1/*
2 * Copyright (c) 2000-2012 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28/*
29* @OSF_COPYRIGHT@
30*/
31/*
32* Mach Operating System
33* Copyright (c) 1991,1990,1989,1988 Carnegie Mellon University
34* All Rights Reserved.
35*
36* Permission to use, copy, modify and distribute this software and its
37* documentation is hereby granted, provided that both the copyright
38* notice and this permission notice appear in all copies of the
39* software, derivative works or modified versions, and any portions
40* thereof, and that both notices appear in supporting documentation.
41*
42* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43* CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44* ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
45*
46* Carnegie Mellon requests users of this software to return to
47*
48*  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
49*  School of Computer Science
50*  Carnegie Mellon University
51*  Pittsburgh PA 15213-3890
52*
53* any improvements or extensions that they make and grant Carnegie Mellon
54* the rights to redistribute these changes.
55*/
56/*
57*/
58
59/*
60* Hardware trap/fault handler.
61 */
62
63#include <mach_kdp.h>
64#include <mach_ldebug.h>
65
66#include <types.h>
67#include <i386/eflags.h>
68#include <i386/trap.h>
69#include <i386/pmap.h>
70#include <i386/fpu.h>
71#include <i386/misc_protos.h> /* panic_io_port_read() */
72#include <i386/lapic.h>
73
74#include <mach/exception.h>
75#include <mach/kern_return.h>
76#include <mach/vm_param.h>
77#include <mach/i386/thread_status.h>
78
79#include <vm/vm_kern.h>
80#include <vm/vm_fault.h>
81
82#include <kern/kern_types.h>
83#include <kern/processor.h>
84#include <kern/thread.h>
85#include <kern/task.h>
86#include <kern/sched.h>
87#include <kern/sched_prim.h>
88#include <kern/exception.h>
89#include <kern/spl.h>
90#include <kern/misc_protos.h>
91#include <kern/debug.h>
92#if CONFIG_TELEMETRY
93#include <kern/telemetry.h>
94#endif
95#include <sys/kdebug.h>
96#include <prng/random.h>
97
98#include <string.h>
99
100#include <i386/postcode.h>
101#include <i386/mp_desc.h>
102#include <i386/proc_reg.h>
103#if CONFIG_MCA
104#include <i386/machine_check.h>
105#endif
106#include <mach/i386/syscall_sw.h>
107
108#include <libkern/OSDebug.h>
109#include <i386/cpu_threads.h>
110#include <machine/pal_routines.h>
111
112extern void throttle_lowpri_io(int);
113extern void kprint_state(x86_saved_state64_t *saved_state);
114
115/*
116 * Forward declarations
117 */
118static void user_page_fault_continue(kern_return_t kret);
119static void panic_trap(x86_saved_state64_t *saved_state);
120static void set_recovery_ip(x86_saved_state64_t *saved_state, vm_offset_t ip);
121
122volatile perfCallback perfTrapHook = NULL; /* Pointer to CHUD trap hook routine */
123
124#if CONFIG_DTRACE
125/* See <rdar://problem/4613924> */
126perfCallback tempDTraceTrapHook = NULL; /* Pointer to DTrace fbt trap hook routine */
127
128extern boolean_t dtrace_tally_fault(user_addr_t);
129#endif
130
131extern boolean_t pmap_smep_enabled;
132extern boolean_t pmap_smap_enabled;
133
134void
135thread_syscall_return(
136        kern_return_t ret)
137{
138        thread_t	thr_act = current_thread();
139	boolean_t	is_mach;
140	int		code;
141
142	pal_register_cache_state(thr_act, DIRTY);
143
144        if (thread_is_64bit(thr_act)) {
145	        x86_saved_state64_t	*regs;
146
147		regs = USER_REGS64(thr_act);
148
149		code = (int) (regs->rax & SYSCALL_NUMBER_MASK);
150		is_mach = (regs->rax & SYSCALL_CLASS_MASK)
151			    == (SYSCALL_CLASS_MACH << SYSCALL_CLASS_SHIFT);
152		if (kdebug_enable && is_mach) {
153		        /* Mach trap */
154		        KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
155			      MACHDBG_CODE(DBG_MACH_EXCP_SC,code)|DBG_FUNC_END,
156			      ret, 0, 0, 0, 0);
157		}
158		regs->rax = ret;
159#if DEBUG
160		if (is_mach)
161			DEBUG_KPRINT_SYSCALL_MACH(
162				"thread_syscall_return: 64-bit mach ret=%u\n",
163				ret);
164		else
165			DEBUG_KPRINT_SYSCALL_UNIX(
166				"thread_syscall_return: 64-bit unix ret=%u\n",
167				ret);
168#endif
169	} else {
170	        x86_saved_state32_t	*regs;
171
172		regs = USER_REGS32(thr_act);
173
174		code = ((int) regs->eax);
175		is_mach = (code < 0);
176		if (kdebug_enable && is_mach) {
177		        /* Mach trap */
178		        KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
179			      MACHDBG_CODE(DBG_MACH_EXCP_SC,-code)|DBG_FUNC_END,
180			      ret, 0, 0, 0, 0);
181		}
182		regs->eax = ret;
183#if DEBUG
184		if (is_mach)
185			DEBUG_KPRINT_SYSCALL_MACH(
186				"thread_syscall_return: 32-bit mach ret=%u\n",
187				ret);
188		else
189			DEBUG_KPRINT_SYSCALL_UNIX(
190				"thread_syscall_return: 32-bit unix ret=%u\n",
191				ret);
192#endif
193	}
194	throttle_lowpri_io(1);
195
196	thread_exception_return();
197        /*NOTREACHED*/
198}
199
200
201static inline void
202user_page_fault_continue(
203			 kern_return_t	kr)
204{
205	thread_t	thread = current_thread();
206	user_addr_t	vaddr;
207
208	if (thread_is_64bit(thread)) {
209		x86_saved_state64_t	*uregs;
210
211		uregs = USER_REGS64(thread);
212
213		vaddr = (user_addr_t)uregs->cr2;
214	} else {
215	        x86_saved_state32_t	*uregs;
216
217		uregs = USER_REGS32(thread);
218
219		vaddr = uregs->cr2;
220	}
221
222
223	/* PAL debug hook */
224	pal_dbg_page_fault( thread, vaddr, kr );
225
226	i386_exception(EXC_BAD_ACCESS, kr, vaddr);
227	/*NOTREACHED*/
228}
229
230/*
231 * Fault recovery in copyin/copyout routines.
232 */
233struct recovery {
234	uintptr_t	fault_addr;
235	uintptr_t	recover_addr;
236};
237
238extern struct recovery	recover_table[];
239extern struct recovery	recover_table_end[];
240
241const char *	trap_type[] = {TRAP_NAMES};
242unsigned 	TRAP_TYPES = sizeof(trap_type)/sizeof(trap_type[0]);
243
244extern void	PE_incoming_interrupt(int interrupt);
245
246#if defined(__x86_64__) && DEBUG
247void
248kprint_state(x86_saved_state64_t	*saved_state)
249{
250	kprintf("current_cpu_datap() 0x%lx\n", (uintptr_t)current_cpu_datap());
251	kprintf("Current GS base MSR 0x%llx\n", rdmsr64(MSR_IA32_GS_BASE));
252	kprintf("Kernel  GS base MSR 0x%llx\n", rdmsr64(MSR_IA32_KERNEL_GS_BASE));
253	kprintf("state at 0x%lx:\n", (uintptr_t) saved_state);
254
255	kprintf("      rdi    0x%llx\n", saved_state->rdi);
256	kprintf("      rsi    0x%llx\n", saved_state->rsi);
257	kprintf("      rdx    0x%llx\n", saved_state->rdx);
258	kprintf("      r10    0x%llx\n", saved_state->r10);
259	kprintf("      r8     0x%llx\n", saved_state->r8);
260	kprintf("      r9     0x%llx\n", saved_state->r9);
261
262	kprintf("      cr2    0x%llx\n", saved_state->cr2);
263	kprintf("real  cr2    0x%lx\n", get_cr2());
264	kprintf("      r15    0x%llx\n", saved_state->r15);
265	kprintf("      r14    0x%llx\n", saved_state->r14);
266	kprintf("      r13    0x%llx\n", saved_state->r13);
267	kprintf("      r12    0x%llx\n", saved_state->r12);
268	kprintf("      r11    0x%llx\n", saved_state->r11);
269	kprintf("      rbp    0x%llx\n", saved_state->rbp);
270	kprintf("      rbx    0x%llx\n", saved_state->rbx);
271	kprintf("      rcx    0x%llx\n", saved_state->rcx);
272	kprintf("      rax    0x%llx\n", saved_state->rax);
273
274	kprintf("      gs     0x%x\n", saved_state->gs);
275	kprintf("      fs     0x%x\n", saved_state->fs);
276
277	kprintf("  isf.trapno 0x%x\n", saved_state->isf.trapno);
278	kprintf("  isf._pad   0x%x\n", saved_state->isf._pad);
279	kprintf("  isf.trapfn 0x%llx\n", saved_state->isf.trapfn);
280	kprintf("  isf.err    0x%llx\n", saved_state->isf.err);
281	kprintf("  isf.rip    0x%llx\n", saved_state->isf.rip);
282	kprintf("  isf.cs     0x%llx\n", saved_state->isf.cs);
283	kprintf("  isf.rflags 0x%llx\n", saved_state->isf.rflags);
284	kprintf("  isf.rsp    0x%llx\n", saved_state->isf.rsp);
285	kprintf("  isf.ss     0x%llx\n", saved_state->isf.ss);
286}
287#endif
288
289
290/*
291 * Non-zero indicates latency assert is enabled and capped at valued
292 * absolute time units.
293 */
294
295uint64_t interrupt_latency_cap = 0;
296boolean_t ilat_assert = FALSE;
297
298void
299interrupt_latency_tracker_setup(void) {
300	uint32_t ilat_cap_us;
301	if (PE_parse_boot_argn("interrupt_latency_cap_us", &ilat_cap_us, sizeof(ilat_cap_us))) {
302		interrupt_latency_cap = ilat_cap_us * NSEC_PER_USEC;
303		nanoseconds_to_absolutetime(interrupt_latency_cap, &interrupt_latency_cap);
304	} else {
305		interrupt_latency_cap = LockTimeOut;
306	}
307	PE_parse_boot_argn("-interrupt_latency_assert_enable", &ilat_assert, sizeof(ilat_assert));
308}
309
310void interrupt_reset_latency_stats(void) {
311	uint32_t i;
312	for (i = 0; i < real_ncpus; i++) {
313		cpu_data_ptr[i]->cpu_max_observed_int_latency =
314		    cpu_data_ptr[i]->cpu_max_observed_int_latency_vector = 0;
315	}
316}
317
318void interrupt_populate_latency_stats(char *buf, unsigned bufsize) {
319	uint32_t i, tcpu = ~0;
320	uint64_t cur_max = 0;
321
322	for (i = 0; i < real_ncpus; i++) {
323		if (cur_max < cpu_data_ptr[i]->cpu_max_observed_int_latency) {
324			cur_max = cpu_data_ptr[i]->cpu_max_observed_int_latency;
325			tcpu = i;
326		}
327	}
328
329	if (tcpu < real_ncpus)
330		snprintf(buf, bufsize, "0x%x 0x%x 0x%llx", tcpu, cpu_data_ptr[tcpu]->cpu_max_observed_int_latency_vector, cpu_data_ptr[tcpu]->cpu_max_observed_int_latency);
331}
332
333uint32_t interrupt_timer_coalescing_enabled = 1;
334uint64_t interrupt_coalesced_timers;
335
336/*
337 * Handle interrupts:
338 *  - local APIC interrupts (IPIs, timers, etc) are handled by the kernel,
339 *  - device interrupts go to the platform expert.
340 */
341void
342interrupt(x86_saved_state_t *state)
343{
344	uint64_t	rip;
345	uint64_t	rsp;
346	int		interrupt_num;
347	boolean_t	user_mode = FALSE;
348	int		ipl;
349	int		cnum = cpu_number();
350	cpu_data_t	*cdp = cpu_data_ptr[cnum];
351	int		itype = 0;
352
353	if (is_saved_state64(state) == TRUE) {
354	        x86_saved_state64_t	*state64;
355
356	        state64 = saved_state64(state);
357		rip = state64->isf.rip;
358		rsp = state64->isf.rsp;
359		interrupt_num = state64->isf.trapno;
360#ifdef __x86_64__
361		if(state64->isf.cs & 0x03)
362#endif
363			user_mode = TRUE;
364	} else {
365		x86_saved_state32_t	*state32;
366
367		state32 = saved_state32(state);
368		if (state32->cs & 0x03)
369			user_mode = TRUE;
370		rip = state32->eip;
371		rsp = state32->uesp;
372		interrupt_num = state32->trapno;
373	}
374
375	if (cpu_data_ptr[cnum]->lcpu.package->num_idle == topoParms.nLThreadsPerPackage)
376		cpu_data_ptr[cnum]->cpu_hwIntpexits[interrupt_num]++;
377
378	if (interrupt_num == (LAPIC_DEFAULT_INTERRUPT_BASE + LAPIC_INTERPROCESSOR_INTERRUPT))
379		itype = 1;
380	else if (interrupt_num == (LAPIC_DEFAULT_INTERRUPT_BASE + LAPIC_TIMER_INTERRUPT))
381		itype = 2;
382	else
383		itype = 3;
384
385	KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
386		MACHDBG_CODE(DBG_MACH_EXCP_INTR, 0) | DBG_FUNC_START,
387		interrupt_num,
388		(user_mode ? rip : VM_KERNEL_UNSLIDE(rip)),
389		user_mode, itype, 0);
390
391	SCHED_STATS_INTERRUPT(current_processor());
392
393#if CONFIG_TELEMETRY
394	if (telemetry_needs_record
395		&& (current_task() != kernel_task)
396#if CONFIG_SCHED_IDLE_IN_PLACE
397		&& ((current_thread()->state & TH_IDLE) == 0) /* idle-in-place should be treated like the idle thread */
398#endif
399		) {
400		telemetry_mark_curthread(user_mode);
401	}
402#endif
403
404	ipl = get_preemption_level();
405
406	/*
407	 * Handle local APIC interrupts
408	 * else call platform expert for devices.
409	 */
410	if (!lapic_interrupt(interrupt_num, state)) {
411		PE_incoming_interrupt(interrupt_num);
412	}
413
414	if (__improbable(get_preemption_level() != ipl)) {
415		panic("Preemption level altered by interrupt vector 0x%x: initial 0x%x, final: 0x%x\n", interrupt_num, ipl, get_preemption_level());
416	}
417
418
419 	if (__improbable(cdp->cpu_nested_istack)) {
420 		cdp->cpu_nested_istack_events++;
421 	}
422 	else  {
423		uint64_t ctime = mach_absolute_time();
424		uint64_t int_latency = ctime - cdp->cpu_int_event_time;
425		uint64_t esdeadline, ehdeadline;
426		/* Attempt to process deferred timers in the context of
427		 * this interrupt, unless interrupt time has already exceeded
428		 * TCOAL_ILAT_THRESHOLD.
429		 */
430#define TCOAL_ILAT_THRESHOLD (30000ULL)
431
432		if ((int_latency < TCOAL_ILAT_THRESHOLD) &&
433		    interrupt_timer_coalescing_enabled) {
434			esdeadline = cdp->rtclock_timer.queue.earliest_soft_deadline;
435			ehdeadline = cdp->rtclock_timer.deadline;
436			if ((ctime >= esdeadline) && (ctime < ehdeadline)) {
437				interrupt_coalesced_timers++;
438				TCOAL_DEBUG(0x88880000 | DBG_FUNC_START, ctime, esdeadline, ehdeadline, interrupt_coalesced_timers, 0);
439				rtclock_intr(state);
440				TCOAL_DEBUG(0x88880000 | DBG_FUNC_END, ctime, esdeadline, interrupt_coalesced_timers, 0, 0);
441			} else {
442				TCOAL_DEBUG(0x77770000, ctime, cdp->rtclock_timer.queue.earliest_soft_deadline, cdp->rtclock_timer.deadline, interrupt_coalesced_timers, 0);
443			}
444		}
445
446		if (__improbable(ilat_assert && (int_latency > interrupt_latency_cap) && !machine_timeout_suspended())) {
447			panic("Interrupt vector 0x%x exceeded interrupt latency threshold, 0x%llx absolute time delta, prior signals: 0x%x, current signals: 0x%x", interrupt_num, int_latency, cdp->cpu_prior_signals, cdp->cpu_signals);
448		}
449
450		if (__improbable(int_latency > cdp->cpu_max_observed_int_latency)) {
451			cdp->cpu_max_observed_int_latency = int_latency;
452			cdp->cpu_max_observed_int_latency_vector = interrupt_num;
453		}
454	}
455
456	/*
457	 * Having serviced the interrupt first, look at the interrupted stack depth.
458	 */
459	if (!user_mode) {
460		uint64_t depth = cdp->cpu_kernel_stack
461				 + sizeof(struct x86_kernel_state)
462				 + sizeof(struct i386_exception_link *)
463				 - rsp;
464		if (__improbable(depth > kernel_stack_depth_max)) {
465			kernel_stack_depth_max = (vm_offset_t)depth;
466			KERNEL_DEBUG_CONSTANT(
467				MACHDBG_CODE(DBG_MACH_SCHED, MACH_STACK_DEPTH),
468				(long) depth, (long) VM_KERNEL_UNSLIDE(rip), 0, 0, 0);
469		}
470	}
471
472	if (cnum == master_cpu)
473		ml_entropy_collect();
474
475	KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
476		MACHDBG_CODE(DBG_MACH_EXCP_INTR, 0) | DBG_FUNC_END,
477		interrupt_num, 0, 0, 0, 0);
478
479}
480
481static inline void
482reset_dr7(void)
483{
484	long dr7 = 0x400; /* magic dr7 reset value; 32 bit on i386, 64 bit on x86_64 */
485	__asm__ volatile("mov %0,%%dr7" : : "r" (dr7));
486}
487#if MACH_KDP
488unsigned kdp_has_active_watchpoints = 0;
489#define NO_WATCHPOINTS (!kdp_has_active_watchpoints)
490#else
491#define NO_WATCHPOINTS 1
492#endif
493/*
494 * Trap from kernel mode.  Only page-fault errors are recoverable,
495 * and then only in special circumstances.  All other errors are
496 * fatal.  Return value indicates if trap was handled.
497 */
498
499void
500kernel_trap(
501	x86_saved_state_t	*state,
502	uintptr_t *lo_spp)
503{
504	x86_saved_state64_t	*saved_state;
505	int			code;
506	user_addr_t		vaddr;
507	int			type;
508	vm_map_t		map = 0;	/* protected by T_PAGE_FAULT */
509	kern_return_t		result = KERN_FAILURE;
510	thread_t		thread;
511	ast_t			*myast;
512	boolean_t               intr;
513	vm_prot_t		prot;
514        struct recovery		*rp;
515	vm_offset_t		kern_ip;
516#if NCOPY_WINDOWS > 0
517	int			fault_in_copy_window = -1;
518#endif
519	int			is_user = 0;
520
521	thread = current_thread();
522
523	if (__improbable(is_saved_state32(state)))
524		panic("kernel_trap(%p) with 32-bit state", state);
525	saved_state = saved_state64(state);
526
527	/* Record cpu where state was captured */
528	saved_state->isf.cpu = cpu_number();
529
530	vaddr = (user_addr_t)saved_state->cr2;
531	type  = saved_state->isf.trapno;
532	code  = (int)(saved_state->isf.err & 0xffff);
533	intr  = (saved_state->isf.rflags & EFL_IF) != 0;	/* state of ints at trap */
534	kern_ip = (vm_offset_t)saved_state->isf.rip;
535
536	myast = ast_pending();
537
538	perfASTCallback astfn = perfASTHook;
539	if (__improbable(astfn != NULL)) {
540		if (*myast & AST_CHUD_ALL)
541			astfn(AST_CHUD_ALL, myast);
542	} else
543		*myast &= ~AST_CHUD_ALL;
544
545
546#if CONFIG_DTRACE
547	/*
548	 * Is there a DTrace hook?
549	 */
550	if (__improbable(tempDTraceTrapHook != NULL)) {
551		if (tempDTraceTrapHook(type, state, lo_spp, 0) == KERN_SUCCESS) {
552			/*
553			 * If it succeeds, we are done...
554			 */
555			return;
556		}
557	}
558#endif /* CONFIG_DTRACE */
559
560	/*
561	 * we come here with interrupts off as we don't want to recurse
562	 * on preemption below.  but we do want to re-enable interrupts
563	 * as soon we possibly can to hold latency down
564	 */
565	if (__improbable(T_PREEMPT == type)) {
566	        ast_taken(AST_PREEMPTION, FALSE);
567
568		KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
569			(MACHDBG_CODE(DBG_MACH_EXCP_KTRAP_x86, type)) | DBG_FUNC_NONE,
570			0, 0, 0, VM_KERNEL_UNSLIDE(kern_ip), 0);
571		return;
572	}
573
574	if (T_PAGE_FAULT == type) {
575		/*
576		 * assume we're faulting in the kernel map
577		 */
578		map = kernel_map;
579
580		if (__probable(thread != THREAD_NULL && thread->map != kernel_map)) {
581#if NCOPY_WINDOWS > 0
582			vm_offset_t	copy_window_base;
583			vm_offset_t	kvaddr;
584			int		window_index;
585
586			kvaddr = (vm_offset_t)vaddr;
587			/*
588			 * must determine if fault occurred in
589			 * the copy window while pre-emption is
590			 * disabled for this processor so that
591			 * we only need to look at the window
592			 * associated with this processor
593			 */
594			copy_window_base = current_cpu_datap()->cpu_copywindow_base;
595
596			if (kvaddr >= copy_window_base && kvaddr < (copy_window_base + (NBPDE * NCOPY_WINDOWS)) ) {
597
598				window_index = (int)((kvaddr - copy_window_base) / NBPDE);
599
600				if (thread->machine.copy_window[window_index].user_base != (user_addr_t)-1) {
601
602				        kvaddr -= (copy_window_base + (NBPDE * window_index));
603				        vaddr = thread->machine.copy_window[window_index].user_base + kvaddr;
604
605					map = thread->map;
606					fault_in_copy_window = window_index;
607				}
608				is_user = -1;
609			}
610#else
611			if (__probable(vaddr < VM_MAX_USER_PAGE_ADDRESS)) {
612				/* fault occurred in userspace */
613				map = thread->map;
614				is_user = -1;
615
616				/* Intercept a potential Supervisor Mode Execute
617				 * Protection fault. These criteria identify
618				 * both NX faults and SMEP faults, but both
619				 * are fatal. We avoid checking PTEs (racy).
620				 * (The VM could just redrive a SMEP fault, hence
621				 * the intercept).
622				 */
623				if (__improbable((code == (T_PF_PROT | T_PF_EXECUTE)) && (pmap_smep_enabled) && (saved_state->isf.rip == vaddr))) {
624					goto debugger_entry;
625				}
626
627				/*
628				 * If we're not sharing cr3 with the user
629				 * and we faulted in copyio,
630				 * then switch cr3 here and dismiss the fault.
631				 */
632				if (no_shared_cr3 &&
633				    (thread->machine.specFlags&CopyIOActive) &&
634				    map->pmap->pm_cr3 != get_cr3_base()) {
635					pmap_assert(current_cpu_datap()->cpu_pmap_pcid_enabled == FALSE);
636					set_cr3_raw(map->pmap->pm_cr3);
637					return;
638				}
639
640			}
641#endif
642		}
643	}
644	user_addr_t	kd_vaddr = is_user ? vaddr : VM_KERNEL_UNSLIDE(vaddr);
645	KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
646		(MACHDBG_CODE(DBG_MACH_EXCP_KTRAP_x86, type)) | DBG_FUNC_NONE,
647		(unsigned)(kd_vaddr >> 32), (unsigned)kd_vaddr, is_user,
648		VM_KERNEL_UNSLIDE(kern_ip), 0);
649
650
651	(void) ml_set_interrupts_enabled(intr);
652
653	switch (type) {
654
655	    case T_NO_FPU:
656		fpnoextflt();
657		return;
658
659	    case T_FPU_FAULT:
660		fpextovrflt();
661		return;
662
663	    case T_FLOATING_POINT_ERROR:
664		fpexterrflt();
665		return;
666
667	    case T_SSE_FLOAT_ERROR:
668	        fpSSEexterrflt();
669		return;
670 	    case T_DEBUG:
671		    if ((saved_state->isf.rflags & EFL_TF) == 0 && NO_WATCHPOINTS)
672		    {
673			    /* We've somehow encountered a debug
674			     * register match that does not belong
675			     * to the kernel debugger.
676			     * This isn't supposed to happen.
677			     */
678			    reset_dr7();
679			    return;
680		    }
681		    goto debugger_entry;
682#ifdef __x86_64__
683	    case T_INT3:
684	      goto debugger_entry;
685#endif
686	    case T_PAGE_FAULT:
687
688#if CONFIG_DTRACE
689		if (thread != THREAD_NULL && thread->options & TH_OPT_DTRACE) {	/* Executing under dtrace_probe? */
690			if (dtrace_tally_fault(vaddr)) { /* Should a fault under dtrace be ignored? */
691				/*
692				 * DTrace has "anticipated" the possibility of this fault, and has
693				 * established the suitable recovery state. Drop down now into the
694				 * recovery handling code in "case T_GENERAL_PROTECTION:".
695				 */
696				goto FALL_THROUGH;
697			}
698		}
699#endif /* CONFIG_DTRACE */
700
701		prot = VM_PROT_READ;
702
703		if (code & T_PF_WRITE)
704		        prot |= VM_PROT_WRITE;
705		if (code & T_PF_EXECUTE)
706		        prot |= VM_PROT_EXECUTE;
707
708		result = vm_fault(map,
709				  vm_map_trunc_page(vaddr,
710						    PAGE_MASK),
711				  prot,
712				  FALSE,
713				  THREAD_UNINT, NULL, 0);
714
715		if (result == KERN_SUCCESS) {
716#if NCOPY_WINDOWS > 0
717			if (fault_in_copy_window != -1) {
718				ml_set_interrupts_enabled(FALSE);
719				copy_window_fault(thread, map,
720						  fault_in_copy_window);
721				(void) ml_set_interrupts_enabled(intr);
722			}
723#endif /* NCOPY_WINDOWS > 0 */
724			return;
725		}
726		/*
727		 * fall through
728		 */
729#if CONFIG_DTRACE
730FALL_THROUGH:
731#endif /* CONFIG_DTRACE */
732
733	    case T_GENERAL_PROTECTION:
734		/*
735		 * If there is a failure recovery address
736		 * for this fault, go there.
737		 */
738	        for (rp = recover_table; rp < recover_table_end; rp++) {
739		        if (kern_ip == rp->fault_addr) {
740			        set_recovery_ip(saved_state, rp->recover_addr);
741				return;
742			}
743		}
744
745		/*
746		 * Check thread recovery address also.
747		 */
748		if (thread != THREAD_NULL && thread->recover) {
749			set_recovery_ip(saved_state, thread->recover);
750			thread->recover = 0;
751			return;
752		}
753		/*
754		 * Unanticipated page-fault errors in kernel
755		 * should not happen.
756		 *
757		 * fall through...
758		 */
759	    default:
760		/*
761		 * Exception 15 is reserved but some chips may generate it
762		 * spuriously. Seen at startup on AMD Athlon-64.
763		 */
764	    	if (type == 15) {
765			kprintf("kernel_trap() ignoring spurious trap 15\n");
766			return;
767		}
768debugger_entry:
769		/* Ensure that the i386_kernel_state at the base of the
770		 * current thread's stack (if any) is synchronized with the
771		 * context at the moment of the trap, to facilitate
772		 * access through the debugger.
773		 */
774		sync_iss_to_iks(state);
775#if  MACH_KDP
776		if (current_debugger != KDB_CUR_DB) {
777			if (kdp_i386_trap(type, saved_state, result, (vm_offset_t)vaddr))
778				return;
779		}
780#endif
781	}
782	pal_cli();
783	panic_trap(saved_state);
784	/*
785	 * NO RETURN
786	 */
787}
788
789
790static void
791set_recovery_ip(x86_saved_state64_t  *saved_state, vm_offset_t ip)
792{
793        saved_state->isf.rip = ip;
794}
795
796
797
798
799static void
800panic_trap(x86_saved_state64_t *regs)
801{
802	const char	*trapname = "Unknown";
803	pal_cr_t	cr0, cr2, cr3, cr4;
804	boolean_t	potential_smep_fault = FALSE, potential_kernel_NX_fault = FALSE;
805
806	pal_get_control_registers( &cr0, &cr2, &cr3, &cr4 );
807	assert(ml_get_interrupts_enabled() == FALSE);
808	current_cpu_datap()->cpu_fatal_trap_state = regs;
809	/*
810	 * Issue an I/O port read if one has been requested - this is an
811	 * event logic analyzers can use as a trigger point.
812	 */
813	panic_io_port_read();
814
815	kprintf("panic trap number 0x%x, rip 0x%016llx\n",
816		regs->isf.trapno, regs->isf.rip);
817	kprintf("cr0 0x%016llx cr2 0x%016llx cr3 0x%016llx cr4 0x%016llx\n",
818		cr0, cr2, cr3, cr4);
819
820	if (regs->isf.trapno < TRAP_TYPES)
821	        trapname = trap_type[regs->isf.trapno];
822
823	if ((regs->isf.trapno == T_PAGE_FAULT) && (regs->isf.err == (T_PF_PROT | T_PF_EXECUTE)) && (regs->isf.rip == regs->cr2)) {
824		if (pmap_smep_enabled && (regs->isf.rip < VM_MAX_USER_PAGE_ADDRESS)) {
825			potential_smep_fault = TRUE;
826		} else if (regs->isf.rip >= VM_MIN_KERNEL_AND_KEXT_ADDRESS) {
827			potential_kernel_NX_fault = TRUE;
828		}
829	}
830
831#undef panic
832	panic("Kernel trap at 0x%016llx, type %d=%s, registers:\n"
833	      "CR0: 0x%016llx, CR2: 0x%016llx, CR3: 0x%016llx, CR4: 0x%016llx\n"
834	      "RAX: 0x%016llx, RBX: 0x%016llx, RCX: 0x%016llx, RDX: 0x%016llx\n"
835	      "RSP: 0x%016llx, RBP: 0x%016llx, RSI: 0x%016llx, RDI: 0x%016llx\n"
836	      "R8:  0x%016llx, R9:  0x%016llx, R10: 0x%016llx, R11: 0x%016llx\n"
837	      "R12: 0x%016llx, R13: 0x%016llx, R14: 0x%016llx, R15: 0x%016llx\n"
838	      "RFL: 0x%016llx, RIP: 0x%016llx, CS:  0x%016llx, SS:  0x%016llx\n"
839	      "Fault CR2: 0x%016llx, Error code: 0x%016llx, Fault CPU: 0x%x%s%s%s%s\n",
840	      regs->isf.rip, regs->isf.trapno, trapname,
841	      cr0, cr2, cr3, cr4,
842	      regs->rax, regs->rbx, regs->rcx, regs->rdx,
843	      regs->isf.rsp, regs->rbp, regs->rsi, regs->rdi,
844	      regs->r8,  regs->r9,  regs->r10, regs->r11,
845	      regs->r12, regs->r13, regs->r14, regs->r15,
846	      regs->isf.rflags, regs->isf.rip, regs->isf.cs & 0xFFFF,
847	      regs->isf.ss & 0xFFFF,regs->cr2, regs->isf.err, regs->isf.cpu,
848	      virtualized ? " VMM" : "",
849	      potential_kernel_NX_fault ? " Kernel NX fault" : "",
850	      potential_smep_fault ? " SMEP/User NX fault" : "",
851	      "");
852	/*
853	 * This next statement is not executed,
854	 * but it's needed to stop the compiler using tail call optimization
855	 * for the panic call - which confuses the subsequent backtrace.
856	 */
857	cr0 = 0;
858}
859
860#if CONFIG_DTRACE
861extern kern_return_t dtrace_user_probe(x86_saved_state_t *);
862#endif
863
864/*
865 *	Trap from user mode.
866 */
867void
868user_trap(
869	x86_saved_state_t *saved_state)
870{
871	int			exc;
872	int			err;
873	mach_exception_code_t 	code;
874	mach_exception_subcode_t subcode;
875	int			type;
876	user_addr_t		vaddr;
877	vm_prot_t		prot;
878	thread_t		thread = current_thread();
879	ast_t			*myast;
880	kern_return_t		kret;
881	user_addr_t		rip;
882	unsigned long 		dr6 = 0; /* 32 bit for i386, 64 bit for x86_64 */
883
884	assert((is_saved_state32(saved_state) && !thread_is_64bit(thread)) ||
885	       (is_saved_state64(saved_state) &&  thread_is_64bit(thread)));
886
887	if (is_saved_state64(saved_state)) {
888	        x86_saved_state64_t	*regs;
889
890		regs = saved_state64(saved_state);
891
892		/* Record cpu where state was captured */
893		regs->isf.cpu = cpu_number();
894
895		type = regs->isf.trapno;
896		err  = (int)regs->isf.err & 0xffff;
897		vaddr = (user_addr_t)regs->cr2;
898		rip   = (user_addr_t)regs->isf.rip;
899	} else {
900		x86_saved_state32_t	*regs;
901
902		regs = saved_state32(saved_state);
903
904		/* Record cpu where state was captured */
905		regs->cpu = cpu_number();
906
907		type  = regs->trapno;
908		err   = regs->err & 0xffff;
909		vaddr = (user_addr_t)regs->cr2;
910		rip   = (user_addr_t)regs->eip;
911	}
912
913	if ((type == T_DEBUG) && thread->machine.ids) {
914		unsigned long clear = 0;
915		/* Stash and clear this processor's DR6 value, in the event
916		 * this was a debug register match
917		 */
918		__asm__ volatile ("mov %%db6, %0" : "=r" (dr6));
919		__asm__ volatile ("mov %0, %%db6" : : "r" (clear));
920	}
921
922	pal_sti();
923
924	KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
925		(MACHDBG_CODE(DBG_MACH_EXCP_UTRAP_x86, type)) | DBG_FUNC_NONE,
926		(unsigned)(vaddr>>32), (unsigned)vaddr,
927		(unsigned)(rip>>32), (unsigned)rip, 0);
928
929	code = 0;
930	subcode = 0;
931	exc = 0;
932
933#if DEBUG_TRACE
934	kprintf("user_trap(0x%08x) type=%d vaddr=0x%016llx\n",
935		saved_state, type, vaddr);
936#endif
937
938	perfASTCallback astfn = perfASTHook;
939	if (__improbable(astfn != NULL)) {
940		myast = ast_pending();
941		if (*myast & AST_CHUD_ALL) {
942			astfn(AST_CHUD_ALL, myast);
943		}
944	}
945
946	/* Is there a hook? */
947	perfCallback fn = perfTrapHook;
948	if (__improbable(fn != NULL)) {
949		if (fn(type, saved_state, 0, 0) == KERN_SUCCESS)
950			return;	/* If it succeeds, we are done... */
951	}
952
953#if CONFIG_DTRACE
954	/*
955	 * DTrace does not consume all user traps, only INT_3's for now.
956	 * Avoid needlessly calling tempDTraceTrapHook here, and let the
957	 * INT_3 case handle them.
958	 */
959#endif
960
961	DEBUG_KPRINT_SYSCALL_MASK(1,
962		"user_trap: type=0x%x(%s) err=0x%x cr2=%p rip=%p\n",
963		type, trap_type[type], err, (void *)(long) vaddr, (void *)(long) rip);
964
965	switch (type) {
966
967	    case T_DIVIDE_ERROR:
968		exc = EXC_ARITHMETIC;
969		code = EXC_I386_DIV;
970		break;
971
972	    case T_DEBUG:
973		{
974			pcb_t	pcb;
975			/*
976			 * Update the PCB with this processor's DR6 value
977			 * in the event this was a debug register match.
978			 */
979			pcb = THREAD_TO_PCB(thread);
980			if (pcb->ids) {
981				/*
982				 * We can get and set the status register
983				 * in 32-bit mode even on a 64-bit thread
984				 * because the high order bits are not
985				 * used on x86_64
986				 */
987				if (thread_is_64bit(thread)) {
988					x86_debug_state64_t *ids = pcb->ids;
989					ids->dr6 = dr6;
990				} else { /* 32 bit thread */
991					x86_debug_state32_t *ids = pcb->ids;
992					ids->dr6 = (uint32_t) dr6;
993				}
994			}
995			exc = EXC_BREAKPOINT;
996			code = EXC_I386_SGL;
997			break;
998		}
999	    case T_INT3:
1000#if CONFIG_DTRACE
1001		if (dtrace_user_probe(saved_state) == KERN_SUCCESS)
1002			return; /* If it succeeds, we are done... */
1003#endif
1004		exc = EXC_BREAKPOINT;
1005		code = EXC_I386_BPT;
1006		break;
1007
1008	    case T_OVERFLOW:
1009		exc = EXC_ARITHMETIC;
1010		code = EXC_I386_INTO;
1011		break;
1012
1013	    case T_OUT_OF_BOUNDS:
1014		exc = EXC_SOFTWARE;
1015		code = EXC_I386_BOUND;
1016		break;
1017
1018	    case T_INVALID_OPCODE:
1019		exc = EXC_BAD_INSTRUCTION;
1020		code = EXC_I386_INVOP;
1021		break;
1022
1023	    case T_NO_FPU:
1024		fpnoextflt();
1025		return;
1026
1027	    case T_FPU_FAULT:
1028		fpextovrflt(); /* Propagates exception directly, doesn't return */
1029		return;
1030
1031	    case T_INVALID_TSS:	/* invalid TSS == iret with NT flag set */
1032		exc = EXC_BAD_INSTRUCTION;
1033		code = EXC_I386_INVTSSFLT;
1034		subcode = err;
1035		break;
1036
1037	    case T_SEGMENT_NOT_PRESENT:
1038		exc = EXC_BAD_INSTRUCTION;
1039		code = EXC_I386_SEGNPFLT;
1040		subcode = err;
1041		break;
1042
1043	    case T_STACK_FAULT:
1044		exc = EXC_BAD_INSTRUCTION;
1045		code = EXC_I386_STKFLT;
1046		subcode = err;
1047		break;
1048
1049	    case T_GENERAL_PROTECTION:
1050		/*
1051		 * There's a wide range of circumstances which generate this
1052		 * class of exception. From user-space, many involve bad
1053		 * addresses (such as a non-canonical 64-bit address).
1054		 * So we map this to EXC_BAD_ACCESS (and thereby SIGSEGV).
1055		 * The trouble is cr2 doesn't contain the faulting address;
1056		 * we'd need to decode the faulting instruction to really
1057		 * determine this. We'll leave that to debuggers.
1058		 * However, attempted execution of privileged instructions
1059		 * (e.g. cli) also generate GP faults and so we map these to
1060		 * to EXC_BAD_ACCESS (and thence SIGSEGV) also - rather than
1061		 * EXC_BAD_INSTRUCTION which is more accurate. We just can't
1062		 * win!
1063		 */
1064		exc = EXC_BAD_ACCESS;
1065		code = EXC_I386_GPFLT;
1066		subcode = err;
1067		break;
1068
1069	    case T_PAGE_FAULT:
1070	    {
1071		    prot = VM_PROT_READ;
1072
1073		if (err & T_PF_WRITE)
1074		        prot |= VM_PROT_WRITE;
1075		if (__improbable(err & T_PF_EXECUTE))
1076		        prot |= VM_PROT_EXECUTE;
1077		kret = vm_fault(thread->map,
1078				vm_map_trunc_page(vaddr,
1079						  PAGE_MASK),
1080				prot, FALSE,
1081				THREAD_ABORTSAFE, NULL, 0);
1082
1083		if (__probable((kret == KERN_SUCCESS) || (kret == KERN_ABORTED))) {
1084			thread_exception_return();
1085			/*NOTREACHED*/
1086		}
1087
1088	        user_page_fault_continue(kret);
1089	    }	/* NOTREACHED */
1090		break;
1091
1092	    case T_SSE_FLOAT_ERROR:
1093		fpSSEexterrflt(); /* Propagates exception directly, doesn't return */
1094		return;
1095
1096
1097	    case T_FLOATING_POINT_ERROR:
1098		fpexterrflt(); /* Propagates exception directly, doesn't return */
1099		return;
1100
1101	    case T_DTRACE_RET:
1102#if CONFIG_DTRACE
1103		if (dtrace_user_probe(saved_state) == KERN_SUCCESS)
1104			return; /* If it succeeds, we are done... */
1105#endif
1106		/*
1107		 * If we get an INT 0x7f when we do not expect to,
1108		 * treat it as an illegal instruction
1109		 */
1110		exc = EXC_BAD_INSTRUCTION;
1111		code = EXC_I386_INVOP;
1112		break;
1113
1114	    default:
1115		panic("Unexpected user trap, type %d", type);
1116		return;
1117	}
1118	/* Note: Codepaths that directly return from user_trap() have pending
1119	 * ASTs processed in locore
1120	 */
1121	i386_exception(exc, code, subcode);
1122	/* NOTREACHED */
1123}
1124
1125
1126/*
1127 * Handle AST traps for i386.
1128 */
1129
1130extern void     log_thread_action (thread_t, char *);
1131
1132void
1133i386_astintr(int preemption)
1134{
1135	ast_t		mask = AST_ALL;
1136	spl_t		s;
1137
1138	if (preemption)
1139	        mask = AST_PREEMPTION;
1140
1141	s = splsched();
1142
1143	ast_taken(mask, s);
1144
1145	splx(s);
1146}
1147
1148/*
1149 * Handle exceptions for i386.
1150 *
1151 * If we are an AT bus machine, we must turn off the AST for a
1152 * delayed floating-point exception.
1153 *
1154 * If we are providing floating-point emulation, we may have
1155 * to retrieve the real register values from the floating point
1156 * emulator.
1157 */
1158void
1159i386_exception(
1160	int	exc,
1161	mach_exception_code_t code,
1162	mach_exception_subcode_t subcode)
1163{
1164	mach_exception_data_type_t   codes[EXCEPTION_CODE_MAX];
1165
1166	DEBUG_KPRINT_SYSCALL_MACH("i386_exception: exc=%d code=0x%llx subcode=0x%llx\n",
1167							  exc, code, subcode);
1168	codes[0] = code;		/* new exception interface */
1169	codes[1] = subcode;
1170	exception_triage(exc, codes, 2);
1171	/*NOTREACHED*/
1172}
1173
1174
1175/* Synchronize a thread's x86_kernel_state (if any) with the given
1176 * x86_saved_state_t obtained from the trap/IPI handler; called in
1177 * kernel_trap() prior to entering the debugger, and when receiving
1178 * an "MP_KDP" IPI. Called with null saved_state if an incoming IPI
1179 * was detected from the kernel while spinning with interrupts masked.
1180 */
1181
1182void
1183sync_iss_to_iks(x86_saved_state_t *saved_state)
1184{
1185	struct x86_kernel_state *iks;
1186	vm_offset_t kstack;
1187	boolean_t record_active_regs = FALSE;
1188
1189	/* The PAL may have a special way to sync registers */
1190	if (saved_state && saved_state->flavor == THREAD_STATE_NONE)
1191		pal_get_kern_regs( saved_state );
1192
1193	if ((kstack = current_thread()->kernel_stack) != 0) {
1194		x86_saved_state64_t	*regs = saved_state64(saved_state);
1195
1196		iks = STACK_IKS(kstack);
1197
1198		/* Did we take the trap/interrupt in kernel mode? */
1199		if (saved_state == NULL || /* NULL => polling in kernel */
1200		    regs == USER_REGS64(current_thread()))
1201		        record_active_regs = TRUE;
1202		else {
1203			iks->k_rbx = regs->rbx;
1204			iks->k_rsp = regs->isf.rsp;
1205			iks->k_rbp = regs->rbp;
1206			iks->k_r12 = regs->r12;
1207			iks->k_r13 = regs->r13;
1208			iks->k_r14 = regs->r14;
1209			iks->k_r15 = regs->r15;
1210			iks->k_rip = regs->isf.rip;
1211		}
1212	}
1213
1214	if (record_active_regs == TRUE) {
1215		/* Show the trap handler path */
1216		__asm__ volatile("movq %%rbx, %0" : "=m" (iks->k_rbx));
1217		__asm__ volatile("movq %%rsp, %0" : "=m" (iks->k_rsp));
1218		__asm__ volatile("movq %%rbp, %0" : "=m" (iks->k_rbp));
1219		__asm__ volatile("movq %%r12, %0" : "=m" (iks->k_r12));
1220		__asm__ volatile("movq %%r13, %0" : "=m" (iks->k_r13));
1221		__asm__ volatile("movq %%r14, %0" : "=m" (iks->k_r14));
1222		__asm__ volatile("movq %%r15, %0" : "=m" (iks->k_r15));
1223		/* "Current" instruction pointer */
1224		__asm__ volatile("leaq 1f(%%rip), %%rax; mov %%rax, %0\n1:"
1225				 : "=m" (iks->k_rip)
1226				 :
1227				 : "rax");
1228	}
1229}
1230
1231/*
1232 * This is used by the NMI interrupt handler (from mp.c) to
1233 * uncondtionally sync the trap handler context to the IKS
1234 * irrespective of whether the NMI was fielded in kernel
1235 * or user space.
1236 */
1237void
1238sync_iss_to_iks_unconditionally(__unused x86_saved_state_t *saved_state) {
1239	struct x86_kernel_state *iks;
1240	vm_offset_t kstack;
1241
1242	if ((kstack = current_thread()->kernel_stack) != 0) {
1243		iks = STACK_IKS(kstack);
1244		/* Display the trap handler path */
1245		__asm__ volatile("movq %%rbx, %0" : "=m" (iks->k_rbx));
1246		__asm__ volatile("movq %%rsp, %0" : "=m" (iks->k_rsp));
1247		__asm__ volatile("movq %%rbp, %0" : "=m" (iks->k_rbp));
1248		__asm__ volatile("movq %%r12, %0" : "=m" (iks->k_r12));
1249		__asm__ volatile("movq %%r13, %0" : "=m" (iks->k_r13));
1250		__asm__ volatile("movq %%r14, %0" : "=m" (iks->k_r14));
1251		__asm__ volatile("movq %%r15, %0" : "=m" (iks->k_r15));
1252		/* "Current" instruction pointer */
1253		__asm__ volatile("leaq 1f(%%rip), %%rax; mov %%rax, %0\n1:" : "=m" (iks->k_rip)::"rax");
1254	}
1255}
1256