1#include "FEATURE/uwin"
2
3#if !_UWIN || _lib_erf
4
5void _STUB_erf(){}
6
7#else
8
9/*-
10 * Copyright (c) 1992, 1993
11 *	The Regents of the University of California.  All rights reserved.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 *    notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. Neither the name of the University nor the names of its contributors
22 *    may be used to endorse or promote products derived from this software
23 *    without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 */
37
38#ifndef lint
39static char sccsid[] = "@(#)erf.c	8.1 (Berkeley) 6/4/93";
40#endif /* not lint */
41
42/* Modified Nov 30, 1992 P. McILROY:
43 *	Replaced expansions for x >= 1.25 (error 1.7ulp vs ~6ulp)
44 * Replaced even+odd with direct calculation for x < .84375,
45 * to avoid destructive cancellation.
46 *
47 * Performance of erfc(x):
48 * In 300000 trials in the range [.83, .84375] the
49 * maximum observed error was 3.6ulp.
50 *
51 * In [.84735,1.25] the maximum observed error was <2.5ulp in
52 * 100000 runs in the range [1.2, 1.25].
53 *
54 * In [1.25,26] (Not including subnormal results)
55 * the error is < 1.7ulp.
56 */
57
58/* double erf(double x)
59 * double erfc(double x)
60 *			     x
61 *		      2      |\
62 *     erf(x)  =  ---------  | exp(-t*t)dt
63 *		   sqrt(pi) \|
64 *			     0
65 *
66 *     erfc(x) =  1-erf(x)
67 *
68 * Method:
69 *      1. Reduce x to |x| by erf(-x) = -erf(x)
70 *	2. For x in [0, 0.84375]
71 *	    erf(x)  = x + x*P(x^2)
72 *          erfc(x) = 1 - erf(x)           if x<=0.25
73 *                  = 0.5 + ((0.5-x)-x*P)  if x in [0.25,0.84375]
74 *	   where
75 *			2		 2	  4		  20
76 *              P =  P(x ) = (p0 + p1 * x + p2 * x + ... + p10 * x  )
77 * 	   is an approximation to (erf(x)-x)/x with precision
78 *
79 *						 -56.45
80 *			| P - (erf(x)-x)/x | <= 2
81 *
82 *
83 *	   Remark. The formula is derived by noting
84 *          erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
85 *	   and that
86 *          2/sqrt(pi) = 1.128379167095512573896158903121545171688
87 *	   is close to one. The interval is chosen because the fixed
88 *	   point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
89 *	   near 0.6174), and by some experiment, 0.84375 is chosen to
90 * 	   guarantee the error is less than one ulp for erf.
91 *
92 *      3. For x in [0.84375,1.25], let s = x - 1, and
93 *         c = 0.84506291151 rounded to single (24 bits)
94 *         	erf(x)  = c  + P1(s)/Q1(s)
95 *         	erfc(x) = (1-c)  - P1(s)/Q1(s)
96 *         	|P1/Q1 - (erf(x)-c)| <= 2**-59.06
97 *	   Remark: here we use the taylor series expansion at x=1.
98 *		erf(1+s) = erf(1) + s*Poly(s)
99 *			 = 0.845.. + P1(s)/Q1(s)
100 *	   That is, we use rational approximation to approximate
101 *			erf(1+s) - (c = (single)0.84506291151)
102 *	   Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
103 *	   where
104 *		P1(s) = degree 6 poly in s
105 *		Q1(s) = degree 6 poly in s
106 *
107 *	4. For x in [1.25, 2]; [2, 4]
108 *         	erf(x)  = 1.0 - tiny
109 *		erfc(x)	= (1/x)exp(-x*x-(.5*log(pi) -.5z + R(z)/S(z))
110 *
111 *	Where z = 1/(x*x), R is degree 9, and S is degree 3;
112 *
113 *      5. For x in [4,28]
114 *         	erf(x)  = 1.0 - tiny
115 *		erfc(x)	= (1/x)exp(-x*x-(.5*log(pi)+eps + zP(z))
116 *
117 *	Where P is degree 14 polynomial in 1/(x*x).
118 *
119 *      Notes:
120 *	   Here 4 and 5 make use of the asymptotic series
121 *			  exp(-x*x)
122 *		erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) );
123 *			  x*sqrt(pi)
124 *
125 *		where for z = 1/(x*x)
126 *		P(z) ~ z/2*(-1 + z*3/2*(1 + z*5/2*(-1 + z*7/2*(1 +...))))
127 *
128 *	   Thus we use rational approximation to approximate
129 *              erfc*x*exp(x*x) ~ 1/sqrt(pi);
130 *
131 *		The error bound for the target function, G(z) for
132 *		the interval
133 *		[4, 28]:
134 * 		|eps + 1/(z)P(z) - G(z)| < 2**(-56.61)
135 *		for [2, 4]:
136 *      	|R(z)/S(z) - G(z)|	 < 2**(-58.24)
137 *		for [1.25, 2]:
138 *		|R(z)/S(z) - G(z)|	 < 2**(-58.12)
139 *
140 *      6. For inf > x >= 28
141 *         	erf(x)  = 1 - tiny  (raise inexact)
142 *         	erfc(x) = tiny*tiny (raise underflow)
143 *
144 *      7. Special cases:
145 *         	erf(0)  = 0, erf(inf)  = 1, erf(-inf) = -1,
146 *         	erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
147 *	   	erfc/erf(NaN) is NaN
148 */
149
150#if defined(vax) || defined(tahoe)
151#define _IEEE	0
152#define TRUNC(x) (double) (float) (x)
153#else
154#define _IEEE	1
155#define TRUNC(x) *(((int *) &x) + 1) &= 0xf8000000
156#define infnan(x) 0.0
157#endif
158
159#ifdef _IEEE_LIBM
160/*
161 * redefining "___function" to "function" in _IEEE_LIBM mode
162 */
163#include "ieee_libm.h"
164#endif
165#include "mathimpl.h"
166
167static double
168tiny	    = 1e-300,
169half	    = 0.5,
170one	    = 1.0,
171two	    = 2.0,
172c 	    = 8.45062911510467529297e-01, /* (float)0.84506291151 */
173/*
174 * Coefficients for approximation to erf in [0,0.84375]
175 */
176p0t8 = 1.02703333676410051049867154944018394163280,
177p0 =   1.283791670955125638123339436800229927041e-0001,
178p1 =  -3.761263890318340796574473028946097022260e-0001,
179p2 =   1.128379167093567004871858633779992337238e-0001,
180p3 =  -2.686617064084433642889526516177508374437e-0002,
181p4 =   5.223977576966219409445780927846432273191e-0003,
182p5 =  -8.548323822001639515038738961618255438422e-0004,
183p6 =   1.205520092530505090384383082516403772317e-0004,
184p7 =  -1.492214100762529635365672665955239554276e-0005,
185p8 =   1.640186161764254363152286358441771740838e-0006,
186p9 =  -1.571599331700515057841960987689515895479e-0007,
187p10=   1.073087585213621540635426191486561494058e-0008;
188/*
189 * Coefficients for approximation to erf in [0.84375,1.25]
190 */
191static double
192pa0 =  -2.362118560752659485957248365514511540287e-0003,
193pa1 =   4.148561186837483359654781492060070469522e-0001,
194pa2 =  -3.722078760357013107593507594535478633044e-0001,
195pa3 =   3.183466199011617316853636418691420262160e-0001,
196pa4 =  -1.108946942823966771253985510891237782544e-0001,
197pa5 =   3.547830432561823343969797140537411825179e-0002,
198pa6 =  -2.166375594868790886906539848893221184820e-0003,
199qa1 =   1.064208804008442270765369280952419863524e-0001,
200qa2 =   5.403979177021710663441167681878575087235e-0001,
201qa3 =   7.182865441419627066207655332170665812023e-0002,
202qa4 =   1.261712198087616469108438860983447773726e-0001,
203qa5 =   1.363708391202905087876983523620537833157e-0002,
204qa6 =   1.198449984679910764099772682882189711364e-0002;
205/*
206 * log(sqrt(pi)) for large x expansions.
207 * The tail (lsqrtPI_lo) is included in the rational
208 * approximations.
209*/
210static double
211   lsqrtPI_hi = .5723649429247000819387380943226;
212/*
213 * lsqrtPI_lo = .000000000000000005132975581353913;
214 *
215 * Coefficients for approximation to erfc in [2, 4]
216*/
217static double
218rb0  =	-1.5306508387410807582e-010,	/* includes lsqrtPI_lo */
219rb1  =	 2.15592846101742183841910806188e-008,
220rb2  =	 6.24998557732436510470108714799e-001,
221rb3  =	 8.24849222231141787631258921465e+000,
222rb4  =	 2.63974967372233173534823436057e+001,
223rb5  =	 9.86383092541570505318304640241e+000,
224rb6  =	-7.28024154841991322228977878694e+000,
225rb7  =	 5.96303287280680116566600190708e+000,
226rb8  =	-4.40070358507372993983608466806e+000,
227rb9  =	 2.39923700182518073731330332521e+000,
228rb10 =	-6.89257464785841156285073338950e-001,
229sb1  =	 1.56641558965626774835300238919e+001,
230sb2  =	 7.20522741000949622502957936376e+001,
231sb3  =	 9.60121069770492994166488642804e+001;
232/*
233 * Coefficients for approximation to erfc in [1.25, 2]
234*/
235static double
236rc0  =	-2.47925334685189288817e-007,	/* includes lsqrtPI_lo */
237rc1  =	 1.28735722546372485255126993930e-005,
238rc2  =	 6.24664954087883916855616917019e-001,
239rc3  =	 4.69798884785807402408863708843e+000,
240rc4  =	 7.61618295853929705430118701770e+000,
241rc5  =	 9.15640208659364240872946538730e-001,
242rc6  =	-3.59753040425048631334448145935e-001,
243rc7  =	 1.42862267989304403403849619281e-001,
244rc8  =	-4.74392758811439801958087514322e-002,
245rc9  =	 1.09964787987580810135757047874e-002,
246rc10 =	-1.28856240494889325194638463046e-003,
247sc1  =	 9.97395106984001955652274773456e+000,
248sc2  =	 2.80952153365721279953959310660e+001,
249sc3  =	 2.19826478142545234106819407316e+001;
250/*
251 * Coefficients for approximation to  erfc in [4,28]
252 */
253static double
254rd0  =	-2.1491361969012978677e-016,	/* includes lsqrtPI_lo */
255rd1  =	-4.99999999999640086151350330820e-001,
256rd2  =	 6.24999999772906433825880867516e-001,
257rd3  =	-1.54166659428052432723177389562e+000,
258rd4  =	 5.51561147405411844601985649206e+000,
259rd5  =	-2.55046307982949826964613748714e+001,
260rd6  =	 1.43631424382843846387913799845e+002,
261rd7  =	-9.45789244999420134263345971704e+002,
262rd8  =	 6.94834146607051206956384703517e+003,
263rd9  =	-5.27176414235983393155038356781e+004,
264rd10 =	 3.68530281128672766499221324921e+005,
265rd11 =	-2.06466642800404317677021026611e+006,
266rd12 =	 7.78293889471135381609201431274e+006,
267rd13 =	-1.42821001129434127360582351685e+007;
268
269extern double erf(x)
270	double x;
271{
272	double R,S,P,Q,ax,s,y,z,r,fabs(),exp();
273	if(!finite(x)) {		/* erf(nan)=nan */
274	    if (isnan(x))
275		return(x);
276	    return (x > 0 ? one : -one); /* erf(+/-inf)= +/-1 */
277	}
278	if ((ax = x) < 0)
279		ax = - ax;
280	if (ax < .84375) {
281	    if (ax < 3.7e-09) {
282		if (ax < 1.0e-308)
283		    return 0.125*(8.0*x+p0t8*x);  /*avoid underflow */
284		return x + p0*x;
285	    }
286	    y = x*x;
287	    r = y*(p1+y*(p2+y*(p3+y*(p4+y*(p5+
288			y*(p6+y*(p7+y*(p8+y*(p9+y*p10)))))))));
289	    return x + x*(p0+r);
290	}
291	if (ax < 1.25) {		/* 0.84375 <= |x| < 1.25 */
292	    s = fabs(x)-one;
293	    P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
294	    Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
295	    if (x>=0)
296		return (c + P/Q);
297	    else
298		return (-c - P/Q);
299	}
300	if (ax >= 6.0) {		/* inf>|x|>=6 */
301	    if (x >= 0.0)
302		return (one-tiny);
303	    else
304		return (tiny-one);
305	}
306    /* 1.25 <= |x| < 6 */
307	z = -ax*ax;
308	s = -one/z;
309	if (ax < 2.0) {
310		R = rc0+s*(rc1+s*(rc2+s*(rc3+s*(rc4+s*(rc5+
311			s*(rc6+s*(rc7+s*(rc8+s*(rc9+s*rc10)))))))));
312		S = one+s*(sc1+s*(sc2+s*sc3));
313	} else {
314		R = rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+
315			s*(rb6+s*(rb7+s*(rb8+s*(rb9+s*rb10)))))))));
316		S = one+s*(sb1+s*(sb2+s*sb3));
317	}
318	y = (R/S -.5*s) - lsqrtPI_hi;
319	z += y;
320	z = exp(z)/ax;
321	if (x >= 0)
322		return (one-z);
323	else
324		return (z-one);
325}
326
327extern double erfc(x)
328	double x;
329{
330	double R,S,P,Q,s,ax,y,z,r,fabs(),__exp__D();
331	if (!finite(x)) {
332		if (isnan(x))		/* erfc(NaN) = NaN */
333			return(x);
334		else if (x > 0)		/* erfc(+-inf)=0,2 */
335			return 0.0;
336		else
337			return 2.0;
338	}
339	if ((ax = x) < 0)
340		ax = -ax;
341	if (ax < .84375) {			/* |x|<0.84375 */
342	    if (ax < 1.38777878078144568e-17)  	/* |x|<2**-56 */
343		return one-x;
344	    y = x*x;
345	    r = y*(p1+y*(p2+y*(p3+y*(p4+y*(p5+
346			y*(p6+y*(p7+y*(p8+y*(p9+y*p10)))))))));
347	    if (ax < .0625) {  	/* |x|<2**-4 */
348		return (one-(x+x*(p0+r)));
349	    } else {
350		r = x*(p0+r);
351		r += (x-half);
352	        return (half - r);
353	    }
354	}
355	if (ax < 1.25) {		/* 0.84375 <= |x| < 1.25 */
356	    s = ax-one;
357	    P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
358	    Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
359	    if (x>=0) {
360	        z  = one-c; return z - P/Q;
361	    } else {
362		z = c+P/Q; return one+z;
363	    }
364	}
365	if (ax >= 28)	/* Out of range */
366 		if (x>0)
367			return (tiny*tiny);
368		else
369			return (two-tiny);
370	z = ax;
371	TRUNC(z);
372	y = z - ax; y *= (ax+z);
373	z *= -z;			/* Here z + y = -x^2 */
374		s = one/(-z-y);		/* 1/(x*x) */
375	if (ax >= 4) {			/* 6 <= ax */
376		R = s*(rd1+s*(rd2+s*(rd3+s*(rd4+s*(rd5+
377			s*(rd6+s*(rd7+s*(rd8+s*(rd9+s*(rd10
378			+s*(rd11+s*(rd12+s*rd13))))))))))));
379		y += rd0;
380	} else if (ax >= 2) {
381		R = rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+
382			s*(rb6+s*(rb7+s*(rb8+s*(rb9+s*rb10)))))))));
383		S = one+s*(sb1+s*(sb2+s*sb3));
384		y += R/S;
385		R = -.5*s;
386	} else {
387		R = rc0+s*(rc1+s*(rc2+s*(rc3+s*(rc4+s*(rc5+
388			s*(rc6+s*(rc7+s*(rc8+s*(rc9+s*rc10)))))))));
389		S = one+s*(sc1+s*(sc2+s*sc3));
390		y += R/S;
391		R = -.5*s;
392	}
393	/* return exp(-x^2 - lsqrtPI_hi + R + y)/x;	*/
394	s = ((R + y) - lsqrtPI_hi) + z;
395	y = (((z-s) - lsqrtPI_hi) + R) + y;
396	r = __exp__D(s, y)/x;
397	if (x>0)
398		return r;
399	else
400		return two-r;
401}
402
403#endif
404