannot have unnamed 'node' values in pattern fragment!");
2103
2104    // Parse the operands list.
2105    DagInit *OpsList = Fragments[i]->getValueAsDag("Operands");
2106    DefInit *OpsOp = dynamic_cast<DefInit*>(OpsList->getOperator());
2107    // Special cases: ops == outs == ins. Different names are used to
2108    // improve readability.
2109    if (!OpsOp ||
2110        (OpsOp->getDef()->getName() != "ops" &&
2111         OpsOp->getDef()->getName() != "outs" &&
2112         OpsOp->getDef()->getName() != "ins"))
2113      P->error("Operands list should start with '(ops ... '!");
2114
2115    // Copy over the arguments.
2116    Args.clear();
2117    for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
2118      if (!dynamic_cast<DefInit*>(OpsList->getArg(j)) ||
2119          static_cast<DefInit*>(OpsList->getArg(j))->
2120          getDef()->getName() != "node")
2121        P->error("Operands list should all be 'node' values.");
2122      if (OpsList->getArgName(j).empty())
2123        P->error("Operands list should have names for each operand!");
2124      if (!OperandsSet.count(OpsList->getArgName(j)))
2125        P->error("'" + OpsList->getArgName(j) +
2126                 "' does not occur in pattern or was multiply specified!");
2127      OperandsSet.erase(OpsList->getArgName(j));
2128      Args.push_back(OpsList->getArgName(j));
2129    }
2130
2131    if (!OperandsSet.empty())
2132      P->error("Operands list does not contain an entry for operand '" +
2133               *OperandsSet.begin() + "'!");
2134
2135    // If there is a code init for this fragment, keep track of the fact that
2136    // this fragment uses it.
2137    TreePredicateFn PredFn(P);
2138    if (!PredFn.isAlwaysTrue())
2139      P->getOnlyTree()->addPredicateFn(PredFn);
2140
2141    // If there is a node transformation corresponding to this, keep track of
2142    // it.
2143    Record *Transform = Fragments[i]->getValueAsDef("OperandTransform");
2144    if (!getSDNodeTransform(Transform).second.empty())    // not noop xform?
2145      P->getOnlyTree()->setTransformFn(Transform);
2146  }
2147
2148  // Now that we've parsed all of the tree fragments, do a closure on them so
2149  // that there are not references to PatFrags left inside of them.
2150  for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
2151    TreePattern *ThePat = PatternFragments[Fragments[i]];
2152    ThePat->InlinePatternFragments();
2153
2154    // Infer as many types as possible.  Don't worry about it if we don't infer
2155    // all of them, some may depend on the inputs of the pattern.
2156    try {
2157      ThePat->InferAllTypes();
2158    } catch (...) {
2159      // If this pattern fragment is not supported by this target (no types can
2160      // satisfy its constraints), just ignore it.  If the bogus pattern is
2161      // actually used by instructions, the type consistency error will be
2162      // reported there.
2163    }
2164
2165    // If debugging, print out the pattern fragment result.
2166    DEBUG(ThePat->dump());
2167  }
2168}
2169
2170void CodeGenDAGPatterns::ParseDefaultOperands() {
2171  std::vector<Record*> DefaultOps;
2172  DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");
2173
2174  // Find some SDNode.
2175  assert(!SDNodes.empty() && "No SDNodes parsed?");
2176  Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
2177
2178  for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
2179    DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
2180
2181    // Clone the DefaultInfo dag node, changing the operator from 'ops' to
2182    // SomeSDnode so that we can parse this.
2183    std::vector<std::pair<Init*, std::string> > Ops;
2184    for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
2185      Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
2186                                   DefaultInfo->getArgName(op)));
2187    DagInit *DI = DagInit::get(SomeSDNode, "", Ops);
2188
2189    // Create a TreePattern to parse this.
2190    TreePattern P(DefaultOps[i], DI, false, *this);
2191    assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
2192
2193    // Copy the operands over into a DAGDefaultOperand.
2194    DAGDefaultOperand DefaultOpInfo;
2195
2196    TreePatternNode *T = P.getTree(0);
2197    for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
2198      TreePatternNode *TPN = T->getChild(op);
2199      while (TPN->ApplyTypeConstraints(P, false))
2200        /* Resolve all types */;
2201
2202      if (TPN->ContainsUnresolvedType()) {
2203        throw "Value #" + utostr(i) + " of OperandWithDefaultOps '" +
2204          DefaultOps[i]->getName() +"' doesn't have a concrete type!";
2205      }
2206      DefaultOpInfo.DefaultOps.push_back(TPN);
2207    }
2208
2209    // Insert it into the DefaultOperands map so we can find it later.
2210    DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
2211  }
2212}
2213
2214/// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
2215/// instruction input.  Return true if this is a real use.
2216static bool HandleUse(TreePattern *I, TreePatternNode *Pat,
2217                      std::map<std::string, TreePatternNode*> &InstInputs) {
2218  // No name -> not interesting.
2219  if (Pat->getName().empty()) {
2220    if (Pat->isLeaf()) {
2221      DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
2222      if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
2223                 DI->getDef()->isSubClassOf("RegisterOperand")))
2224        I->error("Input " + DI->getDef()->getName() + " must be named!");
2225    }
2226    return false;
2227  }
2228
2229  Record *Rec;
2230  if (Pat->isLeaf()) {
2231    DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
2232    if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!");
2233    Rec = DI->getDef();
2234  } else {
2235    Rec = Pat->getOperator();
2236  }
2237
2238  // SRCVALUE nodes are ignored.
2239  if (Rec->getName() == "srcvalue")
2240    return false;
2241
2242  TreePatternNode *&Slot = InstInputs[Pat->getName()];
2243  if (!Slot) {
2244    Slot = Pat;
2245    return true;
2246  }
2247  Record *SlotRec;
2248  if (Slot->isLeaf()) {
2249    SlotRec = dynamic_cast<DefInit*>(Slot->getLeafValue())->getDef();
2250  } else {
2251    assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
2252    SlotRec = Slot->getOperator();
2253  }
2254
2255  // Ensure that the inputs agree if we've already seen this input.
2256  if (Rec != SlotRec)
2257    I->error("All $" + Pat->getName() + " inputs must agree with each other");
2258  if (Slot->getExtTypes() != Pat->getExtTypes())
2259    I->error("All $" + Pat->getName() + " inputs must agree with each other");
2260  return true;
2261}
2262
2263/// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
2264/// part of "I", the instruction), computing the set of inputs and outputs of
2265/// the pattern.  Report errors if we see anything naughty.
2266void CodeGenDAGPatterns::
2267FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
2268                            std::map<std::string, TreePatternNode*> &InstInputs,
2269                            std::map<std::string, TreePatternNode*>&InstResults,
2270                            std::vector<Record*> &InstImpResults) {
2271  if (Pat->isLeaf()) {
2272    bool isUse = HandleUse(I, Pat, InstInputs);
2273    if (!isUse && Pat->getTransformFn())
2274      I->error("Cannot specify a transform function for a non-input value!");
2275    return;
2276  }
2277
2278  if (Pat->getOperator()->getName() == "implicit") {
2279    for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
2280      TreePatternNode *Dest = Pat->getChild(i);
2281      if (!Dest->isLeaf())
2282        I->error("implicitly defined value should be a register!");
2283
2284      DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue());
2285      if (!Val || !Val->getDef()->isSubClassOf("Register"))
2286        I->error("implicitly defined value should be a register!");
2287      InstImpResults.push_back(Val->getDef());
2288    }
2289    return;
2290  }
2291
2292  if (Pat->getOperator()->getName() != "set") {
2293    // If this is not a set, verify that the children nodes are not void typed,
2294    // and recurse.
2295    for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
2296      if (Pat->getChild(i)->getNumTypes() == 0)
2297        I->error("Cannot have void nodes inside of patterns!");
2298      FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults,
2299                                  InstImpResults);
2300    }
2301
2302    // If this is a non-leaf node with no children, treat it basically as if
2303    // it were a leaf.  This handles nodes like (imm).
2304    bool isUse = HandleUse(I, Pat, InstInputs);
2305
2306    if (!isUse && Pat->getTransformFn())
2307      I->error("Cannot specify a transform function for a non-input value!");
2308    return;
2309  }
2310
2311  // Otherwise, this is a set, validate and collect instruction results.
2312  if (Pat->getNumChildren() == 0)
2313    I->error("set requires operands!");
2314
2315  if (Pat->getTransformFn())
2316    I->error("Cannot specify a transform function on a set node!");
2317
2318  // Check the set destinations.
2319  unsigned NumDests = Pat->getNumChildren()-1;
2320  for (unsigned i = 0; i != NumDests; ++i) {
2321    TreePatternNode *Dest = Pat->getChild(i);
2322    if (!Dest->isLeaf())
2323      I->error("set destination should be a register!");
2324
2325    DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue());
2326    if (!Val)
2327      I->error("set destination should be a register!");
2328
2329    if (Val->getDef()->isSubClassOf("RegisterClass") ||
2330        Val->getDef()->isSubClassOf("RegisterOperand") ||
2331        Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
2332      if (Dest->getName().empty())
2333        I->error("set destination must have a name!");
2334      if (InstResults.count(Dest->getName()))
2335        I->error("cannot set '" + Dest->getName() +"' multiple times");
2336      InstResults[Dest->getName()] = Dest;
2337    } else if (Val->getDef()->isSubClassOf("Register")) {
2338      InstImpResults.push_back(Val->getDef());
2339    } else {
2340      I->error("set destination should be a register!");
2341    }
2342  }
2343
2344  // Verify and collect info from the computation.
2345  FindPatternInputsAndOutputs(I, Pat->getChild(NumDests),
2346                              InstInputs, InstResults, InstImpResults);
2347}
2348
2349//===----------------------------------------------------------------------===//
2350// Instruction Analysis
2351//===----------------------------------------------------------------------===//
2352
2353class InstAnalyzer {
2354  const CodeGenDAGPatterns &CDP;
2355public:
2356  bool hasSideEffects;
2357  bool mayStore;
2358  bool mayLoad;
2359  bool isBitcast;
2360  bool isVariadic;
2361
2362  InstAnalyzer(const CodeGenDAGPatterns &cdp)
2363    : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
2364      isBitcast(false), isVariadic(false) {}
2365
2366  void Analyze(const TreePattern *Pat) {
2367    // Assume only the first tree is the pattern. The others are clobber nodes.
2368    AnalyzeNode(Pat->getTree(0));
2369  }
2370
2371  void Analyze(const PatternToMatch *Pat) {
2372    AnalyzeNode(Pat->getSrcPattern());
2373  }
2374
2375private:
2376  bool IsNodeBitcast(const TreePatternNode *N) const {
2377    if (hasSideEffects || mayLoad || mayStore || isVariadic)
2378      return false;
2379
2380    if (N->getNumChildren() != 2)
2381      return false;
2382
2383    const TreePatternNode *N0 = N->getChild(0);
2384    if (!N0->isLeaf() || !dynamic_cast<DefInit*>(N0->getLeafValue()))
2385      return false;
2386
2387    const TreePatternNode *N1 = N->getChild(1);
2388    if (N1->isLeaf())
2389      return false;
2390    if (N1->getNumChildren() != 1 || !N1->getChild(0)->isLeaf())
2391      return false;
2392
2393    const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N1->getOperator());
2394    if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
2395      return false;
2396    return OpInfo.getEnumName() == "ISD::BITCAST";
2397  }
2398
2399public:
2400  void AnalyzeNode(const TreePatternNode *N) {
2401    if (N->isLeaf()) {
2402      if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) {
2403        Record *LeafRec = DI->getDef();
2404        // Handle ComplexPattern leaves.
2405        if (LeafRec->isSubClassOf("ComplexPattern")) {
2406          const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
2407          if (CP.hasProperty(SDNPMayStore)) mayStore = true;
2408          if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
2409          if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true;
2410        }
2411      }
2412      return;
2413    }
2414
2415    // Analyze children.
2416    for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2417      AnalyzeNode(N->getChild(i));
2418
2419    // Ignore set nodes, which are not SDNodes.
2420    if (N->getOperator()->getName() == "set") {
2421      isBitcast = IsNodeBitcast(N);
2422      return;
2423    }
2424
2425    // Get information about the SDNode for the operator.
2426    const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator());
2427
2428    // Notice properties of the node.
2429    if (OpInfo.hasProperty(SDNPMayStore)) mayStore = true;
2430    if (OpInfo.hasProperty(SDNPMayLoad)) mayLoad = true;
2431    if (OpInfo.hasProperty(SDNPSideEffect)) hasSideEffects = true;
2432    if (OpInfo.hasProperty(SDNPVariadic)) isVariadic = true;
2433
2434    if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
2435      // If this is an intrinsic, analyze it.
2436      if (IntInfo->ModRef >= CodeGenIntrinsic::ReadArgMem)
2437        mayLoad = true;// These may load memory.
2438
2439      if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteArgMem)
2440        mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
2441
2442      if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem)
2443        // WriteMem intrinsics can have other strange effects.
2444        hasSideEffects = true;
2445    }
2446  }
2447
2448};
2449
2450static bool InferFromPattern(CodeGenInstruction &InstInfo,
2451                             const InstAnalyzer &PatInfo,
2452                             Record *PatDef) {
2453  bool Error = false;
2454
2455  // Remember where InstInfo got its flags.
2456  if (InstInfo.hasUndefFlags())
2457      InstInfo.InferredFrom = PatDef;
2458
2459  // Check explicitly set flags for consistency.
2460  if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
2461      !InstInfo.hasSideEffects_Unset) {
2462    // Allow explicitly setting hasSideEffects = 1 on instructions, even when
2463    // the pattern has no side effects. That could be useful for div/rem
2464    // instructions that may trap.
2465    if (!InstInfo.hasSideEffects) {
2466      Error = true;
2467      PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
2468                 Twine(InstInfo.hasSideEffects));
2469    }
2470  }
2471
2472  if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
2473    Error = true;
2474    PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " +
2475               Twine(InstInfo.mayStore));
2476  }
2477
2478  if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
2479    // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
2480    // Some targets translate imediates to loads.
2481    if (!InstInfo.mayLoad) {
2482      Error = true;
2483      PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " +
2484                 Twine(InstInfo.mayLoad));
2485    }
2486  }
2487
2488  // Transfer inferred flags.
2489  InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
2490  InstInfo.mayStore |= PatInfo.mayStore;
2491  InstInfo.mayLoad |= PatInfo.mayLoad;
2492
2493  // These flags are silently added without any verification.
2494  InstInfo.isBitcast |= PatInfo.isBitcast;
2495
2496  // Don't infer isVariadic. This flag means something different on SDNodes and
2497  // instructions. For example, a CALL SDNode is variadic because it has the
2498  // call arguments as operands, but a CALL instruction is not variadic - it
2499  // has argument registers as implicit, not explicit uses.
2500
2501  return Error;
2502}
2503
2504/// hasNullFragReference - Return true if the DAG has any reference to the
2505/// null_frag operator.
2506static bool hasNullFragReference(DagInit *DI) {
2507  DefInit *OpDef = dynamic_cast<DefInit*>(DI->getOperator());
2508  if (!OpDef) return false;
2509  Record *Operator = OpDef->getDef();
2510
2511  // If this is the null fragment, return true.
2512  if (Operator->getName() == "null_frag") return true;
2513  // If any of the arguments reference the null fragment, return true.
2514  for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
2515    DagInit *Arg = dynamic_cast<DagInit*>(DI->getArg(i));
2516    if (Arg && hasNullFragReference(Arg))
2517      return true;
2518  }
2519
2520  return false;
2521}
2522
2523/// hasNullFragReference - Return true if any DAG in the list references
2524/// the null_frag operator.
2525static bool hasNullFragReference(ListInit *LI) {
2526  for (unsigned i = 0, e = LI->getSize(); i != e; ++i) {
2527    DagInit *DI = dynamic_cast<DagInit*>(LI->getElement(i));
2528    assert(DI && "non-dag in an instruction Pattern list?!");
2529    if (hasNullFragReference(DI))
2530      return true;
2531  }
2532  return false;
2533}
2534
2535/// Get all the instructions in a tree.
2536static void
2537getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) {
2538  if (Tree->isLeaf())
2539    return;
2540  if (Tree->getOperator()->isSubClassOf("Instruction"))
2541    Instrs.push_back(Tree->getOperator());
2542  for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i)
2543    getInstructionsInTree(Tree->getChild(i), Instrs);
2544}
2545
2546/// ParseInstructions - Parse all of the instructions, inlining and resolving
2547/// any fragments involved.  This populates the Instructions list with fully
2548/// resolved instructions.
2549void CodeGenDAGPatterns::ParseInstructions() {
2550  std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
2551
2552  for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
2553    ListInit *LI = 0;
2554
2555    if (dynamic_cast<ListInit*>(Instrs[i]->getValueInit("Pattern")))
2556      LI = Instrs[i]->getValueAsListInit("Pattern");
2557
2558    // If there is no pattern, only collect minimal information about the
2559    // instruction for its operand list.  We have to assume that there is one
2560    // result, as we have no detailed info. A pattern which references the
2561    // null_frag operator is as-if no pattern were specified. Normally this
2562    // is from a multiclass expansion w/ a SDPatternOperator passed in as
2563    // null_frag.
2564    if (!LI || LI->getSize() == 0 || hasNullFragReference(LI)) {
2565      std::vector<Record*> Results;
2566      std::vector<Record*> Operands;
2567
2568      CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]);
2569
2570      if (InstInfo.Operands.size() != 0) {
2571        if (InstInfo.Operands.NumDefs == 0) {
2572          // These produce no results
2573          for (unsigned j = 0, e = InstInfo.Operands.size(); j < e; ++j)
2574            Operands.push_back(InstInfo.Operands[j].Rec);
2575        } else {
2576          // Assume the first operand is the result.
2577          Results.push_back(InstInfo.Operands[0].Rec);
2578
2579          // The rest are inputs.
2580          for (unsigned j = 1, e = InstInfo.Operands.size(); j < e; ++j)
2581            Operands.push_back(InstInfo.Operands[j].Rec);
2582        }
2583      }
2584
2585      // Create and insert the instruction.
2586      std::vector<Record*> ImpResults;
2587      Instructions.insert(std::make_pair(Instrs[i],
2588                          DAGInstruction(0, Results, Operands, ImpResults)));
2589      continue;  // no pattern.
2590    }
2591
2592    // Parse the instruction.
2593    TreePattern *I = new TreePattern(Instrs[i], LI, true, *this);
2594    // Inline pattern fragments into it.
2595    I->InlinePatternFragments();
2596
2597    // Infer as many types as possible.  If we cannot infer all of them, we can
2598    // never do anything with this instruction pattern: report it to the user.
2599    if (!I->InferAllTypes())
2600      I->error("Could not infer all types in pattern!");
2601
2602    // InstInputs - Keep track of all of the inputs of the instruction, along
2603    // with the record they are declared as.
2604    std::map<std::string, TreePatternNode*> InstInputs;
2605
2606    // InstResults - Keep track of all the virtual registers that are 'set'
2607    // in the instruction, including what reg class they are.
2608    std::map<std::string, TreePatternNode*> InstResults;
2609
2610    std::vector<Record*> InstImpResults;
2611
2612    // Verify that the top-level forms in the instruction are of void type, and
2613    // fill in the InstResults map.
2614    for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) {
2615      TreePatternNode *Pat = I->getTree(j);
2616      if (Pat->getNumTypes() != 0)
2617        I->error("Top-level forms in instruction pattern should have"
2618                 " void types");
2619
2620      // Find inputs and outputs, and verify the structure of the uses/defs.
2621      FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
2622                                  InstImpResults);
2623    }
2624
2625    // Now that we have inputs and outputs of the pattern, inspect the operands
2626    // list for the instruction.  This determines the order that operands are
2627    // added to the machine instruction the node corresponds to.
2628    unsigned NumResults = InstResults.size();
2629
2630    // Parse the operands list from the (ops) list, validating it.
2631    assert(I->getArgList().empty() && "Args list should still be empty here!");
2632    CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]);
2633
2634    // Check that all of the results occur first in the list.
2635    std::vector<Record*> Results;
2636    TreePatternNode *Res0Node = 0;
2637    for (unsigned i = 0; i != NumResults; ++i) {
2638      if (i == CGI.Operands.size())
2639        I->error("'" + InstResults.begin()->first +
2640                 "' set but does not appear in operand list!");
2641      const std::string &OpName = CGI.Operands[i].Name;
2642
2643      // Check that it exists in InstResults.
2644      TreePatternNode *RNode = InstResults[OpName];
2645      if (RNode == 0)
2646        I->error("Operand $" + OpName + " does not exist in operand list!");
2647
2648      if (i == 0)
2649        Res0Node = RNode;
2650      Record *R = dynamic_cast<DefInit*>(RNode->getLeafValue())->getDef();
2651      if (R == 0)
2652        I->error("Operand $" + OpName + " should be a set destination: all "
2653                 "outputs must occur before inputs in operand list!");
2654
2655      if (CGI.Operands[i].Rec != R)
2656        I->error("Operand $" + OpName + " class mismatch!");
2657
2658      // Remember the return type.
2659      Results.push_back(CGI.Operands[i].Rec);
2660
2661      // Okay, this one checks out.
2662      InstResults.erase(OpName);
2663    }
2664
2665    // Loop over the inputs next.  Make a copy of InstInputs so we can destroy
2666    // the copy while we're checking the inputs.
2667    std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs);
2668
2669    std::vector<TreePatternNode*> ResultNodeOperands;
2670    std::vector<Record*> Operands;
2671    for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
2672      CGIOperandList::OperandInfo &Op = CGI.Operands[i];
2673      const std::string &OpName = Op.Name;
2674      if (OpName.empty())
2675        I->error("Operand #" + utostr(i) + " in operands list has no name!");
2676
2677      if (!InstInputsCheck.count(OpName)) {
2678        // If this is an operand with a DefaultOps set filled in, we can ignore
2679        // this.  When we codegen it, we will do so as always executed.
2680        if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
2681          // Does it have a non-empty DefaultOps field?  If so, ignore this
2682          // operand.
2683          if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
2684            continue;
2685        }
2686        I->error("Operand $" + OpName +
2687                 " does not appear in the instruction pattern");
2688      }
2689      TreePatternNode *InVal = InstInputsCheck[OpName];
2690      InstInputsCheck.erase(OpName);   // It occurred, remove from map.
2691
2692      if (InVal->isLeaf() &&
2693          dynamic_cast<DefInit*>(InVal->getLeafValue())) {
2694        Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
2695        if (Op.Rec != InRec && !InRec->isSubClassOf("ComplexPattern"))
2696          I->error("Operand $" + OpName + "'s register class disagrees"
2697                   " between the operand and pattern");
2698      }
2699      Operands.push_back(Op.Rec);
2700
2701      // Construct the result for the dest-pattern operand list.
2702      TreePatternNode *OpNode = InVal->clone();
2703
2704      // No predicate is useful on the result.
2705      OpNode->clearPredicateFns();
2706
2707      // Promote the xform function to be an explicit node if set.
2708      if (Record *Xform = OpNode->getTransformFn()) {
2709        OpNode->setTransformFn(0);
2710        std::vector<TreePatternNode*> Children;
2711        Children.push_back(OpNode);
2712        OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
2713      }
2714
2715      ResultNodeOperands.push_back(OpNode);
2716    }
2717
2718    if (!InstInputsCheck.empty())
2719      I->error("Input operand $" + InstInputsCheck.begin()->first +
2720               " occurs in pattern but not in operands list!");
2721
2722    TreePatternNode *ResultPattern =
2723      new TreePatternNode(I->getRecord(), ResultNodeOperands,
2724                          GetNumNodeResults(I->getRecord(), *this));
2725    // Copy fully inferred output node type to instruction result pattern.
2726    for (unsigned i = 0; i != NumResults; ++i)
2727      ResultPattern->setType(i, Res0Node->getExtType(i));
2728
2729    // Create and insert the instruction.
2730    // FIXME: InstImpResults should not be part of DAGInstruction.
2731    DAGInstruction TheInst(I, Results, Operands, InstImpResults);
2732    Instructions.insert(std::make_pair(I->getRecord(), TheInst));
2733
2734    // Use a temporary tree pattern to infer all types and make sure that the
2735    // constructed result is correct.  This depends on the instruction already
2736    // being inserted into the Instructions map.
2737    TreePattern Temp(I->getRecord(), ResultPattern, false, *this);
2738    Temp.InferAllTypes(&I->getNamedNodesMap());
2739
2740    DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second;
2741    TheInsertedInst.setResultPattern(Temp.getOnlyTree());
2742
2743    DEBUG(I->dump());
2744  }
2745
2746  // If we can, convert the instructions to be patterns that are matched!
2747  for (std::map<Record*, DAGInstruction, LessRecordByID>::iterator II =
2748        Instructions.begin(),
2749       E = Instructions.end(); II != E; ++II) {
2750    DAGInstruction &TheInst = II->second;
2751    const TreePattern *I = TheInst.getPattern();
2752    if (I == 0) continue;  // No pattern.
2753
2754    // FIXME: Assume only the first tree is the pattern. The others are clobber
2755    // nodes.
2756    TreePatternNode *Pattern = I->getTree(0);
2757    TreePatternNode *SrcPattern;
2758    if (Pattern->getOperator()->getName() == "set") {
2759      SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
2760    } else{
2761      // Not a set (store or something?)
2762      SrcPattern = Pattern;
2763    }
2764
2765    Record *Instr = II->first;
2766    AddPatternToMatch(I,
2767                      PatternToMatch(Instr,
2768                                     Instr->getValueAsListInit("Predicates"),
2769                                     SrcPattern,
2770                                     TheInst.getResultPattern(),
2771                                     TheInst.getImpResults(),
2772                                     Instr->getValueAsInt("AddedComplexity"),
2773                                     Instr->getID()));
2774  }
2775}
2776
2777
2778typedef std::pair<const TreePatternNode*, unsigned> NameRecord;
2779
2780static void FindNames(const TreePatternNode *P,
2781                      std::map<std::string, NameRecord> &Names,
2782                      const TreePattern *PatternTop) {
2783  if (!P->getName().empty()) {
2784    NameRecord &Rec = Names[P->getName()];
2785    // If this is the first instance of the name, remember the node.
2786    if (Rec.second++ == 0)
2787      Rec.first = P;
2788    else if (Rec.first->getExtTypes() != P->getExtTypes())
2789      PatternTop->error("repetition of value: $" + P->getName() +
2790                        " where different uses have different types!");
2791  }
2792
2793  if (!P->isLeaf()) {
2794    for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
2795      FindNames(P->getChild(i), Names, PatternTop);
2796  }
2797}
2798
2799void CodeGenDAGPatterns::AddPatternToMatch(const TreePattern *Pattern,
2800                                           const PatternToMatch &PTM) {
2801  // Do some sanity checking on the pattern we're about to match.
2802  std::string Reason;
2803  if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) {
2804    PrintWarning(Pattern->getRecord()->getLoc(),
2805      Twine("Pattern can never match: ") + Reason);
2806    return;
2807  }
2808
2809  // If the source pattern's root is a complex pattern, that complex pattern
2810  // must specify the nodes it can potentially match.
2811  if (const ComplexPattern *CP =
2812        PTM.getSrcPattern()->getComplexPatternInfo(*this))
2813    if (CP->getRootNodes().empty())
2814      Pattern->error("ComplexPattern at root must specify list of opcodes it"
2815                     " could match");
2816
2817
2818  // Find all of the named values in the input and output, ensure they have the
2819  // same type.
2820  std::map<std::string, NameRecord> SrcNames, DstNames;
2821  FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
2822  FindNames(PTM.getDstPattern(), DstNames, Pattern);
2823
2824  // Scan all of the named values in the destination pattern, rejecting them if
2825  // they don't exist in the input pattern.
2826  for (std::map<std::string, NameRecord>::iterator
2827       I = DstNames.begin(), E = DstNames.end(); I != E; ++I) {
2828    if (SrcNames[I->first].first == 0)
2829      Pattern->error("Pattern has input without matching name in output: $" +
2830                     I->first);
2831  }
2832
2833  // Scan all of the named values in the source pattern, rejecting them if the
2834  // name isn't used in the dest, and isn't used to tie two values together.
2835  for (std::map<std::string, NameRecord>::iterator
2836       I = SrcNames.begin(), E = SrcNames.end(); I != E; ++I)
2837    if (DstNames[I->first].first == 0 && SrcNames[I->first].second == 1)
2838      Pattern->error("Pattern has dead named input: $" + I->first);
2839
2840  PatternsToMatch.push_back(PTM);
2841}
2842
2843
2844
2845void CodeGenDAGPatterns::InferInstructionFlags() {
2846  const std::vector<const CodeGenInstruction*> &Instructions =
2847    Target.getInstructionsByEnumValue();
2848
2849  // First try to infer flags from the primary instruction pattern, if any.
2850  SmallVector<CodeGenInstruction*, 8> Revisit;
2851  unsigned Errors = 0;
2852  for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
2853    CodeGenInstruction &InstInfo =
2854      const_cast<CodeGenInstruction &>(*Instructions[i]);
2855
2856    // Treat neverHasSideEffects = 1 as the equivalent of hasSideEffects = 0.
2857    // This flag is obsolete and will be removed.
2858    if (InstInfo.neverHasSideEffects) {
2859      assert(!InstInfo.hasSideEffects);
2860      InstInfo.hasSideEffects_Unset = false;
2861    }
2862
2863    // Get the primary instruction pattern.
2864    const TreePattern *Pattern = getInstruction(InstInfo.TheDef).getPattern();
2865    if (!Pattern) {
2866      if (InstInfo.hasUndefFlags())
2867        Revisit.push_back(&InstInfo);
2868      continue;
2869    }
2870    InstAnalyzer PatInfo(*this);
2871    PatInfo.Analyze(Pattern);
2872    Errors += InferFromPattern(InstInfo, PatInfo, InstInfo.TheDef);
2873  }
2874
2875  // Second, look for single-instruction patterns defined outside the
2876  // instruction.
2877  for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
2878    const PatternToMatch &PTM = *I;
2879
2880    // We can only infer from single-instruction patterns, otherwise we won't
2881    // know which instruction should get the flags.
2882    SmallVector<Record*, 8> PatInstrs;
2883    getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
2884    if (PatInstrs.size() != 1)
2885      continue;
2886
2887    // Get the single instruction.
2888    CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
2889
2890    // Only infer properties from the first pattern. We'll verify the others.
2891    if (InstInfo.InferredFrom)
2892      continue;
2893
2894    InstAnalyzer PatInfo(*this);
2895    PatInfo.Analyze(&PTM);
2896    Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
2897  }
2898
2899  if (Errors)
2900    throw "pattern conflicts";
2901
2902  // Revisit instructions with undefined flags and no pattern.
2903  if (Target.guessInstructionProperties()) {
2904    for (unsigned i = 0, e = Revisit.size(); i != e; ++i) {
2905      CodeGenInstruction &InstInfo = *Revisit[i];
2906      if (InstInfo.InferredFrom)
2907        continue;
2908      // The mayLoad and mayStore flags default to false.
2909      // Conservatively assume hasSideEffects if it wasn't explicit.
2910      if (InstInfo.hasSideEffects_Unset)
2911        InstInfo.hasSideEffects = true;
2912    }
2913    return;
2914  }
2915
2916  // Complain about any flags that are still undefined.
2917  for (unsigned i = 0, e = Revisit.size(); i != e; ++i) {
2918    CodeGenInstruction &InstInfo = *Revisit[i];
2919    if (InstInfo.InferredFrom)
2920      continue;
2921    if (InstInfo.hasSideEffects_Unset)
2922      PrintError(InstInfo.TheDef->getLoc(),
2923                 "Can't infer hasSideEffects from patterns");
2924    if (InstInfo.mayStore_Unset)
2925      PrintError(InstInfo.TheDef->getLoc(),
2926                 "Can't infer mayStore from patterns");
2927    if (InstInfo.mayLoad_Unset)
2928      PrintError(InstInfo.TheDef->getLoc(),
2929                 "Can't infer mayLoad from patterns");
2930  }
2931}
2932
2933
2934/// Verify instruction flags against pattern node properties.
2935void CodeGenDAGPatterns::VerifyInstructionFlags() {
2936  unsigned Errors = 0;
2937  for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
2938    const PatternToMatch &PTM = *I;
2939    SmallVector<Record*, 8> Instrs;
2940    getInstructionsInTree(PTM.getDstPattern(), Instrs);
2941    if (Instrs.empty())
2942      continue;
2943
2944    // Count the number of instructions with each flag set.
2945    unsigned NumSideEffects = 0;
2946    unsigned NumStores = 0;
2947    unsigned NumLoads = 0;
2948    for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
2949      const CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]);
2950      NumSideEffects += InstInfo.hasSideEffects;
2951      NumStores += InstInfo.mayStore;
2952      NumLoads += InstInfo.mayLoad;
2953    }
2954
2955    // Analyze the source pattern.
2956    InstAnalyzer PatInfo(*this);
2957    PatInfo.Analyze(&PTM);
2958
2959    // Collect error messages.
2960    SmallVector<std::string, 4> Msgs;
2961
2962    // Check for missing flags in the output.
2963    // Permit extra flags for now at least.
2964    if (PatInfo.hasSideEffects && !NumSideEffects)
2965      Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
2966
2967    // Don't verify store flags on instructions with side effects. At least for
2968    // intrinsics, side effects implies mayStore.
2969    if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
2970      Msgs.push_back("pattern may store, but mayStore isn't set");
2971
2972    // Similarly, mayStore implies mayLoad on intrinsics.
2973    if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
2974      Msgs.push_back("pattern may load, but mayLoad isn't set");
2975
2976    // Print error messages.
2977    if (Msgs.empty())
2978      continue;
2979    ++Errors;
2980
2981    for (unsigned i = 0, e = Msgs.size(); i != e; ++i)
2982      PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msgs[i]) + " on the " +
2983                 (Instrs.size() == 1 ?
2984                  "instruction" : "output instructions"));
2985    // Provide the location of the relevant instruction definitions.
2986    for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
2987      if (Instrs[i] != PTM.getSrcRecord())
2988        PrintError(Instrs[i]->getLoc(), "defined here");
2989      const CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]);
2990      if (InstInfo.InferredFrom &&
2991          InstInfo.InferredFrom != InstInfo.TheDef &&
2992          InstInfo.InferredFrom != PTM.getSrcRecord())
2993        PrintError(InstInfo.InferredFrom->getLoc(), "inferred from patttern");
2994    }
2995  }
2996  if (Errors)
2997    throw "Errors in DAG patterns";
2998}
2999
3000/// Given a pattern result with an unresolved type, see if we can find one
3001/// instruction with an unresolved result type.  Force this result type to an
3002/// arbitrary element if it's possible types to converge results.
3003static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
3004  if (N->isLeaf())
3005    return false;
3006
3007  // Analyze children.
3008  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3009    if (ForceArbitraryInstResultType(N->getChild(i), TP))
3010      return true;
3011
3012  if (!N->getOperator()->isSubClassOf("Instruction"))
3013    return false;
3014
3015  // If this type is already concrete or completely unknown we can't do
3016  // anything.
3017  for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
3018    if (N->getExtType(i).isCompletelyUnknown() || N->getExtType(i).isConcrete())
3019      continue;
3020
3021    // Otherwise, force its type to the first possibility (an arbitrary choice).
3022    if (N->getExtType(i).MergeInTypeInfo(N->getExtType(i).getTypeList()[0], TP))
3023      return true;
3024  }
3025
3026  return false;
3027}
3028
3029void CodeGenDAGPatterns::ParsePatterns() {
3030  std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
3031
3032  for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
3033    Record *CurPattern = Patterns[i];
3034    DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
3035
3036    // If the pattern references the null_frag, there's nothing to do.
3037    if (hasNullFragReference(Tree))
3038      continue;
3039
3040    TreePattern *Pattern = new TreePattern(CurPattern, Tree, true, *this);
3041
3042    // Inline pattern fragments into it.
3043    Pattern->InlinePatternFragments();
3044
3045    ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
3046    if (LI->getSize() == 0) continue;  // no pattern.
3047
3048    // Parse the instruction.
3049    TreePattern *Result = new TreePattern(CurPattern, LI, false, *this);
3050
3051    // Inline pattern fragments into it.
3052    Result->InlinePatternFragments();
3053
3054    if (Result->getNumTrees() != 1)
3055      Result->error("Cannot handle instructions producing instructions "
3056                    "with temporaries yet!");
3057
3058    bool IterateInference;
3059    bool InferredAllPatternTypes, InferredAllResultTypes;
3060    do {
3061      // Infer as many types as possible.  If we cannot infer all of them, we
3062      // can never do anything with this pattern: report it to the user.
3063      InferredAllPatternTypes =
3064        Pattern->InferAllTypes(&Pattern->getNamedNodesMap());
3065
3066      // Infer as many types as possible.  If we cannot infer all of them, we
3067      // can never do anything with this pattern: report it to the user.
3068      InferredAllResultTypes =
3069        Result->InferAllTypes(&Pattern->getNamedNodesMap());
3070
3071      IterateInference = false;
3072
3073      // Apply the type of the result to the source pattern.  This helps us
3074      // resolve cases where the input type is known to be a pointer type (which
3075      // is considered resolved), but the result knows it needs to be 32- or
3076      // 64-bits.  Infer the other way for good measure.
3077      for (unsigned i = 0, e = std::min(Result->getTree(0)->getNumTypes(),
3078                                        Pattern->getTree(0)->getNumTypes());
3079           i != e; ++i) {
3080        IterateInference = Pattern->getTree(0)->
3081          UpdateNodeType(i, Result->getTree(0)->getExtType(i), *Result);
3082        IterateInference |= Result->getTree(0)->
3083          UpdateNodeType(i, Pattern->getTree(0)->getExtType(i), *Result);
3084      }
3085
3086      // If our iteration has converged and the input pattern's types are fully
3087      // resolved but the result pattern is not fully resolved, we may have a
3088      // situation where we have two instructions in the result pattern and
3089      // the instructions require a common register class, but don't care about
3090      // what actual MVT is used.  This is actually a bug in our modelling:
3091      // output patterns should have register classes, not MVTs.
3092      //
3093      // In any case, to handle this, we just go through and disambiguate some
3094      // arbitrary types to the result pattern's nodes.
3095      if (!IterateInference && InferredAllPatternTypes &&
3096          !InferredAllResultTypes)
3097        IterateInference = ForceArbitraryInstResultType(Result->getTree(0),
3098                                                        *Result);
3099    } while (IterateInference);
3100
3101    // Verify that we inferred enough types that we can do something with the
3102    // pattern and result.  If these fire the user has to add type casts.
3103    if (!InferredAllPatternTypes)
3104      Pattern->error("Could not infer all types in pattern!");
3105    if (!InferredAllResultTypes) {
3106      Pattern->dump();
3107      Result->error("Could not infer all types in pattern result!");
3108    }
3109
3110    // Validate that the input pattern is correct.
3111    std::map<std::string, TreePatternNode*> InstInputs;
3112    std::map<std::string, TreePatternNode*> InstResults;
3113    std::vector<Record*> InstImpResults;
3114    for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j)
3115      FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j),
3116                                  InstInputs, InstResults,
3117                                  InstImpResults);
3118
3119    // Promote the xform function to be an explicit node if set.
3120    TreePatternNode *DstPattern = Result->getOnlyTree();
3121    std::vector<TreePatternNode*> ResultNodeOperands;
3122    for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) {
3123      TreePatternNode *OpNode = DstPattern->getChild(ii);
3124      if (Record *Xform = OpNode->getTransformFn()) {
3125        OpNode->setTransformFn(0);
3126        std::vector<TreePatternNode*> Children;
3127        Children.push_back(OpNode);
3128        OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
3129      }
3130      ResultNodeOperands.push_back(OpNode);
3131    }
3132    DstPattern = Result->getOnlyTree();
3133    if (!DstPattern->isLeaf())
3134      DstPattern = new TreePatternNode(DstPattern->getOperator(),
3135                                       ResultNodeOperands,
3136                                       DstPattern->getNumTypes());
3137
3138    for (unsigned i = 0, e = Result->getOnlyTree()->getNumTypes(); i != e; ++i)
3139      DstPattern->setType(i, Result->getOnlyTree()->getExtType(i));
3140
3141    TreePattern Temp(Result->getRecord(), DstPattern, false, *this);
3142    Temp.InferAllTypes();
3143
3144
3145    AddPatternToMatch(Pattern,
3146                    PatternToMatch(CurPattern,
3147                                   CurPattern->getValueAsListInit("Predicates"),
3148                                   Pattern->getTree(0),
3149                                   Temp.getOnlyTree(), InstImpResults,
3150                                   CurPattern->getValueAsInt("AddedComplexity"),
3151                                   CurPattern->getID()));
3152  }
3153}
3154
3155/// CombineChildVariants - Given a bunch of permutations of each child of the
3156/// 'operator' node, put them together in all possible ways.
3157static void CombineChildVariants(TreePatternNode *Orig,
3158               const std::vector<std::vector<TreePatternNode*> > &ChildVariants,
3159                                 std::vector<TreePatternNode*> &OutVariants,
3160                                 CodeGenDAGPatterns &CDP,
3161                                 const MultipleUseVarSet &DepVars) {
3162  // Make sure that each operand has at least one variant to choose from.
3163  for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
3164    if (ChildVariants[i].empty())
3165      return;
3166
3167  // The end result is an all-pairs construction of the resultant pattern.
3168  std::vector<unsigned> Idxs;
3169  Idxs.resize(ChildVariants.size());
3170  bool NotDone;
3171  do {
3172#ifndef NDEBUG
3173    DEBUG(if (!Idxs.empty()) {
3174            errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
3175              for (unsigned i = 0; i < Idxs.size(); ++i) {
3176                errs() << Idxs[i] << " ";
3177            }
3178            errs() << "]\n";
3179          });
3180#endif
3181    // Create the variant and add it to the output list.
3182    std::vector<TreePatternNode*> NewChildren;
3183    for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
3184      NewChildren.push_back(ChildVariants[i][Idxs[i]]);
3185    TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren,
3186                                             Orig->getNumTypes());
3187
3188    // Copy over properties.
3189    R->setName(Orig->getName());
3190    R->setPredicateFns(Orig->getPredicateFns());
3191    R->setTransformFn(Orig->getTransformFn());
3192    for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
3193      R->setType(i, Orig->getExtType(i));
3194
3195    // If this pattern cannot match, do not include it as a variant.
3196    std::string ErrString;
3197    if (!R->canPatternMatch(ErrString, CDP)) {
3198      delete R;
3199    } else {
3200      bool AlreadyExists = false;
3201
3202      // Scan to see if this pattern has already been emitted.  We can get
3203      // duplication due to things like commuting:
3204      //   (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
3205      // which are the same pattern.  Ignore the dups.
3206      for (unsigned i = 0, e = OutVariants.size(); i != e; ++i)
3207        if (R->isIsomorphicTo(OutVariants[i], DepVars)) {
3208          AlreadyExists = true;
3209          break;
3210        }
3211
3212      if (AlreadyExists)
3213        delete R;
3214      else
3215        OutVariants.push_back(R);
3216    }
3217
3218    // Increment indices to the next permutation by incrementing the
3219    // indicies from last index backward, e.g., generate the sequence
3220    // [0, 0], [0, 1], [1, 0], [1, 1].
3221    int IdxsIdx;
3222    for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
3223      if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
3224        Idxs[IdxsIdx] = 0;
3225      else
3226        break;
3227    }
3228    NotDone = (IdxsIdx >= 0);
3229  } while (NotDone);
3230}
3231
3232/// CombineChildVariants - A helper function for binary operators.
3233///
3234static void CombineChildVariants(TreePatternNode *Orig,
3235                                 const std::vector<TreePatternNode*> &LHS,
3236                                 const std::vector<TreePatternNode*> &RHS,
3237                                 std::vector<TreePatternNode*> &OutVariants,
3238                                 CodeGenDAGPatterns &CDP,
3239                                 const MultipleUseVarSet &DepVars) {
3240  std::vector<std::vector<TreePatternNode*> > ChildVariants;
3241  ChildVariants.push_back(LHS);
3242  ChildVariants.push_back(RHS);
3243  CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
3244}
3245
3246
3247static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N,
3248                                     std::vector<TreePatternNode *> &Children) {
3249  assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
3250  Record *Operator = N->getOperator();
3251
3252  // Only permit raw nodes.
3253  if (!N->getName().empty() || !N->getPredicateFns().empty() ||
3254      N->getTransformFn()) {
3255    Children.push_back(N);
3256    return;
3257  }
3258
3259  if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
3260    Children.push_back(N->getChild(0));
3261  else
3262    GatherChildrenOfAssociativeOpcode(N->getChild(0), Children);
3263
3264  if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
3265    Children.push_back(N->getChild(1));
3266  else
3267    GatherChildrenOfAssociativeOpcode(N->getChild(1), Children);
3268}
3269
3270/// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
3271/// the (potentially recursive) pattern by using algebraic laws.
3272///
3273static void GenerateVariantsOf(TreePatternNode *N,
3274                               std::vector<TreePatternNode*> &OutVariants,
3275                               CodeGenDAGPatterns &CDP,
3276                               const MultipleUseVarSet &DepVars) {
3277  // We cannot permute leaves.
3278  if (N->isLeaf()) {
3279    OutVariants.push_back(N);
3280    return;
3281  }
3282
3283  // Look up interesting info about the node.
3284  const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
3285
3286  // If this node is associative, re-associate.
3287  if (NodeInfo.hasProperty(SDNPAssociative)) {
3288    // Re-associate by pulling together all of the linked operators
3289    std::vector<TreePatternNode*> MaximalChildren;
3290    GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
3291
3292    // Only handle child sizes of 3.  Otherwise we'll end up trying too many
3293    // permutations.
3294    if (MaximalChildren.size() == 3) {
3295      // Find the variants of all of our maximal children.
3296      std::vector<TreePatternNode*> AVariants, BVariants, CVariants;
3297      GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
3298      GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
3299      GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
3300
3301      // There are only two ways we can permute the tree:
3302      //   (A op B) op C    and    A op (B op C)
3303      // Within these forms, we can also permute A/B/C.
3304
3305      // Generate legal pair permutations of A/B/C.
3306      std::vector<TreePatternNode*> ABVariants;
3307      std::vector<TreePatternNode*> BAVariants;
3308      std::vector<TreePatternNode*> ACVariants;
3309      std::vector<TreePatternNode*> CAVariants;
3310      std::vector<TreePatternNode*> BCVariants;
3311      std::vector<TreePatternNode*> CBVariants;
3312      CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
3313      CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
3314      CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
3315      CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
3316      CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
3317      CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
3318
3319      // Combine those into the result: (x op x) op x
3320      CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
3321      CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
3322      CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
3323      CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
3324      CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
3325      CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
3326
3327      // Combine those into the result: x op (x op x)
3328      CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
3329      CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
3330      CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
3331      CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
3332      CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
3333      CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
3334      return;
3335    }
3336  }
3337
3338  // Compute permutations of all children.
3339  std::vector<std::vector<TreePatternNode*> > ChildVariants;
3340  ChildVariants.resize(N->getNumChildren());
3341  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3342    GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars);
3343
3344  // Build all permutations based on how the children were formed.
3345  CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
3346
3347  // If this node is commutative, consider the commuted order.
3348  bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
3349  if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
3350    assert((N->getNumChildren()==2 || isCommIntrinsic) &&
3351           "Commutative but doesn't have 2 children!");
3352    // Don't count children which are actually register references.
3353    unsigned NC = 0;
3354    for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
3355      TreePatternNode *Child = N->getChild(i);
3356      if (Child->isLeaf())
3357        if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) {
3358          Record *RR = DI->getDef();
3359          if (RR->isSubClassOf("Register"))
3360            continue;
3361        }
3362      NC++;
3363    }
3364    // Consider the commuted order.
3365    if (isCommIntrinsic) {
3366      // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
3367      // operands are the commutative operands, and there might be more operands
3368      // after those.
3369      assert(NC >= 3 &&
3370             "Commutative intrinsic should have at least 3 childrean!");
3371      std::vector<std::vector<TreePatternNode*> > Variants;
3372      Variants.push_back(ChildVariants[0]); // Intrinsic id.
3373      Variants.push_back(ChildVariants[2]);
3374      Variants.push_back(ChildVariants[1]);
3375      for (unsigned i = 3; i != NC; ++i)
3376        Variants.push_back(ChildVariants[i]);
3377      CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
3378    } else if (NC == 2)
3379      CombineChildVariants(N, ChildVariants[1], ChildVariants[0],
3380                           OutVariants, CDP, DepVars);
3381  }
3382}
3383
3384
3385// GenerateVariants - Generate variants.  For example, commutative patterns can
3386// match multiple ways.  Add them to PatternsToMatch as well.
3387void CodeGenDAGPatterns::GenerateVariants() {
3388  DEBUG(errs() << "Generating instruction variants.\n");
3389
3390  // Loop over all of the patterns we've collected, checking to see if we can
3391  // generate variants of the instruction, through the exploitation of
3392  // identities.  This permits the target to provide aggressive matching without
3393  // the .td file having to contain tons of variants of instructions.
3394  //
3395  // Note that this loop adds new patterns to the PatternsToMatch list, but we
3396  // intentionally do not reconsider these.  Any variants of added patterns have
3397  // already been added.
3398  //
3399  for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
3400    MultipleUseVarSet             DepVars;
3401    std::vector<TreePatternNode*> Variants;
3402    FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
3403    DEBUG(errs() << "Dependent/multiply used variables: ");
3404    DEBUG(DumpDepVars(DepVars));
3405    DEBUG(errs() << "\n");
3406    GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this,
3407                       DepVars);
3408
3409    assert(!Variants.empty() && "Must create at least original variant!");
3410    Variants.erase(Variants.begin());  // Remove the original pattern.
3411
3412    if (Variants.empty())  // No variants for this pattern.
3413      continue;
3414
3415    DEBUG(errs() << "FOUND VARIANTS OF: ";
3416          PatternsToMatch[i].getSrcPattern()->dump();
3417          errs() << "\n");
3418
3419    for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
3420      TreePatternNode *Variant = Variants[v];
3421
3422      DEBUG(errs() << "  VAR#" << v <<  ": ";
3423            Variant->dump();
3424            errs() << "\n");
3425
3426      // Scan to see if an instruction or explicit pattern already matches this.
3427      bool AlreadyExists = false;
3428      for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
3429        // Skip if the top level predicates do not match.
3430        if (PatternsToMatch[i].getPredicates() !=
3431            PatternsToMatch[p].getPredicates())
3432          continue;
3433        // Check to see if this variant already exists.
3434        if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
3435                                    DepVars)) {
3436          DEBUG(errs() << "  *** ALREADY EXISTS, ignoring variant.\n");
3437          AlreadyExists = true;
3438          break;
3439        }
3440      }
3441      // If we already have it, ignore the variant.
3442      if (AlreadyExists) continue;
3443
3444      // Otherwise, add it to the list of patterns we have.
3445      PatternsToMatch.
3446        push_back(PatternToMatch(PatternsToMatch[i].getSrcRecord(),
3447                                 PatternsToMatch[i].getPredicates(),
3448                                 Variant, PatternsToMatch[i].getDstPattern(),
3449                                 PatternsToMatch[i].getDstRegs(),
3450                                 PatternsToMatch[i].getAddedComplexity(),
3451                                 Record::getNewUID()));
3452    }
3453
3454    DEBUG(errs() << "\n");
3455  }
3456}
3457