1//===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This library implements the functionality defined in llvm/Assembly/Writer.h
11//
12// Note that these routines must be extremely tolerant of various errors in the
13// LLVM code, because it can be used for debugging transformations.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/Assembly/Writer.h"
18#include "llvm/Assembly/PrintModulePass.h"
19#include "llvm/Assembly/AssemblyAnnotationWriter.h"
20#include "llvm/LLVMContext.h"
21#include "llvm/CallingConv.h"
22#include "llvm/Constants.h"
23#include "llvm/DebugInfo.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/InlineAsm.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/Operator.h"
28#include "llvm/Module.h"
29#include "llvm/TypeFinder.h"
30#include "llvm/ValueSymbolTable.h"
31#include "llvm/ADT/DenseMap.h"
32#include "llvm/ADT/SmallString.h"
33#include "llvm/ADT/StringExtras.h"
34#include "llvm/ADT/STLExtras.h"
35#include "llvm/Support/CFG.h"
36#include "llvm/Support/Debug.h"
37#include "llvm/Support/Dwarf.h"
38#include "llvm/Support/ErrorHandling.h"
39#include "llvm/Support/MathExtras.h"
40#include "llvm/Support/FormattedStream.h"
41#include <algorithm>
42#include <cctype>
43using namespace llvm;
44
45// Make virtual table appear in this compilation unit.
46AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
47
48//===----------------------------------------------------------------------===//
49// Helper Functions
50//===----------------------------------------------------------------------===//
51
52static const Module *getModuleFromVal(const Value *V) {
53  if (const Argument *MA = dyn_cast<Argument>(V))
54    return MA->getParent() ? MA->getParent()->getParent() : 0;
55
56  if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
57    return BB->getParent() ? BB->getParent()->getParent() : 0;
58
59  if (const Instruction *I = dyn_cast<Instruction>(V)) {
60    const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
61    return M ? M->getParent() : 0;
62  }
63
64  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
65    return GV->getParent();
66  return 0;
67}
68
69static void PrintCallingConv(unsigned cc, raw_ostream &Out)
70{
71  switch (cc) {
72    case CallingConv::Fast:         Out << "fastcc"; break;
73    case CallingConv::Cold:         Out << "coldcc"; break;
74    case CallingConv::X86_StdCall:  Out << "x86_stdcallcc"; break;
75    case CallingConv::X86_FastCall: Out << "x86_fastcallcc"; break;
76    case CallingConv::X86_ThisCall: Out << "x86_thiscallcc"; break;
77    case CallingConv::Intel_OCL_BI: Out << "intel_ocl_bicc"; break;
78    case CallingConv::ARM_APCS:     Out << "arm_apcscc"; break;
79    case CallingConv::ARM_AAPCS:    Out << "arm_aapcscc"; break;
80    case CallingConv::ARM_AAPCS_VFP:Out << "arm_aapcs_vfpcc"; break;
81    case CallingConv::MSP430_INTR:  Out << "msp430_intrcc"; break;
82    case CallingConv::PTX_Kernel:   Out << "ptx_kernel"; break;
83    case CallingConv::PTX_Device:   Out << "ptx_device"; break;
84    default:                        Out << "cc" << cc; break;
85  }
86}
87
88// PrintEscapedString - Print each character of the specified string, escaping
89// it if it is not printable or if it is an escape char.
90static void PrintEscapedString(StringRef Name, raw_ostream &Out) {
91  for (unsigned i = 0, e = Name.size(); i != e; ++i) {
92    unsigned char C = Name[i];
93    if (isprint(C) && C != '\\' && C != '"')
94      Out << C;
95    else
96      Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
97  }
98}
99
100enum PrefixType {
101  GlobalPrefix,
102  LabelPrefix,
103  LocalPrefix,
104  NoPrefix
105};
106
107/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
108/// prefixed with % (if the string only contains simple characters) or is
109/// surrounded with ""'s (if it has special chars in it).  Print it out.
110static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) {
111  assert(!Name.empty() && "Cannot get empty name!");
112  switch (Prefix) {
113  case NoPrefix: break;
114  case GlobalPrefix: OS << '@'; break;
115  case LabelPrefix:  break;
116  case LocalPrefix:  OS << '%'; break;
117  }
118
119  // Scan the name to see if it needs quotes first.
120  bool NeedsQuotes = isdigit(Name[0]);
121  if (!NeedsQuotes) {
122    for (unsigned i = 0, e = Name.size(); i != e; ++i) {
123      // By making this unsigned, the value passed in to isalnum will always be
124      // in the range 0-255.  This is important when building with MSVC because
125      // its implementation will assert.  This situation can arise when dealing
126      // with UTF-8 multibyte characters.
127      unsigned char C = Name[i];
128      if (!isalnum(C) && C != '-' && C != '.' && C != '_') {
129        NeedsQuotes = true;
130        break;
131      }
132    }
133  }
134
135  // If we didn't need any quotes, just write out the name in one blast.
136  if (!NeedsQuotes) {
137    OS << Name;
138    return;
139  }
140
141  // Okay, we need quotes.  Output the quotes and escape any scary characters as
142  // needed.
143  OS << '"';
144  PrintEscapedString(Name, OS);
145  OS << '"';
146}
147
148/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
149/// prefixed with % (if the string only contains simple characters) or is
150/// surrounded with ""'s (if it has special chars in it).  Print it out.
151static void PrintLLVMName(raw_ostream &OS, const Value *V) {
152  PrintLLVMName(OS, V->getName(),
153                isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
154}
155
156//===----------------------------------------------------------------------===//
157// TypePrinting Class: Type printing machinery
158//===----------------------------------------------------------------------===//
159
160/// TypePrinting - Type printing machinery.
161namespace {
162class TypePrinting {
163  TypePrinting(const TypePrinting &) LLVM_DELETED_FUNCTION;
164  void operator=(const TypePrinting&) LLVM_DELETED_FUNCTION;
165public:
166
167  /// NamedTypes - The named types that are used by the current module.
168  TypeFinder NamedTypes;
169
170  /// NumberedTypes - The numbered types, along with their value.
171  DenseMap<StructType*, unsigned> NumberedTypes;
172
173
174  TypePrinting() {}
175  ~TypePrinting() {}
176
177  void incorporateTypes(const Module &M);
178
179  void print(Type *Ty, raw_ostream &OS);
180
181  void printStructBody(StructType *Ty, raw_ostream &OS);
182};
183} // end anonymous namespace.
184
185
186void TypePrinting::incorporateTypes(const Module &M) {
187  NamedTypes.run(M, false);
188
189  // The list of struct types we got back includes all the struct types, split
190  // the unnamed ones out to a numbering and remove the anonymous structs.
191  unsigned NextNumber = 0;
192
193  std::vector<StructType*>::iterator NextToUse = NamedTypes.begin(), I, E;
194  for (I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) {
195    StructType *STy = *I;
196
197    // Ignore anonymous types.
198    if (STy->isLiteral())
199      continue;
200
201    if (STy->getName().empty())
202      NumberedTypes[STy] = NextNumber++;
203    else
204      *NextToUse++ = STy;
205  }
206
207  NamedTypes.erase(NextToUse, NamedTypes.end());
208}
209
210
211/// CalcTypeName - Write the specified type to the specified raw_ostream, making
212/// use of type names or up references to shorten the type name where possible.
213void TypePrinting::print(Type *Ty, raw_ostream &OS) {
214  switch (Ty->getTypeID()) {
215  case Type::VoidTyID:      OS << "void"; break;
216  case Type::HalfTyID:      OS << "half"; break;
217  case Type::FloatTyID:     OS << "float"; break;
218  case Type::DoubleTyID:    OS << "double"; break;
219  case Type::X86_FP80TyID:  OS << "x86_fp80"; break;
220  case Type::FP128TyID:     OS << "fp128"; break;
221  case Type::PPC_FP128TyID: OS << "ppc_fp128"; break;
222  case Type::LabelTyID:     OS << "label"; break;
223  case Type::MetadataTyID:  OS << "metadata"; break;
224  case Type::X86_MMXTyID:   OS << "x86_mmx"; break;
225  case Type::IntegerTyID:
226    OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
227    return;
228
229  case Type::FunctionTyID: {
230    FunctionType *FTy = cast<FunctionType>(Ty);
231    print(FTy->getReturnType(), OS);
232    OS << " (";
233    for (FunctionType::param_iterator I = FTy->param_begin(),
234         E = FTy->param_end(); I != E; ++I) {
235      if (I != FTy->param_begin())
236        OS << ", ";
237      print(*I, OS);
238    }
239    if (FTy->isVarArg()) {
240      if (FTy->getNumParams()) OS << ", ";
241      OS << "...";
242    }
243    OS << ')';
244    return;
245  }
246  case Type::StructTyID: {
247    StructType *STy = cast<StructType>(Ty);
248
249    if (STy->isLiteral())
250      return printStructBody(STy, OS);
251
252    if (!STy->getName().empty())
253      return PrintLLVMName(OS, STy->getName(), LocalPrefix);
254
255    DenseMap<StructType*, unsigned>::iterator I = NumberedTypes.find(STy);
256    if (I != NumberedTypes.end())
257      OS << '%' << I->second;
258    else  // Not enumerated, print the hex address.
259      OS << "%\"type " << STy << '\"';
260    return;
261  }
262  case Type::PointerTyID: {
263    PointerType *PTy = cast<PointerType>(Ty);
264    print(PTy->getElementType(), OS);
265    if (unsigned AddressSpace = PTy->getAddressSpace())
266      OS << " addrspace(" << AddressSpace << ')';
267    OS << '*';
268    return;
269  }
270  case Type::ArrayTyID: {
271    ArrayType *ATy = cast<ArrayType>(Ty);
272    OS << '[' << ATy->getNumElements() << " x ";
273    print(ATy->getElementType(), OS);
274    OS << ']';
275    return;
276  }
277  case Type::VectorTyID: {
278    VectorType *PTy = cast<VectorType>(Ty);
279    OS << "<" << PTy->getNumElements() << " x ";
280    print(PTy->getElementType(), OS);
281    OS << '>';
282    return;
283  }
284  default:
285    OS << "<unrecognized-type>";
286    return;
287  }
288}
289
290void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
291  if (STy->isOpaque()) {
292    OS << "opaque";
293    return;
294  }
295
296  if (STy->isPacked())
297    OS << '<';
298
299  if (STy->getNumElements() == 0) {
300    OS << "{}";
301  } else {
302    StructType::element_iterator I = STy->element_begin();
303    OS << "{ ";
304    print(*I++, OS);
305    for (StructType::element_iterator E = STy->element_end(); I != E; ++I) {
306      OS << ", ";
307      print(*I, OS);
308    }
309
310    OS << " }";
311  }
312  if (STy->isPacked())
313    OS << '>';
314}
315
316
317
318//===----------------------------------------------------------------------===//
319// SlotTracker Class: Enumerate slot numbers for unnamed values
320//===----------------------------------------------------------------------===//
321
322namespace {
323
324/// This class provides computation of slot numbers for LLVM Assembly writing.
325///
326class SlotTracker {
327public:
328  /// ValueMap - A mapping of Values to slot numbers.
329  typedef DenseMap<const Value*, unsigned> ValueMap;
330
331private:
332  /// TheModule - The module for which we are holding slot numbers.
333  const Module* TheModule;
334
335  /// TheFunction - The function for which we are holding slot numbers.
336  const Function* TheFunction;
337  bool FunctionProcessed;
338
339  /// mMap - The slot map for the module level data.
340  ValueMap mMap;
341  unsigned mNext;
342
343  /// fMap - The slot map for the function level data.
344  ValueMap fMap;
345  unsigned fNext;
346
347  /// mdnMap - Map for MDNodes.
348  DenseMap<const MDNode*, unsigned> mdnMap;
349  unsigned mdnNext;
350public:
351  /// Construct from a module
352  explicit SlotTracker(const Module *M);
353  /// Construct from a function, starting out in incorp state.
354  explicit SlotTracker(const Function *F);
355
356  /// Return the slot number of the specified value in it's type
357  /// plane.  If something is not in the SlotTracker, return -1.
358  int getLocalSlot(const Value *V);
359  int getGlobalSlot(const GlobalValue *V);
360  int getMetadataSlot(const MDNode *N);
361
362  /// If you'd like to deal with a function instead of just a module, use
363  /// this method to get its data into the SlotTracker.
364  void incorporateFunction(const Function *F) {
365    TheFunction = F;
366    FunctionProcessed = false;
367  }
368
369  /// After calling incorporateFunction, use this method to remove the
370  /// most recently incorporated function from the SlotTracker. This
371  /// will reset the state of the machine back to just the module contents.
372  void purgeFunction();
373
374  /// MDNode map iterators.
375  typedef DenseMap<const MDNode*, unsigned>::iterator mdn_iterator;
376  mdn_iterator mdn_begin() { return mdnMap.begin(); }
377  mdn_iterator mdn_end() { return mdnMap.end(); }
378  unsigned mdn_size() const { return mdnMap.size(); }
379  bool mdn_empty() const { return mdnMap.empty(); }
380
381  /// This function does the actual initialization.
382  inline void initialize();
383
384  // Implementation Details
385private:
386  /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
387  void CreateModuleSlot(const GlobalValue *V);
388
389  /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
390  void CreateMetadataSlot(const MDNode *N);
391
392  /// CreateFunctionSlot - Insert the specified Value* into the slot table.
393  void CreateFunctionSlot(const Value *V);
394
395  /// Add all of the module level global variables (and their initializers)
396  /// and function declarations, but not the contents of those functions.
397  void processModule();
398
399  /// Add all of the functions arguments, basic blocks, and instructions.
400  void processFunction();
401
402  SlotTracker(const SlotTracker &) LLVM_DELETED_FUNCTION;
403  void operator=(const SlotTracker &) LLVM_DELETED_FUNCTION;
404};
405
406}  // end anonymous namespace
407
408
409static SlotTracker *createSlotTracker(const Value *V) {
410  if (const Argument *FA = dyn_cast<Argument>(V))
411    return new SlotTracker(FA->getParent());
412
413  if (const Instruction *I = dyn_cast<Instruction>(V))
414    if (I->getParent())
415      return new SlotTracker(I->getParent()->getParent());
416
417  if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
418    return new SlotTracker(BB->getParent());
419
420  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
421    return new SlotTracker(GV->getParent());
422
423  if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
424    return new SlotTracker(GA->getParent());
425
426  if (const Function *Func = dyn_cast<Function>(V))
427    return new SlotTracker(Func);
428
429  if (const MDNode *MD = dyn_cast<MDNode>(V)) {
430    if (!MD->isFunctionLocal())
431      return new SlotTracker(MD->getFunction());
432
433    return new SlotTracker((Function *)0);
434  }
435
436  return 0;
437}
438
439#if 0
440#define ST_DEBUG(X) dbgs() << X
441#else
442#define ST_DEBUG(X)
443#endif
444
445// Module level constructor. Causes the contents of the Module (sans functions)
446// to be added to the slot table.
447SlotTracker::SlotTracker(const Module *M)
448  : TheModule(M), TheFunction(0), FunctionProcessed(false),
449    mNext(0), fNext(0),  mdnNext(0) {
450}
451
452// Function level constructor. Causes the contents of the Module and the one
453// function provided to be added to the slot table.
454SlotTracker::SlotTracker(const Function *F)
455  : TheModule(F ? F->getParent() : 0), TheFunction(F), FunctionProcessed(false),
456    mNext(0), fNext(0), mdnNext(0) {
457}
458
459inline void SlotTracker::initialize() {
460  if (TheModule) {
461    processModule();
462    TheModule = 0; ///< Prevent re-processing next time we're called.
463  }
464
465  if (TheFunction && !FunctionProcessed)
466    processFunction();
467}
468
469// Iterate through all the global variables, functions, and global
470// variable initializers and create slots for them.
471void SlotTracker::processModule() {
472  ST_DEBUG("begin processModule!\n");
473
474  // Add all of the unnamed global variables to the value table.
475  for (Module::const_global_iterator I = TheModule->global_begin(),
476         E = TheModule->global_end(); I != E; ++I) {
477    if (!I->hasName())
478      CreateModuleSlot(I);
479  }
480
481  // Add metadata used by named metadata.
482  for (Module::const_named_metadata_iterator
483         I = TheModule->named_metadata_begin(),
484         E = TheModule->named_metadata_end(); I != E; ++I) {
485    const NamedMDNode *NMD = I;
486    for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
487      CreateMetadataSlot(NMD->getOperand(i));
488  }
489
490  // Add all the unnamed functions to the table.
491  for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
492       I != E; ++I)
493    if (!I->hasName())
494      CreateModuleSlot(I);
495
496  ST_DEBUG("end processModule!\n");
497}
498
499// Process the arguments, basic blocks, and instructions  of a function.
500void SlotTracker::processFunction() {
501  ST_DEBUG("begin processFunction!\n");
502  fNext = 0;
503
504  // Add all the function arguments with no names.
505  for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
506      AE = TheFunction->arg_end(); AI != AE; ++AI)
507    if (!AI->hasName())
508      CreateFunctionSlot(AI);
509
510  ST_DEBUG("Inserting Instructions:\n");
511
512  SmallVector<std::pair<unsigned, MDNode*>, 4> MDForInst;
513
514  // Add all of the basic blocks and instructions with no names.
515  for (Function::const_iterator BB = TheFunction->begin(),
516       E = TheFunction->end(); BB != E; ++BB) {
517    if (!BB->hasName())
518      CreateFunctionSlot(BB);
519
520    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E;
521         ++I) {
522      if (!I->getType()->isVoidTy() && !I->hasName())
523        CreateFunctionSlot(I);
524
525      // Intrinsics can directly use metadata.  We allow direct calls to any
526      // llvm.foo function here, because the target may not be linked into the
527      // optimizer.
528      if (const CallInst *CI = dyn_cast<CallInst>(I)) {
529        if (Function *F = CI->getCalledFunction())
530          if (F->getName().startswith("llvm."))
531            for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
532              if (MDNode *N = dyn_cast_or_null<MDNode>(I->getOperand(i)))
533                CreateMetadataSlot(N);
534      }
535
536      // Process metadata attached with this instruction.
537      I->getAllMetadata(MDForInst);
538      for (unsigned i = 0, e = MDForInst.size(); i != e; ++i)
539        CreateMetadataSlot(MDForInst[i].second);
540      MDForInst.clear();
541    }
542  }
543
544  FunctionProcessed = true;
545
546  ST_DEBUG("end processFunction!\n");
547}
548
549/// Clean up after incorporating a function. This is the only way to get out of
550/// the function incorporation state that affects get*Slot/Create*Slot. Function
551/// incorporation state is indicated by TheFunction != 0.
552void SlotTracker::purgeFunction() {
553  ST_DEBUG("begin purgeFunction!\n");
554  fMap.clear(); // Simply discard the function level map
555  TheFunction = 0;
556  FunctionProcessed = false;
557  ST_DEBUG("end purgeFunction!\n");
558}
559
560/// getGlobalSlot - Get the slot number of a global value.
561int SlotTracker::getGlobalSlot(const GlobalValue *V) {
562  // Check for uninitialized state and do lazy initialization.
563  initialize();
564
565  // Find the value in the module map
566  ValueMap::iterator MI = mMap.find(V);
567  return MI == mMap.end() ? -1 : (int)MI->second;
568}
569
570/// getMetadataSlot - Get the slot number of a MDNode.
571int SlotTracker::getMetadataSlot(const MDNode *N) {
572  // Check for uninitialized state and do lazy initialization.
573  initialize();
574
575  // Find the MDNode in the module map
576  mdn_iterator MI = mdnMap.find(N);
577  return MI == mdnMap.end() ? -1 : (int)MI->second;
578}
579
580
581/// getLocalSlot - Get the slot number for a value that is local to a function.
582int SlotTracker::getLocalSlot(const Value *V) {
583  assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
584
585  // Check for uninitialized state and do lazy initialization.
586  initialize();
587
588  ValueMap::iterator FI = fMap.find(V);
589  return FI == fMap.end() ? -1 : (int)FI->second;
590}
591
592
593/// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
594void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
595  assert(V && "Can't insert a null Value into SlotTracker!");
596  assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
597  assert(!V->hasName() && "Doesn't need a slot!");
598
599  unsigned DestSlot = mNext++;
600  mMap[V] = DestSlot;
601
602  ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
603           DestSlot << " [");
604  // G = Global, F = Function, A = Alias, o = other
605  ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
606            (isa<Function>(V) ? 'F' :
607             (isa<GlobalAlias>(V) ? 'A' : 'o'))) << "]\n");
608}
609
610/// CreateSlot - Create a new slot for the specified value if it has no name.
611void SlotTracker::CreateFunctionSlot(const Value *V) {
612  assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
613
614  unsigned DestSlot = fNext++;
615  fMap[V] = DestSlot;
616
617  // G = Global, F = Function, o = other
618  ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
619           DestSlot << " [o]\n");
620}
621
622/// CreateModuleSlot - Insert the specified MDNode* into the slot table.
623void SlotTracker::CreateMetadataSlot(const MDNode *N) {
624  assert(N && "Can't insert a null Value into SlotTracker!");
625
626  // Don't insert if N is a function-local metadata, these are always printed
627  // inline.
628  if (!N->isFunctionLocal()) {
629    mdn_iterator I = mdnMap.find(N);
630    if (I != mdnMap.end())
631      return;
632
633    unsigned DestSlot = mdnNext++;
634    mdnMap[N] = DestSlot;
635  }
636
637  // Recursively add any MDNodes referenced by operands.
638  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
639    if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
640      CreateMetadataSlot(Op);
641}
642
643//===----------------------------------------------------------------------===//
644// AsmWriter Implementation
645//===----------------------------------------------------------------------===//
646
647static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
648                                   TypePrinting *TypePrinter,
649                                   SlotTracker *Machine,
650                                   const Module *Context);
651
652
653
654static const char *getPredicateText(unsigned predicate) {
655  const char * pred = "unknown";
656  switch (predicate) {
657  case FCmpInst::FCMP_FALSE: pred = "false"; break;
658  case FCmpInst::FCMP_OEQ:   pred = "oeq"; break;
659  case FCmpInst::FCMP_OGT:   pred = "ogt"; break;
660  case FCmpInst::FCMP_OGE:   pred = "oge"; break;
661  case FCmpInst::FCMP_OLT:   pred = "olt"; break;
662  case FCmpInst::FCMP_OLE:   pred = "ole"; break;
663  case FCmpInst::FCMP_ONE:   pred = "one"; break;
664  case FCmpInst::FCMP_ORD:   pred = "ord"; break;
665  case FCmpInst::FCMP_UNO:   pred = "uno"; break;
666  case FCmpInst::FCMP_UEQ:   pred = "ueq"; break;
667  case FCmpInst::FCMP_UGT:   pred = "ugt"; break;
668  case FCmpInst::FCMP_UGE:   pred = "uge"; break;
669  case FCmpInst::FCMP_ULT:   pred = "ult"; break;
670  case FCmpInst::FCMP_ULE:   pred = "ule"; break;
671  case FCmpInst::FCMP_UNE:   pred = "une"; break;
672  case FCmpInst::FCMP_TRUE:  pred = "true"; break;
673  case ICmpInst::ICMP_EQ:    pred = "eq"; break;
674  case ICmpInst::ICMP_NE:    pred = "ne"; break;
675  case ICmpInst::ICMP_SGT:   pred = "sgt"; break;
676  case ICmpInst::ICMP_SGE:   pred = "sge"; break;
677  case ICmpInst::ICMP_SLT:   pred = "slt"; break;
678  case ICmpInst::ICMP_SLE:   pred = "sle"; break;
679  case ICmpInst::ICMP_UGT:   pred = "ugt"; break;
680  case ICmpInst::ICMP_UGE:   pred = "uge"; break;
681  case ICmpInst::ICMP_ULT:   pred = "ult"; break;
682  case ICmpInst::ICMP_ULE:   pred = "ule"; break;
683  }
684  return pred;
685}
686
687static void writeAtomicRMWOperation(raw_ostream &Out,
688                                    AtomicRMWInst::BinOp Op) {
689  switch (Op) {
690  default: Out << " <unknown operation " << Op << ">"; break;
691  case AtomicRMWInst::Xchg: Out << " xchg"; break;
692  case AtomicRMWInst::Add:  Out << " add"; break;
693  case AtomicRMWInst::Sub:  Out << " sub"; break;
694  case AtomicRMWInst::And:  Out << " and"; break;
695  case AtomicRMWInst::Nand: Out << " nand"; break;
696  case AtomicRMWInst::Or:   Out << " or"; break;
697  case AtomicRMWInst::Xor:  Out << " xor"; break;
698  case AtomicRMWInst::Max:  Out << " max"; break;
699  case AtomicRMWInst::Min:  Out << " min"; break;
700  case AtomicRMWInst::UMax: Out << " umax"; break;
701  case AtomicRMWInst::UMin: Out << " umin"; break;
702  }
703}
704
705static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
706  if (const OverflowingBinaryOperator *OBO =
707        dyn_cast<OverflowingBinaryOperator>(U)) {
708    if (OBO->hasNoUnsignedWrap())
709      Out << " nuw";
710    if (OBO->hasNoSignedWrap())
711      Out << " nsw";
712  } else if (const PossiblyExactOperator *Div =
713               dyn_cast<PossiblyExactOperator>(U)) {
714    if (Div->isExact())
715      Out << " exact";
716  } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
717    if (GEP->isInBounds())
718      Out << " inbounds";
719  }
720}
721
722static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
723                                  TypePrinting &TypePrinter,
724                                  SlotTracker *Machine,
725                                  const Module *Context) {
726  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
727    if (CI->getType()->isIntegerTy(1)) {
728      Out << (CI->getZExtValue() ? "true" : "false");
729      return;
730    }
731    Out << CI->getValue();
732    return;
733  }
734
735  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
736    if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle ||
737        &CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble) {
738      // We would like to output the FP constant value in exponential notation,
739      // but we cannot do this if doing so will lose precision.  Check here to
740      // make sure that we only output it in exponential format if we can parse
741      // the value back and get the same value.
742      //
743      bool ignored;
744      bool isHalf = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEhalf;
745      bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble;
746      bool isInf = CFP->getValueAPF().isInfinity();
747      bool isNaN = CFP->getValueAPF().isNaN();
748      if (!isHalf && !isInf && !isNaN) {
749        double Val = isDouble ? CFP->getValueAPF().convertToDouble() :
750                                CFP->getValueAPF().convertToFloat();
751        SmallString<128> StrVal;
752        raw_svector_ostream(StrVal) << Val;
753
754        // Check to make sure that the stringized number is not some string like
755        // "Inf" or NaN, that atof will accept, but the lexer will not.  Check
756        // that the string matches the "[-+]?[0-9]" regex.
757        //
758        if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
759            ((StrVal[0] == '-' || StrVal[0] == '+') &&
760             (StrVal[1] >= '0' && StrVal[1] <= '9'))) {
761          // Reparse stringized version!
762          if (APFloat(APFloat::IEEEdouble, StrVal).convertToDouble() == Val) {
763            Out << StrVal.str();
764            return;
765          }
766        }
767      }
768      // Otherwise we could not reparse it to exactly the same value, so we must
769      // output the string in hexadecimal format!  Note that loading and storing
770      // floating point types changes the bits of NaNs on some hosts, notably
771      // x86, so we must not use these types.
772      assert(sizeof(double) == sizeof(uint64_t) &&
773             "assuming that double is 64 bits!");
774      char Buffer[40];
775      APFloat apf = CFP->getValueAPF();
776      // Halves and floats are represented in ASCII IR as double, convert.
777      if (!isDouble)
778        apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
779                          &ignored);
780      Out << "0x" <<
781              utohex_buffer(uint64_t(apf.bitcastToAPInt().getZExtValue()),
782                            Buffer+40);
783      return;
784    }
785
786    // Either half, or some form of long double.
787    // These appear as a magic letter identifying the type, then a
788    // fixed number of hex digits.
789    Out << "0x";
790    // Bit position, in the current word, of the next nibble to print.
791    int shiftcount;
792
793    if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) {
794      Out << 'K';
795      // api needed to prevent premature destruction
796      APInt api = CFP->getValueAPF().bitcastToAPInt();
797      const uint64_t* p = api.getRawData();
798      uint64_t word = p[1];
799      shiftcount = 12;
800      int width = api.getBitWidth();
801      for (int j=0; j<width; j+=4, shiftcount-=4) {
802        unsigned int nibble = (word>>shiftcount) & 15;
803        if (nibble < 10)
804          Out << (unsigned char)(nibble + '0');
805        else
806          Out << (unsigned char)(nibble - 10 + 'A');
807        if (shiftcount == 0 && j+4 < width) {
808          word = *p;
809          shiftcount = 64;
810          if (width-j-4 < 64)
811            shiftcount = width-j-4;
812        }
813      }
814      return;
815    } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad) {
816      shiftcount = 60;
817      Out << 'L';
818    } else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble) {
819      shiftcount = 60;
820      Out << 'M';
821    } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEhalf) {
822      shiftcount = 12;
823      Out << 'H';
824    } else
825      llvm_unreachable("Unsupported floating point type");
826    // api needed to prevent premature destruction
827    APInt api = CFP->getValueAPF().bitcastToAPInt();
828    const uint64_t* p = api.getRawData();
829    uint64_t word = *p;
830    int width = api.getBitWidth();
831    for (int j=0; j<width; j+=4, shiftcount-=4) {
832      unsigned int nibble = (word>>shiftcount) & 15;
833      if (nibble < 10)
834        Out << (unsigned char)(nibble + '0');
835      else
836        Out << (unsigned char)(nibble - 10 + 'A');
837      if (shiftcount == 0 && j+4 < width) {
838        word = *(++p);
839        shiftcount = 64;
840        if (width-j-4 < 64)
841          shiftcount = width-j-4;
842      }
843    }
844    return;
845  }
846
847  if (isa<ConstantAggregateZero>(CV)) {
848    Out << "zeroinitializer";
849    return;
850  }
851
852  if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
853    Out << "blockaddress(";
854    WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine,
855                           Context);
856    Out << ", ";
857    WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine,
858                           Context);
859    Out << ")";
860    return;
861  }
862
863  if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
864    Type *ETy = CA->getType()->getElementType();
865    Out << '[';
866    TypePrinter.print(ETy, Out);
867    Out << ' ';
868    WriteAsOperandInternal(Out, CA->getOperand(0),
869                           &TypePrinter, Machine,
870                           Context);
871    for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
872      Out << ", ";
873      TypePrinter.print(ETy, Out);
874      Out << ' ';
875      WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine,
876                             Context);
877    }
878    Out << ']';
879    return;
880  }
881
882  if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) {
883    // As a special case, print the array as a string if it is an array of
884    // i8 with ConstantInt values.
885    if (CA->isString()) {
886      Out << "c\"";
887      PrintEscapedString(CA->getAsString(), Out);
888      Out << '"';
889      return;
890    }
891
892    Type *ETy = CA->getType()->getElementType();
893    Out << '[';
894    TypePrinter.print(ETy, Out);
895    Out << ' ';
896    WriteAsOperandInternal(Out, CA->getElementAsConstant(0),
897                           &TypePrinter, Machine,
898                           Context);
899    for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) {
900      Out << ", ";
901      TypePrinter.print(ETy, Out);
902      Out << ' ';
903      WriteAsOperandInternal(Out, CA->getElementAsConstant(i), &TypePrinter,
904                             Machine, Context);
905    }
906    Out << ']';
907    return;
908  }
909
910
911  if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
912    if (CS->getType()->isPacked())
913      Out << '<';
914    Out << '{';
915    unsigned N = CS->getNumOperands();
916    if (N) {
917      Out << ' ';
918      TypePrinter.print(CS->getOperand(0)->getType(), Out);
919      Out << ' ';
920
921      WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine,
922                             Context);
923
924      for (unsigned i = 1; i < N; i++) {
925        Out << ", ";
926        TypePrinter.print(CS->getOperand(i)->getType(), Out);
927        Out << ' ';
928
929        WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine,
930                               Context);
931      }
932      Out << ' ';
933    }
934
935    Out << '}';
936    if (CS->getType()->isPacked())
937      Out << '>';
938    return;
939  }
940
941  if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) {
942    Type *ETy = CV->getType()->getVectorElementType();
943    Out << '<';
944    TypePrinter.print(ETy, Out);
945    Out << ' ';
946    WriteAsOperandInternal(Out, CV->getAggregateElement(0U), &TypePrinter,
947                           Machine, Context);
948    for (unsigned i = 1, e = CV->getType()->getVectorNumElements(); i != e;++i){
949      Out << ", ";
950      TypePrinter.print(ETy, Out);
951      Out << ' ';
952      WriteAsOperandInternal(Out, CV->getAggregateElement(i), &TypePrinter,
953                             Machine, Context);
954    }
955    Out << '>';
956    return;
957  }
958
959  if (isa<ConstantPointerNull>(CV)) {
960    Out << "null";
961    return;
962  }
963
964  if (isa<UndefValue>(CV)) {
965    Out << "undef";
966    return;
967  }
968
969  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
970    Out << CE->getOpcodeName();
971    WriteOptimizationInfo(Out, CE);
972    if (CE->isCompare())
973      Out << ' ' << getPredicateText(CE->getPredicate());
974    Out << " (";
975
976    for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
977      TypePrinter.print((*OI)->getType(), Out);
978      Out << ' ';
979      WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context);
980      if (OI+1 != CE->op_end())
981        Out << ", ";
982    }
983
984    if (CE->hasIndices()) {
985      ArrayRef<unsigned> Indices = CE->getIndices();
986      for (unsigned i = 0, e = Indices.size(); i != e; ++i)
987        Out << ", " << Indices[i];
988    }
989
990    if (CE->isCast()) {
991      Out << " to ";
992      TypePrinter.print(CE->getType(), Out);
993    }
994
995    Out << ')';
996    return;
997  }
998
999  Out << "<placeholder or erroneous Constant>";
1000}
1001
1002static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
1003                                    TypePrinting *TypePrinter,
1004                                    SlotTracker *Machine,
1005                                    const Module *Context) {
1006  Out << "!{";
1007  for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
1008    const Value *V = Node->getOperand(mi);
1009    if (V == 0)
1010      Out << "null";
1011    else {
1012      TypePrinter->print(V->getType(), Out);
1013      Out << ' ';
1014      WriteAsOperandInternal(Out, Node->getOperand(mi),
1015                             TypePrinter, Machine, Context);
1016    }
1017    if (mi + 1 != me)
1018      Out << ", ";
1019  }
1020
1021  Out << "}";
1022}
1023
1024
1025/// WriteAsOperand - Write the name of the specified value out to the specified
1026/// ostream.  This can be useful when you just want to print int %reg126, not
1027/// the whole instruction that generated it.
1028///
1029static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
1030                                   TypePrinting *TypePrinter,
1031                                   SlotTracker *Machine,
1032                                   const Module *Context) {
1033  if (V->hasName()) {
1034    PrintLLVMName(Out, V);
1035    return;
1036  }
1037
1038  const Constant *CV = dyn_cast<Constant>(V);
1039  if (CV && !isa<GlobalValue>(CV)) {
1040    assert(TypePrinter && "Constants require TypePrinting!");
1041    WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context);
1042    return;
1043  }
1044
1045  if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
1046    Out << "asm ";
1047    if (IA->hasSideEffects())
1048      Out << "sideeffect ";
1049    if (IA->isAlignStack())
1050      Out << "alignstack ";
1051    // We don't emit the AD_ATT dialect as it's the assumed default.
1052    if (IA->getDialect() == InlineAsm::AD_Intel)
1053      Out << "inteldialect ";
1054    Out << '"';
1055    PrintEscapedString(IA->getAsmString(), Out);
1056    Out << "\", \"";
1057    PrintEscapedString(IA->getConstraintString(), Out);
1058    Out << '"';
1059    return;
1060  }
1061
1062  if (const MDNode *N = dyn_cast<MDNode>(V)) {
1063    if (N->isFunctionLocal()) {
1064      // Print metadata inline, not via slot reference number.
1065      WriteMDNodeBodyInternal(Out, N, TypePrinter, Machine, Context);
1066      return;
1067    }
1068
1069    if (!Machine) {
1070      if (N->isFunctionLocal())
1071        Machine = new SlotTracker(N->getFunction());
1072      else
1073        Machine = new SlotTracker(Context);
1074    }
1075    int Slot = Machine->getMetadataSlot(N);
1076    if (Slot == -1)
1077      Out << "<badref>";
1078    else
1079      Out << '!' << Slot;
1080    return;
1081  }
1082
1083  if (const MDString *MDS = dyn_cast<MDString>(V)) {
1084    Out << "!\"";
1085    PrintEscapedString(MDS->getString(), Out);
1086    Out << '"';
1087    return;
1088  }
1089
1090  if (V->getValueID() == Value::PseudoSourceValueVal ||
1091      V->getValueID() == Value::FixedStackPseudoSourceValueVal) {
1092    V->print(Out);
1093    return;
1094  }
1095
1096  char Prefix = '%';
1097  int Slot;
1098  // If we have a SlotTracker, use it.
1099  if (Machine) {
1100    if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1101      Slot = Machine->getGlobalSlot(GV);
1102      Prefix = '@';
1103    } else {
1104      Slot = Machine->getLocalSlot(V);
1105
1106      // If the local value didn't succeed, then we may be referring to a value
1107      // from a different function.  Translate it, as this can happen when using
1108      // address of blocks.
1109      if (Slot == -1)
1110        if ((Machine = createSlotTracker(V))) {
1111          Slot = Machine->getLocalSlot(V);
1112          delete Machine;
1113        }
1114    }
1115  } else if ((Machine = createSlotTracker(V))) {
1116    // Otherwise, create one to get the # and then destroy it.
1117    if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1118      Slot = Machine->getGlobalSlot(GV);
1119      Prefix = '@';
1120    } else {
1121      Slot = Machine->getLocalSlot(V);
1122    }
1123    delete Machine;
1124    Machine = 0;
1125  } else {
1126    Slot = -1;
1127  }
1128
1129  if (Slot != -1)
1130    Out << Prefix << Slot;
1131  else
1132    Out << "<badref>";
1133}
1134
1135void llvm::WriteAsOperand(raw_ostream &Out, const Value *V,
1136                          bool PrintType, const Module *Context) {
1137
1138  // Fast path: Don't construct and populate a TypePrinting object if we
1139  // won't be needing any types printed.
1140  if (!PrintType &&
1141      ((!isa<Constant>(V) && !isa<MDNode>(V)) ||
1142       V->hasName() || isa<GlobalValue>(V))) {
1143    WriteAsOperandInternal(Out, V, 0, 0, Context);
1144    return;
1145  }
1146
1147  if (Context == 0) Context = getModuleFromVal(V);
1148
1149  TypePrinting TypePrinter;
1150  if (Context)
1151    TypePrinter.incorporateTypes(*Context);
1152  if (PrintType) {
1153    TypePrinter.print(V->getType(), Out);
1154    Out << ' ';
1155  }
1156
1157  WriteAsOperandInternal(Out, V, &TypePrinter, 0, Context);
1158}
1159
1160namespace {
1161
1162class AssemblyWriter {
1163  formatted_raw_ostream &Out;
1164  SlotTracker &Machine;
1165  const Module *TheModule;
1166  TypePrinting TypePrinter;
1167  AssemblyAnnotationWriter *AnnotationWriter;
1168
1169public:
1170  inline AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
1171                        const Module *M,
1172                        AssemblyAnnotationWriter *AAW)
1173    : Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW) {
1174    if (M)
1175      TypePrinter.incorporateTypes(*M);
1176  }
1177
1178  void printMDNodeBody(const MDNode *MD);
1179  void printNamedMDNode(const NamedMDNode *NMD);
1180
1181  void printModule(const Module *M);
1182
1183  void writeOperand(const Value *Op, bool PrintType);
1184  void writeParamOperand(const Value *Operand, Attributes Attrs);
1185  void writeAtomic(AtomicOrdering Ordering, SynchronizationScope SynchScope);
1186
1187  void writeAllMDNodes();
1188
1189  void printTypeIdentities();
1190  void printGlobal(const GlobalVariable *GV);
1191  void printAlias(const GlobalAlias *GV);
1192  void printFunction(const Function *F);
1193  void printArgument(const Argument *FA, Attributes Attrs);
1194  void printBasicBlock(const BasicBlock *BB);
1195  void printInstruction(const Instruction &I);
1196
1197private:
1198  // printInfoComment - Print a little comment after the instruction indicating
1199  // which slot it occupies.
1200  void printInfoComment(const Value &V);
1201};
1202}  // end of anonymous namespace
1203
1204void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
1205  if (Operand == 0) {
1206    Out << "<null operand!>";
1207    return;
1208  }
1209  if (PrintType) {
1210    TypePrinter.print(Operand->getType(), Out);
1211    Out << ' ';
1212  }
1213  WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
1214}
1215
1216void AssemblyWriter::writeAtomic(AtomicOrdering Ordering,
1217                                 SynchronizationScope SynchScope) {
1218  if (Ordering == NotAtomic)
1219    return;
1220
1221  switch (SynchScope) {
1222  case SingleThread: Out << " singlethread"; break;
1223  case CrossThread: break;
1224  }
1225
1226  switch (Ordering) {
1227  default: Out << " <bad ordering " << int(Ordering) << ">"; break;
1228  case Unordered: Out << " unordered"; break;
1229  case Monotonic: Out << " monotonic"; break;
1230  case Acquire: Out << " acquire"; break;
1231  case Release: Out << " release"; break;
1232  case AcquireRelease: Out << " acq_rel"; break;
1233  case SequentiallyConsistent: Out << " seq_cst"; break;
1234  }
1235}
1236
1237void AssemblyWriter::writeParamOperand(const Value *Operand,
1238                                       Attributes Attrs) {
1239  if (Operand == 0) {
1240    Out << "<null operand!>";
1241    return;
1242  }
1243
1244  // Print the type
1245  TypePrinter.print(Operand->getType(), Out);
1246  // Print parameter attributes list
1247  if (Attrs != Attribute::None)
1248    Out << ' ' << Attrs.getAsString();
1249  Out << ' ';
1250  // Print the operand
1251  WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
1252}
1253
1254void AssemblyWriter::printModule(const Module *M) {
1255  if (!M->getModuleIdentifier().empty() &&
1256      // Don't print the ID if it will start a new line (which would
1257      // require a comment char before it).
1258      M->getModuleIdentifier().find('\n') == std::string::npos)
1259    Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
1260
1261  if (!M->getDataLayout().empty())
1262    Out << "target datalayout = \"" << M->getDataLayout() << "\"\n";
1263  if (!M->getTargetTriple().empty())
1264    Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
1265
1266  if (!M->getModuleInlineAsm().empty()) {
1267    // Split the string into lines, to make it easier to read the .ll file.
1268    std::string Asm = M->getModuleInlineAsm();
1269    size_t CurPos = 0;
1270    size_t NewLine = Asm.find_first_of('\n', CurPos);
1271    Out << '\n';
1272    while (NewLine != std::string::npos) {
1273      // We found a newline, print the portion of the asm string from the
1274      // last newline up to this newline.
1275      Out << "module asm \"";
1276      PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
1277                         Out);
1278      Out << "\"\n";
1279      CurPos = NewLine+1;
1280      NewLine = Asm.find_first_of('\n', CurPos);
1281    }
1282    std::string rest(Asm.begin()+CurPos, Asm.end());
1283    if (!rest.empty()) {
1284      Out << "module asm \"";
1285      PrintEscapedString(rest, Out);
1286      Out << "\"\n";
1287    }
1288  }
1289
1290  // Loop over the dependent libraries and emit them.
1291  Module::lib_iterator LI = M->lib_begin();
1292  Module::lib_iterator LE = M->lib_end();
1293  if (LI != LE) {
1294    Out << '\n';
1295    Out << "deplibs = [ ";
1296    while (LI != LE) {
1297      Out << '"' << *LI << '"';
1298      ++LI;
1299      if (LI != LE)
1300        Out << ", ";
1301    }
1302    Out << " ]";
1303  }
1304
1305  printTypeIdentities();
1306
1307  // Output all globals.
1308  if (!M->global_empty()) Out << '\n';
1309  for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
1310       I != E; ++I) {
1311    printGlobal(I); Out << '\n';
1312  }
1313
1314  // Output all aliases.
1315  if (!M->alias_empty()) Out << "\n";
1316  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
1317       I != E; ++I)
1318    printAlias(I);
1319
1320  // Output all of the functions.
1321  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1322    printFunction(I);
1323
1324  // Output named metadata.
1325  if (!M->named_metadata_empty()) Out << '\n';
1326
1327  for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
1328       E = M->named_metadata_end(); I != E; ++I)
1329    printNamedMDNode(I);
1330
1331  // Output metadata.
1332  if (!Machine.mdn_empty()) {
1333    Out << '\n';
1334    writeAllMDNodes();
1335  }
1336}
1337
1338void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
1339  Out << '!';
1340  StringRef Name = NMD->getName();
1341  if (Name.empty()) {
1342    Out << "<empty name> ";
1343  } else {
1344    if (isalpha(Name[0]) || Name[0] == '-' || Name[0] == '$' ||
1345        Name[0] == '.' || Name[0] == '_')
1346      Out << Name[0];
1347    else
1348      Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F);
1349    for (unsigned i = 1, e = Name.size(); i != e; ++i) {
1350      unsigned char C = Name[i];
1351      if (isalnum(C) || C == '-' || C == '$' || C == '.' || C == '_')
1352        Out << C;
1353      else
1354        Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
1355    }
1356  }
1357  Out << " = !{";
1358  for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
1359    if (i) Out << ", ";
1360    int Slot = Machine.getMetadataSlot(NMD->getOperand(i));
1361    if (Slot == -1)
1362      Out << "<badref>";
1363    else
1364      Out << '!' << Slot;
1365  }
1366  Out << "}\n";
1367}
1368
1369
1370static void PrintLinkage(GlobalValue::LinkageTypes LT,
1371                         formatted_raw_ostream &Out) {
1372  switch (LT) {
1373  case GlobalValue::ExternalLinkage: break;
1374  case GlobalValue::PrivateLinkage:       Out << "private ";        break;
1375  case GlobalValue::LinkerPrivateLinkage: Out << "linker_private "; break;
1376  case GlobalValue::LinkerPrivateWeakLinkage:
1377    Out << "linker_private_weak ";
1378    break;
1379  case GlobalValue::InternalLinkage:      Out << "internal ";       break;
1380  case GlobalValue::LinkOnceAnyLinkage:   Out << "linkonce ";       break;
1381  case GlobalValue::LinkOnceODRLinkage:   Out << "linkonce_odr ";   break;
1382  case GlobalValue::LinkOnceODRAutoHideLinkage:
1383    Out << "linkonce_odr_auto_hide ";
1384    break;
1385  case GlobalValue::WeakAnyLinkage:       Out << "weak ";           break;
1386  case GlobalValue::WeakODRLinkage:       Out << "weak_odr ";       break;
1387  case GlobalValue::CommonLinkage:        Out << "common ";         break;
1388  case GlobalValue::AppendingLinkage:     Out << "appending ";      break;
1389  case GlobalValue::DLLImportLinkage:     Out << "dllimport ";      break;
1390  case GlobalValue::DLLExportLinkage:     Out << "dllexport ";      break;
1391  case GlobalValue::ExternalWeakLinkage:  Out << "extern_weak ";    break;
1392  case GlobalValue::AvailableExternallyLinkage:
1393    Out << "available_externally ";
1394    break;
1395  }
1396}
1397
1398
1399static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
1400                            formatted_raw_ostream &Out) {
1401  switch (Vis) {
1402  case GlobalValue::DefaultVisibility: break;
1403  case GlobalValue::HiddenVisibility:    Out << "hidden "; break;
1404  case GlobalValue::ProtectedVisibility: Out << "protected "; break;
1405  }
1406}
1407
1408static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,
1409                                  formatted_raw_ostream &Out) {
1410  switch (TLM) {
1411    case GlobalVariable::NotThreadLocal:
1412      break;
1413    case GlobalVariable::GeneralDynamicTLSModel:
1414      Out << "thread_local ";
1415      break;
1416    case GlobalVariable::LocalDynamicTLSModel:
1417      Out << "thread_local(localdynamic) ";
1418      break;
1419    case GlobalVariable::InitialExecTLSModel:
1420      Out << "thread_local(initialexec) ";
1421      break;
1422    case GlobalVariable::LocalExecTLSModel:
1423      Out << "thread_local(localexec) ";
1424      break;
1425  }
1426}
1427
1428void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
1429  if (GV->isMaterializable())
1430    Out << "; Materializable\n";
1431
1432  WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine, GV->getParent());
1433  Out << " = ";
1434
1435  if (!GV->hasInitializer() && GV->hasExternalLinkage())
1436    Out << "external ";
1437
1438  PrintLinkage(GV->getLinkage(), Out);
1439  PrintVisibility(GV->getVisibility(), Out);
1440  PrintThreadLocalModel(GV->getThreadLocalMode(), Out);
1441
1442  if (unsigned AddressSpace = GV->getType()->getAddressSpace())
1443    Out << "addrspace(" << AddressSpace << ") ";
1444  if (GV->hasUnnamedAddr()) Out << "unnamed_addr ";
1445  Out << (GV->isConstant() ? "constant " : "global ");
1446  TypePrinter.print(GV->getType()->getElementType(), Out);
1447
1448  if (GV->hasInitializer()) {
1449    Out << ' ';
1450    writeOperand(GV->getInitializer(), false);
1451  }
1452
1453  if (GV->hasSection()) {
1454    Out << ", section \"";
1455    PrintEscapedString(GV->getSection(), Out);
1456    Out << '"';
1457  }
1458  if (GV->getAlignment())
1459    Out << ", align " << GV->getAlignment();
1460
1461  printInfoComment(*GV);
1462}
1463
1464void AssemblyWriter::printAlias(const GlobalAlias *GA) {
1465  if (GA->isMaterializable())
1466    Out << "; Materializable\n";
1467
1468  // Don't crash when dumping partially built GA
1469  if (!GA->hasName())
1470    Out << "<<nameless>> = ";
1471  else {
1472    PrintLLVMName(Out, GA);
1473    Out << " = ";
1474  }
1475  PrintVisibility(GA->getVisibility(), Out);
1476
1477  Out << "alias ";
1478
1479  PrintLinkage(GA->getLinkage(), Out);
1480
1481  const Constant *Aliasee = GA->getAliasee();
1482
1483  if (Aliasee == 0) {
1484    TypePrinter.print(GA->getType(), Out);
1485    Out << " <<NULL ALIASEE>>";
1486  } else {
1487    writeOperand(Aliasee, !isa<ConstantExpr>(Aliasee));
1488  }
1489
1490  printInfoComment(*GA);
1491  Out << '\n';
1492}
1493
1494void AssemblyWriter::printTypeIdentities() {
1495  if (TypePrinter.NumberedTypes.empty() &&
1496      TypePrinter.NamedTypes.empty())
1497    return;
1498
1499  Out << '\n';
1500
1501  // We know all the numbers that each type is used and we know that it is a
1502  // dense assignment.  Convert the map to an index table.
1503  std::vector<StructType*> NumberedTypes(TypePrinter.NumberedTypes.size());
1504  for (DenseMap<StructType*, unsigned>::iterator I =
1505       TypePrinter.NumberedTypes.begin(), E = TypePrinter.NumberedTypes.end();
1506       I != E; ++I) {
1507    assert(I->second < NumberedTypes.size() && "Didn't get a dense numbering?");
1508    NumberedTypes[I->second] = I->first;
1509  }
1510
1511  // Emit all numbered types.
1512  for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) {
1513    Out << '%' << i << " = type ";
1514
1515    // Make sure we print out at least one level of the type structure, so
1516    // that we do not get %2 = type %2
1517    TypePrinter.printStructBody(NumberedTypes[i], Out);
1518    Out << '\n';
1519  }
1520
1521  for (unsigned i = 0, e = TypePrinter.NamedTypes.size(); i != e; ++i) {
1522    PrintLLVMName(Out, TypePrinter.NamedTypes[i]->getName(), LocalPrefix);
1523    Out << " = type ";
1524
1525    // Make sure we print out at least one level of the type structure, so
1526    // that we do not get %FILE = type %FILE
1527    TypePrinter.printStructBody(TypePrinter.NamedTypes[i], Out);
1528    Out << '\n';
1529  }
1530}
1531
1532/// printFunction - Print all aspects of a function.
1533///
1534void AssemblyWriter::printFunction(const Function *F) {
1535  // Print out the return type and name.
1536  Out << '\n';
1537
1538  if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
1539
1540  if (F->isMaterializable())
1541    Out << "; Materializable\n";
1542
1543  if (F->isDeclaration())
1544    Out << "declare ";
1545  else
1546    Out << "define ";
1547
1548  PrintLinkage(F->getLinkage(), Out);
1549  PrintVisibility(F->getVisibility(), Out);
1550
1551  // Print the calling convention.
1552  if (F->getCallingConv() != CallingConv::C) {
1553    PrintCallingConv(F->getCallingConv(), Out);
1554    Out << " ";
1555  }
1556
1557  FunctionType *FT = F->getFunctionType();
1558  const AttrListPtr &Attrs = F->getAttributes();
1559  Attributes RetAttrs = Attrs.getRetAttributes();
1560  if (RetAttrs != Attribute::None)
1561    Out <<  Attrs.getRetAttributes().getAsString() << ' ';
1562  TypePrinter.print(F->getReturnType(), Out);
1563  Out << ' ';
1564  WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent());
1565  Out << '(';
1566  Machine.incorporateFunction(F);
1567
1568  // Loop over the arguments, printing them...
1569
1570  unsigned Idx = 1;
1571  if (!F->isDeclaration()) {
1572    // If this isn't a declaration, print the argument names as well.
1573    for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
1574         I != E; ++I) {
1575      // Insert commas as we go... the first arg doesn't get a comma
1576      if (I != F->arg_begin()) Out << ", ";
1577      printArgument(I, Attrs.getParamAttributes(Idx));
1578      Idx++;
1579    }
1580  } else {
1581    // Otherwise, print the types from the function type.
1582    for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1583      // Insert commas as we go... the first arg doesn't get a comma
1584      if (i) Out << ", ";
1585
1586      // Output type...
1587      TypePrinter.print(FT->getParamType(i), Out);
1588
1589      Attributes ArgAttrs = Attrs.getParamAttributes(i+1);
1590      if (ArgAttrs != Attribute::None)
1591        Out << ' ' << ArgAttrs.getAsString();
1592    }
1593  }
1594
1595  // Finish printing arguments...
1596  if (FT->isVarArg()) {
1597    if (FT->getNumParams()) Out << ", ";
1598    Out << "...";  // Output varargs portion of signature!
1599  }
1600  Out << ')';
1601  if (F->hasUnnamedAddr())
1602    Out << " unnamed_addr";
1603  Attributes FnAttrs = Attrs.getFnAttributes();
1604  if (FnAttrs != Attribute::None)
1605    Out << ' ' << Attrs.getFnAttributes().getAsString();
1606  if (F->hasSection()) {
1607    Out << " section \"";
1608    PrintEscapedString(F->getSection(), Out);
1609    Out << '"';
1610  }
1611  if (F->getAlignment())
1612    Out << " align " << F->getAlignment();
1613  if (F->hasGC())
1614    Out << " gc \"" << F->getGC() << '"';
1615  if (F->isDeclaration()) {
1616    Out << '\n';
1617  } else {
1618    Out << " {";
1619    // Output all of the function's basic blocks.
1620    for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
1621      printBasicBlock(I);
1622
1623    Out << "}\n";
1624  }
1625
1626  Machine.purgeFunction();
1627}
1628
1629/// printArgument - This member is called for every argument that is passed into
1630/// the function.  Simply print it out
1631///
1632void AssemblyWriter::printArgument(const Argument *Arg,
1633                                   Attributes Attrs) {
1634  // Output type...
1635  TypePrinter.print(Arg->getType(), Out);
1636
1637  // Output parameter attributes list
1638  if (Attrs != Attribute::None)
1639    Out << ' ' << Attrs.getAsString();
1640
1641  // Output name, if available...
1642  if (Arg->hasName()) {
1643    Out << ' ';
1644    PrintLLVMName(Out, Arg);
1645  }
1646}
1647
1648/// printBasicBlock - This member is called for each basic block in a method.
1649///
1650void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
1651  if (BB->hasName()) {              // Print out the label if it exists...
1652    Out << "\n";
1653    PrintLLVMName(Out, BB->getName(), LabelPrefix);
1654    Out << ':';
1655  } else if (!BB->use_empty()) {      // Don't print block # of no uses...
1656    Out << "\n; <label>:";
1657    int Slot = Machine.getLocalSlot(BB);
1658    if (Slot != -1)
1659      Out << Slot;
1660    else
1661      Out << "<badref>";
1662  }
1663
1664  if (BB->getParent() == 0) {
1665    Out.PadToColumn(50);
1666    Out << "; Error: Block without parent!";
1667  } else if (BB != &BB->getParent()->getEntryBlock()) {  // Not the entry block?
1668    // Output predecessors for the block.
1669    Out.PadToColumn(50);
1670    Out << ";";
1671    const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
1672
1673    if (PI == PE) {
1674      Out << " No predecessors!";
1675    } else {
1676      Out << " preds = ";
1677      writeOperand(*PI, false);
1678      for (++PI; PI != PE; ++PI) {
1679        Out << ", ";
1680        writeOperand(*PI, false);
1681      }
1682    }
1683  }
1684
1685  Out << "\n";
1686
1687  if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
1688
1689  // Output all of the instructions in the basic block...
1690  for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1691    printInstruction(*I);
1692    Out << '\n';
1693  }
1694
1695  if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
1696}
1697
1698/// printInfoComment - Print a little comment after the instruction indicating
1699/// which slot it occupies.
1700///
1701void AssemblyWriter::printInfoComment(const Value &V) {
1702  if (AnnotationWriter) {
1703    AnnotationWriter->printInfoComment(V, Out);
1704    return;
1705  }
1706}
1707
1708// This member is called for each Instruction in a function..
1709void AssemblyWriter::printInstruction(const Instruction &I) {
1710  if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
1711
1712  // Print out indentation for an instruction.
1713  Out << "  ";
1714
1715  // Print out name if it exists...
1716  if (I.hasName()) {
1717    PrintLLVMName(Out, &I);
1718    Out << " = ";
1719  } else if (!I.getType()->isVoidTy()) {
1720    // Print out the def slot taken.
1721    int SlotNum = Machine.getLocalSlot(&I);
1722    if (SlotNum == -1)
1723      Out << "<badref> = ";
1724    else
1725      Out << '%' << SlotNum << " = ";
1726  }
1727
1728  if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall())
1729    Out << "tail ";
1730
1731  // Print out the opcode...
1732  Out << I.getOpcodeName();
1733
1734  // If this is an atomic load or store, print out the atomic marker.
1735  if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isAtomic()) ||
1736      (isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic()))
1737    Out << " atomic";
1738
1739  // If this is a volatile operation, print out the volatile marker.
1740  if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
1741      (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) ||
1742      (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) ||
1743      (isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile()))
1744    Out << " volatile";
1745
1746  // Print out optimization information.
1747  WriteOptimizationInfo(Out, &I);
1748
1749  // Print out the compare instruction predicates
1750  if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
1751    Out << ' ' << getPredicateText(CI->getPredicate());
1752
1753  // Print out the atomicrmw operation
1754  if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I))
1755    writeAtomicRMWOperation(Out, RMWI->getOperation());
1756
1757  // Print out the type of the operands...
1758  const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
1759
1760  // Special case conditional branches to swizzle the condition out to the front
1761  if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
1762    BranchInst &BI(cast<BranchInst>(I));
1763    Out << ' ';
1764    writeOperand(BI.getCondition(), true);
1765    Out << ", ";
1766    writeOperand(BI.getSuccessor(0), true);
1767    Out << ", ";
1768    writeOperand(BI.getSuccessor(1), true);
1769
1770  } else if (isa<SwitchInst>(I)) {
1771    SwitchInst& SI(cast<SwitchInst>(I));
1772    // Special case switch instruction to get formatting nice and correct.
1773    Out << ' ';
1774    writeOperand(SI.getCondition(), true);
1775    Out << ", ";
1776    writeOperand(SI.getDefaultDest(), true);
1777    Out << " [";
1778    for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end();
1779         i != e; ++i) {
1780      Out << "\n    ";
1781      writeOperand(i.getCaseValue(), true);
1782      Out << ", ";
1783      writeOperand(i.getCaseSuccessor(), true);
1784    }
1785    Out << "\n  ]";
1786  } else if (isa<IndirectBrInst>(I)) {
1787    // Special case indirectbr instruction to get formatting nice and correct.
1788    Out << ' ';
1789    writeOperand(Operand, true);
1790    Out << ", [";
1791
1792    for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
1793      if (i != 1)
1794        Out << ", ";
1795      writeOperand(I.getOperand(i), true);
1796    }
1797    Out << ']';
1798  } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
1799    Out << ' ';
1800    TypePrinter.print(I.getType(), Out);
1801    Out << ' ';
1802
1803    for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) {
1804      if (op) Out << ", ";
1805      Out << "[ ";
1806      writeOperand(PN->getIncomingValue(op), false); Out << ", ";
1807      writeOperand(PN->getIncomingBlock(op), false); Out << " ]";
1808    }
1809  } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
1810    Out << ' ';
1811    writeOperand(I.getOperand(0), true);
1812    for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
1813      Out << ", " << *i;
1814  } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
1815    Out << ' ';
1816    writeOperand(I.getOperand(0), true); Out << ", ";
1817    writeOperand(I.getOperand(1), true);
1818    for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
1819      Out << ", " << *i;
1820  } else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) {
1821    Out << ' ';
1822    TypePrinter.print(I.getType(), Out);
1823    Out << " personality ";
1824    writeOperand(I.getOperand(0), true); Out << '\n';
1825
1826    if (LPI->isCleanup())
1827      Out << "          cleanup";
1828
1829    for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
1830      if (i != 0 || LPI->isCleanup()) Out << "\n";
1831      if (LPI->isCatch(i))
1832        Out << "          catch ";
1833      else
1834        Out << "          filter ";
1835
1836      writeOperand(LPI->getClause(i), true);
1837    }
1838  } else if (isa<ReturnInst>(I) && !Operand) {
1839    Out << " void";
1840  } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
1841    // Print the calling convention being used.
1842    if (CI->getCallingConv() != CallingConv::C) {
1843      Out << " ";
1844      PrintCallingConv(CI->getCallingConv(), Out);
1845    }
1846
1847    Operand = CI->getCalledValue();
1848    PointerType *PTy = cast<PointerType>(Operand->getType());
1849    FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1850    Type *RetTy = FTy->getReturnType();
1851    const AttrListPtr &PAL = CI->getAttributes();
1852
1853    if (PAL.getRetAttributes() != Attribute::None)
1854      Out << ' ' << PAL.getRetAttributes().getAsString();
1855
1856    // If possible, print out the short form of the call instruction.  We can
1857    // only do this if the first argument is a pointer to a nonvararg function,
1858    // and if the return type is not a pointer to a function.
1859    //
1860    Out << ' ';
1861    if (!FTy->isVarArg() &&
1862        (!RetTy->isPointerTy() ||
1863         !cast<PointerType>(RetTy)->getElementType()->isFunctionTy())) {
1864      TypePrinter.print(RetTy, Out);
1865      Out << ' ';
1866      writeOperand(Operand, false);
1867    } else {
1868      writeOperand(Operand, true);
1869    }
1870    Out << '(';
1871    for (unsigned op = 0, Eop = CI->getNumArgOperands(); op < Eop; ++op) {
1872      if (op > 0)
1873        Out << ", ";
1874      writeParamOperand(CI->getArgOperand(op), PAL.getParamAttributes(op + 1));
1875    }
1876    Out << ')';
1877    if (PAL.getFnAttributes() != Attribute::None)
1878      Out << ' ' << PAL.getFnAttributes().getAsString();
1879  } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
1880    Operand = II->getCalledValue();
1881    PointerType *PTy = cast<PointerType>(Operand->getType());
1882    FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1883    Type *RetTy = FTy->getReturnType();
1884    const AttrListPtr &PAL = II->getAttributes();
1885
1886    // Print the calling convention being used.
1887    if (II->getCallingConv() != CallingConv::C) {
1888      Out << " ";
1889      PrintCallingConv(II->getCallingConv(), Out);
1890    }
1891
1892    if (PAL.getRetAttributes() != Attribute::None)
1893      Out << ' ' << PAL.getRetAttributes().getAsString();
1894
1895    // If possible, print out the short form of the invoke instruction. We can
1896    // only do this if the first argument is a pointer to a nonvararg function,
1897    // and if the return type is not a pointer to a function.
1898    //
1899    Out << ' ';
1900    if (!FTy->isVarArg() &&
1901        (!RetTy->isPointerTy() ||
1902         !cast<PointerType>(RetTy)->getElementType()->isFunctionTy())) {
1903      TypePrinter.print(RetTy, Out);
1904      Out << ' ';
1905      writeOperand(Operand, false);
1906    } else {
1907      writeOperand(Operand, true);
1908    }
1909    Out << '(';
1910    for (unsigned op = 0, Eop = II->getNumArgOperands(); op < Eop; ++op) {
1911      if (op)
1912        Out << ", ";
1913      writeParamOperand(II->getArgOperand(op), PAL.getParamAttributes(op + 1));
1914    }
1915
1916    Out << ')';
1917    if (PAL.getFnAttributes() != Attribute::None)
1918      Out << ' ' << PAL.getFnAttributes().getAsString();
1919
1920    Out << "\n          to ";
1921    writeOperand(II->getNormalDest(), true);
1922    Out << " unwind ";
1923    writeOperand(II->getUnwindDest(), true);
1924
1925  } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
1926    Out << ' ';
1927    TypePrinter.print(AI->getType()->getElementType(), Out);
1928    if (!AI->getArraySize() || AI->isArrayAllocation()) {
1929      Out << ", ";
1930      writeOperand(AI->getArraySize(), true);
1931    }
1932    if (AI->getAlignment()) {
1933      Out << ", align " << AI->getAlignment();
1934    }
1935  } else if (isa<CastInst>(I)) {
1936    if (Operand) {
1937      Out << ' ';
1938      writeOperand(Operand, true);   // Work with broken code
1939    }
1940    Out << " to ";
1941    TypePrinter.print(I.getType(), Out);
1942  } else if (isa<VAArgInst>(I)) {
1943    if (Operand) {
1944      Out << ' ';
1945      writeOperand(Operand, true);   // Work with broken code
1946    }
1947    Out << ", ";
1948    TypePrinter.print(I.getType(), Out);
1949  } else if (Operand) {   // Print the normal way.
1950
1951    // PrintAllTypes - Instructions who have operands of all the same type
1952    // omit the type from all but the first operand.  If the instruction has
1953    // different type operands (for example br), then they are all printed.
1954    bool PrintAllTypes = false;
1955    Type *TheType = Operand->getType();
1956
1957    // Select, Store and ShuffleVector always print all types.
1958    if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
1959        || isa<ReturnInst>(I)) {
1960      PrintAllTypes = true;
1961    } else {
1962      for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
1963        Operand = I.getOperand(i);
1964        // note that Operand shouldn't be null, but the test helps make dump()
1965        // more tolerant of malformed IR
1966        if (Operand && Operand->getType() != TheType) {
1967          PrintAllTypes = true;    // We have differing types!  Print them all!
1968          break;
1969        }
1970      }
1971    }
1972
1973    if (!PrintAllTypes) {
1974      Out << ' ';
1975      TypePrinter.print(TheType, Out);
1976    }
1977
1978    Out << ' ';
1979    for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
1980      if (i) Out << ", ";
1981      writeOperand(I.getOperand(i), PrintAllTypes);
1982    }
1983  }
1984
1985  // Print atomic ordering/alignment for memory operations
1986  if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
1987    if (LI->isAtomic())
1988      writeAtomic(LI->getOrdering(), LI->getSynchScope());
1989    if (LI->getAlignment())
1990      Out << ", align " << LI->getAlignment();
1991  } else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
1992    if (SI->isAtomic())
1993      writeAtomic(SI->getOrdering(), SI->getSynchScope());
1994    if (SI->getAlignment())
1995      Out << ", align " << SI->getAlignment();
1996  } else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) {
1997    writeAtomic(CXI->getOrdering(), CXI->getSynchScope());
1998  } else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) {
1999    writeAtomic(RMWI->getOrdering(), RMWI->getSynchScope());
2000  } else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) {
2001    writeAtomic(FI->getOrdering(), FI->getSynchScope());
2002  }
2003
2004  // Print Metadata info.
2005  SmallVector<std::pair<unsigned, MDNode*>, 4> InstMD;
2006  I.getAllMetadata(InstMD);
2007  if (!InstMD.empty()) {
2008    SmallVector<StringRef, 8> MDNames;
2009    I.getType()->getContext().getMDKindNames(MDNames);
2010    for (unsigned i = 0, e = InstMD.size(); i != e; ++i) {
2011      unsigned Kind = InstMD[i].first;
2012       if (Kind < MDNames.size()) {
2013         Out << ", !" << MDNames[Kind];
2014      } else {
2015        Out << ", !<unknown kind #" << Kind << ">";
2016      }
2017      Out << ' ';
2018      WriteAsOperandInternal(Out, InstMD[i].second, &TypePrinter, &Machine,
2019                             TheModule);
2020    }
2021  }
2022  printInfoComment(I);
2023}
2024
2025static void WriteMDNodeComment(const MDNode *Node,
2026                               formatted_raw_ostream &Out) {
2027  if (Node->getNumOperands() < 1)
2028    return;
2029
2030  Value *Op = Node->getOperand(0);
2031  if (!Op || !isa<ConstantInt>(Op) || cast<ConstantInt>(Op)->getBitWidth() < 32)
2032    return;
2033
2034  DIDescriptor Desc(Node);
2035  if (Desc.getVersion() < LLVMDebugVersion11)
2036    return;
2037
2038  unsigned Tag = Desc.getTag();
2039  Out.PadToColumn(50);
2040  if (dwarf::TagString(Tag)) {
2041    Out << "; ";
2042    Desc.print(Out);
2043  } else if (Tag == dwarf::DW_TAG_user_base) {
2044    Out << "; [ DW_TAG_user_base ]";
2045  }
2046}
2047
2048void AssemblyWriter::writeAllMDNodes() {
2049  SmallVector<const MDNode *, 16> Nodes;
2050  Nodes.resize(Machine.mdn_size());
2051  for (SlotTracker::mdn_iterator I = Machine.mdn_begin(), E = Machine.mdn_end();
2052       I != E; ++I)
2053    Nodes[I->second] = cast<MDNode>(I->first);
2054
2055  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
2056    Out << '!' << i << " = metadata ";
2057    printMDNodeBody(Nodes[i]);
2058  }
2059}
2060
2061void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
2062  WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine, TheModule);
2063  WriteMDNodeComment(Node, Out);
2064  Out << "\n";
2065}
2066
2067//===----------------------------------------------------------------------===//
2068//                       External Interface declarations
2069//===----------------------------------------------------------------------===//
2070
2071void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
2072  SlotTracker SlotTable(this);
2073  formatted_raw_ostream OS(ROS);
2074  AssemblyWriter W(OS, SlotTable, this, AAW);
2075  W.printModule(this);
2076}
2077
2078void NamedMDNode::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
2079  SlotTracker SlotTable(getParent());
2080  formatted_raw_ostream OS(ROS);
2081  AssemblyWriter W(OS, SlotTable, getParent(), AAW);
2082  W.printNamedMDNode(this);
2083}
2084
2085void Type::print(raw_ostream &OS) const {
2086  if (this == 0) {
2087    OS << "<null Type>";
2088    return;
2089  }
2090  TypePrinting TP;
2091  TP.print(const_cast<Type*>(this), OS);
2092
2093  // If the type is a named struct type, print the body as well.
2094  if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this)))
2095    if (!STy->isLiteral()) {
2096      OS << " = type ";
2097      TP.printStructBody(STy, OS);
2098    }
2099}
2100
2101void Value::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
2102  if (this == 0) {
2103    ROS << "printing a <null> value\n";
2104    return;
2105  }
2106  formatted_raw_ostream OS(ROS);
2107  if (const Instruction *I = dyn_cast<Instruction>(this)) {
2108    const Function *F = I->getParent() ? I->getParent()->getParent() : 0;
2109    SlotTracker SlotTable(F);
2110    AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), AAW);
2111    W.printInstruction(*I);
2112  } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
2113    SlotTracker SlotTable(BB->getParent());
2114    AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), AAW);
2115    W.printBasicBlock(BB);
2116  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
2117    SlotTracker SlotTable(GV->getParent());
2118    AssemblyWriter W(OS, SlotTable, GV->getParent(), AAW);
2119    if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
2120      W.printGlobal(V);
2121    else if (const Function *F = dyn_cast<Function>(GV))
2122      W.printFunction(F);
2123    else
2124      W.printAlias(cast<GlobalAlias>(GV));
2125  } else if (const MDNode *N = dyn_cast<MDNode>(this)) {
2126    const Function *F = N->getFunction();
2127    SlotTracker SlotTable(F);
2128    AssemblyWriter W(OS, SlotTable, F ? F->getParent() : 0, AAW);
2129    W.printMDNodeBody(N);
2130  } else if (const Constant *C = dyn_cast<Constant>(this)) {
2131    TypePrinting TypePrinter;
2132    TypePrinter.print(C->getType(), OS);
2133    OS << ' ';
2134    WriteConstantInternal(OS, C, TypePrinter, 0, 0);
2135  } else if (isa<InlineAsm>(this) || isa<MDString>(this) ||
2136             isa<Argument>(this)) {
2137    WriteAsOperand(OS, this, true, 0);
2138  } else {
2139    // Otherwise we don't know what it is. Call the virtual function to
2140    // allow a subclass to print itself.
2141    printCustom(OS);
2142  }
2143}
2144
2145// Value::printCustom - subclasses should override this to implement printing.
2146void Value::printCustom(raw_ostream &OS) const {
2147  llvm_unreachable("Unknown value to print out!");
2148}
2149
2150// Value::dump - allow easy printing of Values from the debugger.
2151void Value::dump() const { print(dbgs()); dbgs() << '\n'; }
2152
2153// Type::dump - allow easy printing of Types from the debugger.
2154void Type::dump() const { print(dbgs()); }
2155
2156// Module::dump() - Allow printing of Modules from the debugger.
2157void Module::dump() const { print(dbgs(), 0); }
2158
2159// NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger.
2160void NamedMDNode::dump() const { print(dbgs(), 0); }
2161