1/*
2 * Copyright (c) 2000-2010 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28/*
29 * @OSF_COPYRIGHT@
30 */
31/*
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989,1988 Carnegie Mellon University
34 * All Rights Reserved.
35 *
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
41 *
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
45 *
46 * Carnegie Mellon requests users of this software to return to
47 *
48 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
49 *  School of Computer Science
50 *  Carnegie Mellon University
51 *  Pittsburgh PA 15213-3890
52 *
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
55 */
56/*
57 */
58
59/*
60 *	File:	pmap.c
61 *	Author:	Avadis Tevanian, Jr., Michael Wayne Young
62 *	(These guys wrote the Vax version)
63 *
64 *	Physical Map management code for Intel i386, i486, and i860.
65 *
66 *	Manages physical address maps.
67 *
68 *	In addition to hardware address maps, this
69 *	module is called upon to provide software-use-only
70 *	maps which may or may not be stored in the same
71 *	form as hardware maps.  These pseudo-maps are
72 *	used to store intermediate results from copy
73 *	operations to and from address spaces.
74 *
75 *	Since the information managed by this module is
76 *	also stored by the logical address mapping module,
77 *	this module may throw away valid virtual-to-physical
78 *	mappings at almost any time.  However, invalidations
79 *	of virtual-to-physical mappings must be done as
80 *	requested.
81 *
82 *	In order to cope with hardware architectures which
83 *	make virtual-to-physical map invalidates expensive,
84 *	this module may delay invalidate or reduced protection
85 *	operations until such time as they are actually
86 *	necessary.  This module is given full information as
87 *	to which processors are currently using which maps,
88 *	and to when physical maps must be made correct.
89 */
90
91#include <string.h>
92#include <mach_ldebug.h>
93
94#include <libkern/OSAtomic.h>
95
96#include <mach/machine/vm_types.h>
97
98#include <mach/boolean.h>
99#include <kern/thread.h>
100#include <kern/zalloc.h>
101#include <kern/queue.h>
102#include <kern/ledger.h>
103#include <kern/mach_param.h>
104
105#include <kern/kalloc.h>
106#include <kern/spl.h>
107
108#include <vm/pmap.h>
109#include <vm/vm_map.h>
110#include <vm/vm_kern.h>
111#include <mach/vm_param.h>
112#include <mach/vm_prot.h>
113#include <vm/vm_object.h>
114#include <vm/vm_page.h>
115
116#include <mach/machine/vm_param.h>
117#include <machine/thread.h>
118
119#include <kern/misc_protos.h>			/* prototyping */
120#include <i386/misc_protos.h>
121#include <i386/i386_lowmem.h>
122#include <x86_64/lowglobals.h>
123
124#include <i386/cpuid.h>
125#include <i386/cpu_data.h>
126#include <i386/cpu_number.h>
127#include <i386/machine_cpu.h>
128#include <i386/seg.h>
129#include <i386/serial_io.h>
130#include <i386/cpu_capabilities.h>
131#include <i386/machine_routines.h>
132#include <i386/proc_reg.h>
133#include <i386/tsc.h>
134#include <i386/pmap_internal.h>
135#include <i386/pmap_pcid.h>
136
137#include <vm/vm_protos.h>
138
139#include <i386/mp.h>
140#include <i386/mp_desc.h>
141#include <libkern/kernel_mach_header.h>
142
143#include <pexpert/i386/efi.h>
144
145
146#ifdef IWANTTODEBUG
147#undef	DEBUG
148#define DEBUG 1
149#define POSTCODE_DELAY 1
150#include <i386/postcode.h>
151#endif /* IWANTTODEBUG */
152
153#ifdef	PMAP_DEBUG
154#define DBG(x...)	kprintf("DBG: " x)
155#else
156#define DBG(x...)
157#endif
158/* Compile time assert to ensure adjacency/alignment of per-CPU data fields used
159 * in the trampolines for kernel/user boundary TLB coherency.
160 */
161char pmap_cpu_data_assert[(((offsetof(cpu_data_t, cpu_tlb_invalid) - offsetof(cpu_data_t, cpu_active_cr3)) == 8) && (offsetof(cpu_data_t, cpu_active_cr3) % 64 == 0)) ? 1 : -1];
162boolean_t pmap_trace = FALSE;
163
164boolean_t	no_shared_cr3 = DEBUG;		/* TRUE for DEBUG by default */
165
166int nx_enabled = 1;			/* enable no-execute protection */
167int allow_data_exec  = VM_ABI_32;	/* 32-bit apps may execute data by default, 64-bit apps may not */
168int allow_stack_exec = 0;		/* No apps may execute from the stack by default */
169
170const boolean_t cpu_64bit  = TRUE; /* Mais oui! */
171
172uint64_t max_preemption_latency_tsc = 0;
173
174pv_hashed_entry_t     *pv_hash_table;  /* hash lists */
175
176uint32_t npvhashmask = 0, npvhashbuckets = 0;
177
178pv_hashed_entry_t	pv_hashed_free_list = PV_HASHED_ENTRY_NULL;
179pv_hashed_entry_t	pv_hashed_kern_free_list = PV_HASHED_ENTRY_NULL;
180decl_simple_lock_data(,pv_hashed_free_list_lock)
181decl_simple_lock_data(,pv_hashed_kern_free_list_lock)
182decl_simple_lock_data(,pv_hash_table_lock)
183
184decl_simple_lock_data(,phys_backup_lock)
185
186zone_t		pv_hashed_list_zone;	/* zone of pv_hashed_entry structures */
187
188/*
189 *	First and last physical addresses that we maintain any information
190 *	for.  Initialized to zero so that pmap operations done before
191 *	pmap_init won't touch any non-existent structures.
192 */
193boolean_t	pmap_initialized = FALSE;/* Has pmap_init completed? */
194
195static struct vm_object kptobj_object_store;
196static struct vm_object kpml4obj_object_store;
197static struct vm_object kpdptobj_object_store;
198
199/*
200 *	Array of physical page attribites for managed pages.
201 *	One byte per physical page.
202 */
203char		*pmap_phys_attributes;
204ppnum_t		last_managed_page = 0;
205
206/*
207 *	Amount of virtual memory mapped by one
208 *	page-directory entry.
209 */
210
211uint64_t pde_mapped_size = PDE_MAPPED_SIZE;
212
213unsigned pmap_memory_region_count;
214unsigned pmap_memory_region_current;
215
216pmap_memory_region_t pmap_memory_regions[PMAP_MEMORY_REGIONS_SIZE];
217
218/*
219 *	Other useful macros.
220 */
221#define current_pmap()		(vm_map_pmap(current_thread()->map))
222
223struct pmap	kernel_pmap_store;
224pmap_t		kernel_pmap;
225
226struct zone	*pmap_zone;		/* zone of pmap structures */
227
228struct zone	*pmap_anchor_zone;
229int		pmap_debug = 0;		/* flag for debugging prints */
230
231unsigned int	inuse_ptepages_count = 0;
232long long	alloc_ptepages_count __attribute__((aligned(8))) = 0; /* aligned for atomic access */
233unsigned int	bootstrap_wired_pages = 0;
234int		pt_fake_zone_index = -1;
235
236extern 	long	NMIPI_acks;
237
238boolean_t	kernel_text_ps_4K = TRUE;
239boolean_t	wpkernel = TRUE;
240
241extern char	end;
242
243static int	nkpt;
244
245pt_entry_t     *DMAP1, *DMAP2;
246caddr_t         DADDR1;
247caddr_t         DADDR2;
248
249const boolean_t	pmap_disable_kheap_nx = FALSE;
250const boolean_t	pmap_disable_kstack_nx = FALSE;
251extern boolean_t doconstro_override;
252
253extern long __stack_chk_guard[];
254
255/*
256 *	Map memory at initialization.  The physical addresses being
257 *	mapped are not managed and are never unmapped.
258 *
259 *	For now, VM is already on, we only need to map the
260 *	specified memory.
261 */
262vm_offset_t
263pmap_map(
264	vm_offset_t	virt,
265	vm_map_offset_t	start_addr,
266	vm_map_offset_t	end_addr,
267	vm_prot_t	prot,
268	unsigned int	flags)
269{
270	int		ps;
271
272	ps = PAGE_SIZE;
273	while (start_addr < end_addr) {
274		pmap_enter(kernel_pmap, (vm_map_offset_t)virt,
275			   (ppnum_t) i386_btop(start_addr), prot, VM_PROT_NONE, flags, TRUE);
276		virt += ps;
277		start_addr += ps;
278	}
279	return(virt);
280}
281
282extern	char			*first_avail;
283extern	vm_offset_t		virtual_avail, virtual_end;
284extern	pmap_paddr_t		avail_start, avail_end;
285extern  vm_offset_t		sHIB;
286extern  vm_offset_t		eHIB;
287extern  vm_offset_t		stext;
288extern  vm_offset_t		etext;
289extern  vm_offset_t		sdata, edata;
290extern  vm_offset_t		sconstdata, econstdata;
291
292extern void			*KPTphys;
293
294boolean_t pmap_smep_enabled = FALSE;
295boolean_t pmap_smap_enabled = FALSE;
296
297void
298pmap_cpu_init(void)
299{
300	cpu_data_t	*cdp = current_cpu_datap();
301	/*
302	 * Here early in the life of a processor (from cpu_mode_init()).
303	 * Ensure global page feature is disabled at this point.
304	 */
305
306	set_cr4(get_cr4() &~ CR4_PGE);
307
308	/*
309	 * Initialize the per-cpu, TLB-related fields.
310	 */
311	cdp->cpu_kernel_cr3 = kernel_pmap->pm_cr3;
312	cdp->cpu_active_cr3 = kernel_pmap->pm_cr3;
313	cdp->cpu_tlb_invalid = FALSE;
314	cdp->cpu_task_map = TASK_MAP_64BIT;
315	pmap_pcid_configure();
316	if (cpuid_leaf7_features() & CPUID_LEAF7_FEATURE_SMEP) {
317		boolean_t nsmep;
318		if (!PE_parse_boot_argn("-pmap_smep_disable", &nsmep, sizeof(nsmep))) {
319			set_cr4(get_cr4() | CR4_SMEP);
320			pmap_smep_enabled = TRUE;
321		}
322	}
323
324	if (cdp->cpu_fixed_pmcs_enabled) {
325		boolean_t enable = TRUE;
326		cpu_pmc_control(&enable);
327	}
328}
329
330static uint32_t pmap_scale_shift(void) {
331	uint32_t scale = 0;
332
333	if (sane_size <= 8*GB) {
334		scale = (uint32_t)(sane_size / (2 * GB));
335	} else if (sane_size <= 32*GB) {
336		scale = 4 + (uint32_t)((sane_size - (8 * GB))/ (4 * GB));
337	} else {
338		scale = 10 + (uint32_t)MIN(4, ((sane_size - (32 * GB))/ (8 * GB)));
339	}
340	return scale;
341}
342
343/*
344 *	Bootstrap the system enough to run with virtual memory.
345 *	Map the kernel's code and data, and allocate the system page table.
346 *	Called with mapping OFF.  Page_size must already be set.
347 */
348
349void
350pmap_bootstrap(
351	__unused vm_offset_t	load_start,
352	__unused boolean_t	IA32e)
353{
354#if NCOPY_WINDOWS > 0
355	vm_offset_t	va;
356	int i;
357#endif
358	assert(IA32e);
359
360	vm_last_addr = VM_MAX_KERNEL_ADDRESS;	/* Set the highest address
361						 * known to VM */
362	/*
363	 *	The kernel's pmap is statically allocated so we don't
364	 *	have to use pmap_create, which is unlikely to work
365	 *	correctly at this part of the boot sequence.
366	 */
367
368	kernel_pmap = &kernel_pmap_store;
369	kernel_pmap->ref_count = 1;
370	kernel_pmap->nx_enabled = TRUE;
371	kernel_pmap->pm_task_map = TASK_MAP_64BIT;
372	kernel_pmap->pm_obj = (vm_object_t) NULL;
373	kernel_pmap->dirbase = (pd_entry_t *)((uintptr_t)IdlePTD);
374	kernel_pmap->pm_pdpt = (pd_entry_t *) ((uintptr_t)IdlePDPT);
375	kernel_pmap->pm_pml4 = IdlePML4;
376	kernel_pmap->pm_cr3 = (uintptr_t)ID_MAP_VTOP(IdlePML4);
377	pmap_pcid_initialize_kernel(kernel_pmap);
378
379
380
381	current_cpu_datap()->cpu_kernel_cr3 = (addr64_t) kernel_pmap->pm_cr3;
382
383	nkpt = NKPT;
384	OSAddAtomic(NKPT,  &inuse_ptepages_count);
385	OSAddAtomic64(NKPT,  &alloc_ptepages_count);
386	bootstrap_wired_pages = NKPT;
387
388	virtual_avail = (vm_offset_t)(VM_MIN_KERNEL_ADDRESS) + (vm_offset_t)first_avail;
389	virtual_end = (vm_offset_t)(VM_MAX_KERNEL_ADDRESS);
390
391#if NCOPY_WINDOWS > 0
392	/*
393	 * Reserve some special page table entries/VA space for temporary
394	 * mapping of pages.
395	 */
396#define	SYSMAP(c, p, v, n)	\
397	v = (c)va; va += ((n)*INTEL_PGBYTES);
398
399	va = virtual_avail;
400
401        for (i=0; i<PMAP_NWINDOWS; i++) {
402#if 1
403	    kprintf("trying to do SYSMAP idx %d %p\n", i,
404	 	current_cpu_datap());
405	    kprintf("cpu_pmap %p\n", current_cpu_datap()->cpu_pmap);
406	    kprintf("mapwindow %p\n", current_cpu_datap()->cpu_pmap->mapwindow);
407	    kprintf("two stuff %p %p\n",
408		   (void *)(current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CMAP),
409                   (void *)(current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CADDR));
410#endif
411            SYSMAP(caddr_t,
412		   (current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CMAP),
413                   (current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CADDR),
414		   1);
415	    current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CMAP =
416	        &(current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CMAP_store);
417            *current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CMAP = 0;
418        }
419
420	/* DMAP user for debugger */
421	SYSMAP(caddr_t, DMAP1, DADDR1, 1);
422	SYSMAP(caddr_t, DMAP2, DADDR2, 1);  /* XXX temporary - can remove */
423
424	virtual_avail = va;
425#endif
426	if (!PE_parse_boot_argn("npvhash", &npvhashmask, sizeof (npvhashmask))) {
427		npvhashmask = ((NPVHASHBUCKETS) << pmap_scale_shift()) - 1;
428
429	}
430
431	npvhashbuckets = npvhashmask + 1;
432
433	if (0 != ((npvhashbuckets) & npvhashmask)) {
434		panic("invalid hash %d, must be ((2^N)-1), "
435		    "using default %d\n", npvhashmask, NPVHASHMASK);
436	}
437
438	simple_lock_init(&kernel_pmap->lock, 0);
439	simple_lock_init(&pv_hashed_free_list_lock, 0);
440	simple_lock_init(&pv_hashed_kern_free_list_lock, 0);
441	simple_lock_init(&pv_hash_table_lock,0);
442	simple_lock_init(&phys_backup_lock, 0);
443
444	pmap_cpu_init();
445
446	if (pmap_pcid_ncpus)
447		printf("PMAP: PCID enabled\n");
448
449	if (pmap_smep_enabled)
450		printf("PMAP: Supervisor Mode Execute Protection enabled\n");
451
452#if	DEBUG
453	printf("Stack canary: 0x%lx\n", __stack_chk_guard[0]);
454	printf("early_random(): 0x%qx\n", early_random());
455#endif
456	boolean_t ptmp;
457	/* Check if the user has requested disabling stack or heap no-execute
458	 * enforcement. These are "const" variables; that qualifier is cast away
459	 * when altering them. The TEXT/DATA const sections are marked
460	 * write protected later in the kernel startup sequence, so altering
461	 * them is possible at this point, in pmap_bootstrap().
462	 */
463	if (PE_parse_boot_argn("-pmap_disable_kheap_nx", &ptmp, sizeof(ptmp))) {
464		boolean_t *pdknxp = (boolean_t *) &pmap_disable_kheap_nx;
465		*pdknxp = TRUE;
466	}
467
468	if (PE_parse_boot_argn("-pmap_disable_kstack_nx", &ptmp, sizeof(ptmp))) {
469		boolean_t *pdknhp = (boolean_t *) &pmap_disable_kstack_nx;
470		*pdknhp = TRUE;
471	}
472
473	boot_args *args = (boot_args *)PE_state.bootArgs;
474	if (args->efiMode == kBootArgsEfiMode32) {
475		printf("EFI32: kernel virtual space limited to 4GB\n");
476		virtual_end = VM_MAX_KERNEL_ADDRESS_EFI32;
477	}
478	kprintf("Kernel virtual space from 0x%lx to 0x%lx.\n",
479			(long)KERNEL_BASE, (long)virtual_end);
480	kprintf("Available physical space from 0x%llx to 0x%llx\n",
481			avail_start, avail_end);
482
483	/*
484	 * The -no_shared_cr3 boot-arg is a debugging feature (set by default
485	 * in the DEBUG kernel) to force the kernel to switch to its own map
486	 * (and cr3) when control is in kernelspace. The kernel's map does not
487	 * include (i.e. share) userspace so wild references will cause
488	 * a panic. Only copyin and copyout are exempt from this.
489	 */
490	(void) PE_parse_boot_argn("-no_shared_cr3",
491				  &no_shared_cr3, sizeof (no_shared_cr3));
492	if (no_shared_cr3)
493		kprintf("Kernel not sharing user map\n");
494
495#ifdef	PMAP_TRACES
496	if (PE_parse_boot_argn("-pmap_trace", &pmap_trace, sizeof (pmap_trace))) {
497		kprintf("Kernel traces for pmap operations enabled\n");
498	}
499#endif	/* PMAP_TRACES */
500}
501
502void
503pmap_virtual_space(
504	vm_offset_t *startp,
505	vm_offset_t *endp)
506{
507	*startp = virtual_avail;
508	*endp = virtual_end;
509}
510
511
512
513
514#if HIBERNATION
515
516#include <IOKit/IOHibernatePrivate.h>
517
518int32_t		pmap_npages;
519int32_t		pmap_teardown_last_valid_compact_indx = -1;
520
521
522void	hibernate_rebuild_pmap_structs(void);
523void	hibernate_teardown_pmap_structs(addr64_t *, addr64_t *);
524void	pmap_pack_index(uint32_t);
525int32_t	pmap_unpack_index(pv_rooted_entry_t);
526
527
528int32_t
529pmap_unpack_index(pv_rooted_entry_t pv_h)
530{
531	int32_t	indx = 0;
532
533	indx = (int32_t)(*((uint64_t *)(&pv_h->qlink.next)) >> 48);
534	indx = indx << 16;
535	indx |= (int32_t)(*((uint64_t *)(&pv_h->qlink.prev)) >> 48);
536
537	*((uint64_t *)(&pv_h->qlink.next)) |= ((uint64_t)0xffff << 48);
538	*((uint64_t *)(&pv_h->qlink.prev)) |= ((uint64_t)0xffff << 48);
539
540	return (indx);
541}
542
543
544void
545pmap_pack_index(uint32_t indx)
546{
547	pv_rooted_entry_t	pv_h;
548
549	pv_h = &pv_head_table[indx];
550
551	*((uint64_t *)(&pv_h->qlink.next)) &= ~((uint64_t)0xffff << 48);
552	*((uint64_t *)(&pv_h->qlink.prev)) &= ~((uint64_t)0xffff << 48);
553
554	*((uint64_t *)(&pv_h->qlink.next)) |= ((uint64_t)(indx >> 16)) << 48;
555	*((uint64_t *)(&pv_h->qlink.prev)) |= ((uint64_t)(indx & 0xffff)) << 48;
556}
557
558
559void
560hibernate_teardown_pmap_structs(addr64_t *unneeded_start, addr64_t *unneeded_end)
561{
562	int32_t		i;
563	int32_t		compact_target_indx;
564
565	compact_target_indx = 0;
566
567	for (i = 0; i < pmap_npages; i++) {
568		if (pv_head_table[i].pmap == PMAP_NULL) {
569
570			if (pv_head_table[compact_target_indx].pmap != PMAP_NULL)
571				compact_target_indx = i;
572		} else {
573			pmap_pack_index((uint32_t)i);
574
575			if (pv_head_table[compact_target_indx].pmap == PMAP_NULL) {
576				/*
577                                 * we've got a hole to fill, so
578                                 * move this pv_rooted_entry_t to it's new home
579                                 */
580				pv_head_table[compact_target_indx] = pv_head_table[i];
581				pv_head_table[i].pmap = PMAP_NULL;
582
583				pmap_teardown_last_valid_compact_indx = compact_target_indx;
584				compact_target_indx++;
585			} else
586				pmap_teardown_last_valid_compact_indx = i;
587		}
588	}
589	*unneeded_start = (addr64_t)&pv_head_table[pmap_teardown_last_valid_compact_indx+1];
590	*unneeded_end = (addr64_t)&pv_head_table[pmap_npages-1];
591
592	HIBLOG("hibernate_teardown_pmap_structs done: last_valid_compact_indx %d\n", pmap_teardown_last_valid_compact_indx);
593}
594
595
596void
597hibernate_rebuild_pmap_structs(void)
598{
599	int32_t			cindx, eindx, rindx;
600	pv_rooted_entry_t	pv_h;
601
602	eindx = (int32_t)pmap_npages;
603
604	for (cindx = pmap_teardown_last_valid_compact_indx; cindx >= 0; cindx--) {
605
606		pv_h = &pv_head_table[cindx];
607
608		rindx = pmap_unpack_index(pv_h);
609		assert(rindx < pmap_npages);
610
611		if (rindx != cindx) {
612			/*
613			 * this pv_rooted_entry_t was moved by hibernate_teardown_pmap_structs,
614			 * so move it back to its real location
615			 */
616			pv_head_table[rindx] = pv_head_table[cindx];
617		}
618		if (rindx+1 != eindx) {
619			/*
620			 * the 'hole' between this vm_rooted_entry_t and the previous
621			 * vm_rooted_entry_t we moved needs to be initialized as
622			 * a range of zero'd vm_rooted_entry_t's
623			 */
624			bzero((char *)&pv_head_table[rindx+1], (eindx - rindx - 1) * sizeof (struct pv_rooted_entry));
625		}
626		eindx = rindx;
627	}
628	if (rindx)
629		bzero ((char *)&pv_head_table[0], rindx * sizeof (struct pv_rooted_entry));
630
631	HIBLOG("hibernate_rebuild_pmap_structs done: last_valid_compact_indx %d\n", pmap_teardown_last_valid_compact_indx);
632}
633
634#endif
635
636/*
637 *	Initialize the pmap module.
638 *	Called by vm_init, to initialize any structures that the pmap
639 *	system needs to map virtual memory.
640 */
641void
642pmap_init(void)
643{
644	long			npages;
645	vm_offset_t		addr;
646	vm_size_t		s, vsize;
647	vm_map_offset_t		vaddr;
648	ppnum_t ppn;
649
650
651	kernel_pmap->pm_obj_pml4 = &kpml4obj_object_store;
652	_vm_object_allocate((vm_object_size_t)NPML4PGS * PAGE_SIZE, &kpml4obj_object_store);
653
654	kernel_pmap->pm_obj_pdpt = &kpdptobj_object_store;
655	_vm_object_allocate((vm_object_size_t)NPDPTPGS * PAGE_SIZE, &kpdptobj_object_store);
656
657	kernel_pmap->pm_obj = &kptobj_object_store;
658	_vm_object_allocate((vm_object_size_t)NPDEPGS * PAGE_SIZE, &kptobj_object_store);
659
660	/*
661	 *	Allocate memory for the pv_head_table and its lock bits,
662	 *	the modify bit array, and the pte_page table.
663	 */
664
665	/*
666	 * zero bias all these arrays now instead of off avail_start
667	 * so we cover all memory
668	 */
669
670	npages = i386_btop(avail_end);
671#if HIBERNATION
672	pmap_npages = (uint32_t)npages;
673#endif
674	s = (vm_size_t) (sizeof(struct pv_rooted_entry) * npages
675			 + (sizeof (struct pv_hashed_entry_t *) * (npvhashbuckets))
676			 + pv_lock_table_size(npages)
677			 + pv_hash_lock_table_size((npvhashbuckets))
678				+ npages);
679
680	s = round_page(s);
681	if (kernel_memory_allocate(kernel_map, &addr, s, 0,
682				   KMA_KOBJECT | KMA_PERMANENT)
683	    != KERN_SUCCESS)
684		panic("pmap_init");
685
686	memset((char *)addr, 0, s);
687
688	vaddr = addr;
689	vsize = s;
690
691#if PV_DEBUG
692	if (0 == npvhashmask) panic("npvhashmask not initialized");
693#endif
694
695	/*
696	 *	Allocate the structures first to preserve word-alignment.
697	 */
698	pv_head_table = (pv_rooted_entry_t) addr;
699	addr = (vm_offset_t) (pv_head_table + npages);
700
701	pv_hash_table = (pv_hashed_entry_t *)addr;
702	addr = (vm_offset_t) (pv_hash_table + (npvhashbuckets));
703
704	pv_lock_table = (char *) addr;
705	addr = (vm_offset_t) (pv_lock_table + pv_lock_table_size(npages));
706
707	pv_hash_lock_table = (char *) addr;
708	addr = (vm_offset_t) (pv_hash_lock_table + pv_hash_lock_table_size((npvhashbuckets)));
709
710	pmap_phys_attributes = (char *) addr;
711
712	ppnum_t  last_pn = i386_btop(avail_end);
713        unsigned int i;
714	pmap_memory_region_t *pmptr = pmap_memory_regions;
715	for (i = 0; i < pmap_memory_region_count; i++, pmptr++) {
716		if (pmptr->type != kEfiConventionalMemory)
717			continue;
718		ppnum_t pn;
719		for (pn = pmptr->base; pn <= pmptr->end; pn++) {
720			if (pn < last_pn) {
721				pmap_phys_attributes[pn] |= PHYS_MANAGED;
722
723				if (pn > last_managed_page)
724					last_managed_page = pn;
725
726				if (pn >= lowest_hi && pn <= highest_hi)
727					pmap_phys_attributes[pn] |= PHYS_NOENCRYPT;
728			}
729		}
730	}
731	while (vsize) {
732		ppn = pmap_find_phys(kernel_pmap, vaddr);
733
734		pmap_phys_attributes[ppn] |= PHYS_NOENCRYPT;
735
736		vaddr += PAGE_SIZE;
737		vsize -= PAGE_SIZE;
738	}
739	/*
740	 *	Create the zone of physical maps,
741	 *	and of the physical-to-virtual entries.
742	 */
743	s = (vm_size_t) sizeof(struct pmap);
744	pmap_zone = zinit(s, 400*s, 4096, "pmap"); /* XXX */
745        zone_change(pmap_zone, Z_NOENCRYPT, TRUE);
746
747	pmap_anchor_zone = zinit(PAGE_SIZE, task_max, PAGE_SIZE, "pagetable anchors");
748	zone_change(pmap_anchor_zone, Z_NOENCRYPT, TRUE);
749
750	/* The anchor is required to be page aligned. Zone debugging adds
751	 * padding which may violate that requirement. Tell the zone
752	 * subsystem that alignment is required.
753	 */
754
755	zone_change(pmap_anchor_zone, Z_ALIGNMENT_REQUIRED, TRUE);
756
757	s = (vm_size_t) sizeof(struct pv_hashed_entry);
758	pv_hashed_list_zone = zinit(s, 10000*s /* Expandable zone */,
759	    4096 * 3 /* LCM x86_64*/, "pv_list");
760	zone_change(pv_hashed_list_zone, Z_NOENCRYPT, TRUE);
761
762	/* create pv entries for kernel pages mapped by low level
763	   startup code.  these have to exist so we can pmap_remove()
764	   e.g. kext pages from the middle of our addr space */
765
766	vaddr = (vm_map_offset_t) VM_MIN_KERNEL_ADDRESS;
767	for (ppn = VM_MIN_KERNEL_PAGE; ppn < i386_btop(avail_start); ppn++) {
768		pv_rooted_entry_t pv_e;
769
770		pv_e = pai_to_pvh(ppn);
771		pv_e->va = vaddr;
772		vaddr += PAGE_SIZE;
773		pv_e->pmap = kernel_pmap;
774		queue_init(&pv_e->qlink);
775	}
776	pmap_initialized = TRUE;
777
778	max_preemption_latency_tsc = tmrCvt((uint64_t)MAX_PREEMPTION_LATENCY_NS, tscFCvtn2t);
779
780	/*
781	 * Ensure the kernel's PML4 entry exists for the basement
782	 * before this is shared with any user.
783	 */
784	pmap_expand_pml4(kernel_pmap, KERNEL_BASEMENT, PMAP_EXPAND_OPTIONS_NONE);
785}
786
787static
788void pmap_mark_range(pmap_t npmap, uint64_t sv, uint64_t nxrosz, boolean_t NX, boolean_t ro) {
789	uint64_t ev = sv + nxrosz, cv = sv;
790	pd_entry_t *pdep;
791	pt_entry_t *ptep = NULL;
792
793	assert(((sv & 0xFFFULL) | (nxrosz & 0xFFFULL)) == 0);
794
795	for (pdep = pmap_pde(npmap, cv); pdep != NULL && (cv < ev);) {
796		uint64_t pdev = (cv & ~((uint64_t)PDEMASK));
797
798		if (*pdep & INTEL_PTE_PS) {
799			if (NX)
800				*pdep |= INTEL_PTE_NX;
801			if (ro)
802				*pdep &= ~INTEL_PTE_WRITE;
803			cv += NBPD;
804			cv &= ~((uint64_t) PDEMASK);
805			pdep = pmap_pde(npmap, cv);
806			continue;
807		}
808
809		for (ptep = pmap_pte(npmap, cv); ptep != NULL && (cv < (pdev + NBPD)) && (cv < ev);) {
810			if (NX)
811				*ptep |= INTEL_PTE_NX;
812			if (ro)
813				*ptep &= ~INTEL_PTE_WRITE;
814			cv += NBPT;
815			ptep = pmap_pte(npmap, cv);
816		}
817	}
818	DPRINTF("%s(0x%llx, 0x%llx, %u, %u): 0x%llx, 0x%llx\n", __FUNCTION__, sv, nxrosz, NX, ro, cv, ptep ? *ptep: 0);
819}
820
821/*
822 * Called once VM is fully initialized so that we can release unused
823 * sections of low memory to the general pool.
824 * Also complete the set-up of identity-mapped sections of the kernel:
825 *  1) write-protect kernel text
826 *  2) map kernel text using large pages if possible
827 *  3) read and write-protect page zero (for K32)
828 *  4) map the global page at the appropriate virtual address.
829 *
830 * Use of large pages
831 * ------------------
832 * To effectively map and write-protect all kernel text pages, the text
833 * must be 2M-aligned at the base, and the data section above must also be
834 * 2M-aligned. That is, there's padding below and above. This is achieved
835 * through linker directives. Large pages are used only if this alignment
836 * exists (and not overriden by the -kernel_text_page_4K boot-arg). The
837 * memory layout is:
838 *
839 *                       :                :
840 *                       |     __DATA     |
841 *               sdata:  ==================  2Meg
842 *                       |                |
843 *                       |  zero-padding  |
844 *                       |                |
845 *               etext:  ------------------
846 *                       |                |
847 *                       :                :
848 *                       |                |
849 *                       |     __TEXT     |
850 *                       |                |
851 *                       :                :
852 *                       |                |
853 *               stext:  ==================  2Meg
854 *                       |                |
855 *                       |  zero-padding  |
856 *                       |                |
857 *               eHIB:   ------------------
858 *                       |     __HIB      |
859 *                       :                :
860 *
861 * Prior to changing the mapping from 4K to 2M, the zero-padding pages
862 * [eHIB,stext] and [etext,sdata] are ml_static_mfree()'d. Then all the
863 * 4K pages covering [stext,etext] are coalesced as 2M large pages.
864 * The now unused level-1 PTE pages are also freed.
865 */
866extern ppnum_t	vm_kernel_base_page;
867void
868pmap_lowmem_finalize(void)
869{
870	spl_t           spl;
871	int		i;
872
873	/*
874	 * Update wired memory statistics for early boot pages
875	 */
876	PMAP_ZINFO_PALLOC(kernel_pmap, bootstrap_wired_pages * PAGE_SIZE);
877
878	/*
879	 * Free pages in pmap regions below the base:
880	 * rdar://6332712
881	 *	We can't free all the pages to VM that EFI reports available.
882	 *	Pages in the range 0xc0000-0xff000 aren't safe over sleep/wake.
883	 *	There's also a size miscalculation here: pend is one page less
884	 *	than it should be but this is not fixed to be backwards
885	 *	compatible.
886	 * This is important for KASLR because up to 256*2MB = 512MB of space
887	 * needs has to be released to VM.
888	 */
889	for (i = 0;
890	     pmap_memory_regions[i].end < vm_kernel_base_page;
891	     i++) {
892		vm_offset_t	pbase = i386_ptob(pmap_memory_regions[i].base);
893		vm_offset_t	pend  = i386_ptob(pmap_memory_regions[i].end+1);
894
895		DBG("pmap region %d [%p..[%p\n",
896		    i, (void *) pbase, (void *) pend);
897
898		if (pmap_memory_regions[i].attribute & EFI_MEMORY_KERN_RESERVED)
899			continue;
900		/*
901		 * rdar://6332712
902		 * Adjust limits not to free pages in range 0xc0000-0xff000.
903		 */
904		if (pbase >= 0xc0000 && pend <= 0x100000)
905			continue;
906		if (pbase < 0xc0000 && pend > 0x100000) {
907			/* page range entirely within region, free lower part */
908			DBG("- ml_static_mfree(%p,%p)\n",
909			    (void *) ml_static_ptovirt(pbase),
910			    (void *) (0xc0000-pbase));
911			ml_static_mfree(ml_static_ptovirt(pbase),0xc0000-pbase);
912			pbase = 0x100000;
913		}
914		if (pbase < 0xc0000)
915			pend = MIN(pend, 0xc0000);
916		if (pend  > 0x100000)
917			pbase = MAX(pbase, 0x100000);
918		DBG("- ml_static_mfree(%p,%p)\n",
919		    (void *) ml_static_ptovirt(pbase),
920		    (void *) (pend - pbase));
921		ml_static_mfree(ml_static_ptovirt(pbase), pend - pbase);
922	}
923
924	/* A final pass to get rid of all initial identity mappings to
925	 * low pages.
926	 */
927	DPRINTF("%s: Removing mappings from 0->0x%lx\n", __FUNCTION__, vm_kernel_base);
928
929	/*
930	 * Remove all mappings past the boot-cpu descriptor aliases and low globals.
931	 * Non-boot-cpu GDT aliases will be remapped later as needed.
932	 */
933	pmap_remove(kernel_pmap, LOWGLOBAL_ALIAS + PAGE_SIZE, vm_kernel_base);
934
935	/*
936	 * If text and data are both 2MB-aligned,
937	 * we can map text with large-pages,
938	 * unless the -kernel_text_ps_4K boot-arg overrides.
939	 */
940	if ((stext & I386_LPGMASK) == 0 && (sdata & I386_LPGMASK) == 0) {
941		kprintf("Kernel text is 2MB aligned");
942		kernel_text_ps_4K = FALSE;
943		if (PE_parse_boot_argn("-kernel_text_ps_4K",
944				       &kernel_text_ps_4K,
945				       sizeof (kernel_text_ps_4K)))
946			kprintf(" but will be mapped with 4K pages\n");
947		else
948			kprintf(" and will be mapped with 2M pages\n");
949	}
950
951	(void) PE_parse_boot_argn("wpkernel", &wpkernel, sizeof (wpkernel));
952	if (wpkernel)
953		kprintf("Kernel text %p-%p to be write-protected\n",
954			(void *) stext, (void *) etext);
955
956	spl = splhigh();
957
958	/*
959	 * Scan over text if mappings are to be changed:
960	 * - Remap kernel text readonly unless the "wpkernel" boot-arg is 0
961 	 * - Change to large-pages if possible and not overriden.
962	 */
963	if (kernel_text_ps_4K && wpkernel) {
964		vm_offset_t     myva;
965		for (myva = stext; myva < etext; myva += PAGE_SIZE) {
966			pt_entry_t     *ptep;
967
968			ptep = pmap_pte(kernel_pmap, (vm_map_offset_t)myva);
969			if (ptep)
970				pmap_store_pte(ptep, *ptep & ~INTEL_PTE_WRITE);
971		}
972	}
973
974	if (!kernel_text_ps_4K) {
975		vm_offset_t     myva;
976
977		/*
978		 * Release zero-filled page padding used for 2M-alignment.
979		 */
980		DBG("ml_static_mfree(%p,%p) for padding below text\n",
981			(void *) eHIB, (void *) (stext - eHIB));
982		ml_static_mfree(eHIB, stext - eHIB);
983		DBG("ml_static_mfree(%p,%p) for padding above text\n",
984			(void *) etext, (void *) (sdata - etext));
985		ml_static_mfree(etext, sdata - etext);
986
987		/*
988		 * Coalesce text pages into large pages.
989		 */
990		for (myva = stext; myva < sdata; myva += I386_LPGBYTES) {
991			pt_entry_t	*ptep;
992			vm_offset_t	pte_phys;
993			pt_entry_t	*pdep;
994			pt_entry_t	pde;
995
996			pdep = pmap_pde(kernel_pmap, (vm_map_offset_t)myva);
997			ptep = pmap_pte(kernel_pmap, (vm_map_offset_t)myva);
998			DBG("myva: %p pdep: %p ptep: %p\n",
999				(void *) myva, (void *) pdep, (void *) ptep);
1000			if ((*ptep & INTEL_PTE_VALID) == 0)
1001				continue;
1002			pte_phys = (vm_offset_t)(*ptep & PG_FRAME);
1003			pde = *pdep & PTMASK;	/* page attributes from pde */
1004			pde |= INTEL_PTE_PS;	/* make it a 2M entry */
1005			pde |= pte_phys;	/* take page frame from pte */
1006
1007			if (wpkernel)
1008				pde &= ~INTEL_PTE_WRITE;
1009			DBG("pmap_store_pte(%p,0x%llx)\n",
1010				(void *)pdep, pde);
1011			pmap_store_pte(pdep, pde);
1012
1013			/*
1014			 * Free the now-unused level-1 pte.
1015			 * Note: ptep is a virtual address to the pte in the
1016			 *   recursive map. We can't use this address to free
1017			 *   the page. Instead we need to compute its address
1018			 *   in the Idle PTEs in "low memory".
1019			 */
1020			vm_offset_t vm_ptep = (vm_offset_t) KPTphys
1021						+ (pte_phys >> PTPGSHIFT);
1022			DBG("ml_static_mfree(%p,0x%x) for pte\n",
1023				(void *) vm_ptep, PAGE_SIZE);
1024			ml_static_mfree(vm_ptep, PAGE_SIZE);
1025		}
1026
1027		/* Change variable read by sysctl machdep.pmap */
1028		pmap_kernel_text_ps = I386_LPGBYTES;
1029	}
1030
1031	boolean_t doconstro = TRUE;
1032
1033	(void) PE_parse_boot_argn("dataconstro", &doconstro, sizeof(doconstro));
1034
1035	if ((sconstdata | econstdata) & PAGE_MASK) {
1036		kprintf("Const DATA misaligned 0x%lx 0x%lx\n", sconstdata, econstdata);
1037		if ((sconstdata & PAGE_MASK) || (doconstro_override == FALSE))
1038			doconstro = FALSE;
1039	}
1040
1041	if ((sconstdata > edata) || (sconstdata < sdata) || ((econstdata - sconstdata) >= (edata - sdata))) {
1042		kprintf("Const DATA incorrect size 0x%lx 0x%lx 0x%lx 0x%lx\n", sconstdata, econstdata, sdata, edata);
1043		doconstro = FALSE;
1044	}
1045
1046	if (doconstro)
1047		kprintf("Marking const DATA read-only\n");
1048
1049	vm_offset_t dva;
1050
1051	for (dva = sdata; dva < edata; dva += I386_PGBYTES) {
1052		assert(((sdata | edata) & PAGE_MASK) == 0);
1053		if ( (sdata | edata) & PAGE_MASK) {
1054			kprintf("DATA misaligned, 0x%lx, 0x%lx\n", sdata, edata);
1055			break;
1056		}
1057
1058		pt_entry_t dpte, *dptep = pmap_pte(kernel_pmap, dva);
1059
1060		dpte = *dptep;
1061
1062		assert((dpte & INTEL_PTE_VALID));
1063		if ((dpte & INTEL_PTE_VALID) == 0) {
1064			kprintf("Missing data mapping 0x%lx 0x%lx 0x%lx\n", dva, sdata, edata);
1065			continue;
1066		}
1067
1068		dpte |= INTEL_PTE_NX;
1069		if (doconstro && (dva >= sconstdata) && (dva < econstdata)) {
1070			dpte &= ~INTEL_PTE_WRITE;
1071		}
1072		pmap_store_pte(dptep, dpte);
1073	}
1074	kernel_segment_command_t * seg;
1075	kernel_section_t         * sec;
1076
1077	for (seg = firstseg(); seg != NULL; seg = nextsegfromheader(&_mh_execute_header, seg)) {
1078		if (!strcmp(seg->segname, "__TEXT") ||
1079		    !strcmp(seg->segname, "__DATA")) {
1080			continue;
1081		}
1082		//XXX
1083		if (!strcmp(seg->segname, "__KLD")) {
1084			continue;
1085		}
1086		if (!strcmp(seg->segname, "__HIB")) {
1087			for (sec = firstsect(seg); sec != NULL; sec = nextsect(seg, sec)) {
1088				if (sec->addr & PAGE_MASK)
1089					panic("__HIB segment's sections misaligned");
1090				if (!strcmp(sec->sectname, "__text")) {
1091					pmap_mark_range(kernel_pmap, sec->addr, round_page(sec->size), FALSE, TRUE);
1092				} else {
1093					pmap_mark_range(kernel_pmap, sec->addr, round_page(sec->size), TRUE, FALSE);
1094				}
1095			}
1096		} else {
1097			pmap_mark_range(kernel_pmap, seg->vmaddr, round_page_64(seg->vmsize), TRUE, FALSE);
1098		}
1099	}
1100
1101	/*
1102	 * If we're debugging, map the low global vector page at the fixed
1103	 * virtual address.  Otherwise, remove the mapping for this.
1104	 */
1105	if (debug_boot_arg) {
1106		pt_entry_t *pte = NULL;
1107		if (0 == (pte = pmap_pte(kernel_pmap, LOWGLOBAL_ALIAS)))
1108			panic("lowmem pte");
1109		/* make sure it is defined on page boundary */
1110		assert(0 == ((vm_offset_t) &lowGlo & PAGE_MASK));
1111		pmap_store_pte(pte, kvtophys((vm_offset_t)&lowGlo)
1112					| INTEL_PTE_REF
1113					| INTEL_PTE_MOD
1114					| INTEL_PTE_WIRED
1115					| INTEL_PTE_VALID
1116					| INTEL_PTE_WRITE
1117					| INTEL_PTE_NX);
1118	} else {
1119		pmap_remove(kernel_pmap,
1120			    LOWGLOBAL_ALIAS, LOWGLOBAL_ALIAS + PAGE_SIZE);
1121	}
1122
1123	splx(spl);
1124	if (pmap_pcid_ncpus)
1125		tlb_flush_global();
1126	else
1127		flush_tlb_raw();
1128}
1129
1130/*
1131 * this function is only used for debugging fron the vm layer
1132 */
1133boolean_t
1134pmap_verify_free(
1135		 ppnum_t pn)
1136{
1137	pv_rooted_entry_t	pv_h;
1138	int		pai;
1139	boolean_t	result;
1140
1141	assert(pn != vm_page_fictitious_addr);
1142
1143	if (!pmap_initialized)
1144		return(TRUE);
1145
1146	if (pn == vm_page_guard_addr)
1147		return TRUE;
1148
1149	pai = ppn_to_pai(pn);
1150	if (!IS_MANAGED_PAGE(pai))
1151		return(FALSE);
1152	pv_h = pai_to_pvh(pn);
1153	result = (pv_h->pmap == PMAP_NULL);
1154	return(result);
1155}
1156
1157boolean_t
1158pmap_is_empty(
1159       pmap_t          pmap,
1160       vm_map_offset_t va_start,
1161       vm_map_offset_t va_end)
1162{
1163	vm_map_offset_t offset;
1164	ppnum_t         phys_page;
1165
1166	if (pmap == PMAP_NULL) {
1167		return TRUE;
1168	}
1169
1170	/*
1171	 * Check the resident page count
1172	 * - if it's zero, the pmap is completely empty.
1173	 * This short-circuit test prevents a virtual address scan which is
1174	 * painfully slow for 64-bit spaces.
1175	 * This assumes the count is correct
1176	 * .. the debug kernel ought to be checking perhaps by page table walk.
1177	 */
1178	if (pmap->stats.resident_count == 0)
1179		return TRUE;
1180
1181	for (offset = va_start;
1182	     offset < va_end;
1183	     offset += PAGE_SIZE_64) {
1184		phys_page = pmap_find_phys(pmap, offset);
1185		if (phys_page) {
1186			kprintf("pmap_is_empty(%p,0x%llx,0x%llx): "
1187				"page %d at 0x%llx\n",
1188				pmap, va_start, va_end, phys_page, offset);
1189			return FALSE;
1190		}
1191	}
1192
1193	return TRUE;
1194}
1195
1196
1197/*
1198 *	Create and return a physical map.
1199 *
1200 *	If the size specified for the map
1201 *	is zero, the map is an actual physical
1202 *	map, and may be referenced by the
1203 *	hardware.
1204 *
1205 *	If the size specified is non-zero,
1206 *	the map will be used in software only, and
1207 *	is bounded by that size.
1208 */
1209pmap_t
1210pmap_create(
1211	ledger_t		ledger,
1212	    vm_map_size_t	sz,
1213	    boolean_t		is_64bit)
1214{
1215	pmap_t		p;
1216	vm_size_t	size;
1217	pml4_entry_t    *pml4;
1218	pml4_entry_t    *kpml4;
1219
1220	PMAP_TRACE(PMAP_CODE(PMAP__CREATE) | DBG_FUNC_START,
1221		   (uint32_t) (sz>>32), (uint32_t) sz, is_64bit, 0, 0);
1222
1223	size = (vm_size_t) sz;
1224
1225	/*
1226	 *	A software use-only map doesn't even need a map.
1227	 */
1228
1229	if (size != 0) {
1230		return(PMAP_NULL);
1231	}
1232
1233	p = (pmap_t) zalloc(pmap_zone);
1234	if (PMAP_NULL == p)
1235		panic("pmap_create zalloc");
1236	/* Zero all fields */
1237	bzero(p, sizeof(*p));
1238	/* init counts now since we'll be bumping some */
1239	simple_lock_init(&p->lock, 0);
1240#if 00
1241	p->stats.resident_count = 0;
1242	p->stats.resident_max = 0;
1243	p->stats.wired_count = 0;
1244#else
1245	bzero(&p->stats, sizeof (p->stats));
1246#endif
1247	p->ref_count = 1;
1248	p->nx_enabled = 1;
1249	p->pm_shared = FALSE;
1250	ledger_reference(ledger);
1251	p->ledger = ledger;
1252
1253	p->pm_task_map = is_64bit ? TASK_MAP_64BIT : TASK_MAP_32BIT;;
1254	if (pmap_pcid_ncpus)
1255		pmap_pcid_initialize(p);
1256
1257	p->pm_pml4 = zalloc(pmap_anchor_zone);
1258
1259	pmap_assert((((uintptr_t)p->pm_pml4) & PAGE_MASK) == 0);
1260
1261	memset((char *)p->pm_pml4, 0, PAGE_SIZE);
1262
1263	p->pm_cr3 = (pmap_paddr_t)kvtophys((vm_offset_t)p->pm_pml4);
1264
1265	/* allocate the vm_objs to hold the pdpt, pde and pte pages */
1266
1267	p->pm_obj_pml4 = vm_object_allocate((vm_object_size_t)(NPML4PGS) * PAGE_SIZE);
1268	if (NULL == p->pm_obj_pml4)
1269		panic("pmap_create pdpt obj");
1270
1271	p->pm_obj_pdpt = vm_object_allocate((vm_object_size_t)(NPDPTPGS) * PAGE_SIZE);
1272	if (NULL == p->pm_obj_pdpt)
1273		panic("pmap_create pdpt obj");
1274
1275	p->pm_obj = vm_object_allocate((vm_object_size_t)(NPDEPGS) * PAGE_SIZE);
1276	if (NULL == p->pm_obj)
1277		panic("pmap_create pte obj");
1278
1279	/* All pmaps share the kernel's pml4 */
1280	pml4 = pmap64_pml4(p, 0ULL);
1281	kpml4 = kernel_pmap->pm_pml4;
1282	pml4[KERNEL_PML4_INDEX]    = kpml4[KERNEL_PML4_INDEX];
1283	pml4[KERNEL_KEXTS_INDEX]   = kpml4[KERNEL_KEXTS_INDEX];
1284	pml4[KERNEL_PHYSMAP_PML4_INDEX] = kpml4[KERNEL_PHYSMAP_PML4_INDEX];
1285
1286	PMAP_TRACE(PMAP_CODE(PMAP__CREATE) | DBG_FUNC_START,
1287		   p, is_64bit, 0, 0, 0);
1288
1289	return(p);
1290}
1291
1292/*
1293 *	Retire the given physical map from service.
1294 *	Should only be called if the map contains
1295 *	no valid mappings.
1296 */
1297
1298void
1299pmap_destroy(pmap_t	p)
1300{
1301	int		c;
1302
1303	if (p == PMAP_NULL)
1304		return;
1305
1306	PMAP_TRACE(PMAP_CODE(PMAP__DESTROY) | DBG_FUNC_START,
1307		   p, 0, 0, 0, 0);
1308
1309	PMAP_LOCK(p);
1310
1311	c = --p->ref_count;
1312
1313	pmap_assert((current_thread() && (current_thread()->map)) ? (current_thread()->map->pmap != p) : TRUE);
1314
1315	if (c == 0) {
1316		/*
1317		 * If some cpu is not using the physical pmap pointer that it
1318		 * is supposed to be (see set_dirbase), we might be using the
1319		 * pmap that is being destroyed! Make sure we are
1320		 * physically on the right pmap:
1321		 */
1322		PMAP_UPDATE_TLBS(p, 0x0ULL, 0xFFFFFFFFFFFFF000ULL);
1323		if (pmap_pcid_ncpus)
1324			pmap_destroy_pcid_sync(p);
1325	}
1326
1327	PMAP_UNLOCK(p);
1328
1329	if (c != 0) {
1330		PMAP_TRACE(PMAP_CODE(PMAP__DESTROY) | DBG_FUNC_END,
1331			   p, 1, 0, 0, 0);
1332		pmap_assert(p == kernel_pmap);
1333	        return;	/* still in use */
1334	}
1335
1336	/*
1337	 *	Free the memory maps, then the
1338	 *	pmap structure.
1339	 */
1340	int inuse_ptepages = 0;
1341
1342	zfree(pmap_anchor_zone, p->pm_pml4);
1343
1344	inuse_ptepages += p->pm_obj_pml4->resident_page_count;
1345	vm_object_deallocate(p->pm_obj_pml4);
1346
1347	inuse_ptepages += p->pm_obj_pdpt->resident_page_count;
1348	vm_object_deallocate(p->pm_obj_pdpt);
1349
1350	inuse_ptepages += p->pm_obj->resident_page_count;
1351	vm_object_deallocate(p->pm_obj);
1352
1353	OSAddAtomic(-inuse_ptepages,  &inuse_ptepages_count);
1354	PMAP_ZINFO_PFREE(p, inuse_ptepages * PAGE_SIZE);
1355	ledger_dereference(p->ledger);
1356	zfree(pmap_zone, p);
1357
1358	PMAP_TRACE(PMAP_CODE(PMAP__DESTROY) | DBG_FUNC_END,
1359		   0, 0, 0, 0, 0);
1360}
1361
1362/*
1363 *	Add a reference to the specified pmap.
1364 */
1365
1366void
1367pmap_reference(pmap_t	p)
1368{
1369	if (p != PMAP_NULL) {
1370	        PMAP_LOCK(p);
1371		p->ref_count++;
1372		PMAP_UNLOCK(p);;
1373	}
1374}
1375
1376/*
1377 *	Remove phys addr if mapped in specified map
1378 *
1379 */
1380void
1381pmap_remove_some_phys(
1382	__unused pmap_t		map,
1383	__unused ppnum_t         pn)
1384{
1385
1386/* Implement to support working set code */
1387
1388}
1389
1390
1391void
1392pmap_protect(
1393	pmap_t		map,
1394	vm_map_offset_t	sva,
1395	vm_map_offset_t	eva,
1396	vm_prot_t	prot)
1397{
1398	pmap_protect_options(map, sva, eva, prot, 0, NULL);
1399}
1400
1401
1402/*
1403 *	Set the physical protection on the
1404 *	specified range of this map as requested.
1405 *	Will not increase permissions.
1406 */
1407void
1408pmap_protect_options(
1409	pmap_t		map,
1410	vm_map_offset_t	sva,
1411	vm_map_offset_t	eva,
1412	vm_prot_t	prot,
1413	unsigned int	options,
1414	void		*arg)
1415{
1416	pt_entry_t	*pde;
1417	pt_entry_t	*spte, *epte;
1418	vm_map_offset_t lva;
1419	vm_map_offset_t orig_sva;
1420	boolean_t       set_NX;
1421	int             num_found = 0;
1422
1423	pmap_intr_assert();
1424
1425	if (map == PMAP_NULL)
1426		return;
1427
1428	if (prot == VM_PROT_NONE) {
1429		pmap_remove_options(map, sva, eva, options);
1430		return;
1431	}
1432	PMAP_TRACE(PMAP_CODE(PMAP__PROTECT) | DBG_FUNC_START,
1433		   map,
1434		   (uint32_t) (sva >> 32), (uint32_t) sva,
1435		   (uint32_t) (eva >> 32), (uint32_t) eva);
1436
1437	if ((prot & VM_PROT_EXECUTE) || !nx_enabled || !map->nx_enabled)
1438		set_NX = FALSE;
1439	else
1440		set_NX = TRUE;
1441
1442	PMAP_LOCK(map);
1443
1444	orig_sva = sva;
1445	while (sva < eva) {
1446		lva = (sva + pde_mapped_size) & ~(pde_mapped_size - 1);
1447		if (lva > eva)
1448			lva = eva;
1449		pde = pmap_pde(map, sva);
1450		if (pde && (*pde & INTEL_PTE_VALID)) {
1451			if (*pde & INTEL_PTE_PS) {
1452				/* superpage */
1453				spte = pde;
1454				epte = spte+1; /* excluded */
1455			} else {
1456				spte = pmap_pte(map, (sva & ~(pde_mapped_size - 1)));
1457				spte = &spte[ptenum(sva)];
1458				epte = &spte[intel_btop(lva - sva)];
1459			}
1460
1461			for (; spte < epte; spte++) {
1462				if (!(*spte & INTEL_PTE_VALID))
1463					continue;
1464
1465				if (prot & VM_PROT_WRITE)
1466					pmap_update_pte(spte, 0, INTEL_PTE_WRITE);
1467				else
1468					pmap_update_pte(spte, INTEL_PTE_WRITE, 0);
1469
1470				if (set_NX)
1471					pmap_update_pte(spte, 0, INTEL_PTE_NX);
1472				else
1473					pmap_update_pte(spte, INTEL_PTE_NX, 0);
1474				num_found++;
1475			}
1476		}
1477		sva = lva;
1478	}
1479	if (num_found) {
1480		if (options & PMAP_OPTIONS_NOFLUSH)
1481			PMAP_UPDATE_TLBS_DELAYED(map, orig_sva, eva, (pmap_flush_context *)arg);
1482		else
1483			PMAP_UPDATE_TLBS(map, orig_sva, eva);
1484	}
1485	PMAP_UNLOCK(map);
1486
1487	PMAP_TRACE(PMAP_CODE(PMAP__PROTECT) | DBG_FUNC_END,
1488		   0, 0, 0, 0, 0);
1489
1490}
1491
1492/* Map a (possibly) autogenned block */
1493void
1494pmap_map_block(
1495	pmap_t		pmap,
1496	addr64_t	va,
1497	ppnum_t 	pa,
1498	uint32_t	size,
1499	vm_prot_t	prot,
1500	int		attr,
1501	__unused unsigned int	flags)
1502{
1503	uint32_t        page;
1504	int		cur_page_size;
1505
1506	if (attr & VM_MEM_SUPERPAGE)
1507		cur_page_size =  SUPERPAGE_SIZE;
1508	else
1509		cur_page_size =  PAGE_SIZE;
1510
1511	for (page = 0; page < size; page+=cur_page_size/PAGE_SIZE) {
1512		pmap_enter(pmap, va, pa, prot, VM_PROT_NONE, attr, TRUE);
1513		va += cur_page_size;
1514		pa+=cur_page_size/PAGE_SIZE;
1515	}
1516}
1517
1518kern_return_t
1519pmap_expand_pml4(
1520	pmap_t		map,
1521	vm_map_offset_t	vaddr,
1522	unsigned int options)
1523{
1524	vm_page_t	m;
1525	pmap_paddr_t	pa;
1526	uint64_t	i;
1527	ppnum_t		pn;
1528	pml4_entry_t	*pml4p;
1529
1530	DBG("pmap_expand_pml4(%p,%p)\n", map, (void *)vaddr);
1531
1532	/*
1533	 *	Allocate a VM page for the pml4 page
1534	 */
1535	while ((m = vm_page_grab()) == VM_PAGE_NULL) {
1536		if (options & PMAP_EXPAND_OPTIONS_NOWAIT)
1537			return KERN_RESOURCE_SHORTAGE;
1538		VM_PAGE_WAIT();
1539	}
1540	/*
1541	 *	put the page into the pmap's obj list so it
1542	 *	can be found later.
1543	 */
1544	pn = m->phys_page;
1545	pa = i386_ptob(pn);
1546	i = pml4idx(map, vaddr);
1547
1548	/*
1549	 *	Zero the page.
1550	 */
1551	pmap_zero_page(pn);
1552
1553	vm_page_lockspin_queues();
1554	vm_page_wire(m);
1555	vm_page_unlock_queues();
1556
1557	OSAddAtomic(1,  &inuse_ptepages_count);
1558	OSAddAtomic64(1,  &alloc_ptepages_count);
1559	PMAP_ZINFO_PALLOC(map, PAGE_SIZE);
1560
1561	/* Take the oject lock (mutex) before the PMAP_LOCK (spinlock) */
1562	vm_object_lock(map->pm_obj_pml4);
1563
1564	PMAP_LOCK(map);
1565	/*
1566	 *	See if someone else expanded us first
1567	 */
1568	if (pmap64_pdpt(map, vaddr) != PDPT_ENTRY_NULL) {
1569	        PMAP_UNLOCK(map);
1570		vm_object_unlock(map->pm_obj_pml4);
1571
1572		VM_PAGE_FREE(m);
1573
1574		OSAddAtomic(-1,  &inuse_ptepages_count);
1575		PMAP_ZINFO_PFREE(map, PAGE_SIZE);
1576		return KERN_SUCCESS;
1577	}
1578
1579#if 0 /* DEBUG */
1580       if (0 != vm_page_lookup(map->pm_obj_pml4, (vm_object_offset_t)i * PAGE_SIZE)) {
1581	       panic("pmap_expand_pml4: obj not empty, pmap %p pm_obj %p vaddr 0x%llx i 0x%llx\n",
1582		     map, map->pm_obj_pml4, vaddr, i);
1583       }
1584#endif
1585	vm_page_insert(m, map->pm_obj_pml4, (vm_object_offset_t)i * PAGE_SIZE);
1586	vm_object_unlock(map->pm_obj_pml4);
1587
1588	/*
1589	 *	Set the page directory entry for this page table.
1590	 */
1591	pml4p = pmap64_pml4(map, vaddr); /* refetch under lock */
1592
1593	pmap_store_pte(pml4p, pa_to_pte(pa)
1594				| INTEL_PTE_VALID
1595				| INTEL_PTE_USER
1596				| INTEL_PTE_WRITE);
1597
1598	PMAP_UNLOCK(map);
1599
1600	return KERN_SUCCESS;
1601}
1602
1603kern_return_t
1604pmap_expand_pdpt(pmap_t map, vm_map_offset_t vaddr, unsigned int options)
1605{
1606	vm_page_t	m;
1607	pmap_paddr_t	pa;
1608	uint64_t	i;
1609	ppnum_t		pn;
1610	pdpt_entry_t	*pdptp;
1611
1612	DBG("pmap_expand_pdpt(%p,%p)\n", map, (void *)vaddr);
1613
1614	while ((pdptp = pmap64_pdpt(map, vaddr)) == PDPT_ENTRY_NULL) {
1615		kern_return_t pep4kr = pmap_expand_pml4(map, vaddr, options);
1616		if (pep4kr != KERN_SUCCESS)
1617			return pep4kr;
1618	}
1619
1620	/*
1621	 *	Allocate a VM page for the pdpt page
1622	 */
1623	while ((m = vm_page_grab()) == VM_PAGE_NULL) {
1624		if (options & PMAP_EXPAND_OPTIONS_NOWAIT)
1625			return KERN_RESOURCE_SHORTAGE;
1626		VM_PAGE_WAIT();
1627	}
1628
1629	/*
1630	 *	put the page into the pmap's obj list so it
1631	 *	can be found later.
1632	 */
1633	pn = m->phys_page;
1634	pa = i386_ptob(pn);
1635	i = pdptidx(map, vaddr);
1636
1637	/*
1638	 *	Zero the page.
1639	 */
1640	pmap_zero_page(pn);
1641
1642	vm_page_lockspin_queues();
1643	vm_page_wire(m);
1644	vm_page_unlock_queues();
1645
1646	OSAddAtomic(1,  &inuse_ptepages_count);
1647	OSAddAtomic64(1,  &alloc_ptepages_count);
1648	PMAP_ZINFO_PALLOC(map, PAGE_SIZE);
1649
1650	/* Take the oject lock (mutex) before the PMAP_LOCK (spinlock) */
1651	vm_object_lock(map->pm_obj_pdpt);
1652
1653	PMAP_LOCK(map);
1654	/*
1655	 *	See if someone else expanded us first
1656	 */
1657	if (pmap64_pde(map, vaddr) != PD_ENTRY_NULL) {
1658		PMAP_UNLOCK(map);
1659		vm_object_unlock(map->pm_obj_pdpt);
1660
1661		VM_PAGE_FREE(m);
1662
1663		OSAddAtomic(-1,  &inuse_ptepages_count);
1664		PMAP_ZINFO_PFREE(map, PAGE_SIZE);
1665		return KERN_SUCCESS;
1666	}
1667
1668#if 0 /* DEBUG */
1669       if (0 != vm_page_lookup(map->pm_obj_pdpt, (vm_object_offset_t)i * PAGE_SIZE)) {
1670	       panic("pmap_expand_pdpt: obj not empty, pmap %p pm_obj %p vaddr 0x%llx i 0x%llx\n",
1671		     map, map->pm_obj_pdpt, vaddr, i);
1672       }
1673#endif
1674	vm_page_insert(m, map->pm_obj_pdpt, (vm_object_offset_t)i * PAGE_SIZE);
1675	vm_object_unlock(map->pm_obj_pdpt);
1676
1677	/*
1678	 *	Set the page directory entry for this page table.
1679	 */
1680	pdptp = pmap64_pdpt(map, vaddr); /* refetch under lock */
1681
1682	pmap_store_pte(pdptp, pa_to_pte(pa)
1683				| INTEL_PTE_VALID
1684				| INTEL_PTE_USER
1685				| INTEL_PTE_WRITE);
1686
1687	PMAP_UNLOCK(map);
1688
1689	return KERN_SUCCESS;
1690
1691}
1692
1693
1694
1695/*
1696 *	Routine:	pmap_expand
1697 *
1698 *	Expands a pmap to be able to map the specified virtual address.
1699 *
1700 *	Allocates new virtual memory for the P0 or P1 portion of the
1701 *	pmap, then re-maps the physical pages that were in the old
1702 *	pmap to be in the new pmap.
1703 *
1704 *	Must be called with the pmap system and the pmap unlocked,
1705 *	since these must be unlocked to use vm_allocate or vm_deallocate.
1706 *	Thus it must be called in a loop that checks whether the map
1707 *	has been expanded enough.
1708 *	(We won't loop forever, since page tables aren't shrunk.)
1709 */
1710kern_return_t
1711pmap_expand(
1712	pmap_t		map,
1713	vm_map_offset_t	vaddr,
1714	unsigned int options)
1715{
1716	pt_entry_t		*pdp;
1717	register vm_page_t	m;
1718	register pmap_paddr_t	pa;
1719	uint64_t		i;
1720	ppnum_t                 pn;
1721
1722
1723	/*
1724 	 * For the kernel, the virtual address must be in or above the basement
1725	 * which is for kexts and is in the 512GB immediately below the kernel..
1726	 * XXX - should use VM_MIN_KERNEL_AND_KEXT_ADDRESS not KERNEL_BASEMENT
1727	 */
1728	if (map == kernel_pmap &&
1729	    !(vaddr >= KERNEL_BASEMENT && vaddr <= VM_MAX_KERNEL_ADDRESS))
1730		panic("pmap_expand: bad vaddr 0x%llx for kernel pmap", vaddr);
1731
1732
1733	while ((pdp = pmap64_pde(map, vaddr)) == PD_ENTRY_NULL) {
1734		kern_return_t pepkr = pmap_expand_pdpt(map, vaddr, options);
1735		if (pepkr != KERN_SUCCESS)
1736			return pepkr;
1737	}
1738
1739	/*
1740	 *	Allocate a VM page for the pde entries.
1741	 */
1742	while ((m = vm_page_grab()) == VM_PAGE_NULL) {
1743		if (options & PMAP_EXPAND_OPTIONS_NOWAIT)
1744			return KERN_RESOURCE_SHORTAGE;
1745		VM_PAGE_WAIT();
1746	}
1747
1748	/*
1749	 *	put the page into the pmap's obj list so it
1750	 *	can be found later.
1751	 */
1752	pn = m->phys_page;
1753	pa = i386_ptob(pn);
1754	i = pdeidx(map, vaddr);
1755
1756	/*
1757	 *	Zero the page.
1758	 */
1759	pmap_zero_page(pn);
1760
1761	vm_page_lockspin_queues();
1762	vm_page_wire(m);
1763	vm_page_unlock_queues();
1764
1765	OSAddAtomic(1,  &inuse_ptepages_count);
1766	OSAddAtomic64(1,  &alloc_ptepages_count);
1767	PMAP_ZINFO_PALLOC(map, PAGE_SIZE);
1768
1769	/* Take the oject lock (mutex) before the PMAP_LOCK (spinlock) */
1770	vm_object_lock(map->pm_obj);
1771
1772	PMAP_LOCK(map);
1773
1774	/*
1775	 *	See if someone else expanded us first
1776	 */
1777	if (pmap_pte(map, vaddr) != PT_ENTRY_NULL) {
1778		PMAP_UNLOCK(map);
1779		vm_object_unlock(map->pm_obj);
1780
1781		VM_PAGE_FREE(m);
1782
1783		OSAddAtomic(-1,  &inuse_ptepages_count);
1784		PMAP_ZINFO_PFREE(map, PAGE_SIZE);
1785		return KERN_SUCCESS;
1786	}
1787
1788#if 0 /* DEBUG */
1789       if (0 != vm_page_lookup(map->pm_obj, (vm_object_offset_t)i * PAGE_SIZE)) {
1790	       panic("pmap_expand: obj not empty, pmap 0x%x pm_obj 0x%x vaddr 0x%llx i 0x%llx\n",
1791		     map, map->pm_obj, vaddr, i);
1792       }
1793#endif
1794	vm_page_insert(m, map->pm_obj, (vm_object_offset_t)i * PAGE_SIZE);
1795	vm_object_unlock(map->pm_obj);
1796
1797	/*
1798	 *	Set the page directory entry for this page table.
1799	 */
1800	pdp = pmap_pde(map, vaddr);
1801	pmap_store_pte(pdp, pa_to_pte(pa)
1802				| INTEL_PTE_VALID
1803				| INTEL_PTE_USER
1804				| INTEL_PTE_WRITE);
1805
1806	PMAP_UNLOCK(map);
1807
1808	return KERN_SUCCESS;
1809}
1810
1811/* On K64 machines with more than 32GB of memory, pmap_steal_memory
1812 * will allocate past the 1GB of pre-expanded virtual kernel area. This
1813 * function allocates all the page tables using memory from the same pool
1814 * that pmap_steal_memory uses, rather than calling vm_page_grab (which
1815 * isn't available yet). */
1816void
1817pmap_pre_expand(pmap_t pmap, vm_map_offset_t vaddr)
1818{
1819	ppnum_t pn;
1820	pt_entry_t		*pte;
1821
1822	PMAP_LOCK(pmap);
1823
1824	if(pmap64_pdpt(pmap, vaddr) == PDPT_ENTRY_NULL) {
1825		if (!pmap_next_page_hi(&pn))
1826			panic("pmap_pre_expand");
1827
1828		pmap_zero_page(pn);
1829
1830		pte = pmap64_pml4(pmap, vaddr);
1831
1832		pmap_store_pte(pte, pa_to_pte(i386_ptob(pn))
1833				| INTEL_PTE_VALID
1834				| INTEL_PTE_USER
1835				| INTEL_PTE_WRITE);
1836	}
1837
1838	if(pmap64_pde(pmap, vaddr) == PD_ENTRY_NULL) {
1839		if (!pmap_next_page_hi(&pn))
1840			panic("pmap_pre_expand");
1841
1842		pmap_zero_page(pn);
1843
1844		pte = pmap64_pdpt(pmap, vaddr);
1845
1846		pmap_store_pte(pte, pa_to_pte(i386_ptob(pn))
1847				| INTEL_PTE_VALID
1848				| INTEL_PTE_USER
1849				| INTEL_PTE_WRITE);
1850	}
1851
1852	if(pmap_pte(pmap, vaddr) == PT_ENTRY_NULL) {
1853		if (!pmap_next_page_hi(&pn))
1854			panic("pmap_pre_expand");
1855
1856		pmap_zero_page(pn);
1857
1858		pte = pmap64_pde(pmap, vaddr);
1859
1860		pmap_store_pte(pte, pa_to_pte(i386_ptob(pn))
1861				| INTEL_PTE_VALID
1862				| INTEL_PTE_USER
1863				| INTEL_PTE_WRITE);
1864	}
1865
1866	PMAP_UNLOCK(pmap);
1867}
1868
1869/*
1870 * pmap_sync_page_data_phys(ppnum_t pa)
1871 *
1872 * Invalidates all of the instruction cache on a physical page and
1873 * pushes any dirty data from the data cache for the same physical page
1874 * Not required in i386.
1875 */
1876void
1877pmap_sync_page_data_phys(__unused ppnum_t pa)
1878{
1879	return;
1880}
1881
1882/*
1883 * pmap_sync_page_attributes_phys(ppnum_t pa)
1884 *
1885 * Write back and invalidate all cachelines on a physical page.
1886 */
1887void
1888pmap_sync_page_attributes_phys(ppnum_t pa)
1889{
1890	cache_flush_page_phys(pa);
1891}
1892
1893
1894
1895#ifdef CURRENTLY_UNUSED_AND_UNTESTED
1896
1897int	collect_ref;
1898int	collect_unref;
1899
1900/*
1901 *	Routine:	pmap_collect
1902 *	Function:
1903 *		Garbage collects the physical map system for
1904 *		pages which are no longer used.
1905 *		Success need not be guaranteed -- that is, there
1906 *		may well be pages which are not referenced, but
1907 *		others may be collected.
1908 *	Usage:
1909 *		Called by the pageout daemon when pages are scarce.
1910 */
1911void
1912pmap_collect(
1913	pmap_t 		p)
1914{
1915	register pt_entry_t	*pdp, *ptp;
1916	pt_entry_t		*eptp;
1917	int			wired;
1918
1919	if (p == PMAP_NULL)
1920		return;
1921
1922	if (p == kernel_pmap)
1923		return;
1924
1925	/*
1926	 *	Garbage collect map.
1927	 */
1928	PMAP_LOCK(p);
1929
1930	for (pdp = (pt_entry_t *)p->dirbase;
1931	     pdp < (pt_entry_t *)&p->dirbase[(UMAXPTDI+1)];
1932	     pdp++)
1933	{
1934	   if (*pdp & INTEL_PTE_VALID) {
1935	      if(*pdp & INTEL_PTE_REF) {
1936		pmap_store_pte(pdp, *pdp & ~INTEL_PTE_REF);
1937		collect_ref++;
1938	      } else {
1939		collect_unref++;
1940		ptp = pmap_pte(p, pdetova(pdp - (pt_entry_t *)p->dirbase));
1941		eptp = ptp + NPTEPG;
1942
1943		/*
1944		 * If the pte page has any wired mappings, we cannot
1945		 * free it.
1946		 */
1947		wired = 0;
1948		{
1949		    register pt_entry_t *ptep;
1950		    for (ptep = ptp; ptep < eptp; ptep++) {
1951			if (iswired(*ptep)) {
1952			    wired = 1;
1953			    break;
1954			}
1955		    }
1956		}
1957		if (!wired) {
1958		    /*
1959		     * Remove the virtual addresses mapped by this pte page.
1960		     */
1961		    pmap_remove_range(p,
1962				pdetova(pdp - (pt_entry_t *)p->dirbase),
1963				ptp,
1964				eptp);
1965
1966		    /*
1967		     * Invalidate the page directory pointer.
1968		     */
1969		    pmap_store_pte(pdp, 0x0);
1970
1971		    PMAP_UNLOCK(p);
1972
1973		    /*
1974		     * And free the pte page itself.
1975		     */
1976		    {
1977			register vm_page_t m;
1978
1979			vm_object_lock(p->pm_obj);
1980
1981			m = vm_page_lookup(p->pm_obj,(vm_object_offset_t)(pdp - (pt_entry_t *)&p->dirbase[0]) * PAGE_SIZE);
1982			if (m == VM_PAGE_NULL)
1983			    panic("pmap_collect: pte page not in object");
1984
1985			vm_object_unlock(p->pm_obj);
1986
1987			VM_PAGE_FREE(m);
1988
1989			OSAddAtomic(-1,  &inuse_ptepages_count);
1990			PMAP_ZINFO_PFREE(p, PAGE_SIZE);
1991		    }
1992
1993		    PMAP_LOCK(p);
1994		}
1995	      }
1996	   }
1997	}
1998
1999	PMAP_UPDATE_TLBS(p, 0x0, 0xFFFFFFFFFFFFF000ULL);
2000	PMAP_UNLOCK(p);
2001	return;
2002
2003}
2004#endif
2005
2006
2007void
2008pmap_copy_page(ppnum_t src, ppnum_t dst)
2009{
2010	bcopy_phys((addr64_t)i386_ptob(src),
2011		   (addr64_t)i386_ptob(dst),
2012		   PAGE_SIZE);
2013}
2014
2015
2016/*
2017 *	Routine:	pmap_pageable
2018 *	Function:
2019 *		Make the specified pages (by pmap, offset)
2020 *		pageable (or not) as requested.
2021 *
2022 *		A page which is not pageable may not take
2023 *		a fault; therefore, its page table entry
2024 *		must remain valid for the duration.
2025 *
2026 *		This routine is merely advisory; pmap_enter
2027 *		will specify that these pages are to be wired
2028 *		down (or not) as appropriate.
2029 */
2030void
2031pmap_pageable(
2032	__unused pmap_t			pmap,
2033	__unused vm_map_offset_t	start_addr,
2034	__unused vm_map_offset_t	end_addr,
2035	__unused boolean_t		pageable)
2036{
2037#ifdef	lint
2038	pmap++; start_addr++; end_addr++; pageable++;
2039#endif	/* lint */
2040}
2041
2042void
2043invalidate_icache(__unused vm_offset_t	addr,
2044		  __unused unsigned	cnt,
2045		  __unused int		phys)
2046{
2047	return;
2048}
2049
2050void
2051flush_dcache(__unused vm_offset_t	addr,
2052	     __unused unsigned		count,
2053	     __unused int		phys)
2054{
2055	return;
2056}
2057
2058#if CONFIG_DTRACE
2059/*
2060 * Constrain DTrace copyin/copyout actions
2061 */
2062extern kern_return_t dtrace_copyio_preflight(addr64_t);
2063extern kern_return_t dtrace_copyio_postflight(addr64_t);
2064
2065kern_return_t dtrace_copyio_preflight(__unused addr64_t va)
2066{
2067	thread_t thread = current_thread();
2068	uint64_t ccr3;
2069	if (current_map() == kernel_map)
2070		return KERN_FAILURE;
2071	else if (((ccr3 = get_cr3_base()) != thread->map->pmap->pm_cr3) && (no_shared_cr3 == FALSE))
2072		return KERN_FAILURE;
2073	else if (no_shared_cr3 && (ccr3 != kernel_pmap->pm_cr3))
2074		return KERN_FAILURE;
2075	else
2076		return KERN_SUCCESS;
2077}
2078
2079kern_return_t dtrace_copyio_postflight(__unused addr64_t va)
2080{
2081	return KERN_SUCCESS;
2082}
2083#endif /* CONFIG_DTRACE */
2084
2085#include <mach_vm_debug.h>
2086#if	MACH_VM_DEBUG
2087#include <vm/vm_debug.h>
2088
2089int
2090pmap_list_resident_pages(
2091	__unused pmap_t		pmap,
2092	__unused vm_offset_t	*listp,
2093	__unused int		space)
2094{
2095	return 0;
2096}
2097#endif	/* MACH_VM_DEBUG */
2098
2099
2100
2101/* temporary workaround */
2102boolean_t
2103coredumpok(__unused vm_map_t map, __unused vm_offset_t va)
2104{
2105#if 0
2106	pt_entry_t     *ptep;
2107
2108	ptep = pmap_pte(map->pmap, va);
2109	if (0 == ptep)
2110		return FALSE;
2111	return ((*ptep & (INTEL_PTE_NCACHE | INTEL_PTE_WIRED)) != (INTEL_PTE_NCACHE | INTEL_PTE_WIRED));
2112#else
2113	return TRUE;
2114#endif
2115}
2116
2117
2118boolean_t
2119phys_page_exists(ppnum_t pn)
2120{
2121	assert(pn != vm_page_fictitious_addr);
2122
2123	if (!pmap_initialized)
2124		return TRUE;
2125
2126	if (pn == vm_page_guard_addr)
2127		return FALSE;
2128
2129	if (!IS_MANAGED_PAGE(ppn_to_pai(pn)))
2130		return FALSE;
2131
2132	return TRUE;
2133}
2134
2135
2136
2137void
2138pmap_switch(pmap_t tpmap)
2139{
2140        spl_t	s;
2141
2142	s = splhigh();		/* Make sure interruptions are disabled */
2143	set_dirbase(tpmap, current_thread(), cpu_number());
2144	splx(s);
2145}
2146
2147
2148/*
2149 * disable no-execute capability on
2150 * the specified pmap
2151 */
2152void
2153pmap_disable_NX(pmap_t pmap)
2154{
2155        pmap->nx_enabled = 0;
2156}
2157
2158void
2159pt_fake_zone_init(int zone_index)
2160{
2161	pt_fake_zone_index = zone_index;
2162}
2163
2164void
2165pt_fake_zone_info(
2166	int		*count,
2167	vm_size_t	*cur_size,
2168	vm_size_t	*max_size,
2169	vm_size_t	*elem_size,
2170	vm_size_t	*alloc_size,
2171	uint64_t	*sum_size,
2172	int		*collectable,
2173	int		*exhaustable,
2174	int		*caller_acct)
2175{
2176        *count      = inuse_ptepages_count;
2177	*cur_size   = PAGE_SIZE * inuse_ptepages_count;
2178	*max_size   = PAGE_SIZE * (inuse_ptepages_count +
2179				   vm_page_inactive_count +
2180				   vm_page_active_count +
2181				   vm_page_free_count);
2182	*elem_size  = PAGE_SIZE;
2183	*alloc_size = PAGE_SIZE;
2184	*sum_size = alloc_ptepages_count * PAGE_SIZE;
2185
2186	*collectable = 1;
2187	*exhaustable = 0;
2188	*caller_acct = 1;
2189}
2190
2191
2192void
2193pmap_flush_context_init(pmap_flush_context *pfc)
2194{
2195	pfc->pfc_cpus = 0;
2196	pfc->pfc_invalid_global = 0;
2197}
2198
2199extern unsigned TLBTimeOut;
2200void
2201pmap_flush(
2202	pmap_flush_context *pfc)
2203{
2204	unsigned int	my_cpu;
2205	unsigned int	cpu;
2206	unsigned int	cpu_bit;
2207	cpumask_t	cpus_to_respond = 0;
2208	cpumask_t	cpus_to_signal = 0;
2209	cpumask_t	cpus_signaled = 0;
2210	boolean_t	flush_self = FALSE;
2211	uint64_t	deadline;
2212
2213	mp_disable_preemption();
2214
2215	my_cpu = cpu_number();
2216	cpus_to_signal = pfc->pfc_cpus;
2217
2218	PMAP_TRACE_CONSTANT(PMAP_CODE(PMAP__FLUSH_DELAYED_TLBS) | DBG_FUNC_START,
2219			    NULL, cpus_to_signal, 0, 0, 0);
2220
2221	for (cpu = 0, cpu_bit = 1; cpu < real_ncpus && cpus_to_signal; cpu++, cpu_bit <<= 1) {
2222
2223		if (cpus_to_signal & cpu_bit) {
2224
2225			cpus_to_signal &= ~cpu_bit;
2226
2227			if (!cpu_datap(cpu)->cpu_running)
2228				continue;
2229
2230			if (pfc->pfc_invalid_global & cpu_bit)
2231				cpu_datap(cpu)->cpu_tlb_invalid_global = TRUE;
2232			else
2233				cpu_datap(cpu)->cpu_tlb_invalid_local = TRUE;
2234			mfence();
2235
2236			if (cpu == my_cpu) {
2237				flush_self = TRUE;
2238				continue;
2239			}
2240			if (CPU_CR3_IS_ACTIVE(cpu)) {
2241				cpus_to_respond |= cpu_bit;
2242				i386_signal_cpu(cpu, MP_TLB_FLUSH, ASYNC);
2243			}
2244		}
2245	}
2246	cpus_signaled = cpus_to_respond;
2247
2248	/*
2249	 * Flush local tlb if required.
2250	 * Do this now to overlap with other processors responding.
2251	 */
2252	if (flush_self && cpu_datap(my_cpu)->cpu_tlb_invalid != FALSE)
2253		process_pmap_updates();
2254
2255	if (cpus_to_respond) {
2256
2257		deadline = mach_absolute_time() +
2258				(TLBTimeOut ? TLBTimeOut : LockTimeOut);
2259		boolean_t is_timeout_traced = FALSE;
2260
2261		/*
2262		 * Wait for those other cpus to acknowledge
2263		 */
2264		while (cpus_to_respond != 0) {
2265			long orig_acks = 0;
2266
2267			for (cpu = 0, cpu_bit = 1; cpu < real_ncpus; cpu++, cpu_bit <<= 1) {
2268				/* Consider checking local/global invalidity
2269				 * as appropriate in the PCID case.
2270				 */
2271				if ((cpus_to_respond & cpu_bit) != 0) {
2272					if (!cpu_datap(cpu)->cpu_running ||
2273					    cpu_datap(cpu)->cpu_tlb_invalid == FALSE ||
2274					    !CPU_CR3_IS_ACTIVE(cpu)) {
2275						cpus_to_respond &= ~cpu_bit;
2276					}
2277					cpu_pause();
2278				}
2279				if (cpus_to_respond == 0)
2280					break;
2281			}
2282			if (cpus_to_respond && (mach_absolute_time() > deadline)) {
2283				if (machine_timeout_suspended())
2284					continue;
2285				if (TLBTimeOut == 0) {
2286					if (is_timeout_traced)
2287						continue;
2288					PMAP_TRACE_CONSTANT(PMAP_CODE(PMAP__FLUSH_TLBS_TO),
2289			    			NULL, cpus_to_signal, cpus_to_respond, 0, 0);
2290					is_timeout_traced = TRUE;
2291					continue;
2292				}
2293				pmap_tlb_flush_timeout = TRUE;
2294				orig_acks = NMIPI_acks;
2295				mp_cpus_NMIPI(cpus_to_respond);
2296
2297				panic("TLB invalidation IPI timeout: "
2298				    "CPU(s) failed to respond to interrupts, unresponsive CPU bitmap: 0x%lx, NMIPI acks: orig: 0x%lx, now: 0x%lx",
2299				    cpus_to_respond, orig_acks, NMIPI_acks);
2300			}
2301		}
2302	}
2303	PMAP_TRACE_CONSTANT(PMAP_CODE(PMAP__FLUSH_DELAYED_TLBS) | DBG_FUNC_END,
2304			    NULL, cpus_signaled, flush_self, 0, 0);
2305
2306	mp_enable_preemption();
2307}
2308
2309
2310/*
2311 * Called with pmap locked, we:
2312 *  - scan through per-cpu data to see which other cpus need to flush
2313 *  - send an IPI to each non-idle cpu to be flushed
2314 *  - wait for all to signal back that they are inactive or we see that
2315 *    they are at a safe point (idle).
2316 *  - flush the local tlb if active for this pmap
2317 *  - return ... the caller will unlock the pmap
2318 */
2319
2320void
2321pmap_flush_tlbs(pmap_t	pmap, vm_map_offset_t startv, vm_map_offset_t endv, int options, pmap_flush_context *pfc)
2322{
2323	unsigned int	cpu;
2324	unsigned int	cpu_bit;
2325	cpumask_t	cpus_to_signal;
2326	unsigned int	my_cpu = cpu_number();
2327	pmap_paddr_t	pmap_cr3 = pmap->pm_cr3;
2328	boolean_t	flush_self = FALSE;
2329	uint64_t	deadline;
2330	boolean_t	pmap_is_shared = (pmap->pm_shared || (pmap == kernel_pmap));
2331	boolean_t	need_global_flush = FALSE;
2332	uint32_t	event_code;
2333
2334	assert((processor_avail_count < 2) ||
2335	       (ml_get_interrupts_enabled() && get_preemption_level() != 0));
2336
2337	event_code = (pmap == kernel_pmap) ? PMAP_CODE(PMAP__FLUSH_KERN_TLBS)
2338					   : PMAP_CODE(PMAP__FLUSH_TLBS);
2339	PMAP_TRACE_CONSTANT(event_code | DBG_FUNC_START,
2340			    pmap, options, startv, endv, 0);
2341
2342	/*
2343	 * Scan other cpus for matching active or task CR3.
2344	 * For idle cpus (with no active map) we mark them invalid but
2345	 * don't signal -- they'll check as they go busy.
2346	 */
2347	cpus_to_signal = 0;
2348
2349	if (pmap_pcid_ncpus) {
2350		if (pmap_is_shared)
2351			need_global_flush = TRUE;
2352		pmap_pcid_invalidate_all_cpus(pmap);
2353		mfence();
2354	}
2355	for (cpu = 0, cpu_bit = 1; cpu < real_ncpus; cpu++, cpu_bit <<= 1) {
2356		if (!cpu_datap(cpu)->cpu_running)
2357			continue;
2358		uint64_t	cpu_active_cr3 = CPU_GET_ACTIVE_CR3(cpu);
2359		uint64_t	cpu_task_cr3 = CPU_GET_TASK_CR3(cpu);
2360
2361		if ((pmap_cr3 == cpu_task_cr3) ||
2362		    (pmap_cr3 == cpu_active_cr3) ||
2363		    (pmap_is_shared)) {
2364
2365			if (options & PMAP_DELAY_TLB_FLUSH) {
2366				if (need_global_flush == TRUE)
2367					pfc->pfc_invalid_global |= cpu_bit;
2368				pfc->pfc_cpus |= cpu_bit;
2369
2370				continue;
2371			}
2372			if (cpu == my_cpu) {
2373				flush_self = TRUE;
2374				continue;
2375			}
2376			if (need_global_flush == TRUE)
2377				cpu_datap(cpu)->cpu_tlb_invalid_global = TRUE;
2378			else
2379				cpu_datap(cpu)->cpu_tlb_invalid_local = TRUE;
2380			mfence();
2381
2382			/*
2383			 * We don't need to signal processors which will flush
2384			 * lazily at the idle state or kernel boundary.
2385			 * For example, if we're invalidating the kernel pmap,
2386			 * processors currently in userspace don't need to flush
2387			 * their TLBs until the next time they enter the kernel.
2388			 * Alterations to the address space of a task active
2389			 * on a remote processor result in a signal, to
2390			 * account for copy operations. (There may be room
2391			 * for optimization in such cases).
2392			 * The order of the loads below with respect
2393			 * to the store to the "cpu_tlb_invalid" field above
2394			 * is important--hence the barrier.
2395			 */
2396			if (CPU_CR3_IS_ACTIVE(cpu) &&
2397			    (pmap_cr3 == CPU_GET_ACTIVE_CR3(cpu) ||
2398			     pmap->pm_shared ||
2399			     (pmap_cr3 == CPU_GET_TASK_CR3(cpu)))) {
2400				cpus_to_signal |= cpu_bit;
2401				i386_signal_cpu(cpu, MP_TLB_FLUSH, ASYNC);
2402			}
2403		}
2404	}
2405	if ((options & PMAP_DELAY_TLB_FLUSH))
2406		goto out;
2407
2408	/*
2409	 * Flush local tlb if required.
2410	 * Do this now to overlap with other processors responding.
2411	 */
2412	if (flush_self) {
2413		if (pmap_pcid_ncpus) {
2414			pmap_pcid_validate_cpu(pmap, my_cpu);
2415			if (pmap_is_shared)
2416				tlb_flush_global();
2417			else
2418				flush_tlb_raw();
2419		}
2420		else
2421			flush_tlb_raw();
2422	}
2423
2424	if (cpus_to_signal) {
2425		cpumask_t	cpus_to_respond = cpus_to_signal;
2426
2427		deadline = mach_absolute_time() +
2428				(TLBTimeOut ? TLBTimeOut : LockTimeOut);
2429		boolean_t is_timeout_traced = FALSE;
2430
2431		/*
2432		 * Wait for those other cpus to acknowledge
2433		 */
2434		while (cpus_to_respond != 0) {
2435			long orig_acks = 0;
2436
2437			for (cpu = 0, cpu_bit = 1; cpu < real_ncpus; cpu++, cpu_bit <<= 1) {
2438				/* Consider checking local/global invalidity
2439				 * as appropriate in the PCID case.
2440				 */
2441				if ((cpus_to_respond & cpu_bit) != 0) {
2442					if (!cpu_datap(cpu)->cpu_running ||
2443					    cpu_datap(cpu)->cpu_tlb_invalid == FALSE ||
2444					    !CPU_CR3_IS_ACTIVE(cpu)) {
2445						cpus_to_respond &= ~cpu_bit;
2446					}
2447					cpu_pause();
2448				}
2449				if (cpus_to_respond == 0)
2450					break;
2451			}
2452			if (cpus_to_respond && (mach_absolute_time() > deadline)) {
2453				if (machine_timeout_suspended())
2454					continue;
2455				if (TLBTimeOut == 0) {
2456					/* cut tracepoint but don't panic */
2457					if (is_timeout_traced)
2458						continue;
2459					PMAP_TRACE_CONSTANT(
2460						PMAP_CODE(PMAP__FLUSH_TLBS_TO),
2461				    		pmap, cpus_to_signal, cpus_to_respond, 0, 0);
2462					is_timeout_traced = TRUE;
2463					continue;
2464				}
2465				pmap_tlb_flush_timeout = TRUE;
2466				orig_acks = NMIPI_acks;
2467				mp_cpus_NMIPI(cpus_to_respond);
2468
2469				panic("TLB invalidation IPI timeout: "
2470				    "CPU(s) failed to respond to interrupts, unresponsive CPU bitmap: 0x%lx, NMIPI acks: orig: 0x%lx, now: 0x%lx",
2471				    cpus_to_respond, orig_acks, NMIPI_acks);
2472			}
2473		}
2474	}
2475
2476	if (__improbable((pmap == kernel_pmap) && (flush_self != TRUE))) {
2477		panic("pmap_flush_tlbs: pmap == kernel_pmap && flush_self != TRUE; kernel CR3: 0x%llX, pmap_cr3: 0x%llx, CPU active CR3: 0x%llX, CPU Task Map: %d", kernel_pmap->pm_cr3, pmap_cr3, current_cpu_datap()->cpu_active_cr3, current_cpu_datap()->cpu_task_map);
2478	}
2479
2480out:
2481	PMAP_TRACE_CONSTANT(event_code | DBG_FUNC_END,
2482			    pmap, cpus_to_signal, startv, endv, 0);
2483
2484}
2485
2486void
2487process_pmap_updates(void)
2488{
2489	int ccpu = cpu_number();
2490	pmap_assert(ml_get_interrupts_enabled() == 0 || get_preemption_level() != 0);
2491	if (pmap_pcid_ncpus) {
2492		pmap_pcid_validate_current();
2493		if (cpu_datap(ccpu)->cpu_tlb_invalid_global) {
2494			cpu_datap(ccpu)->cpu_tlb_invalid = FALSE;
2495			tlb_flush_global();
2496		}
2497		else {
2498			cpu_datap(ccpu)->cpu_tlb_invalid_local = FALSE;
2499			flush_tlb_raw();
2500		}
2501	}
2502	else {
2503		current_cpu_datap()->cpu_tlb_invalid = FALSE;
2504		flush_tlb_raw();
2505	}
2506
2507	mfence();
2508}
2509
2510void
2511pmap_update_interrupt(void)
2512{
2513        PMAP_TRACE(PMAP_CODE(PMAP__UPDATE_INTERRUPT) | DBG_FUNC_START,
2514		   0, 0, 0, 0, 0);
2515
2516	if (current_cpu_datap()->cpu_tlb_invalid)
2517		process_pmap_updates();
2518
2519        PMAP_TRACE(PMAP_CODE(PMAP__UPDATE_INTERRUPT) | DBG_FUNC_END,
2520		   0, 0, 0, 0, 0);
2521}
2522
2523#include <mach/mach_vm.h>	/* mach_vm_region_recurse() */
2524/* Scan kernel pmap for W+X PTEs, scan kernel VM map for W+X map entries
2525 * and identify ranges with mismatched VM permissions and PTE permissions
2526 */
2527kern_return_t
2528pmap_permissions_verify(pmap_t ipmap, vm_map_t ivmmap, vm_offset_t sv, vm_offset_t ev) {
2529	vm_offset_t cv = sv;
2530	kern_return_t rv = KERN_SUCCESS;
2531	uint64_t skip4 = 0, skip2 = 0;
2532
2533	sv &= ~PAGE_MASK_64;
2534	ev &= ~PAGE_MASK_64;
2535	while (cv < ev) {
2536		if (__improbable((cv > 0x00007FFFFFFFFFFFULL) &&
2537			(cv < 0xFFFF800000000000ULL))) {
2538			cv = 0xFFFF800000000000ULL;
2539		}
2540		/* Potential inconsistencies from not holding pmap lock
2541		 * but harmless for the moment.
2542		 */
2543		if (((cv & PML4MASK) == 0) && (pmap64_pml4(ipmap, cv) == 0)) {
2544			if ((cv + NBPML4) > cv)
2545				cv += NBPML4;
2546			else
2547				break;
2548			skip4++;
2549			continue;
2550		}
2551		if (((cv & PDMASK) == 0) && (pmap_pde(ipmap, cv) == 0)) {
2552			if ((cv + NBPD) > cv)
2553				cv += NBPD;
2554			else
2555				break;
2556			skip2++;
2557			continue;
2558		}
2559
2560		pt_entry_t *ptep = pmap_pte(ipmap, cv);
2561		if (ptep && (*ptep & INTEL_PTE_VALID)) {
2562			if (*ptep & INTEL_PTE_WRITE) {
2563				if (!(*ptep & INTEL_PTE_NX)) {
2564					kprintf("W+X PTE at 0x%lx, P4: 0x%llx, P3: 0x%llx, P2: 0x%llx, PT: 0x%llx, VP: %u\n", cv, *pmap64_pml4(ipmap, cv), *pmap64_pdpt(ipmap, cv), *pmap64_pde(ipmap, cv), *ptep, pmap_valid_page((ppnum_t)(i386_btop(pte_to_pa(*ptep)))));
2565					rv = KERN_FAILURE;
2566				}
2567			}
2568		}
2569		cv += PAGE_SIZE;
2570	}
2571	kprintf("Completed pmap scan\n");
2572	cv = sv;
2573
2574	struct vm_region_submap_info_64 vbr;
2575	mach_msg_type_number_t vbrcount = 0;
2576	mach_vm_size_t	vmsize;
2577	vm_prot_t	prot;
2578	uint32_t nesting_depth = 0;
2579	kern_return_t kret;
2580
2581	while (cv < ev) {
2582
2583		for (;;) {
2584			vbrcount = VM_REGION_SUBMAP_INFO_COUNT_64;
2585			if((kret = mach_vm_region_recurse(ivmmap,
2586				    (mach_vm_address_t *) &cv, &vmsize, &nesting_depth,
2587					(vm_region_recurse_info_t)&vbr,
2588					&vbrcount)) != KERN_SUCCESS) {
2589				break;
2590			}
2591
2592			if(vbr.is_submap) {
2593				nesting_depth++;
2594				continue;
2595			} else {
2596				break;
2597			}
2598		}
2599
2600		if(kret != KERN_SUCCESS)
2601			break;
2602
2603		prot = vbr.protection;
2604
2605		if ((prot & (VM_PROT_WRITE | VM_PROT_EXECUTE)) == (VM_PROT_WRITE | VM_PROT_EXECUTE)) {
2606			kprintf("W+X map entry at address 0x%lx\n", cv);
2607			rv = KERN_FAILURE;
2608		}
2609
2610		if (prot) {
2611			vm_offset_t pcv;
2612			for (pcv = cv; pcv < cv + vmsize; pcv += PAGE_SIZE) {
2613				pt_entry_t *ptep = pmap_pte(ipmap, pcv);
2614				vm_prot_t tprot;
2615
2616				if ((ptep == NULL) || !(*ptep & INTEL_PTE_VALID))
2617					continue;
2618				tprot = VM_PROT_READ;
2619				if (*ptep & INTEL_PTE_WRITE)
2620					tprot |= VM_PROT_WRITE;
2621				if ((*ptep & INTEL_PTE_NX) == 0)
2622					tprot |= VM_PROT_EXECUTE;
2623				if (tprot != prot) {
2624					kprintf("PTE/map entry permissions mismatch at address 0x%lx, pte: 0x%llx, protection: 0x%x\n", pcv, *ptep, prot);
2625					rv = KERN_FAILURE;
2626				}
2627			}
2628		}
2629		cv += vmsize;
2630	}
2631	return rv;
2632}
2633