1/*
2 * Copyright (c) 2000-2012 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28/* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
29/*
30 * Copyright (c) 1989, 1993, 1995
31 *	The Regents of the University of California.  All rights reserved.
32 *
33 * This code is derived from software contributed to Berkeley by
34 * Poul-Henning Kamp of the FreeBSD Project.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 *    notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 *    notice, this list of conditions and the following disclaimer in the
43 *    documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 *    must display the following acknowledgement:
46 *	This product includes software developed by the University of
47 *	California, Berkeley and its contributors.
48 * 4. Neither the name of the University nor the names of its contributors
49 *    may be used to endorse or promote products derived from this software
50 *    without specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62 * SUCH DAMAGE.
63 *
64 *
65 *	@(#)vfs_cache.c	8.5 (Berkeley) 3/22/95
66 */
67/*
68 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
69 * support for mandatory and extensible security protections.  This notice
70 * is included in support of clause 2.2 (b) of the Apple Public License,
71 * Version 2.0.
72 */
73#include <sys/param.h>
74#include <sys/systm.h>
75#include <sys/time.h>
76#include <sys/mount_internal.h>
77#include <sys/vnode_internal.h>
78#include <miscfs/specfs/specdev.h>
79#include <sys/namei.h>
80#include <sys/errno.h>
81#include <sys/malloc.h>
82#include <sys/kauth.h>
83#include <sys/user.h>
84#include <sys/paths.h>
85
86#if CONFIG_MACF
87#include <security/mac_framework.h>
88#endif
89
90/*
91 * Name caching works as follows:
92 *
93 * Names found by directory scans are retained in a cache
94 * for future reference.  It is managed LRU, so frequently
95 * used names will hang around.  Cache is indexed by hash value
96 * obtained from (vp, name) where vp refers to the directory
97 * containing name.
98 *
99 * If it is a "negative" entry, (i.e. for a name that is known NOT to
100 * exist) the vnode pointer will be NULL.
101 *
102 * Upon reaching the last segment of a path, if the reference
103 * is for DELETE, or NOCACHE is set (rewrite), and the
104 * name is located in the cache, it will be dropped.
105 */
106
107/*
108 * Structures associated with name cacheing.
109 */
110
111LIST_HEAD(nchashhead, namecache) *nchashtbl;	/* Hash Table */
112u_long	nchashmask;
113u_long	nchash;				/* size of hash table - 1 */
114long	numcache;			/* number of cache entries allocated */
115int 	desiredNodes;
116int 	desiredNegNodes;
117int	ncs_negtotal;
118int	nc_disabled = 0;
119TAILQ_HEAD(, namecache) nchead;		/* chain of all name cache entries */
120TAILQ_HEAD(, namecache) neghead;	/* chain of only negative cache entries */
121
122
123#if COLLECT_STATS
124
125struct	nchstats nchstats;		/* cache effectiveness statistics */
126
127#define	NCHSTAT(v) {		\
128        nchstats.v++;		\
129}
130#define NAME_CACHE_LOCK()		name_cache_lock()
131#define NAME_CACHE_UNLOCK()		name_cache_unlock()
132#define	NAME_CACHE_LOCK_SHARED()	name_cache_lock()
133
134#else
135
136#define NCHSTAT(v)
137#define NAME_CACHE_LOCK()		name_cache_lock()
138#define NAME_CACHE_UNLOCK()		name_cache_unlock()
139#define	NAME_CACHE_LOCK_SHARED()	name_cache_lock_shared()
140
141#endif
142
143
144/* vars for name cache list lock */
145lck_grp_t * namecache_lck_grp;
146lck_grp_attr_t * namecache_lck_grp_attr;
147lck_attr_t * namecache_lck_attr;
148
149lck_grp_t * strcache_lck_grp;
150lck_grp_attr_t * strcache_lck_grp_attr;
151lck_attr_t * strcache_lck_attr;
152
153lck_rw_t  * namecache_rw_lock;
154lck_rw_t  * strtable_rw_lock;
155
156#define NUM_STRCACHE_LOCKS 1024
157
158lck_mtx_t strcache_mtx_locks[NUM_STRCACHE_LOCKS];
159
160
161static vnode_t cache_lookup_locked(vnode_t dvp, struct componentname *cnp);
162static const char *add_name_internal(const char *, uint32_t, u_int, boolean_t, u_int);
163static void init_string_table(void);
164static void cache_delete(struct namecache *, int);
165static void cache_enter_locked(vnode_t dvp, vnode_t vp, struct componentname *cnp, const char *strname);
166
167#ifdef DUMP_STRING_TABLE
168/*
169 * Internal dump function used for debugging
170 */
171void dump_string_table(void);
172#endif	/* DUMP_STRING_TABLE */
173
174static void init_crc32(void);
175static unsigned int crc32tab[256];
176
177
178#define NCHHASH(dvp, hash_val) \
179	(&nchashtbl[(dvp->v_id ^ (hash_val)) & nchashmask])
180
181
182
183/*
184 * This function builds the path to a filename in "buff".  The
185 * length of the buffer *INCLUDING* the trailing zero byte is
186 * returned in outlen.  NOTE: the length includes the trailing
187 * zero byte and thus the length is one greater than what strlen
188 * would return.  This is important and lots of code elsewhere
189 * in the kernel assumes this behavior.
190 *
191 * This function can call vnop in file system if the parent vnode
192 * does not exist or when called for hardlinks via volfs path.
193 * If BUILDPATH_NO_FS_ENTER is set in flags, it only uses values present
194 * in the name cache and does not enter the file system.
195 *
196 * If BUILDPATH_CHECK_MOVED is set in flags, we return EAGAIN when
197 * we encounter ENOENT during path reconstruction.  ENOENT means that
198 * one of the parents moved while we were building the path.  The
199 * caller can special handle this case by calling build_path again.
200 *
201 * If BUILDPATH_VOLUME_RELATIVE is set in flags, we return path
202 * that is relative to the nearest mount point, i.e. do not
203 * cross over mount points during building the path.
204 *
205 * passed in vp must have a valid io_count reference
206 */
207int
208build_path(vnode_t first_vp, char *buff, int buflen, int *outlen, int flags, vfs_context_t ctx)
209{
210        vnode_t vp, tvp;
211	vnode_t vp_with_iocount;
212        vnode_t proc_root_dir_vp;
213	char *end;
214	const char *str;
215	int  len;
216	int  ret = 0;
217	int  fixhardlink;
218
219	if (first_vp == NULLVP)
220		return (EINVAL);
221
222	if (buflen <= 1)
223		return (ENOSPC);
224
225	/*
226	 * Grab the process fd so we can evaluate fd_rdir.
227	 */
228	if (vfs_context_proc(ctx)->p_fd)
229		proc_root_dir_vp = vfs_context_proc(ctx)->p_fd->fd_rdir;
230	else
231		proc_root_dir_vp = NULL;
232
233	vp_with_iocount = NULLVP;
234again:
235	vp = first_vp;
236
237	end = &buff[buflen-1];
238	*end = '\0';
239
240	/*
241	 * holding the NAME_CACHE_LOCK in shared mode is
242	 * sufficient to stabilize both the vp->v_parent chain
243	 * and the 'vp->v_mount->mnt_vnodecovered' chain
244	 *
245	 * if we need to drop this lock, we must first grab the v_id
246	 * from the vnode we're currently working with... if that
247	 * vnode doesn't already have an io_count reference (the vp
248	 * passed in comes with one), we must grab a reference
249	 * after we drop the NAME_CACHE_LOCK via vnode_getwithvid...
250	 * deadlocks may result if you call vnode_get while holding
251	 * the NAME_CACHE_LOCK... we lazily release the reference
252	 * we pick up the next time we encounter a need to drop
253	 * the NAME_CACHE_LOCK or before we return from this routine
254	 */
255	NAME_CACHE_LOCK_SHARED();
256
257	/*
258	 * Check if this is the root of a file system.
259	 */
260	while (vp && vp->v_flag & VROOT) {
261		if (vp->v_mount == NULL) {
262			ret = EINVAL;
263			goto out_unlock;
264		}
265	        if ((vp->v_mount->mnt_flag & MNT_ROOTFS) || (vp == proc_root_dir_vp)) {
266			/*
267			 * It's the root of the root file system, so it's
268			 * just "/".
269			 */
270		        *--end = '/';
271
272			goto out_unlock;
273		} else {
274			/*
275			 * This the root of the volume and the caller does not
276			 * want to cross mount points.  Therefore just return
277			 * '/' as the relative path.
278			 */
279			if (flags & BUILDPATH_VOLUME_RELATIVE) {
280				*--end = '/';
281				goto out_unlock;
282			} else {
283				vp = vp->v_mount->mnt_vnodecovered;
284			}
285		}
286	}
287
288	while ((vp != NULLVP) && (vp->v_parent != vp)) {
289		int  vid;
290
291		/*
292		 * For hardlinks the v_name may be stale, so if its OK
293		 * to enter a file system, ask the file system for the
294		 * name and parent (below).
295		 */
296		fixhardlink = (vp->v_flag & VISHARDLINK) &&
297		              (vp->v_mount->mnt_kern_flag & MNTK_PATH_FROM_ID) &&
298		              !(flags & BUILDPATH_NO_FS_ENTER);
299
300		if (!fixhardlink) {
301			str = vp->v_name;
302
303			if (str == NULL || *str == '\0') {
304				if (vp->v_parent != NULL)
305					ret = EINVAL;
306				else
307					ret = ENOENT;
308				goto out_unlock;
309			}
310			len = strlen(str);
311			/*
312			 * Check that there's enough space (including space for the '/')
313			 */
314			if ((end - buff) < (len + 1)) {
315				ret = ENOSPC;
316				goto out_unlock;
317			}
318			/*
319			 * Copy the name backwards.
320			 */
321			str += len;
322
323			for (; len > 0; len--)
324			       *--end = *--str;
325			/*
326			 * Add a path separator.
327			 */
328			*--end = '/';
329		}
330
331		/*
332		 * Walk up the parent chain.
333		 */
334		if (((vp->v_parent != NULLVP) && !fixhardlink) ||
335				(flags & BUILDPATH_NO_FS_ENTER)) {
336
337			/*
338			 * In this if () block we are not allowed to enter the filesystem
339			 * to conclusively get the most accurate parent identifier.
340			 * As a result, if 'vp' does not identify '/' and it
341			 * does not have a valid v_parent, then error out
342			 * and disallow further path construction
343			 */
344			if ((vp->v_parent == NULLVP) && (rootvnode != vp)) {
345				/* Only '/' is allowed to have a NULL parent pointer */
346				ret = EINVAL;
347
348				/* The code below will exit early if 'tvp = vp' == NULL */
349			}
350			vp = vp->v_parent;
351
352			/*
353			 * if the vnode we have in hand isn't a directory and it
354			 * has a v_parent, then we started with the resource fork
355			 * so skip up to avoid getting a duplicate copy of the
356			 * file name in the path.
357			 */
358			if (vp && !vnode_isdir(vp) && vp->v_parent) {
359				vp = vp->v_parent;
360			}
361		} else {
362			/*
363			 * No parent, go get it if supported.
364			 */
365			struct vnode_attr  va;
366			vnode_t  dvp;
367
368			/*
369			 * Make sure file system supports obtaining a path from id.
370			 */
371			if (!(vp->v_mount->mnt_kern_flag & MNTK_PATH_FROM_ID)) {
372				ret = ENOENT;
373				goto out_unlock;
374			}
375			vid = vp->v_id;
376
377			NAME_CACHE_UNLOCK();
378
379			if (vp != first_vp && vp != vp_with_iocount) {
380				if (vp_with_iocount) {
381					vnode_put(vp_with_iocount);
382					vp_with_iocount = NULLVP;
383				}
384				if (vnode_getwithvid(vp, vid))
385					goto again;
386				vp_with_iocount = vp;
387			}
388			VATTR_INIT(&va);
389			VATTR_WANTED(&va, va_parentid);
390
391			if (fixhardlink) {
392				VATTR_WANTED(&va, va_name);
393				MALLOC_ZONE(va.va_name, caddr_t, MAXPATHLEN, M_NAMEI, M_WAITOK);
394			} else {
395				va.va_name = NULL;
396			}
397			/*
398			 * Ask the file system for its parent id and for its name (optional).
399			 */
400			ret = vnode_getattr(vp, &va, ctx);
401
402			if (fixhardlink) {
403				if ((ret == 0) && (VATTR_IS_SUPPORTED(&va, va_name))) {
404					str = va.va_name;
405					vnode_update_identity(vp, NULL, str, strlen(str), 0, VNODE_UPDATE_NAME);
406				} else if (vp->v_name) {
407					str = vp->v_name;
408					ret = 0;
409				} else {
410					ret = ENOENT;
411					goto bad_news;
412				}
413				len = strlen(str);
414
415				/*
416				 * Check that there's enough space.
417				 */
418				if ((end - buff) < (len + 1)) {
419					ret = ENOSPC;
420				} else {
421					/* Copy the name backwards. */
422					str += len;
423
424					for (; len > 0; len--) {
425						*--end = *--str;
426					}
427					/*
428					 * Add a path separator.
429					 */
430					*--end = '/';
431				}
432bad_news:
433				FREE_ZONE(va.va_name, MAXPATHLEN, M_NAMEI);
434			}
435			if (ret || !VATTR_IS_SUPPORTED(&va, va_parentid)) {
436				ret = ENOENT;
437				goto out;
438			}
439			/*
440			 * Ask the file system for the parent vnode.
441			 */
442			if ((ret = VFS_VGET(vp->v_mount, (ino64_t)va.va_parentid, &dvp, ctx)))
443				goto out;
444
445			if (!fixhardlink && (vp->v_parent != dvp))
446				vnode_update_identity(vp, dvp, NULL, 0, 0, VNODE_UPDATE_PARENT);
447
448			if (vp_with_iocount)
449				vnode_put(vp_with_iocount);
450			vp = dvp;
451			vp_with_iocount = vp;
452
453			NAME_CACHE_LOCK_SHARED();
454
455			/*
456			 * if the vnode we have in hand isn't a directory and it
457			 * has a v_parent, then we started with the resource fork
458			 * so skip up to avoid getting a duplicate copy of the
459			 * file name in the path.
460			 */
461			if (vp && !vnode_isdir(vp) && vp->v_parent)
462				vp = vp->v_parent;
463		}
464
465		/*
466		 * When a mount point is crossed switch the vp.
467		 * Continue until we find the root or we find
468		 * a vnode that's not the root of a mounted
469		 * file system.
470		 */
471		tvp = vp;
472
473		while (tvp) {
474			if (tvp == proc_root_dir_vp)
475				goto out_unlock;	/* encountered the root */
476
477			if (!(tvp->v_flag & VROOT) || !tvp->v_mount)
478				break;			/* not the root of a mounted FS */
479
480			if (flags & BUILDPATH_VOLUME_RELATIVE) {
481				/* Do not cross over mount points */
482				tvp = NULL;
483			} else {
484				tvp = tvp->v_mount->mnt_vnodecovered;
485			}
486		}
487		if (tvp == NULLVP)
488			goto out_unlock;
489		vp = tvp;
490
491		if (vp && (flags & BUILDPATH_CHECKACCESS)) {
492			vid = vp->v_id;
493
494			NAME_CACHE_UNLOCK();
495
496			if (vp != first_vp && vp != vp_with_iocount) {
497				if (vp_with_iocount) {
498					vnode_put(vp_with_iocount);
499					vp_with_iocount = NULLVP;
500				}
501				if (vnode_getwithvid(vp, vid))
502					goto again;
503				vp_with_iocount = vp;
504			}
505			if ((ret = vnode_authorize(vp, NULL, KAUTH_VNODE_SEARCH, ctx)))
506				goto out;  	/* no peeking */
507
508			NAME_CACHE_LOCK_SHARED();
509		}
510	}
511out_unlock:
512	NAME_CACHE_UNLOCK();
513out:
514	if (vp_with_iocount)
515		vnode_put(vp_with_iocount);
516	/*
517	 * Slide the name down to the beginning of the buffer.
518	 */
519	memmove(buff, end, &buff[buflen] - end);
520
521	/*
522	 * length includes the trailing zero byte
523	 */
524	*outlen = &buff[buflen] - end;
525
526	/* One of the parents was moved during path reconstruction.
527	 * The caller is interested in knowing whether any of the
528	 * parents moved via BUILDPATH_CHECK_MOVED, so return EAGAIN.
529	 */
530	if ((ret == ENOENT) && (flags & BUILDPATH_CHECK_MOVED)) {
531		ret = EAGAIN;
532	}
533
534	return (ret);
535}
536
537
538/*
539 * return NULLVP if vp's parent doesn't
540 * exist, or we can't get a valid iocount
541 * else return the parent of vp
542 */
543vnode_t
544vnode_getparent(vnode_t vp)
545{
546        vnode_t pvp = NULLVP;
547	int	pvid;
548
549	NAME_CACHE_LOCK_SHARED();
550	/*
551	 * v_parent is stable behind the name_cache lock
552	 * however, the only thing we can really guarantee
553	 * is that we've grabbed a valid iocount on the
554	 * parent of 'vp' at the time we took the name_cache lock...
555	 * once we drop the lock, vp could get re-parented
556	 */
557	if ( (pvp = vp->v_parent) != NULLVP ) {
558	        pvid = pvp->v_id;
559
560		NAME_CACHE_UNLOCK();
561
562		if (vnode_getwithvid(pvp, pvid) != 0)
563		        pvp = NULL;
564	} else
565	        NAME_CACHE_UNLOCK();
566	return (pvp);
567}
568
569const char *
570vnode_getname(vnode_t vp)
571{
572        const char *name = NULL;
573
574	NAME_CACHE_LOCK_SHARED();
575
576	if (vp->v_name)
577	        name = vfs_addname(vp->v_name, strlen(vp->v_name), 0, 0);
578	NAME_CACHE_UNLOCK();
579
580	return (name);
581}
582
583void
584vnode_putname(const char *name)
585{
586	vfs_removename(name);
587}
588
589static const char unknown_vnodename[] = "(unknown vnode name)";
590
591const char *
592vnode_getname_printable(vnode_t vp)
593{
594	const char *name = vnode_getname(vp);
595	if (name != NULL)
596		return name;
597
598	switch (vp->v_type) {
599		case VCHR:
600		case VBLK:
601			{
602			/*
603			 * Create an artificial dev name from
604			 * major and minor device number
605			 */
606			char dev_name[64];
607			(void) snprintf(dev_name, sizeof(dev_name),
608					"%c(%u, %u)", VCHR == vp->v_type ? 'c':'b',
609					major(vp->v_rdev), minor(vp->v_rdev));
610			/*
611			 * Add the newly created dev name to the name
612			 * cache to allow easier cleanup. Also,
613			 * vfs_addname allocates memory for the new name
614			 * and returns it.
615			 */
616			NAME_CACHE_LOCK_SHARED();
617			name = vfs_addname(dev_name, strlen(dev_name), 0, 0);
618			NAME_CACHE_UNLOCK();
619			return name;
620			}
621		default:
622			return unknown_vnodename;
623	}
624}
625
626void
627vnode_putname_printable(const char *name)
628{
629	if (name == unknown_vnodename)
630		return;
631	vnode_putname(name);
632}
633
634
635/*
636 * if VNODE_UPDATE_PARENT, and we can take
637 * a reference on dvp, then update vp with
638 * it's new parent... if vp already has a parent,
639 * then drop the reference vp held on it
640 *
641 * if VNODE_UPDATE_NAME,
642 * then drop string ref on v_name if it exists, and if name is non-NULL
643 * then pick up a string reference on name and record it in v_name...
644 * optionally pass in the length and hashval of name if known
645 *
646 * if VNODE_UPDATE_CACHE, flush the name cache entries associated with vp
647 */
648void
649vnode_update_identity(vnode_t vp, vnode_t dvp, const char *name, int name_len, uint32_t name_hashval, int flags)
650{
651	struct	namecache *ncp;
652        vnode_t	old_parentvp = NULLVP;
653#if NAMEDSTREAMS
654	int isstream = (vp->v_flag & VISNAMEDSTREAM);
655	int kusecountbumped = 0;
656#endif
657	kauth_cred_t tcred = NULL;
658	const char *vname = NULL;
659	const char *tname = NULL;
660
661	if (flags & VNODE_UPDATE_PARENT) {
662	        if (dvp && vnode_ref(dvp) != 0) {
663			dvp = NULLVP;
664		}
665#if NAMEDSTREAMS
666		/* Don't count a stream's parent ref during unmounts */
667		if (isstream && dvp && (dvp != vp) && (dvp != vp->v_parent) && (dvp->v_type == VREG)) {
668			vnode_lock_spin(dvp);
669			++dvp->v_kusecount;
670			kusecountbumped = 1;
671			vnode_unlock(dvp);
672		}
673#endif
674	} else {
675	        dvp = NULLVP;
676	}
677	if ( (flags & VNODE_UPDATE_NAME) ) {
678		if (name != vp->v_name) {
679			if (name && *name) {
680				if (name_len == 0)
681					name_len = strlen(name);
682			        tname = vfs_addname(name, name_len, name_hashval, 0);
683			}
684		} else
685			flags &= ~VNODE_UPDATE_NAME;
686	}
687	if ( (flags & (VNODE_UPDATE_PURGE | VNODE_UPDATE_PARENT | VNODE_UPDATE_CACHE | VNODE_UPDATE_NAME)) ) {
688
689		NAME_CACHE_LOCK();
690
691		if ( (flags & VNODE_UPDATE_PURGE) ) {
692
693			if (vp->v_parent)
694				vp->v_parent->v_nc_generation++;
695
696			while ( (ncp = LIST_FIRST(&vp->v_nclinks)) )
697				cache_delete(ncp, 1);
698
699			while ( (ncp = LIST_FIRST(&vp->v_ncchildren)) )
700				cache_delete(ncp, 1);
701
702			/*
703			 * Use a temp variable to avoid kauth_cred_unref() while NAME_CACHE_LOCK is held
704			 */
705			tcred = vp->v_cred;
706			vp->v_cred = NOCRED;
707			vp->v_authorized_actions = 0;
708		}
709		if ( (flags & VNODE_UPDATE_NAME) ) {
710			vname = vp->v_name;
711			vp->v_name = tname;
712		}
713		if (flags & VNODE_UPDATE_PARENT) {
714			if (dvp != vp && dvp != vp->v_parent) {
715				old_parentvp = vp->v_parent;
716				vp->v_parent = dvp;
717				dvp = NULLVP;
718
719				if (old_parentvp)
720					flags |= VNODE_UPDATE_CACHE;
721			}
722		}
723		if (flags & VNODE_UPDATE_CACHE) {
724			while ( (ncp = LIST_FIRST(&vp->v_nclinks)) )
725				cache_delete(ncp, 1);
726		}
727		NAME_CACHE_UNLOCK();
728
729		if (vname != NULL)
730			vfs_removename(vname);
731
732		if (IS_VALID_CRED(tcred))
733			kauth_cred_unref(&tcred);
734	}
735	if (dvp != NULLVP) {
736#if NAMEDSTREAMS
737		/* Back-out the ref we took if we lost a race for vp->v_parent. */
738		if (kusecountbumped) {
739			vnode_lock_spin(dvp);
740			if (dvp->v_kusecount > 0)
741				--dvp->v_kusecount;
742			vnode_unlock(dvp);
743		}
744#endif
745	        vnode_rele(dvp);
746	}
747	if (old_parentvp) {
748	        struct  uthread *ut;
749
750#if NAMEDSTREAMS
751		if (isstream) {
752		        vnode_lock_spin(old_parentvp);
753			if ((old_parentvp->v_type != VDIR) && (old_parentvp->v_kusecount > 0))
754				--old_parentvp->v_kusecount;
755			vnode_unlock(old_parentvp);
756		}
757#endif
758	        ut = get_bsdthread_info(current_thread());
759
760		/*
761		 * indicated to vnode_rele that it shouldn't do a
762		 * vnode_reclaim at this time... instead it will
763		 * chain the vnode to the uu_vreclaims list...
764		 * we'll be responsible for calling vnode_reclaim
765		 * on each of the vnodes in this list...
766		 */
767		ut->uu_defer_reclaims = 1;
768		ut->uu_vreclaims = NULLVP;
769
770	        while ( (vp = old_parentvp) != NULLVP ) {
771
772		        vnode_lock_spin(vp);
773			vnode_rele_internal(vp, 0, 0, 1);
774
775			/*
776			 * check to see if the vnode is now in the state
777			 * that would have triggered a vnode_reclaim in vnode_rele
778			 * if it is, we save it's parent pointer and then NULL
779			 * out the v_parent field... we'll drop the reference
780			 * that was held on the next iteration of this loop...
781			 * this short circuits a potential deep recursion if we
782			 * have a long chain of parents in this state...
783			 * we'll sit in this loop until we run into
784			 * a parent in this chain that is not in this state
785			 *
786			 * make our check and the vnode_rele atomic
787			 * with respect to the current vnode we're working on
788			 * by holding the vnode lock
789			 * if vnode_rele deferred the vnode_reclaim and has put
790			 * this vnode on the list to be reaped by us, than
791			 * it has left this vnode with an iocount == 1
792			 */
793			if ( (vp->v_iocount == 1) && (vp->v_usecount == 0) &&
794			     ((vp->v_lflag & (VL_MARKTERM | VL_TERMINATE | VL_DEAD)) == VL_MARKTERM)) {
795			        /*
796				 * vnode_rele wanted to do a vnode_reclaim on this vnode
797				 * it should be sitting on the head of the uu_vreclaims chain
798				 * pull the parent pointer now so that when we do the
799				 * vnode_reclaim for each of the vnodes in the uu_vreclaims
800				 * list, we won't recurse back through here
801				 *
802				 * need to do a convert here in case vnode_rele_internal
803				 * returns with the lock held in the spin mode... it
804				 * can drop and retake the lock under certain circumstances
805				 */
806			        vnode_lock_convert(vp);
807
808			        NAME_CACHE_LOCK();
809				old_parentvp = vp->v_parent;
810				vp->v_parent = NULLVP;
811				NAME_CACHE_UNLOCK();
812			} else {
813			        /*
814				 * we're done... we ran into a vnode that isn't
815				 * being terminated
816				 */
817			        old_parentvp = NULLVP;
818			}
819			vnode_unlock(vp);
820		}
821		ut->uu_defer_reclaims = 0;
822
823		while ( (vp = ut->uu_vreclaims) != NULLVP) {
824		        ut->uu_vreclaims = vp->v_defer_reclaimlist;
825
826			/*
827			 * vnode_put will drive the vnode_reclaim if
828			 * we are still the only reference on this vnode
829			 */
830			vnode_put(vp);
831		}
832	}
833}
834
835
836/*
837 * Mark a vnode as having multiple hard links.  HFS makes use of this
838 * because it keeps track of each link separately, and wants to know
839 * which link was actually used.
840 *
841 * This will cause the name cache to force a VNOP_LOOKUP on the vnode
842 * so that HFS can post-process the lookup.  Also, volfs will call
843 * VNOP_GETATTR2 to determine the parent, instead of using v_parent.
844 */
845void vnode_setmultipath(vnode_t vp)
846{
847	vnode_lock_spin(vp);
848
849	/*
850	 * In theory, we're changing the vnode's identity as far as the
851	 * name cache is concerned, so we ought to grab the name cache lock
852	 * here.  However, there is already a race, and grabbing the name
853	 * cache lock only makes the race window slightly smaller.
854	 *
855	 * The race happens because the vnode already exists in the name
856	 * cache, and could be found by one thread before another thread
857	 * can set the hard link flag.
858	 */
859
860	vp->v_flag |= VISHARDLINK;
861
862	vnode_unlock(vp);
863}
864
865
866
867/*
868 * backwards compatibility
869 */
870void vnode_uncache_credentials(vnode_t vp)
871{
872        vnode_uncache_authorized_action(vp, KAUTH_INVALIDATE_CACHED_RIGHTS);
873}
874
875
876/*
877 * use the exclusive form of NAME_CACHE_LOCK to protect the update of the
878 * following fields in the vnode: v_cred_timestamp, v_cred, v_authorized_actions
879 * we use this lock so that we can look at the v_cred and v_authorized_actions
880 * atomically while behind the NAME_CACHE_LOCK in shared mode in 'cache_lookup_path',
881 * which is the super-hot path... if we are updating the authorized actions for this
882 * vnode, we are already in the super-slow and far less frequented path so its not
883 * that bad that we take the lock exclusive for this case... of course we strive
884 * to hold it for the minimum amount of time possible
885 */
886
887void vnode_uncache_authorized_action(vnode_t vp, kauth_action_t action)
888{
889        kauth_cred_t tcred = NOCRED;
890
891	NAME_CACHE_LOCK();
892
893	vp->v_authorized_actions &= ~action;
894
895	if (action == KAUTH_INVALIDATE_CACHED_RIGHTS &&
896	    IS_VALID_CRED(vp->v_cred)) {
897	        /*
898		 * Use a temp variable to avoid kauth_cred_unref() while NAME_CACHE_LOCK is held
899		 */
900	        tcred = vp->v_cred;
901		vp->v_cred = NOCRED;
902	}
903	NAME_CACHE_UNLOCK();
904
905	if (tcred != NOCRED)
906		kauth_cred_unref(&tcred);
907}
908
909
910extern int bootarg_vnode_cache_defeat;	/* default = 0, from bsd_init.c */
911
912boolean_t
913vnode_cache_is_authorized(vnode_t vp, vfs_context_t ctx, kauth_action_t action)
914{
915	kauth_cred_t	ucred;
916	boolean_t	retval = FALSE;
917
918	/* Boot argument to defeat rights caching */
919	if (bootarg_vnode_cache_defeat)
920		return FALSE;
921
922	if ( (vp->v_mount->mnt_kern_flag & (MNTK_AUTH_OPAQUE | MNTK_AUTH_CACHE_TTL)) ) {
923	        /*
924		 * a TTL is enabled on the rights cache... handle it here
925		 * a TTL of 0 indicates that no rights should be cached
926		 */
927	        if (vp->v_mount->mnt_authcache_ttl) {
928		        if ( !(vp->v_mount->mnt_kern_flag & MNTK_AUTH_CACHE_TTL) ) {
929			        /*
930				 * For filesystems marked only MNTK_AUTH_OPAQUE (generally network ones),
931				 * we will only allow a SEARCH right on a directory to be cached...
932				 * that cached right always has a default TTL associated with it
933				 */
934			        if (action != KAUTH_VNODE_SEARCH || vp->v_type != VDIR)
935				        vp = NULLVP;
936			}
937			if (vp != NULLVP && vnode_cache_is_stale(vp) == TRUE) {
938			        vnode_uncache_authorized_action(vp, vp->v_authorized_actions);
939				vp = NULLVP;
940			}
941		} else
942		        vp = NULLVP;
943	}
944	if (vp != NULLVP) {
945	        ucred = vfs_context_ucred(ctx);
946
947		NAME_CACHE_LOCK_SHARED();
948
949		if (vp->v_cred == ucred && (vp->v_authorized_actions & action) == action)
950		        retval = TRUE;
951
952		NAME_CACHE_UNLOCK();
953	}
954	return retval;
955}
956
957
958void vnode_cache_authorized_action(vnode_t vp, vfs_context_t ctx, kauth_action_t action)
959{
960	kauth_cred_t tcred = NOCRED;
961	kauth_cred_t ucred;
962	struct timeval tv;
963	boolean_t ttl_active = FALSE;
964
965	ucred = vfs_context_ucred(ctx);
966
967	if (!IS_VALID_CRED(ucred) || action == 0)
968	        return;
969
970	if ( (vp->v_mount->mnt_kern_flag & (MNTK_AUTH_OPAQUE | MNTK_AUTH_CACHE_TTL)) ) {
971	        /*
972		 * a TTL is enabled on the rights cache... handle it here
973		 * a TTL of 0 indicates that no rights should be cached
974		 */
975	        if (vp->v_mount->mnt_authcache_ttl == 0)
976		        return;
977
978		if ( !(vp->v_mount->mnt_kern_flag & MNTK_AUTH_CACHE_TTL) ) {
979		        /*
980			 * only cache SEARCH action for filesystems marked
981			 * MNTK_AUTH_OPAQUE on VDIRs...
982			 * the lookup_path code will time these out
983			 */
984		        if ( (action & ~KAUTH_VNODE_SEARCH) || vp->v_type != VDIR )
985			        return;
986		}
987		ttl_active = TRUE;
988
989		microuptime(&tv);
990	}
991	NAME_CACHE_LOCK();
992
993	if (vp->v_cred != ucred) {
994	        kauth_cred_ref(ucred);
995	        /*
996		 * Use a temp variable to avoid kauth_cred_unref() while NAME_CACHE_LOCK is held
997		 */
998		tcred = vp->v_cred;
999		vp->v_cred = ucred;
1000		vp->v_authorized_actions = 0;
1001	}
1002	if (ttl_active == TRUE && vp->v_authorized_actions == 0) {
1003	        /*
1004		 * only reset the timestamnp on the
1005		 * first authorization cached after the previous
1006		 * timer has expired or we're switching creds...
1007		 * 'vnode_cache_is_authorized' will clear the
1008		 * authorized actions if the TTL is active and
1009		 * it has expired
1010		 */
1011	        vp->v_cred_timestamp = tv.tv_sec;
1012	}
1013	vp->v_authorized_actions |= action;
1014
1015	NAME_CACHE_UNLOCK();
1016
1017	if (IS_VALID_CRED(tcred))
1018		kauth_cred_unref(&tcred);
1019}
1020
1021
1022boolean_t vnode_cache_is_stale(vnode_t vp)
1023{
1024	struct timeval	tv;
1025	boolean_t	retval;
1026
1027	microuptime(&tv);
1028
1029	if ((tv.tv_sec - vp->v_cred_timestamp) > vp->v_mount->mnt_authcache_ttl)
1030	        retval = TRUE;
1031	else
1032	        retval = FALSE;
1033
1034	return retval;
1035}
1036
1037
1038
1039/*
1040 * Returns:	0			Success
1041 *		ERECYCLE		vnode was recycled from underneath us.  Force lookup to be re-driven from namei.
1042 * 						This errno value should not be seen by anyone outside of the kernel.
1043 */
1044int
1045cache_lookup_path(struct nameidata *ndp, struct componentname *cnp, vnode_t dp,
1046		vfs_context_t ctx, int *dp_authorized, vnode_t last_dp)
1047{
1048	char		*cp;		/* pointer into pathname argument */
1049	int		vid;
1050	int		vvid = 0;	/* protected by vp != NULLVP */
1051	vnode_t		vp = NULLVP;
1052	vnode_t		tdp = NULLVP;
1053	kauth_cred_t	ucred;
1054	boolean_t	ttl_enabled = FALSE;
1055	struct timeval	tv;
1056        mount_t		mp;
1057	unsigned int	hash;
1058	int		error = 0;
1059
1060#if CONFIG_TRIGGERS
1061	vnode_t 	trigger_vp;
1062#endif /* CONFIG_TRIGGERS */
1063
1064	ucred = vfs_context_ucred(ctx);
1065	ndp->ni_flag &= ~(NAMEI_TRAILINGSLASH);
1066
1067	NAME_CACHE_LOCK_SHARED();
1068
1069	if ( dp->v_mount && (dp->v_mount->mnt_kern_flag & (MNTK_AUTH_OPAQUE | MNTK_AUTH_CACHE_TTL)) ) {
1070		ttl_enabled = TRUE;
1071		microuptime(&tv);
1072	}
1073	for (;;) {
1074		/*
1075		 * Search a directory.
1076		 *
1077		 * The cn_hash value is for use by cache_lookup
1078		 * The last component of the filename is left accessible via
1079		 * cnp->cn_nameptr for callers that need the name.
1080		 */
1081	        hash = 0;
1082		cp = cnp->cn_nameptr;
1083
1084		while (*cp && (*cp != '/')) {
1085			hash = crc32tab[((hash >> 24) ^ (unsigned char)*cp++)] ^ hash << 8;
1086		}
1087		/*
1088		 * the crc generator can legitimately generate
1089		 * a 0... however, 0 for us means that we
1090		 * haven't computed a hash, so use 1 instead
1091		 */
1092		if (hash == 0)
1093		        hash = 1;
1094		cnp->cn_hash = hash;
1095		cnp->cn_namelen = cp - cnp->cn_nameptr;
1096
1097		ndp->ni_pathlen -= cnp->cn_namelen;
1098		ndp->ni_next = cp;
1099
1100		/*
1101		 * Replace multiple slashes by a single slash and trailing slashes
1102		 * by a null.  This must be done before VNOP_LOOKUP() because some
1103		 * fs's don't know about trailing slashes.  Remember if there were
1104		 * trailing slashes to handle symlinks, existing non-directories
1105		 * and non-existing files that won't be directories specially later.
1106		 */
1107		while (*cp == '/' && (cp[1] == '/' || cp[1] == '\0')) {
1108		        cp++;
1109			ndp->ni_pathlen--;
1110
1111			if (*cp == '\0') {
1112			        ndp->ni_flag |= NAMEI_TRAILINGSLASH;
1113				*ndp->ni_next = '\0';
1114			}
1115		}
1116		ndp->ni_next = cp;
1117
1118		cnp->cn_flags &= ~(MAKEENTRY | ISLASTCN | ISDOTDOT);
1119
1120		if (*cp == '\0')
1121		        cnp->cn_flags |= ISLASTCN;
1122
1123		if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.' && cnp->cn_nameptr[0] == '.')
1124		        cnp->cn_flags |= ISDOTDOT;
1125
1126		*dp_authorized = 0;
1127#if NAMEDRSRCFORK
1128		/*
1129		 * Process a request for a file's resource fork.
1130		 *
1131		 * Consume the _PATH_RSRCFORKSPEC suffix and tag the path.
1132		 */
1133		if ((ndp->ni_pathlen == sizeof(_PATH_RSRCFORKSPEC)) &&
1134		    (cp[1] == '.' && cp[2] == '.') &&
1135		    bcmp(cp, _PATH_RSRCFORKSPEC, sizeof(_PATH_RSRCFORKSPEC)) == 0) {
1136		    	/* Skip volfs file systems that don't support native streams. */
1137			if ((dp->v_mount != NULL) &&
1138			    (dp->v_mount->mnt_flag & MNT_DOVOLFS) &&
1139			    (dp->v_mount->mnt_kern_flag & MNTK_NAMED_STREAMS) == 0) {
1140				goto skiprsrcfork;
1141			}
1142			cnp->cn_flags |= CN_WANTSRSRCFORK;
1143			cnp->cn_flags |= ISLASTCN;
1144			ndp->ni_next[0] = '\0';
1145			ndp->ni_pathlen = 1;
1146		}
1147skiprsrcfork:
1148#endif
1149
1150#if CONFIG_MACF
1151
1152		/*
1153		 * Name cache provides authorization caching (see below)
1154		 * that will short circuit MAC checks in lookup().
1155		 * We must perform MAC check here.  On denial
1156		 * dp_authorized will remain 0 and second check will
1157		 * be perfomed in lookup().
1158		 */
1159		if (!(cnp->cn_flags & DONOTAUTH)) {
1160			error = mac_vnode_check_lookup(ctx, dp, cnp);
1161			if (error) {
1162				NAME_CACHE_UNLOCK();
1163				goto errorout;
1164			}
1165		}
1166#endif /* MAC */
1167		if (ttl_enabled && ((tv.tv_sec - dp->v_cred_timestamp) > dp->v_mount->mnt_authcache_ttl))
1168		        break;
1169
1170		/*
1171		 * NAME_CACHE_LOCK holds these fields stable
1172		 */
1173		if ((dp->v_cred != ucred || !(dp->v_authorized_actions & KAUTH_VNODE_SEARCH)) &&
1174		    !(dp->v_authorized_actions & KAUTH_VNODE_SEARCHBYANYONE))
1175		        break;
1176
1177		/*
1178		 * indicate that we're allowed to traverse this directory...
1179		 * even if we fail the cache lookup or decide to bail for
1180		 * some other reason, this information is valid and is used
1181		 * to avoid doing a vnode_authorize before the call to VNOP_LOOKUP
1182		 */
1183		*dp_authorized = 1;
1184
1185		if ( (cnp->cn_flags & (ISLASTCN | ISDOTDOT)) ) {
1186			if (cnp->cn_nameiop != LOOKUP)
1187				break;
1188			if (cnp->cn_flags & LOCKPARENT)
1189				break;
1190			if (cnp->cn_flags & NOCACHE)
1191				break;
1192			if (cnp->cn_flags & ISDOTDOT) {
1193				/*
1194				 * Force directory hardlinks to go to
1195				 * file system for ".." requests.
1196				 */
1197				if (dp && (dp->v_flag & VISHARDLINK)) {
1198					break;
1199				}
1200				/*
1201				 * Quit here only if we can't use
1202				 * the parent directory pointer or
1203				 * don't have one.  Otherwise, we'll
1204				 * use it below.
1205				 */
1206				if ((dp->v_flag & VROOT)  ||
1207				    dp == ndp->ni_rootdir ||
1208				    dp->v_parent == NULLVP)
1209					break;
1210			}
1211		}
1212
1213		if ((cnp->cn_flags & CN_SKIPNAMECACHE)) {
1214			/*
1215			 * Force lookup to go to the filesystem with
1216			 * all cnp fields set up.
1217			 */
1218			break;
1219		}
1220
1221		/*
1222		 * "." and ".." aren't supposed to be cached, so check
1223		 * for them before checking the cache.
1224		 */
1225		if (cnp->cn_namelen == 1 && cnp->cn_nameptr[0] == '.')
1226			vp = dp;
1227		else if ( (cnp->cn_flags & ISDOTDOT) )
1228			vp = dp->v_parent;
1229		else {
1230			if ( (vp = cache_lookup_locked(dp, cnp)) == NULLVP)
1231				break;
1232
1233			if ( (vp->v_flag & VISHARDLINK) ) {
1234				/*
1235				 * The file system wants a VNOP_LOOKUP on this vnode
1236				 */
1237				vp = NULL;
1238				break;
1239			}
1240		}
1241		if ( (cnp->cn_flags & ISLASTCN) )
1242		        break;
1243
1244		if (vp->v_type != VDIR) {
1245		        if (vp->v_type != VLNK)
1246			        vp = NULL;
1247		        break;
1248		}
1249
1250		if ( (mp = vp->v_mountedhere) && ((cnp->cn_flags & NOCROSSMOUNT) == 0)) {
1251
1252		        if (mp->mnt_realrootvp == NULLVP || mp->mnt_generation != mount_generation ||
1253				mp->mnt_realrootvp_vid != mp->mnt_realrootvp->v_id)
1254			        break;
1255			vp = mp->mnt_realrootvp;
1256		}
1257
1258#if CONFIG_TRIGGERS
1259		/*
1260		 * After traversing all mountpoints stacked here, if we have a
1261		 * trigger in hand, resolve it.  Note that we don't need to
1262		 * leave the fast path if the mount has already happened.
1263		 */
1264		if ((vp->v_resolve != NULL) &&
1265				(vp->v_resolve->vr_resolve_func != NULL)) {
1266			break;
1267		}
1268#endif /* CONFIG_TRIGGERS */
1269
1270
1271		dp = vp;
1272		vp = NULLVP;
1273
1274		cnp->cn_nameptr = ndp->ni_next + 1;
1275		ndp->ni_pathlen--;
1276		while (*cnp->cn_nameptr == '/') {
1277		        cnp->cn_nameptr++;
1278			ndp->ni_pathlen--;
1279		}
1280	}
1281	if (vp != NULLVP)
1282	        vvid = vp->v_id;
1283	vid = dp->v_id;
1284
1285	NAME_CACHE_UNLOCK();
1286
1287	if ((vp != NULLVP) && (vp->v_type != VLNK) &&
1288	    ((cnp->cn_flags & (ISLASTCN | LOCKPARENT | WANTPARENT | SAVESTART)) == ISLASTCN)) {
1289	        /*
1290		 * if we've got a child and it's the last component, and
1291		 * the lookup doesn't need to return the parent then we
1292		 * can skip grabbing an iocount on the parent, since all
1293		 * we're going to do with it is a vnode_put just before
1294		 * we return from 'lookup'.  If it's a symbolic link,
1295		 * we need the parent in case the link happens to be
1296		 * a relative pathname.
1297		 */
1298	        tdp = dp;
1299	        dp = NULLVP;
1300	} else {
1301need_dp:
1302		/*
1303		 * return the last directory we looked at
1304		 * with an io reference held. If it was the one passed
1305		 * in as a result of the last iteration of VNOP_LOOKUP,
1306		 * it should already hold an io ref. No need to increase ref.
1307		 */
1308		if (last_dp != dp){
1309
1310			if (dp == ndp->ni_usedvp) {
1311				/*
1312				 * if this vnode matches the one passed in via USEDVP
1313				 * than this context already holds an io_count... just
1314				 * use vnode_get to get an extra ref for lookup to play
1315				 * with... can't use the getwithvid variant here because
1316				 * it will block behind a vnode_drain which would result
1317				 * in a deadlock (since we already own an io_count that the
1318				 * vnode_drain is waiting on)... vnode_get grabs the io_count
1319				 * immediately w/o waiting... it always succeeds
1320				 */
1321				vnode_get(dp);
1322			} else if ((error = vnode_getwithvid_drainok(dp, vid))) {
1323				/*
1324				 * failure indicates the vnode
1325				 * changed identity or is being
1326				 * TERMINATED... in either case
1327				 * punt this lookup.
1328				 *
1329				 * don't necessarily return ENOENT, though, because
1330				 * we really want to go back to disk and make sure it's
1331				 * there or not if someone else is changing this
1332				 * vnode. That being said, the one case where we do want
1333				 * to return ENOENT is when the vnode's mount point is
1334				 * in the process of unmounting and we might cause a deadlock
1335				 * in our attempt to take an iocount. An ENODEV error return
1336				 * is from vnode_get* is an indication this but we change that
1337				 * ENOENT for upper layers.
1338				 */
1339				if (error == ENODEV) {
1340					error = ENOENT;
1341				} else {
1342					error = ERECYCLE;
1343				}
1344				goto errorout;
1345			}
1346		}
1347	}
1348	if (vp != NULLVP) {
1349	        if ( (vnode_getwithvid_drainok(vp, vvid)) ) {
1350		        vp = NULLVP;
1351
1352		        /*
1353			 * can't get reference on the vp we'd like
1354			 * to return... if we didn't grab a reference
1355			 * on the directory (due to fast path bypass),
1356			 * then we need to do it now... we can't return
1357			 * with both ni_dvp and ni_vp NULL, and no
1358			 * error condition
1359			 */
1360			if (dp == NULLVP) {
1361			        dp = tdp;
1362				goto need_dp;
1363			}
1364		}
1365	}
1366
1367	ndp->ni_dvp = dp;
1368	ndp->ni_vp  = vp;
1369
1370#if CONFIG_TRIGGERS
1371	trigger_vp = vp ? vp : dp;
1372	if ((error == 0) && (trigger_vp != NULLVP) && vnode_isdir(trigger_vp)) {
1373		error = vnode_trigger_resolve(trigger_vp, ndp, ctx);
1374		if (error) {
1375			if (vp)
1376				vnode_put(vp);
1377			if (dp)
1378				vnode_put(dp);
1379			goto errorout;
1380		}
1381	}
1382#endif /* CONFIG_TRIGGERS */
1383
1384errorout:
1385	/*
1386	 * If we came into cache_lookup_path after an iteration of the lookup loop that
1387	 * resulted in a call to VNOP_LOOKUP, then VNOP_LOOKUP returned a vnode with a io ref
1388	 * on it.  It is now the job of cache_lookup_path to drop the ref on this vnode
1389	 * when it is no longer needed.  If we get to this point, and last_dp is not NULL
1390	 * and it is ALSO not the dvp we want to return to caller of this function, it MUST be
1391	 * the case that we got to a subsequent path component and this previous vnode is
1392	 * no longer needed.  We can then drop the io ref on it.
1393	 */
1394	if ((last_dp != NULLVP) && (last_dp != ndp->ni_dvp)){
1395		vnode_put(last_dp);
1396	}
1397
1398	//initialized to 0, should be the same if no error cases occurred.
1399	return error;
1400}
1401
1402
1403static vnode_t
1404cache_lookup_locked(vnode_t dvp, struct componentname *cnp)
1405{
1406	struct namecache *ncp;
1407	struct nchashhead *ncpp;
1408	long namelen = cnp->cn_namelen;
1409	unsigned int hashval = cnp->cn_hash;
1410
1411	if (nc_disabled) {
1412		return NULL;
1413	}
1414
1415	ncpp = NCHHASH(dvp, cnp->cn_hash);
1416	LIST_FOREACH(ncp, ncpp, nc_hash) {
1417	        if ((ncp->nc_dvp == dvp) && (ncp->nc_hashval == hashval)) {
1418			if (memcmp(ncp->nc_name, cnp->cn_nameptr, namelen) == 0 && ncp->nc_name[namelen] == 0)
1419			        break;
1420		}
1421	}
1422	if (ncp == 0) {
1423		/*
1424		 * We failed to find an entry
1425		 */
1426		NCHSTAT(ncs_miss);
1427		return (NULL);
1428	}
1429	NCHSTAT(ncs_goodhits);
1430
1431	return (ncp->nc_vp);
1432}
1433
1434
1435unsigned int hash_string(const char *cp, int len);
1436//
1437// Have to take a len argument because we may only need to
1438// hash part of a componentname.
1439//
1440unsigned int
1441hash_string(const char *cp, int len)
1442{
1443    unsigned hash = 0;
1444
1445    if (len) {
1446            while (len--) {
1447		    hash = crc32tab[((hash >> 24) ^ (unsigned char)*cp++)] ^ hash << 8;
1448	    }
1449    } else {
1450            while (*cp != '\0') {
1451		    hash = crc32tab[((hash >> 24) ^ (unsigned char)*cp++)] ^ hash << 8;
1452	    }
1453    }
1454    /*
1455     * the crc generator can legitimately generate
1456     * a 0... however, 0 for us means that we
1457     * haven't computed a hash, so use 1 instead
1458     */
1459    if (hash == 0)
1460            hash = 1;
1461    return hash;
1462}
1463
1464
1465/*
1466 * Lookup an entry in the cache
1467 *
1468 * We don't do this if the segment name is long, simply so the cache
1469 * can avoid holding long names (which would either waste space, or
1470 * add greatly to the complexity).
1471 *
1472 * Lookup is called with dvp pointing to the directory to search,
1473 * cnp pointing to the name of the entry being sought. If the lookup
1474 * succeeds, the vnode is returned in *vpp, and a status of -1 is
1475 * returned. If the lookup determines that the name does not exist
1476 * (negative cacheing), a status of ENOENT is returned. If the lookup
1477 * fails, a status of zero is returned.
1478 */
1479
1480int
1481cache_lookup(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp)
1482{
1483	struct namecache *ncp;
1484	struct nchashhead *ncpp;
1485	long namelen = cnp->cn_namelen;
1486	unsigned int hashval;
1487	boolean_t	have_exclusive = FALSE;
1488	uint32_t vid;
1489	vnode_t	 vp;
1490
1491	if (cnp->cn_hash == 0)
1492		cnp->cn_hash = hash_string(cnp->cn_nameptr, cnp->cn_namelen);
1493	hashval = cnp->cn_hash;
1494
1495	if (nc_disabled) {
1496		return 0;
1497	}
1498
1499	NAME_CACHE_LOCK_SHARED();
1500
1501relook:
1502	ncpp = NCHHASH(dvp, cnp->cn_hash);
1503	LIST_FOREACH(ncp, ncpp, nc_hash) {
1504	        if ((ncp->nc_dvp == dvp) && (ncp->nc_hashval == hashval)) {
1505			if (memcmp(ncp->nc_name, cnp->cn_nameptr, namelen) == 0 && ncp->nc_name[namelen] == 0)
1506			        break;
1507		}
1508	}
1509	/* We failed to find an entry */
1510	if (ncp == 0) {
1511		NCHSTAT(ncs_miss);
1512		NAME_CACHE_UNLOCK();
1513		return (0);
1514	}
1515
1516	/* We don't want to have an entry, so dump it */
1517	if ((cnp->cn_flags & MAKEENTRY) == 0) {
1518	        if (have_exclusive == TRUE) {
1519		        NCHSTAT(ncs_badhits);
1520			cache_delete(ncp, 1);
1521			NAME_CACHE_UNLOCK();
1522			return (0);
1523		}
1524		NAME_CACHE_UNLOCK();
1525		NAME_CACHE_LOCK();
1526		have_exclusive = TRUE;
1527		goto relook;
1528	}
1529	vp = ncp->nc_vp;
1530
1531	/* We found a "positive" match, return the vnode */
1532        if (vp) {
1533		NCHSTAT(ncs_goodhits);
1534
1535		vid = vp->v_id;
1536		NAME_CACHE_UNLOCK();
1537
1538		if (vnode_getwithvid(vp, vid)) {
1539#if COLLECT_STATS
1540		        NAME_CACHE_LOCK();
1541			NCHSTAT(ncs_badvid);
1542			NAME_CACHE_UNLOCK();
1543#endif
1544			return (0);
1545		}
1546		*vpp = vp;
1547		return (-1);
1548	}
1549
1550	/* We found a negative match, and want to create it, so purge */
1551	if (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME) {
1552	        if (have_exclusive == TRUE) {
1553		        NCHSTAT(ncs_badhits);
1554			cache_delete(ncp, 1);
1555			NAME_CACHE_UNLOCK();
1556			return (0);
1557		}
1558		NAME_CACHE_UNLOCK();
1559		NAME_CACHE_LOCK();
1560		have_exclusive = TRUE;
1561		goto relook;
1562	}
1563
1564	/*
1565	 * We found a "negative" match, ENOENT notifies client of this match.
1566	 */
1567	NCHSTAT(ncs_neghits);
1568
1569	NAME_CACHE_UNLOCK();
1570	return (ENOENT);
1571}
1572
1573const char *
1574cache_enter_create(vnode_t dvp, vnode_t vp, struct componentname *cnp)
1575{
1576	const char *strname;
1577
1578        if (cnp->cn_hash == 0)
1579	        cnp->cn_hash = hash_string(cnp->cn_nameptr, cnp->cn_namelen);
1580
1581	/*
1582	 * grab 2 references on the string entered
1583	 * one for the cache_enter_locked to consume
1584	 * and the second to be consumed by v_name (vnode_create call point)
1585	 */
1586	strname = add_name_internal(cnp->cn_nameptr, cnp->cn_namelen, cnp->cn_hash, TRUE, 0);
1587
1588	NAME_CACHE_LOCK();
1589
1590	cache_enter_locked(dvp, vp, cnp, strname);
1591
1592	NAME_CACHE_UNLOCK();
1593
1594	return (strname);
1595}
1596
1597
1598/*
1599 * Add an entry to the cache...
1600 * but first check to see if the directory
1601 * that this entry is to be associated with has
1602 * had any cache_purges applied since we took
1603 * our identity snapshot... this check needs to
1604 * be done behind the name cache lock
1605 */
1606void
1607cache_enter_with_gen(struct vnode *dvp, struct vnode *vp, struct componentname *cnp, int gen)
1608{
1609
1610        if (cnp->cn_hash == 0)
1611	        cnp->cn_hash = hash_string(cnp->cn_nameptr, cnp->cn_namelen);
1612
1613	NAME_CACHE_LOCK();
1614
1615	if (dvp->v_nc_generation == gen)
1616	        (void)cache_enter_locked(dvp, vp, cnp, NULL);
1617
1618	NAME_CACHE_UNLOCK();
1619}
1620
1621
1622/*
1623 * Add an entry to the cache.
1624 */
1625void
1626cache_enter(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
1627{
1628	const char *strname;
1629
1630        if (cnp->cn_hash == 0)
1631	        cnp->cn_hash = hash_string(cnp->cn_nameptr, cnp->cn_namelen);
1632
1633	/*
1634	 * grab 1 reference on the string entered
1635	 * for the cache_enter_locked to consume
1636	 */
1637	strname = add_name_internal(cnp->cn_nameptr, cnp->cn_namelen, cnp->cn_hash, FALSE, 0);
1638
1639	NAME_CACHE_LOCK();
1640
1641	cache_enter_locked(dvp, vp, cnp, strname);
1642
1643	NAME_CACHE_UNLOCK();
1644}
1645
1646
1647static void
1648cache_enter_locked(struct vnode *dvp, struct vnode *vp, struct componentname *cnp, const char *strname)
1649{
1650        struct namecache *ncp, *negp;
1651	struct nchashhead *ncpp;
1652
1653	if (nc_disabled)
1654		return;
1655
1656	/*
1657	 * if the entry is for -ve caching vp is null
1658	 */
1659	if ((vp != NULLVP) && (LIST_FIRST(&vp->v_nclinks))) {
1660	        /*
1661		 * someone beat us to the punch..
1662		 * this vnode is already in the cache
1663		 */
1664		if (strname != NULL)
1665			vfs_removename(strname);
1666		return;
1667	}
1668	/*
1669	 * We allocate a new entry if we are less than the maximum
1670	 * allowed and the one at the front of the list is in use.
1671	 * Otherwise we use the one at the front of the list.
1672	 */
1673	if (numcache < desiredNodes &&
1674	    ((ncp = nchead.tqh_first) == NULL ||
1675	      ncp->nc_hash.le_prev != 0)) {
1676		/*
1677		 * Allocate one more entry
1678		 */
1679		ncp = (struct namecache *)_MALLOC_ZONE(sizeof(*ncp), M_CACHE, M_WAITOK);
1680		numcache++;
1681	} else {
1682		/*
1683		 * reuse an old entry
1684		 */
1685	        ncp = TAILQ_FIRST(&nchead);
1686		TAILQ_REMOVE(&nchead, ncp, nc_entry);
1687
1688		if (ncp->nc_hash.le_prev != 0) {
1689		       /*
1690			* still in use... we need to
1691			* delete it before re-using it
1692			*/
1693			NCHSTAT(ncs_stolen);
1694			cache_delete(ncp, 0);
1695		}
1696	}
1697	NCHSTAT(ncs_enters);
1698
1699	/*
1700	 * Fill in cache info, if vp is NULL this is a "negative" cache entry.
1701	 */
1702	ncp->nc_vp = vp;
1703	ncp->nc_dvp = dvp;
1704	ncp->nc_hashval = cnp->cn_hash;
1705
1706	if (strname == NULL)
1707		ncp->nc_name = add_name_internal(cnp->cn_nameptr, cnp->cn_namelen, cnp->cn_hash, FALSE, 0);
1708	else
1709		ncp->nc_name = strname;
1710	/*
1711	 * make us the newest entry in the cache
1712	 * i.e. we'll be the last to be stolen
1713	 */
1714	TAILQ_INSERT_TAIL(&nchead, ncp, nc_entry);
1715
1716	ncpp = NCHHASH(dvp, cnp->cn_hash);
1717#if DIAGNOSTIC
1718	{
1719		struct namecache *p;
1720
1721		for (p = ncpp->lh_first; p != 0; p = p->nc_hash.le_next)
1722			if (p == ncp)
1723				panic("cache_enter: duplicate");
1724	}
1725#endif
1726	/*
1727	 * make us available to be found via lookup
1728	 */
1729	LIST_INSERT_HEAD(ncpp, ncp, nc_hash);
1730
1731	if (vp) {
1732	       /*
1733		* add to the list of name cache entries
1734		* that point at vp
1735		*/
1736		LIST_INSERT_HEAD(&vp->v_nclinks, ncp, nc_un.nc_link);
1737	} else {
1738	        /*
1739		 * this is a negative cache entry (vp == NULL)
1740		 * stick it on the negative cache list.
1741		 */
1742	        TAILQ_INSERT_TAIL(&neghead, ncp, nc_un.nc_negentry);
1743
1744		ncs_negtotal++;
1745
1746		if (ncs_negtotal > desiredNegNodes) {
1747		       /*
1748			* if we've reached our desired limit
1749			* of negative cache entries, delete
1750			* the oldest
1751			*/
1752		        negp = TAILQ_FIRST(&neghead);
1753			cache_delete(negp, 1);
1754		}
1755	}
1756	/*
1757	 * add us to the list of name cache entries that
1758	 * are children of dvp
1759	 */
1760	LIST_INSERT_HEAD(&dvp->v_ncchildren, ncp, nc_child);
1761}
1762
1763
1764/*
1765 * Initialize CRC-32 remainder table.
1766 */
1767static void init_crc32(void)
1768{
1769        /*
1770	 * the CRC-32 generator polynomial is:
1771	 *   x^32 + x^26 + x^23 + x^22 + x^16 + x^12 + x^10
1772	 *        + x^8  + x^7  + x^5  + x^4  + x^2  + x + 1
1773	 */
1774        unsigned int crc32_polynomial = 0x04c11db7;
1775	unsigned int i,j;
1776
1777	/*
1778	 * pre-calculate the CRC-32 remainder for each possible octet encoding
1779	 */
1780	for (i = 0;  i < 256;  i++) {
1781	        unsigned int crc_rem = i << 24;
1782
1783		for (j = 0;  j < 8;  j++) {
1784		        if (crc_rem & 0x80000000)
1785			        crc_rem = (crc_rem << 1) ^ crc32_polynomial;
1786			else
1787			        crc_rem = (crc_rem << 1);
1788		}
1789		crc32tab[i] = crc_rem;
1790	}
1791}
1792
1793
1794/*
1795 * Name cache initialization, from vfs_init() when we are booting
1796 */
1797void
1798nchinit(void)
1799{
1800	int	i;
1801
1802	desiredNegNodes = (desiredvnodes / 10);
1803	desiredNodes = desiredvnodes + desiredNegNodes;
1804
1805	TAILQ_INIT(&nchead);
1806	TAILQ_INIT(&neghead);
1807
1808	init_crc32();
1809
1810	nchashtbl = hashinit(MAX(CONFIG_NC_HASH, (2 *desiredNodes)), M_CACHE, &nchash);
1811	nchashmask = nchash;
1812	nchash++;
1813
1814	init_string_table();
1815
1816	/* Allocate name cache lock group attribute and group */
1817	namecache_lck_grp_attr= lck_grp_attr_alloc_init();
1818
1819	namecache_lck_grp = lck_grp_alloc_init("Name Cache",  namecache_lck_grp_attr);
1820
1821	/* Allocate name cache lock attribute */
1822	namecache_lck_attr = lck_attr_alloc_init();
1823
1824	/* Allocate name cache lock */
1825	namecache_rw_lock = lck_rw_alloc_init(namecache_lck_grp, namecache_lck_attr);
1826
1827
1828	/* Allocate string cache lock group attribute and group */
1829	strcache_lck_grp_attr= lck_grp_attr_alloc_init();
1830
1831	strcache_lck_grp = lck_grp_alloc_init("String Cache",  strcache_lck_grp_attr);
1832
1833	/* Allocate string cache lock attribute */
1834	strcache_lck_attr = lck_attr_alloc_init();
1835
1836	/* Allocate string cache lock */
1837	strtable_rw_lock = lck_rw_alloc_init(strcache_lck_grp, strcache_lck_attr);
1838
1839	for (i = 0; i < NUM_STRCACHE_LOCKS; i++)
1840		lck_mtx_init(&strcache_mtx_locks[i], strcache_lck_grp, strcache_lck_attr);
1841}
1842
1843void
1844name_cache_lock_shared(void)
1845{
1846	lck_rw_lock_shared(namecache_rw_lock);
1847}
1848
1849void
1850name_cache_lock(void)
1851{
1852	lck_rw_lock_exclusive(namecache_rw_lock);
1853}
1854
1855void
1856name_cache_unlock(void)
1857{
1858	lck_rw_done(namecache_rw_lock);
1859}
1860
1861
1862int
1863resize_namecache(u_int newsize)
1864{
1865    struct nchashhead	*new_table;
1866    struct nchashhead	*old_table;
1867    struct nchashhead	*old_head, *head;
1868    struct namecache 	*entry, *next;
1869    uint32_t		i, hashval;
1870    int			dNodes, dNegNodes;
1871    u_long		new_size, old_size;
1872
1873    dNegNodes = (newsize / 10);
1874    dNodes = newsize + dNegNodes;
1875
1876    // we don't support shrinking yet
1877    if (dNodes <= desiredNodes) {
1878	return 0;
1879    }
1880    new_table = hashinit(2 * dNodes, M_CACHE, &nchashmask);
1881    new_size  = nchashmask + 1;
1882
1883    if (new_table == NULL) {
1884	return ENOMEM;
1885    }
1886
1887    NAME_CACHE_LOCK();
1888    // do the switch!
1889    old_table = nchashtbl;
1890    nchashtbl = new_table;
1891    old_size  = nchash;
1892    nchash    = new_size;
1893
1894    // walk the old table and insert all the entries into
1895    // the new table
1896    //
1897    for(i=0; i < old_size; i++) {
1898	old_head = &old_table[i];
1899	for (entry=old_head->lh_first; entry != NULL; entry=next) {
1900	    //
1901	    // XXXdbg - Beware: this assumes that hash_string() does
1902	    //                  the same thing as what happens in
1903	    //                  lookup() over in vfs_lookup.c
1904	    hashval = hash_string(entry->nc_name, 0);
1905	    entry->nc_hashval = hashval;
1906	    head = NCHHASH(entry->nc_dvp, hashval);
1907
1908	    next = entry->nc_hash.le_next;
1909	    LIST_INSERT_HEAD(head, entry, nc_hash);
1910	}
1911    }
1912    desiredNodes = dNodes;
1913    desiredNegNodes = dNegNodes;
1914
1915    NAME_CACHE_UNLOCK();
1916    FREE(old_table, M_CACHE);
1917
1918    return 0;
1919}
1920
1921static void
1922cache_delete(struct namecache *ncp, int age_entry)
1923{
1924        NCHSTAT(ncs_deletes);
1925
1926        if (ncp->nc_vp) {
1927	        LIST_REMOVE(ncp, nc_un.nc_link);
1928	} else {
1929	        TAILQ_REMOVE(&neghead, ncp, nc_un.nc_negentry);
1930	        ncs_negtotal--;
1931	}
1932        LIST_REMOVE(ncp, nc_child);
1933
1934	LIST_REMOVE(ncp, nc_hash);
1935	/*
1936	 * this field is used to indicate
1937	 * that the entry is in use and
1938	 * must be deleted before it can
1939	 * be reused...
1940	 */
1941	ncp->nc_hash.le_prev = NULL;
1942
1943	if (age_entry) {
1944	        /*
1945		 * make it the next one available
1946		 * for cache_enter's use
1947		 */
1948	        TAILQ_REMOVE(&nchead, ncp, nc_entry);
1949	        TAILQ_INSERT_HEAD(&nchead, ncp, nc_entry);
1950	}
1951	vfs_removename(ncp->nc_name);
1952	ncp->nc_name = NULL;
1953}
1954
1955
1956/*
1957 * purge the entry associated with the
1958 * specified vnode from the name cache
1959 */
1960void
1961cache_purge(vnode_t vp)
1962{
1963        struct namecache *ncp;
1964	kauth_cred_t tcred = NULL;
1965
1966	if ((LIST_FIRST(&vp->v_nclinks) == NULL) &&
1967			(LIST_FIRST(&vp->v_ncchildren) == NULL) &&
1968			(vp->v_cred == NOCRED) &&
1969			(vp->v_parent == NULLVP))
1970	        return;
1971
1972	NAME_CACHE_LOCK();
1973
1974	if (vp->v_parent)
1975	        vp->v_parent->v_nc_generation++;
1976
1977	while ( (ncp = LIST_FIRST(&vp->v_nclinks)) )
1978	        cache_delete(ncp, 1);
1979
1980	while ( (ncp = LIST_FIRST(&vp->v_ncchildren)) )
1981	        cache_delete(ncp, 1);
1982
1983	/*
1984	 * Use a temp variable to avoid kauth_cred_unref() while NAME_CACHE_LOCK is held
1985	 */
1986	tcred = vp->v_cred;
1987	vp->v_cred = NOCRED;
1988	vp->v_authorized_actions = 0;
1989
1990	NAME_CACHE_UNLOCK();
1991
1992	if (IS_VALID_CRED(tcred))
1993	        kauth_cred_unref(&tcred);
1994}
1995
1996/*
1997 * Purge all negative cache entries that are children of the
1998 * given vnode.  A case-insensitive file system (or any file
1999 * system that has multiple equivalent names for the same
2000 * directory entry) can use this when creating or renaming
2001 * to remove negative entries that may no longer apply.
2002 */
2003void
2004cache_purge_negatives(vnode_t vp)
2005{
2006	struct namecache *ncp, *next_ncp;
2007
2008	NAME_CACHE_LOCK();
2009
2010	LIST_FOREACH_SAFE(ncp, &vp->v_ncchildren, nc_child, next_ncp)
2011		if (ncp->nc_vp == NULL)
2012			cache_delete(ncp , 1);
2013
2014	NAME_CACHE_UNLOCK();
2015}
2016
2017/*
2018 * Flush all entries referencing a particular filesystem.
2019 *
2020 * Since we need to check it anyway, we will flush all the invalid
2021 * entries at the same time.
2022 */
2023void
2024cache_purgevfs(struct mount *mp)
2025{
2026	struct nchashhead *ncpp;
2027	struct namecache *ncp;
2028
2029	NAME_CACHE_LOCK();
2030	/* Scan hash tables for applicable entries */
2031	for (ncpp = &nchashtbl[nchash - 1]; ncpp >= nchashtbl; ncpp--) {
2032restart:
2033		for (ncp = ncpp->lh_first; ncp != 0; ncp = ncp->nc_hash.le_next) {
2034			if (ncp->nc_dvp->v_mount == mp) {
2035				cache_delete(ncp, 0);
2036				goto restart;
2037			}
2038		}
2039	}
2040	NAME_CACHE_UNLOCK();
2041}
2042
2043
2044
2045//
2046// String ref routines
2047//
2048static LIST_HEAD(stringhead, string_t) *string_ref_table;
2049static u_long   string_table_mask;
2050static uint32_t filled_buckets=0;
2051
2052
2053typedef struct string_t {
2054    LIST_ENTRY(string_t)  hash_chain;
2055    const char *str;
2056    uint32_t              refcount;
2057} string_t;
2058
2059
2060static void
2061resize_string_ref_table(void)
2062{
2063	struct stringhead *new_table;
2064	struct stringhead *old_table;
2065	struct stringhead *old_head, *head;
2066	string_t          *entry, *next;
2067	uint32_t           i, hashval;
2068	u_long             new_mask, old_mask;
2069
2070	/*
2071	 * need to hold the table lock exclusively
2072	 * in order to grow the table... need to recheck
2073	 * the need to resize again after we've taken
2074	 * the lock exclusively in case some other thread
2075	 * beat us to the punch
2076	 */
2077	lck_rw_lock_exclusive(strtable_rw_lock);
2078
2079	if (4 * filled_buckets < ((string_table_mask + 1) * 3)) {
2080		lck_rw_done(strtable_rw_lock);
2081		return;
2082	}
2083	new_table = hashinit((string_table_mask + 1) * 2, M_CACHE, &new_mask);
2084
2085	if (new_table == NULL) {
2086		printf("failed to resize the hash table.\n");
2087		lck_rw_done(strtable_rw_lock);
2088		return;
2089	}
2090
2091	// do the switch!
2092	old_table         = string_ref_table;
2093	string_ref_table  = new_table;
2094	old_mask          = string_table_mask;
2095	string_table_mask = new_mask;
2096	filled_buckets	  = 0;
2097
2098	// walk the old table and insert all the entries into
2099	// the new table
2100	//
2101	for (i = 0; i <= old_mask; i++) {
2102		old_head = &old_table[i];
2103		for (entry = old_head->lh_first; entry != NULL; entry = next) {
2104			hashval = hash_string((const char *)entry->str, 0);
2105			head = &string_ref_table[hashval & string_table_mask];
2106			if (head->lh_first == NULL) {
2107				filled_buckets++;
2108			}
2109			next = entry->hash_chain.le_next;
2110			LIST_INSERT_HEAD(head, entry, hash_chain);
2111		}
2112	}
2113	lck_rw_done(strtable_rw_lock);
2114
2115	FREE(old_table, M_CACHE);
2116}
2117
2118
2119static void
2120init_string_table(void)
2121{
2122	string_ref_table = hashinit(CONFIG_VFS_NAMES, M_CACHE, &string_table_mask);
2123}
2124
2125
2126const char *
2127vfs_addname(const char *name, uint32_t len, u_int hashval, u_int flags)
2128{
2129	return (add_name_internal(name, len, hashval, FALSE, flags));
2130}
2131
2132
2133static const char *
2134add_name_internal(const char *name, uint32_t len, u_int hashval, boolean_t need_extra_ref, __unused u_int flags)
2135{
2136	struct stringhead *head;
2137	string_t          *entry;
2138	uint32_t          chain_len = 0;
2139	uint32_t	  hash_index;
2140        uint32_t	  lock_index;
2141	char              *ptr;
2142
2143	/*
2144	 * if the length already accounts for the null-byte, then
2145	 * subtract one so later on we don't index past the end
2146	 * of the string.
2147	 */
2148	if (len > 0 && name[len-1] == '\0') {
2149		len--;
2150	}
2151	if (hashval == 0) {
2152		hashval = hash_string(name, len);
2153	}
2154
2155	/*
2156	 * take this lock 'shared' to keep the hash stable
2157	 * if someone else decides to grow the pool they
2158	 * will take this lock exclusively
2159	 */
2160	lck_rw_lock_shared(strtable_rw_lock);
2161
2162	/*
2163	 * If the table gets more than 3/4 full, resize it
2164	 */
2165	if (4 * filled_buckets >= ((string_table_mask + 1) * 3)) {
2166		lck_rw_done(strtable_rw_lock);
2167
2168		resize_string_ref_table();
2169
2170		lck_rw_lock_shared(strtable_rw_lock);
2171	}
2172	hash_index = hashval & string_table_mask;
2173	lock_index = hash_index % NUM_STRCACHE_LOCKS;
2174
2175	head = &string_ref_table[hash_index];
2176
2177	lck_mtx_lock_spin(&strcache_mtx_locks[lock_index]);
2178
2179	for (entry = head->lh_first; entry != NULL; chain_len++, entry = entry->hash_chain.le_next) {
2180		if (memcmp(entry->str, name, len) == 0 && entry->str[len] == 0) {
2181			entry->refcount++;
2182			break;
2183		}
2184	}
2185	if (entry == NULL) {
2186		lck_mtx_convert_spin(&strcache_mtx_locks[lock_index]);
2187		/*
2188		 * it wasn't already there so add it.
2189		 */
2190		MALLOC(entry, string_t *, sizeof(string_t) + len + 1, M_TEMP, M_WAITOK);
2191
2192		if (head->lh_first == NULL) {
2193			OSAddAtomic(1, &filled_buckets);
2194		}
2195		ptr = (char *)((char *)entry + sizeof(string_t));
2196		strncpy(ptr, name, len);
2197		ptr[len] = '\0';
2198		entry->str = ptr;
2199		entry->refcount = 1;
2200		LIST_INSERT_HEAD(head, entry, hash_chain);
2201	}
2202	if (need_extra_ref == TRUE)
2203		entry->refcount++;
2204
2205	lck_mtx_unlock(&strcache_mtx_locks[lock_index]);
2206	lck_rw_done(strtable_rw_lock);
2207
2208	return (const char *)entry->str;
2209}
2210
2211
2212int
2213vfs_removename(const char *nameref)
2214{
2215	struct stringhead *head;
2216	string_t          *entry;
2217	uint32_t           hashval;
2218	uint32_t	   hash_index;
2219        uint32_t	   lock_index;
2220	int		   retval = ENOENT;
2221
2222	hashval = hash_string(nameref, 0);
2223
2224	/*
2225	 * take this lock 'shared' to keep the hash stable
2226	 * if someone else decides to grow the pool they
2227	 * will take this lock exclusively
2228	 */
2229	lck_rw_lock_shared(strtable_rw_lock);
2230	/*
2231	 * must compute the head behind the table lock
2232	 * since the size and location of the table
2233	 * can change on the fly
2234	 */
2235	hash_index = hashval & string_table_mask;
2236	lock_index = hash_index % NUM_STRCACHE_LOCKS;
2237
2238	head = &string_ref_table[hash_index];
2239
2240	lck_mtx_lock_spin(&strcache_mtx_locks[lock_index]);
2241
2242	for (entry = head->lh_first; entry != NULL; entry = entry->hash_chain.le_next) {
2243		if (entry->str == nameref) {
2244			entry->refcount--;
2245
2246			if (entry->refcount == 0) {
2247				LIST_REMOVE(entry, hash_chain);
2248
2249				if (head->lh_first == NULL) {
2250					OSAddAtomic(-1, &filled_buckets);
2251				}
2252			} else {
2253				entry = NULL;
2254			}
2255			retval = 0;
2256			break;
2257		}
2258	}
2259	lck_mtx_unlock(&strcache_mtx_locks[lock_index]);
2260	lck_rw_done(strtable_rw_lock);
2261
2262	if (entry != NULL)
2263		FREE(entry, M_TEMP);
2264
2265	return retval;
2266}
2267
2268
2269#ifdef DUMP_STRING_TABLE
2270void
2271dump_string_table(void)
2272{
2273    struct stringhead *head;
2274    string_t          *entry;
2275    u_long            i;
2276
2277    lck_rw_lock_shared(strtable_rw_lock);
2278
2279    for (i = 0; i <= string_table_mask; i++) {
2280	head = &string_ref_table[i];
2281	for (entry=head->lh_first; entry != NULL; entry=entry->hash_chain.le_next) {
2282	    printf("%6d - %s\n", entry->refcount, entry->str);
2283	}
2284    }
2285    lck_rw_done(strtable_rw_lock);
2286}
2287#endif	/* DUMP_STRING_TABLE */
2288