1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License, Version 1.0 only
6 * (the "License").  You may not use this file except in compliance
7 * with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22
23/*
24 * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
25 * Use is subject to license terms.
26 */
27
28#pragma ident	"@(#)ctf_open.c	1.10	06/01/07 SMI"
29
30#include <ctf_impl.h>
31#include <sys/mman.h>
32#define Z_OK            0	/* In lieu of Solaris <sys/zmod.h> */
33
34#include <mach-o/loader.h>
35#include <mach-o/nlist.h>
36#include <mach-o/stab.h>
37
38int z_uncompress(void *dst, size_t *dstlen, const void *src, size_t srclen);
39const char *z_strerror(int err);
40
41static const ctf_dmodel_t _libctf_models[] = {
42	{ "ILP32", CTF_MODEL_ILP32, 4, 1, 2, 4, 4 },
43	{ "LP64", CTF_MODEL_LP64, 8, 1, 2, 4, 8 },
44	{ NULL, 0, 0, 0, 0, 0, 0 }
45};
46
47const char _CTF_SECTION[] = ".SUNW_ctf";
48const char _CTF_NULLSTR[] = "";
49
50int _libctf_version = CTF_VERSION;	/* library client version */
51int _libctf_debug = 0;			/* debugging messages enabled */
52
53static ushort_t
54get_kind_v1(ushort_t info)
55{
56	return (CTF_INFO_KIND_V1(info));
57}
58
59static ushort_t
60get_kind_v2(ushort_t info)
61{
62	return (CTF_INFO_KIND(info));
63}
64
65static ushort_t
66get_root_v1(ushort_t info)
67{
68	return (CTF_INFO_ISROOT_V1(info));
69}
70
71static ushort_t
72get_root_v2(ushort_t info)
73{
74	return (CTF_INFO_ISROOT(info));
75}
76
77static ushort_t
78get_vlen_v1(ushort_t info)
79{
80	return (CTF_INFO_VLEN_V1(info));
81}
82
83static ushort_t
84get_vlen_v2(ushort_t info)
85{
86	return (CTF_INFO_VLEN(info));
87}
88
89static const ctf_fileops_t ctf_fileops[] = {
90	{ NULL, NULL },
91	{ get_kind_v1, get_root_v1, get_vlen_v1 },
92	{ get_kind_v2, get_root_v2, get_vlen_v2 },
93};
94
95/*
96 * Convert a 32-bit ELF symbol into GElf (Elf64) and return a pointer to it.
97 */
98static Elf64_Sym *
99sym_to_gelf(const Elf32_Sym *src, Elf64_Sym *dst)
100{
101	dst->st_name = src->st_name;
102	dst->st_value = src->st_value;
103	dst->st_size = src->st_size;
104	dst->st_info = src->st_info;
105	dst->st_other = src->st_other;
106	dst->st_shndx = src->st_shndx;
107
108	return (dst);
109}
110
111static Elf64_Sym *
112sym_to_gelf_macho(const ctf_sect_t *sp, const Elf32_Sym *src, Elf64_Sym * sym, const char *base)
113{
114	const struct nlist *nsym = (const struct nlist *)src;
115	const char *name = base + nsym->n_un.n_strx;
116	char *tmp;
117
118	if (0 == nsym->n_un.n_strx) { // iff a null, "", name.
119		sym->st_name = 0;
120		return sym;
121	}
122
123	if ('_' == name[0])
124		name++; // Lop off omnipresent underscore to match DWARF convention
125
126	sym->st_name = (Elf64_Word)(name - base);
127	sym->st_value = nsym->n_value;
128	sym->st_size = 0;
129	sym->st_info = STT_NOTYPE;
130	sym->st_other = 0;
131	sym->st_shndx = SHN_MACHO;
132
133	if (nsym->n_type & N_STAB) {
134
135		switch(nsym->n_type) {
136		case N_FUN:
137			sym->st_info = ELF64_ST_INFO((STB_GLOBAL), (STT_FUNC));
138			break;
139		case N_GSYM:
140			sym->st_info = ELF64_ST_INFO((STB_GLOBAL), (STT_OBJECT));
141			break;
142		default:
143			break;
144		}
145
146	} else if ((N_ABS | N_EXT) == (nsym->n_type & (N_TYPE | N_EXT)) ||
147		(N_SECT | N_EXT) == (nsym->n_type & (N_TYPE | N_EXT))) {
148
149		sym->st_info = ELF64_ST_INFO((STB_GLOBAL), (nsym->n_desc));
150	} else if ((N_UNDF | N_EXT) == (nsym->n_type & (N_TYPE | N_EXT)) &&
151				nsym->n_sect == NO_SECT) {
152		sym->st_info = ELF64_ST_INFO((STB_GLOBAL), (STT_OBJECT)); /* Common */
153	}
154
155	return sym;
156}
157
158static Elf64_Sym *
159sym_to_gelf_macho_64(const ctf_sect_t *sp, const Elf32_Sym *src, Elf64_Sym * sym, const char *base)
160{
161	const struct nlist_64 *nsym = (const struct nlist_64 *)src;
162	const char *name = base + nsym->n_un.n_strx;
163	char *tmp;
164
165	if (0 == nsym->n_un.n_strx) { // iff a null, "", name.
166		sym->st_name = 0;
167		return sym;
168	}
169
170	if ('_' == name[0])
171		name++; // Lop off omnipresent underscore to match DWARF convention
172
173	sym->st_name = (Elf64_Word)(name - base);
174	sym->st_value = nsym->n_value;
175	sym->st_size = 0;
176	sym->st_info = STT_NOTYPE;
177	sym->st_other = 0;
178	sym->st_shndx = SHN_MACHO_64;
179
180	if (nsym->n_type & N_STAB) {
181
182		switch(nsym->n_type) {
183		case N_FUN:
184			sym->st_info = ELF64_ST_INFO((STB_GLOBAL), (STT_FUNC));
185			break;
186		case N_GSYM:
187			sym->st_info = ELF64_ST_INFO((STB_GLOBAL), (STT_OBJECT));
188			break;
189		default:
190			break;
191		}
192
193	} else if ((N_ABS | N_EXT) == (nsym->n_type & (N_TYPE | N_EXT)) ||
194		(N_SECT | N_EXT) == (nsym->n_type & (N_TYPE | N_EXT))) {
195
196		sym->st_info = ELF64_ST_INFO((STB_GLOBAL), (nsym->n_desc));
197	} else if ((N_UNDF | N_EXT) == (nsym->n_type & (N_TYPE | N_EXT)) &&
198				nsym->n_sect == NO_SECT) {
199		sym->st_info = ELF64_ST_INFO((STB_GLOBAL), (STT_OBJECT)); /* Common */
200	}
201
202	return sym;
203}
204
205/*
206 * Initialize the symtab translation table by filling each entry with the
207 * offset of the CTF type or function data corresponding to each STT_FUNC or
208 * STT_OBJECT entry in the symbol table.
209 */
210static int
211init_symtab(ctf_file_t *fp, const ctf_header_t *hp,
212    const ctf_sect_t *sp, const ctf_sect_t *strp)
213{
214	const uchar_t *symp = sp->cts_data;
215	uint_t *xp = fp->ctf_sxlate;
216	uint_t *xend = xp + fp->ctf_nsyms;
217
218	uint_t objtoff = hp->cth_objtoff;
219	uint_t funcoff = hp->cth_funcoff;
220
221	ushort_t info, vlen;
222	Elf64_Sym sym, *gsp;
223	const char *name;
224
225	/*
226	 * The CTF data object and function type sections are ordered to match
227	 * the relative order of the respective symbol types in the symtab.
228	 * If no type information is available for a symbol table entry, a
229	 * pad is inserted in the CTF section.  As a further optimization,
230	 * anonymous or undefined symbols are omitted from the CTF data.
231	 */
232	for (; xp < xend; xp++, symp += sp->cts_entsize) {
233		if (sp->cts_entsize == sizeof (struct nlist)) {
234			gsp = sym_to_gelf_macho(sp, (Elf32_Sym *)(uintptr_t)symp, &sym, (const char *)strp->cts_data);
235		}
236		else if (sp->cts_entsize == sizeof (struct nlist_64)) {
237			gsp = sym_to_gelf_macho_64(sp, (Elf32_Sym *)(uintptr_t)symp, &sym, (const char *)strp->cts_data);
238		}
239		else if (sp->cts_entsize == sizeof (Elf32_Sym))
240			gsp = sym_to_gelf((Elf32_Sym *)(uintptr_t)symp, &sym);
241		else
242			gsp = (Elf64_Sym *)(uintptr_t)symp;
243
244		if (gsp->st_name < strp->cts_size)
245			name = (const char *)strp->cts_data + gsp->st_name;
246		else
247			name = _CTF_NULLSTR;
248
249		if (gsp->st_name == 0 || gsp->st_shndx == SHN_UNDEF ||
250		    strcmp(name, "_START_") == 0 ||
251		    strcmp(name, "_END_") == 0) {
252			*xp = -1u;
253			continue;
254		}
255
256		switch (ELF64_ST_TYPE(gsp->st_info)) {
257		case STT_OBJECT:
258			if (objtoff >= hp->cth_funcoff ||
259			    (gsp->st_shndx == SHN_ABS && gsp->st_value == 0)) {
260				*xp = -1u;
261				break;
262			}
263
264			*xp = objtoff;
265			objtoff += sizeof (ushort_t);
266			break;
267
268		case STT_FUNC:
269			if (funcoff >= hp->cth_typeoff) {
270				*xp = -1u;
271				break;
272			}
273
274			*xp = funcoff;
275
276			info = *(ushort_t *)((uintptr_t)fp->ctf_buf + funcoff);
277			vlen = LCTF_INFO_VLEN(fp, info);
278
279			/*
280			 * If we encounter a zero pad at the end, just skip it.
281			 * Otherwise skip over the function and its return type
282			 * (+2) and the argument list (vlen).
283			 */
284			if (LCTF_INFO_KIND(fp, info) == CTF_K_UNKNOWN &&
285			    vlen == 0)
286				funcoff += sizeof (ushort_t); /* skip pad */
287			else
288				funcoff += sizeof (ushort_t) * (vlen + 2);
289			break;
290
291		default:
292			*xp = -1u;
293			break;
294		}
295	}
296
297	ctf_dprintf("loaded %lu symtab entries\n", fp->ctf_nsyms);
298	return (0);
299}
300
301/*
302 * Initialize the type ID translation table with the byte offset of each type,
303 * and initialize the hash tables of each named type.
304 */
305static int
306init_types(ctf_file_t *fp, const ctf_header_t *cth)
307{
308	/* LINTED - pointer alignment */
309	const ctf_type_t *tbuf = (ctf_type_t *)(fp->ctf_buf + cth->cth_typeoff);
310	/* LINTED - pointer alignment */
311	const ctf_type_t *tend = (ctf_type_t *)(fp->ctf_buf + cth->cth_stroff);
312
313	ulong_t pop[CTF_K_MAX + 1] = { 0 };
314	const ctf_type_t *tp;
315	ctf_hash_t *hp;
316	ushort_t dst;
317	ctf_id_t id;
318	uint_t *xp;
319
320	/*
321	 * We initially determine whether the container is a child or a parent
322	 * based on the value of cth_parname.  To support containers that pre-
323	 * date cth_parname, we also scan the types themselves for references
324	 * to values in the range reserved for child types in our first pass.
325	 */
326	int child = cth->cth_parname != 0;
327	int nlstructs = 0, nlunions = 0;
328	int err;
329
330	/*
331	 * We make two passes through the entire type section.  In this first
332	 * pass, we count the number of each type and the total number of types.
333	 */
334	for (tp = tbuf; tp < tend; fp->ctf_typemax++) {
335		ushort_t kind = LCTF_INFO_KIND(fp, tp->ctt_info);
336		ulong_t vlen = LCTF_INFO_VLEN(fp, tp->ctt_info);
337		ssize_t size, increment;
338
339		size_t vbytes;
340		uint_t n;
341
342		(void) ctf_get_ctt_size(fp, tp, &size, &increment);
343
344		switch (kind) {
345		case CTF_K_INTEGER:
346		case CTF_K_FLOAT:
347			vbytes = sizeof (uint_t);
348			break;
349		case CTF_K_ARRAY:
350			vbytes = sizeof (ctf_array_t);
351			break;
352		case CTF_K_FUNCTION:
353			vbytes = sizeof (ushort_t) * (vlen + (vlen & 1));
354			break;
355		case CTF_K_STRUCT:
356		case CTF_K_UNION:
357			if (fp->ctf_version == CTF_VERSION_1 ||
358			    size < CTF_LSTRUCT_THRESH) {
359				ctf_member_t *mp = (ctf_member_t *)
360				    ((uintptr_t)tp + increment);
361
362				vbytes = sizeof (ctf_member_t) * vlen;
363				for (n = vlen; n != 0; n--, mp++)
364					child |= CTF_TYPE_ISCHILD(mp->ctm_type);
365			} else {
366				ctf_lmember_t *lmp = (ctf_lmember_t *)
367				    ((uintptr_t)tp + increment);
368
369				vbytes = sizeof (ctf_lmember_t) * vlen;
370				for (n = vlen; n != 0; n--, lmp++)
371					child |=
372					    CTF_TYPE_ISCHILD(lmp->ctlm_type);
373			}
374			break;
375		case CTF_K_ENUM:
376			vbytes = sizeof (ctf_enum_t) * vlen;
377			break;
378		case CTF_K_FORWARD:
379			/*
380			 * For forward declarations, ctt_type is the CTF_K_*
381			 * kind for the tag, so bump that population count too.
382			 * If ctt_type is unknown, treat the tag as a struct.
383			 */
384			if (tp->ctt_type == CTF_K_UNKNOWN ||
385			    tp->ctt_type >= CTF_K_MAX)
386				pop[CTF_K_STRUCT]++;
387			else
388				pop[tp->ctt_type]++;
389			/*FALLTHRU*/
390		case CTF_K_UNKNOWN:
391			vbytes = 0;
392			break;
393		case CTF_K_POINTER:
394		case CTF_K_TYPEDEF:
395		case CTF_K_VOLATILE:
396		case CTF_K_CONST:
397		case CTF_K_RESTRICT:
398			child |= CTF_TYPE_ISCHILD(tp->ctt_type);
399			vbytes = 0;
400			break;
401		default:
402			ctf_dprintf("detected invalid CTF kind -- %u\n", kind);
403			return (ECTF_CORRUPT);
404		}
405		tp = (ctf_type_t *)((uintptr_t)tp + increment + vbytes);
406		pop[kind]++;
407	}
408
409	/*
410	 * If we detected a reference to a child type ID, then we know this
411	 * container is a child and may have a parent's types imported later.
412	 */
413	if (child) {
414		ctf_dprintf("CTF container %p is a child\n", (void *)fp);
415		fp->ctf_flags |= LCTF_CHILD;
416	} else
417		ctf_dprintf("CTF container %p is a parent\n", (void *)fp);
418
419	/*
420	 * Now that we've counted up the number of each type, we can allocate
421	 * the hash tables, type translation table, and pointer table.
422	 */
423	if ((err = ctf_hash_create(&fp->ctf_structs, pop[CTF_K_STRUCT])) != 0)
424		return (err);
425
426	if ((err = ctf_hash_create(&fp->ctf_unions, pop[CTF_K_UNION])) != 0)
427		return (err);
428
429	if ((err = ctf_hash_create(&fp->ctf_enums, pop[CTF_K_ENUM])) != 0)
430		return (err);
431
432	if ((err = ctf_hash_create(&fp->ctf_names,
433	    pop[CTF_K_INTEGER] + pop[CTF_K_FLOAT] + pop[CTF_K_FUNCTION] +
434	    pop[CTF_K_TYPEDEF] + pop[CTF_K_POINTER] + pop[CTF_K_VOLATILE] +
435	    pop[CTF_K_CONST] + pop[CTF_K_RESTRICT])) != 0)
436		return (err);
437
438	fp->ctf_txlate = ctf_alloc(sizeof (uint_t) * (fp->ctf_typemax + 1));
439	fp->ctf_ptrtab = ctf_alloc(sizeof (ushort_t) * (fp->ctf_typemax + 1));
440
441	if (fp->ctf_txlate == NULL || fp->ctf_ptrtab == NULL)
442		return (EAGAIN); /* memory allocation failed */
443
444	xp = fp->ctf_txlate;
445	*xp++ = 0; /* type id 0 is used as a sentinel value */
446
447	bzero(fp->ctf_txlate, sizeof (uint_t) * (fp->ctf_typemax + 1));
448	bzero(fp->ctf_ptrtab, sizeof (ushort_t) * (fp->ctf_typemax + 1));
449
450	/*
451	 * In the second pass through the types, we fill in each entry of the
452	 * type and pointer tables and add names to the appropriate hashes.
453	 */
454	for (id = 1, tp = tbuf; tp < tend; xp++, id++) {
455		ushort_t kind = LCTF_INFO_KIND(fp, tp->ctt_info);
456		ulong_t vlen = LCTF_INFO_VLEN(fp, tp->ctt_info);
457		ssize_t size, increment;
458
459		const char *name;
460		size_t vbytes;
461		ctf_helem_t *hep;
462		ctf_encoding_t cte;
463
464		(void) ctf_get_ctt_size(fp, tp, &size, &increment);
465		name = ctf_strptr(fp, tp->ctt_name);
466
467		switch (kind) {
468		case CTF_K_INTEGER:
469		case CTF_K_FLOAT:
470			/*
471			 * Only insert a new integer base type definition if
472			 * this type name has not been defined yet.  We re-use
473			 * the names with different encodings for bit-fields.
474			 */
475			if ((hep = ctf_hash_lookup(&fp->ctf_names, fp,
476			    name, strlen(name))) == NULL) {
477				err = ctf_hash_insert(&fp->ctf_names, fp,
478				    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
479				if (err != 0 && err != ECTF_STRTAB)
480					return (err);
481			} else if (ctf_type_encoding(fp, hep->h_type,
482			    &cte) == 0 && cte.cte_bits == 0) {
483				/*
484				 * Work-around SOS8 stabs bug: replace existing
485				 * intrinsic w/ same name if it was zero bits.
486				 */
487				hep->h_type = CTF_INDEX_TO_TYPE(id, child);
488			}
489			vbytes = sizeof (uint_t);
490			break;
491
492		case CTF_K_ARRAY:
493			vbytes = sizeof (ctf_array_t);
494			break;
495
496		case CTF_K_FUNCTION:
497			err = ctf_hash_insert(&fp->ctf_names, fp,
498			    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
499			if (err != 0 && err != ECTF_STRTAB)
500				return (err);
501			vbytes = sizeof (ushort_t) * (vlen + (vlen & 1));
502			break;
503
504		case CTF_K_STRUCT:
505			err = ctf_hash_define(&fp->ctf_structs, fp,
506			    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
507
508			if (err != 0 && err != ECTF_STRTAB)
509				return (err);
510
511			if (fp->ctf_version == CTF_VERSION_1 ||
512			    size < CTF_LSTRUCT_THRESH)
513				vbytes = sizeof (ctf_member_t) * vlen;
514			else {
515				vbytes = sizeof (ctf_lmember_t) * vlen;
516				nlstructs++;
517			}
518			break;
519
520		case CTF_K_UNION:
521			err = ctf_hash_define(&fp->ctf_unions, fp,
522			    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
523
524			if (err != 0 && err != ECTF_STRTAB)
525				return (err);
526
527			if (fp->ctf_version == CTF_VERSION_1 ||
528			    size < CTF_LSTRUCT_THRESH)
529				vbytes = sizeof (ctf_member_t) * vlen;
530			else {
531				vbytes = sizeof (ctf_lmember_t) * vlen;
532				nlunions++;
533			}
534			break;
535
536		case CTF_K_ENUM:
537			err = ctf_hash_define(&fp->ctf_enums, fp,
538			    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
539
540			if (err != 0 && err != ECTF_STRTAB)
541				return (err);
542
543			vbytes = sizeof (ctf_enum_t) * vlen;
544			break;
545
546		case CTF_K_TYPEDEF:
547			err = ctf_hash_insert(&fp->ctf_names, fp,
548			    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
549			if (err != 0 && err != ECTF_STRTAB)
550				return (err);
551			vbytes = 0;
552			break;
553
554		case CTF_K_FORWARD:
555			/*
556			 * Only insert forward tags into the given hash if the
557			 * type or tag name is not already present.
558			 */
559			switch (tp->ctt_type) {
560			case CTF_K_STRUCT:
561				hp = &fp->ctf_structs;
562				break;
563			case CTF_K_UNION:
564				hp = &fp->ctf_unions;
565				break;
566			case CTF_K_ENUM:
567				hp = &fp->ctf_enums;
568				break;
569			default:
570				hp = &fp->ctf_structs;
571			}
572
573			if (ctf_hash_lookup(hp, fp,
574			    name, strlen(name)) == NULL) {
575				err = ctf_hash_insert(hp, fp,
576				    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
577				if (err != 0 && err != ECTF_STRTAB)
578					return (err);
579			}
580			vbytes = 0;
581			break;
582
583		case CTF_K_POINTER:
584			/*
585			 * If the type referenced by the pointer is in this CTF
586			 * container, then store the index of the pointer type
587			 * in fp->ctf_ptrtab[ index of referenced type ].
588			 */
589			if (CTF_TYPE_ISCHILD(tp->ctt_type) == child &&
590			    CTF_TYPE_TO_INDEX(tp->ctt_type) <= fp->ctf_typemax)
591				fp->ctf_ptrtab[
592				    CTF_TYPE_TO_INDEX(tp->ctt_type)] = id;
593			/*FALLTHRU*/
594
595		case CTF_K_VOLATILE:
596		case CTF_K_CONST:
597		case CTF_K_RESTRICT:
598			err = ctf_hash_insert(&fp->ctf_names, fp,
599			    CTF_INDEX_TO_TYPE(id, child), tp->ctt_name);
600			if (err != 0 && err != ECTF_STRTAB)
601				return (err);
602			/*FALLTHRU*/
603
604		default:
605			vbytes = 0;
606			break;
607		}
608
609		*xp = (uint_t)((uintptr_t)tp - (uintptr_t)fp->ctf_buf);
610		tp = (ctf_type_t *)((uintptr_t)tp + increment + vbytes);
611	}
612
613	ctf_dprintf("%lu total types processed\n", fp->ctf_typemax);
614	ctf_dprintf("%u enum names hashed\n", ctf_hash_size(&fp->ctf_enums));
615	ctf_dprintf("%u struct names hashed (%d long)\n",
616	    ctf_hash_size(&fp->ctf_structs), nlstructs);
617	ctf_dprintf("%u union names hashed (%d long)\n",
618	    ctf_hash_size(&fp->ctf_unions), nlunions);
619	ctf_dprintf("%u base type names hashed\n",
620	    ctf_hash_size(&fp->ctf_names));
621
622	/*
623	 * Make an additional pass through the pointer table to find pointers
624	 * that point to anonymous typedef nodes.  If we find one, modify the
625	 * pointer table so that the pointer is also known to point to the
626	 * node that is referenced by the anonymous typedef node.
627	 */
628	for (id = 1; id <= fp->ctf_typemax; id++) {
629		if ((dst = fp->ctf_ptrtab[id]) != 0) {
630			tp = LCTF_INDEX_TO_TYPEPTR(fp, id);
631
632			if (LCTF_INFO_KIND(fp, tp->ctt_info) == CTF_K_TYPEDEF &&
633			    strcmp(ctf_strptr(fp, tp->ctt_name), "") == 0 &&
634			    CTF_TYPE_ISCHILD(tp->ctt_type) == child &&
635			    CTF_TYPE_TO_INDEX(tp->ctt_type) <= fp->ctf_typemax)
636				fp->ctf_ptrtab[
637				    CTF_TYPE_TO_INDEX(tp->ctt_type)] = dst;
638		}
639	}
640
641	return (0);
642}
643
644/*
645 * Decode the specified CTF buffer and optional symbol table and create a new
646 * CTF container representing the symbolic debugging information.  This code
647 * can be used directly by the debugger, or it can be used as the engine for
648 * ctf_fdopen() or ctf_open(), below.
649 */
650ctf_file_t *
651ctf_bufopen(const ctf_sect_t *ctfsect, const ctf_sect_t *symsect,
652    const ctf_sect_t *strsect, int *errp)
653{
654	const ctf_preamble_t *pp;
655	ctf_header_t hp;
656	ctf_file_t *fp;
657	void *buf, *base;
658	size_t size, hdrsz;
659	int err;
660
661	if (ctfsect == NULL || ((symsect == NULL) != (strsect == NULL)))
662		return (ctf_set_open_errno(errp, EINVAL));
663
664	if (symsect != NULL && symsect->cts_entsize != sizeof (struct nlist) &&
665	    symsect->cts_entsize != sizeof (struct nlist_64))
666		return (ctf_set_open_errno(errp, ECTF_SYMTAB));
667
668	if (symsect != NULL && symsect->cts_data == NULL)
669		return (ctf_set_open_errno(errp, ECTF_SYMBAD));
670
671	if (strsect != NULL && strsect->cts_data == NULL)
672		return (ctf_set_open_errno(errp, ECTF_STRBAD));
673
674	if (ctfsect->cts_size < sizeof (ctf_preamble_t))
675		return (ctf_set_open_errno(errp, ECTF_NOCTFBUF));
676
677	pp = (const ctf_preamble_t *)ctfsect->cts_data;
678
679	ctf_dprintf("ctf_bufopen: magic=0x%x version=%u\n",
680	    pp->ctp_magic, pp->ctp_version);
681
682	/*
683	 * Validate each part of the CTF header (either V1 or V2).
684	 * First, we validate the preamble (common to all versions).  At that
685	 * point, we know specific header version, and can validate the
686	 * version-specific parts including section offsets and alignments.
687	 */
688	if (pp->ctp_magic != CTF_MAGIC)
689		return (ctf_set_open_errno(errp, ECTF_NOCTFBUF));
690
691	if (pp->ctp_version == CTF_VERSION_2) {
692		if (ctfsect->cts_size < sizeof (ctf_header_t))
693			return (ctf_set_open_errno(errp, ECTF_NOCTFBUF));
694
695		bcopy(ctfsect->cts_data, &hp, sizeof (hp));
696		hdrsz = sizeof (ctf_header_t);
697
698	} else if (pp->ctp_version == CTF_VERSION_1) {
699		const ctf_header_v1_t *h1p =
700		    (const ctf_header_v1_t *)ctfsect->cts_data;
701
702		if (ctfsect->cts_size < sizeof (ctf_header_v1_t))
703			return (ctf_set_open_errno(errp, ECTF_NOCTFBUF));
704
705		bzero(&hp, sizeof (hp));
706		hp.cth_preamble = h1p->cth_preamble;
707		hp.cth_objtoff = h1p->cth_objtoff;
708		hp.cth_funcoff = h1p->cth_funcoff;
709		hp.cth_typeoff = h1p->cth_typeoff;
710		hp.cth_stroff = h1p->cth_stroff;
711		hp.cth_strlen = h1p->cth_strlen;
712
713		hdrsz = sizeof (ctf_header_v1_t);
714	} else
715		return (ctf_set_open_errno(errp, ECTF_CTFVERS));
716
717	size = hp.cth_stroff + hp.cth_strlen;
718
719	ctf_dprintf("ctf_bufopen: uncompressed size=%lu\n", (ulong_t)size);
720
721	if (hp.cth_lbloff > size || hp.cth_objtoff > size ||
722	    hp.cth_funcoff > size || hp.cth_typeoff > size ||
723	    hp.cth_stroff > size)
724		return (ctf_set_open_errno(errp, ECTF_CORRUPT));
725
726	if (hp.cth_lbloff > hp.cth_objtoff ||
727	    hp.cth_objtoff > hp.cth_funcoff ||
728	    hp.cth_funcoff > hp.cth_typeoff ||
729	    hp.cth_typeoff > hp.cth_stroff)
730		return (ctf_set_open_errno(errp, ECTF_CORRUPT));
731
732	if ((hp.cth_lbloff & 3) || (hp.cth_objtoff & 1) ||
733	    (hp.cth_funcoff & 1) || (hp.cth_typeoff & 3))
734		return (ctf_set_open_errno(errp, ECTF_CORRUPT));
735
736	/*
737	 * Once everything is determined to be valid, attempt to decompress
738	 * the CTF data buffer if it is compressed.  Otherwise we just put
739	 * the data section's buffer pointer into ctf_buf, below.
740	 */
741	if (hp.cth_flags & CTF_F_COMPRESS) {
742		size_t srclen, dstlen;
743		const void *src;
744		int rc = Z_OK;
745
746		if (ctf_zopen(errp) == NULL)
747			return (NULL); /* errp is set for us */
748
749		if ((base = ctf_data_alloc(size + hdrsz)) == MAP_FAILED)
750			return (ctf_set_open_errno(errp, ECTF_ZALLOC));
751
752		bcopy(ctfsect->cts_data, base, hdrsz);
753		((ctf_preamble_t *)base)->ctp_flags &= ~CTF_F_COMPRESS;
754		buf = (uchar_t *)base + hdrsz;
755
756		src = (uchar_t *)ctfsect->cts_data + hdrsz;
757		srclen = ctfsect->cts_size - hdrsz;
758		dstlen = size;
759
760		if ((rc = z_uncompress(buf, &dstlen, src, srclen)) != Z_OK) {
761			ctf_dprintf("zlib inflate err: %s\n", z_strerror(rc));
762			ctf_data_free(base, size + hdrsz);
763			return (ctf_set_open_errno(errp, ECTF_DECOMPRESS));
764		}
765
766		if (dstlen != size) {
767			ctf_dprintf("zlib inflate short -- got %lu of %lu "
768			    "bytes\n", (ulong_t)dstlen, (ulong_t)size);
769			ctf_data_free(base, size + hdrsz);
770			return (ctf_set_open_errno(errp, ECTF_CORRUPT));
771		}
772
773		ctf_data_protect(base, size + hdrsz);
774
775	} else {
776		base = (void *)ctfsect->cts_data;
777		buf = (uchar_t *)base + hdrsz;
778	}
779
780	/*
781	 * Once we have uncompressed and validated the CTF data buffer, we can
782	 * proceed with allocating a ctf_file_t and initializing it.
783	 */
784	if ((fp = ctf_alloc(sizeof (ctf_file_t))) == NULL)
785		return (ctf_set_open_errno(errp, EAGAIN));
786
787	bzero(fp, sizeof (ctf_file_t));
788	fp->ctf_version = hp.cth_version;
789	fp->ctf_fileops = &ctf_fileops[hp.cth_version];
790	bcopy(ctfsect, &fp->ctf_data, sizeof (ctf_sect_t));
791
792	if (symsect != NULL) {
793		bcopy(symsect, &fp->ctf_symtab, sizeof (ctf_sect_t));
794		bcopy(strsect, &fp->ctf_strtab, sizeof (ctf_sect_t));
795	}
796
797	if (fp->ctf_data.cts_name != NULL)
798		fp->ctf_data.cts_name = ctf_strdup(fp->ctf_data.cts_name);
799	if (fp->ctf_symtab.cts_name != NULL)
800		fp->ctf_symtab.cts_name = ctf_strdup(fp->ctf_symtab.cts_name);
801	if (fp->ctf_strtab.cts_name != NULL)
802		fp->ctf_strtab.cts_name = ctf_strdup(fp->ctf_strtab.cts_name);
803
804	if (fp->ctf_data.cts_name == NULL)
805		fp->ctf_data.cts_name = _CTF_NULLSTR;
806	if (fp->ctf_symtab.cts_name == NULL)
807		fp->ctf_symtab.cts_name = _CTF_NULLSTR;
808	if (fp->ctf_strtab.cts_name == NULL)
809		fp->ctf_strtab.cts_name = _CTF_NULLSTR;
810
811	fp->ctf_str[CTF_STRTAB_0].cts_strs = (const char *)buf + hp.cth_stroff;
812	fp->ctf_str[CTF_STRTAB_0].cts_len = hp.cth_strlen;
813
814	if (strsect != NULL) {
815		fp->ctf_str[CTF_STRTAB_1].cts_strs = strsect->cts_data;
816		fp->ctf_str[CTF_STRTAB_1].cts_len = strsect->cts_size;
817	}
818
819	fp->ctf_base = base;
820	fp->ctf_buf = buf;
821	fp->ctf_size = size + hdrsz;
822
823	/*
824	 * If we have a parent container name and label, store the relocated
825	 * string pointers in the CTF container for easy access later.
826	 */
827	if (hp.cth_parlabel != 0)
828		fp->ctf_parlabel = ctf_strptr(fp, hp.cth_parlabel);
829	if (hp.cth_parname != 0)
830		fp->ctf_parname = ctf_strptr(fp, hp.cth_parname);
831
832	ctf_dprintf("ctf_bufopen: parent name %s (label %s)\n",
833	    fp->ctf_parname ? fp->ctf_parname : "<NULL>",
834	    fp->ctf_parlabel ? fp->ctf_parlabel : "<NULL>");
835
836	/*
837	 * If we have a symbol table section, allocate and initialize
838	 * the symtab translation table, pointed to by ctf_sxlate.
839	 */
840	if (symsect != NULL) {
841		fp->ctf_nsyms = symsect->cts_size / symsect->cts_entsize;
842		fp->ctf_sxlate = ctf_alloc(fp->ctf_nsyms * sizeof (uint_t));
843
844		if (fp->ctf_sxlate == NULL) {
845			(void) ctf_set_open_errno(errp, EAGAIN);
846			goto bad;
847		}
848
849		if ((err = init_symtab(fp, &hp, symsect, strsect)) != 0) {
850			(void) ctf_set_open_errno(errp, err);
851			goto bad;
852		}
853	}
854
855	if ((err = init_types(fp, &hp)) != 0) {
856		(void) ctf_set_open_errno(errp, err);
857		goto bad;
858	}
859
860	/*
861	 * Initialize the ctf_lookup_by_name top-level dictionary.  We keep an
862	 * array of type name prefixes and the corresponding ctf_hash to use.
863	 * NOTE: This code must be kept in sync with the code in ctf_update().
864	 */
865	fp->ctf_lookups[0].ctl_prefix = "struct";
866	fp->ctf_lookups[0].ctl_len = strlen(fp->ctf_lookups[0].ctl_prefix);
867	fp->ctf_lookups[0].ctl_hash = &fp->ctf_structs;
868	fp->ctf_lookups[1].ctl_prefix = "union";
869	fp->ctf_lookups[1].ctl_len = strlen(fp->ctf_lookups[1].ctl_prefix);
870	fp->ctf_lookups[1].ctl_hash = &fp->ctf_unions;
871	fp->ctf_lookups[2].ctl_prefix = "enum";
872	fp->ctf_lookups[2].ctl_len = strlen(fp->ctf_lookups[2].ctl_prefix);
873	fp->ctf_lookups[2].ctl_hash = &fp->ctf_enums;
874	fp->ctf_lookups[3].ctl_prefix = _CTF_NULLSTR;
875	fp->ctf_lookups[3].ctl_len = strlen(fp->ctf_lookups[3].ctl_prefix);
876	fp->ctf_lookups[3].ctl_hash = &fp->ctf_names;
877	fp->ctf_lookups[4].ctl_prefix = NULL;
878	fp->ctf_lookups[4].ctl_len = 0;
879	fp->ctf_lookups[4].ctl_hash = NULL;
880
881	if (symsect != NULL) {
882		if (symsect->cts_entsize == sizeof (struct nlist_64))
883			(void) ctf_setmodel(fp, CTF_MODEL_LP64);
884		else if (symsect->cts_entsize == sizeof (struct nlist))
885			(void) ctf_setmodel(fp, CTF_MODEL_ILP32);
886		else if (symsect->cts_entsize == sizeof (Elf64_Sym))
887			(void) ctf_setmodel(fp, CTF_MODEL_LP64);
888		else
889			(void) ctf_setmodel(fp, CTF_MODEL_ILP32);
890	} else
891		(void) ctf_setmodel(fp, CTF_MODEL_NATIVE);
892
893	fp->ctf_refcnt = 1;
894	return (fp);
895
896bad:
897	ctf_close(fp);
898	return (NULL);
899}
900
901/*
902 * Close the specified CTF container and free associated data structures.  Note
903 * that ctf_close() is a reference counted operation: if the specified file is
904 * the parent of other active containers, its reference count will be greater
905 * than one and it will be freed later when no active children exist.
906 */
907void
908ctf_close(ctf_file_t *fp)
909{
910	ctf_dtdef_t *dtd, *ntd;
911
912	if (fp == NULL)
913		return; /* allow ctf_close(NULL) to simplify caller code */
914
915	ctf_dprintf("ctf_close(%p) refcnt=%u\n", (void *)fp, fp->ctf_refcnt);
916
917	if (fp->ctf_refcnt > 1) {
918		fp->ctf_refcnt--;
919		return;
920	}
921
922	if (fp->ctf_parent != NULL)
923		ctf_close(fp->ctf_parent);
924
925	for (dtd = ctf_list_next(&fp->ctf_dtdefs); dtd != NULL; dtd = ntd) {
926		ntd = ctf_list_next(dtd);
927		ctf_dtd_delete(fp, dtd);
928	}
929
930	ctf_free(fp->ctf_dthash, fp->ctf_dthashlen * sizeof (ctf_dtdef_t *));
931
932	if (fp->ctf_flags & LCTF_MMAP) {
933		if (fp->ctf_data.cts_data != NULL)
934			ctf_sect_munmap(&fp->ctf_data);
935		if (fp->ctf_symtab.cts_data != NULL)
936			ctf_sect_munmap(&fp->ctf_symtab);
937		if (fp->ctf_strtab.cts_data != NULL)
938			ctf_sect_munmap(&fp->ctf_strtab);
939	}
940
941	if (fp->ctf_data.cts_name != _CTF_NULLSTR &&
942	    fp->ctf_data.cts_name != NULL) {
943		ctf_free((char *)fp->ctf_data.cts_name,
944		    strlen(fp->ctf_data.cts_name) + 1);
945	}
946
947	if (fp->ctf_symtab.cts_name != _CTF_NULLSTR &&
948	    fp->ctf_symtab.cts_name != NULL) {
949		ctf_free((char *)fp->ctf_symtab.cts_name,
950		    strlen(fp->ctf_symtab.cts_name) + 1);
951	}
952
953	if (fp->ctf_strtab.cts_name != _CTF_NULLSTR &&
954	    fp->ctf_strtab.cts_name != NULL) {
955		ctf_free((char *)fp->ctf_strtab.cts_name,
956		    strlen(fp->ctf_strtab.cts_name) + 1);
957	}
958
959	if (fp->ctf_base != fp->ctf_data.cts_data && fp->ctf_base != NULL)
960		ctf_data_free((void *)fp->ctf_base, fp->ctf_size);
961
962	if (fp->ctf_sxlate != NULL)
963		ctf_free(fp->ctf_sxlate, sizeof (uint_t) * fp->ctf_nsyms);
964
965	if (fp->ctf_txlate != NULL) {
966		ctf_free(fp->ctf_txlate,
967		    sizeof (uint_t) * (fp->ctf_typemax + 1));
968	}
969
970	if (fp->ctf_ptrtab != NULL) {
971		ctf_free(fp->ctf_ptrtab,
972		    sizeof (ushort_t) * (fp->ctf_typemax + 1));
973	}
974
975	ctf_hash_destroy(&fp->ctf_structs);
976	ctf_hash_destroy(&fp->ctf_unions);
977	ctf_hash_destroy(&fp->ctf_enums);
978	ctf_hash_destroy(&fp->ctf_names);
979
980	ctf_free(fp, sizeof (ctf_file_t));
981}
982
983/*
984 * Return the CTF handle for the parent CTF container, if one exists.
985 * Otherwise return NULL to indicate this container has no imported parent.
986 */
987ctf_file_t *
988ctf_parent_file(ctf_file_t *fp)
989{
990	return (fp->ctf_parent);
991}
992
993/*
994 * Return the name of the parent CTF container, if one exists.  Otherwise
995 * return NULL to indicate this container is a root container.
996 */
997const char *
998ctf_parent_name(ctf_file_t *fp)
999{
1000	return (fp->ctf_parname);
1001}
1002
1003/*
1004 * Import the types from the specified parent container by storing a pointer
1005 * to it in ctf_parent and incrementing its reference count.  Only one parent
1006 * is allowed: if a parent already exists, it is replaced by the new parent.
1007 */
1008int
1009ctf_import(ctf_file_t *fp, ctf_file_t *pfp)
1010{
1011	if (fp == NULL || fp == pfp || (pfp != NULL && pfp->ctf_refcnt == 0))
1012		return (ctf_set_errno(fp, EINVAL));
1013
1014	if (pfp != NULL && pfp->ctf_dmodel != fp->ctf_dmodel)
1015		return (ctf_set_errno(fp, ECTF_DMODEL));
1016
1017	if (fp->ctf_parent != NULL)
1018		ctf_close(fp->ctf_parent);
1019
1020	if (pfp != NULL) {
1021		fp->ctf_flags |= LCTF_CHILD;
1022		pfp->ctf_refcnt++;
1023	}
1024
1025	fp->ctf_parent = pfp;
1026	return (0);
1027}
1028
1029/*
1030 * Set the data model constant for the CTF container.
1031 */
1032int
1033ctf_setmodel(ctf_file_t *fp, int model)
1034{
1035	const ctf_dmodel_t *dp;
1036
1037	for (dp = _libctf_models; dp->ctd_name != NULL; dp++) {
1038		if (dp->ctd_code == model) {
1039			fp->ctf_dmodel = dp;
1040			return (0);
1041		}
1042	}
1043
1044	return (ctf_set_errno(fp, EINVAL));
1045}
1046
1047/*
1048 * Return the data model constant for the CTF container.
1049 */
1050int
1051ctf_getmodel(ctf_file_t *fp)
1052{
1053	return (fp->ctf_dmodel->ctd_code);
1054}
1055
1056void
1057ctf_setspecific(ctf_file_t *fp, void *data)
1058{
1059	fp->ctf_specific = data;
1060}
1061
1062void *
1063ctf_getspecific(ctf_file_t *fp)
1064{
1065	return (fp->ctf_specific);
1066}
1067