1//===-- JITMemoryManager.cpp - Memory Allocator for JIT'd code ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the DefaultJITMemoryManager class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "jit"
15#include "llvm/ExecutionEngine/JITMemoryManager.h"
16#include "llvm/ADT/SmallPtrSet.h"
17#include "llvm/ADT/Statistic.h"
18#include "llvm/ADT/Twine.h"
19#include "llvm/GlobalValue.h"
20#include "llvm/Support/Allocator.h"
21#include "llvm/Support/Compiler.h"
22#include "llvm/Support/Debug.h"
23#include "llvm/Support/ErrorHandling.h"
24#include "llvm/Support/raw_ostream.h"
25#include "llvm/Support/Memory.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/DynamicLibrary.h"
28#include "llvm/Config/config.h"
29#include <vector>
30#include <cassert>
31#include <climits>
32#include <cstring>
33
34#if defined(__linux__)
35#if defined(HAVE_SYS_STAT_H)
36#include <sys/stat.h>
37#endif
38#include <fcntl.h>
39#include <unistd.h>
40#endif
41
42using namespace llvm;
43
44STATISTIC(NumSlabs, "Number of slabs of memory allocated by the JIT");
45
46JITMemoryManager::~JITMemoryManager() {}
47
48//===----------------------------------------------------------------------===//
49// Memory Block Implementation.
50//===----------------------------------------------------------------------===//
51
52namespace {
53  /// MemoryRangeHeader - For a range of memory, this is the header that we put
54  /// on the block of memory.  It is carefully crafted to be one word of memory.
55  /// Allocated blocks have just this header, free'd blocks have FreeRangeHeader
56  /// which starts with this.
57  struct FreeRangeHeader;
58  struct MemoryRangeHeader {
59    /// ThisAllocated - This is true if this block is currently allocated.  If
60    /// not, this can be converted to a FreeRangeHeader.
61    unsigned ThisAllocated : 1;
62
63    /// PrevAllocated - Keep track of whether the block immediately before us is
64    /// allocated.  If not, the word immediately before this header is the size
65    /// of the previous block.
66    unsigned PrevAllocated : 1;
67
68    /// BlockSize - This is the size in bytes of this memory block,
69    /// including this header.
70    uintptr_t BlockSize : (sizeof(intptr_t)*CHAR_BIT - 2);
71
72
73    /// getBlockAfter - Return the memory block immediately after this one.
74    ///
75    MemoryRangeHeader &getBlockAfter() const {
76      return *(MemoryRangeHeader*)((char*)this+BlockSize);
77    }
78
79    /// getFreeBlockBefore - If the block before this one is free, return it,
80    /// otherwise return null.
81    FreeRangeHeader *getFreeBlockBefore() const {
82      if (PrevAllocated) return 0;
83      intptr_t PrevSize = ((intptr_t *)this)[-1];
84      return (FreeRangeHeader*)((char*)this-PrevSize);
85    }
86
87    /// FreeBlock - Turn an allocated block into a free block, adjusting
88    /// bits in the object headers, and adding an end of region memory block.
89    FreeRangeHeader *FreeBlock(FreeRangeHeader *FreeList);
90
91    /// TrimAllocationToSize - If this allocated block is significantly larger
92    /// than NewSize, split it into two pieces (where the former is NewSize
93    /// bytes, including the header), and add the new block to the free list.
94    FreeRangeHeader *TrimAllocationToSize(FreeRangeHeader *FreeList,
95                                          uint64_t NewSize);
96  };
97
98  /// FreeRangeHeader - For a memory block that isn't already allocated, this
99  /// keeps track of the current block and has a pointer to the next free block.
100  /// Free blocks are kept on a circularly linked list.
101  struct FreeRangeHeader : public MemoryRangeHeader {
102    FreeRangeHeader *Prev;
103    FreeRangeHeader *Next;
104
105    /// getMinBlockSize - Get the minimum size for a memory block.  Blocks
106    /// smaller than this size cannot be created.
107    static unsigned getMinBlockSize() {
108      return sizeof(FreeRangeHeader)+sizeof(intptr_t);
109    }
110
111    /// SetEndOfBlockSizeMarker - The word at the end of every free block is
112    /// known to be the size of the free block.  Set it for this block.
113    void SetEndOfBlockSizeMarker() {
114      void *EndOfBlock = (char*)this + BlockSize;
115      ((intptr_t *)EndOfBlock)[-1] = BlockSize;
116    }
117
118    FreeRangeHeader *RemoveFromFreeList() {
119      assert(Next->Prev == this && Prev->Next == this && "Freelist broken!");
120      Next->Prev = Prev;
121      return Prev->Next = Next;
122    }
123
124    void AddToFreeList(FreeRangeHeader *FreeList) {
125      Next = FreeList;
126      Prev = FreeList->Prev;
127      Prev->Next = this;
128      Next->Prev = this;
129    }
130
131    /// GrowBlock - The block after this block just got deallocated.  Merge it
132    /// into the current block.
133    void GrowBlock(uintptr_t NewSize);
134
135    /// AllocateBlock - Mark this entire block allocated, updating freelists
136    /// etc.  This returns a pointer to the circular free-list.
137    FreeRangeHeader *AllocateBlock();
138  };
139}
140
141
142/// AllocateBlock - Mark this entire block allocated, updating freelists
143/// etc.  This returns a pointer to the circular free-list.
144FreeRangeHeader *FreeRangeHeader::AllocateBlock() {
145  assert(!ThisAllocated && !getBlockAfter().PrevAllocated &&
146         "Cannot allocate an allocated block!");
147  // Mark this block allocated.
148  ThisAllocated = 1;
149  getBlockAfter().PrevAllocated = 1;
150
151  // Remove it from the free list.
152  return RemoveFromFreeList();
153}
154
155/// FreeBlock - Turn an allocated block into a free block, adjusting
156/// bits in the object headers, and adding an end of region memory block.
157/// If possible, coalesce this block with neighboring blocks.  Return the
158/// FreeRangeHeader to allocate from.
159FreeRangeHeader *MemoryRangeHeader::FreeBlock(FreeRangeHeader *FreeList) {
160  MemoryRangeHeader *FollowingBlock = &getBlockAfter();
161  assert(ThisAllocated && "This block is already free!");
162  assert(FollowingBlock->PrevAllocated && "Flags out of sync!");
163
164  FreeRangeHeader *FreeListToReturn = FreeList;
165
166  // If the block after this one is free, merge it into this block.
167  if (!FollowingBlock->ThisAllocated) {
168    FreeRangeHeader &FollowingFreeBlock = *(FreeRangeHeader *)FollowingBlock;
169    // "FreeList" always needs to be a valid free block.  If we're about to
170    // coalesce with it, update our notion of what the free list is.
171    if (&FollowingFreeBlock == FreeList) {
172      FreeList = FollowingFreeBlock.Next;
173      FreeListToReturn = 0;
174      assert(&FollowingFreeBlock != FreeList && "No tombstone block?");
175    }
176    FollowingFreeBlock.RemoveFromFreeList();
177
178    // Include the following block into this one.
179    BlockSize += FollowingFreeBlock.BlockSize;
180    FollowingBlock = &FollowingFreeBlock.getBlockAfter();
181
182    // Tell the block after the block we are coalescing that this block is
183    // allocated.
184    FollowingBlock->PrevAllocated = 1;
185  }
186
187  assert(FollowingBlock->ThisAllocated && "Missed coalescing?");
188
189  if (FreeRangeHeader *PrevFreeBlock = getFreeBlockBefore()) {
190    PrevFreeBlock->GrowBlock(PrevFreeBlock->BlockSize + BlockSize);
191    return FreeListToReturn ? FreeListToReturn : PrevFreeBlock;
192  }
193
194  // Otherwise, mark this block free.
195  FreeRangeHeader &FreeBlock = *(FreeRangeHeader*)this;
196  FollowingBlock->PrevAllocated = 0;
197  FreeBlock.ThisAllocated = 0;
198
199  // Link this into the linked list of free blocks.
200  FreeBlock.AddToFreeList(FreeList);
201
202  // Add a marker at the end of the block, indicating the size of this free
203  // block.
204  FreeBlock.SetEndOfBlockSizeMarker();
205  return FreeListToReturn ? FreeListToReturn : &FreeBlock;
206}
207
208/// GrowBlock - The block after this block just got deallocated.  Merge it
209/// into the current block.
210void FreeRangeHeader::GrowBlock(uintptr_t NewSize) {
211  assert(NewSize > BlockSize && "Not growing block?");
212  BlockSize = NewSize;
213  SetEndOfBlockSizeMarker();
214  getBlockAfter().PrevAllocated = 0;
215}
216
217/// TrimAllocationToSize - If this allocated block is significantly larger
218/// than NewSize, split it into two pieces (where the former is NewSize
219/// bytes, including the header), and add the new block to the free list.
220FreeRangeHeader *MemoryRangeHeader::
221TrimAllocationToSize(FreeRangeHeader *FreeList, uint64_t NewSize) {
222  assert(ThisAllocated && getBlockAfter().PrevAllocated &&
223         "Cannot deallocate part of an allocated block!");
224
225  // Don't allow blocks to be trimmed below minimum required size
226  NewSize = std::max<uint64_t>(FreeRangeHeader::getMinBlockSize(), NewSize);
227
228  // Round up size for alignment of header.
229  unsigned HeaderAlign = __alignof(FreeRangeHeader);
230  NewSize = (NewSize+ (HeaderAlign-1)) & ~(HeaderAlign-1);
231
232  // Size is now the size of the block we will remove from the start of the
233  // current block.
234  assert(NewSize <= BlockSize &&
235         "Allocating more space from this block than exists!");
236
237  // If splitting this block will cause the remainder to be too small, do not
238  // split the block.
239  if (BlockSize <= NewSize+FreeRangeHeader::getMinBlockSize())
240    return FreeList;
241
242  // Otherwise, we splice the required number of bytes out of this block, form
243  // a new block immediately after it, then mark this block allocated.
244  MemoryRangeHeader &FormerNextBlock = getBlockAfter();
245
246  // Change the size of this block.
247  BlockSize = NewSize;
248
249  // Get the new block we just sliced out and turn it into a free block.
250  FreeRangeHeader &NewNextBlock = (FreeRangeHeader &)getBlockAfter();
251  NewNextBlock.BlockSize = (char*)&FormerNextBlock - (char*)&NewNextBlock;
252  NewNextBlock.ThisAllocated = 0;
253  NewNextBlock.PrevAllocated = 1;
254  NewNextBlock.SetEndOfBlockSizeMarker();
255  FormerNextBlock.PrevAllocated = 0;
256  NewNextBlock.AddToFreeList(FreeList);
257  return &NewNextBlock;
258}
259
260//===----------------------------------------------------------------------===//
261// Memory Block Implementation.
262//===----------------------------------------------------------------------===//
263
264namespace {
265
266  class DefaultJITMemoryManager;
267
268  class JITSlabAllocator : public SlabAllocator {
269    DefaultJITMemoryManager &JMM;
270  public:
271    JITSlabAllocator(DefaultJITMemoryManager &jmm) : JMM(jmm) { }
272    virtual ~JITSlabAllocator() { }
273    virtual MemSlab *Allocate(size_t Size);
274    virtual void Deallocate(MemSlab *Slab);
275  };
276
277  /// DefaultJITMemoryManager - Manage memory for the JIT code generation.
278  /// This splits a large block of MAP_NORESERVE'd memory into two
279  /// sections, one for function stubs, one for the functions themselves.  We
280  /// have to do this because we may need to emit a function stub while in the
281  /// middle of emitting a function, and we don't know how large the function we
282  /// are emitting is.
283  class DefaultJITMemoryManager : public JITMemoryManager {
284
285    // Whether to poison freed memory.
286    bool PoisonMemory;
287
288    /// LastSlab - This points to the last slab allocated and is used as the
289    /// NearBlock parameter to AllocateRWX so that we can attempt to lay out all
290    /// stubs, data, and code contiguously in memory.  In general, however, this
291    /// is not possible because the NearBlock parameter is ignored on Windows
292    /// platforms and even on Unix it works on a best-effort pasis.
293    sys::MemoryBlock LastSlab;
294
295    // Memory slabs allocated by the JIT.  We refer to them as slabs so we don't
296    // confuse them with the blocks of memory described above.
297    std::vector<sys::MemoryBlock> CodeSlabs;
298    JITSlabAllocator BumpSlabAllocator;
299    BumpPtrAllocator StubAllocator;
300    BumpPtrAllocator DataAllocator;
301
302    // Circular list of free blocks.
303    FreeRangeHeader *FreeMemoryList;
304
305    // When emitting code into a memory block, this is the block.
306    MemoryRangeHeader *CurBlock;
307
308    uint8_t *GOTBase;     // Target Specific reserved memory
309  public:
310    DefaultJITMemoryManager();
311    ~DefaultJITMemoryManager();
312
313    /// allocateNewSlab - Allocates a new MemoryBlock and remembers it as the
314    /// last slab it allocated, so that subsequent allocations follow it.
315    sys::MemoryBlock allocateNewSlab(size_t size);
316
317    /// DefaultCodeSlabSize - When we have to go map more memory, we allocate at
318    /// least this much unless more is requested.
319    static const size_t DefaultCodeSlabSize;
320
321    /// DefaultSlabSize - Allocate data into slabs of this size unless we get
322    /// an allocation above SizeThreshold.
323    static const size_t DefaultSlabSize;
324
325    /// DefaultSizeThreshold - For any allocation larger than this threshold, we
326    /// should allocate a separate slab.
327    static const size_t DefaultSizeThreshold;
328
329    /// getPointerToNamedFunction - This method returns the address of the
330    /// specified function by using the dlsym function call.
331    virtual void *getPointerToNamedFunction(const std::string &Name,
332                                            bool AbortOnFailure = true);
333
334    void AllocateGOT();
335
336    // Testing methods.
337    virtual bool CheckInvariants(std::string &ErrorStr);
338    size_t GetDefaultCodeSlabSize() { return DefaultCodeSlabSize; }
339    size_t GetDefaultDataSlabSize() { return DefaultSlabSize; }
340    size_t GetDefaultStubSlabSize() { return DefaultSlabSize; }
341    unsigned GetNumCodeSlabs() { return CodeSlabs.size(); }
342    unsigned GetNumDataSlabs() { return DataAllocator.GetNumSlabs(); }
343    unsigned GetNumStubSlabs() { return StubAllocator.GetNumSlabs(); }
344
345    /// startFunctionBody - When a function starts, allocate a block of free
346    /// executable memory, returning a pointer to it and its actual size.
347    uint8_t *startFunctionBody(const Function *F, uintptr_t &ActualSize) {
348
349      FreeRangeHeader* candidateBlock = FreeMemoryList;
350      FreeRangeHeader* head = FreeMemoryList;
351      FreeRangeHeader* iter = head->Next;
352
353      uintptr_t largest = candidateBlock->BlockSize;
354
355      // Search for the largest free block
356      while (iter != head) {
357        if (iter->BlockSize > largest) {
358          largest = iter->BlockSize;
359          candidateBlock = iter;
360        }
361        iter = iter->Next;
362      }
363
364      largest = largest - sizeof(MemoryRangeHeader);
365
366      // If this block isn't big enough for the allocation desired, allocate
367      // another block of memory and add it to the free list.
368      if (largest < ActualSize ||
369          largest <= FreeRangeHeader::getMinBlockSize()) {
370        DEBUG(dbgs() << "JIT: Allocating another slab of memory for function.");
371        candidateBlock = allocateNewCodeSlab((size_t)ActualSize);
372      }
373
374      // Select this candidate block for allocation
375      CurBlock = candidateBlock;
376
377      // Allocate the entire memory block.
378      FreeMemoryList = candidateBlock->AllocateBlock();
379      ActualSize = CurBlock->BlockSize - sizeof(MemoryRangeHeader);
380      return (uint8_t *)(CurBlock + 1);
381    }
382
383    /// allocateNewCodeSlab - Helper method to allocate a new slab of code
384    /// memory from the OS and add it to the free list.  Returns the new
385    /// FreeRangeHeader at the base of the slab.
386    FreeRangeHeader *allocateNewCodeSlab(size_t MinSize) {
387      // If the user needs at least MinSize free memory, then we account for
388      // two MemoryRangeHeaders: the one in the user's block, and the one at the
389      // end of the slab.
390      size_t PaddedMin = MinSize + 2 * sizeof(MemoryRangeHeader);
391      size_t SlabSize = std::max(DefaultCodeSlabSize, PaddedMin);
392      sys::MemoryBlock B = allocateNewSlab(SlabSize);
393      CodeSlabs.push_back(B);
394      char *MemBase = (char*)(B.base());
395
396      // Put a tiny allocated block at the end of the memory chunk, so when
397      // FreeBlock calls getBlockAfter it doesn't fall off the end.
398      MemoryRangeHeader *EndBlock =
399          (MemoryRangeHeader*)(MemBase + B.size()) - 1;
400      EndBlock->ThisAllocated = 1;
401      EndBlock->PrevAllocated = 0;
402      EndBlock->BlockSize = sizeof(MemoryRangeHeader);
403
404      // Start out with a vast new block of free memory.
405      FreeRangeHeader *NewBlock = (FreeRangeHeader*)MemBase;
406      NewBlock->ThisAllocated = 0;
407      // Make sure getFreeBlockBefore doesn't look into unmapped memory.
408      NewBlock->PrevAllocated = 1;
409      NewBlock->BlockSize = (uintptr_t)EndBlock - (uintptr_t)NewBlock;
410      NewBlock->SetEndOfBlockSizeMarker();
411      NewBlock->AddToFreeList(FreeMemoryList);
412
413      assert(NewBlock->BlockSize - sizeof(MemoryRangeHeader) >= MinSize &&
414             "The block was too small!");
415      return NewBlock;
416    }
417
418    /// endFunctionBody - The function F is now allocated, and takes the memory
419    /// in the range [FunctionStart,FunctionEnd).
420    void endFunctionBody(const Function *F, uint8_t *FunctionStart,
421                         uint8_t *FunctionEnd) {
422      assert(FunctionEnd > FunctionStart);
423      assert(FunctionStart == (uint8_t *)(CurBlock+1) &&
424             "Mismatched function start/end!");
425
426      uintptr_t BlockSize = FunctionEnd - (uint8_t *)CurBlock;
427
428      // Release the memory at the end of this block that isn't needed.
429      FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize);
430    }
431
432    /// allocateSpace - Allocate a memory block of the given size.  This method
433    /// cannot be called between calls to startFunctionBody and endFunctionBody.
434    uint8_t *allocateSpace(intptr_t Size, unsigned Alignment) {
435      CurBlock = FreeMemoryList;
436      FreeMemoryList = FreeMemoryList->AllocateBlock();
437
438      uint8_t *result = (uint8_t *)(CurBlock + 1);
439
440      if (Alignment == 0) Alignment = 1;
441      result = (uint8_t*)(((intptr_t)result+Alignment-1) &
442               ~(intptr_t)(Alignment-1));
443
444      uintptr_t BlockSize = result + Size - (uint8_t *)CurBlock;
445      FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize);
446
447      return result;
448    }
449
450    /// allocateStub - Allocate memory for a function stub.
451    uint8_t *allocateStub(const GlobalValue* F, unsigned StubSize,
452                          unsigned Alignment) {
453      return (uint8_t*)StubAllocator.Allocate(StubSize, Alignment);
454    }
455
456    /// allocateGlobal - Allocate memory for a global.
457    uint8_t *allocateGlobal(uintptr_t Size, unsigned Alignment) {
458      return (uint8_t*)DataAllocator.Allocate(Size, Alignment);
459    }
460
461    /// allocateCodeSection - Allocate memory for a code section.
462    uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment,
463                                 unsigned SectionID) {
464      // Grow the required block size to account for the block header
465      Size += sizeof(*CurBlock);
466
467      // FIXME: Alignement handling.
468      FreeRangeHeader* candidateBlock = FreeMemoryList;
469      FreeRangeHeader* head = FreeMemoryList;
470      FreeRangeHeader* iter = head->Next;
471
472      uintptr_t largest = candidateBlock->BlockSize;
473
474      // Search for the largest free block.
475      while (iter != head) {
476        if (iter->BlockSize > largest) {
477          largest = iter->BlockSize;
478          candidateBlock = iter;
479        }
480        iter = iter->Next;
481      }
482
483      largest = largest - sizeof(MemoryRangeHeader);
484
485      // If this block isn't big enough for the allocation desired, allocate
486      // another block of memory and add it to the free list.
487      if (largest < Size || largest <= FreeRangeHeader::getMinBlockSize()) {
488        DEBUG(dbgs() << "JIT: Allocating another slab of memory for function.");
489        candidateBlock = allocateNewCodeSlab((size_t)Size);
490      }
491
492      // Select this candidate block for allocation
493      CurBlock = candidateBlock;
494
495      // Allocate the entire memory block.
496      FreeMemoryList = candidateBlock->AllocateBlock();
497      // Release the memory at the end of this block that isn't needed.
498      FreeMemoryList = CurBlock->TrimAllocationToSize(FreeMemoryList, Size);
499      return (uint8_t *)(CurBlock + 1);
500    }
501
502    /// allocateDataSection - Allocate memory for a data section.
503    uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment,
504                                 unsigned SectionID) {
505      return (uint8_t*)DataAllocator.Allocate(Size, Alignment);
506    }
507
508    /// startExceptionTable - Use startFunctionBody to allocate memory for the
509    /// function's exception table.
510    uint8_t* startExceptionTable(const Function* F, uintptr_t &ActualSize) {
511      return startFunctionBody(F, ActualSize);
512    }
513
514    /// endExceptionTable - The exception table of F is now allocated,
515    /// and takes the memory in the range [TableStart,TableEnd).
516    void endExceptionTable(const Function *F, uint8_t *TableStart,
517                           uint8_t *TableEnd, uint8_t* FrameRegister) {
518      assert(TableEnd > TableStart);
519      assert(TableStart == (uint8_t *)(CurBlock+1) &&
520             "Mismatched table start/end!");
521
522      uintptr_t BlockSize = TableEnd - (uint8_t *)CurBlock;
523
524      // Release the memory at the end of this block that isn't needed.
525      FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize);
526    }
527
528    uint8_t *getGOTBase() const {
529      return GOTBase;
530    }
531
532    void deallocateBlock(void *Block) {
533      // Find the block that is allocated for this function.
534      MemoryRangeHeader *MemRange = static_cast<MemoryRangeHeader*>(Block) - 1;
535      assert(MemRange->ThisAllocated && "Block isn't allocated!");
536
537      // Fill the buffer with garbage!
538      if (PoisonMemory) {
539        memset(MemRange+1, 0xCD, MemRange->BlockSize-sizeof(*MemRange));
540      }
541
542      // Free the memory.
543      FreeMemoryList = MemRange->FreeBlock(FreeMemoryList);
544    }
545
546    /// deallocateFunctionBody - Deallocate all memory for the specified
547    /// function body.
548    void deallocateFunctionBody(void *Body) {
549      if (Body) deallocateBlock(Body);
550    }
551
552    /// deallocateExceptionTable - Deallocate memory for the specified
553    /// exception table.
554    void deallocateExceptionTable(void *ET) {
555      if (ET) deallocateBlock(ET);
556    }
557
558    /// setMemoryWritable - When code generation is in progress,
559    /// the code pages may need permissions changed.
560    void setMemoryWritable()
561    {
562      for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i)
563        sys::Memory::setWritable(CodeSlabs[i]);
564    }
565    /// setMemoryExecutable - When code generation is done and we're ready to
566    /// start execution, the code pages may need permissions changed.
567    void setMemoryExecutable()
568    {
569      for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i)
570        sys::Memory::setExecutable(CodeSlabs[i]);
571    }
572
573    /// setPoisonMemory - Controls whether we write garbage over freed memory.
574    ///
575    void setPoisonMemory(bool poison) {
576      PoisonMemory = poison;
577    }
578  };
579}
580
581MemSlab *JITSlabAllocator::Allocate(size_t Size) {
582  sys::MemoryBlock B = JMM.allocateNewSlab(Size);
583  MemSlab *Slab = (MemSlab*)B.base();
584  Slab->Size = B.size();
585  Slab->NextPtr = 0;
586  return Slab;
587}
588
589void JITSlabAllocator::Deallocate(MemSlab *Slab) {
590  sys::MemoryBlock B(Slab, Slab->Size);
591  sys::Memory::ReleaseRWX(B);
592}
593
594DefaultJITMemoryManager::DefaultJITMemoryManager()
595  :
596#ifdef NDEBUG
597    PoisonMemory(false),
598#else
599    PoisonMemory(true),
600#endif
601    LastSlab(0, 0),
602    BumpSlabAllocator(*this),
603    StubAllocator(DefaultSlabSize, DefaultSizeThreshold, BumpSlabAllocator),
604    DataAllocator(DefaultSlabSize, DefaultSizeThreshold, BumpSlabAllocator) {
605
606  // Allocate space for code.
607  sys::MemoryBlock MemBlock = allocateNewSlab(DefaultCodeSlabSize);
608  CodeSlabs.push_back(MemBlock);
609  uint8_t *MemBase = (uint8_t*)MemBlock.base();
610
611  // We set up the memory chunk with 4 mem regions, like this:
612  //  [ START
613  //    [ Free      #0 ] -> Large space to allocate functions from.
614  //    [ Allocated #1 ] -> Tiny space to separate regions.
615  //    [ Free      #2 ] -> Tiny space so there is always at least 1 free block.
616  //    [ Allocated #3 ] -> Tiny space to prevent looking past end of block.
617  //  END ]
618  //
619  // The last three blocks are never deallocated or touched.
620
621  // Add MemoryRangeHeader to the end of the memory region, indicating that
622  // the space after the block of memory is allocated.  This is block #3.
623  MemoryRangeHeader *Mem3 = (MemoryRangeHeader*)(MemBase+MemBlock.size())-1;
624  Mem3->ThisAllocated = 1;
625  Mem3->PrevAllocated = 0;
626  Mem3->BlockSize     = sizeof(MemoryRangeHeader);
627
628  /// Add a tiny free region so that the free list always has one entry.
629  FreeRangeHeader *Mem2 =
630    (FreeRangeHeader *)(((char*)Mem3)-FreeRangeHeader::getMinBlockSize());
631  Mem2->ThisAllocated = 0;
632  Mem2->PrevAllocated = 1;
633  Mem2->BlockSize     = FreeRangeHeader::getMinBlockSize();
634  Mem2->SetEndOfBlockSizeMarker();
635  Mem2->Prev = Mem2;   // Mem2 *is* the free list for now.
636  Mem2->Next = Mem2;
637
638  /// Add a tiny allocated region so that Mem2 is never coalesced away.
639  MemoryRangeHeader *Mem1 = (MemoryRangeHeader*)Mem2-1;
640  Mem1->ThisAllocated = 1;
641  Mem1->PrevAllocated = 0;
642  Mem1->BlockSize     = sizeof(MemoryRangeHeader);
643
644  // Add a FreeRangeHeader to the start of the function body region, indicating
645  // that the space is free.  Mark the previous block allocated so we never look
646  // at it.
647  FreeRangeHeader *Mem0 = (FreeRangeHeader*)MemBase;
648  Mem0->ThisAllocated = 0;
649  Mem0->PrevAllocated = 1;
650  Mem0->BlockSize = (char*)Mem1-(char*)Mem0;
651  Mem0->SetEndOfBlockSizeMarker();
652  Mem0->AddToFreeList(Mem2);
653
654  // Start out with the freelist pointing to Mem0.
655  FreeMemoryList = Mem0;
656
657  GOTBase = NULL;
658}
659
660void DefaultJITMemoryManager::AllocateGOT() {
661  assert(GOTBase == 0 && "Cannot allocate the got multiple times");
662  GOTBase = new uint8_t[sizeof(void*) * 8192];
663  HasGOT = true;
664}
665
666DefaultJITMemoryManager::~DefaultJITMemoryManager() {
667  for (unsigned i = 0, e = CodeSlabs.size(); i != e; ++i)
668    sys::Memory::ReleaseRWX(CodeSlabs[i]);
669
670  delete[] GOTBase;
671}
672
673sys::MemoryBlock DefaultJITMemoryManager::allocateNewSlab(size_t size) {
674  // Allocate a new block close to the last one.
675  std::string ErrMsg;
676  sys::MemoryBlock *LastSlabPtr = LastSlab.base() ? &LastSlab : 0;
677  sys::MemoryBlock B = sys::Memory::AllocateRWX(size, LastSlabPtr, &ErrMsg);
678  if (B.base() == 0) {
679    report_fatal_error("Allocation failed when allocating new memory in the"
680                       " JIT\n" + Twine(ErrMsg));
681  }
682  LastSlab = B;
683  ++NumSlabs;
684  // Initialize the slab to garbage when debugging.
685  if (PoisonMemory) {
686    memset(B.base(), 0xCD, B.size());
687  }
688  return B;
689}
690
691/// CheckInvariants - For testing only.  Return "" if all internal invariants
692/// are preserved, and a helpful error message otherwise.  For free and
693/// allocated blocks, make sure that adding BlockSize gives a valid block.
694/// For free blocks, make sure they're in the free list and that their end of
695/// block size marker is correct.  This function should return an error before
696/// accessing bad memory.  This function is defined here instead of in
697/// JITMemoryManagerTest.cpp so that we don't have to expose all of the
698/// implementation details of DefaultJITMemoryManager.
699bool DefaultJITMemoryManager::CheckInvariants(std::string &ErrorStr) {
700  raw_string_ostream Err(ErrorStr);
701
702  // Construct a the set of FreeRangeHeader pointers so we can query it
703  // efficiently.
704  llvm::SmallPtrSet<MemoryRangeHeader*, 16> FreeHdrSet;
705  FreeRangeHeader* FreeHead = FreeMemoryList;
706  FreeRangeHeader* FreeRange = FreeHead;
707
708  do {
709    // Check that the free range pointer is in the blocks we've allocated.
710    bool Found = false;
711    for (std::vector<sys::MemoryBlock>::iterator I = CodeSlabs.begin(),
712         E = CodeSlabs.end(); I != E && !Found; ++I) {
713      char *Start = (char*)I->base();
714      char *End = Start + I->size();
715      Found = (Start <= (char*)FreeRange && (char*)FreeRange < End);
716    }
717    if (!Found) {
718      Err << "Corrupt free list; points to " << FreeRange;
719      return false;
720    }
721
722    if (FreeRange->Next->Prev != FreeRange) {
723      Err << "Next and Prev pointers do not match.";
724      return false;
725    }
726
727    // Otherwise, add it to the set.
728    FreeHdrSet.insert(FreeRange);
729    FreeRange = FreeRange->Next;
730  } while (FreeRange != FreeHead);
731
732  // Go over each block, and look at each MemoryRangeHeader.
733  for (std::vector<sys::MemoryBlock>::iterator I = CodeSlabs.begin(),
734       E = CodeSlabs.end(); I != E; ++I) {
735    char *Start = (char*)I->base();
736    char *End = Start + I->size();
737
738    // Check each memory range.
739    for (MemoryRangeHeader *Hdr = (MemoryRangeHeader*)Start, *LastHdr = NULL;
740         Start <= (char*)Hdr && (char*)Hdr < End;
741         Hdr = &Hdr->getBlockAfter()) {
742      if (Hdr->ThisAllocated == 0) {
743        // Check that this range is in the free list.
744        if (!FreeHdrSet.count(Hdr)) {
745          Err << "Found free header at " << Hdr << " that is not in free list.";
746          return false;
747        }
748
749        // Now make sure the size marker at the end of the block is correct.
750        uintptr_t *Marker = ((uintptr_t*)&Hdr->getBlockAfter()) - 1;
751        if (!(Start <= (char*)Marker && (char*)Marker < End)) {
752          Err << "Block size in header points out of current MemoryBlock.";
753          return false;
754        }
755        if (Hdr->BlockSize != *Marker) {
756          Err << "End of block size marker (" << *Marker << ") "
757              << "and BlockSize (" << Hdr->BlockSize << ") don't match.";
758          return false;
759        }
760      }
761
762      if (LastHdr && LastHdr->ThisAllocated != Hdr->PrevAllocated) {
763        Err << "Hdr->PrevAllocated (" << Hdr->PrevAllocated << ") != "
764            << "LastHdr->ThisAllocated (" << LastHdr->ThisAllocated << ")";
765        return false;
766      } else if (!LastHdr && !Hdr->PrevAllocated) {
767        Err << "The first header should have PrevAllocated true.";
768        return false;
769      }
770
771      // Remember the last header.
772      LastHdr = Hdr;
773    }
774  }
775
776  // All invariants are preserved.
777  return true;
778}
779
780//===----------------------------------------------------------------------===//
781// getPointerToNamedFunction() implementation.
782//===----------------------------------------------------------------------===//
783
784// AtExitHandlers - List of functions to call when the program exits,
785// registered with the atexit() library function.
786static std::vector<void (*)()> AtExitHandlers;
787
788/// runAtExitHandlers - Run any functions registered by the program's
789/// calls to atexit(3), which we intercept and store in
790/// AtExitHandlers.
791///
792static void runAtExitHandlers() {
793  while (!AtExitHandlers.empty()) {
794    void (*Fn)() = AtExitHandlers.back();
795    AtExitHandlers.pop_back();
796    Fn();
797  }
798}
799
800//===----------------------------------------------------------------------===//
801// Function stubs that are invoked instead of certain library calls
802//
803// Force the following functions to be linked in to anything that uses the
804// JIT. This is a hack designed to work around the all-too-clever Glibc
805// strategy of making these functions work differently when inlined vs. when
806// not inlined, and hiding their real definitions in a separate archive file
807// that the dynamic linker can't see. For more info, search for
808// 'libc_nonshared.a' on Google, or read http://llvm.org/PR274.
809#if defined(__linux__)
810/* stat functions are redirecting to __xstat with a version number.  On x86-64
811 * linking with libc_nonshared.a and -Wl,--export-dynamic doesn't make 'stat'
812 * available as an exported symbol, so we have to add it explicitly.
813 */
814namespace {
815class StatSymbols {
816public:
817  StatSymbols() {
818    sys::DynamicLibrary::AddSymbol("stat", (void*)(intptr_t)stat);
819    sys::DynamicLibrary::AddSymbol("fstat", (void*)(intptr_t)fstat);
820    sys::DynamicLibrary::AddSymbol("lstat", (void*)(intptr_t)lstat);
821    sys::DynamicLibrary::AddSymbol("stat64", (void*)(intptr_t)stat64);
822    sys::DynamicLibrary::AddSymbol("\x1stat64", (void*)(intptr_t)stat64);
823    sys::DynamicLibrary::AddSymbol("\x1open64", (void*)(intptr_t)open64);
824    sys::DynamicLibrary::AddSymbol("\x1lseek64", (void*)(intptr_t)lseek64);
825    sys::DynamicLibrary::AddSymbol("fstat64", (void*)(intptr_t)fstat64);
826    sys::DynamicLibrary::AddSymbol("lstat64", (void*)(intptr_t)lstat64);
827    sys::DynamicLibrary::AddSymbol("atexit", (void*)(intptr_t)atexit);
828    sys::DynamicLibrary::AddSymbol("mknod", (void*)(intptr_t)mknod);
829  }
830};
831}
832static StatSymbols initStatSymbols;
833#endif // __linux__
834
835// jit_exit - Used to intercept the "exit" library call.
836static void jit_exit(int Status) {
837  runAtExitHandlers();   // Run atexit handlers...
838  exit(Status);
839}
840
841// jit_atexit - Used to intercept the "atexit" library call.
842static int jit_atexit(void (*Fn)()) {
843  AtExitHandlers.push_back(Fn);    // Take note of atexit handler...
844  return 0;  // Always successful
845}
846
847static int jit_noop() {
848  return 0;
849}
850
851//===----------------------------------------------------------------------===//
852//
853/// getPointerToNamedFunction - This method returns the address of the specified
854/// function by using the dynamic loader interface.  As such it is only useful
855/// for resolving library symbols, not code generated symbols.
856///
857void *DefaultJITMemoryManager::getPointerToNamedFunction(const std::string &Name,
858                                                         bool AbortOnFailure) {
859  // Check to see if this is one of the functions we want to intercept.  Note,
860  // we cast to intptr_t here to silence a -pedantic warning that complains
861  // about casting a function pointer to a normal pointer.
862  if (Name == "exit") return (void*)(intptr_t)&jit_exit;
863  if (Name == "atexit") return (void*)(intptr_t)&jit_atexit;
864
865  // We should not invoke parent's ctors/dtors from generated main()!
866  // On Mingw and Cygwin, the symbol __main is resolved to
867  // callee's(eg. tools/lli) one, to invoke wrong duplicated ctors
868  // (and register wrong callee's dtors with atexit(3)).
869  // We expect ExecutionEngine::runStaticConstructorsDestructors()
870  // is called before ExecutionEngine::runFunctionAsMain() is called.
871  if (Name == "__main") return (void*)(intptr_t)&jit_noop;
872
873  const char *NameStr = Name.c_str();
874  // If this is an asm specifier, skip the sentinal.
875  if (NameStr[0] == 1) ++NameStr;
876
877  // If it's an external function, look it up in the process image...
878  void *Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(NameStr);
879  if (Ptr) return Ptr;
880
881  // If it wasn't found and if it starts with an underscore ('_') character,
882  // try again without the underscore.
883  if (NameStr[0] == '_') {
884    Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(NameStr+1);
885    if (Ptr) return Ptr;
886  }
887
888  // Darwin/PPC adds $LDBLStub suffixes to various symbols like printf.  These
889  // are references to hidden visibility symbols that dlsym cannot resolve.
890  // If we have one of these, strip off $LDBLStub and try again.
891#if defined(__APPLE__) && defined(__ppc__)
892  if (Name.size() > 9 && Name[Name.size()-9] == '$' &&
893      memcmp(&Name[Name.size()-8], "LDBLStub", 8) == 0) {
894    // First try turning $LDBLStub into $LDBL128. If that fails, strip it off.
895    // This mirrors logic in libSystemStubs.a.
896    std::string Prefix = std::string(Name.begin(), Name.end()-9);
897    if (void *Ptr = getPointerToNamedFunction(Prefix+"$LDBL128", false))
898      return Ptr;
899    if (void *Ptr = getPointerToNamedFunction(Prefix, false))
900      return Ptr;
901  }
902#endif
903
904  if (AbortOnFailure) {
905    report_fatal_error("Program used external function '"+Name+
906                      "' which could not be resolved!");
907  }
908  return 0;
909}
910
911
912
913JITMemoryManager *JITMemoryManager::CreateDefaultMemManager() {
914  return new DefaultJITMemoryManager();
915}
916
917// Allocate memory for code in 512K slabs.
918const size_t DefaultJITMemoryManager::DefaultCodeSlabSize = 512 * 1024;
919
920// Allocate globals and stubs in slabs of 64K.  (probably 16 pages)
921const size_t DefaultJITMemoryManager::DefaultSlabSize = 64 * 1024;
922
923// Waste at most 16K at the end of each bump slab.  (probably 4 pages)
924const size_t DefaultJITMemoryManager::DefaultSizeThreshold = 16 * 1024;
925