1//===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This tablegen backend emits a target specifier matcher for converting parsed
11// assembly operands in the MCInst structures. It also emits a matcher for
12// custom operand parsing.
13//
14// Converting assembly operands into MCInst structures
15// ---------------------------------------------------
16//
17// The input to the target specific matcher is a list of literal tokens and
18// operands. The target specific parser should generally eliminate any syntax
19// which is not relevant for matching; for example, comma tokens should have
20// already been consumed and eliminated by the parser. Most instructions will
21// end up with a single literal token (the instruction name) and some number of
22// operands.
23//
24// Some example inputs, for X86:
25//   'addl' (immediate ...) (register ...)
26//   'add' (immediate ...) (memory ...)
27//   'call' '*' %epc
28//
29// The assembly matcher is responsible for converting this input into a precise
30// machine instruction (i.e., an instruction with a well defined encoding). This
31// mapping has several properties which complicate matching:
32//
33//  - It may be ambiguous; many architectures can legally encode particular
34//    variants of an instruction in different ways (for example, using a smaller
35//    encoding for small immediates). Such ambiguities should never be
36//    arbitrarily resolved by the assembler, the assembler is always responsible
37//    for choosing the "best" available instruction.
38//
39//  - It may depend on the subtarget or the assembler context. Instructions
40//    which are invalid for the current mode, but otherwise unambiguous (e.g.,
41//    an SSE instruction in a file being assembled for i486) should be accepted
42//    and rejected by the assembler front end. However, if the proper encoding
43//    for an instruction is dependent on the assembler context then the matcher
44//    is responsible for selecting the correct machine instruction for the
45//    current mode.
46//
47// The core matching algorithm attempts to exploit the regularity in most
48// instruction sets to quickly determine the set of possibly matching
49// instructions, and the simplify the generated code. Additionally, this helps
50// to ensure that the ambiguities are intentionally resolved by the user.
51//
52// The matching is divided into two distinct phases:
53//
54//   1. Classification: Each operand is mapped to the unique set which (a)
55//      contains it, and (b) is the largest such subset for which a single
56//      instruction could match all members.
57//
58//      For register classes, we can generate these subgroups automatically. For
59//      arbitrary operands, we expect the user to define the classes and their
60//      relations to one another (for example, 8-bit signed immediates as a
61//      subset of 32-bit immediates).
62//
63//      By partitioning the operands in this way, we guarantee that for any
64//      tuple of classes, any single instruction must match either all or none
65//      of the sets of operands which could classify to that tuple.
66//
67//      In addition, the subset relation amongst classes induces a partial order
68//      on such tuples, which we use to resolve ambiguities.
69//
70//   2. The input can now be treated as a tuple of classes (static tokens are
71//      simple singleton sets). Each such tuple should generally map to a single
72//      instruction (we currently ignore cases where this isn't true, whee!!!),
73//      which we can emit a simple matcher for.
74//
75// Custom Operand Parsing
76// ----------------------
77//
78//  Some targets need a custom way to parse operands, some specific instructions
79//  can contain arguments that can represent processor flags and other kinds of
80//  identifiers that need to be mapped to specific values in the final encoded
81//  instructions. The target specific custom operand parsing works in the
82//  following way:
83//
84//   1. A operand match table is built, each entry contains a mnemonic, an
85//      operand class, a mask for all operand positions for that same
86//      class/mnemonic and target features to be checked while trying to match.
87//
88//   2. The operand matcher will try every possible entry with the same
89//      mnemonic and will check if the target feature for this mnemonic also
90//      matches. After that, if the operand to be matched has its index
91//      present in the mask, a successful match occurs. Otherwise, fallback
92//      to the regular operand parsing.
93//
94//   3. For a match success, each operand class that has a 'ParserMethod'
95//      becomes part of a switch from where the custom method is called.
96//
97//===----------------------------------------------------------------------===//
98
99#include "CodeGenTarget.h"
100#include "StringToOffsetTable.h"
101#include "llvm/ADT/OwningPtr.h"
102#include "llvm/ADT/PointerUnion.h"
103#include "llvm/ADT/SmallPtrSet.h"
104#include "llvm/ADT/SmallVector.h"
105#include "llvm/ADT/STLExtras.h"
106#include "llvm/ADT/StringExtras.h"
107#include "llvm/Support/CommandLine.h"
108#include "llvm/Support/Debug.h"
109#include "llvm/Support/ErrorHandling.h"
110#include "llvm/TableGen/Error.h"
111#include "llvm/TableGen/Record.h"
112#include "llvm/TableGen/StringMatcher.h"
113#include "llvm/TableGen/TableGenBackend.h"
114#include <cassert>
115#include <map>
116#include <set>
117using namespace llvm;
118
119static cl::opt<std::string>
120MatchPrefix("match-prefix", cl::init(""),
121            cl::desc("Only match instructions with the given prefix"));
122
123namespace {
124class AsmMatcherInfo;
125struct SubtargetFeatureInfo;
126
127class AsmMatcherEmitter {
128  RecordKeeper &Records;
129public:
130  AsmMatcherEmitter(RecordKeeper &R) : Records(R) {}
131
132  void run(raw_ostream &o);
133};
134
135/// ClassInfo - Helper class for storing the information about a particular
136/// class of operands which can be matched.
137struct ClassInfo {
138  enum ClassInfoKind {
139    /// Invalid kind, for use as a sentinel value.
140    Invalid = 0,
141
142    /// The class for a particular token.
143    Token,
144
145    /// The (first) register class, subsequent register classes are
146    /// RegisterClass0+1, and so on.
147    RegisterClass0,
148
149    /// The (first) user defined class, subsequent user defined classes are
150    /// UserClass0+1, and so on.
151    UserClass0 = 1<<16
152  };
153
154  /// Kind - The class kind, which is either a predefined kind, or (UserClass0 +
155  /// N) for the Nth user defined class.
156  unsigned Kind;
157
158  /// SuperClasses - The super classes of this class. Note that for simplicities
159  /// sake user operands only record their immediate super class, while register
160  /// operands include all superclasses.
161  std::vector<ClassInfo*> SuperClasses;
162
163  /// Name - The full class name, suitable for use in an enum.
164  std::string Name;
165
166  /// ClassName - The unadorned generic name for this class (e.g., Token).
167  std::string ClassName;
168
169  /// ValueName - The name of the value this class represents; for a token this
170  /// is the literal token string, for an operand it is the TableGen class (or
171  /// empty if this is a derived class).
172  std::string ValueName;
173
174  /// PredicateMethod - The name of the operand method to test whether the
175  /// operand matches this class; this is not valid for Token or register kinds.
176  std::string PredicateMethod;
177
178  /// RenderMethod - The name of the operand method to add this operand to an
179  /// MCInst; this is not valid for Token or register kinds.
180  std::string RenderMethod;
181
182  /// ParserMethod - The name of the operand method to do a target specific
183  /// parsing on the operand.
184  std::string ParserMethod;
185
186  /// For register classes, the records for all the registers in this class.
187  std::set<Record*> Registers;
188
189  /// For custom match classes, he diagnostic kind for when the predicate fails.
190  std::string DiagnosticType;
191public:
192  /// isRegisterClass() - Check if this is a register class.
193  bool isRegisterClass() const {
194    return Kind >= RegisterClass0 && Kind < UserClass0;
195  }
196
197  /// isUserClass() - Check if this is a user defined class.
198  bool isUserClass() const {
199    return Kind >= UserClass0;
200  }
201
202  /// isRelatedTo - Check whether this class is "related" to \p RHS. Classes
203  /// are related if they are in the same class hierarchy.
204  bool isRelatedTo(const ClassInfo &RHS) const {
205    // Tokens are only related to tokens.
206    if (Kind == Token || RHS.Kind == Token)
207      return Kind == Token && RHS.Kind == Token;
208
209    // Registers classes are only related to registers classes, and only if
210    // their intersection is non-empty.
211    if (isRegisterClass() || RHS.isRegisterClass()) {
212      if (!isRegisterClass() || !RHS.isRegisterClass())
213        return false;
214
215      std::set<Record*> Tmp;
216      std::insert_iterator< std::set<Record*> > II(Tmp, Tmp.begin());
217      std::set_intersection(Registers.begin(), Registers.end(),
218                            RHS.Registers.begin(), RHS.Registers.end(),
219                            II);
220
221      return !Tmp.empty();
222    }
223
224    // Otherwise we have two users operands; they are related if they are in the
225    // same class hierarchy.
226    //
227    // FIXME: This is an oversimplification, they should only be related if they
228    // intersect, however we don't have that information.
229    assert(isUserClass() && RHS.isUserClass() && "Unexpected class!");
230    const ClassInfo *Root = this;
231    while (!Root->SuperClasses.empty())
232      Root = Root->SuperClasses.front();
233
234    const ClassInfo *RHSRoot = &RHS;
235    while (!RHSRoot->SuperClasses.empty())
236      RHSRoot = RHSRoot->SuperClasses.front();
237
238    return Root == RHSRoot;
239  }
240
241  /// isSubsetOf - Test whether this class is a subset of \p RHS.
242  bool isSubsetOf(const ClassInfo &RHS) const {
243    // This is a subset of RHS if it is the same class...
244    if (this == &RHS)
245      return true;
246
247    // ... or if any of its super classes are a subset of RHS.
248    for (std::vector<ClassInfo*>::const_iterator it = SuperClasses.begin(),
249           ie = SuperClasses.end(); it != ie; ++it)
250      if ((*it)->isSubsetOf(RHS))
251        return true;
252
253    return false;
254  }
255
256  /// operator< - Compare two classes.
257  bool operator<(const ClassInfo &RHS) const {
258    if (this == &RHS)
259      return false;
260
261    // Unrelated classes can be ordered by kind.
262    if (!isRelatedTo(RHS))
263      return Kind < RHS.Kind;
264
265    switch (Kind) {
266    case Invalid:
267      llvm_unreachable("Invalid kind!");
268
269    default:
270      // This class precedes the RHS if it is a proper subset of the RHS.
271      if (isSubsetOf(RHS))
272        return true;
273      if (RHS.isSubsetOf(*this))
274        return false;
275
276      // Otherwise, order by name to ensure we have a total ordering.
277      return ValueName < RHS.ValueName;
278    }
279  }
280};
281
282namespace {
283/// Sort ClassInfo pointers independently of pointer value.
284struct LessClassInfoPtr {
285  bool operator()(const ClassInfo *LHS, const ClassInfo *RHS) const {
286    return *LHS < *RHS;
287  }
288};
289}
290
291/// MatchableInfo - Helper class for storing the necessary information for an
292/// instruction or alias which is capable of being matched.
293struct MatchableInfo {
294  struct AsmOperand {
295    /// Token - This is the token that the operand came from.
296    StringRef Token;
297
298    /// The unique class instance this operand should match.
299    ClassInfo *Class;
300
301    /// The operand name this is, if anything.
302    StringRef SrcOpName;
303
304    /// The suboperand index within SrcOpName, or -1 for the entire operand.
305    int SubOpIdx;
306
307    /// Register record if this token is singleton register.
308    Record *SingletonReg;
309
310    explicit AsmOperand(StringRef T) : Token(T), Class(0), SubOpIdx(-1),
311                                       SingletonReg(0) {}
312  };
313
314  /// ResOperand - This represents a single operand in the result instruction
315  /// generated by the match.  In cases (like addressing modes) where a single
316  /// assembler operand expands to multiple MCOperands, this represents the
317  /// single assembler operand, not the MCOperand.
318  struct ResOperand {
319    enum {
320      /// RenderAsmOperand - This represents an operand result that is
321      /// generated by calling the render method on the assembly operand.  The
322      /// corresponding AsmOperand is specified by AsmOperandNum.
323      RenderAsmOperand,
324
325      /// TiedOperand - This represents a result operand that is a duplicate of
326      /// a previous result operand.
327      TiedOperand,
328
329      /// ImmOperand - This represents an immediate value that is dumped into
330      /// the operand.
331      ImmOperand,
332
333      /// RegOperand - This represents a fixed register that is dumped in.
334      RegOperand
335    } Kind;
336
337    union {
338      /// This is the operand # in the AsmOperands list that this should be
339      /// copied from.
340      unsigned AsmOperandNum;
341
342      /// TiedOperandNum - This is the (earlier) result operand that should be
343      /// copied from.
344      unsigned TiedOperandNum;
345
346      /// ImmVal - This is the immediate value added to the instruction.
347      int64_t ImmVal;
348
349      /// Register - This is the register record.
350      Record *Register;
351    };
352
353    /// MINumOperands - The number of MCInst operands populated by this
354    /// operand.
355    unsigned MINumOperands;
356
357    static ResOperand getRenderedOp(unsigned AsmOpNum, unsigned NumOperands) {
358      ResOperand X;
359      X.Kind = RenderAsmOperand;
360      X.AsmOperandNum = AsmOpNum;
361      X.MINumOperands = NumOperands;
362      return X;
363    }
364
365    static ResOperand getTiedOp(unsigned TiedOperandNum) {
366      ResOperand X;
367      X.Kind = TiedOperand;
368      X.TiedOperandNum = TiedOperandNum;
369      X.MINumOperands = 1;
370      return X;
371    }
372
373    static ResOperand getImmOp(int64_t Val) {
374      ResOperand X;
375      X.Kind = ImmOperand;
376      X.ImmVal = Val;
377      X.MINumOperands = 1;
378      return X;
379    }
380
381    static ResOperand getRegOp(Record *Reg) {
382      ResOperand X;
383      X.Kind = RegOperand;
384      X.Register = Reg;
385      X.MINumOperands = 1;
386      return X;
387    }
388  };
389
390  /// AsmVariantID - Target's assembly syntax variant no.
391  int AsmVariantID;
392
393  /// TheDef - This is the definition of the instruction or InstAlias that this
394  /// matchable came from.
395  Record *const TheDef;
396
397  /// DefRec - This is the definition that it came from.
398  PointerUnion<const CodeGenInstruction*, const CodeGenInstAlias*> DefRec;
399
400  const CodeGenInstruction *getResultInst() const {
401    if (DefRec.is<const CodeGenInstruction*>())
402      return DefRec.get<const CodeGenInstruction*>();
403    return DefRec.get<const CodeGenInstAlias*>()->ResultInst;
404  }
405
406  /// ResOperands - This is the operand list that should be built for the result
407  /// MCInst.
408  SmallVector<ResOperand, 8> ResOperands;
409
410  /// AsmString - The assembly string for this instruction (with variants
411  /// removed), e.g. "movsx $src, $dst".
412  std::string AsmString;
413
414  /// Mnemonic - This is the first token of the matched instruction, its
415  /// mnemonic.
416  StringRef Mnemonic;
417
418  /// AsmOperands - The textual operands that this instruction matches,
419  /// annotated with a class and where in the OperandList they were defined.
420  /// This directly corresponds to the tokenized AsmString after the mnemonic is
421  /// removed.
422  SmallVector<AsmOperand, 8> AsmOperands;
423
424  /// Predicates - The required subtarget features to match this instruction.
425  SmallVector<SubtargetFeatureInfo*, 4> RequiredFeatures;
426
427  /// ConversionFnKind - The enum value which is passed to the generated
428  /// convertToMCInst to convert parsed operands into an MCInst for this
429  /// function.
430  std::string ConversionFnKind;
431
432  MatchableInfo(const CodeGenInstruction &CGI)
433    : AsmVariantID(0), TheDef(CGI.TheDef), DefRec(&CGI),
434      AsmString(CGI.AsmString) {
435  }
436
437  MatchableInfo(const CodeGenInstAlias *Alias)
438    : AsmVariantID(0), TheDef(Alias->TheDef), DefRec(Alias),
439      AsmString(Alias->AsmString) {
440  }
441
442  // Two-operand aliases clone from the main matchable, but mark the second
443  // operand as a tied operand of the first for purposes of the assembler.
444  void formTwoOperandAlias(StringRef Constraint);
445
446  void initialize(const AsmMatcherInfo &Info,
447                  SmallPtrSet<Record*, 16> &SingletonRegisters,
448                  int AsmVariantNo, std::string &RegisterPrefix);
449
450  /// validate - Return true if this matchable is a valid thing to match against
451  /// and perform a bunch of validity checking.
452  bool validate(StringRef CommentDelimiter, bool Hack) const;
453
454  /// extractSingletonRegisterForAsmOperand - Extract singleton register,
455  /// if present, from specified token.
456  void
457  extractSingletonRegisterForAsmOperand(unsigned i, const AsmMatcherInfo &Info,
458                                        std::string &RegisterPrefix);
459
460  /// findAsmOperand - Find the AsmOperand with the specified name and
461  /// suboperand index.
462  int findAsmOperand(StringRef N, int SubOpIdx) const {
463    for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
464      if (N == AsmOperands[i].SrcOpName &&
465          SubOpIdx == AsmOperands[i].SubOpIdx)
466        return i;
467    return -1;
468  }
469
470  /// findAsmOperandNamed - Find the first AsmOperand with the specified name.
471  /// This does not check the suboperand index.
472  int findAsmOperandNamed(StringRef N) const {
473    for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
474      if (N == AsmOperands[i].SrcOpName)
475        return i;
476    return -1;
477  }
478
479  void buildInstructionResultOperands();
480  void buildAliasResultOperands();
481
482  /// operator< - Compare two matchables.
483  bool operator<(const MatchableInfo &RHS) const {
484    // The primary comparator is the instruction mnemonic.
485    if (Mnemonic != RHS.Mnemonic)
486      return Mnemonic < RHS.Mnemonic;
487
488    if (AsmOperands.size() != RHS.AsmOperands.size())
489      return AsmOperands.size() < RHS.AsmOperands.size();
490
491    // Compare lexicographically by operand. The matcher validates that other
492    // orderings wouldn't be ambiguous using \see couldMatchAmbiguouslyWith().
493    for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
494      if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
495        return true;
496      if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
497        return false;
498    }
499
500    // Give matches that require more features higher precedence. This is useful
501    // because we cannot define AssemblerPredicates with the negation of
502    // processor features. For example, ARM v6 "nop" may be either a HINT or
503    // MOV. With v6, we want to match HINT. The assembler has no way to
504    // predicate MOV under "NoV6", but HINT will always match first because it
505    // requires V6 while MOV does not.
506    if (RequiredFeatures.size() != RHS.RequiredFeatures.size())
507      return RequiredFeatures.size() > RHS.RequiredFeatures.size();
508
509    return false;
510  }
511
512  /// couldMatchAmbiguouslyWith - Check whether this matchable could
513  /// ambiguously match the same set of operands as \p RHS (without being a
514  /// strictly superior match).
515  bool couldMatchAmbiguouslyWith(const MatchableInfo &RHS) {
516    // The primary comparator is the instruction mnemonic.
517    if (Mnemonic != RHS.Mnemonic)
518      return false;
519
520    // The number of operands is unambiguous.
521    if (AsmOperands.size() != RHS.AsmOperands.size())
522      return false;
523
524    // Otherwise, make sure the ordering of the two instructions is unambiguous
525    // by checking that either (a) a token or operand kind discriminates them,
526    // or (b) the ordering among equivalent kinds is consistent.
527
528    // Tokens and operand kinds are unambiguous (assuming a correct target
529    // specific parser).
530    for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
531      if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind ||
532          AsmOperands[i].Class->Kind == ClassInfo::Token)
533        if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class ||
534            *RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
535          return false;
536
537    // Otherwise, this operand could commute if all operands are equivalent, or
538    // there is a pair of operands that compare less than and a pair that
539    // compare greater than.
540    bool HasLT = false, HasGT = false;
541    for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
542      if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
543        HasLT = true;
544      if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
545        HasGT = true;
546    }
547
548    return !(HasLT ^ HasGT);
549  }
550
551  void dump();
552
553private:
554  void tokenizeAsmString(const AsmMatcherInfo &Info);
555};
556
557/// SubtargetFeatureInfo - Helper class for storing information on a subtarget
558/// feature which participates in instruction matching.
559struct SubtargetFeatureInfo {
560  /// \brief The predicate record for this feature.
561  Record *TheDef;
562
563  /// \brief An unique index assigned to represent this feature.
564  unsigned Index;
565
566  SubtargetFeatureInfo(Record *D, unsigned Idx) : TheDef(D), Index(Idx) {}
567
568  /// \brief The name of the enumerated constant identifying this feature.
569  std::string getEnumName() const {
570    return "Feature_" + TheDef->getName();
571  }
572};
573
574struct OperandMatchEntry {
575  unsigned OperandMask;
576  MatchableInfo* MI;
577  ClassInfo *CI;
578
579  static OperandMatchEntry create(MatchableInfo* mi, ClassInfo *ci,
580                                  unsigned opMask) {
581    OperandMatchEntry X;
582    X.OperandMask = opMask;
583    X.CI = ci;
584    X.MI = mi;
585    return X;
586  }
587};
588
589
590class AsmMatcherInfo {
591public:
592  /// Tracked Records
593  RecordKeeper &Records;
594
595  /// The tablegen AsmParser record.
596  Record *AsmParser;
597
598  /// Target - The target information.
599  CodeGenTarget &Target;
600
601  /// The classes which are needed for matching.
602  std::vector<ClassInfo*> Classes;
603
604  /// The information on the matchables to match.
605  std::vector<MatchableInfo*> Matchables;
606
607  /// Info for custom matching operands by user defined methods.
608  std::vector<OperandMatchEntry> OperandMatchInfo;
609
610  /// Map of Register records to their class information.
611  typedef std::map<Record*, ClassInfo*, LessRecordByID> RegisterClassesTy;
612  RegisterClassesTy RegisterClasses;
613
614  /// Map of Predicate records to their subtarget information.
615  std::map<Record*, SubtargetFeatureInfo*> SubtargetFeatures;
616
617  /// Map of AsmOperandClass records to their class information.
618  std::map<Record*, ClassInfo*> AsmOperandClasses;
619
620private:
621  /// Map of token to class information which has already been constructed.
622  std::map<std::string, ClassInfo*> TokenClasses;
623
624  /// Map of RegisterClass records to their class information.
625  std::map<Record*, ClassInfo*> RegisterClassClasses;
626
627private:
628  /// getTokenClass - Lookup or create the class for the given token.
629  ClassInfo *getTokenClass(StringRef Token);
630
631  /// getOperandClass - Lookup or create the class for the given operand.
632  ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI,
633                             int SubOpIdx);
634  ClassInfo *getOperandClass(Record *Rec, int SubOpIdx);
635
636  /// buildRegisterClasses - Build the ClassInfo* instances for register
637  /// classes.
638  void buildRegisterClasses(SmallPtrSet<Record*, 16> &SingletonRegisters);
639
640  /// buildOperandClasses - Build the ClassInfo* instances for user defined
641  /// operand classes.
642  void buildOperandClasses();
643
644  void buildInstructionOperandReference(MatchableInfo *II, StringRef OpName,
645                                        unsigned AsmOpIdx);
646  void buildAliasOperandReference(MatchableInfo *II, StringRef OpName,
647                                  MatchableInfo::AsmOperand &Op);
648
649public:
650  AsmMatcherInfo(Record *AsmParser,
651                 CodeGenTarget &Target,
652                 RecordKeeper &Records);
653
654  /// buildInfo - Construct the various tables used during matching.
655  void buildInfo();
656
657  /// buildOperandMatchInfo - Build the necessary information to handle user
658  /// defined operand parsing methods.
659  void buildOperandMatchInfo();
660
661  /// getSubtargetFeature - Lookup or create the subtarget feature info for the
662  /// given operand.
663  SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const {
664    assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!");
665    std::map<Record*, SubtargetFeatureInfo*>::const_iterator I =
666      SubtargetFeatures.find(Def);
667    return I == SubtargetFeatures.end() ? 0 : I->second;
668  }
669
670  RecordKeeper &getRecords() const {
671    return Records;
672  }
673};
674
675} // End anonymous namespace
676
677void MatchableInfo::dump() {
678  errs() << TheDef->getName() << " -- " << "flattened:\"" << AsmString <<"\"\n";
679
680  for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
681    AsmOperand &Op = AsmOperands[i];
682    errs() << "  op[" << i << "] = " << Op.Class->ClassName << " - ";
683    errs() << '\"' << Op.Token << "\"\n";
684  }
685}
686
687static std::pair<StringRef, StringRef>
688parseTwoOperandConstraint(StringRef S, ArrayRef<SMLoc> Loc) {
689  // Split via the '='.
690  std::pair<StringRef, StringRef> Ops = S.split('=');
691  if (Ops.second == "")
692    throw TGError(Loc, "missing '=' in two-operand alias constraint");
693  // Trim whitespace and the leading '$' on the operand names.
694  size_t start = Ops.first.find_first_of('$');
695  if (start == std::string::npos)
696    throw TGError(Loc, "expected '$' prefix on asm operand name");
697  Ops.first = Ops.first.slice(start + 1, std::string::npos);
698  size_t end = Ops.first.find_last_of(" \t");
699  Ops.first = Ops.first.slice(0, end);
700  // Now the second operand.
701  start = Ops.second.find_first_of('$');
702  if (start == std::string::npos)
703    throw TGError(Loc, "expected '$' prefix on asm operand name");
704  Ops.second = Ops.second.slice(start + 1, std::string::npos);
705  end = Ops.second.find_last_of(" \t");
706  Ops.first = Ops.first.slice(0, end);
707  return Ops;
708}
709
710void MatchableInfo::formTwoOperandAlias(StringRef Constraint) {
711  // Figure out which operands are aliased and mark them as tied.
712  std::pair<StringRef, StringRef> Ops =
713    parseTwoOperandConstraint(Constraint, TheDef->getLoc());
714
715  // Find the AsmOperands that refer to the operands we're aliasing.
716  int SrcAsmOperand = findAsmOperandNamed(Ops.first);
717  int DstAsmOperand = findAsmOperandNamed(Ops.second);
718  if (SrcAsmOperand == -1)
719    throw TGError(TheDef->getLoc(),
720                  "unknown source two-operand alias operand '" +
721                  Ops.first.str() + "'.");
722  if (DstAsmOperand == -1)
723    throw TGError(TheDef->getLoc(),
724                  "unknown destination two-operand alias operand '" +
725                  Ops.second.str() + "'.");
726
727  // Find the ResOperand that refers to the operand we're aliasing away
728  // and update it to refer to the combined operand instead.
729  for (unsigned i = 0, e = ResOperands.size(); i != e; ++i) {
730    ResOperand &Op = ResOperands[i];
731    if (Op.Kind == ResOperand::RenderAsmOperand &&
732        Op.AsmOperandNum == (unsigned)SrcAsmOperand) {
733      Op.AsmOperandNum = DstAsmOperand;
734      break;
735    }
736  }
737  // Remove the AsmOperand for the alias operand.
738  AsmOperands.erase(AsmOperands.begin() + SrcAsmOperand);
739  // Adjust the ResOperand references to any AsmOperands that followed
740  // the one we just deleted.
741  for (unsigned i = 0, e = ResOperands.size(); i != e; ++i) {
742    ResOperand &Op = ResOperands[i];
743    switch(Op.Kind) {
744    default:
745      // Nothing to do for operands that don't reference AsmOperands.
746      break;
747    case ResOperand::RenderAsmOperand:
748      if (Op.AsmOperandNum > (unsigned)SrcAsmOperand)
749        --Op.AsmOperandNum;
750      break;
751    case ResOperand::TiedOperand:
752      if (Op.TiedOperandNum > (unsigned)SrcAsmOperand)
753        --Op.TiedOperandNum;
754      break;
755    }
756  }
757}
758
759void MatchableInfo::initialize(const AsmMatcherInfo &Info,
760                               SmallPtrSet<Record*, 16> &SingletonRegisters,
761                               int AsmVariantNo, std::string &RegisterPrefix) {
762  AsmVariantID = AsmVariantNo;
763  AsmString =
764    CodeGenInstruction::FlattenAsmStringVariants(AsmString, AsmVariantNo);
765
766  tokenizeAsmString(Info);
767
768  // Compute the require features.
769  std::vector<Record*> Predicates =TheDef->getValueAsListOfDefs("Predicates");
770  for (unsigned i = 0, e = Predicates.size(); i != e; ++i)
771    if (SubtargetFeatureInfo *Feature =
772        Info.getSubtargetFeature(Predicates[i]))
773      RequiredFeatures.push_back(Feature);
774
775  // Collect singleton registers, if used.
776  for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
777    extractSingletonRegisterForAsmOperand(i, Info, RegisterPrefix);
778    if (Record *Reg = AsmOperands[i].SingletonReg)
779      SingletonRegisters.insert(Reg);
780  }
781}
782
783/// tokenizeAsmString - Tokenize a simplified assembly string.
784void MatchableInfo::tokenizeAsmString(const AsmMatcherInfo &Info) {
785  StringRef String = AsmString;
786  unsigned Prev = 0;
787  bool InTok = true;
788  for (unsigned i = 0, e = String.size(); i != e; ++i) {
789    switch (String[i]) {
790    case '[':
791    case ']':
792    case '*':
793    case '!':
794    case ' ':
795    case '\t':
796    case ',':
797      if (InTok) {
798        AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
799        InTok = false;
800      }
801      if (!isspace(String[i]) && String[i] != ',')
802        AsmOperands.push_back(AsmOperand(String.substr(i, 1)));
803      Prev = i + 1;
804      break;
805
806    case '\\':
807      if (InTok) {
808        AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
809        InTok = false;
810      }
811      ++i;
812      assert(i != String.size() && "Invalid quoted character");
813      AsmOperands.push_back(AsmOperand(String.substr(i, 1)));
814      Prev = i + 1;
815      break;
816
817    case '$': {
818      if (InTok) {
819        AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
820        InTok = false;
821      }
822
823      // If this isn't "${", treat like a normal token.
824      if (i + 1 == String.size() || String[i + 1] != '{') {
825        Prev = i;
826        break;
827      }
828
829      StringRef::iterator End = std::find(String.begin() + i, String.end(),'}');
830      assert(End != String.end() && "Missing brace in operand reference!");
831      size_t EndPos = End - String.begin();
832      AsmOperands.push_back(AsmOperand(String.slice(i, EndPos+1)));
833      Prev = EndPos + 1;
834      i = EndPos;
835      break;
836    }
837
838    case '.':
839      if (InTok)
840        AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
841      Prev = i;
842      InTok = true;
843      break;
844
845    default:
846      InTok = true;
847    }
848  }
849  if (InTok && Prev != String.size())
850    AsmOperands.push_back(AsmOperand(String.substr(Prev)));
851
852  // The first token of the instruction is the mnemonic, which must be a
853  // simple string, not a $foo variable or a singleton register.
854  if (AsmOperands.empty())
855    throw TGError(TheDef->getLoc(),
856                  "Instruction '" + TheDef->getName() + "' has no tokens");
857  Mnemonic = AsmOperands[0].Token;
858  if (Mnemonic.empty())
859    throw TGError(TheDef->getLoc(),
860                  "Missing instruction mnemonic");
861  // FIXME : Check and raise an error if it is a register.
862  if (Mnemonic[0] == '$')
863    throw TGError(TheDef->getLoc(),
864                  "Invalid instruction mnemonic '" + Mnemonic.str() + "'!");
865
866  // Remove the first operand, it is tracked in the mnemonic field.
867  AsmOperands.erase(AsmOperands.begin());
868}
869
870bool MatchableInfo::validate(StringRef CommentDelimiter, bool Hack) const {
871  // Reject matchables with no .s string.
872  if (AsmString.empty())
873    throw TGError(TheDef->getLoc(), "instruction with empty asm string");
874
875  // Reject any matchables with a newline in them, they should be marked
876  // isCodeGenOnly if they are pseudo instructions.
877  if (AsmString.find('\n') != std::string::npos)
878    throw TGError(TheDef->getLoc(),
879                  "multiline instruction is not valid for the asmparser, "
880                  "mark it isCodeGenOnly");
881
882  // Remove comments from the asm string.  We know that the asmstring only
883  // has one line.
884  if (!CommentDelimiter.empty() &&
885      StringRef(AsmString).find(CommentDelimiter) != StringRef::npos)
886    throw TGError(TheDef->getLoc(),
887                  "asmstring for instruction has comment character in it, "
888                  "mark it isCodeGenOnly");
889
890  // Reject matchables with operand modifiers, these aren't something we can
891  // handle, the target should be refactored to use operands instead of
892  // modifiers.
893  //
894  // Also, check for instructions which reference the operand multiple times;
895  // this implies a constraint we would not honor.
896  std::set<std::string> OperandNames;
897  for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
898    StringRef Tok = AsmOperands[i].Token;
899    if (Tok[0] == '$' && Tok.find(':') != StringRef::npos)
900      throw TGError(TheDef->getLoc(),
901                    "matchable with operand modifier '" + Tok.str() +
902                    "' not supported by asm matcher.  Mark isCodeGenOnly!");
903
904    // Verify that any operand is only mentioned once.
905    // We reject aliases and ignore instructions for now.
906    if (Tok[0] == '$' && !OperandNames.insert(Tok).second) {
907      if (!Hack)
908        throw TGError(TheDef->getLoc(),
909                      "ERROR: matchable with tied operand '" + Tok.str() +
910                      "' can never be matched!");
911      // FIXME: Should reject these.  The ARM backend hits this with $lane in a
912      // bunch of instructions.  It is unclear what the right answer is.
913      DEBUG({
914        errs() << "warning: '" << TheDef->getName() << "': "
915               << "ignoring instruction with tied operand '"
916               << Tok.str() << "'\n";
917      });
918      return false;
919    }
920  }
921
922  return true;
923}
924
925/// extractSingletonRegisterForAsmOperand - Extract singleton register,
926/// if present, from specified token.
927void MatchableInfo::
928extractSingletonRegisterForAsmOperand(unsigned OperandNo,
929                                      const AsmMatcherInfo &Info,
930                                      std::string &RegisterPrefix) {
931  StringRef Tok = AsmOperands[OperandNo].Token;
932  if (RegisterPrefix.empty()) {
933    std::string LoweredTok = Tok.lower();
934    if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(LoweredTok))
935      AsmOperands[OperandNo].SingletonReg = Reg->TheDef;
936    return;
937  }
938
939  if (!Tok.startswith(RegisterPrefix))
940    return;
941
942  StringRef RegName = Tok.substr(RegisterPrefix.size());
943  if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(RegName))
944    AsmOperands[OperandNo].SingletonReg = Reg->TheDef;
945
946  // If there is no register prefix (i.e. "%" in "%eax"), then this may
947  // be some random non-register token, just ignore it.
948  return;
949}
950
951static std::string getEnumNameForToken(StringRef Str) {
952  std::string Res;
953
954  for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) {
955    switch (*it) {
956    case '*': Res += "_STAR_"; break;
957    case '%': Res += "_PCT_"; break;
958    case ':': Res += "_COLON_"; break;
959    case '!': Res += "_EXCLAIM_"; break;
960    case '.': Res += "_DOT_"; break;
961    default:
962      if (isalnum(*it))
963        Res += *it;
964      else
965        Res += "_" + utostr((unsigned) *it) + "_";
966    }
967  }
968
969  return Res;
970}
971
972ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) {
973  ClassInfo *&Entry = TokenClasses[Token];
974
975  if (!Entry) {
976    Entry = new ClassInfo();
977    Entry->Kind = ClassInfo::Token;
978    Entry->ClassName = "Token";
979    Entry->Name = "MCK_" + getEnumNameForToken(Token);
980    Entry->ValueName = Token;
981    Entry->PredicateMethod = "<invalid>";
982    Entry->RenderMethod = "<invalid>";
983    Entry->ParserMethod = "";
984    Entry->DiagnosticType = "";
985    Classes.push_back(Entry);
986  }
987
988  return Entry;
989}
990
991ClassInfo *
992AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI,
993                                int SubOpIdx) {
994  Record *Rec = OI.Rec;
995  if (SubOpIdx != -1)
996    Rec = dynamic_cast<DefInit*>(OI.MIOperandInfo->getArg(SubOpIdx))->getDef();
997  return getOperandClass(Rec, SubOpIdx);
998}
999
1000ClassInfo *
1001AsmMatcherInfo::getOperandClass(Record *Rec, int SubOpIdx) {
1002  if (Rec->isSubClassOf("RegisterOperand")) {
1003    // RegisterOperand may have an associated ParserMatchClass. If it does,
1004    // use it, else just fall back to the underlying register class.
1005    const RecordVal *R = Rec->getValue("ParserMatchClass");
1006    if (R == 0 || R->getValue() == 0)
1007      throw "Record `" + Rec->getName() +
1008        "' does not have a ParserMatchClass!\n";
1009
1010    if (DefInit *DI= dynamic_cast<DefInit*>(R->getValue())) {
1011      Record *MatchClass = DI->getDef();
1012      if (ClassInfo *CI = AsmOperandClasses[MatchClass])
1013        return CI;
1014    }
1015
1016    // No custom match class. Just use the register class.
1017    Record *ClassRec = Rec->getValueAsDef("RegClass");
1018    if (!ClassRec)
1019      throw TGError(Rec->getLoc(), "RegisterOperand `" + Rec->getName() +
1020                    "' has no associated register class!\n");
1021    if (ClassInfo *CI = RegisterClassClasses[ClassRec])
1022      return CI;
1023    throw TGError(Rec->getLoc(), "register class has no class info!");
1024  }
1025
1026
1027  if (Rec->isSubClassOf("RegisterClass")) {
1028    if (ClassInfo *CI = RegisterClassClasses[Rec])
1029      return CI;
1030    throw TGError(Rec->getLoc(), "register class has no class info!");
1031  }
1032
1033  if (!Rec->isSubClassOf("Operand"))
1034    throw TGError(Rec->getLoc(), "Operand `" + Rec->getName() +
1035                  "' does not derive from class Operand!\n");
1036  Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
1037  if (ClassInfo *CI = AsmOperandClasses[MatchClass])
1038    return CI;
1039
1040  throw TGError(Rec->getLoc(), "operand has no match class!");
1041}
1042
1043void AsmMatcherInfo::
1044buildRegisterClasses(SmallPtrSet<Record*, 16> &SingletonRegisters) {
1045  const std::vector<CodeGenRegister*> &Registers =
1046    Target.getRegBank().getRegisters();
1047  ArrayRef<CodeGenRegisterClass*> RegClassList =
1048    Target.getRegBank().getRegClasses();
1049
1050  // The register sets used for matching.
1051  std::set< std::set<Record*> > RegisterSets;
1052
1053  // Gather the defined sets.
1054  for (ArrayRef<CodeGenRegisterClass*>::const_iterator it =
1055       RegClassList.begin(), ie = RegClassList.end(); it != ie; ++it)
1056    RegisterSets.insert(std::set<Record*>(
1057        (*it)->getOrder().begin(), (*it)->getOrder().end()));
1058
1059  // Add any required singleton sets.
1060  for (SmallPtrSet<Record*, 16>::iterator it = SingletonRegisters.begin(),
1061       ie = SingletonRegisters.end(); it != ie; ++it) {
1062    Record *Rec = *it;
1063    RegisterSets.insert(std::set<Record*>(&Rec, &Rec + 1));
1064  }
1065
1066  // Introduce derived sets where necessary (when a register does not determine
1067  // a unique register set class), and build the mapping of registers to the set
1068  // they should classify to.
1069  std::map<Record*, std::set<Record*> > RegisterMap;
1070  for (std::vector<CodeGenRegister*>::const_iterator it = Registers.begin(),
1071         ie = Registers.end(); it != ie; ++it) {
1072    const CodeGenRegister &CGR = **it;
1073    // Compute the intersection of all sets containing this register.
1074    std::set<Record*> ContainingSet;
1075
1076    for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
1077           ie = RegisterSets.end(); it != ie; ++it) {
1078      if (!it->count(CGR.TheDef))
1079        continue;
1080
1081      if (ContainingSet.empty()) {
1082        ContainingSet = *it;
1083        continue;
1084      }
1085
1086      std::set<Record*> Tmp;
1087      std::swap(Tmp, ContainingSet);
1088      std::insert_iterator< std::set<Record*> > II(ContainingSet,
1089                                                   ContainingSet.begin());
1090      std::set_intersection(Tmp.begin(), Tmp.end(), it->begin(), it->end(), II);
1091    }
1092
1093    if (!ContainingSet.empty()) {
1094      RegisterSets.insert(ContainingSet);
1095      RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet));
1096    }
1097  }
1098
1099  // Construct the register classes.
1100  std::map<std::set<Record*>, ClassInfo*> RegisterSetClasses;
1101  unsigned Index = 0;
1102  for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
1103         ie = RegisterSets.end(); it != ie; ++it, ++Index) {
1104    ClassInfo *CI = new ClassInfo();
1105    CI->Kind = ClassInfo::RegisterClass0 + Index;
1106    CI->ClassName = "Reg" + utostr(Index);
1107    CI->Name = "MCK_Reg" + utostr(Index);
1108    CI->ValueName = "";
1109    CI->PredicateMethod = ""; // unused
1110    CI->RenderMethod = "addRegOperands";
1111    CI->Registers = *it;
1112    // FIXME: diagnostic type.
1113    CI->DiagnosticType = "";
1114    Classes.push_back(CI);
1115    RegisterSetClasses.insert(std::make_pair(*it, CI));
1116  }
1117
1118  // Find the superclasses; we could compute only the subgroup lattice edges,
1119  // but there isn't really a point.
1120  for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
1121         ie = RegisterSets.end(); it != ie; ++it) {
1122    ClassInfo *CI = RegisterSetClasses[*it];
1123    for (std::set< std::set<Record*> >::iterator it2 = RegisterSets.begin(),
1124           ie2 = RegisterSets.end(); it2 != ie2; ++it2)
1125      if (*it != *it2 &&
1126          std::includes(it2->begin(), it2->end(), it->begin(), it->end()))
1127        CI->SuperClasses.push_back(RegisterSetClasses[*it2]);
1128  }
1129
1130  // Name the register classes which correspond to a user defined RegisterClass.
1131  for (ArrayRef<CodeGenRegisterClass*>::const_iterator
1132       it = RegClassList.begin(), ie = RegClassList.end(); it != ie; ++it) {
1133    const CodeGenRegisterClass &RC = **it;
1134    // Def will be NULL for non-user defined register classes.
1135    Record *Def = RC.getDef();
1136    if (!Def)
1137      continue;
1138    ClassInfo *CI = RegisterSetClasses[std::set<Record*>(RC.getOrder().begin(),
1139                                                         RC.getOrder().end())];
1140    if (CI->ValueName.empty()) {
1141      CI->ClassName = RC.getName();
1142      CI->Name = "MCK_" + RC.getName();
1143      CI->ValueName = RC.getName();
1144    } else
1145      CI->ValueName = CI->ValueName + "," + RC.getName();
1146
1147    RegisterClassClasses.insert(std::make_pair(Def, CI));
1148  }
1149
1150  // Populate the map for individual registers.
1151  for (std::map<Record*, std::set<Record*> >::iterator it = RegisterMap.begin(),
1152         ie = RegisterMap.end(); it != ie; ++it)
1153    RegisterClasses[it->first] = RegisterSetClasses[it->second];
1154
1155  // Name the register classes which correspond to singleton registers.
1156  for (SmallPtrSet<Record*, 16>::iterator it = SingletonRegisters.begin(),
1157         ie = SingletonRegisters.end(); it != ie; ++it) {
1158    Record *Rec = *it;
1159    ClassInfo *CI = RegisterClasses[Rec];
1160    assert(CI && "Missing singleton register class info!");
1161
1162    if (CI->ValueName.empty()) {
1163      CI->ClassName = Rec->getName();
1164      CI->Name = "MCK_" + Rec->getName();
1165      CI->ValueName = Rec->getName();
1166    } else
1167      CI->ValueName = CI->ValueName + "," + Rec->getName();
1168  }
1169}
1170
1171void AsmMatcherInfo::buildOperandClasses() {
1172  std::vector<Record*> AsmOperands =
1173    Records.getAllDerivedDefinitions("AsmOperandClass");
1174
1175  // Pre-populate AsmOperandClasses map.
1176  for (std::vector<Record*>::iterator it = AsmOperands.begin(),
1177         ie = AsmOperands.end(); it != ie; ++it)
1178    AsmOperandClasses[*it] = new ClassInfo();
1179
1180  unsigned Index = 0;
1181  for (std::vector<Record*>::iterator it = AsmOperands.begin(),
1182         ie = AsmOperands.end(); it != ie; ++it, ++Index) {
1183    ClassInfo *CI = AsmOperandClasses[*it];
1184    CI->Kind = ClassInfo::UserClass0 + Index;
1185
1186    ListInit *Supers = (*it)->getValueAsListInit("SuperClasses");
1187    for (unsigned i = 0, e = Supers->getSize(); i != e; ++i) {
1188      DefInit *DI = dynamic_cast<DefInit*>(Supers->getElement(i));
1189      if (!DI) {
1190        PrintError((*it)->getLoc(), "Invalid super class reference!");
1191        continue;
1192      }
1193
1194      ClassInfo *SC = AsmOperandClasses[DI->getDef()];
1195      if (!SC)
1196        PrintError((*it)->getLoc(), "Invalid super class reference!");
1197      else
1198        CI->SuperClasses.push_back(SC);
1199    }
1200    CI->ClassName = (*it)->getValueAsString("Name");
1201    CI->Name = "MCK_" + CI->ClassName;
1202    CI->ValueName = (*it)->getName();
1203
1204    // Get or construct the predicate method name.
1205    Init *PMName = (*it)->getValueInit("PredicateMethod");
1206    if (StringInit *SI = dynamic_cast<StringInit*>(PMName)) {
1207      CI->PredicateMethod = SI->getValue();
1208    } else {
1209      assert(dynamic_cast<UnsetInit*>(PMName) &&
1210             "Unexpected PredicateMethod field!");
1211      CI->PredicateMethod = "is" + CI->ClassName;
1212    }
1213
1214    // Get or construct the render method name.
1215    Init *RMName = (*it)->getValueInit("RenderMethod");
1216    if (StringInit *SI = dynamic_cast<StringInit*>(RMName)) {
1217      CI->RenderMethod = SI->getValue();
1218    } else {
1219      assert(dynamic_cast<UnsetInit*>(RMName) &&
1220             "Unexpected RenderMethod field!");
1221      CI->RenderMethod = "add" + CI->ClassName + "Operands";
1222    }
1223
1224    // Get the parse method name or leave it as empty.
1225    Init *PRMName = (*it)->getValueInit("ParserMethod");
1226    if (StringInit *SI = dynamic_cast<StringInit*>(PRMName))
1227      CI->ParserMethod = SI->getValue();
1228
1229    // Get the diagnostic type or leave it as empty.
1230    // Get the parse method name or leave it as empty.
1231    Init *DiagnosticType = (*it)->getValueInit("DiagnosticType");
1232    if (StringInit *SI = dynamic_cast<StringInit*>(DiagnosticType))
1233      CI->DiagnosticType = SI->getValue();
1234
1235    AsmOperandClasses[*it] = CI;
1236    Classes.push_back(CI);
1237  }
1238}
1239
1240AsmMatcherInfo::AsmMatcherInfo(Record *asmParser,
1241                               CodeGenTarget &target,
1242                               RecordKeeper &records)
1243  : Records(records), AsmParser(asmParser), Target(target) {
1244}
1245
1246/// buildOperandMatchInfo - Build the necessary information to handle user
1247/// defined operand parsing methods.
1248void AsmMatcherInfo::buildOperandMatchInfo() {
1249
1250  /// Map containing a mask with all operands indices that can be found for
1251  /// that class inside a instruction.
1252  typedef std::map<ClassInfo*, unsigned, LessClassInfoPtr> OpClassMaskTy;
1253  OpClassMaskTy OpClassMask;
1254
1255  for (std::vector<MatchableInfo*>::const_iterator it =
1256       Matchables.begin(), ie = Matchables.end();
1257       it != ie; ++it) {
1258    MatchableInfo &II = **it;
1259    OpClassMask.clear();
1260
1261    // Keep track of all operands of this instructions which belong to the
1262    // same class.
1263    for (unsigned i = 0, e = II.AsmOperands.size(); i != e; ++i) {
1264      MatchableInfo::AsmOperand &Op = II.AsmOperands[i];
1265      if (Op.Class->ParserMethod.empty())
1266        continue;
1267      unsigned &OperandMask = OpClassMask[Op.Class];
1268      OperandMask |= (1 << i);
1269    }
1270
1271    // Generate operand match info for each mnemonic/operand class pair.
1272    for (OpClassMaskTy::iterator iit = OpClassMask.begin(),
1273         iie = OpClassMask.end(); iit != iie; ++iit) {
1274      unsigned OpMask = iit->second;
1275      ClassInfo *CI = iit->first;
1276      OperandMatchInfo.push_back(OperandMatchEntry::create(&II, CI, OpMask));
1277    }
1278  }
1279}
1280
1281void AsmMatcherInfo::buildInfo() {
1282  // Build information about all of the AssemblerPredicates.
1283  std::vector<Record*> AllPredicates =
1284    Records.getAllDerivedDefinitions("Predicate");
1285  for (unsigned i = 0, e = AllPredicates.size(); i != e; ++i) {
1286    Record *Pred = AllPredicates[i];
1287    // Ignore predicates that are not intended for the assembler.
1288    if (!Pred->getValueAsBit("AssemblerMatcherPredicate"))
1289      continue;
1290
1291    if (Pred->getName().empty())
1292      throw TGError(Pred->getLoc(), "Predicate has no name!");
1293
1294    unsigned FeatureNo = SubtargetFeatures.size();
1295    SubtargetFeatures[Pred] = new SubtargetFeatureInfo(Pred, FeatureNo);
1296    assert(FeatureNo < 32 && "Too many subtarget features!");
1297  }
1298
1299  // Parse the instructions; we need to do this first so that we can gather the
1300  // singleton register classes.
1301  SmallPtrSet<Record*, 16> SingletonRegisters;
1302  unsigned VariantCount = Target.getAsmParserVariantCount();
1303  for (unsigned VC = 0; VC != VariantCount; ++VC) {
1304    Record *AsmVariant = Target.getAsmParserVariant(VC);
1305    std::string CommentDelimiter =
1306      AsmVariant->getValueAsString("CommentDelimiter");
1307    std::string RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix");
1308    int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
1309
1310    for (CodeGenTarget::inst_iterator I = Target.inst_begin(),
1311           E = Target.inst_end(); I != E; ++I) {
1312      const CodeGenInstruction &CGI = **I;
1313
1314      // If the tblgen -match-prefix option is specified (for tblgen hackers),
1315      // filter the set of instructions we consider.
1316      if (!StringRef(CGI.TheDef->getName()).startswith(MatchPrefix))
1317        continue;
1318
1319      // Ignore "codegen only" instructions.
1320      if (CGI.TheDef->getValueAsBit("isCodeGenOnly"))
1321        continue;
1322
1323      // Validate the operand list to ensure we can handle this instruction.
1324      for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) {
1325        const CGIOperandList::OperandInfo &OI = CGI.Operands[i];
1326
1327        // Validate tied operands.
1328        if (OI.getTiedRegister() != -1) {
1329          // If we have a tied operand that consists of multiple MCOperands,
1330          // reject it.  We reject aliases and ignore instructions for now.
1331          if (OI.MINumOperands != 1) {
1332            // FIXME: Should reject these.  The ARM backend hits this with $lane
1333            // in a bunch of instructions. The right answer is unclear.
1334            DEBUG({
1335                errs() << "warning: '" << CGI.TheDef->getName() << "': "
1336                     << "ignoring instruction with multi-operand tied operand '"
1337                     << OI.Name << "'\n";
1338              });
1339            continue;
1340          }
1341        }
1342      }
1343
1344      OwningPtr<MatchableInfo> II(new MatchableInfo(CGI));
1345
1346      II->initialize(*this, SingletonRegisters, AsmVariantNo, RegisterPrefix);
1347
1348      // Ignore instructions which shouldn't be matched and diagnose invalid
1349      // instruction definitions with an error.
1350      if (!II->validate(CommentDelimiter, true))
1351        continue;
1352
1353      // Ignore "Int_*" and "*_Int" instructions, which are internal aliases.
1354      //
1355      // FIXME: This is a total hack.
1356      if (StringRef(II->TheDef->getName()).startswith("Int_") ||
1357          StringRef(II->TheDef->getName()).endswith("_Int"))
1358        continue;
1359
1360      Matchables.push_back(II.take());
1361    }
1362
1363    // Parse all of the InstAlias definitions and stick them in the list of
1364    // matchables.
1365    std::vector<Record*> AllInstAliases =
1366      Records.getAllDerivedDefinitions("InstAlias");
1367    for (unsigned i = 0, e = AllInstAliases.size(); i != e; ++i) {
1368      CodeGenInstAlias *Alias = new CodeGenInstAlias(AllInstAliases[i], Target);
1369
1370      // If the tblgen -match-prefix option is specified (for tblgen hackers),
1371      // filter the set of instruction aliases we consider, based on the target
1372      // instruction.
1373      if (!StringRef(Alias->ResultInst->TheDef->getName())
1374            .startswith( MatchPrefix))
1375        continue;
1376
1377      OwningPtr<MatchableInfo> II(new MatchableInfo(Alias));
1378
1379      II->initialize(*this, SingletonRegisters, AsmVariantNo, RegisterPrefix);
1380
1381      // Validate the alias definitions.
1382      II->validate(CommentDelimiter, false);
1383
1384      Matchables.push_back(II.take());
1385    }
1386  }
1387
1388  // Build info for the register classes.
1389  buildRegisterClasses(SingletonRegisters);
1390
1391  // Build info for the user defined assembly operand classes.
1392  buildOperandClasses();
1393
1394  // Build the information about matchables, now that we have fully formed
1395  // classes.
1396  std::vector<MatchableInfo*> NewMatchables;
1397  for (std::vector<MatchableInfo*>::iterator it = Matchables.begin(),
1398         ie = Matchables.end(); it != ie; ++it) {
1399    MatchableInfo *II = *it;
1400
1401    // Parse the tokens after the mnemonic.
1402    // Note: buildInstructionOperandReference may insert new AsmOperands, so
1403    // don't precompute the loop bound.
1404    for (unsigned i = 0; i != II->AsmOperands.size(); ++i) {
1405      MatchableInfo::AsmOperand &Op = II->AsmOperands[i];
1406      StringRef Token = Op.Token;
1407
1408      // Check for singleton registers.
1409      if (Record *RegRecord = II->AsmOperands[i].SingletonReg) {
1410        Op.Class = RegisterClasses[RegRecord];
1411        assert(Op.Class && Op.Class->Registers.size() == 1 &&
1412               "Unexpected class for singleton register");
1413        continue;
1414      }
1415
1416      // Check for simple tokens.
1417      if (Token[0] != '$') {
1418        Op.Class = getTokenClass(Token);
1419        continue;
1420      }
1421
1422      if (Token.size() > 1 && isdigit(Token[1])) {
1423        Op.Class = getTokenClass(Token);
1424        continue;
1425      }
1426
1427      // Otherwise this is an operand reference.
1428      StringRef OperandName;
1429      if (Token[1] == '{')
1430        OperandName = Token.substr(2, Token.size() - 3);
1431      else
1432        OperandName = Token.substr(1);
1433
1434      if (II->DefRec.is<const CodeGenInstruction*>())
1435        buildInstructionOperandReference(II, OperandName, i);
1436      else
1437        buildAliasOperandReference(II, OperandName, Op);
1438    }
1439
1440    if (II->DefRec.is<const CodeGenInstruction*>()) {
1441      II->buildInstructionResultOperands();
1442      // If the instruction has a two-operand alias, build up the
1443      // matchable here. We'll add them in bulk at the end to avoid
1444      // confusing this loop.
1445      std::string Constraint =
1446        II->TheDef->getValueAsString("TwoOperandAliasConstraint");
1447      if (Constraint != "") {
1448        // Start by making a copy of the original matchable.
1449        OwningPtr<MatchableInfo> AliasII(new MatchableInfo(*II));
1450
1451        // Adjust it to be a two-operand alias.
1452        AliasII->formTwoOperandAlias(Constraint);
1453
1454        // Add the alias to the matchables list.
1455        NewMatchables.push_back(AliasII.take());
1456      }
1457    } else
1458      II->buildAliasResultOperands();
1459  }
1460  if (!NewMatchables.empty())
1461    Matchables.insert(Matchables.end(), NewMatchables.begin(),
1462                      NewMatchables.end());
1463
1464  // Process token alias definitions and set up the associated superclass
1465  // information.
1466  std::vector<Record*> AllTokenAliases =
1467    Records.getAllDerivedDefinitions("TokenAlias");
1468  for (unsigned i = 0, e = AllTokenAliases.size(); i != e; ++i) {
1469    Record *Rec = AllTokenAliases[i];
1470    ClassInfo *FromClass = getTokenClass(Rec->getValueAsString("FromToken"));
1471    ClassInfo *ToClass = getTokenClass(Rec->getValueAsString("ToToken"));
1472    if (FromClass == ToClass)
1473      throw TGError(Rec->getLoc(),
1474                    "error: Destination value identical to source value.");
1475    FromClass->SuperClasses.push_back(ToClass);
1476  }
1477
1478  // Reorder classes so that classes precede super classes.
1479  std::sort(Classes.begin(), Classes.end(), less_ptr<ClassInfo>());
1480}
1481
1482/// buildInstructionOperandReference - The specified operand is a reference to a
1483/// named operand such as $src.  Resolve the Class and OperandInfo pointers.
1484void AsmMatcherInfo::
1485buildInstructionOperandReference(MatchableInfo *II,
1486                                 StringRef OperandName,
1487                                 unsigned AsmOpIdx) {
1488  const CodeGenInstruction &CGI = *II->DefRec.get<const CodeGenInstruction*>();
1489  const CGIOperandList &Operands = CGI.Operands;
1490  MatchableInfo::AsmOperand *Op = &II->AsmOperands[AsmOpIdx];
1491
1492  // Map this token to an operand.
1493  unsigned Idx;
1494  if (!Operands.hasOperandNamed(OperandName, Idx))
1495    throw TGError(II->TheDef->getLoc(), "error: unable to find operand: '" +
1496                  OperandName.str() + "'");
1497
1498  // If the instruction operand has multiple suboperands, but the parser
1499  // match class for the asm operand is still the default "ImmAsmOperand",
1500  // then handle each suboperand separately.
1501  if (Op->SubOpIdx == -1 && Operands[Idx].MINumOperands > 1) {
1502    Record *Rec = Operands[Idx].Rec;
1503    assert(Rec->isSubClassOf("Operand") && "Unexpected operand!");
1504    Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
1505    if (MatchClass && MatchClass->getValueAsString("Name") == "Imm") {
1506      // Insert remaining suboperands after AsmOpIdx in II->AsmOperands.
1507      StringRef Token = Op->Token; // save this in case Op gets moved
1508      for (unsigned SI = 1, SE = Operands[Idx].MINumOperands; SI != SE; ++SI) {
1509        MatchableInfo::AsmOperand NewAsmOp(Token);
1510        NewAsmOp.SubOpIdx = SI;
1511        II->AsmOperands.insert(II->AsmOperands.begin()+AsmOpIdx+SI, NewAsmOp);
1512      }
1513      // Replace Op with first suboperand.
1514      Op = &II->AsmOperands[AsmOpIdx]; // update the pointer in case it moved
1515      Op->SubOpIdx = 0;
1516    }
1517  }
1518
1519  // Set up the operand class.
1520  Op->Class = getOperandClass(Operands[Idx], Op->SubOpIdx);
1521
1522  // If the named operand is tied, canonicalize it to the untied operand.
1523  // For example, something like:
1524  //   (outs GPR:$dst), (ins GPR:$src)
1525  // with an asmstring of
1526  //   "inc $src"
1527  // we want to canonicalize to:
1528  //   "inc $dst"
1529  // so that we know how to provide the $dst operand when filling in the result.
1530  int OITied = Operands[Idx].getTiedRegister();
1531  if (OITied != -1) {
1532    // The tied operand index is an MIOperand index, find the operand that
1533    // contains it.
1534    std::pair<unsigned, unsigned> Idx = Operands.getSubOperandNumber(OITied);
1535    OperandName = Operands[Idx.first].Name;
1536    Op->SubOpIdx = Idx.second;
1537  }
1538
1539  Op->SrcOpName = OperandName;
1540}
1541
1542/// buildAliasOperandReference - When parsing an operand reference out of the
1543/// matching string (e.g. "movsx $src, $dst"), determine what the class of the
1544/// operand reference is by looking it up in the result pattern definition.
1545void AsmMatcherInfo::buildAliasOperandReference(MatchableInfo *II,
1546                                                StringRef OperandName,
1547                                                MatchableInfo::AsmOperand &Op) {
1548  const CodeGenInstAlias &CGA = *II->DefRec.get<const CodeGenInstAlias*>();
1549
1550  // Set up the operand class.
1551  for (unsigned i = 0, e = CGA.ResultOperands.size(); i != e; ++i)
1552    if (CGA.ResultOperands[i].isRecord() &&
1553        CGA.ResultOperands[i].getName() == OperandName) {
1554      // It's safe to go with the first one we find, because CodeGenInstAlias
1555      // validates that all operands with the same name have the same record.
1556      Op.SubOpIdx = CGA.ResultInstOperandIndex[i].second;
1557      // Use the match class from the Alias definition, not the
1558      // destination instruction, as we may have an immediate that's
1559      // being munged by the match class.
1560      Op.Class = getOperandClass(CGA.ResultOperands[i].getRecord(),
1561                                 Op.SubOpIdx);
1562      Op.SrcOpName = OperandName;
1563      return;
1564    }
1565
1566  throw TGError(II->TheDef->getLoc(), "error: unable to find operand: '" +
1567                OperandName.str() + "'");
1568}
1569
1570void MatchableInfo::buildInstructionResultOperands() {
1571  const CodeGenInstruction *ResultInst = getResultInst();
1572
1573  // Loop over all operands of the result instruction, determining how to
1574  // populate them.
1575  for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
1576    const CGIOperandList::OperandInfo &OpInfo = ResultInst->Operands[i];
1577
1578    // If this is a tied operand, just copy from the previously handled operand.
1579    int TiedOp = OpInfo.getTiedRegister();
1580    if (TiedOp != -1) {
1581      ResOperands.push_back(ResOperand::getTiedOp(TiedOp));
1582      continue;
1583    }
1584
1585    // Find out what operand from the asmparser this MCInst operand comes from.
1586    int SrcOperand = findAsmOperandNamed(OpInfo.Name);
1587    if (OpInfo.Name.empty() || SrcOperand == -1)
1588      throw TGError(TheDef->getLoc(), "Instruction '" +
1589                    TheDef->getName() + "' has operand '" + OpInfo.Name +
1590                    "' that doesn't appear in asm string!");
1591
1592    // Check if the one AsmOperand populates the entire operand.
1593    unsigned NumOperands = OpInfo.MINumOperands;
1594    if (AsmOperands[SrcOperand].SubOpIdx == -1) {
1595      ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, NumOperands));
1596      continue;
1597    }
1598
1599    // Add a separate ResOperand for each suboperand.
1600    for (unsigned AI = 0; AI < NumOperands; ++AI) {
1601      assert(AsmOperands[SrcOperand+AI].SubOpIdx == (int)AI &&
1602             AsmOperands[SrcOperand+AI].SrcOpName == OpInfo.Name &&
1603             "unexpected AsmOperands for suboperands");
1604      ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand + AI, 1));
1605    }
1606  }
1607}
1608
1609void MatchableInfo::buildAliasResultOperands() {
1610  const CodeGenInstAlias &CGA = *DefRec.get<const CodeGenInstAlias*>();
1611  const CodeGenInstruction *ResultInst = getResultInst();
1612
1613  // Loop over all operands of the result instruction, determining how to
1614  // populate them.
1615  unsigned AliasOpNo = 0;
1616  unsigned LastOpNo = CGA.ResultInstOperandIndex.size();
1617  for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
1618    const CGIOperandList::OperandInfo *OpInfo = &ResultInst->Operands[i];
1619
1620    // If this is a tied operand, just copy from the previously handled operand.
1621    int TiedOp = OpInfo->getTiedRegister();
1622    if (TiedOp != -1) {
1623      ResOperands.push_back(ResOperand::getTiedOp(TiedOp));
1624      continue;
1625    }
1626
1627    // Handle all the suboperands for this operand.
1628    const std::string &OpName = OpInfo->Name;
1629    for ( ; AliasOpNo <  LastOpNo &&
1630            CGA.ResultInstOperandIndex[AliasOpNo].first == i; ++AliasOpNo) {
1631      int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second;
1632
1633      // Find out what operand from the asmparser that this MCInst operand
1634      // comes from.
1635      switch (CGA.ResultOperands[AliasOpNo].Kind) {
1636      case CodeGenInstAlias::ResultOperand::K_Record: {
1637        StringRef Name = CGA.ResultOperands[AliasOpNo].getName();
1638        int SrcOperand = findAsmOperand(Name, SubIdx);
1639        if (SrcOperand == -1)
1640          throw TGError(TheDef->getLoc(), "Instruction '" +
1641                        TheDef->getName() + "' has operand '" + OpName +
1642                        "' that doesn't appear in asm string!");
1643        unsigned NumOperands = (SubIdx == -1 ? OpInfo->MINumOperands : 1);
1644        ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand,
1645                                                        NumOperands));
1646        break;
1647      }
1648      case CodeGenInstAlias::ResultOperand::K_Imm: {
1649        int64_t ImmVal = CGA.ResultOperands[AliasOpNo].getImm();
1650        ResOperands.push_back(ResOperand::getImmOp(ImmVal));
1651        break;
1652      }
1653      case CodeGenInstAlias::ResultOperand::K_Reg: {
1654        Record *Reg = CGA.ResultOperands[AliasOpNo].getRegister();
1655        ResOperands.push_back(ResOperand::getRegOp(Reg));
1656        break;
1657      }
1658      }
1659    }
1660  }
1661}
1662
1663static unsigned getConverterOperandID(const std::string &Name,
1664                                      SetVector<std::string> &Table,
1665                                      bool &IsNew) {
1666  IsNew = Table.insert(Name);
1667
1668  unsigned ID = IsNew ? Table.size() - 1 :
1669    std::find(Table.begin(), Table.end(), Name) - Table.begin();
1670
1671  assert(ID < Table.size());
1672
1673  return ID;
1674}
1675
1676
1677static void emitConvertFuncs(CodeGenTarget &Target, StringRef ClassName,
1678                             std::vector<MatchableInfo*> &Infos,
1679                             raw_ostream &OS) {
1680  SetVector<std::string> OperandConversionKinds;
1681  SetVector<std::string> InstructionConversionKinds;
1682  std::vector<std::vector<uint8_t> > ConversionTable;
1683  size_t MaxRowLength = 2; // minimum is custom converter plus terminator.
1684
1685  // TargetOperandClass - This is the target's operand class, like X86Operand.
1686  std::string TargetOperandClass = Target.getName() + "Operand";
1687
1688  // Write the convert function to a separate stream, so we can drop it after
1689  // the enum. We'll build up the conversion handlers for the individual
1690  // operand types opportunistically as we encounter them.
1691  std::string ConvertFnBody;
1692  raw_string_ostream CvtOS(ConvertFnBody);
1693  // Start the unified conversion function.
1694  CvtOS << "void " << Target.getName() << ClassName << "::\n"
1695        << "convertToMCInst(unsigned Kind, MCInst &Inst, "
1696        << "unsigned Opcode,\n"
1697        << "                const SmallVectorImpl<MCParsedAsmOperand*"
1698        << "> &Operands) {\n"
1699        << "  assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"
1700        << "  const uint8_t *Converter = ConversionTable[Kind];\n"
1701        << "  Inst.setOpcode(Opcode);\n"
1702        << "  for (const uint8_t *p = Converter; *p; p+= 2) {\n"
1703        << "    switch (*p) {\n"
1704        << "    default: llvm_unreachable(\"invalid conversion entry!\");\n"
1705        << "    case CVT_Reg:\n"
1706        << "      static_cast<" << TargetOperandClass
1707        << "*>(Operands[*(p + 1)])->addRegOperands(Inst, 1);\n"
1708        << "      break;\n"
1709        << "    case CVT_Tied:\n"
1710        << "      Inst.addOperand(Inst.getOperand(*(p + 1)));\n"
1711        << "      break;\n";
1712
1713  std::string OperandFnBody;
1714  raw_string_ostream OpOS(OperandFnBody);
1715  // Start the operand number lookup function.
1716  OpOS << "void " << Target.getName() << ClassName << "::\n"
1717       << "convertToMapAndConstraints(unsigned Kind,\n";
1718  OpOS.indent(27);
1719  OpOS << "const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {\n"
1720       << "  assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"
1721       << "  unsigned NumMCOperands = 0;\n"
1722       << "  const uint8_t *Converter = ConversionTable[Kind];\n"
1723       << "  for (const uint8_t *p = Converter; *p; p+= 2) {\n"
1724       << "    switch (*p) {\n"
1725       << "    default: llvm_unreachable(\"invalid conversion entry!\");\n"
1726       << "    case CVT_Reg:\n"
1727       << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
1728       << "      Operands[*(p + 1)]->setConstraint(\"m\");\n"
1729       << "      ++NumMCOperands;\n"
1730       << "      break;\n"
1731       << "    case CVT_Tied:\n"
1732       << "      ++NumMCOperands;\n"
1733       << "      break;\n";
1734
1735  // Pre-populate the operand conversion kinds with the standard always
1736  // available entries.
1737  OperandConversionKinds.insert("CVT_Done");
1738  OperandConversionKinds.insert("CVT_Reg");
1739  OperandConversionKinds.insert("CVT_Tied");
1740  enum { CVT_Done, CVT_Reg, CVT_Tied };
1741
1742  for (std::vector<MatchableInfo*>::const_iterator it = Infos.begin(),
1743         ie = Infos.end(); it != ie; ++it) {
1744    MatchableInfo &II = **it;
1745
1746    // Check if we have a custom match function.
1747    std::string AsmMatchConverter =
1748      II.getResultInst()->TheDef->getValueAsString("AsmMatchConverter");
1749    if (!AsmMatchConverter.empty()) {
1750      std::string Signature = "ConvertCustom_" + AsmMatchConverter;
1751      II.ConversionFnKind = Signature;
1752
1753      // Check if we have already generated this signature.
1754      if (!InstructionConversionKinds.insert(Signature))
1755        continue;
1756
1757      // Remember this converter for the kind enum.
1758      unsigned KindID = OperandConversionKinds.size();
1759      OperandConversionKinds.insert("CVT_" + AsmMatchConverter);
1760
1761      // Add the converter row for this instruction.
1762      ConversionTable.push_back(std::vector<uint8_t>());
1763      ConversionTable.back().push_back(KindID);
1764      ConversionTable.back().push_back(CVT_Done);
1765
1766      // Add the handler to the conversion driver function.
1767      CvtOS << "    case CVT_" << AsmMatchConverter << ":\n"
1768            << "      " << AsmMatchConverter << "(Inst, Operands);\n"
1769            << "      break;\n";
1770
1771      // FIXME: Handle the operand number lookup for custom match functions.
1772      continue;
1773    }
1774
1775    // Build the conversion function signature.
1776    std::string Signature = "Convert";
1777
1778    std::vector<uint8_t> ConversionRow;
1779
1780    // Compute the convert enum and the case body.
1781    MaxRowLength = std::max(MaxRowLength, II.ResOperands.size()*2 + 1 );
1782
1783    for (unsigned i = 0, e = II.ResOperands.size(); i != e; ++i) {
1784      const MatchableInfo::ResOperand &OpInfo = II.ResOperands[i];
1785
1786      // Generate code to populate each result operand.
1787      switch (OpInfo.Kind) {
1788      case MatchableInfo::ResOperand::RenderAsmOperand: {
1789        // This comes from something we parsed.
1790        MatchableInfo::AsmOperand &Op = II.AsmOperands[OpInfo.AsmOperandNum];
1791
1792        // Registers are always converted the same, don't duplicate the
1793        // conversion function based on them.
1794        Signature += "__";
1795        std::string Class;
1796        Class = Op.Class->isRegisterClass() ? "Reg" : Op.Class->ClassName;
1797        Signature += Class;
1798        Signature += utostr(OpInfo.MINumOperands);
1799        Signature += "_" + itostr(OpInfo.AsmOperandNum);
1800
1801        // Add the conversion kind, if necessary, and get the associated ID
1802        // the index of its entry in the vector).
1803        std::string Name = "CVT_" + (Op.Class->isRegisterClass() ? "Reg" :
1804                                     Op.Class->RenderMethod);
1805
1806        bool IsNewConverter = false;
1807        unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
1808                                            IsNewConverter);
1809
1810        // Add the operand entry to the instruction kind conversion row.
1811        ConversionRow.push_back(ID);
1812        ConversionRow.push_back(OpInfo.AsmOperandNum + 1);
1813
1814        if (!IsNewConverter)
1815          break;
1816
1817        // This is a new operand kind. Add a handler for it to the
1818        // converter driver.
1819        CvtOS << "    case " << Name << ":\n"
1820              << "      static_cast<" << TargetOperandClass
1821              << "*>(Operands[*(p + 1)])->"
1822              << Op.Class->RenderMethod << "(Inst, " << OpInfo.MINumOperands
1823              << ");\n"
1824              << "      break;\n";
1825
1826        // Add a handler for the operand number lookup.
1827        OpOS << "    case " << Name << ":\n"
1828             << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
1829             << "      Operands[*(p + 1)]->setConstraint(\"m\");\n"
1830             << "      NumMCOperands += " << OpInfo.MINumOperands << ";\n"
1831             << "      break;\n";
1832        break;
1833      }
1834      case MatchableInfo::ResOperand::TiedOperand: {
1835        // If this operand is tied to a previous one, just copy the MCInst
1836        // operand from the earlier one.We can only tie single MCOperand values.
1837        //assert(OpInfo.MINumOperands == 1 && "Not a singular MCOperand");
1838        unsigned TiedOp = OpInfo.TiedOperandNum;
1839        assert(i > TiedOp && "Tied operand precedes its target!");
1840        Signature += "__Tie" + utostr(TiedOp);
1841        ConversionRow.push_back(CVT_Tied);
1842        ConversionRow.push_back(TiedOp);
1843        // FIXME: Handle the operand number lookup for tied operands.
1844        break;
1845      }
1846      case MatchableInfo::ResOperand::ImmOperand: {
1847        int64_t Val = OpInfo.ImmVal;
1848        std::string Ty = "imm_" + itostr(Val);
1849        Signature += "__" + Ty;
1850
1851        std::string Name = "CVT_" + Ty;
1852        bool IsNewConverter = false;
1853        unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
1854                                            IsNewConverter);
1855        // Add the operand entry to the instruction kind conversion row.
1856        ConversionRow.push_back(ID);
1857        ConversionRow.push_back(0);
1858
1859        if (!IsNewConverter)
1860          break;
1861
1862        CvtOS << "    case " << Name << ":\n"
1863              << "      Inst.addOperand(MCOperand::CreateImm(" << Val << "));\n"
1864              << "      break;\n";
1865
1866        OpOS << "    case " << Name << ":\n"
1867             << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
1868             << "      Operands[*(p + 1)]->setConstraint(\"\");\n"
1869             << "      ++NumMCOperands;\n"
1870             << "      break;\n";
1871        break;
1872      }
1873      case MatchableInfo::ResOperand::RegOperand: {
1874        std::string Reg, Name;
1875        if (OpInfo.Register == 0) {
1876          Name = "reg0";
1877          Reg = "0";
1878        } else {
1879          Reg = getQualifiedName(OpInfo.Register);
1880          Name = "reg" + OpInfo.Register->getName();
1881        }
1882        Signature += "__" + Name;
1883        Name = "CVT_" + Name;
1884        bool IsNewConverter = false;
1885        unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
1886                                            IsNewConverter);
1887        // Add the operand entry to the instruction kind conversion row.
1888        ConversionRow.push_back(ID);
1889        ConversionRow.push_back(0);
1890
1891        if (!IsNewConverter)
1892          break;
1893        CvtOS << "    case " << Name << ":\n"
1894              << "      Inst.addOperand(MCOperand::CreateReg(" << Reg << "));\n"
1895              << "      break;\n";
1896
1897        OpOS << "    case " << Name << ":\n"
1898             << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
1899             << "      Operands[*(p + 1)]->setConstraint(\"m\");\n"
1900             << "      ++NumMCOperands;\n"
1901             << "      break;\n";
1902      }
1903      }
1904    }
1905
1906    // If there were no operands, add to the signature to that effect
1907    if (Signature == "Convert")
1908      Signature += "_NoOperands";
1909
1910    II.ConversionFnKind = Signature;
1911
1912    // Save the signature. If we already have it, don't add a new row
1913    // to the table.
1914    if (!InstructionConversionKinds.insert(Signature))
1915      continue;
1916
1917    // Add the row to the table.
1918    ConversionTable.push_back(ConversionRow);
1919  }
1920
1921  // Finish up the converter driver function.
1922  CvtOS << "    }\n  }\n}\n\n";
1923
1924  // Finish up the operand number lookup function.
1925  OpOS << "    }\n  }\n}\n\n";
1926
1927  OS << "namespace {\n";
1928
1929  // Output the operand conversion kind enum.
1930  OS << "enum OperatorConversionKind {\n";
1931  for (unsigned i = 0, e = OperandConversionKinds.size(); i != e; ++i)
1932    OS << "  " << OperandConversionKinds[i] << ",\n";
1933  OS << "  CVT_NUM_CONVERTERS\n";
1934  OS << "};\n\n";
1935
1936  // Output the instruction conversion kind enum.
1937  OS << "enum InstructionConversionKind {\n";
1938  for (SetVector<std::string>::const_iterator
1939         i = InstructionConversionKinds.begin(),
1940         e = InstructionConversionKinds.end(); i != e; ++i)
1941    OS << "  " << *i << ",\n";
1942  OS << "  CVT_NUM_SIGNATURES\n";
1943  OS << "};\n\n";
1944
1945
1946  OS << "} // end anonymous namespace\n\n";
1947
1948  // Output the conversion table.
1949  OS << "static const uint8_t ConversionTable[CVT_NUM_SIGNATURES]["
1950     << MaxRowLength << "] = {\n";
1951
1952  for (unsigned Row = 0, ERow = ConversionTable.size(); Row != ERow; ++Row) {
1953    assert(ConversionTable[Row].size() % 2 == 0 && "bad conversion row!");
1954    OS << "  // " << InstructionConversionKinds[Row] << "\n";
1955    OS << "  { ";
1956    for (unsigned i = 0, e = ConversionTable[Row].size(); i != e; i += 2)
1957      OS << OperandConversionKinds[ConversionTable[Row][i]] << ", "
1958         << (unsigned)(ConversionTable[Row][i + 1]) << ", ";
1959    OS << "CVT_Done },\n";
1960  }
1961
1962  OS << "};\n\n";
1963
1964  // Spit out the conversion driver function.
1965  OS << CvtOS.str();
1966
1967  // Spit out the operand number lookup function.
1968  OS << OpOS.str();
1969}
1970
1971/// emitMatchClassEnumeration - Emit the enumeration for match class kinds.
1972static void emitMatchClassEnumeration(CodeGenTarget &Target,
1973                                      std::vector<ClassInfo*> &Infos,
1974                                      raw_ostream &OS) {
1975  OS << "namespace {\n\n";
1976
1977  OS << "/// MatchClassKind - The kinds of classes which participate in\n"
1978     << "/// instruction matching.\n";
1979  OS << "enum MatchClassKind {\n";
1980  OS << "  InvalidMatchClass = 0,\n";
1981  for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
1982         ie = Infos.end(); it != ie; ++it) {
1983    ClassInfo &CI = **it;
1984    OS << "  " << CI.Name << ", // ";
1985    if (CI.Kind == ClassInfo::Token) {
1986      OS << "'" << CI.ValueName << "'\n";
1987    } else if (CI.isRegisterClass()) {
1988      if (!CI.ValueName.empty())
1989        OS << "register class '" << CI.ValueName << "'\n";
1990      else
1991        OS << "derived register class\n";
1992    } else {
1993      OS << "user defined class '" << CI.ValueName << "'\n";
1994    }
1995  }
1996  OS << "  NumMatchClassKinds\n";
1997  OS << "};\n\n";
1998
1999  OS << "}\n\n";
2000}
2001
2002/// emitValidateOperandClass - Emit the function to validate an operand class.
2003static void emitValidateOperandClass(AsmMatcherInfo &Info,
2004                                     raw_ostream &OS) {
2005  OS << "static unsigned validateOperandClass(MCParsedAsmOperand *GOp, "
2006     << "MatchClassKind Kind) {\n";
2007  OS << "  " << Info.Target.getName() << "Operand &Operand = *("
2008     << Info.Target.getName() << "Operand*)GOp;\n";
2009
2010  // The InvalidMatchClass is not to match any operand.
2011  OS << "  if (Kind == InvalidMatchClass)\n";
2012  OS << "    return MCTargetAsmParser::Match_InvalidOperand;\n\n";
2013
2014  // Check for Token operands first.
2015  // FIXME: Use a more specific diagnostic type.
2016  OS << "  if (Operand.isToken())\n";
2017  OS << "    return isSubclass(matchTokenString(Operand.getToken()), Kind) ?\n"
2018     << "             MCTargetAsmParser::Match_Success :\n"
2019     << "             MCTargetAsmParser::Match_InvalidOperand;\n\n";
2020
2021  // Check the user classes. We don't care what order since we're only
2022  // actually matching against one of them.
2023  for (std::vector<ClassInfo*>::iterator it = Info.Classes.begin(),
2024         ie = Info.Classes.end(); it != ie; ++it) {
2025    ClassInfo &CI = **it;
2026
2027    if (!CI.isUserClass())
2028      continue;
2029
2030    OS << "  // '" << CI.ClassName << "' class\n";
2031    OS << "  if (Kind == " << CI.Name << ") {\n";
2032    OS << "    if (Operand." << CI.PredicateMethod << "())\n";
2033    OS << "      return MCTargetAsmParser::Match_Success;\n";
2034    if (!CI.DiagnosticType.empty())
2035      OS << "    return " << Info.Target.getName() << "AsmParser::Match_"
2036         << CI.DiagnosticType << ";\n";
2037    OS << "  }\n\n";
2038  }
2039
2040  // Check for register operands, including sub-classes.
2041  OS << "  if (Operand.isReg()) {\n";
2042  OS << "    MatchClassKind OpKind;\n";
2043  OS << "    switch (Operand.getReg()) {\n";
2044  OS << "    default: OpKind = InvalidMatchClass; break;\n";
2045  for (AsmMatcherInfo::RegisterClassesTy::iterator
2046         it = Info.RegisterClasses.begin(), ie = Info.RegisterClasses.end();
2047       it != ie; ++it)
2048    OS << "    case " << Info.Target.getName() << "::"
2049       << it->first->getName() << ": OpKind = " << it->second->Name
2050       << "; break;\n";
2051  OS << "    }\n";
2052  OS << "    return isSubclass(OpKind, Kind) ? "
2053     << "MCTargetAsmParser::Match_Success :\n                             "
2054     << "         MCTargetAsmParser::Match_InvalidOperand;\n  }\n\n";
2055
2056  // Generic fallthrough match failure case for operands that don't have
2057  // specialized diagnostic types.
2058  OS << "  return MCTargetAsmParser::Match_InvalidOperand;\n";
2059  OS << "}\n\n";
2060}
2061
2062/// emitIsSubclass - Emit the subclass predicate function.
2063static void emitIsSubclass(CodeGenTarget &Target,
2064                           std::vector<ClassInfo*> &Infos,
2065                           raw_ostream &OS) {
2066  OS << "/// isSubclass - Compute whether \\p A is a subclass of \\p B.\n";
2067  OS << "static bool isSubclass(MatchClassKind A, MatchClassKind B) {\n";
2068  OS << "  if (A == B)\n";
2069  OS << "    return true;\n\n";
2070
2071  OS << "  switch (A) {\n";
2072  OS << "  default:\n";
2073  OS << "    return false;\n";
2074  for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
2075         ie = Infos.end(); it != ie; ++it) {
2076    ClassInfo &A = **it;
2077
2078    std::vector<StringRef> SuperClasses;
2079    for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
2080         ie = Infos.end(); it != ie; ++it) {
2081      ClassInfo &B = **it;
2082
2083      if (&A != &B && A.isSubsetOf(B))
2084        SuperClasses.push_back(B.Name);
2085    }
2086
2087    if (SuperClasses.empty())
2088      continue;
2089
2090    OS << "\n  case " << A.Name << ":\n";
2091
2092    if (SuperClasses.size() == 1) {
2093      OS << "    return B == " << SuperClasses.back() << ";\n";
2094      continue;
2095    }
2096
2097    OS << "    switch (B) {\n";
2098    OS << "    default: return false;\n";
2099    for (unsigned i = 0, e = SuperClasses.size(); i != e; ++i)
2100      OS << "    case " << SuperClasses[i] << ": return true;\n";
2101    OS << "    }\n";
2102  }
2103  OS << "  }\n";
2104  OS << "}\n\n";
2105}
2106
2107/// emitMatchTokenString - Emit the function to match a token string to the
2108/// appropriate match class value.
2109static void emitMatchTokenString(CodeGenTarget &Target,
2110                                 std::vector<ClassInfo*> &Infos,
2111                                 raw_ostream &OS) {
2112  // Construct the match list.
2113  std::vector<StringMatcher::StringPair> Matches;
2114  for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
2115         ie = Infos.end(); it != ie; ++it) {
2116    ClassInfo &CI = **it;
2117
2118    if (CI.Kind == ClassInfo::Token)
2119      Matches.push_back(StringMatcher::StringPair(CI.ValueName,
2120                                                  "return " + CI.Name + ";"));
2121  }
2122
2123  OS << "static MatchClassKind matchTokenString(StringRef Name) {\n";
2124
2125  StringMatcher("Name", Matches, OS).Emit();
2126
2127  OS << "  return InvalidMatchClass;\n";
2128  OS << "}\n\n";
2129}
2130
2131/// emitMatchRegisterName - Emit the function to match a string to the target
2132/// specific register enum.
2133static void emitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser,
2134                                  raw_ostream &OS) {
2135  // Construct the match list.
2136  std::vector<StringMatcher::StringPair> Matches;
2137  const std::vector<CodeGenRegister*> &Regs =
2138    Target.getRegBank().getRegisters();
2139  for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
2140    const CodeGenRegister *Reg = Regs[i];
2141    if (Reg->TheDef->getValueAsString("AsmName").empty())
2142      continue;
2143
2144    Matches.push_back(StringMatcher::StringPair(
2145                                     Reg->TheDef->getValueAsString("AsmName"),
2146                                     "return " + utostr(Reg->EnumValue) + ";"));
2147  }
2148
2149  OS << "static unsigned MatchRegisterName(StringRef Name) {\n";
2150
2151  StringMatcher("Name", Matches, OS).Emit();
2152
2153  OS << "  return 0;\n";
2154  OS << "}\n\n";
2155}
2156
2157/// emitSubtargetFeatureFlagEnumeration - Emit the subtarget feature flag
2158/// definitions.
2159static void emitSubtargetFeatureFlagEnumeration(AsmMatcherInfo &Info,
2160                                                raw_ostream &OS) {
2161  OS << "// Flags for subtarget features that participate in "
2162     << "instruction matching.\n";
2163  OS << "enum SubtargetFeatureFlag {\n";
2164  for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator
2165         it = Info.SubtargetFeatures.begin(),
2166         ie = Info.SubtargetFeatures.end(); it != ie; ++it) {
2167    SubtargetFeatureInfo &SFI = *it->second;
2168    OS << "  " << SFI.getEnumName() << " = (1 << " << SFI.Index << "),\n";
2169  }
2170  OS << "  Feature_None = 0\n";
2171  OS << "};\n\n";
2172}
2173
2174/// emitOperandDiagnosticTypes - Emit the operand matching diagnostic types.
2175static void emitOperandDiagnosticTypes(AsmMatcherInfo &Info, raw_ostream &OS) {
2176  // Get the set of diagnostic types from all of the operand classes.
2177  std::set<StringRef> Types;
2178  for (std::map<Record*, ClassInfo*>::const_iterator
2179       I = Info.AsmOperandClasses.begin(),
2180       E = Info.AsmOperandClasses.end(); I != E; ++I) {
2181    if (!I->second->DiagnosticType.empty())
2182      Types.insert(I->second->DiagnosticType);
2183  }
2184
2185  if (Types.empty()) return;
2186
2187  // Now emit the enum entries.
2188  for (std::set<StringRef>::const_iterator I = Types.begin(), E = Types.end();
2189       I != E; ++I)
2190    OS << "  Match_" << *I << ",\n";
2191  OS << "  END_OPERAND_DIAGNOSTIC_TYPES\n";
2192}
2193
2194/// emitGetSubtargetFeatureName - Emit the helper function to get the
2195/// user-level name for a subtarget feature.
2196static void emitGetSubtargetFeatureName(AsmMatcherInfo &Info, raw_ostream &OS) {
2197  OS << "// User-level names for subtarget features that participate in\n"
2198     << "// instruction matching.\n"
2199     << "static const char *getSubtargetFeatureName(unsigned Val) {\n"
2200     << "  switch(Val) {\n";
2201  for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator
2202         it = Info.SubtargetFeatures.begin(),
2203         ie = Info.SubtargetFeatures.end(); it != ie; ++it) {
2204    SubtargetFeatureInfo &SFI = *it->second;
2205    // FIXME: Totally just a placeholder name to get the algorithm working.
2206    OS << "  case " << SFI.getEnumName() << ": return \""
2207       << SFI.TheDef->getValueAsString("PredicateName") << "\";\n";
2208  }
2209  OS << "  default: return \"(unknown)\";\n";
2210  OS << "  }\n}\n\n";
2211}
2212
2213/// emitComputeAvailableFeatures - Emit the function to compute the list of
2214/// available features given a subtarget.
2215static void emitComputeAvailableFeatures(AsmMatcherInfo &Info,
2216                                         raw_ostream &OS) {
2217  std::string ClassName =
2218    Info.AsmParser->getValueAsString("AsmParserClassName");
2219
2220  OS << "unsigned " << Info.Target.getName() << ClassName << "::\n"
2221     << "ComputeAvailableFeatures(uint64_t FB) const {\n";
2222  OS << "  unsigned Features = 0;\n";
2223  for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator
2224         it = Info.SubtargetFeatures.begin(),
2225         ie = Info.SubtargetFeatures.end(); it != ie; ++it) {
2226    SubtargetFeatureInfo &SFI = *it->second;
2227
2228    OS << "  if (";
2229    std::string CondStorage =
2230      SFI.TheDef->getValueAsString("AssemblerCondString");
2231    StringRef Conds = CondStorage;
2232    std::pair<StringRef,StringRef> Comma = Conds.split(',');
2233    bool First = true;
2234    do {
2235      if (!First)
2236        OS << " && ";
2237
2238      bool Neg = false;
2239      StringRef Cond = Comma.first;
2240      if (Cond[0] == '!') {
2241        Neg = true;
2242        Cond = Cond.substr(1);
2243      }
2244
2245      OS << "((FB & " << Info.Target.getName() << "::" << Cond << ")";
2246      if (Neg)
2247        OS << " == 0";
2248      else
2249        OS << " != 0";
2250      OS << ")";
2251
2252      if (Comma.second.empty())
2253        break;
2254
2255      First = false;
2256      Comma = Comma.second.split(',');
2257    } while (true);
2258
2259    OS << ")\n";
2260    OS << "    Features |= " << SFI.getEnumName() << ";\n";
2261  }
2262  OS << "  return Features;\n";
2263  OS << "}\n\n";
2264}
2265
2266static std::string GetAliasRequiredFeatures(Record *R,
2267                                            const AsmMatcherInfo &Info) {
2268  std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates");
2269  std::string Result;
2270  unsigned NumFeatures = 0;
2271  for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) {
2272    SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]);
2273
2274    if (F == 0)
2275      throw TGError(R->getLoc(), "Predicate '" + ReqFeatures[i]->getName() +
2276                    "' is not marked as an AssemblerPredicate!");
2277
2278    if (NumFeatures)
2279      Result += '|';
2280
2281    Result += F->getEnumName();
2282    ++NumFeatures;
2283  }
2284
2285  if (NumFeatures > 1)
2286    Result = '(' + Result + ')';
2287  return Result;
2288}
2289
2290/// emitMnemonicAliases - If the target has any MnemonicAlias<> definitions,
2291/// emit a function for them and return true, otherwise return false.
2292static bool emitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info) {
2293  // Ignore aliases when match-prefix is set.
2294  if (!MatchPrefix.empty())
2295    return false;
2296
2297  std::vector<Record*> Aliases =
2298    Info.getRecords().getAllDerivedDefinitions("MnemonicAlias");
2299  if (Aliases.empty()) return false;
2300
2301  OS << "static void applyMnemonicAliases(StringRef &Mnemonic, "
2302        "unsigned Features) {\n";
2303
2304  // Keep track of all the aliases from a mnemonic.  Use an std::map so that the
2305  // iteration order of the map is stable.
2306  std::map<std::string, std::vector<Record*> > AliasesFromMnemonic;
2307
2308  for (unsigned i = 0, e = Aliases.size(); i != e; ++i) {
2309    Record *R = Aliases[i];
2310    AliasesFromMnemonic[R->getValueAsString("FromMnemonic")].push_back(R);
2311  }
2312
2313  // Process each alias a "from" mnemonic at a time, building the code executed
2314  // by the string remapper.
2315  std::vector<StringMatcher::StringPair> Cases;
2316  for (std::map<std::string, std::vector<Record*> >::iterator
2317       I = AliasesFromMnemonic.begin(), E = AliasesFromMnemonic.end();
2318       I != E; ++I) {
2319    const std::vector<Record*> &ToVec = I->second;
2320
2321    // Loop through each alias and emit code that handles each case.  If there
2322    // are two instructions without predicates, emit an error.  If there is one,
2323    // emit it last.
2324    std::string MatchCode;
2325    int AliasWithNoPredicate = -1;
2326
2327    for (unsigned i = 0, e = ToVec.size(); i != e; ++i) {
2328      Record *R = ToVec[i];
2329      std::string FeatureMask = GetAliasRequiredFeatures(R, Info);
2330
2331      // If this unconditionally matches, remember it for later and diagnose
2332      // duplicates.
2333      if (FeatureMask.empty()) {
2334        if (AliasWithNoPredicate != -1) {
2335          // We can't have two aliases from the same mnemonic with no predicate.
2336          PrintError(ToVec[AliasWithNoPredicate]->getLoc(),
2337                     "two MnemonicAliases with the same 'from' mnemonic!");
2338          throw TGError(R->getLoc(), "this is the other MnemonicAlias.");
2339        }
2340
2341        AliasWithNoPredicate = i;
2342        continue;
2343      }
2344      if (R->getValueAsString("ToMnemonic") == I->first)
2345        throw TGError(R->getLoc(), "MnemonicAlias to the same string");
2346
2347      if (!MatchCode.empty())
2348        MatchCode += "else ";
2349      MatchCode += "if ((Features & " + FeatureMask + ") == "+FeatureMask+")\n";
2350      MatchCode += "  Mnemonic = \"" +R->getValueAsString("ToMnemonic")+"\";\n";
2351    }
2352
2353    if (AliasWithNoPredicate != -1) {
2354      Record *R = ToVec[AliasWithNoPredicate];
2355      if (!MatchCode.empty())
2356        MatchCode += "else\n  ";
2357      MatchCode += "Mnemonic = \"" + R->getValueAsString("ToMnemonic")+"\";\n";
2358    }
2359
2360    MatchCode += "return;";
2361
2362    Cases.push_back(std::make_pair(I->first, MatchCode));
2363  }
2364
2365  StringMatcher("Mnemonic", Cases, OS).Emit();
2366  OS << "}\n\n";
2367
2368  return true;
2369}
2370
2371static const char *getMinimalTypeForRange(uint64_t Range) {
2372  assert(Range < 0xFFFFFFFFULL && "Enum too large");
2373  if (Range > 0xFFFF)
2374    return "uint32_t";
2375  if (Range > 0xFF)
2376    return "uint16_t";
2377  return "uint8_t";
2378}
2379
2380static void emitCustomOperandParsing(raw_ostream &OS, CodeGenTarget &Target,
2381                              const AsmMatcherInfo &Info, StringRef ClassName,
2382                              StringToOffsetTable &StringTable,
2383                              unsigned MaxMnemonicIndex) {
2384  unsigned MaxMask = 0;
2385  for (std::vector<OperandMatchEntry>::const_iterator it =
2386       Info.OperandMatchInfo.begin(), ie = Info.OperandMatchInfo.end();
2387       it != ie; ++it) {
2388    MaxMask |= it->OperandMask;
2389  }
2390
2391  // Emit the static custom operand parsing table;
2392  OS << "namespace {\n";
2393  OS << "  struct OperandMatchEntry {\n";
2394  OS << "    " << getMinimalTypeForRange(1ULL << Info.SubtargetFeatures.size())
2395               << " RequiredFeatures;\n";
2396  OS << "    " << getMinimalTypeForRange(MaxMnemonicIndex)
2397               << " Mnemonic;\n";
2398  OS << "    " << getMinimalTypeForRange(Info.Classes.size())
2399               << " Class;\n";
2400  OS << "    " << getMinimalTypeForRange(MaxMask)
2401               << " OperandMask;\n\n";
2402  OS << "    StringRef getMnemonic() const {\n";
2403  OS << "      return StringRef(MnemonicTable + Mnemonic + 1,\n";
2404  OS << "                       MnemonicTable[Mnemonic]);\n";
2405  OS << "    }\n";
2406  OS << "  };\n\n";
2407
2408  OS << "  // Predicate for searching for an opcode.\n";
2409  OS << "  struct LessOpcodeOperand {\n";
2410  OS << "    bool operator()(const OperandMatchEntry &LHS, StringRef RHS) {\n";
2411  OS << "      return LHS.getMnemonic()  < RHS;\n";
2412  OS << "    }\n";
2413  OS << "    bool operator()(StringRef LHS, const OperandMatchEntry &RHS) {\n";
2414  OS << "      return LHS < RHS.getMnemonic();\n";
2415  OS << "    }\n";
2416  OS << "    bool operator()(const OperandMatchEntry &LHS,";
2417  OS << " const OperandMatchEntry &RHS) {\n";
2418  OS << "      return LHS.getMnemonic() < RHS.getMnemonic();\n";
2419  OS << "    }\n";
2420  OS << "  };\n";
2421
2422  OS << "} // end anonymous namespace.\n\n";
2423
2424  OS << "static const OperandMatchEntry OperandMatchTable["
2425     << Info.OperandMatchInfo.size() << "] = {\n";
2426
2427  OS << "  /* Operand List Mask, Mnemonic, Operand Class, Features */\n";
2428  for (std::vector<OperandMatchEntry>::const_iterator it =
2429       Info.OperandMatchInfo.begin(), ie = Info.OperandMatchInfo.end();
2430       it != ie; ++it) {
2431    const OperandMatchEntry &OMI = *it;
2432    const MatchableInfo &II = *OMI.MI;
2433
2434    OS << "  { ";
2435
2436    // Write the required features mask.
2437    if (!II.RequiredFeatures.empty()) {
2438      for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) {
2439        if (i) OS << "|";
2440        OS << II.RequiredFeatures[i]->getEnumName();
2441      }
2442    } else
2443      OS << "0";
2444
2445    // Store a pascal-style length byte in the mnemonic.
2446    std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str();
2447    OS << ", " << StringTable.GetOrAddStringOffset(LenMnemonic, false)
2448       << " /* " << II.Mnemonic << " */, ";
2449
2450    OS << OMI.CI->Name;
2451
2452    OS << ", " << OMI.OperandMask;
2453    OS << " /* ";
2454    bool printComma = false;
2455    for (int i = 0, e = 31; i !=e; ++i)
2456      if (OMI.OperandMask & (1 << i)) {
2457        if (printComma)
2458          OS << ", ";
2459        OS << i;
2460        printComma = true;
2461      }
2462    OS << " */";
2463
2464    OS << " },\n";
2465  }
2466  OS << "};\n\n";
2467
2468  // Emit the operand class switch to call the correct custom parser for
2469  // the found operand class.
2470  OS << Target.getName() << ClassName << "::OperandMatchResultTy "
2471     << Target.getName() << ClassName << "::\n"
2472     << "tryCustomParseOperand(SmallVectorImpl<MCParsedAsmOperand*>"
2473     << " &Operands,\n                      unsigned MCK) {\n\n"
2474     << "  switch(MCK) {\n";
2475
2476  for (std::vector<ClassInfo*>::const_iterator it = Info.Classes.begin(),
2477       ie = Info.Classes.end(); it != ie; ++it) {
2478    ClassInfo *CI = *it;
2479    if (CI->ParserMethod.empty())
2480      continue;
2481    OS << "  case " << CI->Name << ":\n"
2482       << "    return " << CI->ParserMethod << "(Operands);\n";
2483  }
2484
2485  OS << "  default:\n";
2486  OS << "    return MatchOperand_NoMatch;\n";
2487  OS << "  }\n";
2488  OS << "  return MatchOperand_NoMatch;\n";
2489  OS << "}\n\n";
2490
2491  // Emit the static custom operand parser. This code is very similar with
2492  // the other matcher. Also use MatchResultTy here just in case we go for
2493  // a better error handling.
2494  OS << Target.getName() << ClassName << "::OperandMatchResultTy "
2495     << Target.getName() << ClassName << "::\n"
2496     << "MatchOperandParserImpl(SmallVectorImpl<MCParsedAsmOperand*>"
2497     << " &Operands,\n                       StringRef Mnemonic) {\n";
2498
2499  // Emit code to get the available features.
2500  OS << "  // Get the current feature set.\n";
2501  OS << "  unsigned AvailableFeatures = getAvailableFeatures();\n\n";
2502
2503  OS << "  // Get the next operand index.\n";
2504  OS << "  unsigned NextOpNum = Operands.size()-1;\n";
2505
2506  // Emit code to search the table.
2507  OS << "  // Search the table.\n";
2508  OS << "  std::pair<const OperandMatchEntry*, const OperandMatchEntry*>";
2509  OS << " MnemonicRange =\n";
2510  OS << "    std::equal_range(OperandMatchTable, OperandMatchTable+"
2511     << Info.OperandMatchInfo.size() << ", Mnemonic,\n"
2512     << "                     LessOpcodeOperand());\n\n";
2513
2514  OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
2515  OS << "    return MatchOperand_NoMatch;\n\n";
2516
2517  OS << "  for (const OperandMatchEntry *it = MnemonicRange.first,\n"
2518     << "       *ie = MnemonicRange.second; it != ie; ++it) {\n";
2519
2520  OS << "    // equal_range guarantees that instruction mnemonic matches.\n";
2521  OS << "    assert(Mnemonic == it->getMnemonic());\n\n";
2522
2523  // Emit check that the required features are available.
2524  OS << "    // check if the available features match\n";
2525  OS << "    if ((AvailableFeatures & it->RequiredFeatures) "
2526     << "!= it->RequiredFeatures) {\n";
2527  OS << "      continue;\n";
2528  OS << "    }\n\n";
2529
2530  // Emit check to ensure the operand number matches.
2531  OS << "    // check if the operand in question has a custom parser.\n";
2532  OS << "    if (!(it->OperandMask & (1 << NextOpNum)))\n";
2533  OS << "      continue;\n\n";
2534
2535  // Emit call to the custom parser method
2536  OS << "    // call custom parse method to handle the operand\n";
2537  OS << "    OperandMatchResultTy Result = ";
2538  OS << "tryCustomParseOperand(Operands, it->Class);\n";
2539  OS << "    if (Result != MatchOperand_NoMatch)\n";
2540  OS << "      return Result;\n";
2541  OS << "  }\n\n";
2542
2543  OS << "  // Okay, we had no match.\n";
2544  OS << "  return MatchOperand_NoMatch;\n";
2545  OS << "}\n\n";
2546}
2547
2548void AsmMatcherEmitter::run(raw_ostream &OS) {
2549  CodeGenTarget Target(Records);
2550  Record *AsmParser = Target.getAsmParser();
2551  std::string ClassName = AsmParser->getValueAsString("AsmParserClassName");
2552
2553  // Compute the information on the instructions to match.
2554  AsmMatcherInfo Info(AsmParser, Target, Records);
2555  Info.buildInfo();
2556
2557  // Sort the instruction table using the partial order on classes. We use
2558  // stable_sort to ensure that ambiguous instructions are still
2559  // deterministically ordered.
2560  std::stable_sort(Info.Matchables.begin(), Info.Matchables.end(),
2561                   less_ptr<MatchableInfo>());
2562
2563  DEBUG_WITH_TYPE("instruction_info", {
2564      for (std::vector<MatchableInfo*>::iterator
2565             it = Info.Matchables.begin(), ie = Info.Matchables.end();
2566           it != ie; ++it)
2567        (*it)->dump();
2568    });
2569
2570  // Check for ambiguous matchables.
2571  DEBUG_WITH_TYPE("ambiguous_instrs", {
2572    unsigned NumAmbiguous = 0;
2573    for (unsigned i = 0, e = Info.Matchables.size(); i != e; ++i) {
2574      for (unsigned j = i + 1; j != e; ++j) {
2575        MatchableInfo &A = *Info.Matchables[i];
2576        MatchableInfo &B = *Info.Matchables[j];
2577
2578        if (A.couldMatchAmbiguouslyWith(B)) {
2579          errs() << "warning: ambiguous matchables:\n";
2580          A.dump();
2581          errs() << "\nis incomparable with:\n";
2582          B.dump();
2583          errs() << "\n\n";
2584          ++NumAmbiguous;
2585        }
2586      }
2587    }
2588    if (NumAmbiguous)
2589      errs() << "warning: " << NumAmbiguous
2590             << " ambiguous matchables!\n";
2591  });
2592
2593  // Compute the information on the custom operand parsing.
2594  Info.buildOperandMatchInfo();
2595
2596  // Write the output.
2597
2598  // Information for the class declaration.
2599  OS << "\n#ifdef GET_ASSEMBLER_HEADER\n";
2600  OS << "#undef GET_ASSEMBLER_HEADER\n";
2601  OS << "  // This should be included into the middle of the declaration of\n";
2602  OS << "  // your subclasses implementation of MCTargetAsmParser.\n";
2603  OS << "  unsigned ComputeAvailableFeatures(uint64_t FeatureBits) const;\n";
2604  OS << "  void convertToMCInst(unsigned Kind, MCInst &Inst, "
2605     << "unsigned Opcode,\n"
2606     << "                       const SmallVectorImpl<MCParsedAsmOperand*> "
2607     << "&Operands);\n";
2608  OS << "  void convertToMapAndConstraints(unsigned Kind,\n                ";
2609  OS << "           const SmallVectorImpl<MCParsedAsmOperand*> &Operands);\n";
2610  OS << "  bool mnemonicIsValid(StringRef Mnemonic);\n";
2611  OS << "  unsigned MatchInstructionImpl(\n";
2612  OS.indent(27);
2613  OS << "const SmallVectorImpl<MCParsedAsmOperand*> &Operands,\n"
2614     << "                                MCInst &Inst,\n"
2615     << "                                unsigned &ErrorInfo,"
2616     << " bool matchingInlineAsm,\n"
2617     << "                                unsigned VariantID = 0);\n";
2618
2619  if (Info.OperandMatchInfo.size()) {
2620    OS << "\n  enum OperandMatchResultTy {\n";
2621    OS << "    MatchOperand_Success,    // operand matched successfully\n";
2622    OS << "    MatchOperand_NoMatch,    // operand did not match\n";
2623    OS << "    MatchOperand_ParseFail   // operand matched but had errors\n";
2624    OS << "  };\n";
2625    OS << "  OperandMatchResultTy MatchOperandParserImpl(\n";
2626    OS << "    SmallVectorImpl<MCParsedAsmOperand*> &Operands,\n";
2627    OS << "    StringRef Mnemonic);\n";
2628
2629    OS << "  OperandMatchResultTy tryCustomParseOperand(\n";
2630    OS << "    SmallVectorImpl<MCParsedAsmOperand*> &Operands,\n";
2631    OS << "    unsigned MCK);\n\n";
2632  }
2633
2634  OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n";
2635
2636  // Emit the operand match diagnostic enum names.
2637  OS << "\n#ifdef GET_OPERAND_DIAGNOSTIC_TYPES\n";
2638  OS << "#undef GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
2639  emitOperandDiagnosticTypes(Info, OS);
2640  OS << "#endif // GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
2641
2642
2643  OS << "\n#ifdef GET_REGISTER_MATCHER\n";
2644  OS << "#undef GET_REGISTER_MATCHER\n\n";
2645
2646  // Emit the subtarget feature enumeration.
2647  emitSubtargetFeatureFlagEnumeration(Info, OS);
2648
2649  // Emit the function to match a register name to number.
2650  // This should be omitted for Mips target
2651  if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterName"))
2652    emitMatchRegisterName(Target, AsmParser, OS);
2653
2654  OS << "#endif // GET_REGISTER_MATCHER\n\n";
2655
2656  OS << "\n#ifdef GET_SUBTARGET_FEATURE_NAME\n";
2657  OS << "#undef GET_SUBTARGET_FEATURE_NAME\n\n";
2658
2659  // Generate the helper function to get the names for subtarget features.
2660  emitGetSubtargetFeatureName(Info, OS);
2661
2662  OS << "#endif // GET_SUBTARGET_FEATURE_NAME\n\n";
2663
2664  OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n";
2665  OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n";
2666
2667  // Generate the function that remaps for mnemonic aliases.
2668  bool HasMnemonicAliases = emitMnemonicAliases(OS, Info);
2669
2670  // Generate the convertToMCInst function to convert operands into an MCInst.
2671  // Also, generate the convertToMapAndConstraints function for MS-style inline
2672  // assembly.  The latter doesn't actually generate a MCInst.
2673  emitConvertFuncs(Target, ClassName, Info.Matchables, OS);
2674
2675  // Emit the enumeration for classes which participate in matching.
2676  emitMatchClassEnumeration(Target, Info.Classes, OS);
2677
2678  // Emit the routine to match token strings to their match class.
2679  emitMatchTokenString(Target, Info.Classes, OS);
2680
2681  // Emit the subclass predicate routine.
2682  emitIsSubclass(Target, Info.Classes, OS);
2683
2684  // Emit the routine to validate an operand against a match class.
2685  emitValidateOperandClass(Info, OS);
2686
2687  // Emit the available features compute function.
2688  emitComputeAvailableFeatures(Info, OS);
2689
2690
2691  StringToOffsetTable StringTable;
2692
2693  size_t MaxNumOperands = 0;
2694  unsigned MaxMnemonicIndex = 0;
2695  for (std::vector<MatchableInfo*>::const_iterator it =
2696         Info.Matchables.begin(), ie = Info.Matchables.end();
2697       it != ie; ++it) {
2698    MatchableInfo &II = **it;
2699    MaxNumOperands = std::max(MaxNumOperands, II.AsmOperands.size());
2700
2701    // Store a pascal-style length byte in the mnemonic.
2702    std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str();
2703    MaxMnemonicIndex = std::max(MaxMnemonicIndex,
2704                        StringTable.GetOrAddStringOffset(LenMnemonic, false));
2705  }
2706
2707  OS << "static const char *const MnemonicTable =\n";
2708  StringTable.EmitString(OS);
2709  OS << ";\n\n";
2710
2711  // Emit the static match table; unused classes get initalized to 0 which is
2712  // guaranteed to be InvalidMatchClass.
2713  //
2714  // FIXME: We can reduce the size of this table very easily. First, we change
2715  // it so that store the kinds in separate bit-fields for each index, which
2716  // only needs to be the max width used for classes at that index (we also need
2717  // to reject based on this during classification). If we then make sure to
2718  // order the match kinds appropriately (putting mnemonics last), then we
2719  // should only end up using a few bits for each class, especially the ones
2720  // following the mnemonic.
2721  OS << "namespace {\n";
2722  OS << "  struct MatchEntry {\n";
2723  OS << "    " << getMinimalTypeForRange(MaxMnemonicIndex)
2724               << " Mnemonic;\n";
2725  OS << "    uint16_t Opcode;\n";
2726  OS << "    " << getMinimalTypeForRange(Info.Matchables.size())
2727               << " ConvertFn;\n";
2728  OS << "    " << getMinimalTypeForRange(1ULL << Info.SubtargetFeatures.size())
2729               << " RequiredFeatures;\n";
2730  OS << "    " << getMinimalTypeForRange(Info.Classes.size())
2731               << " Classes[" << MaxNumOperands << "];\n";
2732  OS << "    uint8_t AsmVariantID;\n\n";
2733  OS << "    StringRef getMnemonic() const {\n";
2734  OS << "      return StringRef(MnemonicTable + Mnemonic + 1,\n";
2735  OS << "                       MnemonicTable[Mnemonic]);\n";
2736  OS << "    }\n";
2737  OS << "  };\n\n";
2738
2739  OS << "  // Predicate for searching for an opcode.\n";
2740  OS << "  struct LessOpcode {\n";
2741  OS << "    bool operator()(const MatchEntry &LHS, StringRef RHS) {\n";
2742  OS << "      return LHS.getMnemonic() < RHS;\n";
2743  OS << "    }\n";
2744  OS << "    bool operator()(StringRef LHS, const MatchEntry &RHS) {\n";
2745  OS << "      return LHS < RHS.getMnemonic();\n";
2746  OS << "    }\n";
2747  OS << "    bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n";
2748  OS << "      return LHS.getMnemonic() < RHS.getMnemonic();\n";
2749  OS << "    }\n";
2750  OS << "  };\n";
2751
2752  OS << "} // end anonymous namespace.\n\n";
2753
2754  OS << "static const MatchEntry MatchTable["
2755     << Info.Matchables.size() << "] = {\n";
2756
2757  for (std::vector<MatchableInfo*>::const_iterator it =
2758       Info.Matchables.begin(), ie = Info.Matchables.end();
2759       it != ie; ++it) {
2760    MatchableInfo &II = **it;
2761
2762    // Store a pascal-style length byte in the mnemonic.
2763    std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str();
2764    OS << "  { " << StringTable.GetOrAddStringOffset(LenMnemonic, false)
2765       << " /* " << II.Mnemonic << " */, "
2766       << Target.getName() << "::"
2767       << II.getResultInst()->TheDef->getName() << ", "
2768       << II.ConversionFnKind << ", ";
2769
2770    // Write the required features mask.
2771    if (!II.RequiredFeatures.empty()) {
2772      for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) {
2773        if (i) OS << "|";
2774        OS << II.RequiredFeatures[i]->getEnumName();
2775      }
2776    } else
2777      OS << "0";
2778
2779    OS << ", { ";
2780    for (unsigned i = 0, e = II.AsmOperands.size(); i != e; ++i) {
2781      MatchableInfo::AsmOperand &Op = II.AsmOperands[i];
2782
2783      if (i) OS << ", ";
2784      OS << Op.Class->Name;
2785    }
2786    OS << " }, " << II.AsmVariantID;
2787    OS << "},\n";
2788  }
2789
2790  OS << "};\n\n";
2791
2792  // A method to determine if a mnemonic is in the list.
2793  OS << "bool " << Target.getName() << ClassName << "::\n"
2794     << "mnemonicIsValid(StringRef Mnemonic) {\n";
2795  OS << "  // Search the table.\n";
2796  OS << "  std::pair<const MatchEntry*, const MatchEntry*> MnemonicRange =\n";
2797  OS << "    std::equal_range(MatchTable, MatchTable+"
2798     << Info.Matchables.size() << ", Mnemonic, LessOpcode());\n";
2799  OS << "  return MnemonicRange.first != MnemonicRange.second;\n";
2800  OS << "}\n\n";
2801
2802  // Finally, build the match function.
2803  OS << "unsigned "
2804     << Target.getName() << ClassName << "::\n"
2805     << "MatchInstructionImpl(const SmallVectorImpl<MCParsedAsmOperand*>"
2806     << " &Operands,\n";
2807  OS << "                     MCInst &Inst,\n"
2808     << "unsigned &ErrorInfo, bool matchingInlineAsm, unsigned VariantID) {\n";
2809
2810  OS << "  // Eliminate obvious mismatches.\n";
2811  OS << "  if (Operands.size() > " << (MaxNumOperands+1) << ") {\n";
2812  OS << "    ErrorInfo = " << (MaxNumOperands+1) << ";\n";
2813  OS << "    return Match_InvalidOperand;\n";
2814  OS << "  }\n\n";
2815
2816  // Emit code to get the available features.
2817  OS << "  // Get the current feature set.\n";
2818  OS << "  unsigned AvailableFeatures = getAvailableFeatures();\n\n";
2819
2820  OS << "  // Get the instruction mnemonic, which is the first token.\n";
2821  OS << "  StringRef Mnemonic = ((" << Target.getName()
2822     << "Operand*)Operands[0])->getToken();\n\n";
2823
2824  if (HasMnemonicAliases) {
2825    OS << "  // Process all MnemonicAliases to remap the mnemonic.\n";
2826    OS << "  // FIXME : Add an entry in AsmParserVariant to check this.\n";
2827    OS << "  if (!VariantID)\n";
2828    OS << "    applyMnemonicAliases(Mnemonic, AvailableFeatures);\n\n";
2829  }
2830
2831  // Emit code to compute the class list for this operand vector.
2832  OS << "  // Some state to try to produce better error messages.\n";
2833  OS << "  bool HadMatchOtherThanFeatures = false;\n";
2834  OS << "  bool HadMatchOtherThanPredicate = false;\n";
2835  OS << "  unsigned RetCode = Match_InvalidOperand;\n";
2836  OS << "  unsigned MissingFeatures = ~0U;\n";
2837  OS << "  // Set ErrorInfo to the operand that mismatches if it is\n";
2838  OS << "  // wrong for all instances of the instruction.\n";
2839  OS << "  ErrorInfo = ~0U;\n";
2840
2841  // Emit code to search the table.
2842  OS << "  // Search the table.\n";
2843  OS << "  std::pair<const MatchEntry*, const MatchEntry*> MnemonicRange =\n";
2844  OS << "    std::equal_range(MatchTable, MatchTable+"
2845     << Info.Matchables.size() << ", Mnemonic, LessOpcode());\n\n";
2846
2847  OS << "  // Return a more specific error code if no mnemonics match.\n";
2848  OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
2849  OS << "    return Match_MnemonicFail;\n\n";
2850
2851  OS << "  for (const MatchEntry *it = MnemonicRange.first, "
2852     << "*ie = MnemonicRange.second;\n";
2853  OS << "       it != ie; ++it) {\n";
2854
2855  OS << "    // equal_range guarantees that instruction mnemonic matches.\n";
2856  OS << "    assert(Mnemonic == it->getMnemonic());\n";
2857
2858  // Emit check that the subclasses match.
2859  OS << "    if (VariantID != it->AsmVariantID) continue;\n";
2860  OS << "    bool OperandsValid = true;\n";
2861  OS << "    for (unsigned i = 0; i != " << MaxNumOperands << "; ++i) {\n";
2862  OS << "      if (i + 1 >= Operands.size()) {\n";
2863  OS << "        OperandsValid = (it->Classes[i] == " <<"InvalidMatchClass);\n";
2864  OS << "        if (!OperandsValid) ErrorInfo = i + 1;\n";
2865  OS << "        break;\n";
2866  OS << "      }\n";
2867  OS << "      unsigned Diag = validateOperandClass(Operands[i+1],\n";
2868  OS.indent(43);
2869  OS << "(MatchClassKind)it->Classes[i]);\n";
2870  OS << "      if (Diag == Match_Success)\n";
2871  OS << "        continue;\n";
2872  OS << "      // If this operand is broken for all of the instances of this\n";
2873  OS << "      // mnemonic, keep track of it so we can report loc info.\n";
2874  OS << "      // If we already had a match that only failed due to a\n";
2875  OS << "      // target predicate, that diagnostic is preferred.\n";
2876  OS << "      if (!HadMatchOtherThanPredicate &&\n";
2877  OS << "          (it == MnemonicRange.first || ErrorInfo <= i+1)) {\n";
2878  OS << "        ErrorInfo = i+1;\n";
2879  OS << "        // InvalidOperand is the default. Prefer specificity.\n";
2880  OS << "        if (Diag != Match_InvalidOperand)\n";
2881  OS << "          RetCode = Diag;\n";
2882  OS << "      }\n";
2883  OS << "      // Otherwise, just reject this instance of the mnemonic.\n";
2884  OS << "      OperandsValid = false;\n";
2885  OS << "      break;\n";
2886  OS << "    }\n\n";
2887
2888  OS << "    if (!OperandsValid) continue;\n";
2889
2890  // Emit check that the required features are available.
2891  OS << "    if ((AvailableFeatures & it->RequiredFeatures) "
2892     << "!= it->RequiredFeatures) {\n";
2893  OS << "      HadMatchOtherThanFeatures = true;\n";
2894  OS << "      unsigned NewMissingFeatures = it->RequiredFeatures & "
2895        "~AvailableFeatures;\n";
2896  OS << "      if (CountPopulation_32(NewMissingFeatures) <=\n"
2897        "          CountPopulation_32(MissingFeatures))\n";
2898  OS << "        MissingFeatures = NewMissingFeatures;\n";
2899  OS << "      continue;\n";
2900  OS << "    }\n";
2901  OS << "\n";
2902  OS << "    if (matchingInlineAsm) {\n";
2903  OS << "      Inst.setOpcode(it->Opcode);\n";
2904  OS << "      convertToMapAndConstraints(it->ConvertFn, Operands);\n";
2905  OS << "      return Match_Success;\n";
2906  OS << "    }\n\n";
2907  OS << "    // We have selected a definite instruction, convert the parsed\n"
2908     << "    // operands into the appropriate MCInst.\n";
2909  OS << "    convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n";
2910  OS << "\n";
2911
2912  // Verify the instruction with the target-specific match predicate function.
2913  OS << "    // We have a potential match. Check the target predicate to\n"
2914     << "    // handle any context sensitive constraints.\n"
2915     << "    unsigned MatchResult;\n"
2916     << "    if ((MatchResult = checkTargetMatchPredicate(Inst)) !="
2917     << " Match_Success) {\n"
2918     << "      Inst.clear();\n"
2919     << "      RetCode = MatchResult;\n"
2920     << "      HadMatchOtherThanPredicate = true;\n"
2921     << "      continue;\n"
2922     << "    }\n\n";
2923
2924  // Call the post-processing function, if used.
2925  std::string InsnCleanupFn =
2926    AsmParser->getValueAsString("AsmParserInstCleanup");
2927  if (!InsnCleanupFn.empty())
2928    OS << "    " << InsnCleanupFn << "(Inst);\n";
2929
2930  OS << "    return Match_Success;\n";
2931  OS << "  }\n\n";
2932
2933  OS << "  // Okay, we had no match.  Try to return a useful error code.\n";
2934  OS << "  if (HadMatchOtherThanPredicate || !HadMatchOtherThanFeatures)\n";
2935  OS << "    return RetCode;\n\n";
2936  OS << "  // Missing feature matches return which features were missing\n";
2937  OS << "  ErrorInfo = MissingFeatures;\n";
2938  OS << "  return Match_MissingFeature;\n";
2939  OS << "}\n\n";
2940
2941  if (Info.OperandMatchInfo.size())
2942    emitCustomOperandParsing(OS, Target, Info, ClassName, StringTable,
2943                             MaxMnemonicIndex);
2944
2945  OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n";
2946}
2947
2948namespace llvm {
2949
2950void EmitAsmMatcher(RecordKeeper &RK, raw_ostream &OS) {
2951  emitSourceFileHeader("Assembly Matcher Source Fragment", OS);
2952  AsmMatcherEmitter(RK).run(OS);
2953}
2954
2955} // End llvm namespace
2956