1// Bitmap Allocator. -*- C++ -*-
2
3// Copyright (C) 2004, 2005, 2006 Free Software Foundation, Inc.
4//
5// This file is part of the GNU ISO C++ Library.  This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 2, or (at your option)
9// any later version.
10
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14// GNU General Public License for more details.
15
16// You should have received a copy of the GNU General Public License along
17// with this library; see the file COPYING.  If not, write to the Free
18// Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
19// USA.
20
21// As a special exception, you may use this file as part of a free software
22// library without restriction.  Specifically, if other files instantiate
23// templates or use macros or inline functions from this file, or you compile
24// this file and link it with other files to produce an executable, this
25// file does not by itself cause the resulting executable to be covered by
26// the GNU General Public License.  This exception does not however
27// invalidate any other reasons why the executable file might be covered by
28// the GNU General Public License.
29
30/** @file ext/bitmap_allocator.h
31 *  This file is a GNU extension to the Standard C++ Library.
32 */
33
34#ifndef _BITMAP_ALLOCATOR_H
35#define _BITMAP_ALLOCATOR_H 1
36
37#include <cstddef> // For std::size_t, and ptrdiff_t.
38#include <bits/functexcept.h> // For __throw_bad_alloc().
39#include <utility> // For std::pair.
40#include <functional> // For greater_equal, and less_equal.
41#include <new> // For operator new.
42#include <debug/debug.h> // _GLIBCXX_DEBUG_ASSERT
43#include <ext/concurrence.h>
44
45
46/** @brief The constant in the expression below is the alignment
47 * required in bytes.
48 */
49#define _BALLOC_ALIGN_BYTES 8
50
51_GLIBCXX_BEGIN_NAMESPACE(__gnu_cxx)
52
53  using std::size_t;
54  using std::ptrdiff_t;
55
56  namespace __detail
57  {
58    /** @class  __mini_vector bitmap_allocator.h bitmap_allocator.h
59     *
60     *  @brief  __mini_vector<> is a stripped down version of the
61     *  full-fledged std::vector<>.
62     *
63     *  It is to be used only for built-in types or PODs. Notable
64     *  differences are:
65     *
66     *  @detail
67     *  1. Not all accessor functions are present.
68     *  2. Used ONLY for PODs.
69     *  3. No Allocator template argument. Uses ::operator new() to get
70     *  memory, and ::operator delete() to free it.
71     *  Caveat: The dtor does NOT free the memory allocated, so this a
72     *  memory-leaking vector!
73     */
74    template<typename _Tp>
75      class __mini_vector
76      {
77	__mini_vector(const __mini_vector&);
78	__mini_vector& operator=(const __mini_vector&);
79
80      public:
81	typedef _Tp value_type;
82	typedef _Tp* pointer;
83	typedef _Tp& reference;
84	typedef const _Tp& const_reference;
85	typedef size_t size_type;
86	typedef ptrdiff_t difference_type;
87	typedef pointer iterator;
88
89      private:
90	pointer _M_start;
91	pointer _M_finish;
92	pointer _M_end_of_storage;
93
94	size_type
95	_M_space_left() const throw()
96	{ return _M_end_of_storage - _M_finish; }
97
98	pointer
99	allocate(size_type __n)
100	{ return static_cast<pointer>(::operator new(__n * sizeof(_Tp))); }
101
102	void
103	deallocate(pointer __p, size_type)
104	{ ::operator delete(__p); }
105
106      public:
107	// Members used: size(), push_back(), pop_back(),
108	// insert(iterator, const_reference), erase(iterator),
109	// begin(), end(), back(), operator[].
110
111	__mini_vector() : _M_start(0), _M_finish(0),
112			  _M_end_of_storage(0)
113	{ }
114
115#if 0
116	~__mini_vector()
117	{
118	  if (this->_M_start)
119	    {
120	      this->deallocate(this->_M_start, this->_M_end_of_storage
121			       - this->_M_start);
122	    }
123	}
124#endif
125
126	size_type
127	size() const throw()
128	{ return _M_finish - _M_start; }
129
130	iterator
131	begin() const throw()
132	{ return this->_M_start; }
133
134	iterator
135	end() const throw()
136	{ return this->_M_finish; }
137
138	reference
139	back() const throw()
140	{ return *(this->end() - 1); }
141
142	reference
143	operator[](const size_type __pos) const throw()
144	{ return this->_M_start[__pos]; }
145
146	void
147	insert(iterator __pos, const_reference __x);
148
149	void
150	push_back(const_reference __x)
151	{
152	  if (this->_M_space_left())
153	    {
154	      *this->end() = __x;
155	      ++this->_M_finish;
156	    }
157	  else
158	    this->insert(this->end(), __x);
159	}
160
161	void
162	pop_back() throw()
163	{ --this->_M_finish; }
164
165	void
166	erase(iterator __pos) throw();
167
168	void
169	clear() throw()
170	{ this->_M_finish = this->_M_start; }
171      };
172
173    // Out of line function definitions.
174    template<typename _Tp>
175      void __mini_vector<_Tp>::
176      insert(iterator __pos, const_reference __x)
177      {
178	if (this->_M_space_left())
179	  {
180	    size_type __to_move = this->_M_finish - __pos;
181	    iterator __dest = this->end();
182	    iterator __src = this->end() - 1;
183
184	    ++this->_M_finish;
185	    while (__to_move)
186	      {
187		*__dest = *__src;
188		--__dest; --__src; --__to_move;
189	      }
190	    *__pos = __x;
191	  }
192	else
193	  {
194	    size_type __new_size = this->size() ? this->size() * 2 : 1;
195	    iterator __new_start = this->allocate(__new_size);
196	    iterator __first = this->begin();
197	    iterator __start = __new_start;
198	    while (__first != __pos)
199	      {
200		*__start = *__first;
201		++__start; ++__first;
202	      }
203	    *__start = __x;
204	    ++__start;
205	    while (__first != this->end())
206	      {
207		*__start = *__first;
208		++__start; ++__first;
209	      }
210	    if (this->_M_start)
211	      this->deallocate(this->_M_start, this->size());
212
213	    this->_M_start = __new_start;
214	    this->_M_finish = __start;
215	    this->_M_end_of_storage = this->_M_start + __new_size;
216	  }
217      }
218
219    template<typename _Tp>
220      void __mini_vector<_Tp>::
221      erase(iterator __pos) throw()
222      {
223	while (__pos + 1 != this->end())
224	  {
225	    *__pos = __pos[1];
226	    ++__pos;
227	  }
228	--this->_M_finish;
229      }
230
231
232    template<typename _Tp>
233      struct __mv_iter_traits
234      {
235	typedef typename _Tp::value_type value_type;
236	typedef typename _Tp::difference_type difference_type;
237      };
238
239    template<typename _Tp>
240      struct __mv_iter_traits<_Tp*>
241      {
242	typedef _Tp value_type;
243	typedef ptrdiff_t difference_type;
244      };
245
246    enum
247      {
248	bits_per_byte = 8,
249	bits_per_block = sizeof(size_t) * size_t(bits_per_byte)
250      };
251
252    template<typename _ForwardIterator, typename _Tp, typename _Compare>
253      _ForwardIterator
254      __lower_bound(_ForwardIterator __first, _ForwardIterator __last,
255		    const _Tp& __val, _Compare __comp)
256      {
257	typedef typename __mv_iter_traits<_ForwardIterator>::value_type
258	  _ValueType;
259	typedef typename __mv_iter_traits<_ForwardIterator>::difference_type
260	  _DistanceType;
261
262	_DistanceType __len = __last - __first;
263	_DistanceType __half;
264	_ForwardIterator __middle;
265
266	while (__len > 0)
267	  {
268	    __half = __len >> 1;
269	    __middle = __first;
270	    __middle += __half;
271	    if (__comp(*__middle, __val))
272	      {
273		__first = __middle;
274		++__first;
275		__len = __len - __half - 1;
276	      }
277	    else
278	      __len = __half;
279	  }
280	return __first;
281      }
282
283    template<typename _InputIterator, typename _Predicate>
284      inline _InputIterator
285      __find_if(_InputIterator __first, _InputIterator __last, _Predicate __p)
286      {
287	while (__first != __last && !__p(*__first))
288	  ++__first;
289	return __first;
290      }
291
292    /** @brief The number of Blocks pointed to by the address pair
293     *  passed to the function.
294     */
295    template<typename _AddrPair>
296      inline size_t
297      __num_blocks(_AddrPair __ap)
298      { return (__ap.second - __ap.first) + 1; }
299
300    /** @brief The number of Bit-maps pointed to by the address pair
301     *  passed to the function.
302     */
303    template<typename _AddrPair>
304      inline size_t
305      __num_bitmaps(_AddrPair __ap)
306      { return __num_blocks(__ap) / size_t(bits_per_block); }
307
308    // _Tp should be a pointer type.
309    template<typename _Tp>
310      class _Inclusive_between
311      : public std::unary_function<typename std::pair<_Tp, _Tp>, bool>
312      {
313	typedef _Tp pointer;
314	pointer _M_ptr_value;
315	typedef typename std::pair<_Tp, _Tp> _Block_pair;
316
317      public:
318	_Inclusive_between(pointer __ptr) : _M_ptr_value(__ptr)
319	{ }
320
321	bool
322	operator()(_Block_pair __bp) const throw()
323	{
324	  if (std::less_equal<pointer>()(_M_ptr_value, __bp.second)
325	      && std::greater_equal<pointer>()(_M_ptr_value, __bp.first))
326	    return true;
327	  else
328	    return false;
329	}
330      };
331
332    // Used to pass a Functor to functions by reference.
333    template<typename _Functor>
334      class _Functor_Ref
335      : public std::unary_function<typename _Functor::argument_type,
336				   typename _Functor::result_type>
337      {
338	_Functor& _M_fref;
339
340      public:
341	typedef typename _Functor::argument_type argument_type;
342	typedef typename _Functor::result_type result_type;
343
344	_Functor_Ref(_Functor& __fref) : _M_fref(__fref)
345	{ }
346
347	result_type
348	operator()(argument_type __arg)
349	{ return _M_fref(__arg); }
350      };
351
352    /** @class  _Ffit_finder bitmap_allocator.h bitmap_allocator.h
353     *
354     *  @brief  The class which acts as a predicate for applying the
355     *  first-fit memory allocation policy for the bitmap allocator.
356     */
357    // _Tp should be a pointer type, and _Alloc is the Allocator for
358    // the vector.
359    template<typename _Tp>
360      class _Ffit_finder
361      : public std::unary_function<typename std::pair<_Tp, _Tp>, bool>
362      {
363	typedef typename std::pair<_Tp, _Tp> _Block_pair;
364	typedef typename __detail::__mini_vector<_Block_pair> _BPVector;
365	typedef typename _BPVector::difference_type _Counter_type;
366
367	size_t* _M_pbitmap;
368	_Counter_type _M_data_offset;
369
370      public:
371	_Ffit_finder() : _M_pbitmap(0), _M_data_offset(0)
372	{ }
373
374	bool
375	operator()(_Block_pair __bp) throw()
376	{
377	  // Set the _rover to the last physical location bitmap,
378	  // which is the bitmap which belongs to the first free
379	  // block. Thus, the bitmaps are in exact reverse order of
380	  // the actual memory layout. So, we count down the bimaps,
381	  // which is the same as moving up the memory.
382
383	  // If the used count stored at the start of the Bit Map headers
384	  // is equal to the number of Objects that the current Block can
385	  // store, then there is definitely no space for another single
386	  // object, so just return false.
387	  _Counter_type __diff =
388	    __gnu_cxx::__detail::__num_bitmaps(__bp);
389
390	  if (*(reinterpret_cast<size_t*>
391		(__bp.first) - (__diff + 1))
392	      == __gnu_cxx::__detail::__num_blocks(__bp))
393	    return false;
394
395	  size_t* __rover = reinterpret_cast<size_t*>(__bp.first) - 1;
396
397	  for (_Counter_type __i = 0; __i < __diff; ++__i)
398	    {
399	      _M_data_offset = __i;
400	      if (*__rover)
401		{
402		  _M_pbitmap = __rover;
403		  return true;
404		}
405	      --__rover;
406	    }
407	  return false;
408	}
409
410
411	size_t*
412	_M_get() const throw()
413	{ return _M_pbitmap; }
414
415	_Counter_type
416	_M_offset() const throw()
417	{ return _M_data_offset * size_t(bits_per_block); }
418      };
419
420
421    /** @class  _Bitmap_counter bitmap_allocator.h bitmap_allocator.h
422     *
423     *  @brief  The bitmap counter which acts as the bitmap
424     *  manipulator, and manages the bit-manipulation functions and
425     *  the searching and identification functions on the bit-map.
426     */
427    // _Tp should be a pointer type.
428    template<typename _Tp>
429      class _Bitmap_counter
430      {
431	typedef typename __detail::__mini_vector<typename std::pair<_Tp, _Tp> >
432	_BPVector;
433	typedef typename _BPVector::size_type _Index_type;
434	typedef _Tp pointer;
435
436	_BPVector& _M_vbp;
437	size_t* _M_curr_bmap;
438	size_t* _M_last_bmap_in_block;
439	_Index_type _M_curr_index;
440
441      public:
442	// Use the 2nd parameter with care. Make sure that such an
443	// entry exists in the vector before passing that particular
444	// index to this ctor.
445	_Bitmap_counter(_BPVector& Rvbp, long __index = -1) : _M_vbp(Rvbp)
446	{ this->_M_reset(__index); }
447
448	void
449	_M_reset(long __index = -1) throw()
450	{
451	  if (__index == -1)
452	    {
453	      _M_curr_bmap = 0;
454	      _M_curr_index = static_cast<_Index_type>(-1);
455	      return;
456	    }
457
458	  _M_curr_index = __index;
459	  _M_curr_bmap = reinterpret_cast<size_t*>
460	    (_M_vbp[_M_curr_index].first) - 1;
461
462	  _GLIBCXX_DEBUG_ASSERT(__index <= (long)_M_vbp.size() - 1);
463
464	  _M_last_bmap_in_block = _M_curr_bmap
465	    - ((_M_vbp[_M_curr_index].second
466		- _M_vbp[_M_curr_index].first + 1)
467	       / size_t(bits_per_block) - 1);
468	}
469
470	// Dangerous Function! Use with extreme care. Pass to this
471	// function ONLY those values that are known to be correct,
472	// otherwise this will mess up big time.
473	void
474	_M_set_internal_bitmap(size_t* __new_internal_marker) throw()
475	{ _M_curr_bmap = __new_internal_marker; }
476
477	bool
478	_M_finished() const throw()
479	{ return(_M_curr_bmap == 0); }
480
481	_Bitmap_counter&
482	operator++() throw()
483	{
484	  if (_M_curr_bmap == _M_last_bmap_in_block)
485	    {
486	      if (++_M_curr_index == _M_vbp.size())
487		_M_curr_bmap = 0;
488	      else
489		this->_M_reset(_M_curr_index);
490	    }
491	  else
492	    --_M_curr_bmap;
493	  return *this;
494	}
495
496	size_t*
497	_M_get() const throw()
498	{ return _M_curr_bmap; }
499
500	pointer
501	_M_base() const throw()
502	{ return _M_vbp[_M_curr_index].first; }
503
504	_Index_type
505	_M_offset() const throw()
506	{
507	  return size_t(bits_per_block)
508	    * ((reinterpret_cast<size_t*>(this->_M_base())
509		- _M_curr_bmap) - 1);
510	}
511
512	_Index_type
513	_M_where() const throw()
514	{ return _M_curr_index; }
515      };
516
517    /** @brief  Mark a memory address as allocated by re-setting the
518     *  corresponding bit in the bit-map.
519     */
520    inline void
521    __bit_allocate(size_t* __pbmap, size_t __pos) throw()
522    {
523      size_t __mask = 1 << __pos;
524      __mask = ~__mask;
525      *__pbmap &= __mask;
526    }
527
528    /** @brief  Mark a memory address as free by setting the
529     *  corresponding bit in the bit-map.
530     */
531    inline void
532    __bit_free(size_t* __pbmap, size_t __pos) throw()
533    {
534      size_t __mask = 1 << __pos;
535      *__pbmap |= __mask;
536    }
537  } // namespace __detail
538
539  /** @brief  Generic Version of the bsf instruction.
540   */
541  inline size_t
542  _Bit_scan_forward(size_t __num)
543  { return static_cast<size_t>(__builtin_ctzl(__num)); }
544
545  /** @class  free_list bitmap_allocator.h bitmap_allocator.h
546   *
547   *  @brief  The free list class for managing chunks of memory to be
548   *  given to and returned by the bitmap_allocator.
549   */
550  class free_list
551  {
552    typedef size_t* 				value_type;
553    typedef __detail::__mini_vector<value_type> vector_type;
554    typedef vector_type::iterator 		iterator;
555protected:
556    typedef __mutex				__mutex_type;
557private:
558
559    struct _LT_pointer_compare
560    {
561      bool
562      operator()(const size_t* __pui,
563		 const size_t __cui) const throw()
564      { return *__pui < __cui; }
565    };
566
567#if defined __GTHREADS
568    __mutex_type&
569    _M_get_mutex()
570    {
571      static __mutex_type _S_mutex;
572      return _S_mutex;
573    }
574#endif
575
576    vector_type&
577    _M_get_free_list()
578    {
579      static vector_type _S_free_list;
580      return _S_free_list;
581    }
582
583    /** @brief  Performs validation of memory based on their size.
584     *
585     *  @param  __addr The pointer to the memory block to be
586     *  validated.
587     *
588     *  @detail  Validates the memory block passed to this function and
589     *  appropriately performs the action of managing the free list of
590     *  blocks by adding this block to the free list or deleting this
591     *  or larger blocks from the free list.
592     */
593    void
594    _M_validate(size_t* __addr) throw()
595    {
596      vector_type& __free_list = _M_get_free_list();
597      const vector_type::size_type __max_size = 64;
598      if (__free_list.size() >= __max_size)
599	{
600	  // Ok, the threshold value has been reached.  We determine
601	  // which block to remove from the list of free blocks.
602	  if (*__addr >= *__free_list.back())
603	    {
604	      // Ok, the new block is greater than or equal to the
605	      // last block in the list of free blocks. We just free
606	      // the new block.
607	      ::operator delete(static_cast<void*>(__addr));
608	      return;
609	    }
610	  else
611	    {
612	      // Deallocate the last block in the list of free lists,
613	      // and insert the new one in it's correct position.
614	      ::operator delete(static_cast<void*>(__free_list.back()));
615	      __free_list.pop_back();
616	    }
617	}
618
619      // Just add the block to the list of free lists unconditionally.
620      iterator __temp = __gnu_cxx::__detail::__lower_bound
621	(__free_list.begin(), __free_list.end(),
622	 *__addr, _LT_pointer_compare());
623
624      // We may insert the new free list before _temp;
625      __free_list.insert(__temp, __addr);
626    }
627
628    /** @brief  Decides whether the wastage of memory is acceptable for
629     *  the current memory request and returns accordingly.
630     *
631     *  @param __block_size The size of the block available in the free
632     *  list.
633     *
634     *  @param __required_size The required size of the memory block.
635     *
636     *  @return true if the wastage incurred is acceptable, else returns
637     *  false.
638     */
639    bool
640    _M_should_i_give(size_t __block_size,
641		     size_t __required_size) throw()
642    {
643      const size_t __max_wastage_percentage = 36;
644      if (__block_size >= __required_size &&
645	  (((__block_size - __required_size) * 100 / __block_size)
646	   < __max_wastage_percentage))
647	return true;
648      else
649	return false;
650    }
651
652  public:
653    /** @brief This function returns the block of memory to the
654     *  internal free list.
655     *
656     *  @param  __addr The pointer to the memory block that was given
657     *  by a call to the _M_get function.
658     */
659    inline void
660    _M_insert(size_t* __addr) throw()
661    {
662#if defined __GTHREADS
663      __gnu_cxx::__scoped_lock __bfl_lock(_M_get_mutex());
664#endif
665      // Call _M_validate to decide what should be done with
666      // this particular free list.
667      this->_M_validate(reinterpret_cast<size_t*>(__addr) - 1);
668      // See discussion as to why this is 1!
669    }
670
671    /** @brief  This function gets a block of memory of the specified
672     *  size from the free list.
673     *
674     *  @param  __sz The size in bytes of the memory required.
675     *
676     *  @return  A pointer to the new memory block of size at least
677     *  equal to that requested.
678     */
679    size_t*
680    _M_get(size_t __sz) throw(std::bad_alloc);
681
682    /** @brief  This function just clears the internal Free List, and
683     *  gives back all the memory to the OS.
684     */
685    void
686    _M_clear();
687  };
688
689
690  // Forward declare the class.
691  template<typename _Tp>
692    class bitmap_allocator;
693
694  // Specialize for void:
695  template<>
696    class bitmap_allocator<void>
697    {
698    public:
699      typedef void*       pointer;
700      typedef const void* const_pointer;
701
702      // Reference-to-void members are impossible.
703      typedef void  value_type;
704      template<typename _Tp1>
705        struct rebind
706	{
707	  typedef bitmap_allocator<_Tp1> other;
708	};
709    };
710
711  template<typename _Tp>
712    class bitmap_allocator : private free_list
713    {
714    public:
715      typedef size_t    		size_type;
716      typedef ptrdiff_t 		difference_type;
717      typedef _Tp*        		pointer;
718      typedef const _Tp*  		const_pointer;
719      typedef _Tp&        		reference;
720      typedef const _Tp&  		const_reference;
721      typedef _Tp         		value_type;
722      typedef free_list::__mutex_type 	__mutex_type;
723
724      template<typename _Tp1>
725        struct rebind
726	{
727	  typedef bitmap_allocator<_Tp1> other;
728	};
729
730    private:
731      template<size_t _BSize, size_t _AlignSize>
732        struct aligned_size
733	{
734	  enum
735	    {
736	      modulus = _BSize % _AlignSize,
737	      value = _BSize + (modulus ? _AlignSize - (modulus) : 0)
738	    };
739	};
740
741      struct _Alloc_block
742      {
743	char __M_unused[aligned_size<sizeof(value_type),
744			_BALLOC_ALIGN_BYTES>::value];
745      };
746
747
748      typedef typename std::pair<_Alloc_block*, _Alloc_block*> _Block_pair;
749
750      typedef typename
751      __detail::__mini_vector<_Block_pair> _BPVector;
752
753#if defined _GLIBCXX_DEBUG
754      // Complexity: O(lg(N)). Where, N is the number of block of size
755      // sizeof(value_type).
756      void
757      _S_check_for_free_blocks() throw()
758      {
759	typedef typename
760	  __gnu_cxx::__detail::_Ffit_finder<_Alloc_block*> _FFF;
761	_FFF __fff;
762	typedef typename _BPVector::iterator _BPiter;
763	_BPiter __bpi =
764	  __gnu_cxx::__detail::__find_if
765	  (_S_mem_blocks.begin(), _S_mem_blocks.end(),
766	   __gnu_cxx::__detail::_Functor_Ref<_FFF>(__fff));
767
768	_GLIBCXX_DEBUG_ASSERT(__bpi == _S_mem_blocks.end());
769      }
770#endif
771
772      /** @brief  Responsible for exponentially growing the internal
773       *  memory pool.
774       *
775       *  @throw  std::bad_alloc. If memory can not be allocated.
776       *
777       *  @detail  Complexity: O(1), but internally depends upon the
778       *  complexity of the function free_list::_M_get. The part where
779       *  the bitmap headers are written has complexity: O(X),where X
780       *  is the number of blocks of size sizeof(value_type) within
781       *  the newly acquired block. Having a tight bound.
782       */
783      void
784      _S_refill_pool() throw(std::bad_alloc)
785      {
786#if defined _GLIBCXX_DEBUG
787	_S_check_for_free_blocks();
788#endif
789
790	const size_t __num_bitmaps = (_S_block_size
791				      / size_t(__detail::bits_per_block));
792	const size_t __size_to_allocate = sizeof(size_t)
793	  + _S_block_size * sizeof(_Alloc_block)
794	  + __num_bitmaps * sizeof(size_t);
795
796	size_t* __temp =
797	  reinterpret_cast<size_t*>
798	  (this->_M_get(__size_to_allocate));
799	*__temp = 0;
800	++__temp;
801
802	// The Header information goes at the Beginning of the Block.
803	_Block_pair __bp =
804	  std::make_pair(reinterpret_cast<_Alloc_block*>
805			 (__temp + __num_bitmaps),
806			 reinterpret_cast<_Alloc_block*>
807			 (__temp + __num_bitmaps)
808			 + _S_block_size - 1);
809
810	// Fill the Vector with this information.
811	_S_mem_blocks.push_back(__bp);
812
813	size_t __bit_mask = 0; // 0 Indicates all Allocated.
814	__bit_mask = ~__bit_mask; // 1 Indicates all Free.
815
816	for (size_t __i = 0; __i < __num_bitmaps; ++__i)
817	  __temp[__i] = __bit_mask;
818
819	_S_block_size *= 2;
820      }
821
822
823      static _BPVector _S_mem_blocks;
824      static size_t _S_block_size;
825      static __gnu_cxx::__detail::
826      _Bitmap_counter<_Alloc_block*> _S_last_request;
827      static typename _BPVector::size_type _S_last_dealloc_index;
828#if defined __GTHREADS
829      static __mutex_type _S_mut;
830#endif
831
832    public:
833
834      /** @brief  Allocates memory for a single object of size
835       *  sizeof(_Tp).
836       *
837       *  @throw  std::bad_alloc. If memory can not be allocated.
838       *
839       *  @detail  Complexity: Worst case complexity is O(N), but that
840       *  is hardly ever hit. If and when this particular case is
841       *  encountered, the next few cases are guaranteed to have a
842       *  worst case complexity of O(1)!  That's why this function
843       *  performs very well on average. You can consider this
844       *  function to have a complexity referred to commonly as:
845       *  Amortized Constant time.
846       */
847      pointer
848      _M_allocate_single_object() throw(std::bad_alloc)
849      {
850#if defined __GTHREADS
851	__gnu_cxx::__scoped_lock __bit_lock(_S_mut);
852#endif
853
854	// The algorithm is something like this: The last_request
855	// variable points to the last accessed Bit Map. When such a
856	// condition occurs, we try to find a free block in the
857	// current bitmap, or succeeding bitmaps until the last bitmap
858	// is reached. If no free block turns up, we resort to First
859	// Fit method.
860
861	// WARNING: Do not re-order the condition in the while
862	// statement below, because it relies on C++'s short-circuit
863	// evaluation. The return from _S_last_request->_M_get() will
864	// NOT be dereference able if _S_last_request->_M_finished()
865	// returns true. This would inevitably lead to a NULL pointer
866	// dereference if tinkered with.
867	while (_S_last_request._M_finished() == false
868	       && (*(_S_last_request._M_get()) == 0))
869	  {
870	    _S_last_request.operator++();
871	  }
872
873	if (__builtin_expect(_S_last_request._M_finished() == true, false))
874	  {
875	    // Fall Back to First Fit algorithm.
876	    typedef typename
877	      __gnu_cxx::__detail::_Ffit_finder<_Alloc_block*> _FFF;
878	    _FFF __fff;
879	    typedef typename _BPVector::iterator _BPiter;
880	    _BPiter __bpi =
881	      __gnu_cxx::__detail::__find_if
882	      (_S_mem_blocks.begin(), _S_mem_blocks.end(),
883	       __gnu_cxx::__detail::_Functor_Ref<_FFF>(__fff));
884
885	    if (__bpi != _S_mem_blocks.end())
886	      {
887		// Search was successful. Ok, now mark the first bit from
888		// the right as 0, meaning Allocated. This bit is obtained
889		// by calling _M_get() on __fff.
890		size_t __nz_bit = _Bit_scan_forward(*__fff._M_get());
891		__detail::__bit_allocate(__fff._M_get(), __nz_bit);
892
893		_S_last_request._M_reset(__bpi - _S_mem_blocks.begin());
894
895		// Now, get the address of the bit we marked as allocated.
896		pointer __ret = reinterpret_cast<pointer>
897		  (__bpi->first + __fff._M_offset() + __nz_bit);
898		size_t* __puse_count =
899		  reinterpret_cast<size_t*>
900		  (__bpi->first)
901		  - (__gnu_cxx::__detail::__num_bitmaps(*__bpi) + 1);
902
903		++(*__puse_count);
904		return __ret;
905	      }
906	    else
907	      {
908		// Search was unsuccessful. We Add more memory to the
909		// pool by calling _S_refill_pool().
910		_S_refill_pool();
911
912		// _M_Reset the _S_last_request structure to the first
913		// free block's bit map.
914		_S_last_request._M_reset(_S_mem_blocks.size() - 1);
915
916		// Now, mark that bit as allocated.
917	      }
918	  }
919
920	// _S_last_request holds a pointer to a valid bit map, that
921	// points to a free block in memory.
922	size_t __nz_bit = _Bit_scan_forward(*_S_last_request._M_get());
923	__detail::__bit_allocate(_S_last_request._M_get(), __nz_bit);
924
925	pointer __ret = reinterpret_cast<pointer>
926	  (_S_last_request._M_base() + _S_last_request._M_offset() + __nz_bit);
927
928	size_t* __puse_count = reinterpret_cast<size_t*>
929	  (_S_mem_blocks[_S_last_request._M_where()].first)
930	  - (__gnu_cxx::__detail::
931	     __num_bitmaps(_S_mem_blocks[_S_last_request._M_where()]) + 1);
932
933	++(*__puse_count);
934	return __ret;
935      }
936
937      /** @brief  Deallocates memory that belongs to a single object of
938       *  size sizeof(_Tp).
939       *
940       *  @detail  Complexity: O(lg(N)), but the worst case is not hit
941       *  often!  This is because containers usually deallocate memory
942       *  close to each other and this case is handled in O(1) time by
943       *  the deallocate function.
944       */
945      void
946      _M_deallocate_single_object(pointer __p) throw()
947      {
948#if defined __GTHREADS
949	__gnu_cxx::__scoped_lock __bit_lock(_S_mut);
950#endif
951	_Alloc_block* __real_p = reinterpret_cast<_Alloc_block*>(__p);
952
953	typedef typename _BPVector::iterator _Iterator;
954	typedef typename _BPVector::difference_type _Difference_type;
955
956	_Difference_type __diff;
957	long __displacement;
958
959	_GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index >= 0);
960
961
962	if (__gnu_cxx::__detail::_Inclusive_between<_Alloc_block*>
963	    (__real_p) (_S_mem_blocks[_S_last_dealloc_index]))
964	  {
965	    _GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index
966				  <= _S_mem_blocks.size() - 1);
967
968	    // Initial Assumption was correct!
969	    __diff = _S_last_dealloc_index;
970	    __displacement = __real_p - _S_mem_blocks[__diff].first;
971	  }
972	else
973	  {
974	    _Iterator _iter = __gnu_cxx::__detail::
975	      __find_if(_S_mem_blocks.begin(),
976			_S_mem_blocks.end(),
977			__gnu_cxx::__detail::
978			_Inclusive_between<_Alloc_block*>(__real_p));
979
980	    _GLIBCXX_DEBUG_ASSERT(_iter != _S_mem_blocks.end());
981
982	    __diff = _iter - _S_mem_blocks.begin();
983	    __displacement = __real_p - _S_mem_blocks[__diff].first;
984	    _S_last_dealloc_index = __diff;
985	  }
986
987	// Get the position of the iterator that has been found.
988	const size_t __rotate = (__displacement
989				 % size_t(__detail::bits_per_block));
990	size_t* __bitmapC =
991	  reinterpret_cast<size_t*>
992	  (_S_mem_blocks[__diff].first) - 1;
993	__bitmapC -= (__displacement / size_t(__detail::bits_per_block));
994
995	__detail::__bit_free(__bitmapC, __rotate);
996	size_t* __puse_count = reinterpret_cast<size_t*>
997	  (_S_mem_blocks[__diff].first)
998	  - (__gnu_cxx::__detail::__num_bitmaps(_S_mem_blocks[__diff]) + 1);
999
1000	_GLIBCXX_DEBUG_ASSERT(*__puse_count != 0);
1001
1002	--(*__puse_count);
1003
1004	if (__builtin_expect(*__puse_count == 0, false))
1005	  {
1006	    _S_block_size /= 2;
1007
1008	    // We can safely remove this block.
1009	    // _Block_pair __bp = _S_mem_blocks[__diff];
1010	    this->_M_insert(__puse_count);
1011	    _S_mem_blocks.erase(_S_mem_blocks.begin() + __diff);
1012
1013	    // Reset the _S_last_request variable to reflect the
1014	    // erased block. We do this to protect future requests
1015	    // after the last block has been removed from a particular
1016	    // memory Chunk, which in turn has been returned to the
1017	    // free list, and hence had been erased from the vector,
1018	    // so the size of the vector gets reduced by 1.
1019	    if ((_Difference_type)_S_last_request._M_where() >= __diff--)
1020	      _S_last_request._M_reset(__diff);
1021
1022	    // If the Index into the vector of the region of memory
1023	    // that might hold the next address that will be passed to
1024	    // deallocated may have been invalidated due to the above
1025	    // erase procedure being called on the vector, hence we
1026	    // try to restore this invariant too.
1027	    if (_S_last_dealloc_index >= _S_mem_blocks.size())
1028	      {
1029		_S_last_dealloc_index =(__diff != -1 ? __diff : 0);
1030		_GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index >= 0);
1031	      }
1032	  }
1033      }
1034
1035    public:
1036      bitmap_allocator() throw()
1037      { }
1038
1039      bitmap_allocator(const bitmap_allocator&)
1040      { }
1041
1042      template<typename _Tp1>
1043        bitmap_allocator(const bitmap_allocator<_Tp1>&) throw()
1044        { }
1045
1046      ~bitmap_allocator() throw()
1047      { }
1048
1049      pointer
1050      allocate(size_type __n)
1051      {
1052	if (__builtin_expect(__n > this->max_size(), false))
1053	  std::__throw_bad_alloc();
1054
1055	if (__builtin_expect(__n == 1, true))
1056	  return this->_M_allocate_single_object();
1057	else
1058	  {
1059	    const size_type __b = __n * sizeof(value_type);
1060	    return reinterpret_cast<pointer>(::operator new(__b));
1061	  }
1062      }
1063
1064      pointer
1065      allocate(size_type __n, typename bitmap_allocator<void>::const_pointer)
1066      { return allocate(__n); }
1067
1068      void
1069      deallocate(pointer __p, size_type __n) throw()
1070      {
1071	if (__builtin_expect(__p != 0, true))
1072	  {
1073	    if (__builtin_expect(__n == 1, true))
1074	      this->_M_deallocate_single_object(__p);
1075	    else
1076	      ::operator delete(__p);
1077	  }
1078      }
1079
1080      pointer
1081      address(reference __r) const
1082      { return &__r; }
1083
1084      const_pointer
1085      address(const_reference __r) const
1086      { return &__r; }
1087
1088      size_type
1089      max_size() const throw()
1090      { return size_type(-1) / sizeof(value_type); }
1091
1092      void
1093      construct(pointer __p, const_reference __data)
1094      { ::new(__p) value_type(__data); }
1095
1096      void
1097      destroy(pointer __p)
1098      { __p->~value_type(); }
1099    };
1100
1101  template<typename _Tp1, typename _Tp2>
1102    bool
1103    operator==(const bitmap_allocator<_Tp1>&,
1104	       const bitmap_allocator<_Tp2>&) throw()
1105    { return true; }
1106
1107  template<typename _Tp1, typename _Tp2>
1108    bool
1109    operator!=(const bitmap_allocator<_Tp1>&,
1110	       const bitmap_allocator<_Tp2>&) throw()
1111  { return false; }
1112
1113  // Static member definitions.
1114  template<typename _Tp>
1115    typename bitmap_allocator<_Tp>::_BPVector
1116    bitmap_allocator<_Tp>::_S_mem_blocks;
1117
1118  template<typename _Tp>
1119    size_t bitmap_allocator<_Tp>::_S_block_size =
1120    2 * size_t(__detail::bits_per_block);
1121
1122  template<typename _Tp>
1123    typename __gnu_cxx::bitmap_allocator<_Tp>::_BPVector::size_type
1124    bitmap_allocator<_Tp>::_S_last_dealloc_index = 0;
1125
1126  template<typename _Tp>
1127    __gnu_cxx::__detail::_Bitmap_counter
1128  <typename bitmap_allocator<_Tp>::_Alloc_block*>
1129    bitmap_allocator<_Tp>::_S_last_request(_S_mem_blocks);
1130
1131#if defined __GTHREADS
1132  template<typename _Tp>
1133    typename bitmap_allocator<_Tp>::__mutex_type
1134    bitmap_allocator<_Tp>::_S_mut;
1135#endif
1136
1137_GLIBCXX_END_NAMESPACE
1138
1139#endif
1140
1141