1<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2                      "http://www.w3.org/TR/html4/strict.dtd">
3<html>
4<head>
5  <title>LLVM Assembly Language Reference Manual</title>
6  <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7  <meta name="author" content="Chris Lattner">
8  <meta name="description"
9  content="LLVM Assembly Language Reference Manual.">
10  <link rel="stylesheet" href="_static/llvm.css" type="text/css">
11</head>
12
13<body>
14
15<h1>LLVM Language Reference Manual</h1>
16<ol>
17  <li><a href="#abstract">Abstract</a></li>
18  <li><a href="#introduction">Introduction</a></li>
19  <li><a href="#identifiers">Identifiers</a></li>
20  <li><a href="#highlevel">High Level Structure</a>
21    <ol>
22      <li><a href="#modulestructure">Module Structure</a></li>
23      <li><a href="#linkage">Linkage Types</a>
24        <ol>
25          <li><a href="#linkage_private">'<tt>private</tt>' Linkage</a></li>
26          <li><a href="#linkage_linker_private">'<tt>linker_private</tt>' Linkage</a></li>
27          <li><a href="#linkage_linker_private_weak">'<tt>linker_private_weak</tt>' Linkage</a></li>
28          <li><a href="#linkage_internal">'<tt>internal</tt>' Linkage</a></li>
29          <li><a href="#linkage_available_externally">'<tt>available_externally</tt>' Linkage</a></li>
30          <li><a href="#linkage_linkonce">'<tt>linkonce</tt>' Linkage</a></li>
31          <li><a href="#linkage_common">'<tt>common</tt>' Linkage</a></li>
32          <li><a href="#linkage_weak">'<tt>weak</tt>' Linkage</a></li>
33          <li><a href="#linkage_appending">'<tt>appending</tt>' Linkage</a></li>
34          <li><a href="#linkage_externweak">'<tt>extern_weak</tt>' Linkage</a></li>
35          <li><a href="#linkage_linkonce_odr">'<tt>linkonce_odr</tt>' Linkage</a></li>
36          <li><a href="#linkage_linkonce_odr_auto_hide">'<tt>linkonce_odr_auto_hide</tt>' Linkage</a></li>
37          <li><a href="#linkage_weak">'<tt>weak_odr</tt>' Linkage</a></li>
38          <li><a href="#linkage_external">'<tt>external</tt>' Linkage</a></li>
39          <li><a href="#linkage_dllimport">'<tt>dllimport</tt>' Linkage</a></li>
40          <li><a href="#linkage_dllexport">'<tt>dllexport</tt>' Linkage</a></li>
41        </ol>
42      </li>
43      <li><a href="#callingconv">Calling Conventions</a></li>
44      <li><a href="#namedtypes">Named Types</a></li>
45      <li><a href="#globalvars">Global Variables</a></li>
46      <li><a href="#functionstructure">Functions</a></li>
47      <li><a href="#aliasstructure">Aliases</a></li>
48      <li><a href="#namedmetadatastructure">Named Metadata</a></li>
49      <li><a href="#paramattrs">Parameter Attributes</a></li>
50      <li><a href="#fnattrs">Function Attributes</a></li>
51      <li><a href="#gc">Garbage Collector Names</a></li>
52      <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
53      <li><a href="#datalayout">Data Layout</a></li>
54      <li><a href="#pointeraliasing">Pointer Aliasing Rules</a></li>
55      <li><a href="#volatile">Volatile Memory Accesses</a></li>
56      <li><a href="#memmodel">Memory Model for Concurrent Operations</a></li>
57      <li><a href="#ordering">Atomic Memory Ordering Constraints</a></li>
58    </ol>
59  </li>
60  <li><a href="#typesystem">Type System</a>
61    <ol>
62      <li><a href="#t_classifications">Type Classifications</a></li>
63      <li><a href="#t_primitive">Primitive Types</a>
64        <ol>
65          <li><a href="#t_integer">Integer Type</a></li>
66          <li><a href="#t_floating">Floating Point Types</a></li>
67          <li><a href="#t_x86mmx">X86mmx Type</a></li>
68          <li><a href="#t_void">Void Type</a></li>
69          <li><a href="#t_label">Label Type</a></li>
70          <li><a href="#t_metadata">Metadata Type</a></li>
71        </ol>
72      </li>
73      <li><a href="#t_derived">Derived Types</a>
74        <ol>
75          <li><a href="#t_aggregate">Aggregate Types</a>
76            <ol>
77              <li><a href="#t_array">Array Type</a></li>
78              <li><a href="#t_struct">Structure Type</a></li>
79              <li><a href="#t_opaque">Opaque Structure Types</a></li>
80              <li><a href="#t_vector">Vector Type</a></li>
81            </ol>
82          </li>
83          <li><a href="#t_function">Function Type</a></li>
84          <li><a href="#t_pointer">Pointer Type</a></li>
85        </ol>
86      </li>
87    </ol>
88  </li>
89  <li><a href="#constants">Constants</a>
90    <ol>
91      <li><a href="#simpleconstants">Simple Constants</a></li>
92      <li><a href="#complexconstants">Complex Constants</a></li>
93      <li><a href="#globalconstants">Global Variable and Function Addresses</a></li>
94      <li><a href="#undefvalues">Undefined Values</a></li>
95      <li><a href="#poisonvalues">Poison Values</a></li>
96      <li><a href="#blockaddress">Addresses of Basic Blocks</a></li>
97      <li><a href="#constantexprs">Constant Expressions</a></li>
98    </ol>
99  </li>
100  <li><a href="#othervalues">Other Values</a>
101    <ol>
102      <li><a href="#inlineasm">Inline Assembler Expressions</a></li>
103      <li><a href="#metadata">Metadata Nodes and Metadata Strings</a>
104        <ol>
105          <li><a href="#tbaa">'<tt>tbaa</tt>' Metadata</a></li>
106          <li><a href="#tbaa.struct">'<tt>tbaa.struct</tt>' Metadata</a></li>
107          <li><a href="#fpmath">'<tt>fpmath</tt>' Metadata</a></li>
108          <li><a href="#range">'<tt>range</tt>' Metadata</a></li>
109        </ol>
110      </li>
111    </ol>
112  </li>
113  <li><a href="#module_flags">Module Flags Metadata</a>
114    <ol>
115      <li><a href="#objc_gc_flags">Objective-C Garbage Collection Module Flags Metadata</a></li>
116    </ol>
117  </li>
118  <li><a href="#intrinsic_globals">Intrinsic Global Variables</a>
119    <ol>
120      <li><a href="#intg_used">The '<tt>llvm.used</tt>' Global Variable</a></li>
121      <li><a href="#intg_compiler_used">The '<tt>llvm.compiler.used</tt>'
122          Global Variable</a></li>
123      <li><a href="#intg_global_ctors">The '<tt>llvm.global_ctors</tt>'
124         Global Variable</a></li>
125      <li><a href="#intg_global_dtors">The '<tt>llvm.global_dtors</tt>'
126         Global Variable</a></li>
127    </ol>
128  </li>
129  <li><a href="#instref">Instruction Reference</a>
130    <ol>
131      <li><a href="#terminators">Terminator Instructions</a>
132        <ol>
133          <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
134          <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
135          <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
136          <li><a href="#i_indirectbr">'<tt>indirectbr</tt>' Instruction</a></li>
137          <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
138          <li><a href="#i_resume">'<tt>resume</tt>'  Instruction</a></li>
139          <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
140        </ol>
141      </li>
142      <li><a href="#binaryops">Binary Operations</a>
143        <ol>
144          <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
145          <li><a href="#i_fadd">'<tt>fadd</tt>' Instruction</a></li>
146          <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
147          <li><a href="#i_fsub">'<tt>fsub</tt>' Instruction</a></li>
148          <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
149          <li><a href="#i_fmul">'<tt>fmul</tt>' Instruction</a></li>
150          <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
151          <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
152          <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
153          <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
154          <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
155          <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
156        </ol>
157      </li>
158      <li><a href="#bitwiseops">Bitwise Binary Operations</a>
159        <ol>
160          <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
161          <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
162          <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
163          <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
164          <li><a href="#i_or">'<tt>or</tt>'  Instruction</a></li>
165          <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
166        </ol>
167      </li>
168      <li><a href="#vectorops">Vector Operations</a>
169        <ol>
170          <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
171          <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
172          <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
173        </ol>
174      </li>
175      <li><a href="#aggregateops">Aggregate Operations</a>
176        <ol>
177          <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
178          <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
179        </ol>
180      </li>
181      <li><a href="#memoryops">Memory Access and Addressing Operations</a>
182        <ol>
183          <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
184         <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
185         <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
186         <li><a href="#i_fence">'<tt>fence</tt>' Instruction</a></li>
187         <li><a href="#i_cmpxchg">'<tt>cmpxchg</tt>' Instruction</a></li>
188         <li><a href="#i_atomicrmw">'<tt>atomicrmw</tt>' Instruction</a></li>
189         <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
190        </ol>
191      </li>
192      <li><a href="#convertops">Conversion Operations</a>
193        <ol>
194          <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
195          <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
196          <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
197          <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
198          <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
199          <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
200          <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
201          <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
202          <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
203          <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
204          <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
205          <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
206        </ol>
207      </li>
208      <li><a href="#otherops">Other Operations</a>
209        <ol>
210          <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
211          <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
212          <li><a href="#i_phi">'<tt>phi</tt>'   Instruction</a></li>
213          <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
214          <li><a href="#i_call">'<tt>call</tt>'  Instruction</a></li>
215          <li><a href="#i_va_arg">'<tt>va_arg</tt>'  Instruction</a></li>
216          <li><a href="#i_landingpad">'<tt>landingpad</tt>' Instruction</a></li>
217        </ol>
218      </li>
219    </ol>
220  </li>
221  <li><a href="#intrinsics">Intrinsic Functions</a>
222    <ol>
223      <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
224        <ol>
225          <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
226          <li><a href="#int_va_end">'<tt>llvm.va_end</tt>'   Intrinsic</a></li>
227          <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>'  Intrinsic</a></li>
228        </ol>
229      </li>
230      <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
231        <ol>
232          <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
233          <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
234          <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
235        </ol>
236      </li>
237      <li><a href="#int_codegen">Code Generator Intrinsics</a>
238        <ol>
239          <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
240          <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>'   Intrinsic</a></li>
241          <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
242          <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
243          <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
244          <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
245          <li><a href="#int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
246        </ol>
247      </li>
248      <li><a href="#int_libc">Standard C Library Intrinsics</a>
249        <ol>
250          <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
251          <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
252          <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
253          <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
254          <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
255          <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
256          <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
257          <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
258          <li><a href="#int_exp">'<tt>llvm.exp.*</tt>' Intrinsic</a></li>
259          <li><a href="#int_log">'<tt>llvm.log.*</tt>' Intrinsic</a></li>
260          <li><a href="#int_fma">'<tt>llvm.fma.*</tt>' Intrinsic</a></li>
261          <li><a href="#int_fabs">'<tt>llvm.fabs.*</tt>' Intrinsic</a></li>
262          <li><a href="#int_floor">'<tt>llvm.floor.*</tt>' Intrinsic</a></li>
263        </ol>
264      </li>
265      <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
266        <ol>
267          <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
268          <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
269          <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
270          <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
271        </ol>
272      </li>
273      <li><a href="#int_overflow">Arithmetic with Overflow Intrinsics</a>
274        <ol>
275          <li><a href="#int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt> Intrinsics</a></li>
276          <li><a href="#int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt> Intrinsics</a></li>
277          <li><a href="#int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt> Intrinsics</a></li>
278          <li><a href="#int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt> Intrinsics</a></li>
279          <li><a href="#int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt> Intrinsics</a></li>
280          <li><a href="#int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt> Intrinsics</a></li>
281        </ol>
282      </li>
283      <li><a href="#spec_arithmetic">Specialised Arithmetic Intrinsics</a>
284        <ol>
285          <li><a href="#fmuladd">'<tt>llvm.fmuladd</tt> Intrinsic</a></li>
286        </ol>
287      </li>
288      <li><a href="#int_fp16">Half Precision Floating Point Intrinsics</a>
289        <ol>
290          <li><a href="#int_convert_to_fp16">'<tt>llvm.convert.to.fp16</tt>' Intrinsic</a></li>
291          <li><a href="#int_convert_from_fp16">'<tt>llvm.convert.from.fp16</tt>' Intrinsic</a></li>
292        </ol>
293      </li>
294      <li><a href="#int_debugger">Debugger intrinsics</a></li>
295      <li><a href="#int_eh">Exception Handling intrinsics</a></li>
296      <li><a href="#int_trampoline">Trampoline Intrinsics</a>
297        <ol>
298          <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
299          <li><a href="#int_at">'<tt>llvm.adjust.trampoline</tt>' Intrinsic</a></li>
300        </ol>
301      </li>
302      <li><a href="#int_memorymarkers">Memory Use Markers</a>
303        <ol>
304          <li><a href="#int_lifetime_start">'<tt>llvm.lifetime.start</tt>' Intrinsic</a></li>
305          <li><a href="#int_lifetime_end">'<tt>llvm.lifetime.end</tt>' Intrinsic</a></li>
306          <li><a href="#int_invariant_start">'<tt>llvm.invariant.start</tt>' Intrinsic</a></li>
307          <li><a href="#int_invariant_end">'<tt>llvm.invariant.end</tt>' Intrinsic</a></li>
308        </ol>
309      </li>
310      <li><a href="#int_general">General intrinsics</a>
311        <ol>
312          <li><a href="#int_var_annotation">
313            '<tt>llvm.var.annotation</tt>' Intrinsic</a></li>
314          <li><a href="#int_annotation">
315            '<tt>llvm.annotation.*</tt>' Intrinsic</a></li>
316          <li><a href="#int_trap">
317            '<tt>llvm.trap</tt>' Intrinsic</a></li>
318          <li><a href="#int_debugtrap">
319            '<tt>llvm.debugtrap</tt>' Intrinsic</a></li>
320          <li><a href="#int_stackprotector">
321            '<tt>llvm.stackprotector</tt>' Intrinsic</a></li>
322          <li><a href="#int_objectsize">
323            '<tt>llvm.objectsize</tt>' Intrinsic</a></li>
324          <li><a href="#int_expect">
325            '<tt>llvm.expect</tt>' Intrinsic</a></li>
326          <li><a href="#int_donothing">
327            '<tt>llvm.donothing</tt>' Intrinsic</a></li>
328        </ol>
329      </li>
330    </ol>
331  </li>
332</ol>
333
334<div class="doc_author">
335  <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
336            and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
337</div>
338
339<!-- *********************************************************************** -->
340<h2><a name="abstract">Abstract</a></h2>
341<!-- *********************************************************************** -->
342
343<div>
344
345<p>This document is a reference manual for the LLVM assembly language. LLVM is
346   a Static Single Assignment (SSA) based representation that provides type
347   safety, low-level operations, flexibility, and the capability of representing
348   'all' high-level languages cleanly.  It is the common code representation
349   used throughout all phases of the LLVM compilation strategy.</p>
350
351</div>
352
353<!-- *********************************************************************** -->
354<h2><a name="introduction">Introduction</a></h2>
355<!-- *********************************************************************** -->
356
357<div>
358
359<p>The LLVM code representation is designed to be used in three different forms:
360   as an in-memory compiler IR, as an on-disk bitcode representation (suitable
361   for fast loading by a Just-In-Time compiler), and as a human readable
362   assembly language representation.  This allows LLVM to provide a powerful
363   intermediate representation for efficient compiler transformations and
364   analysis, while providing a natural means to debug and visualize the
365   transformations.  The three different forms of LLVM are all equivalent.  This
366   document describes the human readable representation and notation.</p>
367
368<p>The LLVM representation aims to be light-weight and low-level while being
369   expressive, typed, and extensible at the same time.  It aims to be a
370   "universal IR" of sorts, by being at a low enough level that high-level ideas
371   may be cleanly mapped to it (similar to how microprocessors are "universal
372   IR's", allowing many source languages to be mapped to them).  By providing
373   type information, LLVM can be used as the target of optimizations: for
374   example, through pointer analysis, it can be proven that a C automatic
375   variable is never accessed outside of the current function, allowing it to
376   be promoted to a simple SSA value instead of a memory location.</p>
377
378<!-- _______________________________________________________________________ -->
379<h4>
380  <a name="wellformed">Well-Formedness</a>
381</h4>
382
383<div>
384
385<p>It is important to note that this document describes 'well formed' LLVM
386   assembly language.  There is a difference between what the parser accepts and
387   what is considered 'well formed'.  For example, the following instruction is
388   syntactically okay, but not well formed:</p>
389
390<pre class="doc_code">
391%x = <a href="#i_add">add</a> i32 1, %x
392</pre>
393
394<p>because the definition of <tt>%x</tt> does not dominate all of its uses. The
395   LLVM infrastructure provides a verification pass that may be used to verify
396   that an LLVM module is well formed.  This pass is automatically run by the
397   parser after parsing input assembly and by the optimizer before it outputs
398   bitcode.  The violations pointed out by the verifier pass indicate bugs in
399   transformation passes or input to the parser.</p>
400
401</div>
402
403</div>
404
405<!-- Describe the typesetting conventions here. -->
406
407<!-- *********************************************************************** -->
408<h2><a name="identifiers">Identifiers</a></h2>
409<!-- *********************************************************************** -->
410
411<div>
412
413<p>LLVM identifiers come in two basic types: global and local. Global
414   identifiers (functions, global variables) begin with the <tt>'@'</tt>
415   character. Local identifiers (register names, types) begin with
416   the <tt>'%'</tt> character. Additionally, there are three different formats
417   for identifiers, for different purposes:</p>
418
419<ol>
420  <li>Named values are represented as a string of characters with their prefix.
421      For example, <tt>%foo</tt>, <tt>@DivisionByZero</tt>,
422      <tt>%a.really.long.identifier</tt>. The actual regular expression used is
423      '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.  Identifiers which require
424      other characters in their names can be surrounded with quotes. Special
425      characters may be escaped using <tt>"\xx"</tt> where <tt>xx</tt> is the
426      ASCII code for the character in hexadecimal.  In this way, any character
427      can be used in a name value, even quotes themselves.</li>
428
429  <li>Unnamed values are represented as an unsigned numeric value with their
430      prefix.  For example, <tt>%12</tt>, <tt>@2</tt>, <tt>%44</tt>.</li>
431
432  <li>Constants, which are described in a <a href="#constants">section about
433      constants</a>, below.</li>
434</ol>
435
436<p>LLVM requires that values start with a prefix for two reasons: Compilers
437   don't need to worry about name clashes with reserved words, and the set of
438   reserved words may be expanded in the future without penalty.  Additionally,
439   unnamed identifiers allow a compiler to quickly come up with a temporary
440   variable without having to avoid symbol table conflicts.</p>
441
442<p>Reserved words in LLVM are very similar to reserved words in other
443   languages. There are keywords for different opcodes
444   ('<tt><a href="#i_add">add</a></tt>',
445   '<tt><a href="#i_bitcast">bitcast</a></tt>',
446   '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names
447   ('<tt><a href="#t_void">void</a></tt>',
448   '<tt><a href="#t_primitive">i32</a></tt>', etc...), and others.  These
449   reserved words cannot conflict with variable names, because none of them
450   start with a prefix character (<tt>'%'</tt> or <tt>'@'</tt>).</p>
451
452<p>Here is an example of LLVM code to multiply the integer variable
453   '<tt>%X</tt>' by 8:</p>
454
455<p>The easy way:</p>
456
457<pre class="doc_code">
458%result = <a href="#i_mul">mul</a> i32 %X, 8
459</pre>
460
461<p>After strength reduction:</p>
462
463<pre class="doc_code">
464%result = <a href="#i_shl">shl</a> i32 %X, i8 3
465</pre>
466
467<p>And the hard way:</p>
468
469<pre class="doc_code">
470%0 = <a href="#i_add">add</a> i32 %X, %X           <i>; yields {i32}:%0</i>
471%1 = <a href="#i_add">add</a> i32 %0, %0           <i>; yields {i32}:%1</i>
472%result = <a href="#i_add">add</a> i32 %1, %1
473</pre>
474
475<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several important
476   lexical features of LLVM:</p>
477
478<ol>
479  <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
480      line.</li>
481
482  <li>Unnamed temporaries are created when the result of a computation is not
483      assigned to a named value.</li>
484
485  <li>Unnamed temporaries are numbered sequentially</li>
486</ol>
487
488<p>It also shows a convention that we follow in this document.  When
489   demonstrating instructions, we will follow an instruction with a comment that
490   defines the type and name of value produced.  Comments are shown in italic
491   text.</p>
492
493</div>
494
495<!-- *********************************************************************** -->
496<h2><a name="highlevel">High Level Structure</a></h2>
497<!-- *********************************************************************** -->
498<div>
499<!-- ======================================================================= -->
500<h3>
501  <a name="modulestructure">Module Structure</a>
502</h3>
503
504<div>
505
506<p>LLVM programs are composed of <tt>Module</tt>s, each of which is a
507   translation unit of the input programs.  Each module consists of functions,
508   global variables, and symbol table entries.  Modules may be combined together
509   with the LLVM linker, which merges function (and global variable)
510   definitions, resolves forward declarations, and merges symbol table
511   entries. Here is an example of the "hello world" module:</p>
512
513<pre class="doc_code">
514<i>; Declare the string constant as a global constant.</i>&nbsp;
515<a href="#identifiers">@.str</a> = <a href="#linkage_private">private</a>&nbsp;<a href="#globalvars">unnamed_addr</a>&nbsp;<a href="#globalvars">constant</a>&nbsp;<a href="#t_array">[13 x i8]</a> c"hello world\0A\00"&nbsp;
516
517<i>; External declaration of the puts function</i>&nbsp;
518<a href="#functionstructure">declare</a> i32 @puts(i8* <a href="#nocapture">nocapture</a>) <a href="#fnattrs">nounwind</a>&nbsp;
519
520<i>; Definition of main function</i>
521define i32 @main() {   <i>; i32()* </i>&nbsp;
522  <i>; Convert [13 x i8]* to i8  *...</i>&nbsp;
523  %cast210 = <a href="#i_getelementptr">getelementptr</a> [13 x i8]* @.str, i64 0, i64 0
524
525  <i>; Call puts function to write out the string to stdout.</i>&nbsp;
526  <a href="#i_call">call</a> i32 @puts(i8* %cast210)
527  <a href="#i_ret">ret</a> i32 0&nbsp;
528}
529
530<i>; Named metadata</i>
531!1 = metadata !{i32 42}
532!foo = !{!1, null}
533</pre>
534
535<p>This example is made up of a <a href="#globalvars">global variable</a> named
536   "<tt>.str</tt>", an external declaration of the "<tt>puts</tt>" function,
537   a <a href="#functionstructure">function definition</a> for
538   "<tt>main</tt>" and <a href="#namedmetadatastructure">named metadata</a> 
539   "<tt>foo</tt>".</p>
540
541<p>In general, a module is made up of a list of global values (where both
542   functions and global variables are global values). Global values are
543   represented by a pointer to a memory location (in this case, a pointer to an
544   array of char, and a pointer to a function), and have one of the
545   following <a href="#linkage">linkage types</a>.</p>
546
547</div>
548
549<!-- ======================================================================= -->
550<h3>
551  <a name="linkage">Linkage Types</a>
552</h3>
553
554<div>
555
556<p>All Global Variables and Functions have one of the following types of
557   linkage:</p>
558
559<dl>
560  <dt><tt><b><a name="linkage_private">private</a></b></tt></dt>
561  <dd>Global values with "<tt>private</tt>" linkage are only directly accessible
562      by objects in the current module. In particular, linking code into a
563      module with an private global value may cause the private to be renamed as
564      necessary to avoid collisions.  Because the symbol is private to the
565      module, all references can be updated. This doesn't show up in any symbol
566      table in the object file.</dd>
567
568  <dt><tt><b><a name="linkage_linker_private">linker_private</a></b></tt></dt>
569  <dd>Similar to <tt>private</tt>, but the symbol is passed through the
570      assembler and evaluated by the linker. Unlike normal strong symbols, they
571      are removed by the linker from the final linked image (executable or
572      dynamic library).</dd>
573
574  <dt><tt><b><a name="linkage_linker_private_weak">linker_private_weak</a></b></tt></dt>
575  <dd>Similar to "<tt>linker_private</tt>", but the symbol is weak. Note that
576      <tt>linker_private_weak</tt> symbols are subject to coalescing by the
577      linker. The symbols are removed by the linker from the final linked image
578      (executable or dynamic library).</dd>
579
580  <dt><tt><b><a name="linkage_internal">internal</a></b></tt></dt>
581  <dd>Similar to private, but the value shows as a local symbol
582      (<tt>STB_LOCAL</tt> in the case of ELF) in the object file. This
583      corresponds to the notion of the '<tt>static</tt>' keyword in C.</dd>
584
585  <dt><tt><b><a name="linkage_available_externally">available_externally</a></b></tt></dt>
586  <dd>Globals with "<tt>available_externally</tt>" linkage are never emitted
587      into the object file corresponding to the LLVM module.  They exist to
588      allow inlining and other optimizations to take place given knowledge of
589      the definition of the global, which is known to be somewhere outside the
590      module.  Globals with <tt>available_externally</tt> linkage are allowed to
591      be discarded at will, and are otherwise the same as <tt>linkonce_odr</tt>.
592      This linkage type is only allowed on definitions, not declarations.</dd>
593
594  <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt></dt>
595  <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
596      the same name when linkage occurs.  This can be used to implement
597      some forms of inline functions, templates, or other code which must be
598      generated in each translation unit that uses it, but where the body may
599      be overridden with a more definitive definition later.  Unreferenced
600      <tt>linkonce</tt> globals are allowed to be discarded.  Note that
601      <tt>linkonce</tt> linkage does not actually allow the optimizer to
602      inline the body of this function into callers because it doesn't know if
603      this definition of the function is the definitive definition within the
604      program or whether it will be overridden by a stronger definition.
605      To enable inlining and other optimizations, use "<tt>linkonce_odr</tt>"
606      linkage.</dd>
607
608  <dt><tt><b><a name="linkage_weak">weak</a></b></tt></dt>
609  <dd>"<tt>weak</tt>" linkage has the same merging semantics as
610      <tt>linkonce</tt> linkage, except that unreferenced globals with
611      <tt>weak</tt> linkage may not be discarded.  This is used for globals that
612      are declared "weak" in C source code.</dd>
613
614  <dt><tt><b><a name="linkage_common">common</a></b></tt></dt>
615  <dd>"<tt>common</tt>" linkage is most similar to "<tt>weak</tt>" linkage, but
616      they are used for tentative definitions in C, such as "<tt>int X;</tt>" at
617      global scope.
618      Symbols with "<tt>common</tt>" linkage are merged in the same way as
619      <tt>weak symbols</tt>, and they may not be deleted if unreferenced.
620      <tt>common</tt> symbols may not have an explicit section,
621      must have a zero initializer, and may not be marked '<a
622      href="#globalvars"><tt>constant</tt></a>'.  Functions and aliases may not
623      have common linkage.</dd>
624
625
626  <dt><tt><b><a name="linkage_appending">appending</a></b></tt></dt>
627  <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
628      pointer to array type.  When two global variables with appending linkage
629      are linked together, the two global arrays are appended together.  This is
630      the LLVM, typesafe, equivalent of having the system linker append together
631      "sections" with identical names when .o files are linked.</dd>
632
633  <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt></dt>
634  <dd>The semantics of this linkage follow the ELF object file model: the symbol
635      is weak until linked, if not linked, the symbol becomes null instead of
636      being an undefined reference.</dd>
637
638  <dt><tt><b><a name="linkage_linkonce_odr">linkonce_odr</a></b></tt></dt>
639  <dt><tt><b><a name="linkage_weak_odr">weak_odr</a></b></tt></dt>
640  <dd>Some languages allow differing globals to be merged, such as two functions
641      with different semantics.  Other languages, such as <tt>C++</tt>, ensure
642      that only equivalent globals are ever merged (the "one definition rule"
643      &mdash; "ODR").  Such languages can use the <tt>linkonce_odr</tt>
644      and <tt>weak_odr</tt> linkage types to indicate that the global will only
645      be merged with equivalent globals.  These linkage types are otherwise the
646      same as their non-<tt>odr</tt> versions.</dd>
647
648  <dt><tt><b><a name="linkage_linkonce_odr_auto_hide">linkonce_odr_auto_hide</a></b></tt></dt>
649  <dd>Similar to "<tt>linkonce_odr</tt>", but nothing in the translation unit
650      takes the address of this definition. For instance, functions that had an
651      inline definition, but the compiler decided not to inline it.
652      <tt>linkonce_odr_auto_hide</tt> may have only <tt>default</tt> visibility.
653      The symbols are removed by the linker from the final linked image
654      (executable or dynamic library).</dd>
655
656  <dt><tt><b><a name="linkage_external">external</a></b></tt></dt>
657  <dd>If none of the above identifiers are used, the global is externally
658      visible, meaning that it participates in linkage and can be used to
659      resolve external symbol references.</dd>
660</dl>
661
662<p>The next two types of linkage are targeted for Microsoft Windows platform
663   only. They are designed to support importing (exporting) symbols from (to)
664   DLLs (Dynamic Link Libraries).</p>
665
666<dl>
667  <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt></dt>
668  <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
669      or variable via a global pointer to a pointer that is set up by the DLL
670      exporting the symbol. On Microsoft Windows targets, the pointer name is
671      formed by combining <code>__imp_</code> and the function or variable
672      name.</dd>
673
674  <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt></dt>
675  <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
676      pointer to a pointer in a DLL, so that it can be referenced with the
677      <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
678      name is formed by combining <code>__imp_</code> and the function or
679      variable name.</dd>
680</dl>
681
682<p>For example, since the "<tt>.LC0</tt>" variable is defined to be internal, if
683   another module defined a "<tt>.LC0</tt>" variable and was linked with this
684   one, one of the two would be renamed, preventing a collision.  Since
685   "<tt>main</tt>" and "<tt>puts</tt>" are external (i.e., lacking any linkage
686   declarations), they are accessible outside of the current module.</p>
687
688<p>It is illegal for a function <i>declaration</i> to have any linkage type
689   other than <tt>external</tt>, <tt>dllimport</tt>
690  or <tt>extern_weak</tt>.</p>
691
692<p>Aliases can have only <tt>external</tt>, <tt>internal</tt>, <tt>weak</tt>
693   or <tt>weak_odr</tt> linkages.</p>
694
695</div>
696
697<!-- ======================================================================= -->
698<h3>
699  <a name="callingconv">Calling Conventions</a>
700</h3>
701
702<div>
703
704<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
705   and <a href="#i_invoke">invokes</a> can all have an optional calling
706   convention specified for the call.  The calling convention of any pair of
707   dynamic caller/callee must match, or the behavior of the program is
708   undefined.  The following calling conventions are supported by LLVM, and more
709   may be added in the future:</p>
710
711<dl>
712  <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
713  <dd>This calling convention (the default if no other calling convention is
714      specified) matches the target C calling conventions.  This calling
715      convention supports varargs function calls and tolerates some mismatch in
716      the declared prototype and implemented declaration of the function (as
717      does normal C).</dd>
718
719  <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
720  <dd>This calling convention attempts to make calls as fast as possible
721      (e.g. by passing things in registers).  This calling convention allows the
722      target to use whatever tricks it wants to produce fast code for the
723      target, without having to conform to an externally specified ABI
724      (Application Binary Interface).
725      <a href="CodeGenerator.html#tailcallopt">Tail calls can only be optimized
726      when this or the GHC convention is used.</a>  This calling convention
727      does not support varargs and requires the prototype of all callees to
728      exactly match the prototype of the function definition.</dd>
729
730  <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
731  <dd>This calling convention attempts to make code in the caller as efficient
732      as possible under the assumption that the call is not commonly executed.
733      As such, these calls often preserve all registers so that the call does
734      not break any live ranges in the caller side.  This calling convention
735      does not support varargs and requires the prototype of all callees to
736      exactly match the prototype of the function definition.</dd>
737
738  <dt><b>"<tt>cc <em>10</em></tt>" - GHC convention</b>:</dt>
739  <dd>This calling convention has been implemented specifically for use by the
740      <a href="http://www.haskell.org/ghc">Glasgow Haskell Compiler (GHC)</a>.
741      It passes everything in registers, going to extremes to achieve this by
742      disabling callee save registers. This calling convention should not be
743      used lightly but only for specific situations such as an alternative to
744      the <em>register pinning</em> performance technique often used when
745      implementing functional programming languages.At the moment only X86
746      supports this convention and it has the following limitations:
747      <ul>
748        <li>On <em>X86-32</em> only supports up to 4 bit type parameters. No
749            floating point types are supported.</li>
750        <li>On <em>X86-64</em> only supports up to 10 bit type parameters and
751            6 floating point parameters.</li>
752      </ul>
753      This calling convention supports
754      <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> but
755      requires both the caller and callee are using it.
756  </dd>
757
758  <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
759  <dd>Any calling convention may be specified by number, allowing
760      target-specific calling conventions to be used.  Target specific calling
761      conventions start at 64.</dd>
762</dl>
763
764<p>More calling conventions can be added/defined on an as-needed basis, to
765   support Pascal conventions or any other well-known target-independent
766   convention.</p>
767
768</div>
769
770<!-- ======================================================================= -->
771<h3>
772  <a name="visibility">Visibility Styles</a>
773</h3>
774
775<div>
776
777<p>All Global Variables and Functions have one of the following visibility
778   styles:</p>
779
780<dl>
781  <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
782  <dd>On targets that use the ELF object file format, default visibility means
783      that the declaration is visible to other modules and, in shared libraries,
784      means that the declared entity may be overridden. On Darwin, default
785      visibility means that the declaration is visible to other modules. Default
786      visibility corresponds to "external linkage" in the language.</dd>
787
788  <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
789  <dd>Two declarations of an object with hidden visibility refer to the same
790      object if they are in the same shared object. Usually, hidden visibility
791      indicates that the symbol will not be placed into the dynamic symbol
792      table, so no other module (executable or shared library) can reference it
793      directly.</dd>
794
795  <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
796  <dd>On ELF, protected visibility indicates that the symbol will be placed in
797      the dynamic symbol table, but that references within the defining module
798      will bind to the local symbol. That is, the symbol cannot be overridden by
799      another module.</dd>
800</dl>
801
802</div>
803
804<!-- ======================================================================= -->
805<h3>
806  <a name="namedtypes">Named Types</a>
807</h3>
808
809<div>
810
811<p>LLVM IR allows you to specify name aliases for certain types.  This can make
812   it easier to read the IR and make the IR more condensed (particularly when
813   recursive types are involved).  An example of a name specification is:</p>
814
815<pre class="doc_code">
816%mytype = type { %mytype*, i32 }
817</pre>
818
819<p>You may give a name to any <a href="#typesystem">type</a> except
820   "<a href="#t_void">void</a>".  Type name aliases may be used anywhere a type
821   is expected with the syntax "%mytype".</p>
822
823<p>Note that type names are aliases for the structural type that they indicate,
824   and that you can therefore specify multiple names for the same type.  This
825   often leads to confusing behavior when dumping out a .ll file.  Since LLVM IR
826   uses structural typing, the name is not part of the type.  When printing out
827   LLVM IR, the printer will pick <em>one name</em> to render all types of a
828   particular shape.  This means that if you have code where two different
829   source types end up having the same LLVM type, that the dumper will sometimes
830   print the "wrong" or unexpected type.  This is an important design point and
831   isn't going to change.</p>
832
833</div>
834
835<!-- ======================================================================= -->
836<h3>
837  <a name="globalvars">Global Variables</a>
838</h3>
839
840<div>
841
842<p>Global variables define regions of memory allocated at compilation time
843   instead of run-time.  Global variables may optionally be initialized, may
844   have an explicit section to be placed in, and may have an optional explicit
845   alignment specified.</p>
846
847<p>A variable may be defined as <tt>thread_local</tt>, which
848   means that it will not be shared by threads (each thread will have a
849   separated copy of the variable).  Not all targets support thread-local
850   variables.  Optionally, a TLS model may be specified:</p>
851
852<dl>
853  <dt><b><tt>localdynamic</tt></b>:</dt>
854  <dd>For variables that are only used within the current shared library.</dd>
855
856  <dt><b><tt>initialexec</tt></b>:</dt>
857  <dd>For variables in modules that will not be loaded dynamically.</dd>
858
859  <dt><b><tt>localexec</tt></b>:</dt>
860  <dd>For variables defined in the executable and only used within it.</dd>
861</dl>
862
863<p>The models correspond to the ELF TLS models; see
864   <a href="http://people.redhat.com/drepper/tls.pdf">ELF
865   Handling For Thread-Local Storage</a> for more information on under which
866   circumstances the different models may be used.  The target may choose a
867   different TLS model if the specified model is not supported, or if a better
868   choice of model can be made.</p>
869
870<p>A variable may be defined as a global
871   "constant," which indicates that the contents of the variable
872   will <b>never</b> be modified (enabling better optimization, allowing the
873   global data to be placed in the read-only section of an executable, etc).
874   Note that variables that need runtime initialization cannot be marked
875   "constant" as there is a store to the variable.</p>
876
877<p>LLVM explicitly allows <em>declarations</em> of global variables to be marked
878   constant, even if the final definition of the global is not.  This capability
879   can be used to enable slightly better optimization of the program, but
880   requires the language definition to guarantee that optimizations based on the
881   'constantness' are valid for the translation units that do not include the
882   definition.</p>
883
884<p>As SSA values, global variables define pointer values that are in scope
885   (i.e. they dominate) all basic blocks in the program.  Global variables
886   always define a pointer to their "content" type because they describe a
887   region of memory, and all memory objects in LLVM are accessed through
888   pointers.</p>
889
890<p>Global variables can be marked with <tt>unnamed_addr</tt> which indicates
891  that the address is not significant, only the content. Constants marked
892  like this can be merged with other constants if they have the same
893  initializer. Note that a constant with significant address <em>can</em>
894  be merged with a <tt>unnamed_addr</tt> constant, the result being a
895  constant whose address is significant.</p>
896
897<p>A global variable may be declared to reside in a target-specific numbered
898   address space. For targets that support them, address spaces may affect how
899   optimizations are performed and/or what target instructions are used to
900   access the variable. The default address space is zero. The address space
901   qualifier must precede any other attributes.</p>
902
903<p>LLVM allows an explicit section to be specified for globals.  If the target
904   supports it, it will emit globals to the section specified.</p>
905
906<p>An explicit alignment may be specified for a global, which must be a power
907   of 2.  If not present, or if the alignment is set to zero, the alignment of
908   the global is set by the target to whatever it feels convenient.  If an
909   explicit alignment is specified, the global is forced to have exactly that
910   alignment.  Targets and optimizers are not allowed to over-align the global
911   if the global has an assigned section.  In this case, the extra alignment
912   could be observable: for example, code could assume that the globals are
913   densely packed in their section and try to iterate over them as an array,
914   alignment padding would break this iteration.</p>
915
916<p>For example, the following defines a global in a numbered address space with
917   an initializer, section, and alignment:</p>
918
919<pre class="doc_code">
920@G = addrspace(5) constant float 1.0, section "foo", align 4
921</pre>
922
923<p>The following example defines a thread-local global with
924   the <tt>initialexec</tt> TLS model:</p>
925
926<pre class="doc_code">
927@G = thread_local(initialexec) global i32 0, align 4
928</pre>
929
930</div>
931
932
933<!-- ======================================================================= -->
934<h3>
935  <a name="functionstructure">Functions</a>
936</h3>
937
938<div>
939
940<p>LLVM function definitions consist of the "<tt>define</tt>" keyword, an
941   optional <a href="#linkage">linkage type</a>, an optional
942   <a href="#visibility">visibility style</a>, an optional
943   <a href="#callingconv">calling convention</a>,
944   an optional <tt>unnamed_addr</tt> attribute, a return type, an optional
945   <a href="#paramattrs">parameter attribute</a> for the return type, a function
946   name, a (possibly empty) argument list (each with optional
947   <a href="#paramattrs">parameter attributes</a>), optional
948   <a href="#fnattrs">function attributes</a>, an optional section, an optional
949   alignment, an optional <a href="#gc">garbage collector name</a>, an opening
950   curly brace, a list of basic blocks, and a closing curly brace.</p>
951
952<p>LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
953   optional <a href="#linkage">linkage type</a>, an optional
954   <a href="#visibility">visibility style</a>, an optional
955   <a href="#callingconv">calling convention</a>,
956   an optional <tt>unnamed_addr</tt> attribute, a return type, an optional
957   <a href="#paramattrs">parameter attribute</a> for the return type, a function
958   name, a possibly empty list of arguments, an optional alignment, and an
959   optional <a href="#gc">garbage collector name</a>.</p>
960
961<p>A function definition contains a list of basic blocks, forming the CFG
962   (Control Flow Graph) for the function.  Each basic block may optionally start
963   with a label (giving the basic block a symbol table entry), contains a list
964   of instructions, and ends with a <a href="#terminators">terminator</a>
965   instruction (such as a branch or function return).</p>
966
967<p>The first basic block in a function is special in two ways: it is immediately
968   executed on entrance to the function, and it is not allowed to have
969   predecessor basic blocks (i.e. there can not be any branches to the entry
970   block of a function).  Because the block can have no predecessors, it also
971   cannot have any <a href="#i_phi">PHI nodes</a>.</p>
972
973<p>LLVM allows an explicit section to be specified for functions.  If the target
974   supports it, it will emit functions to the section specified.</p>
975
976<p>An explicit alignment may be specified for a function.  If not present, or if
977   the alignment is set to zero, the alignment of the function is set by the
978   target to whatever it feels convenient.  If an explicit alignment is
979   specified, the function is forced to have at least that much alignment.  All
980   alignments must be a power of 2.</p>
981
982<p>If the <tt>unnamed_addr</tt> attribute is given, the address is know to not
983   be significant and two identical functions can be merged.</p>
984
985<h5>Syntax:</h5>
986<pre class="doc_code">
987define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
988       [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>]
989       &lt;ResultType&gt; @&lt;FunctionName&gt; ([argument list])
990       [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N]
991       [<a href="#gc">gc</a>] { ... }
992</pre>
993
994</div>
995
996<!-- ======================================================================= -->
997<h3>
998  <a name="aliasstructure">Aliases</a>
999</h3>
1000
1001<div>
1002
1003<p>Aliases act as "second name" for the aliasee value (which can be either
1004   function, global variable, another alias or bitcast of global value). Aliases
1005   may have an optional <a href="#linkage">linkage type</a>, and an
1006   optional <a href="#visibility">visibility style</a>.</p>
1007
1008<h5>Syntax:</h5>
1009<pre class="doc_code">
1010@&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
1011</pre>
1012
1013</div>
1014
1015<!-- ======================================================================= -->
1016<h3>
1017  <a name="namedmetadatastructure">Named Metadata</a>
1018</h3>
1019
1020<div>
1021
1022<p>Named metadata is a collection of metadata. <a href="#metadata">Metadata
1023   nodes</a> (but not metadata strings) are the only valid operands for
1024   a named metadata.</p>
1025
1026<h5>Syntax:</h5>
1027<pre class="doc_code">
1028; Some unnamed metadata nodes, which are referenced by the named metadata.
1029!0 = metadata !{metadata !"zero"}
1030!1 = metadata !{metadata !"one"}
1031!2 = metadata !{metadata !"two"}
1032; A named metadata.
1033!name = !{!0, !1, !2}
1034</pre>
1035
1036</div>
1037
1038<!-- ======================================================================= -->
1039<h3>
1040  <a name="paramattrs">Parameter Attributes</a>
1041</h3>
1042
1043<div>
1044
1045<p>The return type and each parameter of a function type may have a set of
1046   <i>parameter attributes</i> associated with them. Parameter attributes are
1047   used to communicate additional information about the result or parameters of
1048   a function. Parameter attributes are considered to be part of the function,
1049   not of the function type, so functions with different parameter attributes
1050   can have the same function type.</p>
1051
1052<p>Parameter attributes are simple keywords that follow the type specified. If
1053   multiple parameter attributes are needed, they are space separated. For
1054   example:</p>
1055
1056<pre class="doc_code">
1057declare i32 @printf(i8* noalias nocapture, ...)
1058declare i32 @atoi(i8 zeroext)
1059declare signext i8 @returns_signed_char()
1060</pre>
1061
1062<p>Note that any attributes for the function result (<tt>nounwind</tt>,
1063   <tt>readonly</tt>) come immediately after the argument list.</p>
1064
1065<p>Currently, only the following parameter attributes are defined:</p>
1066
1067<dl>
1068  <dt><tt><b>zeroext</b></tt></dt>
1069  <dd>This indicates to the code generator that the parameter or return value
1070      should be zero-extended to the extent required by the target's ABI (which
1071      is usually 32-bits, but is 8-bits for a i1 on x86-64) by the caller (for a
1072      parameter) or the callee (for a return value).</dd>
1073
1074  <dt><tt><b>signext</b></tt></dt>
1075  <dd>This indicates to the code generator that the parameter or return value
1076      should be sign-extended to the extent required by the target's ABI (which
1077      is usually 32-bits) by the caller (for a parameter) or the callee (for a
1078      return value).</dd>
1079
1080  <dt><tt><b>inreg</b></tt></dt>
1081  <dd>This indicates that this parameter or return value should be treated in a
1082      special target-dependent fashion during while emitting code for a function
1083      call or return (usually, by putting it in a register as opposed to memory,
1084      though some targets use it to distinguish between two different kinds of
1085      registers).  Use of this attribute is target-specific.</dd>
1086
1087  <dt><tt><b><a name="byval">byval</a></b></tt></dt>
1088  <dd><p>This indicates that the pointer parameter should really be passed by
1089      value to the function.  The attribute implies that a hidden copy of the
1090      pointee
1091      is made between the caller and the callee, so the callee is unable to
1092      modify the value in the caller.  This attribute is only valid on LLVM
1093      pointer arguments.  It is generally used to pass structs and arrays by
1094      value, but is also valid on pointers to scalars.  The copy is considered
1095      to belong to the caller not the callee (for example,
1096      <tt><a href="#readonly">readonly</a></tt> functions should not write to
1097      <tt>byval</tt> parameters). This is not a valid attribute for return
1098      values.</p>
1099      
1100      <p>The byval attribute also supports specifying an alignment with
1101      the align attribute.  It indicates the alignment of the stack slot to
1102      form and the known alignment of the pointer specified to the call site. If
1103      the alignment is not specified, then the code generator makes a
1104      target-specific assumption.</p></dd>
1105
1106  <dt><tt><b><a name="sret">sret</a></b></tt></dt>
1107  <dd>This indicates that the pointer parameter specifies the address of a
1108      structure that is the return value of the function in the source program.
1109      This pointer must be guaranteed by the caller to be valid: loads and
1110      stores to the structure may be assumed by the callee to not to trap.  This
1111      may only be applied to the first parameter. This is not a valid attribute
1112      for return values. </dd>
1113
1114  <dt><tt><b><a name="noalias">noalias</a></b></tt></dt>
1115  <dd>This indicates that pointer values
1116      <a href="#pointeraliasing"><i>based</i></a> on the argument or return
1117      value do not alias pointer values which are not <i>based</i> on it,
1118      ignoring certain "irrelevant" dependencies.
1119      For a call to the parent function, dependencies between memory
1120      references from before or after the call and from those during the call
1121      are "irrelevant" to the <tt>noalias</tt> keyword for the arguments and
1122      return value used in that call.
1123      The caller shares the responsibility with the callee for ensuring that
1124      these requirements are met.
1125      For further details, please see the discussion of the NoAlias response in
1126      <a href="AliasAnalysis.html#MustMayNo">alias analysis</a>.<br>
1127<br>
1128      Note that this definition of <tt>noalias</tt> is intentionally
1129      similar to the definition of <tt>restrict</tt> in C99 for function
1130      arguments, though it is slightly weaker.
1131<br>
1132      For function return values, C99's <tt>restrict</tt> is not meaningful,
1133      while LLVM's <tt>noalias</tt> is.
1134      </dd>
1135
1136  <dt><tt><b><a name="nocapture">nocapture</a></b></tt></dt>
1137  <dd>This indicates that the callee does not make any copies of the pointer
1138      that outlive the callee itself. This is not a valid attribute for return
1139      values.</dd>
1140
1141  <dt><tt><b><a name="nest">nest</a></b></tt></dt>
1142  <dd>This indicates that the pointer parameter can be excised using the
1143      <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
1144      attribute for return values.</dd>
1145</dl>
1146
1147</div>
1148
1149<!-- ======================================================================= -->
1150<h3>
1151  <a name="gc">Garbage Collector Names</a>
1152</h3>
1153
1154<div>
1155
1156<p>Each function may specify a garbage collector name, which is simply a
1157   string:</p>
1158
1159<pre class="doc_code">
1160define void @f() gc "name" { ... }
1161</pre>
1162
1163<p>The compiler declares the supported values of <i>name</i>. Specifying a
1164   collector which will cause the compiler to alter its output in order to
1165   support the named garbage collection algorithm.</p>
1166
1167</div>
1168
1169<!-- ======================================================================= -->
1170<h3>
1171  <a name="fnattrs">Function Attributes</a>
1172</h3>
1173
1174<div>
1175
1176<p>Function attributes are set to communicate additional information about a
1177   function. Function attributes are considered to be part of the function, not
1178   of the function type, so functions with different parameter attributes can
1179   have the same function type.</p>
1180
1181<p>Function attributes are simple keywords that follow the type specified. If
1182   multiple attributes are needed, they are space separated. For example:</p>
1183
1184<pre class="doc_code">
1185define void @f() noinline { ... }
1186define void @f() alwaysinline { ... }
1187define void @f() alwaysinline optsize { ... }
1188define void @f() optsize { ... }
1189</pre>
1190
1191<dl>
1192  <dt><tt><b>address_safety</b></tt></dt>
1193  <dd>This attribute indicates that the address safety analysis
1194  is enabled for this function.  </dd>
1195
1196  <dt><tt><b>alignstack(&lt;<em>n</em>&gt;)</b></tt></dt>
1197  <dd>This attribute indicates that, when emitting the prologue and epilogue,
1198      the backend should forcibly align the stack pointer. Specify the
1199      desired alignment, which must be a power of two, in parentheses.
1200
1201  <dt><tt><b>alwaysinline</b></tt></dt>
1202  <dd>This attribute indicates that the inliner should attempt to inline this
1203      function into callers whenever possible, ignoring any active inlining size
1204      threshold for this caller.</dd>
1205
1206  <dt><tt><b>nonlazybind</b></tt></dt>
1207  <dd>This attribute suppresses lazy symbol binding for the function. This
1208      may make calls to the function faster, at the cost of extra program
1209      startup time if the function is not called during program startup.</dd>
1210
1211  <dt><tt><b>inlinehint</b></tt></dt>
1212  <dd>This attribute indicates that the source code contained a hint that inlining
1213      this function is desirable (such as the "inline" keyword in C/C++).  It
1214      is just a hint; it imposes no requirements on the inliner.</dd>
1215
1216  <dt><tt><b>naked</b></tt></dt>
1217  <dd>This attribute disables prologue / epilogue emission for the function.
1218      This can have very system-specific consequences.</dd>
1219
1220  <dt><tt><b>noimplicitfloat</b></tt></dt>
1221  <dd>This attributes disables implicit floating point instructions.</dd>
1222
1223  <dt><tt><b>noinline</b></tt></dt>
1224  <dd>This attribute indicates that the inliner should never inline this
1225      function in any situation. This attribute may not be used together with
1226      the <tt>alwaysinline</tt> attribute.</dd>
1227
1228  <dt><tt><b>noredzone</b></tt></dt>
1229  <dd>This attribute indicates that the code generator should not use a red
1230      zone, even if the target-specific ABI normally permits it.</dd>
1231
1232  <dt><tt><b>noreturn</b></tt></dt>
1233  <dd>This function attribute indicates that the function never returns
1234      normally.  This produces undefined behavior at runtime if the function
1235      ever does dynamically return.</dd>
1236
1237  <dt><tt><b>nounwind</b></tt></dt>
1238  <dd>This function attribute indicates that the function never returns with an
1239      unwind or exceptional control flow.  If the function does unwind, its
1240      runtime behavior is undefined.</dd>
1241
1242  <dt><tt><b>optsize</b></tt></dt>
1243  <dd>This attribute suggests that optimization passes and code generator passes
1244      make choices that keep the code size of this function low, and otherwise
1245      do optimizations specifically to reduce code size.</dd>
1246
1247  <dt><tt><b>readnone</b></tt></dt>
1248  <dd>This attribute indicates that the function computes its result (or decides
1249      to unwind an exception) based strictly on its arguments, without
1250      dereferencing any pointer arguments or otherwise accessing any mutable
1251      state (e.g. memory, control registers, etc) visible to caller functions.
1252      It does not write through any pointer arguments
1253      (including <tt><a href="#byval">byval</a></tt> arguments) and never
1254      changes any state visible to callers.  This means that it cannot unwind
1255      exceptions by calling the <tt>C++</tt> exception throwing methods.</dd>
1256
1257  <dt><tt><b><a name="readonly">readonly</a></b></tt></dt>
1258  <dd>This attribute indicates that the function does not write through any
1259      pointer arguments (including <tt><a href="#byval">byval</a></tt>
1260      arguments) or otherwise modify any state (e.g. memory, control registers,
1261      etc) visible to caller functions.  It may dereference pointer arguments
1262      and read state that may be set in the caller.  A readonly function always
1263      returns the same value (or unwinds an exception identically) when called
1264      with the same set of arguments and global state.  It cannot unwind an
1265      exception by calling the <tt>C++</tt> exception throwing methods.</dd>
1266
1267  <dt><tt><b><a name="returns_twice">returns_twice</a></b></tt></dt>
1268  <dd>This attribute indicates that this function can return twice. The
1269      C <code>setjmp</code> is an example of such a function.  The compiler
1270      disables some optimizations (like tail calls) in the caller of these
1271      functions.</dd>
1272
1273  <dt><tt><b><a name="ssp">ssp</a></b></tt></dt>
1274  <dd>This attribute indicates that the function should emit a stack smashing
1275      protector. It is in the form of a "canary"&mdash;a random value placed on
1276      the stack before the local variables that's checked upon return from the
1277      function to see if it has been overwritten. A heuristic is used to
1278      determine if a function needs stack protectors or not.<br>
1279<br>
1280      If a function that has an <tt>ssp</tt> attribute is inlined into a
1281      function that doesn't have an <tt>ssp</tt> attribute, then the resulting
1282      function will have an <tt>ssp</tt> attribute.</dd>
1283
1284  <dt><tt><b>sspreq</b></tt></dt>
1285  <dd>This attribute indicates that the function should <em>always</em> emit a
1286      stack smashing protector. This overrides
1287      the <tt><a href="#ssp">ssp</a></tt> function attribute.<br>
1288<br>
1289      If a function that has an <tt>sspreq</tt> attribute is inlined into a
1290      function that doesn't have an <tt>sspreq</tt> attribute or which has
1291      an <tt>ssp</tt> attribute, then the resulting function will have
1292      an <tt>sspreq</tt> attribute.</dd>
1293
1294  <dt><tt><b><a name="uwtable">uwtable</a></b></tt></dt>
1295  <dd>This attribute indicates that the ABI being targeted requires that
1296      an unwind table entry be produce for this function even if we can
1297      show that no exceptions passes by it. This is normally the case for
1298      the ELF x86-64 abi, but it can be disabled for some compilation
1299      units.</dd>
1300</dl>
1301
1302</div>
1303
1304<!-- ======================================================================= -->
1305<h3>
1306  <a name="moduleasm">Module-Level Inline Assembly</a>
1307</h3>
1308
1309<div>
1310
1311<p>Modules may contain "module-level inline asm" blocks, which corresponds to
1312   the GCC "file scope inline asm" blocks.  These blocks are internally
1313   concatenated by LLVM and treated as a single unit, but may be separated in
1314   the <tt>.ll</tt> file if desired.  The syntax is very simple:</p>
1315
1316<pre class="doc_code">
1317module asm "inline asm code goes here"
1318module asm "more can go here"
1319</pre>
1320
1321<p>The strings can contain any character by escaping non-printable characters.
1322   The escape sequence used is simply "\xx" where "xx" is the two digit hex code
1323   for the number.</p>
1324
1325<p>The inline asm code is simply printed to the machine code .s file when
1326   assembly code is generated.</p>
1327
1328</div>
1329
1330<!-- ======================================================================= -->
1331<h3>
1332  <a name="datalayout">Data Layout</a>
1333</h3>
1334
1335<div>
1336
1337<p>A module may specify a target specific data layout string that specifies how
1338   data is to be laid out in memory. The syntax for the data layout is
1339   simply:</p>
1340
1341<pre class="doc_code">
1342target datalayout = "<i>layout specification</i>"
1343</pre>
1344
1345<p>The <i>layout specification</i> consists of a list of specifications
1346   separated by the minus sign character ('-').  Each specification starts with
1347   a letter and may include other information after the letter to define some
1348   aspect of the data layout.  The specifications accepted are as follows:</p>
1349
1350<dl>
1351  <dt><tt>E</tt></dt>
1352  <dd>Specifies that the target lays out data in big-endian form. That is, the
1353      bits with the most significance have the lowest address location.</dd>
1354
1355  <dt><tt>e</tt></dt>
1356  <dd>Specifies that the target lays out data in little-endian form. That is,
1357      the bits with the least significance have the lowest address
1358      location.</dd>
1359
1360  <dt><tt>S<i>size</i></tt></dt>
1361  <dd>Specifies the natural alignment of the stack in bits. Alignment promotion
1362      of stack variables is limited to the natural stack alignment to avoid
1363      dynamic stack realignment. The stack alignment must be a multiple of
1364      8-bits. If omitted, the natural stack alignment defaults to "unspecified",
1365      which does not prevent any alignment promotions.</dd>
1366
1367  <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1368  <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
1369      <i>preferred</i> alignments. All sizes are in bits. Specifying
1370      the <i>pref</i> alignment is optional. If omitted, the
1371      preceding <tt>:</tt> should be omitted too.</dd>
1372
1373  <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1374  <dd>This specifies the alignment for an integer type of a given bit
1375      <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1376
1377  <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1378  <dd>This specifies the alignment for a vector type of a given bit
1379      <i>size</i>.</dd>
1380
1381  <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1382  <dd>This specifies the alignment for a floating point type of a given bit
1383      <i>size</i>. Only values of <i>size</i> that are supported by the target
1384      will work.  32 (float) and 64 (double) are supported on all targets;
1385      80 or 128 (different flavors of long double) are also supported on some
1386      targets.
1387
1388  <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1389  <dd>This specifies the alignment for an aggregate type of a given bit
1390      <i>size</i>.</dd>
1391
1392  <dt><tt>s<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1393  <dd>This specifies the alignment for a stack object of a given bit
1394      <i>size</i>.</dd>
1395
1396  <dt><tt>n<i>size1</i>:<i>size2</i>:<i>size3</i>...</tt></dt>
1397  <dd>This specifies a set of native integer widths for the target CPU
1398      in bits.  For example, it might contain "n32" for 32-bit PowerPC,
1399      "n32:64" for PowerPC 64, or "n8:16:32:64" for X86-64.  Elements of
1400      this set are considered to support most general arithmetic
1401      operations efficiently.</dd>
1402</dl>
1403
1404<p>When constructing the data layout for a given target, LLVM starts with a
1405   default set of specifications which are then (possibly) overridden by the
1406   specifications in the <tt>datalayout</tt> keyword. The default specifications
1407   are given in this list:</p>
1408
1409<ul>
1410  <li><tt>E</tt> - big endian</li>
1411  <li><tt>p:64:64:64</tt> - 64-bit pointers with 64-bit alignment</li>
1412  <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1413  <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1414  <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1415  <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
1416  <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
1417  alignment of 64-bits</li>
1418  <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1419  <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1420  <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1421  <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1422  <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
1423  <li><tt>s0:64:64</tt> - stack objects are 64-bit aligned</li>
1424</ul>
1425
1426<p>When LLVM is determining the alignment for a given type, it uses the
1427   following rules:</p>
1428
1429<ol>
1430  <li>If the type sought is an exact match for one of the specifications, that
1431      specification is used.</li>
1432
1433  <li>If no match is found, and the type sought is an integer type, then the
1434      smallest integer type that is larger than the bitwidth of the sought type
1435      is used. If none of the specifications are larger than the bitwidth then
1436      the largest integer type is used. For example, given the default
1437      specifications above, the i7 type will use the alignment of i8 (next
1438      largest) while both i65 and i256 will use the alignment of i64 (largest
1439      specified).</li>
1440
1441  <li>If no match is found, and the type sought is a vector type, then the
1442      largest vector type that is smaller than the sought vector type will be
1443      used as a fall back.  This happens because &lt;128 x double&gt; can be
1444      implemented in terms of 64 &lt;2 x double&gt;, for example.</li>
1445</ol>
1446
1447<p>The function of the data layout string may not be what you expect.  Notably,
1448   this is not a specification from the frontend of what alignment the code
1449   generator should use.</p>
1450
1451<p>Instead, if specified, the target data layout is required to match what the 
1452   ultimate <em>code generator</em> expects.  This string is used by the 
1453   mid-level optimizers to
1454   improve code, and this only works if it matches what the ultimate code 
1455   generator uses.  If you would like to generate IR that does not embed this
1456   target-specific detail into the IR, then you don't have to specify the 
1457   string.  This will disable some optimizations that require precise layout
1458   information, but this also prevents those optimizations from introducing
1459   target specificity into the IR.</p>
1460
1461
1462
1463</div>
1464
1465<!-- ======================================================================= -->
1466<h3>
1467  <a name="pointeraliasing">Pointer Aliasing Rules</a>
1468</h3>
1469
1470<div>
1471
1472<p>Any memory access must be done through a pointer value associated
1473with an address range of the memory access, otherwise the behavior
1474is undefined. Pointer values are associated with address ranges
1475according to the following rules:</p>
1476
1477<ul>
1478  <li>A pointer value is associated with the addresses associated with
1479      any value it is <i>based</i> on.
1480  <li>An address of a global variable is associated with the address
1481      range of the variable's storage.</li>
1482  <li>The result value of an allocation instruction is associated with
1483      the address range of the allocated storage.</li>
1484  <li>A null pointer in the default address-space is associated with
1485      no address.</li>
1486  <li>An integer constant other than zero or a pointer value returned
1487      from a function not defined within LLVM may be associated with address
1488      ranges allocated through mechanisms other than those provided by
1489      LLVM. Such ranges shall not overlap with any ranges of addresses
1490      allocated by mechanisms provided by LLVM.</li>
1491</ul>
1492
1493<p>A pointer value is <i>based</i> on another pointer value according
1494   to the following rules:</p>
1495
1496<ul>
1497  <li>A pointer value formed from a
1498      <tt><a href="#i_getelementptr">getelementptr</a></tt> operation
1499      is <i>based</i> on the first operand of the <tt>getelementptr</tt>.</li>
1500  <li>The result value of a
1501      <tt><a href="#i_bitcast">bitcast</a></tt> is <i>based</i> on the operand
1502      of the <tt>bitcast</tt>.</li>
1503  <li>A pointer value formed by an
1504      <tt><a href="#i_inttoptr">inttoptr</a></tt> is <i>based</i> on all
1505      pointer values that contribute (directly or indirectly) to the
1506      computation of the pointer's value.</li>
1507  <li>The "<i>based</i> on" relationship is transitive.</li>
1508</ul>
1509
1510<p>Note that this definition of <i>"based"</i> is intentionally
1511   similar to the definition of <i>"based"</i> in C99, though it is
1512   slightly weaker.</p>
1513
1514<p>LLVM IR does not associate types with memory. The result type of a
1515<tt><a href="#i_load">load</a></tt> merely indicates the size and
1516alignment of the memory from which to load, as well as the
1517interpretation of the value. The first operand type of a
1518<tt><a href="#i_store">store</a></tt> similarly only indicates the size
1519and alignment of the store.</p>
1520
1521<p>Consequently, type-based alias analysis, aka TBAA, aka
1522<tt>-fstrict-aliasing</tt>, is not applicable to general unadorned
1523LLVM IR. <a href="#metadata">Metadata</a> may be used to encode
1524additional information which specialized optimization passes may use
1525to implement type-based alias analysis.</p>
1526
1527</div>
1528
1529<!-- ======================================================================= -->
1530<h3>
1531  <a name="volatile">Volatile Memory Accesses</a>
1532</h3>
1533
1534<div>
1535
1536<p>Certain memory accesses, such as <a href="#i_load"><tt>load</tt></a>s, <a
1537href="#i_store"><tt>store</tt></a>s, and <a
1538href="#int_memcpy"><tt>llvm.memcpy</tt></a>s may be marked <tt>volatile</tt>.
1539The optimizers must not change the number of volatile operations or change their
1540order of execution relative to other volatile operations.  The optimizers
1541<i>may</i> change the order of volatile operations relative to non-volatile
1542operations.  This is not Java's "volatile" and has no cross-thread
1543synchronization behavior.</p>
1544
1545</div>
1546
1547<!-- ======================================================================= -->
1548<h3>
1549  <a name="memmodel">Memory Model for Concurrent Operations</a>
1550</h3>
1551
1552<div>
1553
1554<p>The LLVM IR does not define any way to start parallel threads of execution
1555or to register signal handlers. Nonetheless, there are platform-specific
1556ways to create them, and we define LLVM IR's behavior in their presence. This
1557model is inspired by the C++0x memory model.</p>
1558
1559<p>For a more informal introduction to this model, see the
1560<a href="Atomics.html">LLVM Atomic Instructions and Concurrency Guide</a>.
1561
1562<p>We define a <i>happens-before</i> partial order as the least partial order
1563that</p>
1564<ul>
1565  <li>Is a superset of single-thread program order, and</li>
1566  <li>When a <i>synchronizes-with</i> <tt>b</tt>, includes an edge from
1567      <tt>a</tt> to <tt>b</tt>. <i>Synchronizes-with</i> pairs are introduced
1568      by platform-specific techniques, like pthread locks, thread
1569      creation, thread joining, etc., and by atomic instructions.
1570      (See also <a href="#ordering">Atomic Memory Ordering Constraints</a>).
1571      </li>
1572</ul>
1573
1574<p>Note that program order does not introduce <i>happens-before</i> edges
1575between a thread and signals executing inside that thread.</p>
1576
1577<p>Every (defined) read operation (load instructions, memcpy, atomic
1578loads/read-modify-writes, etc.) <var>R</var> reads a series of bytes written by
1579(defined) write operations (store instructions, atomic
1580stores/read-modify-writes, memcpy, etc.). For the purposes of this section,
1581initialized globals are considered to have a write of the initializer which is
1582atomic and happens before any other read or write of the memory in question.
1583For each byte of a read <var>R</var>, <var>R<sub>byte</sub></var> may see
1584any write to the same byte, except:</p>
1585
1586<ul>
1587  <li>If <var>write<sub>1</sub></var> happens before
1588      <var>write<sub>2</sub></var>, and <var>write<sub>2</sub></var> happens
1589      before <var>R<sub>byte</sub></var>, then <var>R<sub>byte</sub></var>
1590      does not see <var>write<sub>1</sub></var>.
1591  <li>If <var>R<sub>byte</sub></var> happens before
1592      <var>write<sub>3</sub></var>, then <var>R<sub>byte</sub></var> does not
1593      see <var>write<sub>3</sub></var>.
1594</ul>
1595
1596<p>Given that definition, <var>R<sub>byte</sub></var> is defined as follows:
1597<ul>
1598  <li>If <var>R</var> is volatile, the result is target-dependent. (Volatile
1599      is supposed to give guarantees which can support
1600      <code>sig_atomic_t</code> in C/C++, and may be used for accesses to
1601      addresses which do not behave like normal memory.  It does not generally
1602      provide cross-thread synchronization.)
1603  <li>Otherwise, if there is no write to the same byte that happens before
1604    <var>R<sub>byte</sub></var>, <var>R<sub>byte</sub></var> returns 
1605    <tt>undef</tt> for that byte.
1606  <li>Otherwise, if <var>R<sub>byte</sub></var> may see exactly one write,
1607      <var>R<sub>byte</sub></var> returns the value written by that
1608      write.</li>
1609  <li>Otherwise, if <var>R</var> is atomic, and all the writes
1610      <var>R<sub>byte</sub></var> may see are atomic, it chooses one of the
1611      values written.  See the <a href="#ordering">Atomic Memory Ordering
1612      Constraints</a> section for additional constraints on how the choice
1613      is made.
1614  <li>Otherwise <var>R<sub>byte</sub></var> returns <tt>undef</tt>.</li>
1615</ul>
1616
1617<p><var>R</var> returns the value composed of the series of bytes it read.
1618This implies that some bytes within the value may be <tt>undef</tt>
1619<b>without</b> the entire value being <tt>undef</tt>. Note that this only
1620defines the semantics of the operation; it doesn't mean that targets will
1621emit more than one instruction to read the series of bytes.</p>
1622
1623<p>Note that in cases where none of the atomic intrinsics are used, this model
1624places only one restriction on IR transformations on top of what is required
1625for single-threaded execution: introducing a store to a byte which might not
1626otherwise be stored is not allowed in general.  (Specifically, in the case
1627where another thread might write to and read from an address, introducing a
1628store can change a load that may see exactly one write into a load that may
1629see multiple writes.)</p>
1630
1631<!-- FIXME: This model assumes all targets where concurrency is relevant have
1632a byte-size store which doesn't affect adjacent bytes.  As far as I can tell,
1633none of the backends currently in the tree fall into this category; however,
1634there might be targets which care.  If there are, we want a paragraph
1635like the following:
1636
1637Targets may specify that stores narrower than a certain width are not
1638available; on such a target, for the purposes of this model, treat any
1639non-atomic write with an alignment or width less than the minimum width
1640as if it writes to the relevant surrounding bytes.
1641-->
1642
1643</div>
1644
1645<!-- ======================================================================= -->
1646<h3>
1647      <a name="ordering">Atomic Memory Ordering Constraints</a>
1648</h3>
1649
1650<div>
1651
1652<p>Atomic instructions (<a href="#i_cmpxchg"><code>cmpxchg</code></a>,
1653<a href="#i_atomicrmw"><code>atomicrmw</code></a>,
1654<a href="#i_fence"><code>fence</code></a>,
1655<a href="#i_load"><code>atomic load</code></a>, and
1656<a href="#i_store"><code>atomic store</code></a>) take an ordering parameter
1657that determines which other atomic instructions on the same address they
1658<i>synchronize with</i>.  These semantics are borrowed from Java and C++0x,
1659but are somewhat more colloquial. If these descriptions aren't precise enough,
1660check those specs (see spec references in the
1661<a href="Atomics.html#introduction">atomics guide</a>).
1662<a href="#i_fence"><code>fence</code></a> instructions
1663treat these orderings somewhat differently since they don't take an address.
1664See that instruction's documentation for details.</p>
1665
1666<p>For a simpler introduction to the ordering constraints, see the
1667<a href="Atomics.html">LLVM Atomic Instructions and Concurrency Guide</a>.</p>
1668
1669<dl>
1670<dt><code>unordered</code></dt>
1671<dd>The set of values that can be read is governed by the happens-before
1672partial order. A value cannot be read unless some operation wrote it.
1673This is intended to provide a guarantee strong enough to model Java's
1674non-volatile shared variables.  This ordering cannot be specified for
1675read-modify-write operations; it is not strong enough to make them atomic
1676in any interesting way.</dd>
1677<dt><code>monotonic</code></dt>
1678<dd>In addition to the guarantees of <code>unordered</code>, there is a single
1679total order for modifications by <code>monotonic</code> operations on each
1680address. All modification orders must be compatible with the happens-before
1681order. There is no guarantee that the modification orders can be combined to
1682a global total order for the whole program (and this often will not be
1683possible). The read in an atomic read-modify-write operation
1684(<a href="#i_cmpxchg"><code>cmpxchg</code></a> and
1685<a href="#i_atomicrmw"><code>atomicrmw</code></a>)
1686reads the value in the modification order immediately before the value it
1687writes. If one atomic read happens before another atomic read of the same
1688address, the later read must see the same value or a later value in the
1689address's modification order. This disallows reordering of
1690<code>monotonic</code> (or stronger) operations on the same address. If an
1691address is written <code>monotonic</code>ally by one thread, and other threads
1692<code>monotonic</code>ally read that address repeatedly, the other threads must
1693eventually see the write. This corresponds to the C++0x/C1x
1694<code>memory_order_relaxed</code>.</dd>
1695<dt><code>acquire</code></dt>
1696<dd>In addition to the guarantees of <code>monotonic</code>,
1697a <i>synchronizes-with</i> edge may be formed with a <code>release</code>
1698operation. This is intended to model C++'s <code>memory_order_acquire</code>.</dd>
1699<dt><code>release</code></dt>
1700<dd>In addition to the guarantees of <code>monotonic</code>, if this operation
1701writes a value which is subsequently read by an <code>acquire</code> operation,
1702it <i>synchronizes-with</i> that operation.  (This isn't a complete
1703description; see the C++0x definition of a release sequence.) This corresponds
1704to the C++0x/C1x <code>memory_order_release</code>.</dd>
1705<dt><code>acq_rel</code> (acquire+release)</dt><dd>Acts as both an
1706<code>acquire</code> and <code>release</code> operation on its address.
1707This corresponds to the C++0x/C1x <code>memory_order_acq_rel</code>.</dd>
1708<dt><code>seq_cst</code> (sequentially consistent)</dt><dd>
1709<dd>In addition to the guarantees of <code>acq_rel</code>
1710(<code>acquire</code> for an operation which only reads, <code>release</code>
1711for an operation which only writes), there is a global total order on all
1712sequentially-consistent operations on all addresses, which is consistent with
1713the <i>happens-before</i> partial order and with the modification orders of
1714all the affected addresses. Each sequentially-consistent read sees the last
1715preceding write to the same address in this global order. This corresponds
1716to the C++0x/C1x <code>memory_order_seq_cst</code> and Java volatile.</dd>
1717</dl>
1718
1719<p id="singlethread">If an atomic operation is marked <code>singlethread</code>,
1720it only <i>synchronizes with</i> or participates in modification and seq_cst
1721total orderings with other operations running in the same thread (for example,
1722in signal handlers).</p>
1723
1724</div>
1725
1726</div>
1727
1728<!-- *********************************************************************** -->
1729<h2><a name="typesystem">Type System</a></h2>
1730<!-- *********************************************************************** -->
1731
1732<div>
1733
1734<p>The LLVM type system is one of the most important features of the
1735   intermediate representation.  Being typed enables a number of optimizations
1736   to be performed on the intermediate representation directly, without having
1737   to do extra analyses on the side before the transformation.  A strong type
1738   system makes it easier to read the generated code and enables novel analyses
1739   and transformations that are not feasible to perform on normal three address
1740   code representations.</p>
1741
1742<!-- ======================================================================= -->
1743<h3>
1744  <a name="t_classifications">Type Classifications</a>
1745</h3>
1746
1747<div>
1748
1749<p>The types fall into a few useful classifications:</p>
1750
1751<table border="1" cellspacing="0" cellpadding="4">
1752  <tbody>
1753    <tr><th>Classification</th><th>Types</th></tr>
1754    <tr>
1755      <td><a href="#t_integer">integer</a></td>
1756      <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
1757    </tr>
1758    <tr>
1759      <td><a href="#t_floating">floating point</a></td>
1760      <td><tt>half, float, double, x86_fp80, fp128, ppc_fp128</tt></td>
1761    </tr>
1762    <tr>
1763      <td><a name="t_firstclass">first class</a></td>
1764      <td><a href="#t_integer">integer</a>,
1765          <a href="#t_floating">floating point</a>,
1766          <a href="#t_pointer">pointer</a>,
1767          <a href="#t_vector">vector</a>,
1768          <a href="#t_struct">structure</a>,
1769          <a href="#t_array">array</a>,
1770          <a href="#t_label">label</a>,
1771          <a href="#t_metadata">metadata</a>.
1772      </td>
1773    </tr>
1774    <tr>
1775      <td><a href="#t_primitive">primitive</a></td>
1776      <td><a href="#t_label">label</a>,
1777          <a href="#t_void">void</a>,
1778          <a href="#t_integer">integer</a>,
1779          <a href="#t_floating">floating point</a>,
1780          <a href="#t_x86mmx">x86mmx</a>,
1781          <a href="#t_metadata">metadata</a>.</td>
1782    </tr>
1783    <tr>
1784      <td><a href="#t_derived">derived</a></td>
1785      <td><a href="#t_array">array</a>,
1786          <a href="#t_function">function</a>,
1787          <a href="#t_pointer">pointer</a>,
1788          <a href="#t_struct">structure</a>,
1789          <a href="#t_vector">vector</a>,
1790          <a href="#t_opaque">opaque</a>.
1791      </td>
1792    </tr>
1793  </tbody>
1794</table>
1795
1796<p>The <a href="#t_firstclass">first class</a> types are perhaps the most
1797   important.  Values of these types are the only ones which can be produced by
1798   instructions.</p>
1799
1800</div>
1801
1802<!-- ======================================================================= -->
1803<h3>
1804  <a name="t_primitive">Primitive Types</a>
1805</h3>
1806
1807<div>
1808
1809<p>The primitive types are the fundamental building blocks of the LLVM
1810   system.</p>
1811
1812<!-- _______________________________________________________________________ -->
1813<h4>
1814  <a name="t_integer">Integer Type</a>
1815</h4>
1816
1817<div>
1818
1819<h5>Overview:</h5>
1820<p>The integer type is a very simple type that simply specifies an arbitrary
1821   bit width for the integer type desired. Any bit width from 1 bit to
1822   2<sup>23</sup>-1 (about 8 million) can be specified.</p>
1823
1824<h5>Syntax:</h5>
1825<pre>
1826  iN
1827</pre>
1828
1829<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1830   value.</p>
1831
1832<h5>Examples:</h5>
1833<table class="layout">
1834  <tr class="layout">
1835    <td class="left"><tt>i1</tt></td>
1836    <td class="left">a single-bit integer.</td>
1837  </tr>
1838  <tr class="layout">
1839    <td class="left"><tt>i32</tt></td>
1840    <td class="left">a 32-bit integer.</td>
1841  </tr>
1842  <tr class="layout">
1843    <td class="left"><tt>i1942652</tt></td>
1844    <td class="left">a really big integer of over 1 million bits.</td>
1845  </tr>
1846</table>
1847
1848</div>
1849
1850<!-- _______________________________________________________________________ -->
1851<h4>
1852  <a name="t_floating">Floating Point Types</a>
1853</h4>
1854
1855<div>
1856
1857<table>
1858  <tbody>
1859    <tr><th>Type</th><th>Description</th></tr>
1860    <tr><td><tt>half</tt></td><td>16-bit floating point value</td></tr>
1861    <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1862    <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1863    <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1864    <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1865    <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1866  </tbody>
1867</table>
1868
1869</div>
1870
1871<!-- _______________________________________________________________________ -->
1872<h4>
1873  <a name="t_x86mmx">X86mmx Type</a>
1874</h4>
1875
1876<div>
1877
1878<h5>Overview:</h5>
1879<p>The x86mmx type represents a value held in an MMX register on an x86 machine.  The operations allowed on it are quite limited:  parameters and return values, load and store, and bitcast.  User-specified MMX instructions are represented as intrinsic or asm calls with arguments and/or results of this type.  There are no arrays, vectors or constants of this type.</p>
1880
1881<h5>Syntax:</h5>
1882<pre>
1883  x86mmx
1884</pre>
1885
1886</div>
1887
1888<!-- _______________________________________________________________________ -->
1889<h4>
1890  <a name="t_void">Void Type</a>
1891</h4>
1892
1893<div>
1894
1895<h5>Overview:</h5>
1896<p>The void type does not represent any value and has no size.</p>
1897
1898<h5>Syntax:</h5>
1899<pre>
1900  void
1901</pre>
1902
1903</div>
1904
1905<!-- _______________________________________________________________________ -->
1906<h4>
1907  <a name="t_label">Label Type</a>
1908</h4>
1909
1910<div>
1911
1912<h5>Overview:</h5>
1913<p>The label type represents code labels.</p>
1914
1915<h5>Syntax:</h5>
1916<pre>
1917  label
1918</pre>
1919
1920</div>
1921
1922<!-- _______________________________________________________________________ -->
1923<h4>
1924  <a name="t_metadata">Metadata Type</a>
1925</h4>
1926
1927<div>
1928
1929<h5>Overview:</h5>
1930<p>The metadata type represents embedded metadata. No derived types may be
1931   created from metadata except for <a href="#t_function">function</a>
1932   arguments.
1933
1934<h5>Syntax:</h5>
1935<pre>
1936  metadata
1937</pre>
1938
1939</div>
1940
1941</div>
1942
1943<!-- ======================================================================= -->
1944<h3>
1945  <a name="t_derived">Derived Types</a>
1946</h3>
1947
1948<div>
1949
1950<p>The real power in LLVM comes from the derived types in the system.  This is
1951   what allows a programmer to represent arrays, functions, pointers, and other
1952   useful types.  Each of these types contain one or more element types which
1953   may be a primitive type, or another derived type.  For example, it is
1954   possible to have a two dimensional array, using an array as the element type
1955   of another array.</p>
1956
1957<!-- _______________________________________________________________________ -->
1958<h4>
1959  <a name="t_aggregate">Aggregate Types</a>
1960</h4>
1961
1962<div>
1963
1964<p>Aggregate Types are a subset of derived types that can contain multiple
1965  member types. <a href="#t_array">Arrays</a> and
1966  <a href="#t_struct">structs</a> are aggregate types.
1967  <a href="#t_vector">Vectors</a> are not considered to be aggregate types.</p>
1968
1969</div>
1970
1971<!-- _______________________________________________________________________ -->
1972<h4>
1973  <a name="t_array">Array Type</a>
1974</h4>
1975
1976<div>
1977
1978<h5>Overview:</h5>
1979<p>The array type is a very simple derived type that arranges elements
1980   sequentially in memory.  The array type requires a size (number of elements)
1981   and an underlying data type.</p>
1982
1983<h5>Syntax:</h5>
1984<pre>
1985  [&lt;# elements&gt; x &lt;elementtype&gt;]
1986</pre>
1987
1988<p>The number of elements is a constant integer value; <tt>elementtype</tt> may
1989   be any type with a size.</p>
1990
1991<h5>Examples:</h5>
1992<table class="layout">
1993  <tr class="layout">
1994    <td class="left"><tt>[40 x i32]</tt></td>
1995    <td class="left">Array of 40 32-bit integer values.</td>
1996  </tr>
1997  <tr class="layout">
1998    <td class="left"><tt>[41 x i32]</tt></td>
1999    <td class="left">Array of 41 32-bit integer values.</td>
2000  </tr>
2001  <tr class="layout">
2002    <td class="left"><tt>[4 x i8]</tt></td>
2003    <td class="left">Array of 4 8-bit integer values.</td>
2004  </tr>
2005</table>
2006<p>Here are some examples of multidimensional arrays:</p>
2007<table class="layout">
2008  <tr class="layout">
2009    <td class="left"><tt>[3 x [4 x i32]]</tt></td>
2010    <td class="left">3x4 array of 32-bit integer values.</td>
2011  </tr>
2012  <tr class="layout">
2013    <td class="left"><tt>[12 x [10 x float]]</tt></td>
2014    <td class="left">12x10 array of single precision floating point values.</td>
2015  </tr>
2016  <tr class="layout">
2017    <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
2018    <td class="left">2x3x4 array of 16-bit integer  values.</td>
2019  </tr>
2020</table>
2021
2022<p>There is no restriction on indexing beyond the end of the array implied by
2023   a static type (though there are restrictions on indexing beyond the bounds
2024   of an allocated object in some cases). This means that single-dimension
2025   'variable sized array' addressing can be implemented in LLVM with a zero
2026   length array type. An implementation of 'pascal style arrays' in LLVM could
2027   use the type "<tt>{ i32, [0 x float]}</tt>", for example.</p>
2028
2029</div>
2030
2031<!-- _______________________________________________________________________ -->
2032<h4>
2033  <a name="t_function">Function Type</a>
2034</h4>
2035
2036<div>
2037
2038<h5>Overview:</h5>
2039<p>The function type can be thought of as a function signature.  It consists of
2040   a return type and a list of formal parameter types. The return type of a
2041   function type is a first class type or a void type.</p>
2042
2043<h5>Syntax:</h5>
2044<pre>
2045  &lt;returntype&gt; (&lt;parameter list&gt;)
2046</pre>
2047
2048<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
2049   specifiers.  Optionally, the parameter list may include a type <tt>...</tt>,
2050   which indicates that the function takes a variable number of arguments.
2051   Variable argument functions can access their arguments with
2052   the <a href="#int_varargs">variable argument handling intrinsic</a>
2053   functions.  '<tt>&lt;returntype&gt;</tt>' is any type except
2054   <a href="#t_label">label</a>.</p>
2055
2056<h5>Examples:</h5>
2057<table class="layout">
2058  <tr class="layout">
2059    <td class="left"><tt>i32 (i32)</tt></td>
2060    <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
2061    </td>
2062  </tr><tr class="layout">
2063    <td class="left"><tt>float&nbsp;(i16,&nbsp;i32&nbsp;*)&nbsp;*
2064    </tt></td>
2065    <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
2066      an <tt>i16</tt> and a <a href="#t_pointer">pointer</a> to <tt>i32</tt>,
2067      returning <tt>float</tt>.
2068    </td>
2069  </tr><tr class="layout">
2070    <td class="left"><tt>i32 (i8*, ...)</tt></td>
2071    <td class="left">A vararg function that takes at least one
2072      <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
2073      which returns an integer.  This is the signature for <tt>printf</tt> in
2074      LLVM.
2075    </td>
2076  </tr><tr class="layout">
2077    <td class="left"><tt>{i32, i32} (i32)</tt></td>
2078    <td class="left">A function taking an <tt>i32</tt>, returning a
2079        <a href="#t_struct">structure</a> containing two <tt>i32</tt> values
2080    </td>
2081  </tr>
2082</table>
2083
2084</div>
2085
2086<!-- _______________________________________________________________________ -->
2087<h4>
2088  <a name="t_struct">Structure Type</a>
2089</h4>
2090
2091<div>
2092
2093<h5>Overview:</h5>
2094<p>The structure type is used to represent a collection of data members together
2095  in memory.  The elements of a structure may be any type that has a size.</p>
2096
2097<p>Structures in memory are accessed using '<tt><a href="#i_load">load</a></tt>'
2098   and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field
2099   with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
2100   Structures in registers are accessed using the
2101   '<tt><a href="#i_extractvalue">extractvalue</a></tt>' and
2102   '<tt><a href="#i_insertvalue">insertvalue</a></tt>' instructions.</p>
2103  
2104<p>Structures may optionally be "packed" structures, which indicate that the 
2105  alignment of the struct is one byte, and that there is no padding between
2106  the elements.  In non-packed structs, padding between field types is inserted
2107  as defined by the TargetData string in the module, which is required to match
2108  what the underlying code generator expects.</p>
2109
2110<p>Structures can either be "literal" or "identified".  A literal structure is
2111  defined inline with other types (e.g. <tt>{i32, i32}*</tt>) whereas identified
2112  types are always defined at the top level with a name.  Literal types are
2113  uniqued by their contents and can never be recursive or opaque since there is
2114  no way to write one.  Identified types can be recursive, can be opaqued, and are
2115  never uniqued.
2116</p>
2117  
2118<h5>Syntax:</h5>
2119<pre>
2120  %T1 = type { &lt;type list&gt; }     <i>; Identified normal struct type</i>
2121  %T2 = type &lt;{ &lt;type list&gt; }&gt;   <i>; Identified packed struct type</i>
2122</pre>
2123  
2124<h5>Examples:</h5>
2125<table class="layout">
2126  <tr class="layout">
2127    <td class="left"><tt>{ i32, i32, i32 }</tt></td>
2128    <td class="left">A triple of three <tt>i32</tt> values</td>
2129  </tr>
2130  <tr class="layout">
2131    <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
2132    <td class="left">A pair, where the first element is a <tt>float</tt> and the
2133      second element is a <a href="#t_pointer">pointer</a> to a
2134      <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
2135      an <tt>i32</tt>.</td>
2136  </tr>
2137  <tr class="layout">
2138    <td class="left"><tt>&lt;{ i8, i32 }&gt;</tt></td>
2139    <td class="left">A packed struct known to be 5 bytes in size.</td>
2140  </tr>
2141</table>
2142
2143</div>
2144  
2145<!-- _______________________________________________________________________ -->
2146<h4>
2147  <a name="t_opaque">Opaque Structure Types</a>
2148</h4>
2149
2150<div>
2151
2152<h5>Overview:</h5>
2153<p>Opaque structure types are used to represent named structure types that do
2154   not have a body specified.  This corresponds (for example) to the C notion of
2155   a forward declared structure.</p>
2156
2157<h5>Syntax:</h5>
2158<pre>
2159  %X = type opaque
2160  %52 = type opaque
2161</pre>
2162
2163<h5>Examples:</h5>
2164<table class="layout">
2165  <tr class="layout">
2166    <td class="left"><tt>opaque</tt></td>
2167    <td class="left">An opaque type.</td>
2168  </tr>
2169</table>
2170
2171</div>
2172
2173
2174
2175<!-- _______________________________________________________________________ -->
2176<h4>
2177  <a name="t_pointer">Pointer Type</a>
2178</h4>
2179
2180<div>
2181
2182<h5>Overview:</h5>
2183<p>The pointer type is used to specify memory locations.
2184   Pointers are commonly used to reference objects in memory.</p>
2185   
2186<p>Pointer types may have an optional address space attribute defining the
2187   numbered address space where the pointed-to object resides. The default
2188   address space is number zero. The semantics of non-zero address
2189   spaces are target-specific.</p>
2190
2191<p>Note that LLVM does not permit pointers to void (<tt>void*</tt>) nor does it
2192   permit pointers to labels (<tt>label*</tt>).  Use <tt>i8*</tt> instead.</p>
2193
2194<h5>Syntax:</h5>
2195<pre>
2196  &lt;type&gt; *
2197</pre>
2198
2199<h5>Examples:</h5>
2200<table class="layout">
2201  <tr class="layout">
2202    <td class="left"><tt>[4 x i32]*</tt></td>
2203    <td class="left">A <a href="#t_pointer">pointer</a> to <a
2204                    href="#t_array">array</a> of four <tt>i32</tt> values.</td>
2205  </tr>
2206  <tr class="layout">
2207    <td class="left"><tt>i32 (i32*) *</tt></td>
2208    <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
2209      href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
2210      <tt>i32</tt>.</td>
2211  </tr>
2212  <tr class="layout">
2213    <td class="left"><tt>i32 addrspace(5)*</tt></td>
2214    <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
2215     that resides in address space #5.</td>
2216  </tr>
2217</table>
2218
2219</div>
2220
2221<!-- _______________________________________________________________________ -->
2222<h4>
2223  <a name="t_vector">Vector Type</a>
2224</h4>
2225
2226<div>
2227
2228<h5>Overview:</h5>
2229<p>A vector type is a simple derived type that represents a vector of elements.
2230   Vector types are used when multiple primitive data are operated in parallel
2231   using a single instruction (SIMD).  A vector type requires a size (number of
2232   elements) and an underlying primitive data type.  Vector types are considered
2233   <a href="#t_firstclass">first class</a>.</p>
2234
2235<h5>Syntax:</h5>
2236<pre>
2237  &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
2238</pre>
2239
2240<p>The number of elements is a constant integer value larger than 0; elementtype
2241   may be any integer or floating point type, or a pointer to these types.
2242   Vectors of size zero are not allowed. </p>
2243
2244<h5>Examples:</h5>
2245<table class="layout">
2246  <tr class="layout">
2247    <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
2248    <td class="left">Vector of 4 32-bit integer values.</td>
2249  </tr>
2250  <tr class="layout">
2251    <td class="left"><tt>&lt;8 x float&gt;</tt></td>
2252    <td class="left">Vector of 8 32-bit floating-point values.</td>
2253  </tr>
2254  <tr class="layout">
2255    <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
2256    <td class="left">Vector of 2 64-bit integer values.</td>
2257  </tr>
2258  <tr class="layout">
2259    <td class="left"><tt>&lt;4 x i64*&gt;</tt></td>
2260    <td class="left">Vector of 4 pointers to 64-bit integer values.</td>
2261  </tr>
2262</table>
2263
2264</div>
2265
2266</div>
2267
2268</div>
2269
2270<!-- *********************************************************************** -->
2271<h2><a name="constants">Constants</a></h2>
2272<!-- *********************************************************************** -->
2273
2274<div>
2275
2276<p>LLVM has several different basic types of constants.  This section describes
2277   them all and their syntax.</p>
2278
2279<!-- ======================================================================= -->
2280<h3>
2281  <a name="simpleconstants">Simple Constants</a>
2282</h3>
2283
2284<div>
2285
2286<dl>
2287  <dt><b>Boolean constants</b></dt>
2288  <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
2289      constants of the <tt><a href="#t_integer">i1</a></tt> type.</dd>
2290
2291  <dt><b>Integer constants</b></dt>
2292  <dd>Standard integers (such as '4') are constants of
2293      the <a href="#t_integer">integer</a> type.  Negative numbers may be used
2294      with integer types.</dd>
2295
2296  <dt><b>Floating point constants</b></dt>
2297  <dd>Floating point constants use standard decimal notation (e.g. 123.421),
2298      exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
2299      notation (see below).  The assembler requires the exact decimal value of a
2300      floating-point constant.  For example, the assembler accepts 1.25 but
2301      rejects 1.3 because 1.3 is a repeating decimal in binary.  Floating point
2302      constants must have a <a href="#t_floating">floating point</a> type. </dd>
2303
2304  <dt><b>Null pointer constants</b></dt>
2305  <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
2306      and must be of <a href="#t_pointer">pointer type</a>.</dd>
2307</dl>
2308
2309<p>The one non-intuitive notation for constants is the hexadecimal form of
2310   floating point constants.  For example, the form '<tt>double
2311   0x432ff973cafa8000</tt>' is equivalent to (but harder to read than)
2312   '<tt>double 4.5e+15</tt>'.  The only time hexadecimal floating point
2313   constants are required (and the only time that they are generated by the
2314   disassembler) is when a floating point constant must be emitted but it cannot
2315   be represented as a decimal floating point number in a reasonable number of
2316   digits.  For example, NaN's, infinities, and other special values are
2317   represented in their IEEE hexadecimal format so that assembly and disassembly
2318   do not cause any bits to change in the constants.</p>
2319
2320<p>When using the hexadecimal form, constants of types half, float, and double are
2321   represented using the 16-digit form shown above (which matches the IEEE754
2322   representation for double); half and float values must, however, be exactly
2323   representable as IEE754 half and single precision, respectively.
2324   Hexadecimal format is always used
2325   for long double, and there are three forms of long double.  The 80-bit format
2326   used by x86 is represented as <tt>0xK</tt> followed by 20 hexadecimal digits.
2327   The 128-bit format used by PowerPC (two adjacent doubles) is represented
2328   by <tt>0xM</tt> followed by 32 hexadecimal digits.  The IEEE 128-bit format
2329   is represented by <tt>0xL</tt> followed by 32 hexadecimal digits; no
2330   currently supported target uses this format.  Long doubles will only work if
2331   they match the long double format on your target. The IEEE 16-bit format
2332   (half precision) is represented by <tt>0xH</tt> followed by 4 hexadecimal
2333   digits. All hexadecimal formats are big-endian (sign bit at the left).</p>
2334
2335<p>There are no constants of type x86mmx.</p>
2336</div>
2337
2338<!-- ======================================================================= -->
2339<h3>
2340<a name="aggregateconstants"></a> <!-- old anchor -->
2341<a name="complexconstants">Complex Constants</a>
2342</h3>
2343
2344<div>
2345
2346<p>Complex constants are a (potentially recursive) combination of simple
2347   constants and smaller complex constants.</p>
2348
2349<dl>
2350  <dt><b>Structure constants</b></dt>
2351  <dd>Structure constants are represented with notation similar to structure
2352      type definitions (a comma separated list of elements, surrounded by braces
2353      (<tt>{}</tt>)).  For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
2354      where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>".
2355      Structure constants must have <a href="#t_struct">structure type</a>, and
2356      the number and types of elements must match those specified by the
2357      type.</dd>
2358
2359  <dt><b>Array constants</b></dt>
2360  <dd>Array constants are represented with notation similar to array type
2361     definitions (a comma separated list of elements, surrounded by square
2362     brackets (<tt>[]</tt>)).  For example: "<tt>[ i32 42, i32 11, i32 74
2363     ]</tt>".  Array constants must have <a href="#t_array">array type</a>, and
2364     the number and types of elements must match those specified by the
2365     type.</dd>
2366
2367  <dt><b>Vector constants</b></dt>
2368  <dd>Vector constants are represented with notation similar to vector type
2369      definitions (a comma separated list of elements, surrounded by
2370      less-than/greater-than's (<tt>&lt;&gt;</tt>)).  For example: "<tt>&lt; i32
2371      42, i32 11, i32 74, i32 100 &gt;</tt>".  Vector constants must
2372      have <a href="#t_vector">vector type</a>, and the number and types of
2373      elements must match those specified by the type.</dd>
2374
2375  <dt><b>Zero initialization</b></dt>
2376  <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
2377      value to zero of <em>any</em> type, including scalar and
2378      <a href="#t_aggregate">aggregate</a> types.
2379      This is often used to avoid having to print large zero initializers
2380      (e.g. for large arrays) and is always exactly equivalent to using explicit
2381      zero initializers.</dd>
2382
2383  <dt><b>Metadata node</b></dt>
2384  <dd>A metadata node is a structure-like constant with
2385      <a href="#t_metadata">metadata type</a>.  For example: "<tt>metadata !{
2386      i32 0, metadata !"test" }</tt>".  Unlike other constants that are meant to
2387      be interpreted as part of the instruction stream, metadata is a place to
2388      attach additional information such as debug info.</dd>
2389</dl>
2390
2391</div>
2392
2393<!-- ======================================================================= -->
2394<h3>
2395  <a name="globalconstants">Global Variable and Function Addresses</a>
2396</h3>
2397
2398<div>
2399
2400<p>The addresses of <a href="#globalvars">global variables</a>
2401   and <a href="#functionstructure">functions</a> are always implicitly valid
2402   (link-time) constants.  These constants are explicitly referenced when
2403   the <a href="#identifiers">identifier for the global</a> is used and always
2404   have <a href="#t_pointer">pointer</a> type. For example, the following is a
2405   legal LLVM file:</p>
2406
2407<pre class="doc_code">
2408@X = global i32 17
2409@Y = global i32 42
2410@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2411</pre>
2412
2413</div>
2414
2415<!-- ======================================================================= -->
2416<h3>
2417  <a name="undefvalues">Undefined Values</a>
2418</h3>
2419
2420<div>
2421
2422<p>The string '<tt>undef</tt>' can be used anywhere a constant is expected, and
2423   indicates that the user of the value may receive an unspecified bit-pattern.
2424   Undefined values may be of any type (other than '<tt>label</tt>'
2425   or '<tt>void</tt>') and be used anywhere a constant is permitted.</p>
2426
2427<p>Undefined values are useful because they indicate to the compiler that the
2428   program is well defined no matter what value is used.  This gives the
2429   compiler more freedom to optimize.  Here are some examples of (potentially
2430   surprising) transformations that are valid (in pseudo IR):</p>
2431
2432
2433<pre class="doc_code">
2434  %A = add %X, undef
2435  %B = sub %X, undef
2436  %C = xor %X, undef
2437Safe:
2438  %A = undef
2439  %B = undef
2440  %C = undef
2441</pre>
2442
2443<p>This is safe because all of the output bits are affected by the undef bits.
2444   Any output bit can have a zero or one depending on the input bits.</p>
2445
2446<pre class="doc_code">
2447  %A = or %X, undef
2448  %B = and %X, undef
2449Safe:
2450  %A = -1
2451  %B = 0
2452Unsafe:
2453  %A = undef
2454  %B = undef
2455</pre>
2456
2457<p>These logical operations have bits that are not always affected by the input.
2458   For example, if <tt>%X</tt> has a zero bit, then the output of the
2459   '<tt>and</tt>' operation will always be a zero for that bit, no matter what
2460   the corresponding bit from the '<tt>undef</tt>' is. As such, it is unsafe to
2461   optimize or assume that the result of the '<tt>and</tt>' is '<tt>undef</tt>'.
2462   However, it is safe to assume that all bits of the '<tt>undef</tt>' could be
2463   0, and optimize the '<tt>and</tt>' to 0. Likewise, it is safe to assume that
2464   all the bits of the '<tt>undef</tt>' operand to the '<tt>or</tt>' could be
2465   set, allowing the '<tt>or</tt>' to be folded to -1.</p>
2466
2467<pre class="doc_code">
2468  %A = select undef, %X, %Y
2469  %B = select undef, 42, %Y
2470  %C = select %X, %Y, undef
2471Safe:
2472  %A = %X     (or %Y)
2473  %B = 42     (or %Y)
2474  %C = %Y
2475Unsafe:
2476  %A = undef
2477  %B = undef
2478  %C = undef
2479</pre>
2480
2481<p>This set of examples shows that undefined '<tt>select</tt>' (and conditional
2482   branch) conditions can go <em>either way</em>, but they have to come from one
2483   of the two operands.  In the <tt>%A</tt> example, if <tt>%X</tt> and
2484   <tt>%Y</tt> were both known to have a clear low bit, then <tt>%A</tt> would
2485   have to have a cleared low bit. However, in the <tt>%C</tt> example, the
2486   optimizer is allowed to assume that the '<tt>undef</tt>' operand could be the
2487   same as <tt>%Y</tt>, allowing the whole '<tt>select</tt>' to be
2488   eliminated.</p>
2489
2490<pre class="doc_code">
2491  %A = xor undef, undef
2492
2493  %B = undef
2494  %C = xor %B, %B
2495
2496  %D = undef
2497  %E = icmp lt %D, 4
2498  %F = icmp gte %D, 4
2499
2500Safe:
2501  %A = undef
2502  %B = undef
2503  %C = undef
2504  %D = undef
2505  %E = undef
2506  %F = undef
2507</pre>
2508
2509<p>This example points out that two '<tt>undef</tt>' operands are not
2510   necessarily the same. This can be surprising to people (and also matches C
2511   semantics) where they assume that "<tt>X^X</tt>" is always zero, even
2512   if <tt>X</tt> is undefined. This isn't true for a number of reasons, but the
2513   short answer is that an '<tt>undef</tt>' "variable" can arbitrarily change
2514   its value over its "live range".  This is true because the variable doesn't
2515   actually <em>have a live range</em>. Instead, the value is logically read
2516   from arbitrary registers that happen to be around when needed, so the value
2517   is not necessarily consistent over time. In fact, <tt>%A</tt> and <tt>%C</tt>
2518   need to have the same semantics or the core LLVM "replace all uses with"
2519   concept would not hold.</p>
2520
2521<pre class="doc_code">
2522  %A = fdiv undef, %X
2523  %B = fdiv %X, undef
2524Safe:
2525  %A = undef
2526b: unreachable
2527</pre>
2528
2529<p>These examples show the crucial difference between an <em>undefined
2530  value</em> and <em>undefined behavior</em>. An undefined value (like
2531  '<tt>undef</tt>') is allowed to have an arbitrary bit-pattern. This means that
2532  the <tt>%A</tt> operation can be constant folded to '<tt>undef</tt>', because
2533  the '<tt>undef</tt>' could be an SNaN, and <tt>fdiv</tt> is not (currently)
2534  defined on SNaN's. However, in the second example, we can make a more
2535  aggressive assumption: because the <tt>undef</tt> is allowed to be an
2536  arbitrary value, we are allowed to assume that it could be zero. Since a
2537  divide by zero has <em>undefined behavior</em>, we are allowed to assume that
2538  the operation does not execute at all. This allows us to delete the divide and
2539  all code after it. Because the undefined operation "can't happen", the
2540  optimizer can assume that it occurs in dead code.</p>
2541
2542<pre class="doc_code">
2543a:  store undef -> %X
2544b:  store %X -> undef
2545Safe:
2546a: &lt;deleted&gt;
2547b: unreachable
2548</pre>
2549
2550<p>These examples reiterate the <tt>fdiv</tt> example: a store <em>of</em> an
2551   undefined value can be assumed to not have any effect; we can assume that the
2552   value is overwritten with bits that happen to match what was already there.
2553   However, a store <em>to</em> an undefined location could clobber arbitrary
2554   memory, therefore, it has undefined behavior.</p>
2555
2556</div>
2557
2558<!-- ======================================================================= -->
2559<h3>
2560  <a name="poisonvalues">Poison Values</a>
2561</h3>
2562
2563<div>
2564
2565<p>Poison values are similar to <a href="#undefvalues">undef values</a>, however
2566   they also represent the fact that an instruction or constant expression which
2567   cannot evoke side effects has nevertheless detected a condition which results
2568   in undefined behavior.</p>
2569
2570<p>There is currently no way of representing a poison value in the IR; they
2571   only exist when produced by operations such as
2572   <a href="#i_add"><tt>add</tt></a> with the <tt>nsw</tt> flag.</p>
2573
2574<p>Poison value behavior is defined in terms of value <i>dependence</i>:</p>
2575
2576<ul>
2577<li>Values other than <a href="#i_phi"><tt>phi</tt></a> nodes depend on
2578    their operands.</li>
2579
2580<li><a href="#i_phi"><tt>Phi</tt></a> nodes depend on the operand corresponding
2581    to their dynamic predecessor basic block.</li>
2582
2583<li>Function arguments depend on the corresponding actual argument values in
2584    the dynamic callers of their functions.</li>
2585
2586<li><a href="#i_call"><tt>Call</tt></a> instructions depend on the
2587    <a href="#i_ret"><tt>ret</tt></a> instructions that dynamically transfer
2588    control back to them.</li>
2589
2590<li><a href="#i_invoke"><tt>Invoke</tt></a> instructions depend on the
2591    <a href="#i_ret"><tt>ret</tt></a>, <a href="#i_resume"><tt>resume</tt></a>,
2592    or exception-throwing call instructions that dynamically transfer control
2593    back to them.</li>
2594
2595<li>Non-volatile loads and stores depend on the most recent stores to all of the
2596    referenced memory addresses, following the order in the IR
2597    (including loads and stores implied by intrinsics such as
2598    <a href="#int_memcpy"><tt>@llvm.memcpy</tt></a>.)</li>
2599
2600<!-- TODO: In the case of multiple threads, this only applies if the store
2601     "happens-before" the load or store. -->
2602
2603<!-- TODO: floating-point exception state -->
2604
2605<li>An instruction with externally visible side effects depends on the most
2606    recent preceding instruction with externally visible side effects, following
2607    the order in the IR. (This includes
2608    <a href="#volatile">volatile operations</a>.)</li>
2609
2610<li>An instruction <i>control-depends</i> on a
2611    <a href="#terminators">terminator instruction</a>
2612    if the terminator instruction has multiple successors and the instruction
2613    is always executed when control transfers to one of the successors, and
2614    may not be executed when control is transferred to another.</li>
2615
2616<li>Additionally, an instruction also <i>control-depends</i> on a terminator
2617    instruction if the set of instructions it otherwise depends on would be
2618    different if the terminator had transferred control to a different
2619    successor.</li>
2620
2621<li>Dependence is transitive.</li>
2622
2623</ul>
2624
2625<p>Poison Values have the same behavior as <a href="#undefvalues">undef values</a>,
2626   with the additional affect that any instruction which has a <i>dependence</i>
2627   on a poison value has undefined behavior.</p>
2628
2629<p>Here are some examples:</p>
2630
2631<pre class="doc_code">
2632entry:
2633  %poison = sub nuw i32 0, 1           ; Results in a poison value.
2634  %still_poison = and i32 %poison, 0   ; 0, but also poison.
2635  %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2636  store i32 0, i32* %poison_yet_again  ; memory at @h[0] is poisoned
2637
2638  store i32 %poison, i32* @g           ; Poison value stored to memory.
2639  %poison2 = load i32* @g              ; Poison value loaded back from memory.
2640
2641  store volatile i32 %poison, i32* @g  ; External observation; undefined behavior.
2642
2643  %narrowaddr = bitcast i32* @g to i16*
2644  %wideaddr = bitcast i32* @g to i64*
2645  %poison3 = load i16* %narrowaddr     ; Returns a poison value.
2646  %poison4 = load i64* %wideaddr       ; Returns a poison value.
2647
2648  %cmp = icmp slt i32 %poison, 0       ; Returns a poison value.
2649  br i1 %cmp, label %true, label %end  ; Branch to either destination.
2650
2651true:
2652  store volatile i32 0, i32* @g        ; This is control-dependent on %cmp, so
2653                                       ; it has undefined behavior.
2654  br label %end
2655
2656end:
2657  %p = phi i32 [ 0, %entry ], [ 1, %true ]
2658                                       ; Both edges into this PHI are
2659                                       ; control-dependent on %cmp, so this
2660                                       ; always results in a poison value.
2661
2662  store volatile i32 0, i32* @g        ; This would depend on the store in %true
2663                                       ; if %cmp is true, or the store in %entry
2664                                       ; otherwise, so this is undefined behavior.
2665
2666  br i1 %cmp, label %second_true, label %second_end
2667                                       ; The same branch again, but this time the
2668                                       ; true block doesn't have side effects.
2669
2670second_true:
2671  ; No side effects!
2672  ret void
2673
2674second_end:
2675  store volatile i32 0, i32* @g        ; This time, the instruction always depends
2676                                       ; on the store in %end. Also, it is
2677                                       ; control-equivalent to %end, so this is
2678                                       ; well-defined (ignoring earlier undefined
2679                                       ; behavior in this example).
2680</pre>
2681
2682</div>
2683
2684<!-- ======================================================================= -->
2685<h3>
2686  <a name="blockaddress">Addresses of Basic Blocks</a>
2687</h3>
2688
2689<div>
2690
2691<p><b><tt>blockaddress(@function, %block)</tt></b></p>
2692
2693<p>The '<tt>blockaddress</tt>' constant computes the address of the specified
2694   basic block in the specified function, and always has an i8* type.  Taking
2695   the address of the entry block is illegal.</p>
2696
2697<p>This value only has defined behavior when used as an operand to the
2698   '<a href="#i_indirectbr"><tt>indirectbr</tt></a>' instruction, or for
2699   comparisons against null. Pointer equality tests between labels addresses
2700   results in undefined behavior &mdash; though, again, comparison against null
2701   is ok, and no label is equal to the null pointer. This may be passed around
2702   as an opaque pointer sized value as long as the bits are not inspected. This
2703   allows <tt>ptrtoint</tt> and arithmetic to be performed on these values so
2704   long as the original value is reconstituted before the <tt>indirectbr</tt>
2705   instruction.</p>
2706
2707<p>Finally, some targets may provide defined semantics when using the value as
2708   the operand to an inline assembly, but that is target specific.</p>
2709
2710</div>
2711
2712
2713<!-- ======================================================================= -->
2714<h3>
2715  <a name="constantexprs">Constant Expressions</a>
2716</h3>
2717
2718<div>
2719
2720<p>Constant expressions are used to allow expressions involving other constants
2721   to be used as constants.  Constant expressions may be of
2722   any <a href="#t_firstclass">first class</a> type and may involve any LLVM
2723   operation that does not have side effects (e.g. load and call are not
2724   supported). The following is the syntax for constant expressions:</p>
2725
2726<dl>
2727  <dt><b><tt>trunc (CST to TYPE)</tt></b></dt>
2728  <dd>Truncate a constant to another type. The bit size of CST must be larger
2729      than the bit size of TYPE. Both types must be integers.</dd>
2730
2731  <dt><b><tt>zext (CST to TYPE)</tt></b></dt>
2732  <dd>Zero extend a constant to another type. The bit size of CST must be
2733      smaller than the bit size of TYPE.  Both types must be integers.</dd>
2734
2735  <dt><b><tt>sext (CST to TYPE)</tt></b></dt>
2736  <dd>Sign extend a constant to another type. The bit size of CST must be
2737      smaller than the bit size of TYPE.  Both types must be integers.</dd>
2738
2739  <dt><b><tt>fptrunc (CST to TYPE)</tt></b></dt>
2740  <dd>Truncate a floating point constant to another floating point type. The
2741      size of CST must be larger than the size of TYPE. Both types must be
2742      floating point.</dd>
2743
2744  <dt><b><tt>fpext (CST to TYPE)</tt></b></dt>
2745  <dd>Floating point extend a constant to another type. The size of CST must be
2746      smaller or equal to the size of TYPE. Both types must be floating
2747      point.</dd>
2748
2749  <dt><b><tt>fptoui (CST to TYPE)</tt></b></dt>
2750  <dd>Convert a floating point constant to the corresponding unsigned integer
2751      constant. TYPE must be a scalar or vector integer type. CST must be of
2752      scalar or vector floating point type. Both CST and TYPE must be scalars,
2753      or vectors of the same number of elements. If the value won't fit in the
2754      integer type, the results are undefined.</dd>
2755
2756  <dt><b><tt>fptosi (CST to TYPE)</tt></b></dt>
2757  <dd>Convert a floating point constant to the corresponding signed integer
2758      constant.  TYPE must be a scalar or vector integer type. CST must be of
2759      scalar or vector floating point type. Both CST and TYPE must be scalars,
2760      or vectors of the same number of elements. If the value won't fit in the
2761      integer type, the results are undefined.</dd>
2762
2763  <dt><b><tt>uitofp (CST to TYPE)</tt></b></dt>
2764  <dd>Convert an unsigned integer constant to the corresponding floating point
2765      constant. TYPE must be a scalar or vector floating point type. CST must be
2766      of scalar or vector integer type. Both CST and TYPE must be scalars, or
2767      vectors of the same number of elements. If the value won't fit in the
2768      floating point type, the results are undefined.</dd>
2769
2770  <dt><b><tt>sitofp (CST to TYPE)</tt></b></dt>
2771  <dd>Convert a signed integer constant to the corresponding floating point
2772      constant. TYPE must be a scalar or vector floating point type. CST must be
2773      of scalar or vector integer type. Both CST and TYPE must be scalars, or
2774      vectors of the same number of elements. If the value won't fit in the
2775      floating point type, the results are undefined.</dd>
2776
2777  <dt><b><tt>ptrtoint (CST to TYPE)</tt></b></dt>
2778  <dd>Convert a pointer typed constant to the corresponding integer constant
2779      <tt>TYPE</tt> must be an integer type. <tt>CST</tt> must be of pointer
2780      type. The <tt>CST</tt> value is zero extended, truncated, or unchanged to
2781      make it fit in <tt>TYPE</tt>.</dd>
2782
2783  <dt><b><tt>inttoptr (CST to TYPE)</tt></b></dt>
2784  <dd>Convert an integer constant to a pointer constant.  TYPE must be a pointer
2785      type.  CST must be of integer type. The CST value is zero extended,
2786      truncated, or unchanged to make it fit in a pointer size. This one is
2787      <i>really</i> dangerous!</dd>
2788
2789  <dt><b><tt>bitcast (CST to TYPE)</tt></b></dt>
2790  <dd>Convert a constant, CST, to another TYPE. The constraints of the operands
2791      are the same as those for the <a href="#i_bitcast">bitcast
2792      instruction</a>.</dd>
2793
2794  <dt><b><tt>getelementptr (CSTPTR, IDX0, IDX1, ...)</tt></b></dt>
2795  <dt><b><tt>getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)</tt></b></dt>
2796  <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
2797      constants.  As with the <a href="#i_getelementptr">getelementptr</a>
2798      instruction, the index list may have zero or more indexes, which are
2799      required to make sense for the type of "CSTPTR".</dd>
2800
2801  <dt><b><tt>select (COND, VAL1, VAL2)</tt></b></dt>
2802  <dd>Perform the <a href="#i_select">select operation</a> on constants.</dd>
2803
2804  <dt><b><tt>icmp COND (VAL1, VAL2)</tt></b></dt>
2805  <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
2806
2807  <dt><b><tt>fcmp COND (VAL1, VAL2)</tt></b></dt>
2808  <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
2809
2810  <dt><b><tt>extractelement (VAL, IDX)</tt></b></dt>
2811  <dd>Perform the <a href="#i_extractelement">extractelement operation</a> on
2812      constants.</dd>
2813
2814  <dt><b><tt>insertelement (VAL, ELT, IDX)</tt></b></dt>
2815  <dd>Perform the <a href="#i_insertelement">insertelement operation</a> on
2816    constants.</dd>
2817
2818  <dt><b><tt>shufflevector (VEC1, VEC2, IDXMASK)</tt></b></dt>
2819  <dd>Perform the <a href="#i_shufflevector">shufflevector operation</a> on
2820      constants.</dd>
2821
2822  <dt><b><tt>extractvalue (VAL, IDX0, IDX1, ...)</tt></b></dt>
2823  <dd>Perform the <a href="#i_extractvalue">extractvalue operation</a> on
2824    constants. The index list is interpreted in a similar manner as indices in
2825    a '<a href="#i_getelementptr">getelementptr</a>' operation. At least one
2826    index value must be specified.</dd>
2827
2828  <dt><b><tt>insertvalue (VAL, ELT, IDX0, IDX1, ...)</tt></b></dt>
2829  <dd>Perform the <a href="#i_insertvalue">insertvalue operation</a> on
2830    constants. The index list is interpreted in a similar manner as indices in
2831    a '<a href="#i_getelementptr">getelementptr</a>' operation. At least one
2832    index value must be specified.</dd>
2833
2834  <dt><b><tt>OPCODE (LHS, RHS)</tt></b></dt>
2835  <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
2836      be any of the <a href="#binaryops">binary</a>
2837      or <a href="#bitwiseops">bitwise binary</a> operations.  The constraints
2838      on operands are the same as those for the corresponding instruction
2839      (e.g. no bitwise operations on floating point values are allowed).</dd>
2840</dl>
2841
2842</div>
2843
2844</div>
2845
2846<!-- *********************************************************************** -->
2847<h2><a name="othervalues">Other Values</a></h2>
2848<!-- *********************************************************************** -->
2849<div>
2850<!-- ======================================================================= -->
2851<h3>
2852<a name="inlineasm">Inline Assembler Expressions</a>
2853</h3>
2854
2855<div>
2856
2857<p>LLVM supports inline assembler expressions (as opposed
2858   to <a href="#moduleasm">Module-Level Inline Assembly</a>) through the use of
2859   a special value.  This value represents the inline assembler as a string
2860   (containing the instructions to emit), a list of operand constraints (stored
2861   as a string), a flag that indicates whether or not the inline asm
2862   expression has side effects, and a flag indicating whether the function
2863   containing the asm needs to align its stack conservatively.  An example
2864   inline assembler expression is:</p>
2865
2866<pre class="doc_code">
2867i32 (i32) asm "bswap $0", "=r,r"
2868</pre>
2869
2870<p>Inline assembler expressions may <b>only</b> be used as the callee operand of
2871   a <a href="#i_call"><tt>call</tt></a> or an
2872   <a href="#i_invoke"><tt>invoke</tt></a> instruction.
2873   Thus, typically we have:</p>
2874
2875<pre class="doc_code">
2876%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
2877</pre>
2878
2879<p>Inline asms with side effects not visible in the constraint list must be
2880   marked as having side effects.  This is done through the use of the
2881   '<tt>sideeffect</tt>' keyword, like so:</p>
2882
2883<pre class="doc_code">
2884call void asm sideeffect "eieio", ""()
2885</pre>
2886
2887<p>In some cases inline asms will contain code that will not work unless the
2888   stack is aligned in some way, such as calls or SSE instructions on x86,
2889   yet will not contain code that does that alignment within the asm.
2890   The compiler should make conservative assumptions about what the asm might
2891   contain and should generate its usual stack alignment code in the prologue
2892   if the '<tt>alignstack</tt>' keyword is present:</p>
2893
2894<pre class="doc_code">
2895call void asm alignstack "eieio", ""()
2896</pre>
2897
2898<p>Inline asms also support using non-standard assembly dialects.  The assumed
2899   dialect is ATT.  When the '<tt>inteldialect</tt>' keyword is present, the
2900   inline asm is using the Intel dialect.  Currently, ATT and Intel are the
2901   only supported dialects.  An example is:</p>
2902
2903<pre class="doc_code">
2904call void asm inteldialect "eieio", ""()
2905</pre>
2906
2907<p>If multiple keywords appear the '<tt>sideeffect</tt>' keyword must come
2908   first, the '<tt>alignstack</tt>' keyword second and the
2909   '<tt>inteldialect</tt>' keyword last.</p>
2910
2911<!--
2912<p>TODO: The format of the asm and constraints string still need to be
2913   documented here.  Constraints on what can be done (e.g. duplication, moving,
2914   etc need to be documented).  This is probably best done by reference to
2915   another document that covers inline asm from a holistic perspective.</p>
2916  -->
2917
2918<!-- _______________________________________________________________________ -->
2919<h4>
2920  <a name="inlineasm_md">Inline Asm Metadata</a>
2921</h4>
2922
2923<div>
2924
2925<p>The call instructions that wrap inline asm nodes may have a
2926   "<tt>!srcloc</tt>" MDNode attached to it that contains a list of constant
2927   integers.  If present, the code generator will use the integer as the
2928   location cookie value when report errors through the <tt>LLVMContext</tt>
2929   error reporting mechanisms.  This allows a front-end to correlate backend
2930   errors that occur with inline asm back to the source code that produced it.
2931   For example:</p>
2932
2933<pre class="doc_code">
2934call void asm sideeffect "something bad", ""()<b>, !srcloc !42</b>
2935...
2936!42 = !{ i32 1234567 }
2937</pre>
2938
2939<p>It is up to the front-end to make sense of the magic numbers it places in the
2940   IR. If the MDNode contains multiple constants, the code generator will use
2941   the one that corresponds to the line of the asm that the error occurs on.</p>
2942
2943</div>
2944
2945</div>
2946
2947<!-- ======================================================================= -->
2948<h3>
2949  <a name="metadata">Metadata Nodes and Metadata Strings</a>
2950</h3>
2951
2952<div>
2953
2954<p>LLVM IR allows metadata to be attached to instructions in the program that
2955   can convey extra information about the code to the optimizers and code
2956   generator.  One example application of metadata is source-level debug
2957   information.  There are two metadata primitives: strings and nodes. All
2958   metadata has the <tt>metadata</tt> type and is identified in syntax by a
2959   preceding exclamation point ('<tt>!</tt>').</p>
2960
2961<p>A metadata string is a string surrounded by double quotes.  It can contain
2962   any character by escaping non-printable characters with "<tt>\xx</tt>" where
2963   "<tt>xx</tt>" is the two digit hex code.  For example:
2964   "<tt>!"test\00"</tt>".</p>
2965
2966<p>Metadata nodes are represented with notation similar to structure constants
2967   (a comma separated list of elements, surrounded by braces and preceded by an
2968   exclamation point). Metadata nodes can have any values as their operand. For
2969   example:</p>
2970
2971<div class="doc_code">
2972<pre>
2973!{ metadata !"test\00", i32 10}
2974</pre>
2975</div>
2976
2977<p>A <a href="#namedmetadatastructure">named metadata</a> is a collection of 
2978   metadata nodes, which can be looked up in the module symbol table. For
2979   example:</p>
2980
2981<div class="doc_code">
2982<pre>
2983!foo =  metadata !{!4, !3}
2984</pre>
2985</div>
2986
2987<p>Metadata can be used as function arguments. Here <tt>llvm.dbg.value</tt> 
2988   function is using two metadata arguments:</p>
2989
2990<div class="doc_code">
2991<pre>
2992call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2993</pre>
2994</div>
2995
2996<p>Metadata can be attached with an instruction. Here metadata <tt>!21</tt> is
2997   attached to the <tt>add</tt> instruction using the <tt>!dbg</tt>
2998   identifier:</p>
2999
3000<div class="doc_code">
3001<pre>
3002%indvar.next = add i64 %indvar, 1, !dbg !21
3003</pre>
3004</div>
3005
3006<p>More information about specific metadata nodes recognized by the optimizers
3007   and code generator is found below.</p>
3008
3009<!-- _______________________________________________________________________ -->
3010<h4>
3011  <a name="tbaa">'<tt>tbaa</tt>' Metadata</a>
3012</h4>
3013
3014<div>
3015
3016<p>In LLVM IR, memory does not have types, so LLVM's own type system is not
3017   suitable for doing TBAA. Instead, metadata is added to the IR to describe
3018   a type system of a higher level language. This can be used to implement
3019   typical C/C++ TBAA, but it can also be used to implement custom alias
3020   analysis behavior for other languages.</p>
3021
3022<p>The current metadata format is very simple. TBAA metadata nodes have up to
3023   three fields, e.g.:</p>
3024
3025<div class="doc_code">
3026<pre>
3027!0 = metadata !{ metadata !"an example type tree" }
3028!1 = metadata !{ metadata !"int", metadata !0 }
3029!2 = metadata !{ metadata !"float", metadata !0 }
3030!3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
3031</pre>
3032</div>
3033
3034<p>The first field is an identity field. It can be any value, usually
3035   a metadata string, which uniquely identifies the type. The most important
3036   name in the tree is the name of the root node. Two trees with
3037   different root node names are entirely disjoint, even if they
3038   have leaves with common names.</p>
3039
3040<p>The second field identifies the type's parent node in the tree, or
3041   is null or omitted for a root node. A type is considered to alias
3042   all of its descendants and all of its ancestors in the tree. Also,
3043   a type is considered to alias all types in other trees, so that
3044   bitcode produced from multiple front-ends is handled conservatively.</p>
3045
3046<p>If the third field is present, it's an integer which if equal to 1
3047   indicates that the type is "constant" (meaning
3048   <tt>pointsToConstantMemory</tt> should return true; see
3049   <a href="AliasAnalysis.html#OtherItfs">other useful
3050   <tt>AliasAnalysis</tt> methods</a>).</p>
3051
3052</div>
3053
3054<!-- _______________________________________________________________________ -->
3055<h4>
3056  <a name="tbaa.struct">'<tt>tbaa.struct</tt>' Metadata</a>
3057</h4>
3058
3059<div>
3060
3061<p>The <a href="#int_memcpy"><tt>llvm.memcpy</tt></a> is often used to implement
3062aggregate assignment operations in C and similar languages, however it is
3063defined to copy a contiguous region of memory, which is more than strictly
3064necessary for aggregate types which contain holes due to padding. Also, it
3065doesn't contain any TBAA information about the fields of the aggregate.</p>
3066
3067<p><tt>!tbaa.struct</tt> metadata can describe which memory subregions in a memcpy
3068are padding and what the TBAA tags of the struct are.</p>
3069
3070<p>The current metadata format is very simple. <tt>!tbaa.struct</tt> metadata nodes
3071   are a list of operands which are in conceptual groups of three. For each
3072   group of three, the first operand gives the byte offset of a field in bytes,
3073   the second gives its size in bytes, and the third gives its
3074   tbaa tag. e.g.:</p>
3075
3076<div class="doc_code">
3077<pre>
3078!4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
3079</pre>
3080</div>
3081
3082<p>This describes a struct with two fields. The first is at offset 0 bytes
3083   with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
3084   and has size 4 bytes and has tbaa tag !2.</p>
3085
3086<p>Note that the fields need not be contiguous. In this example, there is a
3087   4 byte gap between the two fields. This gap represents padding which
3088   does not carry useful data and need not be preserved.</p>
3089
3090</div>
3091
3092<!-- _______________________________________________________________________ -->
3093<h4>
3094  <a name="fpmath">'<tt>fpmath</tt>' Metadata</a>
3095</h4>
3096 
3097<div>
3098
3099<p><tt>fpmath</tt> metadata may be attached to any instruction of floating point
3100  type.  It can be used to express the maximum acceptable error in the result of
3101  that instruction, in ULPs, thus potentially allowing the compiler to use a
3102  more efficient but less accurate method of computing it.  ULP is defined as
3103  follows:</p>
3104
3105<blockquote>
3106
3107<p>If <tt>x</tt> is a real number that lies between two finite consecutive
3108   floating-point numbers <tt>a</tt> and <tt>b</tt>, without being equal to one
3109   of them, then <tt>ulp(x) = |b - a|</tt>, otherwise <tt>ulp(x)</tt> is the
3110   distance between the two non-equal finite floating-point numbers nearest
3111   <tt>x</tt>. Moreover, <tt>ulp(NaN)</tt> is <tt>NaN</tt>.</p>
3112
3113</blockquote>
3114
3115<p>The metadata node shall consist of a single positive floating point number
3116   representing the maximum relative error, for example:</p>
3117
3118<div class="doc_code">
3119<pre>
3120!0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
3121</pre>
3122</div>
3123
3124</div>
3125
3126<!-- _______________________________________________________________________ -->
3127<h4>
3128  <a name="range">'<tt>range</tt>' Metadata</a>
3129</h4>
3130
3131<div>
3132<p><tt>range</tt> metadata may be attached only to loads of integer types. It
3133   expresses the possible ranges the loaded value is in. The ranges are
3134   represented with a flattened list of integers. The loaded value is known to
3135   be in the union of the ranges defined by each consecutive pair. Each pair
3136   has the following properties:</p>
3137<ul>
3138   <li>The type must match the type loaded by the instruction.</li>
3139   <li>The pair <tt>a,b</tt> represents the range <tt>[a,b)</tt>.</li>
3140   <li>Both <tt>a</tt> and <tt>b</tt> are constants.</li>
3141   <li>The range is allowed to wrap.</li>
3142   <li>The range should not represent the full or empty set. That is,
3143       <tt>a!=b</tt>. </li>
3144</ul>
3145<p> In addition, the pairs must be in signed order of the lower bound and
3146  they must be non-contiguous.</p>
3147
3148<p>Examples:</p>
3149<div class="doc_code">
3150<pre>
3151  %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
3152  %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
3153  %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
3154  %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
3155...
3156!0 = metadata !{ i8 0, i8 2 }
3157!1 = metadata !{ i8 255, i8 2 }
3158!2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
3159!3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
3160</pre>
3161</div>
3162</div>
3163</div>
3164
3165</div>
3166
3167<!-- *********************************************************************** -->
3168<h2>
3169  <a name="module_flags">Module Flags Metadata</a>
3170</h2>
3171<!-- *********************************************************************** -->
3172
3173<div>
3174
3175<p>Information about the module as a whole is difficult to convey to LLVM's
3176   subsystems. The LLVM IR isn't sufficient to transmit this
3177   information. The <tt>llvm.module.flags</tt> named metadata exists in order to
3178   facilitate this. These flags are in the form of key / value pairs &mdash;
3179   much like a dictionary &mdash; making it easy for any subsystem who cares
3180   about a flag to look it up.</p>
3181
3182<p>The <tt>llvm.module.flags</tt> metadata contains a list of metadata
3183   triplets. Each triplet has the following form:</p>
3184
3185<ul>
3186  <li>The first element is a <i>behavior</i> flag, which specifies the behavior
3187      when two (or more) modules are merged together, and it encounters two (or
3188      more) metadata with the same ID. The supported behaviors are described
3189      below.</li>
3190
3191  <li>The second element is a metadata string that is a unique ID for the
3192      metadata. How each ID is interpreted is documented below.</li>
3193
3194  <li>The third element is the value of the flag.</li>
3195</ul>
3196
3197<p>When two (or more) modules are merged together, the resulting
3198   <tt>llvm.module.flags</tt> metadata is the union of the
3199   modules' <tt>llvm.module.flags</tt> metadata. The only exception being a flag
3200   with the <i>Override</i> behavior, which may override another flag's value
3201   (see below).</p>
3202
3203<p>The following behaviors are supported:</p>
3204
3205<table border="1" cellspacing="0" cellpadding="4">
3206  <tbody>
3207    <tr>
3208      <th>Value</th>
3209      <th>Behavior</th>
3210    </tr>
3211    <tr>
3212      <td>1</td>
3213      <td align="left">
3214        <dl>
3215          <dt><b>Error</b></dt>
3216          <dd>Emits an error if two values disagree. It is an error to have an ID
3217              with both an Error and a Warning behavior.</dd>
3218        </dl>
3219      </td>
3220    </tr>
3221    <tr>
3222      <td>2</td>
3223      <td align="left">
3224        <dl>
3225          <dt><b>Warning</b></dt>
3226          <dd>Emits a warning if two values disagree.</dd>
3227        </dl>
3228      </td>
3229    </tr>
3230    <tr>
3231      <td>3</td>
3232      <td align="left">
3233        <dl>
3234          <dt><b>Require</b></dt>
3235          <dd>Emits an error when the specified value is not present or doesn't
3236              have the specified value. It is an error for two (or more)
3237              <tt>llvm.module.flags</tt> with the same ID to have the Require
3238              behavior but different values. There may be multiple Require flags
3239              per ID.</dd>
3240        </dl>
3241      </td>
3242    </tr>
3243    <tr>
3244      <td>4</td>
3245      <td align="left">
3246        <dl>
3247          <dt><b>Override</b></dt>
3248          <dd>Uses the specified value if the two values disagree. It is an
3249              error for two (or more) <tt>llvm.module.flags</tt> with the same
3250              ID to have the Override behavior but different values.</dd>
3251        </dl>
3252      </td>
3253    </tr>
3254  </tbody>
3255</table>
3256
3257<p>An example of module flags:</p>
3258
3259<pre class="doc_code">
3260!0 = metadata !{ i32 1, metadata !"foo", i32 1 }
3261!1 = metadata !{ i32 4, metadata !"bar", i32 37 }
3262!2 = metadata !{ i32 2, metadata !"qux", i32 42 }
3263!3 = metadata !{ i32 3, metadata !"qux",
3264  metadata !{
3265    metadata !"foo", i32 1
3266  }
3267}
3268!llvm.module.flags = !{ !0, !1, !2, !3 }
3269</pre>
3270
3271<ul>
3272  <li><p>Metadata <tt>!0</tt> has the ID <tt>!"foo"</tt> and the value '1'. The
3273         behavior if two or more <tt>!"foo"</tt> flags are seen is to emit an
3274         error if their values are not equal.</p></li>
3275
3276  <li><p>Metadata <tt>!1</tt> has the ID <tt>!"bar"</tt> and the value '37'. The
3277         behavior if two or more <tt>!"bar"</tt> flags are seen is to use the
3278         value '37' if their values are not equal.</p></li>
3279
3280  <li><p>Metadata <tt>!2</tt> has the ID <tt>!"qux"</tt> and the value '42'. The
3281         behavior if two or more <tt>!"qux"</tt> flags are seen is to emit a
3282         warning if their values are not equal.</p></li>
3283
3284  <li><p>Metadata <tt>!3</tt> has the ID <tt>!"qux"</tt> and the value:</p>
3285
3286<pre class="doc_code">
3287metadata !{ metadata !"foo", i32 1 }
3288</pre>
3289
3290      <p>The behavior is to emit an error if the <tt>llvm.module.flags</tt> does
3291         not contain a flag with the ID <tt>!"foo"</tt> that has the value
3292         '1'. If two or more <tt>!"qux"</tt> flags exist, then they must have
3293         the same value or an error will be issued.</p></li>
3294</ul>
3295
3296
3297<!-- ======================================================================= -->
3298<h3>
3299<a name="objc_gc_flags">Objective-C Garbage Collection Module Flags Metadata</a>
3300</h3>
3301
3302<div>
3303
3304<p>On the Mach-O platform, Objective-C stores metadata about garbage collection
3305   in a special section called "image info". The metadata consists of a version
3306   number and a bitmask specifying what types of garbage collection are
3307   supported (if any) by the file. If two or more modules are linked together
3308   their garbage collection metadata needs to be merged rather than appended
3309   together.</p>
3310
3311<p>The Objective-C garbage collection module flags metadata consists of the
3312   following key-value pairs:</p>
3313
3314<table border="1" cellspacing="0" cellpadding="4">
3315  <col width="30%">
3316  <tbody>
3317    <tr>
3318      <th>Key</th>
3319      <th>Value</th>
3320    </tr>
3321    <tr>
3322      <td><tt>Objective-C&nbsp;Version</tt></td>
3323      <td align="left"><b>[Required]</b> &mdash; The Objective-C ABI
3324         version. Valid values are 1 and 2.</td>
3325    </tr>
3326    <tr>
3327      <td><tt>Objective-C&nbsp;Image&nbsp;Info&nbsp;Version</tt></td>
3328      <td align="left"><b>[Required]</b> &mdash; The version of the image info
3329         section. Currently always 0.</td>
3330    </tr>
3331    <tr>
3332      <td><tt>Objective-C&nbsp;Image&nbsp;Info&nbsp;Section</tt></td>
3333      <td align="left"><b>[Required]</b> &mdash; The section to place the
3334         metadata. Valid values are <tt>"__OBJC, __image_info, regular"</tt> for
3335         Objective-C ABI version 1, and <tt>"__DATA,__objc_imageinfo, regular,
3336         no_dead_strip"</tt> for Objective-C ABI version 2.</td>
3337    </tr>
3338    <tr>
3339      <td><tt>Objective-C&nbsp;Garbage&nbsp;Collection</tt></td>
3340      <td align="left"><b>[Required]</b> &mdash; Specifies whether garbage
3341          collection is supported or not. Valid values are 0, for no garbage
3342          collection, and 2, for garbage collection supported.</td>
3343    </tr>
3344    <tr>
3345      <td><tt>Objective-C&nbsp;GC&nbsp;Only</tt></td>
3346      <td align="left"><b>[Optional]</b> &mdash; Specifies that only garbage
3347         collection is supported. If present, its value must be 6. This flag
3348         requires that the <tt>Objective-C Garbage Collection</tt> flag have the
3349         value 2.</td>
3350    </tr>
3351  </tbody>
3352</table>
3353
3354<p>Some important flag interactions:</p>
3355
3356<ul>
3357  <li>If a module with <tt>Objective-C Garbage Collection</tt> set to 0 is
3358      merged with a module with <tt>Objective-C Garbage Collection</tt> set to
3359      2, then the resulting module has the <tt>Objective-C Garbage
3360      Collection</tt> flag set to 0.</li>
3361
3362  <li>A module with <tt>Objective-C Garbage Collection</tt> set to 0 cannot be
3363      merged with a module with <tt>Objective-C GC Only</tt> set to 6.</li>
3364</ul>
3365
3366</div>
3367
3368</div>
3369
3370<!-- *********************************************************************** -->
3371<h2>
3372  <a name="intrinsic_globals">Intrinsic Global Variables</a>
3373</h2>
3374<!-- *********************************************************************** -->
3375<div>
3376<p>LLVM has a number of "magic" global variables that contain data that affect
3377code generation or other IR semantics.  These are documented here.  All globals
3378of this sort should have a section specified as "<tt>llvm.metadata</tt>".  This
3379section and all globals that start with "<tt>llvm.</tt>" are reserved for use
3380by LLVM.</p>
3381
3382<!-- ======================================================================= -->
3383<h3>
3384<a name="intg_used">The '<tt>llvm.used</tt>' Global Variable</a>
3385</h3>
3386
3387<div>
3388
3389<p>The <tt>@llvm.used</tt> global is an array with i8* element type which has <a
3390href="#linkage_appending">appending linkage</a>.  This array contains a list of
3391pointers to global variables and functions which may optionally have a pointer
3392cast formed of bitcast or getelementptr.  For example, a legal use of it is:</p>
3393
3394<div class="doc_code">
3395<pre>
3396@X = global i8 4
3397@Y = global i32 123
3398
3399@llvm.used = appending global [2 x i8*] [
3400   i8* @X,
3401   i8* bitcast (i32* @Y to i8*)
3402], section "llvm.metadata"
3403</pre>
3404</div>
3405
3406<p>If a global variable appears in the <tt>@llvm.used</tt> list, then the
3407   compiler, assembler, and linker are required to treat the symbol as if there
3408   is a reference to the global that it cannot see.  For example, if a variable
3409   has internal linkage and no references other than that from
3410   the <tt>@llvm.used</tt> list, it cannot be deleted.  This is commonly used to
3411   represent references from inline asms and other things the compiler cannot
3412   "see", and corresponds to "<tt>attribute((used))</tt>" in GNU C.</p>
3413
3414<p>On some targets, the code generator must emit a directive to the assembler or
3415   object file to prevent the assembler and linker from molesting the
3416   symbol.</p>
3417
3418</div>
3419
3420<!-- ======================================================================= -->
3421<h3>
3422  <a name="intg_compiler_used">
3423    The '<tt>llvm.compiler.used</tt>' Global Variable
3424  </a>
3425</h3>
3426
3427<div>
3428
3429<p>The <tt>@llvm.compiler.used</tt> directive is the same as the
3430   <tt>@llvm.used</tt> directive, except that it only prevents the compiler from
3431   touching the symbol.  On targets that support it, this allows an intelligent
3432   linker to optimize references to the symbol without being impeded as it would
3433   be by <tt>@llvm.used</tt>.</p>
3434
3435<p>This is a rare construct that should only be used in rare circumstances, and
3436   should not be exposed to source languages.</p>
3437
3438</div>
3439
3440<!-- ======================================================================= -->
3441<h3>
3442<a name="intg_global_ctors">The '<tt>llvm.global_ctors</tt>' Global Variable</a>
3443</h3>
3444
3445<div>
3446
3447<div class="doc_code">
3448<pre>
3449%0 = type { i32, void ()* }
3450@llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
3451</pre>
3452</div>
3453
3454<p>The <tt>@llvm.global_ctors</tt> array contains a list of constructor
3455   functions and associated priorities.  The functions referenced by this array
3456   will be called in ascending order of priority (i.e. lowest first) when the
3457   module is loaded.  The order of functions with the same priority is not
3458   defined.</p>
3459
3460</div>
3461
3462<!-- ======================================================================= -->
3463<h3>
3464<a name="intg_global_dtors">The '<tt>llvm.global_dtors</tt>' Global Variable</a>
3465</h3>
3466
3467<div>
3468
3469<div class="doc_code">
3470<pre>
3471%0 = type { i32, void ()* }
3472@llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
3473</pre>
3474</div>
3475
3476<p>The <tt>@llvm.global_dtors</tt> array contains a list of destructor functions
3477   and associated priorities.  The functions referenced by this array will be
3478   called in descending order of priority (i.e. highest first) when the module
3479   is loaded.  The order of functions with the same priority is not defined.</p>
3480
3481</div>
3482
3483</div>
3484
3485<!-- *********************************************************************** -->
3486<h2><a name="instref">Instruction Reference</a></h2>
3487<!-- *********************************************************************** -->
3488
3489<div>
3490
3491<p>The LLVM instruction set consists of several different classifications of
3492   instructions: <a href="#terminators">terminator
3493   instructions</a>, <a href="#binaryops">binary instructions</a>,
3494   <a href="#bitwiseops">bitwise binary instructions</a>,
3495   <a href="#memoryops">memory instructions</a>, and
3496   <a href="#otherops">other instructions</a>.</p>
3497
3498<!-- ======================================================================= -->
3499<h3>
3500  <a name="terminators">Terminator Instructions</a>
3501</h3>
3502
3503<div>
3504
3505<p>As mentioned <a href="#functionstructure">previously</a>, every basic block
3506   in a program ends with a "Terminator" instruction, which indicates which
3507   block should be executed after the current block is finished. These
3508   terminator instructions typically yield a '<tt>void</tt>' value: they produce
3509   control flow, not values (the one exception being the
3510   '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
3511
3512<p>The terminator instructions are: 
3513   '<a href="#i_ret"><tt>ret</tt></a>', 
3514   '<a href="#i_br"><tt>br</tt></a>',
3515   '<a href="#i_switch"><tt>switch</tt></a>', 
3516   '<a href="#i_indirectbr"><tt>indirectbr</tt></a>',
3517   '<a href="#i_invoke"><tt>invoke</tt></a>', 
3518   '<a href="#i_resume"><tt>resume</tt></a>', and 
3519   '<a href="#i_unreachable"><tt>unreachable</tt></a>'.</p>
3520
3521<!-- _______________________________________________________________________ -->
3522<h4>
3523  <a name="i_ret">'<tt>ret</tt>' Instruction</a>
3524</h4>
3525
3526<div>
3527
3528<h5>Syntax:</h5>
3529<pre>
3530  ret &lt;type&gt; &lt;value&gt;       <i>; Return a value from a non-void function</i>
3531  ret void                 <i>; Return from void function</i>
3532</pre>
3533
3534<h5>Overview:</h5>
3535<p>The '<tt>ret</tt>' instruction is used to return control flow (and optionally
3536   a value) from a function back to the caller.</p>
3537
3538<p>There are two forms of the '<tt>ret</tt>' instruction: one that returns a
3539   value and then causes control flow, and one that just causes control flow to
3540   occur.</p>
3541
3542<h5>Arguments:</h5>
3543<p>The '<tt>ret</tt>' instruction optionally accepts a single argument, the
3544   return value. The type of the return value must be a
3545   '<a href="#t_firstclass">first class</a>' type.</p>
3546
3547<p>A function is not <a href="#wellformed">well formed</a> if it it has a
3548   non-void return type and contains a '<tt>ret</tt>' instruction with no return
3549   value or a return value with a type that does not match its type, or if it
3550   has a void return type and contains a '<tt>ret</tt>' instruction with a
3551   return value.</p>
3552
3553<h5>Semantics:</h5>
3554<p>When the '<tt>ret</tt>' instruction is executed, control flow returns back to
3555   the calling function's context.  If the caller is a
3556   "<a href="#i_call"><tt>call</tt></a>" instruction, execution continues at the
3557   instruction after the call.  If the caller was an
3558   "<a href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues at
3559   the beginning of the "normal" destination block.  If the instruction returns
3560   a value, that value shall set the call or invoke instruction's return
3561   value.</p>
3562
3563<h5>Example:</h5>
3564<pre>
3565  ret i32 5                       <i>; Return an integer value of 5</i>
3566  ret void                        <i>; Return from a void function</i>
3567  ret { i32, i8 } { i32 4, i8 2 } <i>; Return a struct of values 4 and 2</i>
3568</pre>
3569
3570</div>
3571<!-- _______________________________________________________________________ -->
3572<h4>
3573  <a name="i_br">'<tt>br</tt>' Instruction</a>
3574</h4>
3575
3576<div>
3577
3578<h5>Syntax:</h5>
3579<pre>
3580  br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;
3581  br label &lt;dest&gt;          <i>; Unconditional branch</i>
3582</pre>
3583
3584<h5>Overview:</h5>
3585<p>The '<tt>br</tt>' instruction is used to cause control flow to transfer to a
3586   different basic block in the current function.  There are two forms of this
3587   instruction, corresponding to a conditional branch and an unconditional
3588   branch.</p>
3589
3590<h5>Arguments:</h5>
3591<p>The conditional branch form of the '<tt>br</tt>' instruction takes a single
3592   '<tt>i1</tt>' value and two '<tt>label</tt>' values.  The unconditional form
3593   of the '<tt>br</tt>' instruction takes a single '<tt>label</tt>' value as a
3594   target.</p>
3595
3596<h5>Semantics:</h5>
3597<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
3598   argument is evaluated.  If the value is <tt>true</tt>, control flows to the
3599   '<tt>iftrue</tt>' <tt>label</tt> argument.  If "cond" is <tt>false</tt>,
3600   control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
3601
3602<h5>Example:</h5>
3603<pre>
3604Test:
3605  %cond = <a href="#i_icmp">icmp</a> eq i32 %a, %b
3606  br i1 %cond, label %IfEqual, label %IfUnequal
3607IfEqual:
3608  <a href="#i_ret">ret</a> i32 1
3609IfUnequal:
3610  <a href="#i_ret">ret</a> i32 0
3611</pre>
3612
3613</div>
3614
3615<!-- _______________________________________________________________________ -->
3616<h4>
3617   <a name="i_switch">'<tt>switch</tt>' Instruction</a>
3618</h4>
3619
3620<div>
3621
3622<h5>Syntax:</h5>
3623<pre>
3624  switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
3625</pre>
3626
3627<h5>Overview:</h5>
3628<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
3629   several different places.  It is a generalization of the '<tt>br</tt>'
3630   instruction, allowing a branch to occur to one of many possible
3631   destinations.</p>
3632
3633<h5>Arguments:</h5>
3634<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
3635   comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination,
3636   and an array of pairs of comparison value constants and '<tt>label</tt>'s.
3637   The table is not allowed to contain duplicate constant entries.</p>
3638
3639<h5>Semantics:</h5>
3640<p>The <tt>switch</tt> instruction specifies a table of values and
3641   destinations. When the '<tt>switch</tt>' instruction is executed, this table
3642   is searched for the given value.  If the value is found, control flow is
3643   transferred to the corresponding destination; otherwise, control flow is
3644   transferred to the default destination.</p>
3645
3646<h5>Implementation:</h5>
3647<p>Depending on properties of the target machine and the particular
3648   <tt>switch</tt> instruction, this instruction may be code generated in
3649   different ways.  For example, it could be generated as a series of chained
3650   conditional branches or with a lookup table.</p>
3651
3652<h5>Example:</h5>
3653<pre>
3654 <i>; Emulate a conditional br instruction</i>
3655 %Val = <a href="#i_zext">zext</a> i1 %value to i32
3656 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3657
3658 <i>; Emulate an unconditional br instruction</i>
3659 switch i32 0, label %dest [ ]
3660
3661 <i>; Implement a jump table:</i>
3662 switch i32 %val, label %otherwise [ i32 0, label %onzero
3663                                     i32 1, label %onone
3664                                     i32 2, label %ontwo ]
3665</pre>
3666
3667</div>
3668
3669
3670<!-- _______________________________________________________________________ -->
3671<h4>
3672   <a name="i_indirectbr">'<tt>indirectbr</tt>' Instruction</a>
3673</h4>
3674
3675<div>
3676
3677<h5>Syntax:</h5>
3678<pre>
3679  indirectbr &lt;somety&gt;* &lt;address&gt;, [ label &lt;dest1&gt;, label &lt;dest2&gt;, ... ]
3680</pre>
3681
3682<h5>Overview:</h5>
3683
3684<p>The '<tt>indirectbr</tt>' instruction implements an indirect branch to a label
3685   within the current function, whose address is specified by
3686   "<tt>address</tt>".  Address must be derived from a <a
3687   href="#blockaddress">blockaddress</a> constant.</p>
3688
3689<h5>Arguments:</h5>
3690
3691<p>The '<tt>address</tt>' argument is the address of the label to jump to.  The
3692   rest of the arguments indicate the full set of possible destinations that the
3693   address may point to.  Blocks are allowed to occur multiple times in the
3694   destination list, though this isn't particularly useful.</p>
3695
3696<p>This destination list is required so that dataflow analysis has an accurate
3697   understanding of the CFG.</p>
3698
3699<h5>Semantics:</h5>
3700
3701<p>Control transfers to the block specified in the address argument.  All
3702   possible destination blocks must be listed in the label list, otherwise this
3703   instruction has undefined behavior.  This implies that jumps to labels
3704   defined in other functions have undefined behavior as well.</p>
3705
3706<h5>Implementation:</h5>
3707
3708<p>This is typically implemented with a jump through a register.</p>
3709
3710<h5>Example:</h5>
3711<pre>
3712 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3713</pre>
3714
3715</div>
3716
3717
3718<!-- _______________________________________________________________________ -->
3719<h4>
3720  <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
3721</h4>
3722
3723<div>
3724
3725<h5>Syntax:</h5>
3726<pre>
3727  &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
3728                to label &lt;normal label&gt; unwind label &lt;exception label&gt;
3729</pre>
3730
3731<h5>Overview:</h5>
3732<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
3733   function, with the possibility of control flow transfer to either the
3734   '<tt>normal</tt>' label or the '<tt>exception</tt>' label.  If the callee
3735   function returns with the "<tt><a href="#i_ret">ret</a></tt>" instruction,
3736   control flow will return to the "normal" label.  If the callee (or any
3737   indirect callees) returns via the "<a href="#i_resume"><tt>resume</tt></a>"
3738   instruction or other exception handling mechanism, control is interrupted and
3739   continued at the dynamically nearest "exception" label.</p>
3740
3741<p>The '<tt>exception</tt>' label is a
3742   <i><a href="ExceptionHandling.html#overview">landing pad</a></i> for the
3743   exception. As such, '<tt>exception</tt>' label is required to have the
3744   "<a href="#i_landingpad"><tt>landingpad</tt></a>" instruction, which contains
3745   the information about the behavior of the program after unwinding
3746   happens, as its first non-PHI instruction. The restrictions on the
3747   "<tt>landingpad</tt>" instruction's tightly couples it to the
3748   "<tt>invoke</tt>" instruction, so that the important information contained
3749   within the "<tt>landingpad</tt>" instruction can't be lost through normal
3750   code motion.</p>
3751
3752<h5>Arguments:</h5>
3753<p>This instruction requires several arguments:</p>
3754
3755<ol>
3756  <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
3757      convention</a> the call should use.  If none is specified, the call
3758      defaults to using C calling conventions.</li>
3759
3760  <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
3761      return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
3762      '<tt>inreg</tt>' attributes are valid here.</li>
3763
3764  <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
3765      function value being invoked.  In most cases, this is a direct function
3766      invocation, but indirect <tt>invoke</tt>s are just as possible, branching
3767      off an arbitrary pointer to function value.</li>
3768
3769  <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
3770      function to be invoked. </li>
3771
3772  <li>'<tt>function args</tt>': argument list whose types match the function
3773      signature argument types and parameter attributes. All arguments must be
3774      of <a href="#t_firstclass">first class</a> type. If the function
3775      signature indicates the function accepts a variable number of arguments,
3776      the extra arguments can be specified.</li>
3777
3778  <li>'<tt>normal label</tt>': the label reached when the called function
3779      executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
3780
3781  <li>'<tt>exception label</tt>': the label reached when a callee returns via
3782      the <a href="#i_resume"><tt>resume</tt></a> instruction or other exception
3783      handling mechanism.</li>
3784
3785  <li>The optional <a href="#fnattrs">function attributes</a> list. Only
3786      '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
3787      '<tt>readnone</tt>' attributes are valid here.</li>
3788</ol>
3789
3790<h5>Semantics:</h5>
3791<p>This instruction is designed to operate as a standard
3792   '<tt><a href="#i_call">call</a></tt>' instruction in most regards.  The
3793   primary difference is that it establishes an association with a label, which
3794   is used by the runtime library to unwind the stack.</p>
3795
3796<p>This instruction is used in languages with destructors to ensure that proper
3797   cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
3798   exception.  Additionally, this is important for implementation of
3799   '<tt>catch</tt>' clauses in high-level languages that support them.</p>
3800
3801<p>For the purposes of the SSA form, the definition of the value returned by the
3802   '<tt>invoke</tt>' instruction is deemed to occur on the edge from the current
3803   block to the "normal" label. If the callee unwinds then no return value is
3804   available.</p>
3805
3806<h5>Example:</h5>
3807<pre>
3808  %retval = invoke i32 @Test(i32 15) to label %Continue
3809              unwind label %TestCleanup              <i>; {i32}:retval set</i>
3810  %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
3811              unwind label %TestCleanup              <i>; {i32}:retval set</i>
3812</pre>
3813
3814</div>
3815
3816 <!-- _______________________________________________________________________ -->
3817 
3818<h4>
3819  <a name="i_resume">'<tt>resume</tt>' Instruction</a>
3820</h4>
3821
3822<div>
3823
3824<h5>Syntax:</h5>
3825<pre>
3826  resume &lt;type&gt; &lt;value&gt;
3827</pre>
3828
3829<h5>Overview:</h5>
3830<p>The '<tt>resume</tt>' instruction is a terminator instruction that has no
3831   successors.</p>
3832
3833<h5>Arguments:</h5>
3834<p>The '<tt>resume</tt>' instruction requires one argument, which must have the
3835   same type as the result of any '<tt>landingpad</tt>' instruction in the same
3836   function.</p>
3837
3838<h5>Semantics:</h5>
3839<p>The '<tt>resume</tt>' instruction resumes propagation of an existing
3840   (in-flight) exception whose unwinding was interrupted with
3841   a <a href="#i_landingpad"><tt>landingpad</tt></a> instruction.</p>
3842
3843<h5>Example:</h5>
3844<pre>
3845  resume { i8*, i32 } %exn
3846</pre>
3847
3848</div>
3849
3850<!-- _______________________________________________________________________ -->
3851
3852<h4>
3853  <a name="i_unreachable">'<tt>unreachable</tt>' Instruction</a>
3854</h4>
3855
3856<div>
3857
3858<h5>Syntax:</h5>
3859<pre>
3860  unreachable
3861</pre>
3862
3863<h5>Overview:</h5>
3864<p>The '<tt>unreachable</tt>' instruction has no defined semantics.  This
3865   instruction is used to inform the optimizer that a particular portion of the
3866   code is not reachable.  This can be used to indicate that the code after a
3867   no-return function cannot be reached, and other facts.</p>
3868
3869<h5>Semantics:</h5>
3870<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
3871
3872</div>
3873
3874</div>
3875
3876<!-- ======================================================================= -->
3877<h3>
3878  <a name="binaryops">Binary Operations</a>
3879</h3>
3880
3881<div>
3882
3883<p>Binary operators are used to do most of the computation in a program.  They
3884   require two operands of the same type, execute an operation on them, and
3885   produce a single value.  The operands might represent multiple data, as is
3886   the case with the <a href="#t_vector">vector</a> data type.  The result value
3887   has the same type as its operands.</p>
3888
3889<p>There are several different binary operators:</p>
3890
3891<!-- _______________________________________________________________________ -->
3892<h4>
3893  <a name="i_add">'<tt>add</tt>' Instruction</a>
3894</h4>
3895
3896<div>
3897
3898<h5>Syntax:</h5>
3899<pre>
3900  &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;          <i>; yields {ty}:result</i>
3901  &lt;result&gt; = add nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;      <i>; yields {ty}:result</i>
3902  &lt;result&gt; = add nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;      <i>; yields {ty}:result</i>
3903  &lt;result&gt; = add nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;  <i>; yields {ty}:result</i>
3904</pre>
3905
3906<h5>Overview:</h5>
3907<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
3908
3909<h5>Arguments:</h5>
3910<p>The two arguments to the '<tt>add</tt>' instruction must
3911   be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3912   integer values. Both arguments must have identical types.</p>
3913
3914<h5>Semantics:</h5>
3915<p>The value produced is the integer sum of the two operands.</p>
3916
3917<p>If the sum has unsigned overflow, the result returned is the mathematical
3918   result modulo 2<sup>n</sup>, where n is the bit width of the result.</p>
3919
3920<p>Because LLVM integers use a two's complement representation, this instruction
3921   is appropriate for both signed and unsigned integers.</p>
3922
3923<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3924   and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3925   <tt>nsw</tt> keywords are present, the result value of the <tt>add</tt>
3926   is a <a href="#poisonvalues">poison value</a> if unsigned and/or signed overflow,
3927   respectively, occurs.</p>
3928
3929<h5>Example:</h5>
3930<pre>
3931  &lt;result&gt; = add i32 4, %var          <i>; yields {i32}:result = 4 + %var</i>
3932</pre>
3933
3934</div>
3935
3936<!-- _______________________________________________________________________ -->
3937<h4>
3938  <a name="i_fadd">'<tt>fadd</tt>' Instruction</a>
3939</h4>
3940
3941<div>
3942
3943<h5>Syntax:</h5>
3944<pre>
3945  &lt;result&gt; = fadd &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
3946</pre>
3947
3948<h5>Overview:</h5>
3949<p>The '<tt>fadd</tt>' instruction returns the sum of its two operands.</p>
3950
3951<h5>Arguments:</h5>
3952<p>The two arguments to the '<tt>fadd</tt>' instruction must be
3953   <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3954   floating point values. Both arguments must have identical types.</p>
3955
3956<h5>Semantics:</h5>
3957<p>The value produced is the floating point sum of the two operands.</p>
3958
3959<h5>Example:</h5>
3960<pre>
3961  &lt;result&gt; = fadd float 4.0, %var          <i>; yields {float}:result = 4.0 + %var</i>
3962</pre>
3963
3964</div>
3965
3966<!-- _______________________________________________________________________ -->
3967<h4>
3968   <a name="i_sub">'<tt>sub</tt>' Instruction</a>
3969</h4>
3970
3971<div>
3972
3973<h5>Syntax:</h5>
3974<pre>
3975  &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;          <i>; yields {ty}:result</i>
3976  &lt;result&gt; = sub nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;      <i>; yields {ty}:result</i>
3977  &lt;result&gt; = sub nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;      <i>; yields {ty}:result</i>
3978  &lt;result&gt; = sub nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;  <i>; yields {ty}:result</i>
3979</pre>
3980
3981<h5>Overview:</h5>
3982<p>The '<tt>sub</tt>' instruction returns the difference of its two
3983   operands.</p>
3984
3985<p>Note that the '<tt>sub</tt>' instruction is used to represent the
3986   '<tt>neg</tt>' instruction present in most other intermediate
3987   representations.</p>
3988
3989<h5>Arguments:</h5>
3990<p>The two arguments to the '<tt>sub</tt>' instruction must
3991   be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3992   integer values.  Both arguments must have identical types.</p>
3993
3994<h5>Semantics:</h5>
3995<p>The value produced is the integer difference of the two operands.</p>
3996
3997<p>If the difference has unsigned overflow, the result returned is the
3998   mathematical result modulo 2<sup>n</sup>, where n is the bit width of the
3999   result.</p>
4000
4001<p>Because LLVM integers use a two's complement representation, this instruction
4002   is appropriate for both signed and unsigned integers.</p>
4003
4004<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
4005   and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
4006   <tt>nsw</tt> keywords are present, the result value of the <tt>sub</tt>
4007   is a <a href="#poisonvalues">poison value</a> if unsigned and/or signed overflow,
4008   respectively, occurs.</p>
4009
4010<h5>Example:</h5>
4011<pre>
4012  &lt;result&gt; = sub i32 4, %var          <i>; yields {i32}:result = 4 - %var</i>
4013  &lt;result&gt; = sub i32 0, %val          <i>; yields {i32}:result = -%var</i>
4014</pre>
4015
4016</div>
4017
4018<!-- _______________________________________________________________________ -->
4019<h4>
4020   <a name="i_fsub">'<tt>fsub</tt>' Instruction</a>
4021</h4>
4022
4023<div>
4024
4025<h5>Syntax:</h5>
4026<pre>
4027  &lt;result&gt; = fsub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
4028</pre>
4029
4030<h5>Overview:</h5>
4031<p>The '<tt>fsub</tt>' instruction returns the difference of its two
4032   operands.</p>
4033
4034<p>Note that the '<tt>fsub</tt>' instruction is used to represent the
4035   '<tt>fneg</tt>' instruction present in most other intermediate
4036   representations.</p>
4037
4038<h5>Arguments:</h5>
4039<p>The two arguments to the '<tt>fsub</tt>' instruction must be
4040   <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
4041   floating point values.  Both arguments must have identical types.</p>
4042
4043<h5>Semantics:</h5>
4044<p>The value produced is the floating point difference of the two operands.</p>
4045
4046<h5>Example:</h5>
4047<pre>
4048  &lt;result&gt; = fsub float 4.0, %var           <i>; yields {float}:result = 4.0 - %var</i>
4049  &lt;result&gt; = fsub float -0.0, %val          <i>; yields {float}:result = -%var</i>
4050</pre>
4051
4052</div>
4053
4054<!-- _______________________________________________________________________ -->
4055<h4>
4056  <a name="i_mul">'<tt>mul</tt>' Instruction</a>
4057</h4>
4058
4059<div>
4060
4061<h5>Syntax:</h5>
4062<pre>
4063  &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;          <i>; yields {ty}:result</i>
4064  &lt;result&gt; = mul nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;      <i>; yields {ty}:result</i>
4065  &lt;result&gt; = mul nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;      <i>; yields {ty}:result</i>
4066  &lt;result&gt; = mul nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;  <i>; yields {ty}:result</i>
4067</pre>
4068
4069<h5>Overview:</h5>
4070<p>The '<tt>mul</tt>' instruction returns the product of its two operands.</p>
4071
4072<h5>Arguments:</h5>
4073<p>The two arguments to the '<tt>mul</tt>' instruction must
4074   be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
4075   integer values.  Both arguments must have identical types.</p>
4076
4077<h5>Semantics:</h5>
4078<p>The value produced is the integer product of the two operands.</p>
4079
4080<p>If the result of the multiplication has unsigned overflow, the result
4081   returned is the mathematical result modulo 2<sup>n</sup>, where n is the bit
4082   width of the result.</p>
4083
4084<p>Because LLVM integers use a two's complement representation, and the result
4085   is the same width as the operands, this instruction returns the correct
4086   result for both signed and unsigned integers.  If a full product
4087   (e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands should
4088   be sign-extended or zero-extended as appropriate to the width of the full
4089   product.</p>
4090
4091<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
4092   and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
4093   <tt>nsw</tt> keywords are present, the result value of the <tt>mul</tt>
4094   is a <a href="#poisonvalues">poison value</a> if unsigned and/or signed overflow,
4095   respectively, occurs.</p>
4096
4097<h5>Example:</h5>
4098<pre>
4099  &lt;result&gt; = mul i32 4, %var          <i>; yields {i32}:result = 4 * %var</i>
4100</pre>
4101
4102</div>
4103
4104<!-- _______________________________________________________________________ -->
4105<h4>
4106  <a name="i_fmul">'<tt>fmul</tt>' Instruction</a>
4107</h4>
4108
4109<div>
4110
4111<h5>Syntax:</h5>
4112<pre>
4113  &lt;result&gt; = fmul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
4114</pre>
4115
4116<h5>Overview:</h5>
4117<p>The '<tt>fmul</tt>' instruction returns the product of its two operands.</p>
4118
4119<h5>Arguments:</h5>
4120<p>The two arguments to the '<tt>fmul</tt>' instruction must be
4121   <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
4122   floating point values.  Both arguments must have identical types.</p>
4123
4124<h5>Semantics:</h5>
4125<p>The value produced is the floating point product of the two operands.</p>
4126
4127<h5>Example:</h5>
4128<pre>
4129  &lt;result&gt; = fmul float 4.0, %var          <i>; yields {float}:result = 4.0 * %var</i>
4130</pre>
4131
4132</div>
4133
4134<!-- _______________________________________________________________________ -->
4135<h4>
4136  <a name="i_udiv">'<tt>udiv</tt>' Instruction</a>
4137</h4>
4138
4139<div>
4140
4141<h5>Syntax:</h5>
4142<pre>
4143  &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;         <i>; yields {ty}:result</i>
4144  &lt;result&gt; = udiv exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
4145</pre>
4146
4147<h5>Overview:</h5>
4148<p>The '<tt>udiv</tt>' instruction returns the quotient of its two operands.</p>
4149
4150<h5>Arguments:</h5>
4151<p>The two arguments to the '<tt>udiv</tt>' instruction must be
4152   <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4153   values.  Both arguments must have identical types.</p>
4154
4155<h5>Semantics:</h5>
4156<p>The value produced is the unsigned integer quotient of the two operands.</p>
4157
4158<p>Note that unsigned integer division and signed integer division are distinct
4159   operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
4160
4161<p>Division by zero leads to undefined behavior.</p>
4162
4163<p>If the <tt>exact</tt> keyword is present, the result value of the
4164   <tt>udiv</tt> is a <a href="#poisonvalues">poison value</a> if %op1 is not a
4165  multiple of %op2 (as such, "((a udiv exact b) mul b) == a").</p>
4166
4167
4168<h5>Example:</h5>
4169<pre>
4170  &lt;result&gt; = udiv i32 4, %var          <i>; yields {i32}:result = 4 / %var</i>
4171</pre>
4172
4173</div>
4174
4175<!-- _______________________________________________________________________ -->
4176<h4>
4177  <a name="i_sdiv">'<tt>sdiv</tt>' Instruction</a>
4178</h4>
4179
4180<div>
4181
4182<h5>Syntax:</h5>
4183<pre>
4184  &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;         <i>; yields {ty}:result</i>
4185  &lt;result&gt; = sdiv exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
4186</pre>
4187
4188<h5>Overview:</h5>
4189<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two operands.</p>
4190
4191<h5>Arguments:</h5>
4192<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
4193   <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4194   values.  Both arguments must have identical types.</p>
4195
4196<h5>Semantics:</h5>
4197<p>The value produced is the signed integer quotient of the two operands rounded
4198   towards zero.</p>
4199
4200<p>Note that signed integer division and unsigned integer division are distinct
4201   operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
4202
4203<p>Division by zero leads to undefined behavior. Overflow also leads to
4204   undefined behavior; this is a rare case, but can occur, for example, by doing
4205   a 32-bit division of -2147483648 by -1.</p>
4206
4207<p>If the <tt>exact</tt> keyword is present, the result value of the
4208   <tt>sdiv</tt> is a <a href="#poisonvalues">poison value</a> if the result would
4209   be rounded.</p>
4210
4211<h5>Example:</h5>
4212<pre>
4213  &lt;result&gt; = sdiv i32 4, %var          <i>; yields {i32}:result = 4 / %var</i>
4214</pre>
4215
4216</div>
4217
4218<!-- _______________________________________________________________________ -->
4219<h4>
4220  <a name="i_fdiv">'<tt>fdiv</tt>' Instruction</a>
4221</h4>
4222
4223<div>
4224
4225<h5>Syntax:</h5>
4226<pre>
4227  &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
4228</pre>
4229
4230<h5>Overview:</h5>
4231<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two operands.</p>
4232
4233<h5>Arguments:</h5>
4234<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
4235   <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
4236   floating point values.  Both arguments must have identical types.</p>
4237
4238<h5>Semantics:</h5>
4239<p>The value produced is the floating point quotient of the two operands.</p>
4240
4241<h5>Example:</h5>
4242<pre>
4243  &lt;result&gt; = fdiv float 4.0, %var          <i>; yields {float}:result = 4.0 / %var</i>
4244</pre>
4245
4246</div>
4247
4248<!-- _______________________________________________________________________ -->
4249<h4>
4250  <a name="i_urem">'<tt>urem</tt>' Instruction</a>
4251</h4>
4252
4253<div>
4254
4255<h5>Syntax:</h5>
4256<pre>
4257  &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
4258</pre>
4259
4260<h5>Overview:</h5>
4261<p>The '<tt>urem</tt>' instruction returns the remainder from the unsigned
4262   division of its two arguments.</p>
4263
4264<h5>Arguments:</h5>
4265<p>The two arguments to the '<tt>urem</tt>' instruction must be
4266   <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4267   values.  Both arguments must have identical types.</p>
4268
4269<h5>Semantics:</h5>
4270<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
4271   This instruction always performs an unsigned division to get the
4272   remainder.</p>
4273
4274<p>Note that unsigned integer remainder and signed integer remainder are
4275   distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
4276
4277<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
4278
4279<h5>Example:</h5>
4280<pre>
4281  &lt;result&gt; = urem i32 4, %var          <i>; yields {i32}:result = 4 % %var</i>
4282</pre>
4283
4284</div>
4285
4286<!-- _______________________________________________________________________ -->
4287<h4>
4288  <a name="i_srem">'<tt>srem</tt>' Instruction</a>
4289</h4>
4290
4291<div>
4292
4293<h5>Syntax:</h5>
4294<pre>
4295  &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
4296</pre>
4297
4298<h5>Overview:</h5>
4299<p>The '<tt>srem</tt>' instruction returns the remainder from the signed
4300   division of its two operands. This instruction can also take
4301   <a href="#t_vector">vector</a> versions of the values in which case the
4302   elements must be integers.</p>
4303
4304<h5>Arguments:</h5>
4305<p>The two arguments to the '<tt>srem</tt>' instruction must be
4306   <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4307   values.  Both arguments must have identical types.</p>
4308
4309<h5>Semantics:</h5>
4310<p>This instruction returns the <i>remainder</i> of a division (where the result
4311   is either zero or has the same sign as the dividend, <tt>op1</tt>), not the
4312   <i>modulo</i> operator (where the result is either zero or has the same sign
4313   as the divisor, <tt>op2</tt>) of a value.
4314   For more information about the difference,
4315   see <a href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
4316   Math Forum</a>. For a table of how this is implemented in various languages,
4317   please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
4318   Wikipedia: modulo operation</a>.</p>
4319
4320<p>Note that signed integer remainder and unsigned integer remainder are
4321   distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
4322
4323<p>Taking the remainder of a division by zero leads to undefined behavior.
4324   Overflow also leads to undefined behavior; this is a rare case, but can
4325   occur, for example, by taking the remainder of a 32-bit division of
4326   -2147483648 by -1.  (The remainder doesn't actually overflow, but this rule
4327   lets srem be implemented using instructions that return both the result of
4328   the division and the remainder.)</p>
4329
4330<h5>Example:</h5>
4331<pre>
4332  &lt;result&gt; = srem i32 4, %var          <i>; yields {i32}:result = 4 % %var</i>
4333</pre>
4334
4335</div>
4336
4337<!-- _______________________________________________________________________ -->
4338<h4>
4339  <a name="i_frem">'<tt>frem</tt>' Instruction</a>
4340</h4>
4341
4342<div>
4343
4344<h5>Syntax:</h5>
4345<pre>
4346  &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
4347</pre>
4348
4349<h5>Overview:</h5>
4350<p>The '<tt>frem</tt>' instruction returns the remainder from the division of
4351   its two operands.</p>
4352
4353<h5>Arguments:</h5>
4354<p>The two arguments to the '<tt>frem</tt>' instruction must be
4355   <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
4356   floating point values.  Both arguments must have identical types.</p>
4357
4358<h5>Semantics:</h5>
4359<p>This instruction returns the <i>remainder</i> of a division.  The remainder
4360   has the same sign as the dividend.</p>
4361
4362<h5>Example:</h5>
4363<pre>
4364  &lt;result&gt; = frem float 4.0, %var          <i>; yields {float}:result = 4.0 % %var</i>
4365</pre>
4366
4367</div>
4368
4369</div>
4370
4371<!-- ======================================================================= -->
4372<h3>
4373  <a name="bitwiseops">Bitwise Binary Operations</a>
4374</h3>
4375
4376<div>
4377
4378<p>Bitwise binary operators are used to do various forms of bit-twiddling in a
4379   program.  They are generally very efficient instructions and can commonly be
4380   strength reduced from other instructions.  They require two operands of the
4381   same type, execute an operation on them, and produce a single value.  The
4382   resulting value is the same type as its operands.</p>
4383
4384<!-- _______________________________________________________________________ -->
4385<h4>
4386  <a name="i_shl">'<tt>shl</tt>' Instruction</a>
4387</h4>
4388
4389<div>
4390
4391<h5>Syntax:</h5>
4392<pre>
4393  &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;           <i>; yields {ty}:result</i>
4394  &lt;result&gt; = shl nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;       <i>; yields {ty}:result</i>
4395  &lt;result&gt; = shl nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;       <i>; yields {ty}:result</i>
4396  &lt;result&gt; = shl nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
4397</pre>
4398
4399<h5>Overview:</h5>
4400<p>The '<tt>shl</tt>' instruction returns the first operand shifted to the left
4401   a specified number of bits.</p>
4402
4403<h5>Arguments:</h5>
4404<p>Both arguments to the '<tt>shl</tt>' instruction must be the
4405    same <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
4406    integer type.  '<tt>op2</tt>' is treated as an unsigned value.</p>
4407
4408<h5>Semantics:</h5>
4409<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod
4410   2<sup>n</sup>, where <tt>n</tt> is the width of the result.  If <tt>op2</tt>
4411   is (statically or dynamically) negative or equal to or larger than the number
4412   of bits in <tt>op1</tt>, the result is undefined.  If the arguments are
4413   vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
4414   shift amount in <tt>op2</tt>.</p>
4415
4416<p>If the <tt>nuw</tt> keyword is present, then the shift produces a 
4417   <a href="#poisonvalues">poison value</a> if it shifts out any non-zero bits.  If
4418   the <tt>nsw</tt> keyword is present, then the shift produces a
4419   <a href="#poisonvalues">poison value</a> if it shifts out any bits that disagree
4420   with the resultant sign bit.  As such, NUW/NSW have the same semantics as
4421   they would if the shift were expressed as a mul instruction with the same
4422   nsw/nuw bits in (mul %op1, (shl 1, %op2)).</p>
4423
4424<h5>Example:</h5>
4425<pre>
4426  &lt;result&gt; = shl i32 4, %var   <i>; yields {i32}: 4 &lt;&lt; %var</i>
4427  &lt;result&gt; = shl i32 4, 2      <i>; yields {i32}: 16</i>
4428  &lt;result&gt; = shl i32 1, 10     <i>; yields {i32}: 1024</i>
4429  &lt;result&gt; = shl i32 1, 32     <i>; undefined</i>
4430  &lt;result&gt; = shl &lt;2 x i32&gt; &lt; i32 1, i32 1&gt;, &lt; i32 1, i32 2&gt;   <i>; yields: result=&lt;2 x i32&gt; &lt; i32 2, i32 4&gt;</i>
4431</pre>
4432
4433</div>
4434
4435<!-- _______________________________________________________________________ -->
4436<h4>
4437  <a name="i_lshr">'<tt>lshr</tt>' Instruction</a>
4438</h4>
4439
4440<div>
4441
4442<h5>Syntax:</h5>
4443<pre>
4444  &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;         <i>; yields {ty}:result</i>
4445  &lt;result&gt; = lshr exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
4446</pre>
4447
4448<h5>Overview:</h5>
4449<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
4450   operand shifted to the right a specified number of bits with zero fill.</p>
4451
4452<h5>Arguments:</h5>
4453<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
4454   <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4455   type. '<tt>op2</tt>' is treated as an unsigned value.</p>
4456
4457<h5>Semantics:</h5>
4458<p>This instruction always performs a logical shift right operation. The most
4459   significant bits of the result will be filled with zero bits after the shift.
4460   If <tt>op2</tt> is (statically or dynamically) equal to or larger than the
4461   number of bits in <tt>op1</tt>, the result is undefined. If the arguments are
4462   vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
4463   shift amount in <tt>op2</tt>.</p>
4464
4465<p>If the <tt>exact</tt> keyword is present, the result value of the
4466   <tt>lshr</tt> is a <a href="#poisonvalues">poison value</a> if any of the bits
4467   shifted out are non-zero.</p>
4468
4469
4470<h5>Example:</h5>
4471<pre>
4472  &lt;result&gt; = lshr i32 4, 1   <i>; yields {i32}:result = 2</i>
4473  &lt;result&gt; = lshr i32 4, 2   <i>; yields {i32}:result = 1</i>
4474  &lt;result&gt; = lshr i8  4, 3   <i>; yields {i8}:result = 0</i>
4475  &lt;result&gt; = lshr i8 -2, 1   <i>; yields {i8}:result = 0x7FFFFFFF </i>
4476  &lt;result&gt; = lshr i32 1, 32  <i>; undefined</i>
4477  &lt;result&gt; = lshr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 2&gt;   <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0x7FFFFFFF, i32 1&gt;</i>
4478</pre>
4479
4480</div>
4481
4482<!-- _______________________________________________________________________ -->
4483<h4>
4484  <a name="i_ashr">'<tt>ashr</tt>' Instruction</a>
4485</h4>
4486
4487<div>
4488
4489<h5>Syntax:</h5>
4490<pre>
4491  &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;         <i>; yields {ty}:result</i>
4492  &lt;result&gt; = ashr exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
4493</pre>
4494
4495<h5>Overview:</h5>
4496<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
4497   operand shifted to the right a specified number of bits with sign
4498   extension.</p>
4499
4500<h5>Arguments:</h5>
4501<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
4502   <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4503   type.  '<tt>op2</tt>' is treated as an unsigned value.</p>
4504
4505<h5>Semantics:</h5>
4506<p>This instruction always performs an arithmetic shift right operation, The
4507   most significant bits of the result will be filled with the sign bit
4508   of <tt>op1</tt>.  If <tt>op2</tt> is (statically or dynamically) equal to or
4509   larger than the number of bits in <tt>op1</tt>, the result is undefined. If
4510   the arguments are vectors, each vector element of <tt>op1</tt> is shifted by
4511   the corresponding shift amount in <tt>op2</tt>.</p>
4512
4513<p>If the <tt>exact</tt> keyword is present, the result value of the
4514   <tt>ashr</tt> is a <a href="#poisonvalues">poison value</a> if any of the bits
4515   shifted out are non-zero.</p>
4516
4517<h5>Example:</h5>
4518<pre>
4519  &lt;result&gt; = ashr i32 4, 1   <i>; yields {i32}:result = 2</i>
4520  &lt;result&gt; = ashr i32 4, 2   <i>; yields {i32}:result = 1</i>
4521  &lt;result&gt; = ashr i8  4, 3   <i>; yields {i8}:result = 0</i>
4522  &lt;result&gt; = ashr i8 -2, 1   <i>; yields {i8}:result = -1</i>
4523  &lt;result&gt; = ashr i32 1, 32  <i>; undefined</i>
4524  &lt;result&gt; = ashr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 3&gt;   <i>; yields: result=&lt;2 x i32&gt; &lt; i32 -1, i32 0&gt;</i>
4525</pre>
4526
4527</div>
4528
4529<!-- _______________________________________________________________________ -->
4530<h4>
4531  <a name="i_and">'<tt>and</tt>' Instruction</a>
4532</h4>
4533
4534<div>
4535
4536<h5>Syntax:</h5>
4537<pre>
4538  &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
4539</pre>
4540
4541<h5>Overview:</h5>
4542<p>The '<tt>and</tt>' instruction returns the bitwise logical and of its two
4543   operands.</p>
4544
4545<h5>Arguments:</h5>
4546<p>The two arguments to the '<tt>and</tt>' instruction must be
4547   <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4548   values.  Both arguments must have identical types.</p>
4549
4550<h5>Semantics:</h5>
4551<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
4552
4553<table border="1" cellspacing="0" cellpadding="4">
4554  <tbody>
4555    <tr>
4556      <th>In0</th>
4557      <th>In1</th>
4558      <th>Out</th>
4559    </tr>
4560    <tr>
4561      <td>0</td>
4562      <td>0</td>
4563      <td>0</td>
4564    </tr>
4565    <tr>
4566      <td>0</td>
4567      <td>1</td>
4568      <td>0</td>
4569    </tr>
4570    <tr>
4571      <td>1</td>
4572      <td>0</td>
4573      <td>0</td>
4574    </tr>
4575    <tr>
4576      <td>1</td>
4577      <td>1</td>
4578      <td>1</td>
4579    </tr>
4580  </tbody>
4581</table>
4582
4583<h5>Example:</h5>
4584<pre>
4585  &lt;result&gt; = and i32 4, %var         <i>; yields {i32}:result = 4 &amp; %var</i>
4586  &lt;result&gt; = and i32 15, 40          <i>; yields {i32}:result = 8</i>
4587  &lt;result&gt; = and i32 4, 8            <i>; yields {i32}:result = 0</i>
4588</pre>
4589</div>
4590<!-- _______________________________________________________________________ -->
4591<h4>
4592  <a name="i_or">'<tt>or</tt>' Instruction</a>
4593</h4>
4594
4595<div>
4596
4597<h5>Syntax:</h5>
4598<pre>
4599  &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
4600</pre>
4601
4602<h5>Overview:</h5>
4603<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive or of its
4604   two operands.</p>
4605
4606<h5>Arguments:</h5>
4607<p>The two arguments to the '<tt>or</tt>' instruction must be
4608   <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4609   values.  Both arguments must have identical types.</p>
4610
4611<h5>Semantics:</h5>
4612<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
4613
4614<table border="1" cellspacing="0" cellpadding="4">
4615  <tbody>
4616    <tr>
4617      <th>In0</th>
4618      <th>In1</th>
4619      <th>Out</th>
4620    </tr>
4621    <tr>
4622      <td>0</td>
4623      <td>0</td>
4624      <td>0</td>
4625    </tr>
4626    <tr>
4627      <td>0</td>
4628      <td>1</td>
4629      <td>1</td>
4630    </tr>
4631    <tr>
4632      <td>1</td>
4633      <td>0</td>
4634      <td>1</td>
4635    </tr>
4636    <tr>
4637      <td>1</td>
4638      <td>1</td>
4639      <td>1</td>
4640    </tr>
4641  </tbody>
4642</table>
4643
4644<h5>Example:</h5>
4645<pre>
4646  &lt;result&gt; = or i32 4, %var         <i>; yields {i32}:result = 4 | %var</i>
4647  &lt;result&gt; = or i32 15, 40          <i>; yields {i32}:result = 47</i>
4648  &lt;result&gt; = or i32 4, 8            <i>; yields {i32}:result = 12</i>
4649</pre>
4650
4651</div>
4652
4653<!-- _______________________________________________________________________ -->
4654<h4>
4655  <a name="i_xor">'<tt>xor</tt>' Instruction</a>
4656</h4>
4657
4658<div>
4659
4660<h5>Syntax:</h5>
4661<pre>
4662  &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {ty}:result</i>
4663</pre>
4664
4665<h5>Overview:</h5>
4666<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive or of
4667   its two operands.  The <tt>xor</tt> is used to implement the "one's
4668   complement" operation, which is the "~" operator in C.</p>
4669
4670<h5>Arguments:</h5>
4671<p>The two arguments to the '<tt>xor</tt>' instruction must be
4672   <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4673   values.  Both arguments must have identical types.</p>
4674
4675<h5>Semantics:</h5>
4676<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
4677
4678<table border="1" cellspacing="0" cellpadding="4">
4679  <tbody>
4680    <tr>
4681      <th>In0</th>
4682      <th>In1</th>
4683      <th>Out</th>
4684    </tr>
4685    <tr>
4686      <td>0</td>
4687      <td>0</td>
4688      <td>0</td>
4689    </tr>
4690    <tr>
4691      <td>0</td>
4692      <td>1</td>
4693      <td>1</td>
4694    </tr>
4695    <tr>
4696      <td>1</td>
4697      <td>0</td>
4698      <td>1</td>
4699    </tr>
4700    <tr>
4701      <td>1</td>
4702      <td>1</td>
4703      <td>0</td>
4704    </tr>
4705  </tbody>
4706</table>
4707
4708<h5>Example:</h5>
4709<pre>
4710  &lt;result&gt; = xor i32 4, %var         <i>; yields {i32}:result = 4 ^ %var</i>
4711  &lt;result&gt; = xor i32 15, 40          <i>; yields {i32}:result = 39</i>
4712  &lt;result&gt; = xor i32 4, 8            <i>; yields {i32}:result = 12</i>
4713  &lt;result&gt; = xor i32 %V, -1          <i>; yields {i32}:result = ~%V</i>
4714</pre>
4715
4716</div>
4717
4718</div>
4719
4720<!-- ======================================================================= -->
4721<h3>
4722  <a name="vectorops">Vector Operations</a>
4723</h3>
4724
4725<div>
4726
4727<p>LLVM supports several instructions to represent vector operations in a
4728   target-independent manner.  These instructions cover the element-access and
4729   vector-specific operations needed to process vectors effectively.  While LLVM
4730   does directly support these vector operations, many sophisticated algorithms
4731   will want to use target-specific intrinsics to take full advantage of a
4732   specific target.</p>
4733
4734<!-- _______________________________________________________________________ -->
4735<h4>
4736   <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
4737</h4>
4738
4739<div>
4740
4741<h5>Syntax:</h5>
4742<pre>
4743  &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt;    <i>; yields &lt;ty&gt;</i>
4744</pre>
4745
4746<h5>Overview:</h5>
4747<p>The '<tt>extractelement</tt>' instruction extracts a single scalar element
4748   from a vector at a specified index.</p>
4749
4750
4751<h5>Arguments:</h5>
4752<p>The first operand of an '<tt>extractelement</tt>' instruction is a value
4753   of <a href="#t_vector">vector</a> type.  The second operand is an index
4754   indicating the position from which to extract the element.  The index may be
4755   a variable.</p>
4756
4757<h5>Semantics:</h5>
4758<p>The result is a scalar of the same type as the element type of
4759   <tt>val</tt>.  Its value is the value at position <tt>idx</tt> of
4760   <tt>val</tt>.  If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
4761   results are undefined.</p>
4762
4763<h5>Example:</h5>
4764<pre>
4765  &lt;result&gt; = extractelement &lt;4 x i32&gt; %vec, i32 0    <i>; yields i32</i>
4766</pre>
4767
4768</div>
4769
4770<!-- _______________________________________________________________________ -->
4771<h4>
4772   <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
4773</h4>
4774
4775<div>
4776
4777<h5>Syntax:</h5>
4778<pre>
4779  &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt;    <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
4780</pre>
4781
4782<h5>Overview:</h5>
4783<p>The '<tt>insertelement</tt>' instruction inserts a scalar element into a
4784   vector at a specified index.</p>
4785
4786<h5>Arguments:</h5>
4787<p>The first operand of an '<tt>insertelement</tt>' instruction is a value
4788   of <a href="#t_vector">vector</a> type.  The second operand is a scalar value
4789   whose type must equal the element type of the first operand.  The third
4790   operand is an index indicating the position at which to insert the value.
4791   The index may be a variable.</p>
4792
4793<h5>Semantics:</h5>
4794<p>The result is a vector of the same type as <tt>val</tt>.  Its element values
4795   are those of <tt>val</tt> except at position <tt>idx</tt>, where it gets the
4796   value <tt>elt</tt>.  If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
4797   results are undefined.</p>
4798
4799<h5>Example:</h5>
4800<pre>
4801  &lt;result&gt; = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0    <i>; yields &lt;4 x i32&gt;</i>
4802</pre>
4803
4804</div>
4805
4806<!-- _______________________________________________________________________ -->
4807<h4>
4808   <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
4809</h4>
4810
4811<div>
4812
4813<h5>Syntax:</h5>
4814<pre>
4815  &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;m x i32&gt; &lt;mask&gt;    <i>; yields &lt;m x &lt;ty&gt;&gt;</i>
4816</pre>
4817
4818<h5>Overview:</h5>
4819<p>The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
4820   from two input vectors, returning a vector with the same element type as the
4821   input and length that is the same as the shuffle mask.</p>
4822
4823<h5>Arguments:</h5>
4824<p>The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
4825   with the same type.  The third argument is a shuffle mask whose
4826   element type is always 'i32'.  The result of the instruction is a vector
4827   whose length is the same as the shuffle mask and whose element type is the
4828   same as the element type of the first two operands.</p>
4829
4830<p>The shuffle mask operand is required to be a constant vector with either
4831   constant integer or undef values.</p>
4832
4833<h5>Semantics:</h5>
4834<p>The elements of the two input vectors are numbered from left to right across
4835   both of the vectors.  The shuffle mask operand specifies, for each element of
4836   the result vector, which element of the two input vectors the result element
4837   gets.  The element selector may be undef (meaning "don't care") and the
4838   second operand may be undef if performing a shuffle from only one vector.</p>
4839
4840<h5>Example:</h5>
4841<pre>
4842  &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
4843                          &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt;  <i>; yields &lt;4 x i32&gt;</i>
4844  &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
4845                          &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt;  <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
4846  &lt;result&gt; = shufflevector &lt;8 x i32&gt; %v1, &lt;8 x i32&gt; undef,
4847                          &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt;  <i>; yields &lt;4 x i32&gt;</i>
4848  &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
4849                          &lt;8 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 &gt;  <i>; yields &lt;8 x i32&gt;</i>
4850</pre>
4851
4852</div>
4853
4854</div>
4855
4856<!-- ======================================================================= -->
4857<h3>
4858  <a name="aggregateops">Aggregate Operations</a>
4859</h3>
4860
4861<div>
4862
4863<p>LLVM supports several instructions for working with
4864  <a href="#t_aggregate">aggregate</a> values.</p>
4865
4866<!-- _______________________________________________________________________ -->
4867<h4>
4868   <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
4869</h4>
4870
4871<div>
4872
4873<h5>Syntax:</h5>
4874<pre>
4875  &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
4876</pre>
4877
4878<h5>Overview:</h5>
4879<p>The '<tt>extractvalue</tt>' instruction extracts the value of a member field
4880   from an <a href="#t_aggregate">aggregate</a> value.</p>
4881
4882<h5>Arguments:</h5>
4883<p>The first operand of an '<tt>extractvalue</tt>' instruction is a value
4884   of <a href="#t_struct">struct</a> or
4885   <a href="#t_array">array</a> type.  The operands are constant indices to
4886   specify which value to extract in a similar manner as indices in a
4887   '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
4888   <p>The major differences to <tt>getelementptr</tt> indexing are:</p>
4889     <ul>
4890       <li>Since the value being indexed is not a pointer, the first index is
4891           omitted and assumed to be zero.</li>
4892       <li>At least one index must be specified.</li>
4893       <li>Not only struct indices but also array indices must be in
4894           bounds.</li>
4895     </ul>
4896
4897<h5>Semantics:</h5>
4898<p>The result is the value at the position in the aggregate specified by the
4899   index operands.</p>
4900
4901<h5>Example:</h5>
4902<pre>
4903  &lt;result&gt; = extractvalue {i32, float} %agg, 0    <i>; yields i32</i>
4904</pre>
4905
4906</div>
4907
4908<!-- _______________________________________________________________________ -->
4909<h4>
4910   <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
4911</h4>
4912
4913<div>
4914
4915<h5>Syntax:</h5>
4916<pre>
4917  &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, &lt;idx&gt;{, &lt;idx&gt;}*    <i>; yields &lt;aggregate type&gt;</i>
4918</pre>
4919
4920<h5>Overview:</h5>
4921<p>The '<tt>insertvalue</tt>' instruction inserts a value into a member field
4922   in an <a href="#t_aggregate">aggregate</a> value.</p>
4923
4924<h5>Arguments:</h5>
4925<p>The first operand of an '<tt>insertvalue</tt>' instruction is a value
4926   of <a href="#t_struct">struct</a> or
4927   <a href="#t_array">array</a> type.  The second operand is a first-class
4928   value to insert.  The following operands are constant indices indicating
4929   the position at which to insert the value in a similar manner as indices in a
4930   '<tt><a href="#i_extractvalue">extractvalue</a></tt>' instruction.  The
4931   value to insert must have the same type as the value identified by the
4932   indices.</p>
4933
4934<h5>Semantics:</h5>
4935<p>The result is an aggregate of the same type as <tt>val</tt>.  Its value is
4936   that of <tt>val</tt> except that the value at the position specified by the
4937   indices is that of <tt>elt</tt>.</p>
4938
4939<h5>Example:</h5>
4940<pre>
4941  %agg1 = insertvalue {i32, float} undef, i32 1, 0              <i>; yields {i32 1, float undef}</i>
4942  %agg2 = insertvalue {i32, float} %agg1, float %val, 1         <i>; yields {i32 1, float %val}</i>
4943  %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0    <i>; yields {i32 1, float %val}</i>
4944</pre>
4945
4946</div>
4947
4948</div>
4949
4950<!-- ======================================================================= -->
4951<h3>
4952  <a name="memoryops">Memory Access and Addressing Operations</a>
4953</h3>
4954
4955<div>
4956
4957<p>A key design point of an SSA-based representation is how it represents
4958   memory.  In LLVM, no memory locations are in SSA form, which makes things
4959   very simple.  This section describes how to read, write, and allocate
4960   memory in LLVM.</p>
4961
4962<!-- _______________________________________________________________________ -->
4963<h4>
4964  <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
4965</h4>
4966
4967<div>
4968
4969<h5>Syntax:</h5>
4970<pre>
4971  &lt;result&gt; = alloca &lt;type&gt;[, &lt;ty&gt; &lt;NumElements&gt;][, align &lt;alignment&gt;]     <i>; yields {type*}:result</i>
4972</pre>
4973
4974<h5>Overview:</h5>
4975<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
4976   currently executing function, to be automatically released when this function
4977   returns to its caller. The object is always allocated in the generic address
4978   space (address space zero).</p>
4979
4980<h5>Arguments:</h5>
4981<p>The '<tt>alloca</tt>' instruction
4982   allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt> bytes of memory on the
4983   runtime stack, returning a pointer of the appropriate type to the program.
4984   If "NumElements" is specified, it is the number of elements allocated,
4985   otherwise "NumElements" is defaulted to be one.  If a constant alignment is
4986   specified, the value result of the allocation is guaranteed to be aligned to
4987   at least that boundary.  If not specified, or if zero, the target can choose
4988   to align the allocation on any convenient boundary compatible with the
4989   type.</p>
4990
4991<p>'<tt>type</tt>' may be any sized type.</p>
4992
4993<h5>Semantics:</h5>
4994<p>Memory is allocated; a pointer is returned.  The operation is undefined if
4995   there is insufficient stack space for the allocation.  '<tt>alloca</tt>'d
4996   memory is automatically released when the function returns.  The
4997   '<tt>alloca</tt>' instruction is commonly used to represent automatic
4998   variables that must have an address available.  When the function returns
4999   (either with the <tt><a href="#i_ret">ret</a></tt>
5000   or <tt><a href="#i_resume">resume</a></tt> instructions), the memory is
5001   reclaimed.  Allocating zero bytes is legal, but the result is undefined.
5002   The order in which memory is allocated (ie., which way the stack grows) is
5003   not specified.</p>
5004
5005<p>
5006
5007<h5>Example:</h5>
5008<pre>
5009  %ptr = alloca i32                             <i>; yields {i32*}:ptr</i>
5010  %ptr = alloca i32, i32 4                      <i>; yields {i32*}:ptr</i>
5011  %ptr = alloca i32, i32 4, align 1024          <i>; yields {i32*}:ptr</i>
5012  %ptr = alloca i32, align 1024                 <i>; yields {i32*}:ptr</i>
5013</pre>
5014
5015</div>
5016
5017<!-- _______________________________________________________________________ -->
5018<h4>
5019  <a name="i_load">'<tt>load</tt>' Instruction</a>
5020</h4>
5021
5022<div>
5023
5024<h5>Syntax:</h5>
5025<pre>
5026  &lt;result&gt; = load [volatile] &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;][, !invariant.load !&lt;index&gt;]
5027  &lt;result&gt; = load atomic [volatile] &lt;ty&gt;* &lt;pointer&gt; [singlethread] &lt;ordering&gt;, align &lt;alignment&gt;
5028  !&lt;index&gt; = !{ i32 1 }
5029</pre>
5030
5031<h5>Overview:</h5>
5032<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
5033
5034<h5>Arguments:</h5>
5035<p>The argument to the '<tt>load</tt>' instruction specifies the memory address
5036   from which to load.  The pointer must point to
5037   a <a href="#t_firstclass">first class</a> type.  If the <tt>load</tt> is
5038   marked as <tt>volatile</tt>, then the optimizer is not allowed to modify the
5039   number or order of execution of this <tt>load</tt> with other <a
5040   href="#volatile">volatile operations</a>.</p>
5041
5042<p>If the <code>load</code> is marked as <code>atomic</code>, it takes an extra
5043   <a href="#ordering">ordering</a> and optional <code>singlethread</code>
5044   argument.  The <code>release</code> and <code>acq_rel</code> orderings are
5045   not valid on <code>load</code> instructions.  Atomic loads produce <a
5046   href="#memorymodel">defined</a> results when they may see multiple atomic
5047   stores.  The type of the pointee must be an integer type whose bit width
5048   is a power of two greater than or equal to eight and less than or equal
5049   to a target-specific size limit. <code>align</code> must be explicitly 
5050   specified on atomic loads, and the load has undefined behavior if the
5051   alignment is not set to a value which is at least the size in bytes of
5052   the pointee. <code>!nontemporal</code> does not have any defined semantics
5053   for atomic loads.</p>
5054
5055<p>The optional constant <tt>align</tt> argument specifies the alignment of the
5056   operation (that is, the alignment of the memory address). A value of 0 or an
5057   omitted <tt>align</tt> argument means that the operation has the preferential
5058   alignment for the target. It is the responsibility of the code emitter to
5059   ensure that the alignment information is correct. Overestimating the
5060   alignment results in undefined behavior. Underestimating the alignment may
5061   produce less efficient code. An alignment of 1 is always safe.</p>
5062
5063<p>The optional <tt>!nontemporal</tt> metadata must reference a single
5064   metatadata name &lt;index&gt; corresponding to a metadata node with
5065   one <tt>i32</tt> entry of value 1.  The existence of
5066   the <tt>!nontemporal</tt> metatadata on the instruction tells the optimizer
5067   and code generator that this load is not expected to be reused in the cache.
5068   The code generator may select special instructions to save cache bandwidth,
5069   such as the <tt>MOVNT</tt> instruction on x86.</p>
5070
5071<p>The optional <tt>!invariant.load</tt> metadata must reference a single
5072   metatadata name &lt;index&gt; corresponding to a metadata node with no
5073   entries.  The existence of the <tt>!invariant.load</tt> metatadata on the
5074   instruction tells the optimizer and code generator that this load address
5075   points to memory which does not change value during program execution.
5076   The optimizer may then move this load around, for example, by hoisting it
5077   out of loops using loop invariant code motion.</p>
5078
5079<h5>Semantics:</h5>
5080<p>The location of memory pointed to is loaded.  If the value being loaded is of
5081   scalar type then the number of bytes read does not exceed the minimum number
5082   of bytes needed to hold all bits of the type.  For example, loading an
5083   <tt>i24</tt> reads at most three bytes.  When loading a value of a type like
5084   <tt>i20</tt> with a size that is not an integral number of bytes, the result
5085   is undefined if the value was not originally written using a store of the
5086   same type.</p>
5087
5088<h5>Examples:</h5>
5089<pre>
5090  %ptr = <a href="#i_alloca">alloca</a> i32                               <i>; yields {i32*}:ptr</i>
5091  <a href="#i_store">store</a> i32 3, i32* %ptr                          <i>; yields {void}</i>
5092  %val = load i32* %ptr                           <i>; yields {i32}:val = i32 3</i>
5093</pre>
5094
5095</div>
5096
5097<!-- _______________________________________________________________________ -->
5098<h4>
5099  <a name="i_store">'<tt>store</tt>' Instruction</a>
5100</h4>
5101
5102<div>
5103
5104<h5>Syntax:</h5>
5105<pre>
5106  store [volatile] &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;]        <i>; yields {void}</i>
5107  store atomic [volatile] &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt; [singlethread] &lt;ordering&gt;, align &lt;alignment&gt;  <i>; yields {void}</i>
5108</pre>
5109
5110<h5>Overview:</h5>
5111<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
5112
5113<h5>Arguments:</h5>
5114<p>There are two arguments to the '<tt>store</tt>' instruction: a value to store
5115   and an address at which to store it.  The type of the
5116   '<tt>&lt;pointer&gt;</tt>' operand must be a pointer to
5117   the <a href="#t_firstclass">first class</a> type of the
5118   '<tt>&lt;value&gt;</tt>' operand. If the <tt>store</tt> is marked as
5119   <tt>volatile</tt>, then the optimizer is not allowed to modify the number or
5120   order of execution of this <tt>store</tt> with other <a
5121   href="#volatile">volatile operations</a>.</p>
5122
5123<p>If the <code>store</code> is marked as <code>atomic</code>, it takes an extra
5124   <a href="#ordering">ordering</a> and optional <code>singlethread</code>
5125   argument.  The <code>acquire</code> and <code>acq_rel</code> orderings aren't
5126   valid on <code>store</code> instructions.  Atomic loads produce <a
5127   href="#memorymodel">defined</a> results when they may see multiple atomic
5128   stores. The type of the pointee must be an integer type whose bit width
5129   is a power of two greater than or equal to eight and less than or equal
5130   to a target-specific size limit. <code>align</code> must be explicitly 
5131   specified on atomic stores, and the store has undefined behavior if the
5132   alignment is not set to a value which is at least the size in bytes of
5133   the pointee. <code>!nontemporal</code> does not have any defined semantics
5134   for atomic stores.</p>
5135
5136<p>The optional constant "align" argument specifies the alignment of the
5137   operation (that is, the alignment of the memory address). A value of 0 or an
5138   omitted "align" argument means that the operation has the preferential
5139   alignment for the target. It is the responsibility of the code emitter to
5140   ensure that the alignment information is correct. Overestimating the
5141   alignment results in an undefined behavior. Underestimating the alignment may
5142   produce less efficient code. An alignment of 1 is always safe.</p>
5143
5144<p>The optional !nontemporal metadata must reference a single metatadata
5145   name &lt;index&gt; corresponding to a metadata node with one i32 entry of
5146   value 1.  The existence of the !nontemporal metatadata on the
5147   instruction tells the optimizer and code generator that this load is
5148   not expected to be reused in the cache.  The code generator may
5149   select special instructions to save cache bandwidth, such as the
5150   MOVNT instruction on x86.</p>
5151
5152
5153<h5>Semantics:</h5>
5154<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>' at the
5155   location specified by the '<tt>&lt;pointer&gt;</tt>' operand.  If
5156   '<tt>&lt;value&gt;</tt>' is of scalar type then the number of bytes written
5157   does not exceed the minimum number of bytes needed to hold all bits of the
5158   type.  For example, storing an <tt>i24</tt> writes at most three bytes.  When
5159   writing a value of a type like <tt>i20</tt> with a size that is not an
5160   integral number of bytes, it is unspecified what happens to the extra bits
5161   that do not belong to the type, but they will typically be overwritten.</p>
5162
5163<h5>Example:</h5>
5164<pre>
5165  %ptr = <a href="#i_alloca">alloca</a> i32                               <i>; yields {i32*}:ptr</i>
5166  store i32 3, i32* %ptr                          <i>; yields {void}</i>
5167  %val = <a href="#i_load">load</a> i32* %ptr                           <i>; yields {i32}:val = i32 3</i>
5168</pre>
5169
5170</div>
5171
5172<!-- _______________________________________________________________________ -->
5173<h4>
5174<a name="i_fence">'<tt>fence</tt>' Instruction</a>
5175</h4>
5176
5177<div>
5178
5179<h5>Syntax:</h5>
5180<pre>
5181  fence [singlethread] &lt;ordering&gt;                   <i>; yields {void}</i>
5182</pre>
5183
5184<h5>Overview:</h5>
5185<p>The '<tt>fence</tt>' instruction is used to introduce happens-before edges
5186between operations.</p>
5187
5188<h5>Arguments:</h5> <p>'<code>fence</code>' instructions take an <a
5189href="#ordering">ordering</a> argument which defines what
5190<i>synchronizes-with</i> edges they add.  They can only be given
5191<code>acquire</code>, <code>release</code>, <code>acq_rel</code>, and
5192<code>seq_cst</code> orderings.</p>
5193
5194<h5>Semantics:</h5>
5195<p>A fence <var>A</var> which has (at least) <code>release</code> ordering
5196semantics <i>synchronizes with</i> a fence <var>B</var> with (at least)
5197<code>acquire</code> ordering semantics if and only if there exist atomic
5198operations <var>X</var> and <var>Y</var>, both operating on some atomic object
5199<var>M</var>, such that <var>A</var> is sequenced before <var>X</var>,
5200<var>X</var> modifies <var>M</var> (either directly or through some side effect
5201of a sequence headed by <var>X</var>), <var>Y</var> is sequenced before
5202<var>B</var>, and <var>Y</var> observes <var>M</var>. This provides a
5203<i>happens-before</i> dependency between <var>A</var> and <var>B</var>. Rather
5204than an explicit <code>fence</code>, one (but not both) of the atomic operations
5205<var>X</var> or <var>Y</var> might provide a <code>release</code> or
5206<code>acquire</code> (resp.) ordering constraint and still
5207<i>synchronize-with</i> the explicit <code>fence</code> and establish the
5208<i>happens-before</i> edge.</p>
5209
5210<p>A <code>fence</code> which has <code>seq_cst</code> ordering, in addition to
5211having both <code>acquire</code> and <code>release</code> semantics specified
5212above, participates in the global program order of other <code>seq_cst</code>
5213operations and/or fences.</p>
5214
5215<p>The optional "<a href="#singlethread"><code>singlethread</code></a>" argument
5216specifies that the fence only synchronizes with other fences in the same
5217thread.  (This is useful for interacting with signal handlers.)</p>
5218
5219<h5>Example:</h5>
5220<pre>
5221  fence acquire                          <i>; yields {void}</i>
5222  fence singlethread seq_cst             <i>; yields {void}</i>
5223</pre>
5224
5225</div>
5226
5227<!-- _______________________________________________________________________ -->
5228<h4>
5229<a name="i_cmpxchg">'<tt>cmpxchg</tt>' Instruction</a>
5230</h4>
5231
5232<div>
5233
5234<h5>Syntax:</h5>
5235<pre>
5236  cmpxchg [volatile] &lt;ty&gt;* &lt;pointer&gt;, &lt;ty&gt; &lt;cmp&gt;, &lt;ty&gt; &lt;new&gt; [singlethread] &lt;ordering&gt;  <i>; yields {ty}</i>
5237</pre>
5238
5239<h5>Overview:</h5>
5240<p>The '<tt>cmpxchg</tt>' instruction is used to atomically modify memory.
5241It loads a value in memory and compares it to a given value. If they are
5242equal, it stores a new value into the memory.</p>
5243
5244<h5>Arguments:</h5>
5245<p>There are three arguments to the '<code>cmpxchg</code>' instruction: an
5246address to operate on, a value to compare to the value currently be at that
5247address, and a new value to place at that address if the compared values are
5248equal.  The type of '<var>&lt;cmp&gt;</var>' must be an integer type whose
5249bit width is a power of two greater than or equal to eight and less than
5250or equal to a target-specific size limit. '<var>&lt;cmp&gt;</var>' and
5251'<var>&lt;new&gt;</var>' must have the same type, and the type of
5252'<var>&lt;pointer&gt;</var>' must be a pointer to that type. If the
5253<code>cmpxchg</code> is marked as <code>volatile</code>, then the
5254optimizer is not allowed to modify the number or order of execution
5255of this <code>cmpxchg</code> with other <a href="#volatile">volatile
5256operations</a>.</p>
5257
5258<!-- FIXME: Extend allowed types. -->
5259
5260<p>The <a href="#ordering"><var>ordering</var></a> argument specifies how this
5261<code>cmpxchg</code> synchronizes with other atomic operations.</p>
5262
5263<p>The optional "<code>singlethread</code>" argument declares that the
5264<code>cmpxchg</code> is only atomic with respect to code (usually signal
5265handlers) running in the same thread as the <code>cmpxchg</code>.  Otherwise the
5266cmpxchg is atomic with respect to all other code in the system.</p>
5267
5268<p>The pointer passed into cmpxchg must have alignment greater than or equal to
5269the size in memory of the operand.
5270
5271<h5>Semantics:</h5>
5272<p>The contents of memory at the location specified by the
5273'<tt>&lt;pointer&gt;</tt>' operand is read and compared to
5274'<tt>&lt;cmp&gt;</tt>'; if the read value is the equal,
5275'<tt>&lt;new&gt;</tt>' is written.  The original value at the location
5276is returned.
5277
5278<p>A successful <code>cmpxchg</code> is a read-modify-write instruction for the
5279purpose of identifying <a href="#release_sequence">release sequences</a>.  A
5280failed <code>cmpxchg</code> is equivalent to an atomic load with an ordering
5281parameter determined by dropping any <code>release</code> part of the
5282<code>cmpxchg</code>'s ordering.</p>
5283
5284<!--
5285FIXME: Is compare_exchange_weak() necessary?  (Consider after we've done
5286optimization work on ARM.)
5287
5288FIXME: Is a weaker ordering constraint on failure helpful in practice?
5289-->
5290
5291<h5>Example:</h5>
5292<pre>
5293entry:
5294  %orig = atomic <a href="#i_load">load</a> i32* %ptr unordered                   <i>; yields {i32}</i>
5295  <a href="#i_br">br</a> label %loop
5296
5297loop:
5298  %cmp = <a href="#i_phi">phi</a> i32 [ %orig, %entry ], [%old, %loop]
5299  %squared = <a href="#i_mul">mul</a> i32 %cmp, %cmp
5300  %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared          <i>; yields {i32}</i>
5301  %success = <a href="#i_icmp">icmp</a> eq i32 %cmp, %old
5302  <a href="#i_br">br</a> i1 %success, label %done, label %loop
5303
5304done:
5305  ...
5306</pre>
5307
5308</div>
5309
5310<!-- _______________________________________________________________________ -->
5311<h4>
5312<a name="i_atomicrmw">'<tt>atomicrmw</tt>' Instruction</a>
5313</h4>
5314
5315<div>
5316
5317<h5>Syntax:</h5>
5318<pre>
5319  atomicrmw [volatile] &lt;operation&gt; &lt;ty&gt;* &lt;pointer&gt;, &lt;ty&gt; &lt;value&gt; [singlethread] &lt;ordering&gt;                   <i>; yields {ty}</i>
5320</pre>
5321
5322<h5>Overview:</h5>
5323<p>The '<tt>atomicrmw</tt>' instruction is used to atomically modify memory.</p>
5324
5325<h5>Arguments:</h5>
5326<p>There are three arguments to the '<code>atomicrmw</code>' instruction: an
5327operation to apply, an address whose value to modify, an argument to the
5328operation.  The operation must be one of the following keywords:</p>
5329<ul>
5330  <li>xchg</li>
5331  <li>add</li>
5332  <li>sub</li>
5333  <li>and</li>
5334  <li>nand</li>
5335  <li>or</li>
5336  <li>xor</li>
5337  <li>max</li>
5338  <li>min</li>
5339  <li>umax</li>
5340  <li>umin</li>
5341</ul>
5342
5343<p>The type of '<var>&lt;value&gt;</var>' must be an integer type whose
5344bit width is a power of two greater than or equal to eight and less than
5345or equal to a target-specific size limit.  The type of the
5346'<code>&lt;pointer&gt;</code>' operand must be a pointer to that type.
5347If the <code>atomicrmw</code> is marked as <code>volatile</code>, then the
5348optimizer is not allowed to modify the number or order of execution of this
5349<code>atomicrmw</code> with other <a href="#volatile">volatile
5350  operations</a>.</p>
5351
5352<!-- FIXME: Extend allowed types. -->
5353
5354<h5>Semantics:</h5>
5355<p>The contents of memory at the location specified by the
5356'<tt>&lt;pointer&gt;</tt>' operand are atomically read, modified, and written
5357back.  The original value at the location is returned.  The modification is
5358specified by the <var>operation</var> argument:</p>
5359
5360<ul>
5361  <li>xchg: <code>*ptr = val</code></li>
5362  <li>add: <code>*ptr = *ptr + val</code></li>
5363  <li>sub: <code>*ptr = *ptr - val</code></li>
5364  <li>and: <code>*ptr = *ptr &amp; val</code></li>
5365  <li>nand: <code>*ptr = ~(*ptr &amp; val)</code></li>
5366  <li>or: <code>*ptr = *ptr | val</code></li>
5367  <li>xor: <code>*ptr = *ptr ^ val</code></li>
5368  <li>max: <code>*ptr = *ptr &gt; val ? *ptr : val</code> (using a signed comparison)</li>
5369  <li>min: <code>*ptr = *ptr &lt; val ? *ptr : val</code> (using a signed comparison)</li>
5370  <li>umax: <code>*ptr = *ptr &gt; val ? *ptr : val</code> (using an unsigned comparison)</li>
5371  <li>umin: <code>*ptr = *ptr &lt; val ? *ptr : val</code> (using an unsigned comparison)</li>
5372</ul>
5373
5374<h5>Example:</h5>
5375<pre>
5376  %old = atomicrmw add i32* %ptr, i32 1 acquire                        <i>; yields {i32}</i>
5377</pre>
5378
5379</div>
5380
5381<!-- _______________________________________________________________________ -->
5382<h4>
5383   <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
5384</h4>
5385
5386<div>
5387
5388<h5>Syntax:</h5>
5389<pre>
5390  &lt;result&gt; = getelementptr &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
5391  &lt;result&gt; = getelementptr inbounds &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
5392  &lt;result&gt; = getelementptr &lt;ptr vector&gt; ptrval, &lt;vector index type&gt; idx 
5393</pre>
5394
5395<h5>Overview:</h5>
5396<p>The '<tt>getelementptr</tt>' instruction is used to get the address of a
5397   subelement of an <a href="#t_aggregate">aggregate</a> data structure.
5398   It performs address calculation only and does not access memory.</p>
5399
5400<h5>Arguments:</h5>
5401<p>The first argument is always a pointer or a vector of pointers,
5402   and forms the basis of the
5403   calculation. The remaining arguments are indices that indicate which of the
5404   elements of the aggregate object are indexed. The interpretation of each
5405   index is dependent on the type being indexed into. The first index always
5406   indexes the pointer value given as the first argument, the second index
5407   indexes a value of the type pointed to (not necessarily the value directly
5408   pointed to, since the first index can be non-zero), etc. The first type
5409   indexed into must be a pointer value, subsequent types can be arrays,
5410   vectors, and structs. Note that subsequent types being indexed into
5411   can never be pointers, since that would require loading the pointer before
5412   continuing calculation.</p>
5413
5414<p>The type of each index argument depends on the type it is indexing into.
5415   When indexing into a (optionally packed) structure, only <tt>i32</tt>
5416   integer <b>constants</b> are allowed.  When indexing into an array, pointer
5417   or vector, integers of any width are allowed, and they are not required to be
5418   constant.  These integers are treated as signed values where relevant.</p>
5419
5420<p>For example, let's consider a C code fragment and how it gets compiled to
5421   LLVM:</p>
5422
5423<pre class="doc_code">
5424struct RT {
5425  char A;
5426  int B[10][20];
5427  char C;
5428};
5429struct ST {
5430  int X;
5431  double Y;
5432  struct RT Z;
5433};
5434
5435int *foo(struct ST *s) {
5436  return &amp;s[1].Z.B[5][13];
5437}
5438</pre>
5439
5440<p>The LLVM code generated by Clang is:</p>
5441
5442<pre class="doc_code">
5443%struct.RT = <a href="#namedtypes">type</a> { i8, [10 x [20 x i32]], i8 }
5444%struct.ST = <a href="#namedtypes">type</a> { i32, double, %struct.RT }
5445
5446define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5447entry:
5448  %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5449  ret i32* %arrayidx
5450}
5451</pre>
5452
5453<h5>Semantics:</h5>
5454<p>In the example above, the first index is indexing into the
5455   '<tt>%struct.ST*</tt>' type, which is a pointer, yielding a
5456   '<tt>%struct.ST</tt>' = '<tt>{ i32, double, %struct.RT }</tt>' type, a
5457   structure. The second index indexes into the third element of the structure,
5458   yielding a '<tt>%struct.RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]], i8 }</tt>'
5459   type, another structure. The third index indexes into the second element of
5460   the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an array. The
5461   two dimensions of the array are subscripted into, yielding an '<tt>i32</tt>'
5462   type. The '<tt>getelementptr</tt>' instruction returns a pointer to this
5463   element, thus computing a value of '<tt>i32*</tt>' type.</p>
5464
5465<p>Note that it is perfectly legal to index partially through a structure,
5466   returning a pointer to an inner element.  Because of this, the LLVM code for
5467   the given testcase is equivalent to:</p>
5468
5469<pre class="doc_code">
5470define i32* @foo(%struct.ST* %s) {
5471  %t1 = getelementptr %struct.ST* %s, i32 1                 <i>; yields %struct.ST*:%t1</i>
5472  %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2         <i>; yields %struct.RT*:%t2</i>
5473  %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1         <i>; yields [10 x [20 x i32]]*:%t3</i>
5474  %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5  <i>; yields [20 x i32]*:%t4</i>
5475  %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13        <i>; yields i32*:%t5</i>
5476  ret i32* %t5
5477}
5478</pre>
5479
5480<p>If the <tt>inbounds</tt> keyword is present, the result value of the
5481   <tt>getelementptr</tt> is a <a href="#poisonvalues">poison value</a> if the
5482   base pointer is not an <i>in bounds</i> address of an allocated object,
5483   or if any of the addresses that would be formed by successive addition of
5484   the offsets implied by the indices to the base address with infinitely
5485   precise signed arithmetic are not an <i>in bounds</i> address of that
5486   allocated object. The <i>in bounds</i> addresses for an allocated object
5487   are all the addresses that point into the object, plus the address one
5488   byte past the end.
5489   In cases where the base is a vector of pointers the <tt>inbounds</tt> keyword
5490   applies to each of the computations element-wise. </p>
5491
5492<p>If the <tt>inbounds</tt> keyword is not present, the offsets are added to
5493   the base address with silently-wrapping two's complement arithmetic. If the
5494   offsets have a different width from the pointer, they are sign-extended or
5495   truncated to the width of the pointer. The result value of the
5496   <tt>getelementptr</tt> may be outside the object pointed to by the base
5497   pointer. The result value may not necessarily be used to access memory
5498   though, even if it happens to point into allocated storage. See the
5499   <a href="#pointeraliasing">Pointer Aliasing Rules</a> section for more
5500   information.</p>
5501
5502<p>The getelementptr instruction is often confusing.  For some more insight into
5503   how it works, see <a href="GetElementPtr.html">the getelementptr FAQ</a>.</p>
5504
5505<h5>Example:</h5>
5506<pre>
5507    <i>; yields [12 x i8]*:aptr</i>
5508    %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5509    <i>; yields i8*:vptr</i>
5510    %vptr = getelementptr {i32, &lt;2 x i8&gt;}* %svptr, i64 0, i32 1, i32 1
5511    <i>; yields i8*:eptr</i>
5512    %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5513    <i>; yields i32*:iptr</i>
5514    %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5515</pre>
5516
5517<p>In cases where the pointer argument is a vector of pointers, only a
5518   single index may be used, and the number of vector elements has to be
5519   the same.  For example: </p>
5520<pre class="doc_code">
5521 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5522</pre>
5523
5524</div>
5525
5526</div>
5527
5528<!-- ======================================================================= -->
5529<h3>
5530  <a name="convertops">Conversion Operations</a>
5531</h3>
5532
5533<div>
5534
5535<p>The instructions in this category are the conversion instructions (casting)
5536   which all take a single operand and a type. They perform various bit
5537   conversions on the operand.</p>
5538
5539<!-- _______________________________________________________________________ -->
5540<h4>
5541   <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
5542</h4>
5543
5544<div>
5545
5546<h5>Syntax:</h5>
5547<pre>
5548  &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
5549</pre>
5550
5551<h5>Overview:</h5>
5552<p>The '<tt>trunc</tt>' instruction truncates its operand to the
5553   type <tt>ty2</tt>.</p>
5554
5555<h5>Arguments:</h5>
5556<p>The '<tt>trunc</tt>' instruction takes a value to trunc, and a type to trunc it to.
5557   Both types must be of <a href="#t_integer">integer</a> types, or vectors
5558   of the same number of integers.
5559   The bit size of the <tt>value</tt> must be larger than
5560   the bit size of the destination type, <tt>ty2</tt>.
5561   Equal sized types are not allowed.</p>
5562
5563<h5>Semantics:</h5>
5564<p>The '<tt>trunc</tt>' instruction truncates the high order bits
5565   in <tt>value</tt> and converts the remaining bits to <tt>ty2</tt>. Since the
5566   source size must be larger than the destination size, <tt>trunc</tt> cannot
5567   be a <i>no-op cast</i>.  It will always truncate bits.</p>
5568
5569<h5>Example:</h5>
5570<pre>
5571  %X = trunc i32 257 to i8                        <i>; yields i8:1</i>
5572  %Y = trunc i32 123 to i1                        <i>; yields i1:true</i>
5573  %Z = trunc i32 122 to i1                        <i>; yields i1:false</i>
5574  %W = trunc &lt;2 x i16&gt; &lt;i16 8, i16 7&gt; to &lt;2 x i8&gt; <i>; yields &lt;i8 8, i8 7&gt;</i>
5575</pre>
5576
5577</div>
5578
5579<!-- _______________________________________________________________________ -->
5580<h4>
5581   <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
5582</h4>
5583
5584<div>
5585
5586<h5>Syntax:</h5>
5587<pre>
5588  &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
5589</pre>
5590
5591<h5>Overview:</h5>
5592<p>The '<tt>zext</tt>' instruction zero extends its operand to type
5593   <tt>ty2</tt>.</p>
5594
5595
5596<h5>Arguments:</h5>
5597<p>The '<tt>zext</tt>' instruction takes a value to cast, and a type to cast it to.
5598   Both types must be of <a href="#t_integer">integer</a> types, or vectors
5599   of the same number of integers.
5600   The bit size of the <tt>value</tt> must be smaller than
5601   the bit size of the destination type,
5602   <tt>ty2</tt>.</p>
5603
5604<h5>Semantics:</h5>
5605<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
5606   bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
5607
5608<p>When zero extending from i1, the result will always be either 0 or 1.</p>
5609
5610<h5>Example:</h5>
5611<pre>
5612  %X = zext i32 257 to i64              <i>; yields i64:257</i>
5613  %Y = zext i1 true to i32              <i>; yields i32:1</i>
5614  %Z = zext &lt;2 x i16&gt; &lt;i16 8, i16 7&gt; to &lt;2 x i32&gt; <i>; yields &lt;i32 8, i32 7&gt;</i>
5615</pre>
5616
5617</div>
5618
5619<!-- _______________________________________________________________________ -->
5620<h4>
5621   <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
5622</h4>
5623
5624<div>
5625
5626<h5>Syntax:</h5>
5627<pre>
5628  &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
5629</pre>
5630
5631<h5>Overview:</h5>
5632<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
5633
5634<h5>Arguments:</h5>
5635<p>The '<tt>sext</tt>' instruction takes a value to cast, and a type to cast it to.
5636   Both types must be of <a href="#t_integer">integer</a> types, or vectors
5637   of the same number of integers.
5638   The bit size of the <tt>value</tt> must be smaller than
5639   the bit size of the destination type,
5640   <tt>ty2</tt>.</p>
5641
5642<h5>Semantics:</h5>
5643<p>The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
5644   bit (highest order bit) of the <tt>value</tt> until it reaches the bit size
5645   of the type <tt>ty2</tt>.</p>
5646
5647<p>When sign extending from i1, the extension always results in -1 or 0.</p>
5648
5649<h5>Example:</h5>
5650<pre>
5651  %X = sext i8  -1 to i16              <i>; yields i16   :65535</i>
5652  %Y = sext i1 true to i32             <i>; yields i32:-1</i>
5653  %Z = sext &lt;2 x i16&gt; &lt;i16 8, i16 7&gt; to &lt;2 x i32&gt; <i>; yields &lt;i32 8, i32 7&gt;</i>
5654</pre>
5655
5656</div>
5657
5658<!-- _______________________________________________________________________ -->
5659<h4>
5660   <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
5661</h4>
5662
5663<div>
5664
5665<h5>Syntax:</h5>
5666<pre>
5667  &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
5668</pre>
5669
5670<h5>Overview:</h5>
5671<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
5672   <tt>ty2</tt>.</p>
5673
5674<h5>Arguments:</h5>
5675<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
5676   point</a> value to cast and a <a href="#t_floating">floating point</a> type
5677   to cast it to. The size of <tt>value</tt> must be larger than the size of
5678   <tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
5679   <i>no-op cast</i>.</p>
5680
5681<h5>Semantics:</h5>
5682<p>The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
5683   <a href="#t_floating">floating point</a> type to a smaller
5684   <a href="#t_floating">floating point</a> type.  If the value cannot fit
5685   within the destination type, <tt>ty2</tt>, then the results are
5686   undefined.</p>
5687
5688<h5>Example:</h5>
5689<pre>
5690  %X = fptrunc double 123.0 to float         <i>; yields float:123.0</i>
5691  %Y = fptrunc double 1.0E+300 to float      <i>; yields undefined</i>
5692</pre>
5693
5694</div>
5695
5696<!-- _______________________________________________________________________ -->
5697<h4>
5698   <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
5699</h4>
5700
5701<div>
5702
5703<h5>Syntax:</h5>
5704<pre>
5705  &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
5706</pre>
5707
5708<h5>Overview:</h5>
5709<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
5710   floating point value.</p>
5711
5712<h5>Arguments:</h5>
5713<p>The '<tt>fpext</tt>' instruction takes a
5714   <a href="#t_floating">floating point</a> <tt>value</tt> to cast, and
5715   a <a href="#t_floating">floating point</a> type to cast it to. The source
5716   type must be smaller than the destination type.</p>
5717
5718<h5>Semantics:</h5>
5719<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
5720   <a href="#t_floating">floating point</a> type to a larger
5721   <a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
5722   used to make a <i>no-op cast</i> because it always changes bits. Use
5723   <tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
5724
5725<h5>Example:</h5>
5726<pre>
5727  %X = fpext float 3.125 to double         <i>; yields double:3.125000e+00</i>
5728  %Y = fpext double %X to fp128            <i>; yields fp128:0xL00000000000000004000900000000000</i>
5729</pre>
5730
5731</div>
5732
5733<!-- _______________________________________________________________________ -->
5734<h4>
5735   <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
5736</h4>
5737
5738<div>
5739
5740<h5>Syntax:</h5>
5741<pre>
5742  &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
5743</pre>
5744
5745<h5>Overview:</h5>
5746<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
5747   unsigned integer equivalent of type <tt>ty2</tt>.</p>
5748
5749<h5>Arguments:</h5>
5750<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
5751   scalar or vector <a href="#t_floating">floating point</a> value, and a type
5752   to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
5753   type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
5754   vector integer type with the same number of elements as <tt>ty</tt></p>
5755
5756<h5>Semantics:</h5>
5757<p>The '<tt>fptoui</tt>' instruction converts its
5758   <a href="#t_floating">floating point</a> operand into the nearest (rounding
5759   towards zero) unsigned integer value. If the value cannot fit
5760   in <tt>ty2</tt>, the results are undefined.</p>
5761
5762<h5>Example:</h5>
5763<pre>
5764  %X = fptoui double 123.0 to i32      <i>; yields i32:123</i>
5765  %Y = fptoui float 1.0E+300 to i1     <i>; yields undefined:1</i>
5766  %Z = fptoui float 1.04E+17 to i8     <i>; yields undefined:1</i>
5767</pre>
5768
5769</div>
5770
5771<!-- _______________________________________________________________________ -->
5772<h4>
5773   <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
5774</h4>
5775
5776<div>
5777
5778<h5>Syntax:</h5>
5779<pre>
5780  &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
5781</pre>
5782
5783<h5>Overview:</h5>
5784<p>The '<tt>fptosi</tt>' instruction converts
5785   <a href="#t_floating">floating point</a> <tt>value</tt> to
5786   type <tt>ty2</tt>.</p>
5787
5788<h5>Arguments:</h5>
5789<p>The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
5790   scalar or vector <a href="#t_floating">floating point</a> value, and a type
5791   to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
5792   type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
5793   vector integer type with the same number of elements as <tt>ty</tt></p>
5794
5795<h5>Semantics:</h5>
5796<p>The '<tt>fptosi</tt>' instruction converts its
5797   <a href="#t_floating">floating point</a> operand into the nearest (rounding
5798   towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
5799   the results are undefined.</p>
5800
5801<h5>Example:</h5>
5802<pre>
5803  %X = fptosi double -123.0 to i32      <i>; yields i32:-123</i>
5804  %Y = fptosi float 1.0E-247 to i1      <i>; yields undefined:1</i>
5805  %Z = fptosi float 1.04E+17 to i8      <i>; yields undefined:1</i>
5806</pre>
5807
5808</div>
5809
5810<!-- _______________________________________________________________________ -->
5811<h4>
5812   <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
5813</h4>
5814
5815<div>
5816
5817<h5>Syntax:</h5>
5818<pre>
5819  &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
5820</pre>
5821
5822<h5>Overview:</h5>
5823<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
5824   integer and converts that value to the <tt>ty2</tt> type.</p>
5825
5826<h5>Arguments:</h5>
5827<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
5828   scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
5829   it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
5830   type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
5831   floating point type with the same number of elements as <tt>ty</tt></p>
5832
5833<h5>Semantics:</h5>
5834<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
5835   integer quantity and converts it to the corresponding floating point
5836   value. If the value cannot fit in the floating point value, the results are
5837   undefined.</p>
5838
5839<h5>Example:</h5>
5840<pre>
5841  %X = uitofp i32 257 to float         <i>; yields float:257.0</i>
5842  %Y = uitofp i8 -1 to double          <i>; yields double:255.0</i>
5843</pre>
5844
5845</div>
5846
5847<!-- _______________________________________________________________________ -->
5848<h4>
5849   <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
5850</h4>
5851
5852<div>
5853
5854<h5>Syntax:</h5>
5855<pre>
5856  &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
5857</pre>
5858
5859<h5>Overview:</h5>
5860<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed integer
5861   and converts that value to the <tt>ty2</tt> type.</p>
5862
5863<h5>Arguments:</h5>
5864<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
5865   scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
5866   it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
5867   type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
5868   floating point type with the same number of elements as <tt>ty</tt></p>
5869
5870<h5>Semantics:</h5>
5871<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed integer
5872   quantity and converts it to the corresponding floating point value. If the
5873   value cannot fit in the floating point value, the results are undefined.</p>
5874
5875<h5>Example:</h5>
5876<pre>
5877  %X = sitofp i32 257 to float         <i>; yields float:257.0</i>
5878  %Y = sitofp i8 -1 to double          <i>; yields double:-1.0</i>
5879</pre>
5880
5881</div>
5882
5883<!-- _______________________________________________________________________ -->
5884<h4>
5885   <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
5886</h4>
5887
5888<div>
5889
5890<h5>Syntax:</h5>
5891<pre>
5892  &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
5893</pre>
5894
5895<h5>Overview:</h5>
5896<p>The '<tt>ptrtoint</tt>' instruction converts the pointer or a vector of
5897   pointers <tt>value</tt> to
5898   the integer (or vector of integers) type <tt>ty2</tt>.</p>
5899
5900<h5>Arguments:</h5>
5901<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
5902   must be a a value of type <a href="#t_pointer">pointer</a> or a vector of
5903    pointers, and a type to cast it to
5904   <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> or a vector
5905   of integers type.</p>
5906
5907<h5>Semantics:</h5>
5908<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
5909   <tt>ty2</tt> by interpreting the pointer value as an integer and either
5910   truncating or zero extending that value to the size of the integer type. If
5911   <tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
5912   <tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
5913   are the same size, then nothing is done (<i>no-op cast</i>) other than a type
5914   change.</p>
5915
5916<h5>Example:</h5>
5917<pre>
5918  %X = ptrtoint i32* %P to i8                         <i>; yields truncation on 32-bit architecture</i>
5919  %Y = ptrtoint i32* %P to i64                        <i>; yields zero extension on 32-bit architecture</i>
5920  %Z = ptrtoint &lt;4 x i32*&gt; %P to &lt;4 x i64&gt;<i>; yields vector zero extension for a vector of addresses on 32-bit architecture</i>
5921</pre>
5922
5923</div>
5924
5925<!-- _______________________________________________________________________ -->
5926<h4>
5927   <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
5928</h4>
5929
5930<div>
5931
5932<h5>Syntax:</h5>
5933<pre>
5934  &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
5935</pre>
5936
5937<h5>Overview:</h5>
5938<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to a
5939   pointer type, <tt>ty2</tt>.</p>
5940
5941<h5>Arguments:</h5>
5942<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
5943   value to cast, and a type to cast it to, which must be a
5944   <a href="#t_pointer">pointer</a> type.</p>
5945
5946<h5>Semantics:</h5>
5947<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
5948   <tt>ty2</tt> by applying either a zero extension or a truncation depending on
5949   the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
5950   size of a pointer then a truncation is done. If <tt>value</tt> is smaller
5951   than the size of a pointer then a zero extension is done. If they are the
5952   same size, nothing is done (<i>no-op cast</i>).</p>
5953
5954<h5>Example:</h5>
5955<pre>
5956  %X = inttoptr i32 255 to i32*          <i>; yields zero extension on 64-bit architecture</i>
5957  %Y = inttoptr i32 255 to i32*          <i>; yields no-op on 32-bit architecture</i>
5958  %Z = inttoptr i64 0 to i32*            <i>; yields truncation on 32-bit architecture</i>
5959  %Z = inttoptr &lt;4 x i32&gt; %G to &lt;4 x i8*&gt;<i>; yields truncation of vector G to four pointers</i>
5960</pre>
5961
5962</div>
5963
5964<!-- _______________________________________________________________________ -->
5965<h4>
5966   <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
5967</h4>
5968
5969<div>
5970
5971<h5>Syntax:</h5>
5972<pre>
5973  &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt;             <i>; yields ty2</i>
5974</pre>
5975
5976<h5>Overview:</h5>
5977<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
5978   <tt>ty2</tt> without changing any bits.</p>
5979
5980<h5>Arguments:</h5>
5981<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be a
5982   non-aggregate first class value, and a type to cast it to, which must also be
5983   a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes
5984   of <tt>value</tt> and the destination type, <tt>ty2</tt>, must be
5985   identical. If the source type is a pointer, the destination type must also be
5986   a pointer.  This instruction supports bitwise conversion of vectors to
5987   integers and to vectors of other types (as long as they have the same
5988   size).</p>
5989
5990<h5>Semantics:</h5>
5991<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
5992   <tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
5993   this conversion.  The conversion is done as if the <tt>value</tt> had been
5994   stored to memory and read back as type <tt>ty2</tt>.
5995   Pointer (or vector of pointers) types may only be converted to other pointer
5996   (or vector of pointers) types with this instruction. To convert
5997   pointers to other types, use the <a href="#i_inttoptr">inttoptr</a> or
5998   <a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
5999
6000<h5>Example:</h5>
6001<pre>
6002  %X = bitcast i8 255 to i8              <i>; yields i8 :-1</i>
6003  %Y = bitcast i32* %x to sint*          <i>; yields sint*:%x</i>
6004  %Z = bitcast &lt;2 x int&gt; %V to i64;        <i>; yields i64: %V</i>
6005  %Z = bitcast &lt;2 x i32*&gt; %V to &lt;2 x i64*&gt; <i>; yields &lt;2 x i64*&gt;</i>
6006</pre>
6007
6008</div>
6009
6010</div>
6011
6012<!-- ======================================================================= -->
6013<h3>
6014  <a name="otherops">Other Operations</a>
6015</h3>
6016
6017<div>
6018
6019<p>The instructions in this category are the "miscellaneous" instructions, which
6020   defy better classification.</p>
6021
6022<!-- _______________________________________________________________________ -->
6023<h4>
6024  <a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
6025</h4>
6026
6027<div>
6028
6029<h5>Syntax:</h5>
6030<pre>
6031  &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;   <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
6032</pre>
6033
6034<h5>Overview:</h5>
6035<p>The '<tt>icmp</tt>' instruction returns a boolean value or a vector of
6036   boolean values based on comparison of its two integer, integer vector,
6037   pointer, or pointer vector operands.</p>
6038
6039<h5>Arguments:</h5>
6040<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
6041   the condition code indicating the kind of comparison to perform. It is not a
6042   value, just a keyword. The possible condition code are:</p>
6043
6044<ol>
6045  <li><tt>eq</tt>: equal</li>
6046  <li><tt>ne</tt>: not equal </li>
6047  <li><tt>ugt</tt>: unsigned greater than</li>
6048  <li><tt>uge</tt>: unsigned greater or equal</li>
6049  <li><tt>ult</tt>: unsigned less than</li>
6050  <li><tt>ule</tt>: unsigned less or equal</li>
6051  <li><tt>sgt</tt>: signed greater than</li>
6052  <li><tt>sge</tt>: signed greater or equal</li>
6053  <li><tt>slt</tt>: signed less than</li>
6054  <li><tt>sle</tt>: signed less or equal</li>
6055</ol>
6056
6057<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
6058   <a href="#t_pointer">pointer</a> or integer <a href="#t_vector">vector</a>
6059   typed.  They must also be identical types.</p>
6060
6061<h5>Semantics:</h5>
6062<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to the
6063   condition code given as <tt>cond</tt>. The comparison performed always yields
6064   either an <a href="#t_integer"><tt>i1</tt></a> or vector of <tt>i1</tt>
6065   result, as follows:</p>
6066
6067<ol>
6068  <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
6069      <tt>false</tt> otherwise. No sign interpretation is necessary or
6070      performed.</li>
6071
6072  <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
6073      <tt>false</tt> otherwise. No sign interpretation is necessary or
6074      performed.</li>
6075
6076  <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
6077      <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
6078
6079  <li><tt>uge</tt>: interprets the operands as unsigned values and yields
6080      <tt>true</tt> if <tt>op1</tt> is greater than or equal
6081      to <tt>op2</tt>.</li>
6082
6083  <li><tt>ult</tt>: interprets the operands as unsigned values and yields
6084      <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
6085
6086  <li><tt>ule</tt>: interprets the operands as unsigned values and yields
6087      <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
6088
6089  <li><tt>sgt</tt>: interprets the operands as signed values and yields
6090      <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
6091
6092  <li><tt>sge</tt>: interprets the operands as signed values and yields
6093      <tt>true</tt> if <tt>op1</tt> is greater than or equal
6094      to <tt>op2</tt>.</li>
6095
6096  <li><tt>slt</tt>: interprets the operands as signed values and yields
6097      <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
6098
6099  <li><tt>sle</tt>: interprets the operands as signed values and yields
6100      <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
6101</ol>
6102
6103<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
6104   values are compared as if they were integers.</p>
6105
6106<p>If the operands are integer vectors, then they are compared element by
6107   element. The result is an <tt>i1</tt> vector with the same number of elements
6108   as the values being compared.  Otherwise, the result is an <tt>i1</tt>.</p>
6109
6110<h5>Example:</h5>
6111<pre>
6112  &lt;result&gt; = icmp eq i32 4, 5          <i>; yields: result=false</i>
6113  &lt;result&gt; = icmp ne float* %X, %X     <i>; yields: result=false</i>
6114  &lt;result&gt; = icmp ult i16  4, 5        <i>; yields: result=true</i>
6115  &lt;result&gt; = icmp sgt i16  4, 5        <i>; yields: result=false</i>
6116  &lt;result&gt; = icmp ule i16 -4, 5        <i>; yields: result=false</i>
6117  &lt;result&gt; = icmp sge i16  4, 5        <i>; yields: result=false</i>
6118</pre>
6119
6120<p>Note that the code generator does not yet support vector types with
6121   the <tt>icmp</tt> instruction.</p>
6122
6123</div>
6124
6125<!-- _______________________________________________________________________ -->
6126<h4>
6127  <a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
6128</h4>
6129
6130<div>
6131
6132<h5>Syntax:</h5>
6133<pre>
6134  &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;     <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
6135</pre>
6136
6137<h5>Overview:</h5>
6138<p>The '<tt>fcmp</tt>' instruction returns a boolean value or vector of boolean
6139   values based on comparison of its operands.</p>
6140
6141<p>If the operands are floating point scalars, then the result type is a boolean
6142(<a href="#t_integer"><tt>i1</tt></a>).</p>
6143
6144<p>If the operands are floating point vectors, then the result type is a vector
6145   of boolean with the same number of elements as the operands being
6146   compared.</p>
6147
6148<h5>Arguments:</h5>
6149<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
6150   the condition code indicating the kind of comparison to perform. It is not a
6151   value, just a keyword. The possible condition code are:</p>
6152
6153<ol>
6154  <li><tt>false</tt>: no comparison, always returns false</li>
6155  <li><tt>oeq</tt>: ordered and equal</li>
6156  <li><tt>ogt</tt>: ordered and greater than </li>
6157  <li><tt>oge</tt>: ordered and greater than or equal</li>
6158  <li><tt>olt</tt>: ordered and less than </li>
6159  <li><tt>ole</tt>: ordered and less than or equal</li>
6160  <li><tt>one</tt>: ordered and not equal</li>
6161  <li><tt>ord</tt>: ordered (no nans)</li>
6162  <li><tt>ueq</tt>: unordered or equal</li>
6163  <li><tt>ugt</tt>: unordered or greater than </li>
6164  <li><tt>uge</tt>: unordered or greater than or equal</li>
6165  <li><tt>ult</tt>: unordered or less than </li>
6166  <li><tt>ule</tt>: unordered or less than or equal</li>
6167  <li><tt>une</tt>: unordered or not equal</li>
6168  <li><tt>uno</tt>: unordered (either nans)</li>
6169  <li><tt>true</tt>: no comparison, always returns true</li>
6170</ol>
6171
6172<p><i>Ordered</i> means that neither operand is a QNAN while
6173   <i>unordered</i> means that either operand may be a QNAN.</p>
6174
6175<p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be either
6176   a <a href="#t_floating">floating point</a> type or
6177   a <a href="#t_vector">vector</a> of floating point type.  They must have
6178   identical types.</p>
6179
6180<h5>Semantics:</h5>
6181<p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
6182   according to the condition code given as <tt>cond</tt>.  If the operands are
6183   vectors, then the vectors are compared element by element.  Each comparison
6184   performed always yields an <a href="#t_integer">i1</a> result, as
6185   follows:</p>
6186
6187<ol>
6188  <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
6189
6190  <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
6191      <tt>op1</tt> is equal to <tt>op2</tt>.</li>
6192
6193  <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
6194      <tt>op1</tt> is greater than <tt>op2</tt>.</li>
6195
6196  <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
6197      <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
6198
6199  <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
6200      <tt>op1</tt> is less than <tt>op2</tt>.</li>
6201
6202  <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
6203      <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
6204
6205  <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
6206      <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
6207
6208  <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
6209
6210  <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
6211      <tt>op1</tt> is equal to <tt>op2</tt>.</li>
6212
6213  <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
6214      <tt>op1</tt> is greater than <tt>op2</tt>.</li>
6215
6216  <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
6217      <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
6218
6219  <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
6220      <tt>op1</tt> is less than <tt>op2</tt>.</li>
6221
6222  <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
6223      <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
6224
6225  <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
6226      <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
6227
6228  <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
6229
6230  <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
6231</ol>
6232
6233<h5>Example:</h5>
6234<pre>
6235  &lt;result&gt; = fcmp oeq float 4.0, 5.0    <i>; yields: result=false</i>
6236  &lt;result&gt; = fcmp one float 4.0, 5.0    <i>; yields: result=true</i>
6237  &lt;result&gt; = fcmp olt float 4.0, 5.0    <i>; yields: result=true</i>
6238  &lt;result&gt; = fcmp ueq double 1.0, 2.0   <i>; yields: result=false</i>
6239</pre>
6240
6241<p>Note that the code generator does not yet support vector types with
6242   the <tt>fcmp</tt> instruction.</p>
6243
6244</div>
6245
6246<!-- _______________________________________________________________________ -->
6247<h4>
6248  <a name="i_phi">'<tt>phi</tt>' Instruction</a>
6249</h4>
6250
6251<div>
6252
6253<h5>Syntax:</h5>
6254<pre>
6255  &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...
6256</pre>
6257
6258<h5>Overview:</h5>
6259<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in the
6260   SSA graph representing the function.</p>
6261
6262<h5>Arguments:</h5>
6263<p>The type of the incoming values is specified with the first type field. After
6264   this, the '<tt>phi</tt>' instruction takes a list of pairs as arguments, with
6265   one pair for each predecessor basic block of the current block.  Only values
6266   of <a href="#t_firstclass">first class</a> type may be used as the value
6267   arguments to the PHI node.  Only labels may be used as the label
6268   arguments.</p>
6269
6270<p>There must be no non-phi instructions between the start of a basic block and
6271   the PHI instructions: i.e. PHI instructions must be first in a basic
6272   block.</p>
6273
6274<p>For the purposes of the SSA form, the use of each incoming value is deemed to
6275   occur on the edge from the corresponding predecessor block to the current
6276   block (but after any definition of an '<tt>invoke</tt>' instruction's return
6277   value on the same edge).</p>
6278
6279<h5>Semantics:</h5>
6280<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
6281   specified by the pair corresponding to the predecessor basic block that
6282   executed just prior to the current block.</p>
6283
6284<h5>Example:</h5>
6285<pre>
6286Loop:       ; Infinite loop that counts from 0 on up...
6287  %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
6288  %nextindvar = add i32 %indvar, 1
6289  br label %Loop
6290</pre>
6291
6292</div>
6293
6294<!-- _______________________________________________________________________ -->
6295<h4>
6296   <a name="i_select">'<tt>select</tt>' Instruction</a>
6297</h4>
6298
6299<div>
6300
6301<h5>Syntax:</h5>
6302<pre>
6303  &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt;             <i>; yields ty</i>
6304
6305  <i>selty</i> is either i1 or {&lt;N x i1&gt;}
6306</pre>
6307
6308<h5>Overview:</h5>
6309<p>The '<tt>select</tt>' instruction is used to choose one value based on a
6310   condition, without branching.</p>
6311
6312
6313<h5>Arguments:</h5>
6314<p>The '<tt>select</tt>' instruction requires an 'i1' value or a vector of 'i1'
6315   values indicating the condition, and two values of the
6316   same <a href="#t_firstclass">first class</a> type.  If the val1/val2 are
6317   vectors and the condition is a scalar, then entire vectors are selected, not
6318   individual elements.</p>
6319
6320<h5>Semantics:</h5>
6321<p>If the condition is an i1 and it evaluates to 1, the instruction returns the
6322   first value argument; otherwise, it returns the second value argument.</p>
6323
6324<p>If the condition is a vector of i1, then the value arguments must be vectors
6325   of the same size, and the selection is done element by element.</p>
6326
6327<h5>Example:</h5>
6328<pre>
6329  %X = select i1 true, i8 17, i8 42          <i>; yields i8:17</i>
6330</pre>
6331
6332</div>
6333
6334<!-- _______________________________________________________________________ -->
6335<h4>
6336  <a name="i_call">'<tt>call</tt>' Instruction</a>
6337</h4>
6338
6339<div>
6340
6341<h5>Syntax:</h5>
6342<pre>
6343  &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
6344</pre>
6345
6346<h5>Overview:</h5>
6347<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
6348
6349<h5>Arguments:</h5>
6350<p>This instruction requires several arguments:</p>
6351
6352<ol>
6353  <li>The optional "tail" marker indicates that the callee function does not
6354      access any allocas or varargs in the caller.  Note that calls may be
6355      marked "tail" even if they do not occur before
6356      a <a href="#i_ret"><tt>ret</tt></a> instruction.  If the "tail" marker is
6357      present, the function call is eligible for tail call optimization,
6358      but <a href="CodeGenerator.html#tailcallopt">might not in fact be
6359      optimized into a jump</a>.  The code generator may optimize calls marked
6360      "tail" with either 1) automatic <a href="CodeGenerator.html#sibcallopt">
6361      sibling call optimization</a> when the caller and callee have
6362      matching signatures, or 2) forced tail call optimization when the
6363      following extra requirements are met:
6364      <ul>
6365        <li>Caller and callee both have the calling
6366            convention <tt>fastcc</tt>.</li>
6367        <li>The call is in tail position (ret immediately follows call and ret
6368            uses value of call or is void).</li>
6369        <li>Option <tt>-tailcallopt</tt> is enabled,
6370            or <code>llvm::GuaranteedTailCallOpt</code> is <code>true</code>.</li>
6371        <li><a href="CodeGenerator.html#tailcallopt">Platform specific
6372            constraints are met.</a></li>
6373      </ul>
6374  </li>
6375
6376  <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
6377      convention</a> the call should use.  If none is specified, the call
6378      defaults to using C calling conventions.  The calling convention of the
6379      call must match the calling convention of the target function, or else the
6380      behavior is undefined.</li>
6381
6382  <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
6383      return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
6384      '<tt>inreg</tt>' attributes are valid here.</li>
6385
6386  <li>'<tt>ty</tt>': the type of the call instruction itself which is also the
6387      type of the return value.  Functions that return no value are marked
6388      <tt><a href="#t_void">void</a></tt>.</li>
6389
6390  <li>'<tt>fnty</tt>': shall be the signature of the pointer to function value
6391      being invoked.  The argument types must match the types implied by this
6392      signature.  This type can be omitted if the function is not varargs and if
6393      the function type does not return a pointer to a function.</li>
6394
6395  <li>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
6396      be invoked. In most cases, this is a direct function invocation, but
6397      indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
6398      to function value.</li>
6399
6400  <li>'<tt>function args</tt>': argument list whose types match the function
6401      signature argument types and parameter attributes. All arguments must be
6402      of <a href="#t_firstclass">first class</a> type. If the function
6403      signature indicates the function accepts a variable number of arguments,
6404      the extra arguments can be specified.</li>
6405
6406  <li>The optional <a href="#fnattrs">function attributes</a> list. Only
6407      '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
6408      '<tt>readnone</tt>' attributes are valid here.</li>
6409</ol>
6410
6411<h5>Semantics:</h5>
6412<p>The '<tt>call</tt>' instruction is used to cause control flow to transfer to
6413   a specified function, with its incoming arguments bound to the specified
6414   values. Upon a '<tt><a href="#i_ret">ret</a></tt>' instruction in the called
6415   function, control flow continues with the instruction after the function
6416   call, and the return value of the function is bound to the result
6417   argument.</p>
6418
6419<h5>Example:</h5>
6420<pre>
6421  %retval = call i32 @test(i32 %argc)
6422  call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42)        <i>; yields i32</i>
6423  %X = tail call i32 @foo()                                    <i>; yields i32</i>
6424  %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo()  <i>; yields i32</i>
6425  call void %foo(i8 97 signext)
6426
6427  %struct.A = type { i32, i8 }
6428  %r = call %struct.A @foo()                        <i>; yields { 32, i8 }</i>
6429  %gr = extractvalue %struct.A %r, 0                <i>; yields i32</i>
6430  %gr1 = extractvalue %struct.A %r, 1               <i>; yields i8</i>
6431  %Z = call void @foo() noreturn                    <i>; indicates that %foo never returns normally</i>
6432  %ZZ = call zeroext i32 @bar()                     <i>; Return value is %zero extended</i>
6433</pre>
6434
6435<p>llvm treats calls to some functions with names and arguments that match the
6436standard C99 library as being the C99 library functions, and may perform
6437optimizations or generate code for them under that assumption.  This is
6438something we'd like to change in the future to provide better support for
6439freestanding environments and non-C-based languages.</p>
6440
6441</div>
6442
6443<!-- _______________________________________________________________________ -->
6444<h4>
6445  <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
6446</h4>
6447
6448<div>
6449
6450<h5>Syntax:</h5>
6451<pre>
6452  &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
6453</pre>
6454
6455<h5>Overview:</h5>
6456<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
6457   the "variable argument" area of a function call.  It is used to implement the
6458   <tt>va_arg</tt> macro in C.</p>
6459
6460<h5>Arguments:</h5>
6461<p>This instruction takes a <tt>va_list*</tt> value and the type of the
6462   argument. It returns a value of the specified argument type and increments
6463   the <tt>va_list</tt> to point to the next argument.  The actual type
6464   of <tt>va_list</tt> is target specific.</p>
6465
6466<h5>Semantics:</h5>
6467<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified type
6468   from the specified <tt>va_list</tt> and causes the <tt>va_list</tt> to point
6469   to the next argument.  For more information, see the variable argument
6470   handling <a href="#int_varargs">Intrinsic Functions</a>.</p>
6471
6472<p>It is legal for this instruction to be called in a function which does not
6473   take a variable number of arguments, for example, the <tt>vfprintf</tt>
6474   function.</p>
6475
6476<p><tt>va_arg</tt> is an LLVM instruction instead of
6477   an <a href="#intrinsics">intrinsic function</a> because it takes a type as an
6478   argument.</p>
6479
6480<h5>Example:</h5>
6481<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
6482
6483<p>Note that the code generator does not yet fully support va_arg on many
6484   targets. Also, it does not currently support va_arg with aggregate types on
6485   any target.</p>
6486
6487</div>
6488
6489<!-- _______________________________________________________________________ -->
6490<h4>
6491  <a name="i_landingpad">'<tt>landingpad</tt>' Instruction</a>
6492</h4>
6493
6494<div>
6495
6496<h5>Syntax:</h5>
6497<pre>
6498  &lt;resultval&gt; = landingpad &lt;resultty&gt; personality &lt;type&gt; &lt;pers_fn&gt; &lt;clause&gt;+
6499  &lt;resultval&gt; = landingpad &lt;resultty&gt; personality &lt;type&gt; &lt;pers_fn&gt; cleanup &lt;clause&gt;*
6500
6501  &lt;clause&gt; := catch &lt;type&gt; &lt;value&gt;
6502  &lt;clause&gt; := filter &lt;array constant type&gt; &lt;array constant&gt;
6503</pre>
6504
6505<h5>Overview:</h5>
6506<p>The '<tt>landingpad</tt>' instruction is used by
6507   <a href="ExceptionHandling.html#overview">LLVM's exception handling
6508   system</a> to specify that a basic block is a landing pad &mdash; one where
6509   the exception lands, and corresponds to the code found in the
6510   <i><tt>catch</tt></i> portion of a <i><tt>try/catch</tt></i> sequence. It
6511   defines values supplied by the personality function (<tt>pers_fn</tt>) upon
6512   re-entry to the function. The <tt>resultval</tt> has the
6513   type <tt>resultty</tt>.</p>
6514
6515<h5>Arguments:</h5>
6516<p>This instruction takes a <tt>pers_fn</tt> value. This is the personality
6517   function associated with the unwinding mechanism. The optional
6518   <tt>cleanup</tt> flag indicates that the landing pad block is a cleanup.</p>
6519
6520<p>A <tt>clause</tt> begins with the clause type &mdash; <tt>catch</tt>
6521   or <tt>filter</tt> &mdash; and contains the global variable representing the
6522   "type" that may be caught or filtered respectively. Unlike the
6523   <tt>catch</tt> clause, the <tt>filter</tt> clause takes an array constant as
6524   its argument. Use "<tt>[0 x i8**] undef</tt>" for a filter which cannot
6525   throw. The '<tt>landingpad</tt>' instruction must contain <em>at least</em>
6526   one <tt>clause</tt> or the <tt>cleanup</tt> flag.</p>
6527
6528<h5>Semantics:</h5>
6529<p>The '<tt>landingpad</tt>' instruction defines the values which are set by the
6530   personality function (<tt>pers_fn</tt>) upon re-entry to the function, and
6531   therefore the "result type" of the <tt>landingpad</tt> instruction. As with
6532   calling conventions, how the personality function results are represented in
6533   LLVM IR is target specific.</p>
6534
6535<p>The clauses are applied in order from top to bottom. If two
6536   <tt>landingpad</tt> instructions are merged together through inlining, the
6537   clauses from the calling function are appended to the list of clauses.
6538   When the call stack is being unwound due to an exception being thrown, the
6539   exception is compared against each <tt>clause</tt> in turn.  If it doesn't
6540   match any of the clauses, and the <tt>cleanup</tt> flag is not set, then
6541   unwinding continues further up the call stack.</p>
6542
6543<p>The <tt>landingpad</tt> instruction has several restrictions:</p>
6544
6545<ul>
6546  <li>A landing pad block is a basic block which is the unwind destination of an
6547      '<tt>invoke</tt>' instruction.</li>
6548  <li>A landing pad block must have a '<tt>landingpad</tt>' instruction as its
6549      first non-PHI instruction.</li>
6550  <li>There can be only one '<tt>landingpad</tt>' instruction within the landing
6551      pad block.</li>
6552  <li>A basic block that is not a landing pad block may not include a
6553      '<tt>landingpad</tt>' instruction.</li>
6554  <li>All '<tt>landingpad</tt>' instructions in a function must have the same
6555      personality function.</li>
6556</ul>
6557
6558<h5>Example:</h5>
6559<pre>
6560  ;; A landing pad which can catch an integer.
6561  %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6562           catch i8** @_ZTIi
6563  ;; A landing pad that is a cleanup.
6564  %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6565           cleanup
6566  ;; A landing pad which can catch an integer and can only throw a double.
6567  %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6568           catch i8** @_ZTIi
6569           filter [1 x i8**] [@_ZTId]
6570</pre>
6571
6572</div>
6573
6574</div>
6575
6576</div>
6577
6578<!-- *********************************************************************** -->
6579<h2><a name="intrinsics">Intrinsic Functions</a></h2>
6580<!-- *********************************************************************** -->
6581
6582<div>
6583
6584<p>LLVM supports the notion of an "intrinsic function".  These functions have
6585   well known names and semantics and are required to follow certain
6586   restrictions.  Overall, these intrinsics represent an extension mechanism for
6587   the LLVM language that does not require changing all of the transformations
6588   in LLVM when adding to the language (or the bitcode reader/writer, the
6589   parser, etc...).</p>
6590
6591<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
6592   prefix is reserved in LLVM for intrinsic names; thus, function names may not
6593   begin with this prefix.  Intrinsic functions must always be external
6594   functions: you cannot define the body of intrinsic functions.  Intrinsic
6595   functions may only be used in call or invoke instructions: it is illegal to
6596   take the address of an intrinsic function.  Additionally, because intrinsic
6597   functions are part of the LLVM language, it is required if any are added that
6598   they be documented here.</p>
6599
6600<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents a
6601   family of functions that perform the same operation but on different data
6602   types. Because LLVM can represent over 8 million different integer types,
6603   overloading is used commonly to allow an intrinsic function to operate on any
6604   integer type. One or more of the argument types or the result type can be
6605   overloaded to accept any integer type. Argument types may also be defined as
6606   exactly matching a previous argument's type or the result type. This allows
6607   an intrinsic function which accepts multiple arguments, but needs all of them
6608   to be of the same type, to only be overloaded with respect to a single
6609   argument or the result.</p>
6610
6611<p>Overloaded intrinsics will have the names of its overloaded argument types
6612   encoded into its function name, each preceded by a period. Only those types
6613   which are overloaded result in a name suffix. Arguments whose type is matched
6614   against another type do not. For example, the <tt>llvm.ctpop</tt> function
6615   can take an integer of any width and returns an integer of exactly the same
6616   integer width. This leads to a family of functions such as
6617   <tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29
6618   %val)</tt>.  Only one type, the return type, is overloaded, and only one type
6619   suffix is required. Because the argument's type is matched against the return
6620   type, it does not require its own name suffix.</p>
6621
6622<p>To learn how to add an intrinsic function, please see the
6623   <a href="ExtendingLLVM.html">Extending LLVM Guide</a>.</p>
6624
6625<!-- ======================================================================= -->
6626<h3>
6627  <a name="int_varargs">Variable Argument Handling Intrinsics</a>
6628</h3>
6629
6630<div>
6631
6632<p>Variable argument support is defined in LLVM with
6633   the <a href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
6634   intrinsic functions.  These functions are related to the similarly named
6635   macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
6636
6637<p>All of these functions operate on arguments that use a target-specific value
6638   type "<tt>va_list</tt>".  The LLVM assembly language reference manual does
6639   not define what this type is, so all transformations should be prepared to
6640   handle these functions regardless of the type used.</p>
6641
6642<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
6643   instruction and the variable argument handling intrinsic functions are
6644   used.</p>
6645
6646<pre class="doc_code">
6647define i32 @test(i32 %X, ...) {
6648  ; Initialize variable argument processing
6649  %ap = alloca i8*
6650  %ap2 = bitcast i8** %ap to i8*
6651  call void @llvm.va_start(i8* %ap2)
6652
6653  ; Read a single integer argument
6654  %tmp = va_arg i8** %ap, i32
6655
6656  ; Demonstrate usage of llvm.va_copy and llvm.va_end
6657  %aq = alloca i8*
6658  %aq2 = bitcast i8** %aq to i8*
6659  call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6660  call void @llvm.va_end(i8* %aq2)
6661
6662  ; Stop processing of arguments.
6663  call void @llvm.va_end(i8* %ap2)
6664  ret i32 %tmp
6665}
6666
6667declare void @llvm.va_start(i8*)
6668declare void @llvm.va_copy(i8*, i8*)
6669declare void @llvm.va_end(i8*)
6670</pre>
6671
6672<!-- _______________________________________________________________________ -->
6673<h4>
6674  <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
6675</h4>
6676
6677
6678<div>
6679
6680<h5>Syntax:</h5>
6681<pre>
6682  declare void %llvm.va_start(i8* &lt;arglist&gt;)
6683</pre>
6684
6685<h5>Overview:</h5>
6686<p>The '<tt>llvm.va_start</tt>' intrinsic initializes <tt>*&lt;arglist&gt;</tt>
6687   for subsequent use by <tt><a href="#i_va_arg">va_arg</a></tt>.</p>
6688
6689<h5>Arguments:</h5>
6690<p>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
6691
6692<h5>Semantics:</h5>
6693<p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
6694   macro available in C.  In a target-dependent way, it initializes
6695   the <tt>va_list</tt> element to which the argument points, so that the next
6696   call to <tt>va_arg</tt> will produce the first variable argument passed to
6697   the function.  Unlike the C <tt>va_start</tt> macro, this intrinsic does not
6698   need to know the last argument of the function as the compiler can figure
6699   that out.</p>
6700
6701</div>
6702
6703<!-- _______________________________________________________________________ -->
6704<h4>
6705 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
6706</h4>
6707
6708<div>
6709
6710<h5>Syntax:</h5>
6711<pre>
6712  declare void @llvm.va_end(i8* &lt;arglist&gt;)
6713</pre>
6714
6715<h5>Overview:</h5>
6716<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
6717   which has been initialized previously
6718   with <tt><a href="#int_va_start">llvm.va_start</a></tt>
6719   or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
6720
6721<h5>Arguments:</h5>
6722<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
6723
6724<h5>Semantics:</h5>
6725<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
6726   macro available in C.  In a target-dependent way, it destroys
6727   the <tt>va_list</tt> element to which the argument points.  Calls
6728   to <a href="#int_va_start"><tt>llvm.va_start</tt></a>
6729   and <a href="#int_va_copy"> <tt>llvm.va_copy</tt></a> must be matched exactly
6730   with calls to <tt>llvm.va_end</tt>.</p>
6731
6732</div>
6733
6734<!-- _______________________________________________________________________ -->
6735<h4>
6736  <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
6737</h4>
6738
6739<div>
6740
6741<h5>Syntax:</h5>
6742<pre>
6743  declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
6744</pre>
6745
6746<h5>Overview:</h5>
6747<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
6748   from the source argument list to the destination argument list.</p>
6749
6750<h5>Arguments:</h5>
6751<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
6752   The second argument is a pointer to a <tt>va_list</tt> element to copy
6753   from.</p>
6754
6755<h5>Semantics:</h5>
6756<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
6757   macro available in C.  In a target-dependent way, it copies the
6758   source <tt>va_list</tt> element into the destination <tt>va_list</tt>
6759   element.  This intrinsic is necessary because
6760   the <tt><a href="#int_va_start"> llvm.va_start</a></tt> intrinsic may be
6761   arbitrarily complex and require, for example, memory allocation.</p>
6762
6763</div>
6764
6765</div>
6766
6767<!-- ======================================================================= -->
6768<h3>
6769  <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
6770</h3>
6771
6772<div>
6773
6774<p>LLVM support for <a href="GarbageCollection.html">Accurate Garbage
6775Collection</a> (GC) requires the implementation and generation of these
6776intrinsics. These intrinsics allow identification of <a href="#int_gcroot">GC
6777roots on the stack</a>, as well as garbage collector implementations that
6778require <a href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a>
6779barriers.  Front-ends for type-safe garbage collected languages should generate
6780these intrinsics to make use of the LLVM garbage collectors.  For more details,
6781see <a href="GarbageCollection.html">Accurate Garbage Collection with
6782LLVM</a>.</p>
6783
6784<p>The garbage collection intrinsics only operate on objects in the generic
6785   address space (address space zero).</p>
6786
6787<!-- _______________________________________________________________________ -->
6788<h4>
6789  <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
6790</h4>
6791
6792<div>
6793
6794<h5>Syntax:</h5>
6795<pre>
6796  declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6797</pre>
6798
6799<h5>Overview:</h5>
6800<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
6801   the code generator, and allows some metadata to be associated with it.</p>
6802
6803<h5>Arguments:</h5>
6804<p>The first argument specifies the address of a stack object that contains the
6805   root pointer.  The second pointer (which must be either a constant or a
6806   global value address) contains the meta-data to be associated with the
6807   root.</p>
6808
6809<h5>Semantics:</h5>
6810<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
6811   location.  At compile-time, the code generator generates information to allow
6812   the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
6813   intrinsic may only be used in a function which <a href="#gc">specifies a GC
6814   algorithm</a>.</p>
6815
6816</div>
6817
6818<!-- _______________________________________________________________________ -->
6819<h4>
6820  <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
6821</h4>
6822
6823<div>
6824
6825<h5>Syntax:</h5>
6826<pre>
6827  declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6828</pre>
6829
6830<h5>Overview:</h5>
6831<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
6832   locations, allowing garbage collector implementations that require read
6833   barriers.</p>
6834
6835<h5>Arguments:</h5>
6836<p>The second argument is the address to read from, which should be an address
6837   allocated from the garbage collector.  The first object is a pointer to the
6838   start of the referenced object, if needed by the language runtime (otherwise
6839   null).</p>
6840
6841<h5>Semantics:</h5>
6842<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
6843   instruction, but may be replaced with substantially more complex code by the
6844   garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
6845   may only be used in a function which <a href="#gc">specifies a GC
6846   algorithm</a>.</p>
6847
6848</div>
6849
6850<!-- _______________________________________________________________________ -->
6851<h4>
6852  <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
6853</h4>
6854
6855<div>
6856
6857<h5>Syntax:</h5>
6858<pre>
6859  declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6860</pre>
6861
6862<h5>Overview:</h5>
6863<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
6864   locations, allowing garbage collector implementations that require write
6865   barriers (such as generational or reference counting collectors).</p>
6866
6867<h5>Arguments:</h5>
6868<p>The first argument is the reference to store, the second is the start of the
6869   object to store it to, and the third is the address of the field of Obj to
6870   store to.  If the runtime does not require a pointer to the object, Obj may
6871   be null.</p>
6872
6873<h5>Semantics:</h5>
6874<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
6875   instruction, but may be replaced with substantially more complex code by the
6876   garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
6877   may only be used in a function which <a href="#gc">specifies a GC
6878   algorithm</a>.</p>
6879
6880</div>
6881
6882</div>
6883
6884<!-- ======================================================================= -->
6885<h3>
6886  <a name="int_codegen">Code Generator Intrinsics</a>
6887</h3>
6888
6889<div>
6890
6891<p>These intrinsics are provided by LLVM to expose special features that may
6892   only be implemented with code generator support.</p>
6893
6894<!-- _______________________________________________________________________ -->
6895<h4>
6896  <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
6897</h4>
6898
6899<div>
6900
6901<h5>Syntax:</h5>
6902<pre>
6903  declare i8  *@llvm.returnaddress(i32 &lt;level&gt;)
6904</pre>
6905
6906<h5>Overview:</h5>
6907<p>The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
6908   target-specific value indicating the return address of the current function
6909   or one of its callers.</p>
6910
6911<h5>Arguments:</h5>
6912<p>The argument to this intrinsic indicates which function to return the address
6913   for.  Zero indicates the calling function, one indicates its caller, etc.
6914   The argument is <b>required</b> to be a constant integer value.</p>
6915
6916<h5>Semantics:</h5>
6917<p>The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer
6918   indicating the return address of the specified call frame, or zero if it
6919   cannot be identified.  The value returned by this intrinsic is likely to be
6920   incorrect or 0 for arguments other than zero, so it should only be used for
6921   debugging purposes.</p>
6922
6923<p>Note that calling this intrinsic does not prevent function inlining or other
6924   aggressive transformations, so the value returned may not be that of the
6925   obvious source-language caller.</p>
6926
6927</div>
6928
6929<!-- _______________________________________________________________________ -->
6930<h4>
6931  <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
6932</h4>
6933
6934<div>
6935
6936<h5>Syntax:</h5>
6937<pre>
6938  declare i8* @llvm.frameaddress(i32 &lt;level&gt;)
6939</pre>
6940
6941<h5>Overview:</h5>
6942<p>The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
6943   target-specific frame pointer value for the specified stack frame.</p>
6944
6945<h5>Arguments:</h5>
6946<p>The argument to this intrinsic indicates which function to return the frame
6947   pointer for.  Zero indicates the calling function, one indicates its caller,
6948   etc.  The argument is <b>required</b> to be a constant integer value.</p>
6949
6950<h5>Semantics:</h5>
6951<p>The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer
6952   indicating the frame address of the specified call frame, or zero if it
6953   cannot be identified.  The value returned by this intrinsic is likely to be
6954   incorrect or 0 for arguments other than zero, so it should only be used for
6955   debugging purposes.</p>
6956
6957<p>Note that calling this intrinsic does not prevent function inlining or other
6958   aggressive transformations, so the value returned may not be that of the
6959   obvious source-language caller.</p>
6960
6961</div>
6962
6963<!-- _______________________________________________________________________ -->
6964<h4>
6965  <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
6966</h4>
6967
6968<div>
6969
6970<h5>Syntax:</h5>
6971<pre>
6972  declare i8* @llvm.stacksave()
6973</pre>
6974
6975<h5>Overview:</h5>
6976<p>The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state
6977   of the function stack, for use
6978   with <a href="#int_stackrestore"> <tt>llvm.stackrestore</tt></a>.  This is
6979   useful for implementing language features like scoped automatic variable
6980   sized arrays in C99.</p>
6981
6982<h5>Semantics:</h5>
6983<p>This intrinsic returns a opaque pointer value that can be passed
6984   to <a href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>.  When
6985   an <tt>llvm.stackrestore</tt> intrinsic is executed with a value saved
6986   from <tt>llvm.stacksave</tt>, it effectively restores the state of the stack
6987   to the state it was in when the <tt>llvm.stacksave</tt> intrinsic executed.
6988   In practice, this pops any <a href="#i_alloca">alloca</a> blocks from the
6989   stack that were allocated after the <tt>llvm.stacksave</tt> was executed.</p>
6990
6991</div>
6992
6993<!-- _______________________________________________________________________ -->
6994<h4>
6995  <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
6996</h4>
6997
6998<div>
6999
7000<h5>Syntax:</h5>
7001<pre>
7002  declare void @llvm.stackrestore(i8* %ptr)
7003</pre>
7004
7005<h5>Overview:</h5>
7006<p>The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
7007   the function stack to the state it was in when the
7008   corresponding <a href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic
7009   executed.  This is useful for implementing language features like scoped
7010   automatic variable sized arrays in C99.</p>
7011
7012<h5>Semantics:</h5>
7013<p>See the description
7014   for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.</p>
7015
7016</div>
7017
7018<!-- _______________________________________________________________________ -->
7019<h4>
7020  <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
7021</h4>
7022
7023<div>
7024
7025<h5>Syntax:</h5>
7026<pre>
7027  declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;, i32 &lt;cache type&gt;)
7028</pre>
7029
7030<h5>Overview:</h5>
7031<p>The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to
7032   insert a prefetch instruction if supported; otherwise, it is a noop.
7033   Prefetches have no effect on the behavior of the program but can change its
7034   performance characteristics.</p>
7035
7036<h5>Arguments:</h5>
7037<p><tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the
7038   specifier determining if the fetch should be for a read (0) or write (1),
7039   and <tt>locality</tt> is a temporal locality specifier ranging from (0) - no
7040   locality, to (3) - extremely local keep in cache. The <tt>cache type</tt>
7041   specifies whether the prefetch is performed on the data (1) or instruction (0)
7042   cache. The <tt>rw</tt>, <tt>locality</tt> and <tt>cache type</tt> arguments
7043   must be constant integers.</p>
7044
7045<h5>Semantics:</h5>
7046<p>This intrinsic does not modify the behavior of the program.  In particular,
7047   prefetches cannot trap and do not produce a value.  On targets that support
7048   this intrinsic, the prefetch can provide hints to the processor cache for
7049   better performance.</p>
7050
7051</div>
7052
7053<!-- _______________________________________________________________________ -->
7054<h4>
7055  <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
7056</h4>
7057
7058<div>
7059
7060<h5>Syntax:</h5>
7061<pre>
7062  declare void @llvm.pcmarker(i32 &lt;id&gt;)
7063</pre>
7064
7065<h5>Overview:</h5>
7066<p>The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program
7067   Counter (PC) in a region of code to simulators and other tools.  The method
7068   is target specific, but it is expected that the marker will use exported
7069   symbols to transmit the PC of the marker.  The marker makes no guarantees
7070   that it will remain with any specific instruction after optimizations.  It is
7071   possible that the presence of a marker will inhibit optimizations.  The
7072   intended use is to be inserted after optimizations to allow correlations of
7073   simulation runs.</p>
7074
7075<h5>Arguments:</h5>
7076<p><tt>id</tt> is a numerical id identifying the marker.</p>
7077
7078<h5>Semantics:</h5>
7079<p>This intrinsic does not modify the behavior of the program.  Backends that do
7080   not support this intrinsic may ignore it.</p>
7081
7082</div>
7083
7084<!-- _______________________________________________________________________ -->
7085<h4>
7086  <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
7087</h4>
7088
7089<div>
7090
7091<h5>Syntax:</h5>
7092<pre>
7093  declare i64 @llvm.readcyclecounter()
7094</pre>
7095
7096<h5>Overview:</h5>
7097<p>The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
7098   counter register (or similar low latency, high accuracy clocks) on those
7099   targets that support it.  On X86, it should map to RDTSC.  On Alpha, it
7100   should map to RPCC.  As the backing counters overflow quickly (on the order
7101   of 9 seconds on alpha), this should only be used for small timings.</p>
7102
7103<h5>Semantics:</h5>
7104<p>When directly supported, reading the cycle counter should not modify any
7105   memory.  Implementations are allowed to either return a application specific
7106   value or a system wide value.  On backends without support, this is lowered
7107   to a constant 0.</p>
7108
7109</div>
7110
7111</div>
7112
7113<!-- ======================================================================= -->
7114<h3>
7115  <a name="int_libc">Standard C Library Intrinsics</a>
7116</h3>
7117
7118<div>
7119
7120<p>LLVM provides intrinsics for a few important standard C library functions.
7121   These intrinsics allow source-language front-ends to pass information about
7122   the alignment of the pointer arguments to the code generator, providing
7123   opportunity for more efficient code generation.</p>
7124
7125<!-- _______________________________________________________________________ -->
7126<h4>
7127  <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
7128</h4>
7129
7130<div>
7131
7132<h5>Syntax:</h5>
7133<p>This is an overloaded intrinsic. You can use <tt>llvm.memcpy</tt> on any
7134   integer bit width and for different address spaces. Not all targets support
7135   all bit widths however.</p>
7136
7137<pre>
7138  declare void @llvm.memcpy.p0i8.p0i8.i32(i8* &lt;dest&gt;, i8* &lt;src&gt;,
7139                                          i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
7140  declare void @llvm.memcpy.p0i8.p0i8.i64(i8* &lt;dest&gt;, i8* &lt;src&gt;,
7141                                          i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
7142</pre>
7143
7144<h5>Overview:</h5>
7145<p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
7146   source location to the destination location.</p>
7147
7148<p>Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
7149   intrinsics do not return a value, takes extra alignment/isvolatile arguments
7150   and the pointers can be in specified address spaces.</p>
7151
7152<h5>Arguments:</h5>
7153
7154<p>The first argument is a pointer to the destination, the second is a pointer
7155   to the source.  The third argument is an integer argument specifying the
7156   number of bytes to copy, the fourth argument is the alignment of the
7157   source and destination locations, and the fifth is a boolean indicating a
7158   volatile access.</p>
7159
7160<p>If the call to this intrinsic has an alignment value that is not 0 or 1,
7161   then the caller guarantees that both the source and destination pointers are
7162   aligned to that boundary.</p>
7163
7164<p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
7165   <tt>llvm.memcpy</tt> call is a <a href="#volatile">volatile operation</a>.
7166   The detailed access behavior is not very cleanly specified and it is unwise
7167   to depend on it.</p>
7168
7169<h5>Semantics:</h5>
7170
7171<p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
7172   source location to the destination location, which are not allowed to
7173   overlap.  It copies "len" bytes of memory over.  If the argument is known to
7174   be aligned to some boundary, this can be specified as the fourth argument,
7175   otherwise it should be set to 0 or 1.</p>
7176
7177</div>
7178
7179<!-- _______________________________________________________________________ -->
7180<h4>
7181  <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
7182</h4>
7183
7184<div>
7185
7186<h5>Syntax:</h5>
7187<p>This is an overloaded intrinsic. You can use llvm.memmove on any integer bit
7188   width and for different address space. Not all targets support all bit
7189   widths however.</p>
7190
7191<pre>
7192  declare void @llvm.memmove.p0i8.p0i8.i32(i8* &lt;dest&gt;, i8* &lt;src&gt;,
7193                                           i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
7194  declare void @llvm.memmove.p0i8.p0i8.i64(i8* &lt;dest&gt;, i8* &lt;src&gt;,
7195                                           i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
7196</pre>
7197
7198<h5>Overview:</h5>
7199<p>The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the
7200   source location to the destination location. It is similar to the
7201   '<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to
7202   overlap.</p>
7203
7204<p>Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
7205   intrinsics do not return a value, takes extra alignment/isvolatile arguments
7206   and the pointers can be in specified address spaces.</p>
7207
7208<h5>Arguments:</h5>
7209
7210<p>The first argument is a pointer to the destination, the second is a pointer
7211   to the source.  The third argument is an integer argument specifying the
7212   number of bytes to copy, the fourth argument is the alignment of the
7213   source and destination locations, and the fifth is a boolean indicating a
7214   volatile access.</p>
7215
7216<p>If the call to this intrinsic has an alignment value that is not 0 or 1,
7217   then the caller guarantees that the source and destination pointers are
7218   aligned to that boundary.</p>
7219
7220<p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
7221   <tt>llvm.memmove</tt> call is a <a href="#volatile">volatile operation</a>.
7222   The detailed access behavior is not very cleanly specified and it is unwise
7223   to depend on it.</p>
7224
7225<h5>Semantics:</h5>
7226
7227<p>The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the
7228   source location to the destination location, which may overlap.  It copies
7229   "len" bytes of memory over.  If the argument is known to be aligned to some
7230   boundary, this can be specified as the fourth argument, otherwise it should
7231   be set to 0 or 1.</p>
7232
7233</div>
7234
7235<!-- _______________________________________________________________________ -->
7236<h4>
7237  <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
7238</h4>
7239
7240<div>
7241
7242<h5>Syntax:</h5>
7243<p>This is an overloaded intrinsic. You can use llvm.memset on any integer bit
7244   width and for different address spaces. However, not all targets support all
7245   bit widths.</p>
7246
7247<pre>
7248  declare void @llvm.memset.p0i8.i32(i8* &lt;dest&gt;, i8 &lt;val&gt;,
7249                                     i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
7250  declare void @llvm.memset.p0i8.i64(i8* &lt;dest&gt;, i8 &lt;val&gt;,
7251                                     i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
7252</pre>
7253
7254<h5>Overview:</h5>
7255<p>The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a
7256   particular byte value.</p>
7257
7258<p>Note that, unlike the standard libc function, the <tt>llvm.memset</tt>
7259   intrinsic does not return a value and takes extra alignment/volatile
7260   arguments.  Also, the destination can be in an arbitrary address space.</p>
7261
7262<h5>Arguments:</h5>
7263<p>The first argument is a pointer to the destination to fill, the second is the
7264   byte value with which to fill it, the third argument is an integer argument
7265   specifying the number of bytes to fill, and the fourth argument is the known
7266   alignment of the destination location.</p>
7267
7268<p>If the call to this intrinsic has an alignment value that is not 0 or 1,
7269   then the caller guarantees that the destination pointer is aligned to that
7270   boundary.</p>
7271
7272<p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
7273   <tt>llvm.memset</tt> call is a <a href="#volatile">volatile operation</a>.
7274   The detailed access behavior is not very cleanly specified and it is unwise
7275   to depend on it.</p>
7276
7277<h5>Semantics:</h5>
7278<p>The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting
7279   at the destination location.  If the argument is known to be aligned to some
7280   boundary, this can be specified as the fourth argument, otherwise it should
7281   be set to 0 or 1.</p>
7282
7283</div>
7284
7285<!-- _______________________________________________________________________ -->
7286<h4>
7287  <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
7288</h4>
7289
7290<div>
7291
7292<h5>Syntax:</h5>
7293<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
7294   floating point or vector of floating point type. Not all targets support all
7295   types however.</p>
7296
7297<pre>
7298  declare float     @llvm.sqrt.f32(float %Val)
7299  declare double    @llvm.sqrt.f64(double %Val)
7300  declare x86_fp80  @llvm.sqrt.f80(x86_fp80 %Val)
7301  declare fp128     @llvm.sqrt.f128(fp128 %Val)
7302  declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
7303</pre>
7304
7305<h5>Overview:</h5>
7306<p>The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
7307   returning the same value as the libm '<tt>sqrt</tt>' functions would.
7308   Unlike <tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined
7309   behavior for negative numbers other than -0.0 (which allows for better
7310   optimization, because there is no need to worry about errno being
7311   set).  <tt>llvm.sqrt(-0.0)</tt> is defined to return -0.0 like IEEE sqrt.</p>
7312
7313<h5>Arguments:</h5>
7314<p>The argument and return value are floating point numbers of the same
7315   type.</p>
7316
7317<h5>Semantics:</h5>
7318<p>This function returns the sqrt of the specified operand if it is a
7319   nonnegative floating point number.</p>
7320
7321</div>
7322
7323<!-- _______________________________________________________________________ -->
7324<h4>
7325  <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
7326</h4>
7327
7328<div>
7329
7330<h5>Syntax:</h5>
7331<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
7332   floating point or vector of floating point type. Not all targets support all
7333   types however.</p>
7334
7335<pre>
7336  declare float     @llvm.powi.f32(float  %Val, i32 %power)
7337  declare double    @llvm.powi.f64(double %Val, i32 %power)
7338  declare x86_fp80  @llvm.powi.f80(x86_fp80  %Val, i32 %power)
7339  declare fp128     @llvm.powi.f128(fp128 %Val, i32 %power)
7340  declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128  %Val, i32 %power)
7341</pre>
7342
7343<h5>Overview:</h5>
7344<p>The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
7345   specified (positive or negative) power.  The order of evaluation of
7346   multiplications is not defined.  When a vector of floating point type is
7347   used, the second argument remains a scalar integer value.</p>
7348
7349<h5>Arguments:</h5>
7350<p>The second argument is an integer power, and the first is a value to raise to
7351   that power.</p>
7352
7353<h5>Semantics:</h5>
7354<p>This function returns the first value raised to the second power with an
7355   unspecified sequence of rounding operations.</p>
7356
7357</div>
7358
7359<!-- _______________________________________________________________________ -->
7360<h4>
7361  <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
7362</h4>
7363
7364<div>
7365
7366<h5>Syntax:</h5>
7367<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
7368   floating point or vector of floating point type. Not all targets support all
7369   types however.</p>
7370
7371<pre>
7372  declare float     @llvm.sin.f32(float  %Val)
7373  declare double    @llvm.sin.f64(double %Val)
7374  declare x86_fp80  @llvm.sin.f80(x86_fp80  %Val)
7375  declare fp128     @llvm.sin.f128(fp128 %Val)
7376  declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128  %Val)
7377</pre>
7378
7379<h5>Overview:</h5>
7380<p>The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.</p>
7381
7382<h5>Arguments:</h5>
7383<p>The argument and return value are floating point numbers of the same
7384   type.</p>
7385
7386<h5>Semantics:</h5>
7387<p>This function returns the sine of the specified operand, returning the same
7388   values as the libm <tt>sin</tt> functions would, and handles error conditions
7389   in the same way.</p>
7390
7391</div>
7392
7393<!-- _______________________________________________________________________ -->
7394<h4>
7395  <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
7396</h4>
7397
7398<div>
7399
7400<h5>Syntax:</h5>
7401<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
7402   floating point or vector of floating point type. Not all targets support all
7403   types however.</p>
7404
7405<pre>
7406  declare float     @llvm.cos.f32(float  %Val)
7407  declare double    @llvm.cos.f64(double %Val)
7408  declare x86_fp80  @llvm.cos.f80(x86_fp80  %Val)
7409  declare fp128     @llvm.cos.f128(fp128 %Val)
7410  declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128  %Val)
7411</pre>
7412
7413<h5>Overview:</h5>
7414<p>The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.</p>
7415
7416<h5>Arguments:</h5>
7417<p>The argument and return value are floating point numbers of the same
7418   type.</p>
7419
7420<h5>Semantics:</h5>
7421<p>This function returns the cosine of the specified operand, returning the same
7422   values as the libm <tt>cos</tt> functions would, and handles error conditions
7423   in the same way.</p>
7424
7425</div>
7426
7427<!-- _______________________________________________________________________ -->
7428<h4>
7429  <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
7430</h4>
7431
7432<div>
7433
7434<h5>Syntax:</h5>
7435<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
7436   floating point or vector of floating point type. Not all targets support all
7437   types however.</p>
7438
7439<pre>
7440  declare float     @llvm.pow.f32(float  %Val, float %Power)
7441  declare double    @llvm.pow.f64(double %Val, double %Power)
7442  declare x86_fp80  @llvm.pow.f80(x86_fp80  %Val, x86_fp80 %Power)
7443  declare fp128     @llvm.pow.f128(fp128 %Val, fp128 %Power)
7444  declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128  %Val, ppc_fp128 Power)
7445</pre>
7446
7447<h5>Overview:</h5>
7448<p>The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
7449   specified (positive or negative) power.</p>
7450
7451<h5>Arguments:</h5>
7452<p>The second argument is a floating point power, and the first is a value to
7453   raise to that power.</p>
7454
7455<h5>Semantics:</h5>
7456<p>This function returns the first value raised to the second power, returning
7457   the same values as the libm <tt>pow</tt> functions would, and handles error
7458   conditions in the same way.</p>
7459
7460</div>
7461
7462<!-- _______________________________________________________________________ -->
7463<h4>
7464  <a name="int_exp">'<tt>llvm.exp.*</tt>' Intrinsic</a>
7465</h4>
7466
7467<div>
7468
7469<h5>Syntax:</h5>
7470<p>This is an overloaded intrinsic. You can use <tt>llvm.exp</tt> on any
7471   floating point or vector of floating point type. Not all targets support all
7472   types however.</p>
7473
7474<pre>
7475  declare float     @llvm.exp.f32(float  %Val)
7476  declare double    @llvm.exp.f64(double %Val)
7477  declare x86_fp80  @llvm.exp.f80(x86_fp80  %Val)
7478  declare fp128     @llvm.exp.f128(fp128 %Val)
7479  declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128  %Val)
7480</pre>
7481
7482<h5>Overview:</h5>
7483<p>The '<tt>llvm.exp.*</tt>' intrinsics perform the exp function.</p>
7484
7485<h5>Arguments:</h5>
7486<p>The argument and return value are floating point numbers of the same
7487   type.</p>
7488
7489<h5>Semantics:</h5>
7490<p>This function returns the same values as the libm <tt>exp</tt> functions
7491   would, and handles error conditions in the same way.</p>
7492
7493</div>
7494
7495<!-- _______________________________________________________________________ -->
7496<h4>
7497  <a name="int_log">'<tt>llvm.log.*</tt>' Intrinsic</a>
7498</h4>
7499
7500<div>
7501
7502<h5>Syntax:</h5>
7503<p>This is an overloaded intrinsic. You can use <tt>llvm.log</tt> on any
7504   floating point or vector of floating point type. Not all targets support all
7505   types however.</p>
7506
7507<pre>
7508  declare float     @llvm.log.f32(float  %Val)
7509  declare double    @llvm.log.f64(double %Val)
7510  declare x86_fp80  @llvm.log.f80(x86_fp80  %Val)
7511  declare fp128     @llvm.log.f128(fp128 %Val)
7512  declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128  %Val)
7513</pre>
7514
7515<h5>Overview:</h5>
7516<p>The '<tt>llvm.log.*</tt>' intrinsics perform the log function.</p>
7517
7518<h5>Arguments:</h5>
7519<p>The argument and return value are floating point numbers of the same
7520   type.</p>
7521
7522<h5>Semantics:</h5>
7523<p>This function returns the same values as the libm <tt>log</tt> functions
7524   would, and handles error conditions in the same way.</p>
7525
7526</div>
7527
7528<!-- _______________________________________________________________________ -->
7529<h4>
7530  <a name="int_fma">'<tt>llvm.fma.*</tt>' Intrinsic</a>
7531</h4>
7532
7533<div>
7534
7535<h5>Syntax:</h5>
7536<p>This is an overloaded intrinsic. You can use <tt>llvm.fma</tt> on any
7537   floating point or vector of floating point type. Not all targets support all
7538   types however.</p>
7539
7540<pre>
7541  declare float     @llvm.fma.f32(float  %a, float  %b, float  %c)
7542  declare double    @llvm.fma.f64(double %a, double %b, double %c)
7543  declare x86_fp80  @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7544  declare fp128     @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7545  declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7546</pre>
7547
7548<h5>Overview:</h5>
7549<p>The '<tt>llvm.fma.*</tt>' intrinsics perform the fused multiply-add
7550   operation.</p>
7551
7552<h5>Arguments:</h5>
7553<p>The argument and return value are floating point numbers of the same
7554   type.</p>
7555
7556<h5>Semantics:</h5>
7557<p>This function returns the same values as the libm <tt>fma</tt> functions
7558   would.</p>
7559
7560</div>
7561
7562<!-- _______________________________________________________________________ -->
7563<h4>
7564  <a name="int_fabs">'<tt>llvm.fabs.*</tt>' Intrinsic</a>
7565</h4>
7566
7567<div>
7568
7569<h5>Syntax:</h5>
7570<p>This is an overloaded intrinsic. You can use <tt>llvm.fabs</tt> on any
7571   floating point or vector of floating point type. Not all targets support all
7572   types however.</p>
7573
7574<pre>
7575  declare float     @llvm.fabs.f32(float  %Val)
7576  declare double    @llvm.fabs.f64(double %Val)
7577  declare x86_fp80  @llvm.fabs.f80(x86_fp80  %Val)
7578  declare fp128     @llvm.fabs.f128(fp128 %Val)
7579  declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128  %Val)
7580</pre>
7581
7582<h5>Overview:</h5>
7583<p>The '<tt>llvm.fabs.*</tt>' intrinsics return the absolute value of
7584   the operand.</p>
7585
7586<h5>Arguments:</h5>
7587<p>The argument and return value are floating point numbers of the same
7588   type.</p>
7589
7590<h5>Semantics:</h5>
7591<p>This function returns the same values as the libm <tt>fabs</tt> functions
7592   would, and handles error conditions in the same way.</p>
7593
7594</div>
7595
7596<!-- _______________________________________________________________________ -->
7597<h4>
7598  <a name="int_floor">'<tt>llvm.floor.*</tt>' Intrinsic</a>
7599</h4>
7600
7601<div>
7602
7603<h5>Syntax:</h5>
7604<p>This is an overloaded intrinsic. You can use <tt>llvm.floor</tt> on any
7605   floating point or vector of floating point type. Not all targets support all
7606   types however.</p>
7607
7608<pre>
7609  declare float     @llvm.floor.f32(float  %Val)
7610  declare double    @llvm.floor.f64(double %Val)
7611  declare x86_fp80  @llvm.floor.f80(x86_fp80  %Val)
7612  declare fp128     @llvm.floor.f128(fp128 %Val)
7613  declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128  %Val)
7614</pre>
7615
7616<h5>Overview:</h5>
7617<p>The '<tt>llvm.floor.*</tt>' intrinsics return the floor of
7618   the operand.</p>
7619
7620<h5>Arguments:</h5>
7621<p>The argument and return value are floating point numbers of the same
7622   type.</p>
7623
7624<h5>Semantics:</h5>
7625<p>This function returns the same values as the libm <tt>floor</tt> functions
7626   would, and handles error conditions in the same way.</p>
7627
7628</div>
7629
7630</div>
7631
7632<!-- ======================================================================= -->
7633<h3>
7634  <a name="int_manip">Bit Manipulation Intrinsics</a>
7635</h3>
7636
7637<div>
7638
7639<p>LLVM provides intrinsics for a few important bit manipulation operations.
7640   These allow efficient code generation for some algorithms.</p>
7641
7642<!-- _______________________________________________________________________ -->
7643<h4>
7644  <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
7645</h4>
7646
7647<div>
7648
7649<h5>Syntax:</h5>
7650<p>This is an overloaded intrinsic function. You can use bswap on any integer
7651   type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p>
7652
7653<pre>
7654  declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
7655  declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
7656  declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
7657</pre>
7658
7659<h5>Overview:</h5>
7660<p>The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
7661   values with an even number of bytes (positive multiple of 16 bits).  These
7662   are useful for performing operations on data that is not in the target's
7663   native byte order.</p>
7664
7665<h5>Semantics:</h5>
7666<p>The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
7667   and low byte of the input i16 swapped.  Similarly,
7668   the <tt>llvm.bswap.i32</tt> intrinsic returns an i32 value that has the four
7669   bytes of the input i32 swapped, so that if the input bytes are numbered 0, 1,
7670   2, 3 then the returned i32 will have its bytes in 3, 2, 1, 0 order.
7671   The <tt>llvm.bswap.i48</tt>, <tt>llvm.bswap.i64</tt> and other intrinsics
7672   extend this concept to additional even-byte lengths (6 bytes, 8 bytes and
7673   more, respectively).</p>
7674
7675</div>
7676
7677<!-- _______________________________________________________________________ -->
7678<h4>
7679  <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
7680</h4>
7681
7682<div>
7683
7684<h5>Syntax:</h5>
7685<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
7686   width, or on any vector with integer elements. Not all targets support all
7687  bit widths or vector types, however.</p>
7688
7689<pre>
7690  declare i8 @llvm.ctpop.i8(i8  &lt;src&gt;)
7691  declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
7692  declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
7693  declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
7694  declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
7695  declare &lt;2 x i32&gt; @llvm.ctpop.v2i32(&lt;2 x i32&gt; &lt;src&gt;)
7696</pre>
7697
7698<h5>Overview:</h5>
7699<p>The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set
7700   in a value.</p>
7701
7702<h5>Arguments:</h5>
7703<p>The only argument is the value to be counted.  The argument may be of any
7704   integer type, or a vector with integer elements.
7705   The return type must match the argument type.</p>
7706
7707<h5>Semantics:</h5>
7708<p>The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable, or within each
7709   element of a vector.</p>
7710
7711</div>
7712
7713<!-- _______________________________________________________________________ -->
7714<h4>
7715  <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
7716</h4>
7717
7718<div>
7719
7720<h5>Syntax:</h5>
7721<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
7722   integer bit width, or any vector whose elements are integers. Not all
7723   targets support all bit widths or vector types, however.</p>
7724
7725<pre>
7726  declare i8   @llvm.ctlz.i8  (i8   &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
7727  declare i16  @llvm.ctlz.i16 (i16  &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
7728  declare i32  @llvm.ctlz.i32 (i32  &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
7729  declare i64  @llvm.ctlz.i64 (i64  &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
7730  declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
7731  declase &lt;2 x i32&gt; @llvm.ctlz.v2i32(&lt;2 x i32&gt; &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
7732</pre>
7733
7734<h5>Overview:</h5>
7735<p>The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
7736   leading zeros in a variable.</p>
7737
7738<h5>Arguments:</h5>
7739<p>The first argument is the value to be counted. This argument may be of any
7740   integer type, or a vectory with integer element type. The return type
7741   must match the first argument type.</p>
7742
7743<p>The second argument must be a constant and is a flag to indicate whether the
7744   intrinsic should ensure that a zero as the first argument produces a defined
7745   result. Historically some architectures did not provide a defined result for
7746   zero values as efficiently, and many algorithms are now predicated on
7747   avoiding zero-value inputs.</p>
7748
7749<h5>Semantics:</h5>
7750<p>The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant)
7751   zeros in a variable, or within each element of the vector.
7752   If <tt>src == 0</tt> then the result is the size in bits of the type of
7753   <tt>src</tt> if <tt>is_zero_undef == 0</tt> and <tt>undef</tt> otherwise.
7754   For example, <tt>llvm.ctlz(i32 2) = 30</tt>.</p>
7755
7756</div>
7757
7758<!-- _______________________________________________________________________ -->
7759<h4>
7760  <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
7761</h4>
7762
7763<div>
7764
7765<h5>Syntax:</h5>
7766<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
7767   integer bit width, or any vector of integer elements. Not all targets
7768   support all bit widths or vector types, however.</p>
7769
7770<pre>
7771  declare i8   @llvm.cttz.i8  (i8   &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
7772  declare i16  @llvm.cttz.i16 (i16  &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
7773  declare i32  @llvm.cttz.i32 (i32  &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
7774  declare i64  @llvm.cttz.i64 (i64  &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
7775  declare i256 @llvm.cttz.i256(i256 &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
7776  declase &lt;2 x i32&gt; @llvm.cttz.v2i32(&lt;2 x i32&gt; &lt;src&gt;, i1 &lt;is_zero_undef&gt;)
7777</pre>
7778
7779<h5>Overview:</h5>
7780<p>The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
7781   trailing zeros.</p>
7782
7783<h5>Arguments:</h5>
7784<p>The first argument is the value to be counted. This argument may be of any
7785   integer type, or a vectory with integer element type. The return type
7786   must match the first argument type.</p>
7787
7788<p>The second argument must be a constant and is a flag to indicate whether the
7789   intrinsic should ensure that a zero as the first argument produces a defined
7790   result. Historically some architectures did not provide a defined result for
7791   zero values as efficiently, and many algorithms are now predicated on
7792   avoiding zero-value inputs.</p>
7793
7794<h5>Semantics:</h5>
7795<p>The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant)
7796   zeros in a variable, or within each element of a vector.
7797   If <tt>src == 0</tt> then the result is the size in bits of the type of
7798   <tt>src</tt> if <tt>is_zero_undef == 0</tt> and <tt>undef</tt> otherwise.
7799   For example, <tt>llvm.cttz(2) = 1</tt>.</p>
7800
7801</div>
7802
7803</div>
7804
7805<!-- ======================================================================= -->
7806<h3>
7807  <a name="int_overflow">Arithmetic with Overflow Intrinsics</a>
7808</h3>
7809
7810<div>
7811
7812<p>LLVM provides intrinsics for some arithmetic with overflow operations.</p>
7813
7814<!-- _______________________________________________________________________ -->
7815<h4>
7816  <a name="int_sadd_overflow">
7817    '<tt>llvm.sadd.with.overflow.*</tt>' Intrinsics
7818  </a>
7819</h4>
7820
7821<div>
7822
7823<h5>Syntax:</h5>
7824<p>This is an overloaded intrinsic. You can use <tt>llvm.sadd.with.overflow</tt>
7825   on any integer bit width.</p>
7826
7827<pre>
7828  declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
7829  declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7830  declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
7831</pre>
7832
7833<h5>Overview:</h5>
7834<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
7835   a signed addition of the two arguments, and indicate whether an overflow
7836   occurred during the signed summation.</p>
7837
7838<h5>Arguments:</h5>
7839<p>The arguments (%a and %b) and the first element of the result structure may
7840   be of integer types of any bit width, but they must have the same bit
7841   width. The second element of the result structure must be of
7842   type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
7843   undergo signed addition.</p>
7844
7845<h5>Semantics:</h5>
7846<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
7847   a signed addition of the two variables. They return a structure &mdash; the
7848   first element of which is the signed summation, and the second element of
7849   which is a bit specifying if the signed summation resulted in an
7850   overflow.</p>
7851
7852<h5>Examples:</h5>
7853<pre>
7854  %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7855  %sum = extractvalue {i32, i1} %res, 0
7856  %obit = extractvalue {i32, i1} %res, 1
7857  br i1 %obit, label %overflow, label %normal
7858</pre>
7859
7860</div>
7861
7862<!-- _______________________________________________________________________ -->
7863<h4>
7864  <a name="int_uadd_overflow">
7865    '<tt>llvm.uadd.with.overflow.*</tt>' Intrinsics
7866  </a>
7867</h4>
7868
7869<div>
7870
7871<h5>Syntax:</h5>
7872<p>This is an overloaded intrinsic. You can use <tt>llvm.uadd.with.overflow</tt>
7873   on any integer bit width.</p>
7874
7875<pre>
7876  declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
7877  declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7878  declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
7879</pre>
7880
7881<h5>Overview:</h5>
7882<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
7883   an unsigned addition of the two arguments, and indicate whether a carry
7884   occurred during the unsigned summation.</p>
7885
7886<h5>Arguments:</h5>
7887<p>The arguments (%a and %b) and the first element of the result structure may
7888   be of integer types of any bit width, but they must have the same bit
7889   width. The second element of the result structure must be of
7890   type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
7891   undergo unsigned addition.</p>
7892
7893<h5>Semantics:</h5>
7894<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
7895   an unsigned addition of the two arguments. They return a structure &mdash;
7896   the first element of which is the sum, and the second element of which is a
7897   bit specifying if the unsigned summation resulted in a carry.</p>
7898
7899<h5>Examples:</h5>
7900<pre>
7901  %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7902  %sum = extractvalue {i32, i1} %res, 0
7903  %obit = extractvalue {i32, i1} %res, 1
7904  br i1 %obit, label %carry, label %normal
7905</pre>
7906
7907</div>
7908
7909<!-- _______________________________________________________________________ -->
7910<h4>
7911  <a name="int_ssub_overflow">
7912    '<tt>llvm.ssub.with.overflow.*</tt>' Intrinsics
7913  </a>
7914</h4>
7915
7916<div>
7917
7918<h5>Syntax:</h5>
7919<p>This is an overloaded intrinsic. You can use <tt>llvm.ssub.with.overflow</tt>
7920   on any integer bit width.</p>
7921
7922<pre>
7923  declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
7924  declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7925  declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
7926</pre>
7927
7928<h5>Overview:</h5>
7929<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
7930   a signed subtraction of the two arguments, and indicate whether an overflow
7931   occurred during the signed subtraction.</p>
7932
7933<h5>Arguments:</h5>
7934<p>The arguments (%a and %b) and the first element of the result structure may
7935   be of integer types of any bit width, but they must have the same bit
7936   width. The second element of the result structure must be of
7937   type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
7938   undergo signed subtraction.</p>
7939
7940<h5>Semantics:</h5>
7941<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
7942   a signed subtraction of the two arguments. They return a structure &mdash;
7943   the first element of which is the subtraction, and the second element of
7944   which is a bit specifying if the signed subtraction resulted in an
7945   overflow.</p>
7946
7947<h5>Examples:</h5>
7948<pre>
7949  %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7950  %sum = extractvalue {i32, i1} %res, 0
7951  %obit = extractvalue {i32, i1} %res, 1
7952  br i1 %obit, label %overflow, label %normal
7953</pre>
7954
7955</div>
7956
7957<!-- _______________________________________________________________________ -->
7958<h4>
7959  <a name="int_usub_overflow">
7960    '<tt>llvm.usub.with.overflow.*</tt>' Intrinsics
7961  </a>
7962</h4>
7963
7964<div>
7965
7966<h5>Syntax:</h5>
7967<p>This is an overloaded intrinsic. You can use <tt>llvm.usub.with.overflow</tt>
7968   on any integer bit width.</p>
7969
7970<pre>
7971  declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
7972  declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7973  declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
7974</pre>
7975
7976<h5>Overview:</h5>
7977<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
7978   an unsigned subtraction of the two arguments, and indicate whether an
7979   overflow occurred during the unsigned subtraction.</p>
7980
7981<h5>Arguments:</h5>
7982<p>The arguments (%a and %b) and the first element of the result structure may
7983   be of integer types of any bit width, but they must have the same bit
7984   width. The second element of the result structure must be of
7985   type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
7986   undergo unsigned subtraction.</p>
7987
7988<h5>Semantics:</h5>
7989<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
7990   an unsigned subtraction of the two arguments. They return a structure &mdash;
7991   the first element of which is the subtraction, and the second element of
7992   which is a bit specifying if the unsigned subtraction resulted in an
7993   overflow.</p>
7994
7995<h5>Examples:</h5>
7996<pre>
7997  %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7998  %sum = extractvalue {i32, i1} %res, 0
7999  %obit = extractvalue {i32, i1} %res, 1
8000  br i1 %obit, label %overflow, label %normal
8001</pre>
8002
8003</div>
8004
8005<!-- _______________________________________________________________________ -->
8006<h4>
8007  <a name="int_smul_overflow">
8008    '<tt>llvm.smul.with.overflow.*</tt>' Intrinsics
8009  </a>
8010</h4>
8011
8012<div>
8013
8014<h5>Syntax:</h5>
8015<p>This is an overloaded intrinsic. You can use <tt>llvm.smul.with.overflow</tt>
8016   on any integer bit width.</p>
8017
8018<pre>
8019  declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
8020  declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8021  declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
8022</pre>
8023
8024<h5>Overview:</h5>
8025
8026<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
8027   a signed multiplication of the two arguments, and indicate whether an
8028   overflow occurred during the signed multiplication.</p>
8029
8030<h5>Arguments:</h5>
8031<p>The arguments (%a and %b) and the first element of the result structure may
8032   be of integer types of any bit width, but they must have the same bit
8033   width. The second element of the result structure must be of
8034   type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
8035   undergo signed multiplication.</p>
8036
8037<h5>Semantics:</h5>
8038<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
8039   a signed multiplication of the two arguments. They return a structure &mdash;
8040   the first element of which is the multiplication, and the second element of
8041   which is a bit specifying if the signed multiplication resulted in an
8042   overflow.</p>
8043
8044<h5>Examples:</h5>
8045<pre>
8046  %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8047  %sum = extractvalue {i32, i1} %res, 0
8048  %obit = extractvalue {i32, i1} %res, 1
8049  br i1 %obit, label %overflow, label %normal
8050</pre>
8051
8052</div>
8053
8054<!-- _______________________________________________________________________ -->
8055<h4>
8056  <a name="int_umul_overflow">
8057    '<tt>llvm.umul.with.overflow.*</tt>' Intrinsics
8058  </a>
8059</h4>
8060
8061<div>
8062
8063<h5>Syntax:</h5>
8064<p>This is an overloaded intrinsic. You can use <tt>llvm.umul.with.overflow</tt>
8065   on any integer bit width.</p>
8066
8067<pre>
8068  declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
8069  declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8070  declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
8071</pre>
8072
8073<h5>Overview:</h5>
8074<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
8075   a unsigned multiplication of the two arguments, and indicate whether an
8076   overflow occurred during the unsigned multiplication.</p>
8077
8078<h5>Arguments:</h5>
8079<p>The arguments (%a and %b) and the first element of the result structure may
8080   be of integer types of any bit width, but they must have the same bit
8081   width. The second element of the result structure must be of
8082   type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
8083   undergo unsigned multiplication.</p>
8084
8085<h5>Semantics:</h5>
8086<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
8087   an unsigned multiplication of the two arguments. They return a structure
8088   &mdash; the first element of which is the multiplication, and the second
8089   element of which is a bit specifying if the unsigned multiplication resulted
8090   in an overflow.</p>
8091
8092<h5>Examples:</h5>
8093<pre>
8094  %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8095  %sum = extractvalue {i32, i1} %res, 0
8096  %obit = extractvalue {i32, i1} %res, 1
8097  br i1 %obit, label %overflow, label %normal
8098</pre>
8099
8100</div>
8101
8102</div>
8103
8104<!-- ======================================================================= -->
8105<h3>
8106  <a name="spec_arithmetic">Specialised Arithmetic Intrinsics</a>
8107</h3>
8108
8109<!-- _______________________________________________________________________ -->
8110
8111<h4>
8112  <a name="fmuladd">'<tt>llvm.fmuladd.*</tt>' Intrinsic</a>
8113</h4>
8114
8115<div>
8116
8117<h5>Syntax:</h5>
8118<pre>
8119  declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8120  declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8121</pre>
8122
8123<h5>Overview:</h5>
8124<p>The '<tt>llvm.fmuladd.*</tt>' intrinsic functions represent multiply-add
8125expressions that can be fused if the code generator determines that the fused
8126expression would be legal and efficient.</p>
8127
8128<h5>Arguments:</h5>
8129<p>The '<tt>llvm.fmuladd.*</tt>' intrinsics each take three arguments: two
8130multiplicands, a and b, and an addend c.</p>
8131
8132<h5>Semantics:</h5>
8133<p>The expression:</p>
8134<pre>
8135  %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8136</pre>
8137<p>is equivalent to the expression a * b + c, except that rounding will not be
8138performed between the multiplication and addition steps if the code generator
8139fuses the operations. Fusion is not guaranteed, even if the target platform
8140supports it. If a fused multiply-add is required the corresponding llvm.fma.*
8141intrinsic function should be used instead.</p>
8142
8143<h5>Examples:</h5>
8144<pre>
8145  %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
8146</pre>
8147
8148</div>
8149
8150<!-- ======================================================================= -->
8151<h3>
8152  <a name="int_fp16">Half Precision Floating Point Intrinsics</a>
8153</h3>
8154
8155<div>
8156
8157<p>For most target platforms, half precision floating point is a storage-only
8158   format. This means that it is
8159   a dense encoding (in memory) but does not support computation in the
8160   format.</p>
8161   
8162<p>This means that code must first load the half-precision floating point
8163   value as an i16, then convert it to float with <a
8164   href="#int_convert_from_fp16"><tt>llvm.convert.from.fp16</tt></a>.
8165   Computation can then be performed on the float value (including extending to
8166   double etc).  To store the value back to memory, it is first converted to
8167   float if needed, then converted to i16 with
8168   <a href="#int_convert_to_fp16"><tt>llvm.convert.to.fp16</tt></a>, then
8169   storing as an i16 value.</p>
8170
8171<!-- _______________________________________________________________________ -->
8172<h4>
8173  <a name="int_convert_to_fp16">
8174    '<tt>llvm.convert.to.fp16</tt>' Intrinsic
8175  </a>
8176</h4>
8177
8178<div>
8179
8180<h5>Syntax:</h5>
8181<pre>
8182  declare i16 @llvm.convert.to.fp16(f32 %a)
8183</pre>
8184
8185<h5>Overview:</h5>
8186<p>The '<tt>llvm.convert.to.fp16</tt>' intrinsic function performs
8187   a conversion from single precision floating point format to half precision
8188   floating point format.</p>
8189
8190<h5>Arguments:</h5>
8191<p>The intrinsic function contains single argument - the value to be
8192   converted.</p>
8193
8194<h5>Semantics:</h5>
8195<p>The '<tt>llvm.convert.to.fp16</tt>' intrinsic function performs
8196   a conversion from single precision floating point format to half precision
8197   floating point format. The return value is an <tt>i16</tt> which
8198   contains the converted number.</p>
8199
8200<h5>Examples:</h5>
8201<pre>
8202  %res = call i16 @llvm.convert.to.fp16(f32 %a)
8203  store i16 %res, i16* @x, align 2
8204</pre>
8205
8206</div>
8207
8208<!-- _______________________________________________________________________ -->
8209<h4>
8210  <a name="int_convert_from_fp16">
8211    '<tt>llvm.convert.from.fp16</tt>' Intrinsic
8212  </a>
8213</h4>
8214
8215<div>
8216
8217<h5>Syntax:</h5>
8218<pre>
8219  declare f32 @llvm.convert.from.fp16(i16 %a)
8220</pre>
8221
8222<h5>Overview:</h5>
8223<p>The '<tt>llvm.convert.from.fp16</tt>' intrinsic function performs
8224   a conversion from half precision floating point format to single precision
8225   floating point format.</p>
8226
8227<h5>Arguments:</h5>
8228<p>The intrinsic function contains single argument - the value to be
8229   converted.</p>
8230
8231<h5>Semantics:</h5>
8232<p>The '<tt>llvm.convert.from.fp16</tt>' intrinsic function performs a
8233   conversion from half single precision floating point format to single
8234   precision floating point format. The input half-float value is represented by
8235   an <tt>i16</tt> value.</p>
8236
8237<h5>Examples:</h5>
8238<pre>
8239  %a = load i16* @x, align 2
8240  %res = call f32 @llvm.convert.from.fp16(i16 %a)
8241</pre>
8242
8243</div>
8244
8245</div>
8246
8247<!-- ======================================================================= -->
8248<h3>
8249  <a name="int_debugger">Debugger Intrinsics</a>
8250</h3>
8251
8252<div>
8253
8254<p>The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt>
8255   prefix), are described in
8256   the <a href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source
8257   Level Debugging</a> document.</p>
8258
8259</div>
8260
8261<!-- ======================================================================= -->
8262<h3>
8263  <a name="int_eh">Exception Handling Intrinsics</a>
8264</h3>
8265
8266<div>
8267
8268<p>The LLVM exception handling intrinsics (which all start with
8269   <tt>llvm.eh.</tt> prefix), are described in
8270   the <a href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
8271   Handling</a> document.</p>
8272
8273</div>
8274
8275<!-- ======================================================================= -->
8276<h3>
8277  <a name="int_trampoline">Trampoline Intrinsics</a>
8278</h3>
8279
8280<div>
8281
8282<p>These intrinsics make it possible to excise one parameter, marked with
8283   the <a href="#nest"><tt>nest</tt></a> attribute, from a function.
8284   The result is a callable
8285   function pointer lacking the nest parameter - the caller does not need to
8286   provide a value for it.  Instead, the value to use is stored in advance in a
8287   "trampoline", a block of memory usually allocated on the stack, which also
8288   contains code to splice the nest value into the argument list.  This is used
8289   to implement the GCC nested function address extension.</p>
8290
8291<p>For example, if the function is
8292   <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
8293   pointer has signature <tt>i32 (i32, i32)*</tt>.  It can be created as
8294   follows:</p>
8295
8296<pre class="doc_code">
8297  %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8298  %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8299  call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8300  %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8301  %fp = bitcast i8* %p to i32 (i32, i32)*
8302</pre>
8303
8304<p>The call <tt>%val = call i32 %fp(i32 %x, i32 %y)</tt> is then equivalent
8305   to <tt>%val = call i32 %f(i8* %nval, i32 %x, i32 %y)</tt>.</p>
8306
8307<!-- _______________________________________________________________________ -->
8308<h4>
8309  <a name="int_it">
8310    '<tt>llvm.init.trampoline</tt>' Intrinsic
8311  </a>
8312</h4>
8313
8314<div>
8315
8316<h5>Syntax:</h5>
8317<pre>
8318  declare void @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
8319</pre>
8320
8321<h5>Overview:</h5>
8322<p>This fills the memory pointed to by <tt>tramp</tt> with executable code,
8323   turning it into a trampoline.</p>
8324
8325<h5>Arguments:</h5>
8326<p>The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
8327   pointers.  The <tt>tramp</tt> argument must point to a sufficiently large and
8328   sufficiently aligned block of memory; this memory is written to by the
8329   intrinsic.  Note that the size and the alignment are target-specific - LLVM
8330   currently provides no portable way of determining them, so a front-end that
8331   generates this intrinsic needs to have some target-specific knowledge.
8332   The <tt>func</tt> argument must hold a function bitcast to
8333   an <tt>i8*</tt>.</p>
8334
8335<h5>Semantics:</h5>
8336<p>The block of memory pointed to by <tt>tramp</tt> is filled with target
8337   dependent code, turning it into a function.  Then <tt>tramp</tt> needs to be
8338   passed to <a href="#int_at">llvm.adjust.trampoline</a> to get a pointer
8339   which can be <a href="#int_trampoline">bitcast (to a new function) and
8340   called</a>.  The new function's signature is the same as that of
8341   <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
8342   removed.  At most one such <tt>nest</tt> argument is allowed, and it must be of
8343   pointer type.  Calling the new function is equivalent to calling <tt>func</tt>
8344   with the same argument list, but with <tt>nval</tt> used for the missing
8345   <tt>nest</tt> argument.  If, after calling <tt>llvm.init.trampoline</tt>, the
8346   memory pointed to by <tt>tramp</tt> is modified, then the effect of any later call
8347   to the returned function pointer is undefined.</p>
8348</div>
8349
8350<!-- _______________________________________________________________________ -->
8351<h4>
8352  <a name="int_at">
8353    '<tt>llvm.adjust.trampoline</tt>' Intrinsic
8354  </a>
8355</h4>
8356
8357<div>
8358
8359<h5>Syntax:</h5>
8360<pre>
8361  declare i8* @llvm.adjust.trampoline(i8* &lt;tramp&gt;)
8362</pre>
8363
8364<h5>Overview:</h5>
8365<p>This performs any required machine-specific adjustment to the address of a
8366   trampoline (passed as <tt>tramp</tt>).</p>
8367
8368<h5>Arguments:</h5>
8369<p><tt>tramp</tt> must point to a block of memory which already has trampoline code
8370   filled in by a previous call to <a href="#int_it"><tt>llvm.init.trampoline</tt>
8371   </a>.</p>
8372
8373<h5>Semantics:</h5>
8374<p>On some architectures the address of the code to be executed needs to be
8375   different to the address where the trampoline is actually stored.  This
8376   intrinsic returns the executable address corresponding to <tt>tramp</tt>
8377   after performing the required machine specific adjustments.
8378   The pointer returned can then be <a href="#int_trampoline"> bitcast and
8379   executed</a>.
8380</p>
8381
8382</div>
8383
8384</div>
8385
8386<!-- ======================================================================= -->
8387<h3>
8388  <a name="int_memorymarkers">Memory Use Markers</a>
8389</h3>
8390
8391<div>
8392
8393<p>This class of intrinsics exists to information about the lifetime of memory
8394   objects and ranges where variables are immutable.</p>
8395
8396<!-- _______________________________________________________________________ -->
8397<h4>
8398  <a name="int_lifetime_start">'<tt>llvm.lifetime.start</tt>' Intrinsic</a>
8399</h4>
8400
8401<div>
8402
8403<h5>Syntax:</h5>
8404<pre>
8405  declare void @llvm.lifetime.start(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
8406</pre>
8407
8408<h5>Overview:</h5>
8409<p>The '<tt>llvm.lifetime.start</tt>' intrinsic specifies the start of a memory
8410   object's lifetime.</p>
8411
8412<h5>Arguments:</h5>
8413<p>The first argument is a constant integer representing the size of the
8414   object, or -1 if it is variable sized.  The second argument is a pointer to
8415   the object.</p>
8416
8417<h5>Semantics:</h5>
8418<p>This intrinsic indicates that before this point in the code, the value of the
8419   memory pointed to by <tt>ptr</tt> is dead.  This means that it is known to
8420   never be used and has an undefined value.  A load from the pointer that
8421   precedes this intrinsic can be replaced with
8422   <tt>'<a href="#undefvalues">undef</a>'</tt>.</p>
8423
8424</div>
8425
8426<!-- _______________________________________________________________________ -->
8427<h4>
8428  <a name="int_lifetime_end">'<tt>llvm.lifetime.end</tt>' Intrinsic</a>
8429</h4>
8430
8431<div>
8432
8433<h5>Syntax:</h5>
8434<pre>
8435  declare void @llvm.lifetime.end(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
8436</pre>
8437
8438<h5>Overview:</h5>
8439<p>The '<tt>llvm.lifetime.end</tt>' intrinsic specifies the end of a memory
8440   object's lifetime.</p>
8441
8442<h5>Arguments:</h5>
8443<p>The first argument is a constant integer representing the size of the
8444   object, or -1 if it is variable sized.  The second argument is a pointer to
8445   the object.</p>
8446
8447<h5>Semantics:</h5>
8448<p>This intrinsic indicates that after this point in the code, the value of the
8449   memory pointed to by <tt>ptr</tt> is dead.  This means that it is known to
8450   never be used and has an undefined value.  Any stores into the memory object
8451   following this intrinsic may be removed as dead.
8452
8453</div>
8454
8455<!-- _______________________________________________________________________ -->
8456<h4>
8457  <a name="int_invariant_start">'<tt>llvm.invariant.start</tt>' Intrinsic</a>
8458</h4>
8459
8460<div>
8461
8462<h5>Syntax:</h5>
8463<pre>
8464  declare {}* @llvm.invariant.start(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
8465</pre>
8466
8467<h5>Overview:</h5>
8468<p>The '<tt>llvm.invariant.start</tt>' intrinsic specifies that the contents of
8469   a memory object will not change.</p>
8470
8471<h5>Arguments:</h5>
8472<p>The first argument is a constant integer representing the size of the
8473   object, or -1 if it is variable sized.  The second argument is a pointer to
8474   the object.</p>
8475
8476<h5>Semantics:</h5>
8477<p>This intrinsic indicates that until an <tt>llvm.invariant.end</tt> that uses
8478   the return value, the referenced memory location is constant and
8479   unchanging.</p>
8480
8481</div>
8482
8483<!-- _______________________________________________________________________ -->
8484<h4>
8485  <a name="int_invariant_end">'<tt>llvm.invariant.end</tt>' Intrinsic</a>
8486</h4>
8487
8488<div>
8489
8490<h5>Syntax:</h5>
8491<pre>
8492  declare void @llvm.invariant.end({}* &lt;start&gt;, i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
8493</pre>
8494
8495<h5>Overview:</h5>
8496<p>The '<tt>llvm.invariant.end</tt>' intrinsic specifies that the contents of
8497   a memory object are mutable.</p>
8498
8499<h5>Arguments:</h5>
8500<p>The first argument is the matching <tt>llvm.invariant.start</tt> intrinsic.
8501   The second argument is a constant integer representing the size of the
8502   object, or -1 if it is variable sized and the third argument is a pointer
8503   to the object.</p>
8504
8505<h5>Semantics:</h5>
8506<p>This intrinsic indicates that the memory is mutable again.</p>
8507
8508</div>
8509
8510</div>
8511
8512<!-- ======================================================================= -->
8513<h3>
8514  <a name="int_general">General Intrinsics</a>
8515</h3>
8516
8517<div>
8518
8519<p>This class of intrinsics is designed to be generic and has no specific
8520   purpose.</p>
8521
8522<!-- _______________________________________________________________________ -->
8523<h4>
8524  <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
8525</h4>
8526
8527<div>
8528
8529<h5>Syntax:</h5>
8530<pre>
8531  declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt;)
8532</pre>
8533
8534<h5>Overview:</h5>
8535<p>The '<tt>llvm.var.annotation</tt>' intrinsic.</p>
8536
8537<h5>Arguments:</h5>
8538<p>The first argument is a pointer to a value, the second is a pointer to a
8539   global string, the third is a pointer to a global string which is the source
8540   file name, and the last argument is the line number.</p>
8541
8542<h5>Semantics:</h5>
8543<p>This intrinsic allows annotation of local variables with arbitrary strings.
8544   This can be useful for special purpose optimizations that want to look for
8545   these annotations.  These have no other defined use; they are ignored by code
8546   generation and optimization.</p>
8547
8548</div>
8549
8550<!-- _______________________________________________________________________ -->
8551<h4>
8552  <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
8553</h4>
8554
8555<div>
8556
8557<h5>Syntax:</h5>
8558<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
8559   any integer bit width.</p>
8560
8561<pre>
8562  declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt;)
8563  declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt;)
8564  declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt;)
8565  declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt;)
8566  declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32  &lt;int&gt;)
8567</pre>
8568
8569<h5>Overview:</h5>
8570<p>The '<tt>llvm.annotation</tt>' intrinsic.</p>
8571
8572<h5>Arguments:</h5>
8573<p>The first argument is an integer value (result of some expression), the
8574   second is a pointer to a global string, the third is a pointer to a global
8575   string which is the source file name, and the last argument is the line
8576   number.  It returns the value of the first argument.</p>
8577
8578<h5>Semantics:</h5>
8579<p>This intrinsic allows annotations to be put on arbitrary expressions with
8580   arbitrary strings.  This can be useful for special purpose optimizations that
8581   want to look for these annotations.  These have no other defined use; they
8582   are ignored by code generation and optimization.</p>
8583
8584</div>
8585
8586<!-- _______________________________________________________________________ -->
8587<h4>
8588  <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
8589</h4>
8590
8591<div>
8592
8593<h5>Syntax:</h5>
8594<pre>
8595  declare void @llvm.trap() noreturn nounwind
8596</pre>
8597
8598<h5>Overview:</h5>
8599<p>The '<tt>llvm.trap</tt>' intrinsic.</p>
8600
8601<h5>Arguments:</h5>
8602<p>None.</p>
8603
8604<h5>Semantics:</h5>
8605<p>This intrinsic is lowered to the target dependent trap instruction. If the
8606   target does not have a trap instruction, this intrinsic will be lowered to
8607   a call of the <tt>abort()</tt> function.</p>
8608
8609</div>
8610
8611<!-- _______________________________________________________________________ -->
8612<h4>
8613  <a name="int_debugtrap">'<tt>llvm.debugtrap</tt>' Intrinsic</a>
8614</h4>
8615
8616<div>
8617
8618<h5>Syntax:</h5>
8619<pre>
8620  declare void @llvm.debugtrap() nounwind
8621</pre>
8622
8623<h5>Overview:</h5>
8624<p>The '<tt>llvm.debugtrap</tt>' intrinsic.</p>
8625
8626<h5>Arguments:</h5>
8627<p>None.</p>
8628
8629<h5>Semantics:</h5>
8630<p>This intrinsic is lowered to code which is intended to cause an execution
8631   trap with the intention of requesting the attention of a debugger.</p>
8632
8633</div>
8634
8635<!-- _______________________________________________________________________ -->
8636<h4>
8637  <a name="int_stackprotector">'<tt>llvm.stackprotector</tt>' Intrinsic</a>
8638</h4>
8639
8640<div>
8641
8642<h5>Syntax:</h5>
8643<pre>
8644  declare void @llvm.stackprotector(i8* &lt;guard&gt;, i8** &lt;slot&gt;)
8645</pre>
8646
8647<h5>Overview:</h5>
8648<p>The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and
8649   stores it onto the stack at <tt>slot</tt>. The stack slot is adjusted to
8650   ensure that it is placed on the stack before local variables.</p>
8651
8652<h5>Arguments:</h5>
8653<p>The <tt>llvm.stackprotector</tt> intrinsic requires two pointer
8654   arguments. The first argument is the value loaded from the stack
8655   guard <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt>
8656   that has enough space to hold the value of the guard.</p>
8657
8658<h5>Semantics:</h5>
8659<p>This intrinsic causes the prologue/epilogue inserter to force the position of
8660   the <tt>AllocaInst</tt> stack slot to be before local variables on the
8661   stack. This is to ensure that if a local variable on the stack is
8662   overwritten, it will destroy the value of the guard. When the function exits,
8663   the guard on the stack is checked against the original guard. If they are
8664   different, then the program aborts by calling the <tt>__stack_chk_fail()</tt>
8665   function.</p>
8666
8667</div>
8668
8669<!-- _______________________________________________________________________ -->
8670<h4>
8671  <a name="int_objectsize">'<tt>llvm.objectsize</tt>' Intrinsic</a>
8672</h4>
8673
8674<div>
8675
8676<h5>Syntax:</h5>
8677<pre>
8678  declare i32 @llvm.objectsize.i32(i8* &lt;object&gt;, i1 &lt;min&gt;)
8679  declare i64 @llvm.objectsize.i64(i8* &lt;object&gt;, i1 &lt;min&gt;)
8680</pre>
8681
8682<h5>Overview:</h5>
8683<p>The <tt>llvm.objectsize</tt> intrinsic is designed to provide information to
8684   the optimizers to determine at compile time whether a) an operation (like
8685   memcpy) will overflow a buffer that corresponds to an object, or b) that a
8686   runtime check for overflow isn't necessary. An object in this context means
8687   an allocation of a specific class, structure, array, or other object.</p>
8688
8689<h5>Arguments:</h5>
8690<p>The <tt>llvm.objectsize</tt> intrinsic takes two arguments. The first
8691   argument is a pointer to or into the <tt>object</tt>. The second argument
8692   is a boolean and determines whether <tt>llvm.objectsize</tt> returns 0 (if
8693   true) or -1 (if false) when the object size is unknown.
8694   The second argument only accepts constants.</p>
8695   
8696<h5>Semantics:</h5>
8697<p>The <tt>llvm.objectsize</tt> intrinsic is lowered to a constant representing
8698   the size of the object concerned. If the size cannot be determined at compile
8699   time, <tt>llvm.objectsize</tt> returns <tt>i32/i64 -1 or 0</tt>
8700   (depending on the <tt>min</tt> argument).</p>
8701
8702</div>
8703<!-- _______________________________________________________________________ -->
8704<h4>
8705  <a name="int_expect">'<tt>llvm.expect</tt>' Intrinsic</a>
8706</h4>
8707
8708<div>
8709
8710<h5>Syntax:</h5>
8711<pre>
8712  declare i32 @llvm.expect.i32(i32 &lt;val&gt;, i32 &lt;expected_val&gt;)
8713  declare i64 @llvm.expect.i64(i64 &lt;val&gt;, i64 &lt;expected_val&gt;)
8714</pre>
8715
8716<h5>Overview:</h5>
8717<p>The <tt>llvm.expect</tt> intrinsic provides information about expected (the
8718   most probable) value of <tt>val</tt>, which can be used by optimizers.</p>
8719
8720<h5>Arguments:</h5>
8721<p>The <tt>llvm.expect</tt> intrinsic takes two arguments. The first
8722   argument is a value. The second argument is an expected value, this needs to
8723   be a constant value, variables are not allowed.</p>
8724
8725<h5>Semantics:</h5>
8726<p>This intrinsic is lowered to the <tt>val</tt>.</p>
8727</div>
8728
8729<!-- _______________________________________________________________________ -->
8730<h4>
8731  <a name="int_donothing">'<tt>llvm.donothing</tt>' Intrinsic</a>
8732</h4>
8733
8734<div>
8735
8736<h5>Syntax:</h5>
8737<pre>
8738  declare void @llvm.donothing() nounwind readnone
8739</pre>
8740
8741<h5>Overview:</h5>
8742<p>The <tt>llvm.donothing</tt> intrinsic doesn't perform any operation. It's the
8743only intrinsic that can be called with an invoke instruction.</p>
8744
8745<h5>Arguments:</h5>
8746<p>None.</p>
8747
8748<h5>Semantics:</h5>
8749<p>This intrinsic does nothing, and it's removed by optimizers and ignored by
8750codegen.</p>
8751</div>
8752
8753</div>
8754
8755</div>
8756<!-- *********************************************************************** -->
8757<hr>
8758<address>
8759  <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
8760  src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
8761  <a href="http://validator.w3.org/check/referer"><img
8762  src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
8763
8764  <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
8765  <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
8766  Last modified: $Date$
8767</address>
8768
8769</body>
8770</html>
8771