1/*
2 * Copyright (c) 2000-2006 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28/*
29 * @OSF_COPYRIGHT@
30 */
31/*
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989,1988 Carnegie Mellon University
34 * All Rights Reserved.
35 *
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
41 *
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
45 *
46 * Carnegie Mellon requests users of this software to return to
47 *
48 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
49 *  School of Computer Science
50 *  Carnegie Mellon University
51 *  Pittsburgh PA 15213-3890
52 *
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
55 */
56/*
57 */
58/*
59 *	File:	vm/vm_page.h
60 *	Author:	Avadis Tevanian, Jr., Michael Wayne Young
61 *	Date:	1985
62 *
63 *	Resident memory system definitions.
64 */
65
66#ifndef	_VM_VM_PAGE_H_
67#define _VM_VM_PAGE_H_
68
69#include <debug.h>
70#include <vm/vm_options.h>
71
72#include <mach/boolean.h>
73#include <mach/vm_prot.h>
74#include <mach/vm_param.h>
75#include <vm/vm_object.h>
76#include <kern/queue.h>
77#include <kern/locks.h>
78
79#include <kern/macro_help.h>
80#include <libkern/OSAtomic.h>
81
82
83/*
84 * VM_PAGE_MIN_SPECULATIVE_AGE_Q through VM_PAGE_MAX_SPECULATIVE_AGE_Q
85 * represents a set of aging bins that are 'protected'...
86 *
87 * VM_PAGE_SPECULATIVE_AGED_Q is a list of the speculative pages that have
88 * not yet been 'claimed' but have been aged out of the protective bins
89 * this occurs in vm_page_speculate when it advances to the next bin
90 * and discovers that it is still occupied... at that point, all of the
91 * pages in that bin are moved to the VM_PAGE_SPECULATIVE_AGED_Q.  the pages
92 * in that bin are all guaranteed to have reached at least the maximum age
93 * we allow for a protected page... they can be older if there is no
94 * memory pressure to pull them from the bin, or there are no new speculative pages
95 * being generated to push them out.
96 * this list is the one that vm_pageout_scan will prefer when looking
97 * for pages to move to the underweight free list
98 *
99 * VM_PAGE_MAX_SPECULATIVE_AGE_Q * VM_PAGE_SPECULATIVE_Q_AGE_MS
100 * defines the amount of time a speculative page is normally
101 * allowed to live in the 'protected' state (i.e. not available
102 * to be stolen if vm_pageout_scan is running and looking for
103 * pages)...  however, if the total number of speculative pages
104 * in the protected state exceeds our limit (defined in vm_pageout.c)
105 * and there are none available in VM_PAGE_SPECULATIVE_AGED_Q, then
106 * vm_pageout_scan is allowed to steal pages from the protected
107 * bucket even if they are underage.
108 *
109 * vm_pageout_scan is also allowed to pull pages from a protected
110 * bin if the bin has reached the "age of consent" we've set
111 */
112#define VM_PAGE_MAX_SPECULATIVE_AGE_Q	10
113#define VM_PAGE_MIN_SPECULATIVE_AGE_Q	1
114#define VM_PAGE_SPECULATIVE_AGED_Q	0
115
116#define VM_PAGE_SPECULATIVE_Q_AGE_MS	500
117
118struct vm_speculative_age_q {
119	/*
120	 * memory queue for speculative pages via clustered pageins
121	 */
122        queue_head_t	age_q;
123        mach_timespec_t	age_ts;
124};
125
126
127
128extern
129struct vm_speculative_age_q	vm_page_queue_speculative[];
130
131extern int			speculative_steal_index;
132extern int			speculative_age_index;
133extern unsigned int		vm_page_speculative_q_age_ms;
134
135
136#define	VM_PAGE_COMPRESSOR_COUNT	(compressor_object->resident_page_count)
137
138/*
139 *	Management of resident (logical) pages.
140 *
141 *	A small structure is kept for each resident
142 *	page, indexed by page number.  Each structure
143 *	is an element of several lists:
144 *
145 *		A hash table bucket used to quickly
146 *		perform object/offset lookups
147 *
148 *		A list of all pages for a given object,
149 *		so they can be quickly deactivated at
150 *		time of deallocation.
151 *
152 *		An ordered list of pages due for pageout.
153 *
154 *	In addition, the structure contains the object
155 *	and offset to which this page belongs (for pageout),
156 *	and sundry status bits.
157 *
158 *	Fields in this structure are locked either by the lock on the
159 *	object that the page belongs to (O) or by the lock on the page
160 *	queues (P).  [Some fields require that both locks be held to
161 *	change that field; holding either lock is sufficient to read.]
162 */
163
164
165#if    defined(__LP64__)
166
167/*
168 * in order to make the size of a vm_page_t 64 bytes (cache line size for both arm64 and x86_64)
169 * we'll keep the next_m pointer packed... as long as the kernel virtual space where we allocate
170 * vm_page_t's from doesn't span more then 256 Gbytes, we're safe.   There are live tests in the
171 * vm_page_t array allocation and the zone init code to determine if we can safely pack and unpack
172 * pointers from the 2 ends of these spaces
173 */
174typedef uint32_t	vm_page_packed_t;
175
176#define	VM_PAGE_PACK_PTR(m)	(!(m) ? (vm_page_packed_t)0 : ((vm_page_packed_t)((uintptr_t)(((uintptr_t)(m) - (uintptr_t) VM_MIN_KERNEL_AND_KEXT_ADDRESS)) >> 6)))
177#define	VM_PAGE_UNPACK_PTR(p)	(!(p) ? VM_PAGE_NULL : ((vm_page_t)((((uintptr_t)(p)) << 6) + (uintptr_t) VM_MIN_KERNEL_AND_KEXT_ADDRESS)))
178
179#else
180
181/*
182 * we can't do the packing trick on 32 bit architectures, so
183 * just turn the macros into noops.
184 */
185typedef struct vm_page	*vm_page_packed_t;
186
187#define	VM_PAGE_PACK_PTR(m)	((vm_page_packed_t)(m))
188#define	VM_PAGE_UNPACK_PTR(p)	((vm_page_t)(p))
189
190#endif
191
192
193struct vm_page {
194	queue_chain_t	pageq;		/* queue info for FIFO */
195					/* queue or free list (P) */
196
197	queue_chain_t	listq;		/* all pages in same object (O) */
198
199	vm_object_offset_t offset;	/* offset into that object (O,P) */
200	vm_object_t	object;		/* which object am I in (O&P) */
201
202	vm_page_packed_t next_m;	/* VP bucket link (O) */
203	/*
204	 * The following word of flags is protected
205	 * by the "page queues" lock.
206	 *
207	 * we use the 'wire_count' field to store the local
208	 * queue id if local queues are enabled...
209	 * see the comments at 'VM_PAGE_QUEUES_REMOVE' as to
210	 * why this is safe to do
211	 */
212#define local_id wire_count
213	unsigned int	wire_count:16,	/* how many wired down maps use me? (O&P) */
214	/* boolean_t */	active:1,	/* page is in active list (P) */
215			inactive:1,	/* page is in inactive list (P) */
216			clean_queue:1,	/* page is in pre-cleaned list (P) */
217		        local:1,	/* page is in one of the local queues (P) */
218			speculative:1,	/* page is in speculative list (P) */
219			throttled:1,	/* pager is not responding or doesn't exist(P) */
220			free:1,		/* page is on free list (P) */
221			pageout_queue:1,/* page is on queue for pageout (P) */
222			laundry:1,	/* page is being cleaned now (P)*/
223			reference:1,	/* page has been used (P) */
224			gobbled:1,      /* page used internally (P) */
225			private:1,	/* Page should not be returned to
226					 *  the free list (P) */
227			no_cache:1,	/* page is not to be cached and should
228					 * be reused ahead of other pages (P) */
229
230			__unused_pageq_bits:3;	/* 3 bits available here */
231
232	ppnum_t		phys_page;	/* Physical address of page, passed
233					 *  to pmap_enter (read-only) */
234
235	/*
236	 * The following word of flags is protected
237	 * by the "VM object" lock.
238	 */
239	unsigned int
240	/* boolean_t */	busy:1,		/* page is in transit (O) */
241			wanted:1,	/* someone is waiting for page (O) */
242			tabled:1,	/* page is in VP table (O) */
243			hashed:1,	/* page is in vm_page_buckets[]
244					   (O) + the bucket lock */
245			fictitious:1,	/* Physical page doesn't exist (O) */
246	/*
247	 * IMPORTANT: the "pmapped", "xpmapped" and "clustered" bits can be modified while holding the
248	 * VM object "shared" lock + the page lock provided through the pmap_lock_phys_page function.
249	 * This is done in vm_fault_enter and the CONSUME_CLUSTERED macro.
250	 * It's also ok to modify them behind just the VM object "exclusive" lock.
251	 */
252			clustered:1,	/* page is not the faulted page (O) or (O-shared AND pmap_page) */
253			pmapped:1,     	/* page has been entered at some
254               				 * point into a pmap (O) or (O-shared AND pmap_page) */
255		        xpmapped:1,	/* page has been entered with execute permission (O)
256					   or (O-shared AND pmap_page) */
257
258			wpmapped:1,     /* page has been entered at some
259					 * point into a pmap for write (O) */
260			pageout:1,	/* page wired & busy for pageout (O) */
261			absent:1,	/* Data has been requested, but is
262					 *  not yet available (O) */
263			error:1,	/* Data manager was unable to provide
264					 *  data due to error (O) */
265			dirty:1,	/* Page must be cleaned (O) */
266			cleaning:1,	/* Page clean has begun (O) */
267			precious:1,	/* Page is precious; data must be
268					 *  returned even if clean (O) */
269			overwriting:1,  /* Request to unlock has been made
270					 * without having data. (O)
271					 * [See vm_fault_page_overwrite] */
272			restart:1,	/* Page was pushed higher in shadow
273					   chain by copy_call-related pagers;
274					   start again at top of chain */
275			unusual:1,	/* Page is absent, error, restart or
276					   page locked */
277			encrypted:1,	/* encrypted for secure swap (O) */
278			encrypted_cleaning:1,	/* encrypting page */
279			cs_validated:1,    /* code-signing: page was checked */
280			cs_tainted:1,	   /* code-signing: page is tainted */
281			reusable:1,
282		        lopage:1,
283			slid:1,
284		        compressor:1,	/* page owned by compressor pool */
285		        written_by_kernel:1,	/* page was written by kernel (i.e. decompressed) */
286			__unused_object_bits:5;  /* 5 bits available here */
287};
288
289#define DEBUG_ENCRYPTED_SWAP	1
290#if DEBUG_ENCRYPTED_SWAP
291#define ASSERT_PAGE_DECRYPTED(page) 					\
292	MACRO_BEGIN							\
293	if ((page)->encrypted) {					\
294		panic("VM page %p should not be encrypted here\n",	\
295		      (page));						\
296	}								\
297	MACRO_END
298#else	/* DEBUG_ENCRYPTED_SWAP */
299#define ASSERT_PAGE_DECRYPTED(page) assert(!(page)->encrypted)
300#endif	/* DEBUG_ENCRYPTED_SWAP */
301
302typedef struct vm_page	*vm_page_t;
303
304
305typedef struct vm_locks_array {
306	char	pad  __attribute__ ((aligned (64)));
307	lck_mtx_t	vm_page_queue_lock2 __attribute__ ((aligned (64)));
308	lck_mtx_t	vm_page_queue_free_lock2 __attribute__ ((aligned (64)));
309	char	pad2  __attribute__ ((aligned (64)));
310} vm_locks_array_t;
311
312
313#define VM_PAGE_WIRED(m)	((!(m)->local && (m)->wire_count))
314#define VM_PAGE_NULL		((vm_page_t) 0)
315#define NEXT_PAGE(m)		((vm_page_t) (m)->pageq.next)
316#define NEXT_PAGE_PTR(m)	((vm_page_t *) &(m)->pageq.next)
317
318/*
319 * XXX	The unusual bit should not be necessary.  Most of the bit
320 * XXX	fields above really want to be masks.
321 */
322
323/*
324 *	For debugging, this macro can be defined to perform
325 *	some useful check on a page structure.
326 */
327
328#define VM_PAGE_CHECK(mem)			\
329	MACRO_BEGIN				\
330	VM_PAGE_QUEUES_ASSERT(mem, 1);		\
331	MACRO_END
332
333/*     Page coloring:
334 *
335 *     The free page list is actually n lists, one per color,
336 *     where the number of colors is a function of the machine's
337 *     cache geometry set at system initialization.  To disable
338 *     coloring, set vm_colors to 1 and vm_color_mask to 0.
339 *     The boot-arg "colors" may be used to override vm_colors.
340 *     Note that there is little harm in having more colors than needed.
341 */
342
343#define MAX_COLORS      128
344#define	DEFAULT_COLORS	32
345
346extern
347unsigned int	vm_colors;		/* must be in range 1..MAX_COLORS */
348extern
349unsigned int	vm_color_mask;		/* must be (vm_colors-1) */
350extern
351unsigned int	vm_cache_geometry_colors; /* optimal #colors based on cache geometry */
352
353/*
354 * Wired memory is a very limited resource and we can't let users exhaust it
355 * and deadlock the entire system.  We enforce the following limits:
356 *
357 * vm_user_wire_limit (default: all memory minus vm_global_no_user_wire_amount)
358 * 	how much memory can be user-wired in one user task
359 *
360 * vm_global_user_wire_limit (default: same as vm_user_wire_limit)
361 * 	how much memory can be user-wired in all user tasks
362 *
363 * vm_global_no_user_wire_amount (default: VM_NOT_USER_WIREABLE)
364 *	how much memory must remain user-unwired at any time
365 */
366#define VM_NOT_USER_WIREABLE (64*1024*1024)	/* 64MB */
367extern
368vm_map_size_t	vm_user_wire_limit;
369extern
370vm_map_size_t	vm_global_user_wire_limit;
371extern
372vm_map_size_t	vm_global_no_user_wire_amount;
373
374/*
375 *	Each pageable resident page falls into one of three lists:
376 *
377 *	free
378 *		Available for allocation now.  The free list is
379 *		actually an array of lists, one per color.
380 *	inactive
381 *		Not referenced in any map, but still has an
382 *		object/offset-page mapping, and may be dirty.
383 *		This is the list of pages that should be
384 *		paged out next.  There are actually two
385 *		inactive lists, one for pages brought in from
386 *		disk or other backing store, and another
387 *		for "zero-filled" pages.  See vm_pageout_scan()
388 *		for the distinction and usage.
389 *	active
390 *		A list of pages which have been placed in
391 *		at least one physical map.  This list is
392 *		ordered, in LRU-like fashion.
393 */
394
395
396#define VPL_LOCK_SPIN 1
397
398struct vpl {
399	unsigned int	vpl_count;
400	unsigned int	vpl_internal_count;
401	unsigned int	vpl_external_count;
402	queue_head_t	vpl_queue;
403#ifdef	VPL_LOCK_SPIN
404	lck_spin_t	vpl_lock;
405#else
406	lck_mtx_t	vpl_lock;
407	lck_mtx_ext_t	vpl_lock_ext;
408#endif
409};
410
411struct	vplq {
412	union {
413		char   cache_line_pad[128];
414		struct vpl vpl;
415	} vpl_un;
416};
417extern
418unsigned int	vm_page_local_q_count;
419extern
420struct vplq	*vm_page_local_q;
421extern
422unsigned int	vm_page_local_q_soft_limit;
423extern
424unsigned int	vm_page_local_q_hard_limit;
425extern
426vm_locks_array_t vm_page_locks;
427
428extern
429queue_head_t	vm_page_queue_free[MAX_COLORS];	/* memory free queue */
430extern
431queue_head_t	vm_lopage_queue_free;		/* low memory free queue */
432extern
433queue_head_t	vm_page_queue_active;	/* active memory queue */
434extern
435queue_head_t	vm_page_queue_inactive;	/* inactive memory queue for normal pages */
436extern
437queue_head_t    vm_page_queue_cleaned; /* clean-queue inactive memory */
438extern
439queue_head_t	vm_page_queue_anonymous;	/* inactive memory queue for anonymous pages */
440extern
441queue_head_t	vm_page_queue_throttled;	/* memory queue for throttled pageout pages */
442
443extern
444vm_offset_t	first_phys_addr;	/* physical address for first_page */
445extern
446vm_offset_t	last_phys_addr;		/* physical address for last_page */
447
448extern
449unsigned int	vm_page_free_count;	/* How many pages are free? (sum of all colors) */
450extern
451unsigned int	vm_page_fictitious_count;/* How many fictitious pages are free? */
452extern
453unsigned int	vm_page_active_count;	/* How many pages are active? */
454extern
455unsigned int	vm_page_inactive_count;	/* How many pages are inactive? */
456extern
457unsigned int    vm_page_cleaned_count; /* How many pages are in the clean queue? */
458extern
459unsigned int	vm_page_throttled_count;/* How many inactives are throttled */
460extern
461unsigned int	vm_page_speculative_count;	/* How many speculative pages are unclaimed? */
462extern unsigned int	vm_page_pageable_internal_count;
463extern unsigned int	vm_page_pageable_external_count;
464extern
465unsigned int	vm_page_xpmapped_external_count;	/* How many pages are mapped executable? */
466extern
467unsigned int	vm_page_external_count;	/* How many pages are file-backed? */
468extern
469unsigned int	vm_page_internal_count;	/* How many pages are anonymous? */
470extern
471unsigned int	vm_page_wire_count;		/* How many pages are wired? */
472extern
473unsigned int	vm_page_wire_count_initial;	/* How many pages wired at startup */
474extern
475unsigned int	vm_page_free_target;	/* How many do we want free? */
476extern
477unsigned int	vm_page_free_min;	/* When to wakeup pageout */
478extern
479unsigned int	vm_page_throttle_limit;	/* When to throttle new page creation */
480extern
481uint32_t	vm_page_creation_throttle;	/* When to throttle new page creation */
482extern
483unsigned int	vm_page_inactive_target;/* How many do we want inactive? */
484extern
485unsigned int	vm_page_anonymous_min;	/* When it's ok to pre-clean */
486extern
487unsigned int	vm_page_inactive_min;   /* When do wakeup pageout */
488extern
489unsigned int	vm_page_free_reserved;	/* How many pages reserved to do pageout */
490extern
491unsigned int	vm_page_throttle_count;	/* Count of page allocations throttled */
492extern
493unsigned int	vm_page_gobble_count;
494
495#if DEVELOPMENT || DEBUG
496extern
497unsigned int	vm_page_speculative_used;
498#endif
499
500extern
501unsigned int	vm_page_purgeable_count;/* How many pages are purgeable now ? */
502extern
503unsigned int	vm_page_purgeable_wired_count;/* How many purgeable pages are wired now ? */
504extern
505uint64_t	vm_page_purged_count;	/* How many pages got purged so far ? */
506
507extern unsigned int	vm_page_free_wanted;
508				/* how many threads are waiting for memory */
509
510extern unsigned int	vm_page_free_wanted_privileged;
511				/* how many VM privileged threads are waiting for memory */
512
513extern ppnum_t	vm_page_fictitious_addr;
514				/* (fake) phys_addr of fictitious pages */
515
516extern ppnum_t	vm_page_guard_addr;
517				/* (fake) phys_addr of guard pages */
518
519
520extern boolean_t	vm_page_deactivate_hint;
521
522extern int		vm_compressor_mode;
523
524/*
525   0 = all pages avail ( default. )
526   1 = disable high mem ( cap max pages to 4G)
527   2 = prefer himem
528*/
529extern int		vm_himemory_mode;
530
531extern boolean_t	vm_lopage_needed;
532extern uint32_t		vm_lopage_free_count;
533extern uint32_t		vm_lopage_free_limit;
534extern uint32_t		vm_lopage_lowater;
535extern boolean_t	vm_lopage_refill;
536extern uint64_t		max_valid_dma_address;
537extern ppnum_t		max_valid_low_ppnum;
538
539/*
540 * Prototypes for functions exported by this module.
541 */
542extern void		vm_page_bootstrap(
543					vm_offset_t	*startp,
544					vm_offset_t	*endp);
545
546extern void		vm_page_module_init(void);
547
548extern void		vm_page_init_local_q(void);
549
550extern void		vm_page_create(
551					ppnum_t		start,
552					ppnum_t		end);
553
554extern vm_page_t	vm_page_lookup(
555					vm_object_t		object,
556					vm_object_offset_t	offset);
557
558extern vm_page_t	vm_page_grab_fictitious(void);
559
560extern vm_page_t	vm_page_grab_guard(void);
561
562extern void		vm_page_release_fictitious(
563					vm_page_t page);
564
565extern void		vm_page_more_fictitious(void);
566
567extern int		vm_pool_low(void);
568
569extern vm_page_t	vm_page_grab(void);
570
571extern vm_page_t	vm_page_grablo(void);
572
573extern void		vm_page_release(
574					vm_page_t	page);
575
576extern boolean_t	vm_page_wait(
577					int		interruptible );
578
579extern vm_page_t	vm_page_alloc(
580					vm_object_t		object,
581					vm_object_offset_t	offset);
582
583extern vm_page_t	vm_page_alloclo(
584					vm_object_t		object,
585					vm_object_offset_t	offset);
586
587extern vm_page_t	vm_page_alloc_guard(
588	vm_object_t		object,
589	vm_object_offset_t	offset);
590
591extern void		vm_page_init(
592					vm_page_t	page,
593					ppnum_t		phys_page,
594					boolean_t 	lopage);
595
596extern void		vm_page_free(
597	                                vm_page_t	page);
598
599extern void		vm_page_free_unlocked(
600	                                vm_page_t	page,
601					boolean_t	remove_from_hash);
602
603extern void		vm_page_activate(
604					vm_page_t	page);
605
606extern void		vm_page_deactivate(
607					vm_page_t	page);
608
609extern void		vm_page_deactivate_internal(
610	                                vm_page_t	page,
611					boolean_t	clear_hw_reference);
612
613extern void		vm_page_enqueue_cleaned(vm_page_t page);
614
615extern void		vm_page_lru(
616					vm_page_t	page);
617
618extern void		vm_page_speculate(
619					vm_page_t	page,
620					boolean_t	new);
621
622extern void		vm_page_speculate_ageit(
623					struct vm_speculative_age_q *aq);
624
625extern void		vm_page_reactivate_all_throttled(void);
626
627extern void		vm_page_reactivate_local(uint32_t lid, boolean_t force, boolean_t nolocks);
628
629extern void		vm_page_rename(
630					vm_page_t		page,
631					vm_object_t		new_object,
632					vm_object_offset_t	new_offset,
633					boolean_t		encrypted_ok);
634
635extern void		vm_page_insert(
636					vm_page_t		page,
637					vm_object_t		object,
638					vm_object_offset_t	offset);
639
640extern void		vm_page_insert_internal(
641					vm_page_t		page,
642					vm_object_t		object,
643					vm_object_offset_t	offset,
644					boolean_t		queues_lock_held,
645					boolean_t		insert_in_hash,
646					boolean_t		batch_pmap_op);
647
648extern void		vm_page_replace(
649					vm_page_t		mem,
650					vm_object_t		object,
651					vm_object_offset_t	offset);
652
653extern void		vm_page_remove(
654	                                vm_page_t	page,
655					boolean_t	remove_from_hash);
656
657extern void		vm_page_zero_fill(
658					vm_page_t	page);
659
660extern void		vm_page_part_zero_fill(
661					vm_page_t	m,
662					vm_offset_t	m_pa,
663					vm_size_t	len);
664
665extern void		vm_page_copy(
666					vm_page_t	src_page,
667					vm_page_t	dest_page);
668
669extern void		vm_page_part_copy(
670					vm_page_t	src_m,
671					vm_offset_t	src_pa,
672					vm_page_t	dst_m,
673					vm_offset_t	dst_pa,
674					vm_size_t	len);
675
676extern void		vm_page_wire(
677					vm_page_t	page);
678
679extern void		vm_page_unwire(
680	                                vm_page_t	page,
681					boolean_t	queueit);
682
683extern void		vm_set_page_size(void);
684
685extern void		vm_page_gobble(
686				        vm_page_t      page);
687
688extern void		vm_page_validate_cs(vm_page_t	page);
689extern void		vm_page_validate_cs_mapped(
690	vm_page_t	page,
691	const void	*kaddr);
692
693extern void		vm_page_free_prepare_queues(
694					vm_page_t	page);
695
696extern void		vm_page_free_prepare_object(
697	                                vm_page_t	page,
698					boolean_t	remove_from_hash);
699
700#if CONFIG_IOSCHED
701extern wait_result_t	vm_page_sleep(
702					vm_object_t	object,
703					vm_page_t	m,
704					int	interruptible);
705#endif
706
707extern void vm_pressure_response(void);
708
709#if CONFIG_JETSAM
710extern void memorystatus_pages_update(unsigned int pages_avail);
711
712#define VM_CHECK_MEMORYSTATUS do { \
713	memorystatus_pages_update(		\
714      		vm_page_pageable_external_count + \
715		vm_page_free_count +		\
716      		(VM_DYNAMIC_PAGING_ENABLED(memory_manager_default) ? 0 : vm_page_purgeable_count) \
717		); \
718	} while(0)
719
720#else /* CONFIG_JETSAM */
721
722
723#define VM_CHECK_MEMORYSTATUS	vm_pressure_response()
724
725
726#endif /* CONFIG_JETSAM */
727
728/*
729 *	Functions implemented as macros. m->wanted and m->busy are
730 *	protected by the object lock.
731 */
732
733#define SET_PAGE_DIRTY(m, set_pmap_modified)				\
734		MACRO_BEGIN						\
735		vm_page_t __page__ = (m);				\
736		__page__->dirty = TRUE;					\
737		MACRO_END
738
739#define PAGE_ASSERT_WAIT(m, interruptible)			\
740		(((m)->wanted = TRUE),				\
741		 assert_wait((event_t) (m), (interruptible)))
742
743#if CONFIG_IOSCHED
744#define PAGE_SLEEP(o, m, interruptible)				\
745		vm_page_sleep(o, m, interruptible)
746#else
747#define PAGE_SLEEP(o, m, interruptible)				\
748	(((m)->wanted = TRUE),					\
749	 thread_sleep_vm_object((o), (m), (interruptible)))
750#endif
751
752#define PAGE_WAKEUP_DONE(m)					\
753		MACRO_BEGIN					\
754		(m)->busy = FALSE;				\
755		if ((m)->wanted) {				\
756			(m)->wanted = FALSE;			\
757			thread_wakeup((event_t) (m));		\
758		}						\
759		MACRO_END
760
761#define PAGE_WAKEUP(m)						\
762		MACRO_BEGIN					\
763		if ((m)->wanted) {				\
764			(m)->wanted = FALSE;			\
765			thread_wakeup((event_t) (m));		\
766		}						\
767		MACRO_END
768
769#define VM_PAGE_FREE(p) 			\
770		MACRO_BEGIN			\
771		vm_page_free_unlocked(p, TRUE);	\
772		MACRO_END
773
774#define VM_PAGE_GRAB_FICTITIOUS(M)					\
775		MACRO_BEGIN						\
776		while ((M = vm_page_grab_fictitious()) == VM_PAGE_NULL)	\
777			vm_page_more_fictitious();			\
778		MACRO_END
779
780#define	VM_PAGE_WAIT()		((void)vm_page_wait(THREAD_UNINT))
781
782#define vm_page_queue_lock (vm_page_locks.vm_page_queue_lock2)
783#define vm_page_queue_free_lock (vm_page_locks.vm_page_queue_free_lock2)
784
785#define vm_page_lock_queues()	lck_mtx_lock(&vm_page_queue_lock)
786#define vm_page_unlock_queues()	lck_mtx_unlock(&vm_page_queue_lock)
787
788#define vm_page_lockspin_queues()	lck_mtx_lock_spin(&vm_page_queue_lock)
789#define vm_page_trylockspin_queues()	lck_mtx_try_lock_spin(&vm_page_queue_lock)
790#define vm_page_lockconvert_queues()	lck_mtx_convert_spin(&vm_page_queue_lock)
791
792#ifdef	VPL_LOCK_SPIN
793#define VPL_LOCK_INIT(vlq, vpl_grp, vpl_attr) lck_spin_init(&vlq->vpl_lock, vpl_grp, vpl_attr)
794#define VPL_LOCK(vpl) lck_spin_lock(vpl)
795#define VPL_UNLOCK(vpl) lck_spin_unlock(vpl)
796#else
797#define VPL_LOCK_INIT(vlq, vpl_grp, vpl_attr) lck_mtx_init_ext(&vlq->vpl_lock, &vlq->vpl_lock_ext, vpl_grp, vpl_attr)
798#define VPL_LOCK(vpl) lck_mtx_lock_spin(vpl)
799#define VPL_UNLOCK(vpl) lck_mtx_unlock(vpl)
800#endif
801
802#if MACH_ASSERT
803extern void vm_page_queues_assert(vm_page_t mem, int val);
804#define VM_PAGE_QUEUES_ASSERT(mem, val)	vm_page_queues_assert((mem), (val))
805#else
806#define VM_PAGE_QUEUES_ASSERT(mem, val)
807#endif
808
809
810/*
811 * 'vm_fault_enter' will place newly created pages (zero-fill and COW) onto the
812 * local queues if they exist... its the only spot in the system where we add pages
813 * to those queues...  once on those queues, those pages can only move to one of the
814 * global page queues or the free queues... they NEVER move from local q to local q.
815 * the 'local' state is stable when VM_PAGE_QUEUES_REMOVE is called since we're behind
816 * the global vm_page_queue_lock at this point...  we still need to take the local lock
817 * in case this operation is being run on a different CPU then the local queue's identity,
818 * but we don't have to worry about the page moving to a global queue or becoming wired
819 * while we're grabbing the local lock since those operations would require the global
820 * vm_page_queue_lock to be held, and we already own it.
821 *
822 * this is why its safe to utilze the wire_count field in the vm_page_t as the local_id...
823 * 'wired' and local are ALWAYS mutually exclusive conditions.
824 */
825
826#define VM_PAGE_QUEUES_REMOVE(mem)				\
827	MACRO_BEGIN						\
828	boolean_t	was_pageable;				\
829								\
830	VM_PAGE_QUEUES_ASSERT(mem, 1);				\
831	assert(!mem->pageout_queue);				\
832/*								\
833 *	if (mem->pageout_queue)					\
834 * 		NOTE: VM_PAGE_QUEUES_REMOVE does not deal with removing pages from the pageout queue...	\
835 * 		the caller is responsible for determing if the page is on that queue, and if so, must	\
836 * 		either first remove it (it needs both the page queues lock and the object lock to do	\
837 * 		this via vm_pageout_steal_laundry), or avoid the call to VM_PAGE_QUEUES_REMOVE		\
838 */								\
839	if (mem->local) {					\
840		struct vpl	*lq;				\
841		assert(mem->object != kernel_object);		\
842		assert(mem->object != compressor_object);	\
843		assert(!mem->inactive && !mem->speculative);	\
844		assert(!mem->active && !mem->throttled);	\
845		assert(!mem->clean_queue);			\
846		assert(!mem->fictitious);			\
847		lq = &vm_page_local_q[mem->local_id].vpl_un.vpl;	\
848		VPL_LOCK(&lq->vpl_lock);			\
849		queue_remove(&lq->vpl_queue,			\
850			     mem, vm_page_t, pageq);		\
851		mem->local = FALSE;				\
852		mem->local_id = 0;				\
853		lq->vpl_count--;				\
854		if (mem->object->internal) {			\
855			lq->vpl_internal_count--;		\
856		} else {					\
857			lq->vpl_external_count--;		\
858		}						\
859		VPL_UNLOCK(&lq->vpl_lock);			\
860		was_pageable = FALSE;				\
861	}							\
862								\
863	else if (mem->active) {					\
864		assert(mem->object != kernel_object);		\
865		assert(mem->object != compressor_object);	\
866		assert(!mem->inactive && !mem->speculative);	\
867		assert(!mem->clean_queue);			\
868		assert(!mem->throttled);			\
869		assert(!mem->fictitious);			\
870		queue_remove(&vm_page_queue_active,		\
871			mem, vm_page_t, pageq);			\
872		mem->active = FALSE;				\
873		vm_page_active_count--;				\
874		was_pageable = TRUE;				\
875	}							\
876								\
877	else if (mem->inactive) {				\
878		assert(mem->object != kernel_object);		\
879		assert(mem->object != compressor_object);	\
880		assert(!mem->active && !mem->speculative);	\
881		assert(!mem->throttled);			\
882		assert(!mem->fictitious);			\
883		vm_page_inactive_count--;			\
884		if (mem->clean_queue) {				\
885			queue_remove(&vm_page_queue_cleaned,	\
886                        mem, vm_page_t, pageq);			\
887			mem->clean_queue = FALSE;		\
888			vm_page_cleaned_count--;		\
889		} else {					\
890			if (mem->object->internal) {		\
891				queue_remove(&vm_page_queue_anonymous,	\
892				mem, vm_page_t, pageq);		\
893				vm_page_anonymous_count--;	\
894			} else {				\
895				queue_remove(&vm_page_queue_inactive,	\
896				mem, vm_page_t, pageq);		\
897			}					\
898			vm_purgeable_q_advance_all();		\
899		}						\
900		mem->inactive = FALSE;				\
901		was_pageable = TRUE;				\
902	}							\
903								\
904	else if (mem->throttled) {				\
905		assert(mem->object != compressor_object);	\
906		assert(!mem->active && !mem->inactive);		\
907		assert(!mem->speculative);			\
908		assert(!mem->fictitious);			\
909		queue_remove(&vm_page_queue_throttled,		\
910			     mem, vm_page_t, pageq);		\
911		mem->throttled = FALSE;				\
912		vm_page_throttled_count--;			\
913		was_pageable = FALSE;				\
914	}							\
915								\
916	else if (mem->speculative) {				\
917		assert(mem->object != compressor_object);	\
918		assert(!mem->active && !mem->inactive);		\
919		assert(!mem->throttled);			\
920		assert(!mem->fictitious);			\
921                remque(&mem->pageq);				\
922		mem->speculative = FALSE;			\
923		vm_page_speculative_count--;			\
924		was_pageable = TRUE;				\
925	}							\
926								\
927	else if (mem->pageq.next || mem->pageq.prev) {		\
928		was_pageable = FALSE;				\
929		panic("VM_PAGE_QUEUES_REMOVE: unmarked page on Q");	\
930	} else {						\
931		was_pageable = FALSE;				\
932	}							\
933								\
934	mem->pageq.next = NULL;					\
935	mem->pageq.prev = NULL;					\
936	VM_PAGE_QUEUES_ASSERT(mem, 0);				\
937	if (was_pageable) {					\
938		if (mem->object->internal) {			\
939			vm_page_pageable_internal_count--;	\
940		} else {					\
941			vm_page_pageable_external_count--;	\
942		}						\
943	}							\
944	MACRO_END
945
946
947#define VM_PAGE_ENQUEUE_INACTIVE(mem, first)			\
948	MACRO_BEGIN						\
949	VM_PAGE_QUEUES_ASSERT(mem, 0);				\
950	assert(!mem->fictitious);				\
951	assert(!mem->laundry);					\
952	assert(!mem->pageout_queue);				\
953	if (mem->object->internal) {				\
954		if (first == TRUE)				\
955			queue_enter_first(&vm_page_queue_anonymous, mem, vm_page_t, pageq);	\
956		else						\
957			queue_enter(&vm_page_queue_anonymous, mem, vm_page_t, pageq);		\
958		vm_page_anonymous_count++;			\
959		vm_page_pageable_internal_count++;		\
960	} else {						\
961		if (first == TRUE)				\
962			queue_enter_first(&vm_page_queue_inactive, mem, vm_page_t, pageq); \
963		else						\
964			queue_enter(&vm_page_queue_inactive, mem, vm_page_t, pageq);	\
965		vm_page_pageable_external_count++;			\
966	}							\
967	mem->inactive = TRUE;					\
968	vm_page_inactive_count++;				\
969	token_new_pagecount++;					\
970	MACRO_END
971
972
973#if DEVELOPMENT || DEBUG
974#define VM_PAGE_SPECULATIVE_USED_ADD()				\
975	MACRO_BEGIN						\
976	OSAddAtomic(1, &vm_page_speculative_used);	\
977	MACRO_END
978#else
979#define	VM_PAGE_SPECULATIVE_USED_ADD()
980#endif
981
982
983#define VM_PAGE_CONSUME_CLUSTERED(mem)				\
984	MACRO_BEGIN						\
985	pmap_lock_phys_page(mem->phys_page);			\
986	if (mem->clustered) {					\
987	        assert(mem->object);				\
988	        mem->object->pages_used++;			\
989		mem->clustered = FALSE;				\
990		VM_PAGE_SPECULATIVE_USED_ADD();			\
991	}							\
992	pmap_unlock_phys_page(mem->phys_page);			\
993	MACRO_END
994
995
996#define VM_PAGE_COUNT_AS_PAGEIN(mem)				\
997	MACRO_BEGIN						\
998	DTRACE_VM2(pgin, int, 1, (uint64_t *), NULL);		\
999	current_task()->pageins++;				\
1000	if (mem->object->internal) {				\
1001		DTRACE_VM2(anonpgin, int, 1, (uint64_t *), NULL);	\
1002	} else {						\
1003		DTRACE_VM2(fspgin, int, 1, (uint64_t *), NULL);	\
1004	}							\
1005	MACRO_END
1006
1007
1008#define DW_vm_page_unwire		0x01
1009#define DW_vm_page_wire			0x02
1010#define DW_vm_page_free			0x04
1011#define DW_vm_page_activate		0x08
1012#define DW_vm_page_deactivate_internal	0x10
1013#define DW_vm_page_speculate	 	0x20
1014#define DW_vm_page_lru		 	0x40
1015#define DW_vm_pageout_throttle_up	0x80
1016#define DW_PAGE_WAKEUP			0x100
1017#define DW_clear_busy			0x200
1018#define DW_clear_reference		0x400
1019#define DW_set_reference		0x800
1020#define DW_move_page			0x1000
1021#define DW_VM_PAGE_QUEUES_REMOVE	0x2000
1022#define DW_enqueue_cleaned      	0x4000
1023#define DW_vm_phantom_cache_update	0x8000
1024
1025struct vm_page_delayed_work {
1026	vm_page_t	dw_m;
1027	int		dw_mask;
1028};
1029
1030void vm_page_do_delayed_work(vm_object_t object, struct vm_page_delayed_work *dwp, int dw_count);
1031
1032extern unsigned int vm_max_delayed_work_limit;
1033
1034#define DEFAULT_DELAYED_WORK_LIMIT	32
1035
1036#define DELAYED_WORK_LIMIT(max)	((vm_max_delayed_work_limit >= max ? max : vm_max_delayed_work_limit))
1037
1038/*
1039 * vm_page_do_delayed_work may need to drop the object lock...
1040 * if it does, we need the pages it's looking at to
1041 * be held stable via the busy bit, so if busy isn't already
1042 * set, we need to set it and ask vm_page_do_delayed_work
1043 * to clear it and wakeup anyone that might have blocked on
1044 * it once we're done processing the page.
1045 */
1046
1047#define VM_PAGE_ADD_DELAYED_WORK(dwp, mem, dw_cnt)		\
1048	MACRO_BEGIN						\
1049	if (mem->busy == FALSE) {				\
1050		mem->busy = TRUE;				\
1051		if ( !(dwp->dw_mask & DW_vm_page_free))		\
1052			dwp->dw_mask |= (DW_clear_busy | DW_PAGE_WAKEUP); \
1053	}							\
1054	dwp->dw_m = mem;					\
1055	dwp++;							\
1056	dw_cnt++;						\
1057	MACRO_END
1058
1059extern vm_page_t vm_object_page_grab(vm_object_t);
1060
1061#if VM_PAGE_BUCKETS_CHECK
1062extern void vm_page_buckets_check(void);
1063#endif /* VM_PAGE_BUCKETS_CHECK */
1064
1065#endif	/* _VM_VM_PAGE_H_ */
1066