1//===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs several transformations to transform natural loops into a
11// simpler form, which makes subsequent analyses and transformations simpler and
12// more effective.
13//
14// Loop pre-header insertion guarantees that there is a single, non-critical
15// entry edge from outside of the loop to the loop header.  This simplifies a
16// number of analyses and transformations, such as LICM.
17//
18// Loop exit-block insertion guarantees that all exit blocks from the loop
19// (blocks which are outside of the loop that have predecessors inside of the
20// loop) only have predecessors from inside of the loop (and are thus dominated
21// by the loop header).  This simplifies transformations such as store-sinking
22// that are built into LICM.
23//
24// This pass also guarantees that loops will have exactly one backedge.
25//
26// Indirectbr instructions introduce several complications. If the loop
27// contains or is entered by an indirectbr instruction, it may not be possible
28// to transform the loop and make these guarantees. Client code should check
29// that these conditions are true before relying on them.
30//
31// Note that the simplifycfg pass will clean up blocks which are split out but
32// end up being unnecessary, so usage of this pass should not pessimize
33// generated code.
34//
35// This pass obviously modifies the CFG, but updates loop information and
36// dominator information.
37//
38//===----------------------------------------------------------------------===//
39
40#define DEBUG_TYPE "loop-simplify"
41#include "llvm/Transforms/Scalar.h"
42#include "llvm/Constants.h"
43#include "llvm/Instructions.h"
44#include "llvm/IntrinsicInst.h"
45#include "llvm/Function.h"
46#include "llvm/LLVMContext.h"
47#include "llvm/Type.h"
48#include "llvm/Analysis/AliasAnalysis.h"
49#include "llvm/Analysis/Dominators.h"
50#include "llvm/Analysis/InstructionSimplify.h"
51#include "llvm/Analysis/LoopPass.h"
52#include "llvm/Analysis/ScalarEvolution.h"
53#include "llvm/Transforms/Utils/BasicBlockUtils.h"
54#include "llvm/Transforms/Utils/Local.h"
55#include "llvm/Support/CFG.h"
56#include "llvm/Support/Debug.h"
57#include "llvm/ADT/SetOperations.h"
58#include "llvm/ADT/SetVector.h"
59#include "llvm/ADT/Statistic.h"
60#include "llvm/ADT/DepthFirstIterator.h"
61using namespace llvm;
62
63STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted");
64STATISTIC(NumNested  , "Number of nested loops split out");
65
66namespace {
67  struct LoopSimplify : public LoopPass {
68    static char ID; // Pass identification, replacement for typeid
69    LoopSimplify() : LoopPass(ID) {
70      initializeLoopSimplifyPass(*PassRegistry::getPassRegistry());
71    }
72
73    // AA - If we have an alias analysis object to update, this is it, otherwise
74    // this is null.
75    AliasAnalysis *AA;
76    LoopInfo *LI;
77    DominatorTree *DT;
78    ScalarEvolution *SE;
79    Loop *L;
80    virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
81
82    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
83      // We need loop information to identify the loops...
84      AU.addRequired<DominatorTree>();
85      AU.addPreserved<DominatorTree>();
86
87      AU.addRequired<LoopInfo>();
88      AU.addPreserved<LoopInfo>();
89
90      AU.addPreserved<AliasAnalysis>();
91      AU.addPreserved<ScalarEvolution>();
92      AU.addPreservedID(BreakCriticalEdgesID);  // No critical edges added.
93    }
94
95    /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
96    void verifyAnalysis() const;
97
98  private:
99    bool ProcessLoop(Loop *L, LPPassManager &LPM);
100    BasicBlock *RewriteLoopExitBlock(Loop *L, BasicBlock *Exit);
101    BasicBlock *InsertPreheaderForLoop(Loop *L);
102    Loop *SeparateNestedLoop(Loop *L, LPPassManager &LPM,
103                             BasicBlock *Preheader);
104    BasicBlock *InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader);
105    void PlaceSplitBlockCarefully(BasicBlock *NewBB,
106                                  SmallVectorImpl<BasicBlock*> &SplitPreds,
107                                  Loop *L);
108  };
109}
110
111char LoopSimplify::ID = 0;
112INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify",
113                "Canonicalize natural loops", true, false)
114INITIALIZE_PASS_DEPENDENCY(DominatorTree)
115INITIALIZE_PASS_DEPENDENCY(LoopInfo)
116INITIALIZE_PASS_END(LoopSimplify, "loop-simplify",
117                "Canonicalize natural loops", true, false)
118
119// Publicly exposed interface to pass...
120char &llvm::LoopSimplifyID = LoopSimplify::ID;
121Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
122
123/// runOnLoop - Run down all loops in the CFG (recursively, but we could do
124/// it in any convenient order) inserting preheaders...
125///
126bool LoopSimplify::runOnLoop(Loop *l, LPPassManager &LPM) {
127  L = l;
128  bool Changed = false;
129  LI = &getAnalysis<LoopInfo>();
130  AA = getAnalysisIfAvailable<AliasAnalysis>();
131  DT = &getAnalysis<DominatorTree>();
132  SE = getAnalysisIfAvailable<ScalarEvolution>();
133
134  Changed |= ProcessLoop(L, LPM);
135
136  return Changed;
137}
138
139/// ProcessLoop - Walk the loop structure in depth first order, ensuring that
140/// all loops have preheaders.
141///
142bool LoopSimplify::ProcessLoop(Loop *L, LPPassManager &LPM) {
143  bool Changed = false;
144ReprocessLoop:
145
146  // Check to see that no blocks (other than the header) in this loop have
147  // predecessors that are not in the loop.  This is not valid for natural
148  // loops, but can occur if the blocks are unreachable.  Since they are
149  // unreachable we can just shamelessly delete those CFG edges!
150  for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
151       BB != E; ++BB) {
152    if (*BB == L->getHeader()) continue;
153
154    SmallPtrSet<BasicBlock*, 4> BadPreds;
155    for (pred_iterator PI = pred_begin(*BB),
156         PE = pred_end(*BB); PI != PE; ++PI) {
157      BasicBlock *P = *PI;
158      if (!L->contains(P))
159        BadPreds.insert(P);
160    }
161
162    // Delete each unique out-of-loop (and thus dead) predecessor.
163    for (SmallPtrSet<BasicBlock*, 4>::iterator I = BadPreds.begin(),
164         E = BadPreds.end(); I != E; ++I) {
165
166      DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "
167                   << (*I)->getName() << "\n");
168
169      // Inform each successor of each dead pred.
170      for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI)
171        (*SI)->removePredecessor(*I);
172      // Zap the dead pred's terminator and replace it with unreachable.
173      TerminatorInst *TI = (*I)->getTerminator();
174       TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
175      (*I)->getTerminator()->eraseFromParent();
176      new UnreachableInst((*I)->getContext(), *I);
177      Changed = true;
178    }
179  }
180
181  // If there are exiting blocks with branches on undef, resolve the undef in
182  // the direction which will exit the loop. This will help simplify loop
183  // trip count computations.
184  SmallVector<BasicBlock*, 8> ExitingBlocks;
185  L->getExitingBlocks(ExitingBlocks);
186  for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(),
187       E = ExitingBlocks.end(); I != E; ++I)
188    if (BranchInst *BI = dyn_cast<BranchInst>((*I)->getTerminator()))
189      if (BI->isConditional()) {
190        if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {
191
192          DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in "
193                       << (*I)->getName() << "\n");
194
195          BI->setCondition(ConstantInt::get(Cond->getType(),
196                                            !L->contains(BI->getSuccessor(0))));
197          Changed = true;
198        }
199      }
200
201  // Does the loop already have a preheader?  If so, don't insert one.
202  BasicBlock *Preheader = L->getLoopPreheader();
203  if (!Preheader) {
204    Preheader = InsertPreheaderForLoop(L);
205    if (Preheader) {
206      ++NumInserted;
207      Changed = true;
208    }
209  }
210
211  // Next, check to make sure that all exit nodes of the loop only have
212  // predecessors that are inside of the loop.  This check guarantees that the
213  // loop preheader/header will dominate the exit blocks.  If the exit block has
214  // predecessors from outside of the loop, split the edge now.
215  SmallVector<BasicBlock*, 8> ExitBlocks;
216  L->getExitBlocks(ExitBlocks);
217
218  SmallSetVector<BasicBlock *, 8> ExitBlockSet(ExitBlocks.begin(),
219                                               ExitBlocks.end());
220  for (SmallSetVector<BasicBlock *, 8>::iterator I = ExitBlockSet.begin(),
221         E = ExitBlockSet.end(); I != E; ++I) {
222    BasicBlock *ExitBlock = *I;
223    for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
224         PI != PE; ++PI)
225      // Must be exactly this loop: no subloops, parent loops, or non-loop preds
226      // allowed.
227      if (!L->contains(*PI)) {
228        if (RewriteLoopExitBlock(L, ExitBlock)) {
229          ++NumInserted;
230          Changed = true;
231        }
232        break;
233      }
234  }
235
236  // If the header has more than two predecessors at this point (from the
237  // preheader and from multiple backedges), we must adjust the loop.
238  BasicBlock *LoopLatch = L->getLoopLatch();
239  if (!LoopLatch) {
240    // If this is really a nested loop, rip it out into a child loop.  Don't do
241    // this for loops with a giant number of backedges, just factor them into a
242    // common backedge instead.
243    if (L->getNumBackEdges() < 8) {
244      if (SeparateNestedLoop(L, LPM, Preheader)) {
245        ++NumNested;
246        // This is a big restructuring change, reprocess the whole loop.
247        Changed = true;
248        // GCC doesn't tail recursion eliminate this.
249        goto ReprocessLoop;
250      }
251    }
252
253    // If we either couldn't, or didn't want to, identify nesting of the loops,
254    // insert a new block that all backedges target, then make it jump to the
255    // loop header.
256    LoopLatch = InsertUniqueBackedgeBlock(L, Preheader);
257    if (LoopLatch) {
258      ++NumInserted;
259      Changed = true;
260    }
261  }
262
263  // Scan over the PHI nodes in the loop header.  Since they now have only two
264  // incoming values (the loop is canonicalized), we may have simplified the PHI
265  // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
266  PHINode *PN;
267  for (BasicBlock::iterator I = L->getHeader()->begin();
268       (PN = dyn_cast<PHINode>(I++)); )
269    if (Value *V = SimplifyInstruction(PN, 0, 0, DT)) {
270      if (AA) AA->deleteValue(PN);
271      if (SE) SE->forgetValue(PN);
272      PN->replaceAllUsesWith(V);
273      PN->eraseFromParent();
274    }
275
276  // If this loop has multiple exits and the exits all go to the same
277  // block, attempt to merge the exits. This helps several passes, such
278  // as LoopRotation, which do not support loops with multiple exits.
279  // SimplifyCFG also does this (and this code uses the same utility
280  // function), however this code is loop-aware, where SimplifyCFG is
281  // not. That gives it the advantage of being able to hoist
282  // loop-invariant instructions out of the way to open up more
283  // opportunities, and the disadvantage of having the responsibility
284  // to preserve dominator information.
285  bool UniqueExit = true;
286  if (!ExitBlocks.empty())
287    for (unsigned i = 1, e = ExitBlocks.size(); i != e; ++i)
288      if (ExitBlocks[i] != ExitBlocks[0]) {
289        UniqueExit = false;
290        break;
291      }
292  if (UniqueExit) {
293    for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
294      BasicBlock *ExitingBlock = ExitingBlocks[i];
295      if (!ExitingBlock->getSinglePredecessor()) continue;
296      BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
297      if (!BI || !BI->isConditional()) continue;
298      CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
299      if (!CI || CI->getParent() != ExitingBlock) continue;
300
301      // Attempt to hoist out all instructions except for the
302      // comparison and the branch.
303      bool AllInvariant = true;
304      for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) {
305        Instruction *Inst = I++;
306        // Skip debug info intrinsics.
307        if (isa<DbgInfoIntrinsic>(Inst))
308          continue;
309        if (Inst == CI)
310          continue;
311        if (!L->makeLoopInvariant(Inst, Changed,
312                                  Preheader ? Preheader->getTerminator() : 0)) {
313          AllInvariant = false;
314          break;
315        }
316      }
317      if (!AllInvariant) continue;
318
319      // The block has now been cleared of all instructions except for
320      // a comparison and a conditional branch. SimplifyCFG may be able
321      // to fold it now.
322      if (!FoldBranchToCommonDest(BI)) continue;
323
324      // Success. The block is now dead, so remove it from the loop,
325      // update the dominator tree and delete it.
326      DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "
327                   << ExitingBlock->getName() << "\n");
328
329      // If any reachable control flow within this loop has changed, notify
330      // ScalarEvolution. Currently assume the parent loop doesn't change
331      // (spliting edges doesn't count). If blocks, CFG edges, or other values
332      // in the parent loop change, then we need call to forgetLoop() for the
333      // parent instead.
334      if (SE)
335        SE->forgetLoop(L);
336
337      assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock));
338      Changed = true;
339      LI->removeBlock(ExitingBlock);
340
341      DomTreeNode *Node = DT->getNode(ExitingBlock);
342      const std::vector<DomTreeNodeBase<BasicBlock> *> &Children =
343        Node->getChildren();
344      while (!Children.empty()) {
345        DomTreeNode *Child = Children.front();
346        DT->changeImmediateDominator(Child, Node->getIDom());
347      }
348      DT->eraseNode(ExitingBlock);
349
350      BI->getSuccessor(0)->removePredecessor(ExitingBlock);
351      BI->getSuccessor(1)->removePredecessor(ExitingBlock);
352      ExitingBlock->eraseFromParent();
353    }
354  }
355
356  return Changed;
357}
358
359/// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
360/// preheader, this method is called to insert one.  This method has two phases:
361/// preheader insertion and analysis updating.
362///
363BasicBlock *LoopSimplify::InsertPreheaderForLoop(Loop *L) {
364  BasicBlock *Header = L->getHeader();
365
366  // Compute the set of predecessors of the loop that are not in the loop.
367  SmallVector<BasicBlock*, 8> OutsideBlocks;
368  for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
369       PI != PE; ++PI) {
370    BasicBlock *P = *PI;
371    if (!L->contains(P)) {         // Coming in from outside the loop?
372      // If the loop is branched to from an indirect branch, we won't
373      // be able to fully transform the loop, because it prohibits
374      // edge splitting.
375      if (isa<IndirectBrInst>(P->getTerminator())) return 0;
376
377      // Keep track of it.
378      OutsideBlocks.push_back(P);
379    }
380  }
381
382  // Split out the loop pre-header.
383  BasicBlock *PreheaderBB;
384  if (!Header->isLandingPad()) {
385    PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader",
386                                         this);
387  } else {
388    SmallVector<BasicBlock*, 2> NewBBs;
389    SplitLandingPadPredecessors(Header, OutsideBlocks, ".preheader",
390                                ".split-lp", this, NewBBs);
391    PreheaderBB = NewBBs[0];
392  }
393
394  PreheaderBB->getTerminator()->setDebugLoc(
395                                      Header->getFirstNonPHI()->getDebugLoc());
396  DEBUG(dbgs() << "LoopSimplify: Creating pre-header "
397               << PreheaderBB->getName() << "\n");
398
399  // Make sure that NewBB is put someplace intelligent, which doesn't mess up
400  // code layout too horribly.
401  PlaceSplitBlockCarefully(PreheaderBB, OutsideBlocks, L);
402
403  return PreheaderBB;
404}
405
406/// RewriteLoopExitBlock - Ensure that the loop preheader dominates all exit
407/// blocks.  This method is used to split exit blocks that have predecessors
408/// outside of the loop.
409BasicBlock *LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) {
410  SmallVector<BasicBlock*, 8> LoopBlocks;
411  for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) {
412    BasicBlock *P = *I;
413    if (L->contains(P)) {
414      // Don't do this if the loop is exited via an indirect branch.
415      if (isa<IndirectBrInst>(P->getTerminator())) return 0;
416
417      LoopBlocks.push_back(P);
418    }
419  }
420
421  assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?");
422  BasicBlock *NewExitBB = 0;
423
424  if (Exit->isLandingPad()) {
425    SmallVector<BasicBlock*, 2> NewBBs;
426    SplitLandingPadPredecessors(Exit, ArrayRef<BasicBlock*>(&LoopBlocks[0],
427                                                            LoopBlocks.size()),
428                                ".loopexit", ".nonloopexit",
429                                this, NewBBs);
430    NewExitBB = NewBBs[0];
431  } else {
432    NewExitBB = SplitBlockPredecessors(Exit, LoopBlocks, ".loopexit", this);
433  }
434
435  DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
436               << NewExitBB->getName() << "\n");
437  return NewExitBB;
438}
439
440/// AddBlockAndPredsToSet - Add the specified block, and all of its
441/// predecessors, to the specified set, if it's not already in there.  Stop
442/// predecessor traversal when we reach StopBlock.
443static void AddBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
444                                  std::set<BasicBlock*> &Blocks) {
445  std::vector<BasicBlock *> WorkList;
446  WorkList.push_back(InputBB);
447  do {
448    BasicBlock *BB = WorkList.back(); WorkList.pop_back();
449    if (Blocks.insert(BB).second && BB != StopBlock)
450      // If BB is not already processed and it is not a stop block then
451      // insert its predecessor in the work list
452      for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
453        BasicBlock *WBB = *I;
454        WorkList.push_back(WBB);
455      }
456  } while(!WorkList.empty());
457}
458
459/// FindPHIToPartitionLoops - The first part of loop-nestification is to find a
460/// PHI node that tells us how to partition the loops.
461static PHINode *FindPHIToPartitionLoops(Loop *L, DominatorTree *DT,
462                                        AliasAnalysis *AA, LoopInfo *LI) {
463  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
464    PHINode *PN = cast<PHINode>(I);
465    ++I;
466    if (Value *V = SimplifyInstruction(PN, 0, 0, DT)) {
467      // This is a degenerate PHI already, don't modify it!
468      PN->replaceAllUsesWith(V);
469      if (AA) AA->deleteValue(PN);
470      PN->eraseFromParent();
471      continue;
472    }
473
474    // Scan this PHI node looking for a use of the PHI node by itself.
475    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
476      if (PN->getIncomingValue(i) == PN &&
477          L->contains(PN->getIncomingBlock(i)))
478        // We found something tasty to remove.
479        return PN;
480  }
481  return 0;
482}
483
484// PlaceSplitBlockCarefully - If the block isn't already, move the new block to
485// right after some 'outside block' block.  This prevents the preheader from
486// being placed inside the loop body, e.g. when the loop hasn't been rotated.
487void LoopSimplify::PlaceSplitBlockCarefully(BasicBlock *NewBB,
488                                       SmallVectorImpl<BasicBlock*> &SplitPreds,
489                                            Loop *L) {
490  // Check to see if NewBB is already well placed.
491  Function::iterator BBI = NewBB; --BBI;
492  for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
493    if (&*BBI == SplitPreds[i])
494      return;
495  }
496
497  // If it isn't already after an outside block, move it after one.  This is
498  // always good as it makes the uncond branch from the outside block into a
499  // fall-through.
500
501  // Figure out *which* outside block to put this after.  Prefer an outside
502  // block that neighbors a BB actually in the loop.
503  BasicBlock *FoundBB = 0;
504  for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
505    Function::iterator BBI = SplitPreds[i];
506    if (++BBI != NewBB->getParent()->end() &&
507        L->contains(BBI)) {
508      FoundBB = SplitPreds[i];
509      break;
510    }
511  }
512
513  // If our heuristic for a *good* bb to place this after doesn't find
514  // anything, just pick something.  It's likely better than leaving it within
515  // the loop.
516  if (!FoundBB)
517    FoundBB = SplitPreds[0];
518  NewBB->moveAfter(FoundBB);
519}
520
521
522/// SeparateNestedLoop - If this loop has multiple backedges, try to pull one of
523/// them out into a nested loop.  This is important for code that looks like
524/// this:
525///
526///  Loop:
527///     ...
528///     br cond, Loop, Next
529///     ...
530///     br cond2, Loop, Out
531///
532/// To identify this common case, we look at the PHI nodes in the header of the
533/// loop.  PHI nodes with unchanging values on one backedge correspond to values
534/// that change in the "outer" loop, but not in the "inner" loop.
535///
536/// If we are able to separate out a loop, return the new outer loop that was
537/// created.
538///
539Loop *LoopSimplify::SeparateNestedLoop(Loop *L, LPPassManager &LPM,
540                                       BasicBlock *Preheader) {
541  // Don't try to separate loops without a preheader.
542  if (!Preheader)
543    return 0;
544
545  // The header is not a landing pad; preheader insertion should ensure this.
546  assert(!L->getHeader()->isLandingPad() &&
547         "Can't insert backedge to landing pad");
548
549  PHINode *PN = FindPHIToPartitionLoops(L, DT, AA, LI);
550  if (PN == 0) return 0;  // No known way to partition.
551
552  // Pull out all predecessors that have varying values in the loop.  This
553  // handles the case when a PHI node has multiple instances of itself as
554  // arguments.
555  SmallVector<BasicBlock*, 8> OuterLoopPreds;
556  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
557    if (PN->getIncomingValue(i) != PN ||
558        !L->contains(PN->getIncomingBlock(i))) {
559      // We can't split indirectbr edges.
560      if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator()))
561        return 0;
562      OuterLoopPreds.push_back(PN->getIncomingBlock(i));
563    }
564  }
565  DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n");
566
567  // If ScalarEvolution is around and knows anything about values in
568  // this loop, tell it to forget them, because we're about to
569  // substantially change it.
570  if (SE)
571    SE->forgetLoop(L);
572
573  BasicBlock *Header = L->getHeader();
574  BasicBlock *NewBB =
575    SplitBlockPredecessors(Header, OuterLoopPreds,  ".outer", this);
576
577  // Make sure that NewBB is put someplace intelligent, which doesn't mess up
578  // code layout too horribly.
579  PlaceSplitBlockCarefully(NewBB, OuterLoopPreds, L);
580
581  // Create the new outer loop.
582  Loop *NewOuter = new Loop();
583
584  // Change the parent loop to use the outer loop as its child now.
585  if (Loop *Parent = L->getParentLoop())
586    Parent->replaceChildLoopWith(L, NewOuter);
587  else
588    LI->changeTopLevelLoop(L, NewOuter);
589
590  // L is now a subloop of our outer loop.
591  NewOuter->addChildLoop(L);
592
593  // Add the new loop to the pass manager queue.
594  LPM.insertLoopIntoQueue(NewOuter);
595
596  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
597       I != E; ++I)
598    NewOuter->addBlockEntry(*I);
599
600  // Now reset the header in L, which had been moved by
601  // SplitBlockPredecessors for the outer loop.
602  L->moveToHeader(Header);
603
604  // Determine which blocks should stay in L and which should be moved out to
605  // the Outer loop now.
606  std::set<BasicBlock*> BlocksInL;
607  for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) {
608    BasicBlock *P = *PI;
609    if (DT->dominates(Header, P))
610      AddBlockAndPredsToSet(P, Header, BlocksInL);
611  }
612
613  // Scan all of the loop children of L, moving them to OuterLoop if they are
614  // not part of the inner loop.
615  const std::vector<Loop*> &SubLoops = L->getSubLoops();
616  for (size_t I = 0; I != SubLoops.size(); )
617    if (BlocksInL.count(SubLoops[I]->getHeader()))
618      ++I;   // Loop remains in L
619    else
620      NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));
621
622  // Now that we know which blocks are in L and which need to be moved to
623  // OuterLoop, move any blocks that need it.
624  for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
625    BasicBlock *BB = L->getBlocks()[i];
626    if (!BlocksInL.count(BB)) {
627      // Move this block to the parent, updating the exit blocks sets
628      L->removeBlockFromLoop(BB);
629      if ((*LI)[BB] == L)
630        LI->changeLoopFor(BB, NewOuter);
631      --i;
632    }
633  }
634
635  return NewOuter;
636}
637
638
639
640/// InsertUniqueBackedgeBlock - This method is called when the specified loop
641/// has more than one backedge in it.  If this occurs, revector all of these
642/// backedges to target a new basic block and have that block branch to the loop
643/// header.  This ensures that loops have exactly one backedge.
644///
645BasicBlock *
646LoopSimplify::InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader) {
647  assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
648
649  // Get information about the loop
650  BasicBlock *Header = L->getHeader();
651  Function *F = Header->getParent();
652
653  // Unique backedge insertion currently depends on having a preheader.
654  if (!Preheader)
655    return 0;
656
657  // The header is not a landing pad; preheader insertion should ensure this.
658  assert(!Header->isLandingPad() && "Can't insert backedge to landing pad");
659
660  // Figure out which basic blocks contain back-edges to the loop header.
661  std::vector<BasicBlock*> BackedgeBlocks;
662  for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){
663    BasicBlock *P = *I;
664
665    // Indirectbr edges cannot be split, so we must fail if we find one.
666    if (isa<IndirectBrInst>(P->getTerminator()))
667      return 0;
668
669    if (P != Preheader) BackedgeBlocks.push_back(P);
670  }
671
672  // Create and insert the new backedge block...
673  BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(),
674                                           Header->getName()+".backedge", F);
675  BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
676
677  DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block "
678               << BEBlock->getName() << "\n");
679
680  // Move the new backedge block to right after the last backedge block.
681  Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos;
682  F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
683
684  // Now that the block has been inserted into the function, create PHI nodes in
685  // the backedge block which correspond to any PHI nodes in the header block.
686  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
687    PHINode *PN = cast<PHINode>(I);
688    PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(),
689                                     PN->getName()+".be", BETerminator);
690    if (AA) AA->copyValue(PN, NewPN);
691
692    // Loop over the PHI node, moving all entries except the one for the
693    // preheader over to the new PHI node.
694    unsigned PreheaderIdx = ~0U;
695    bool HasUniqueIncomingValue = true;
696    Value *UniqueValue = 0;
697    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
698      BasicBlock *IBB = PN->getIncomingBlock(i);
699      Value *IV = PN->getIncomingValue(i);
700      if (IBB == Preheader) {
701        PreheaderIdx = i;
702      } else {
703        NewPN->addIncoming(IV, IBB);
704        if (HasUniqueIncomingValue) {
705          if (UniqueValue == 0)
706            UniqueValue = IV;
707          else if (UniqueValue != IV)
708            HasUniqueIncomingValue = false;
709        }
710      }
711    }
712
713    // Delete all of the incoming values from the old PN except the preheader's
714    assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
715    if (PreheaderIdx != 0) {
716      PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
717      PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
718    }
719    // Nuke all entries except the zero'th.
720    for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
721      PN->removeIncomingValue(e-i, false);
722
723    // Finally, add the newly constructed PHI node as the entry for the BEBlock.
724    PN->addIncoming(NewPN, BEBlock);
725
726    // As an optimization, if all incoming values in the new PhiNode (which is a
727    // subset of the incoming values of the old PHI node) have the same value,
728    // eliminate the PHI Node.
729    if (HasUniqueIncomingValue) {
730      NewPN->replaceAllUsesWith(UniqueValue);
731      if (AA) AA->deleteValue(NewPN);
732      BEBlock->getInstList().erase(NewPN);
733    }
734  }
735
736  // Now that all of the PHI nodes have been inserted and adjusted, modify the
737  // backedge blocks to just to the BEBlock instead of the header.
738  for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
739    TerminatorInst *TI = BackedgeBlocks[i]->getTerminator();
740    for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
741      if (TI->getSuccessor(Op) == Header)
742        TI->setSuccessor(Op, BEBlock);
743  }
744
745  //===--- Update all analyses which we must preserve now -----------------===//
746
747  // Update Loop Information - we know that this block is now in the current
748  // loop and all parent loops.
749  L->addBasicBlockToLoop(BEBlock, LI->getBase());
750
751  // Update dominator information
752  DT->splitBlock(BEBlock);
753
754  return BEBlock;
755}
756
757void LoopSimplify::verifyAnalysis() const {
758  // It used to be possible to just assert L->isLoopSimplifyForm(), however
759  // with the introduction of indirectbr, there are now cases where it's
760  // not possible to transform a loop as necessary. We can at least check
761  // that there is an indirectbr near any time there's trouble.
762
763  // Indirectbr can interfere with preheader and unique backedge insertion.
764  if (!L->getLoopPreheader() || !L->getLoopLatch()) {
765    bool HasIndBrPred = false;
766    for (pred_iterator PI = pred_begin(L->getHeader()),
767         PE = pred_end(L->getHeader()); PI != PE; ++PI)
768      if (isa<IndirectBrInst>((*PI)->getTerminator())) {
769        HasIndBrPred = true;
770        break;
771      }
772    assert(HasIndBrPred &&
773           "LoopSimplify has no excuse for missing loop header info!");
774    (void)HasIndBrPred;
775  }
776
777  // Indirectbr can interfere with exit block canonicalization.
778  if (!L->hasDedicatedExits()) {
779    bool HasIndBrExiting = false;
780    SmallVector<BasicBlock*, 8> ExitingBlocks;
781    L->getExitingBlocks(ExitingBlocks);
782    for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
783      if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) {
784        HasIndBrExiting = true;
785        break;
786      }
787    }
788
789    assert(HasIndBrExiting &&
790           "LoopSimplify has no excuse for missing exit block info!");
791    (void)HasIndBrExiting;
792  }
793}
794