1/*
2 * Copyright (c) 2003-2014 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29/*
30 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
31 * All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 *    notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 *    notice, this list of conditions and the following disclaimer in the
40 *    documentation and/or other materials provided with the distribution.
41 * 3. Neither the name of the project nor the names of its contributors
42 *    may be used to endorse or promote products derived from this software
43 *    without specific prior written permission.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 */
57
58/*
59 * Copyright (c) 1982, 1986, 1988, 1993
60 *	The Regents of the University of California.  All rights reserved.
61 *
62 * Redistribution and use in source and binary forms, with or without
63 * modification, are permitted provided that the following conditions
64 * are met:
65 * 1. Redistributions of source code must retain the above copyright
66 *    notice, this list of conditions and the following disclaimer.
67 * 2. Redistributions in binary form must reproduce the above copyright
68 *    notice, this list of conditions and the following disclaimer in the
69 *    documentation and/or other materials provided with the distribution.
70 * 3. All advertising materials mentioning features or use of this software
71 *    must display the following acknowledgement:
72 *	This product includes software developed by the University of
73 *	California, Berkeley and its contributors.
74 * 4. Neither the name of the University nor the names of its contributors
75 *    may be used to endorse or promote products derived from this software
76 *    without specific prior written permission.
77 *
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88 * SUCH DAMAGE.
89 *
90 *	@(#)ip_input.c	8.2 (Berkeley) 1/4/94
91 */
92
93#include <sys/param.h>
94#include <sys/systm.h>
95#include <sys/malloc.h>
96#include <sys/mbuf.h>
97#include <sys/domain.h>
98#include <sys/protosw.h>
99#include <sys/socket.h>
100#include <sys/socketvar.h>
101#include <sys/errno.h>
102#include <sys/time.h>
103#include <sys/kernel.h>
104#include <sys/syslog.h>
105#include <sys/sysctl.h>
106#include <sys/proc.h>
107#include <sys/kauth.h>
108#include <sys/mcache.h>
109
110#include <mach/mach_time.h>
111#include <mach/sdt.h>
112#include <pexpert/pexpert.h>
113#include <dev/random/randomdev.h>
114
115#include <net/if.h>
116#include <net/if_var.h>
117#include <net/if_types.h>
118#include <net/if_dl.h>
119#include <net/route.h>
120#include <net/kpi_protocol.h>
121#include <net/ntstat.h>
122#include <net/init.h>
123#include <net/net_osdep.h>
124
125#include <netinet/in.h>
126#include <netinet/in_systm.h>
127#if INET
128#include <netinet/ip.h>
129#include <netinet/ip_icmp.h>
130#endif /* INET */
131#include <netinet/kpi_ipfilter_var.h>
132#include <netinet/ip6.h>
133#include <netinet6/in6_var.h>
134#include <netinet6/ip6_var.h>
135#include <netinet/in_pcb.h>
136#include <netinet/icmp6.h>
137#include <netinet6/in6_ifattach.h>
138#include <netinet6/nd6.h>
139#include <netinet6/scope6_var.h>
140#include <netinet6/ip6protosw.h>
141
142#if IPSEC
143#include <netinet6/ipsec.h>
144#include <netinet6/ipsec6.h>
145extern int ipsec_bypass;
146#endif /* IPSEC */
147
148#if IPFW2
149#include <netinet6/ip6_fw.h>
150#endif /* IPFW2 */
151
152#if DUMMYNET
153#include <netinet/ip_fw.h>
154#include <netinet/ip_dummynet.h>
155#endif /* DUMMYNET */
156
157/* we need it for NLOOP. */
158#include "loop.h"
159
160#if PF
161#include <net/pfvar.h>
162#endif /* PF */
163
164struct ip6protosw *ip6_protox[IPPROTO_MAX];
165
166static lck_grp_attr_t	*in6_ifaddr_rwlock_grp_attr;
167static lck_grp_t	*in6_ifaddr_rwlock_grp;
168static lck_attr_t	*in6_ifaddr_rwlock_attr;
169decl_lck_rw_data(, in6_ifaddr_rwlock);
170
171/* Protected by in6_ifaddr_rwlock */
172struct in6_ifaddr *in6_ifaddrs = NULL;
173
174#define	IN6_IFSTAT_REQUIRE_ALIGNED_64(f)	\
175	_CASSERT(!(offsetof(struct in6_ifstat, f) % sizeof (uint64_t)))
176
177#define	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(f)	\
178	_CASSERT(!(offsetof(struct icmp6_ifstat, f) % sizeof (uint64_t)))
179
180#if IPFW2
181/* firewall hooks */
182ip6_fw_chk_t *ip6_fw_chk_ptr;
183ip6_fw_ctl_t *ip6_fw_ctl_ptr;
184int ip6_fw_enable = 1;
185#endif /* IPFW2 */
186
187struct ip6stat ip6stat;
188
189decl_lck_mtx_data(, proxy6_lock);
190decl_lck_mtx_data(static, dad6_mutex_data);
191decl_lck_mtx_data(static, nd6_mutex_data);
192decl_lck_mtx_data(static, prefix6_mutex_data);
193lck_mtx_t		*dad6_mutex = &dad6_mutex_data;
194lck_mtx_t		*nd6_mutex = &nd6_mutex_data;
195lck_mtx_t		*prefix6_mutex = &prefix6_mutex_data;
196#ifdef ENABLE_ADDRSEL
197decl_lck_mtx_data(static, addrsel_mutex_data);
198lck_mtx_t		*addrsel_mutex = &addrsel_mutex_data;
199#endif
200static lck_attr_t	*ip6_mutex_attr;
201static lck_grp_t	*ip6_mutex_grp;
202static lck_grp_attr_t	*ip6_mutex_grp_attr;
203
204extern int loopattach_done;
205extern void addrsel_policy_init(void);
206
207static void ip6_init_delayed(void);
208static int ip6_hopopts_input(u_int32_t *, u_int32_t *, struct mbuf **, int *);
209
210#if NSTF
211extern void stfattach(void);
212#endif /* NSTF */
213
214SYSCTL_DECL(_net_inet6_ip6);
215
216int ip6_doscopedroute = 1;
217SYSCTL_INT(_net_inet6_ip6, OID_AUTO, scopedroute,
218	CTLFLAG_RD | CTLFLAG_LOCKED, &ip6_doscopedroute, 0,
219	"Enable IPv6 scoped routing");
220
221static uint32_t ip6_adj_clear_hwcksum = 0;
222SYSCTL_UINT(_net_inet6_ip6, OID_AUTO, adj_clear_hwcksum,
223	CTLFLAG_RW | CTLFLAG_LOCKED, &ip6_adj_clear_hwcksum, 0,
224	"Invalidate hwcksum info when adjusting length");
225
226/*
227 * On platforms which require strict alignment (currently for anything but
228 * i386 or x86_64), check if the IP header pointer is 32-bit aligned; if not,
229 * copy the contents of the mbuf chain into a new chain, and free the original
230 * one.  Create some head room in the first mbuf of the new chain, in case
231 * it's needed later on.
232 *
233 * RFC 2460 says that IPv6 headers are 64-bit aligned, but network interfaces
234 * mostly align to 32-bit boundaries.  Care should be taken never to use 64-bit
235 * load/store operations on the fields in IPv6 headers.
236 */
237#if defined(__i386__) || defined(__x86_64__)
238#define	IP6_HDR_ALIGNMENT_FIXUP(_m, _ifp, _action) do { } while (0)
239#else /* !__i386__ && !__x86_64__ */
240#define	IP6_HDR_ALIGNMENT_FIXUP(_m, _ifp, _action) do {			\
241	if (!IP6_HDR_ALIGNED_P(mtod(_m, caddr_t))) {			\
242		struct mbuf *_n;					\
243		struct ifnet *__ifp = (_ifp);				\
244		atomic_add_64(&(__ifp)->if_alignerrs, 1);		\
245		if (((_m)->m_flags & M_PKTHDR) &&			\
246		    (_m)->m_pkthdr.pkt_hdr != NULL)			\
247			(_m)->m_pkthdr.pkt_hdr = NULL;			\
248		_n = m_defrag_offset(_m, max_linkhdr, M_NOWAIT);	\
249		if (_n == NULL) {					\
250			ip6stat.ip6s_toosmall++;			\
251			m_freem(_m);					\
252			(_m) = NULL;					\
253			_action;					\
254		} else {						\
255			VERIFY(_n != (_m));				\
256			(_m) = _n;					\
257		}							\
258	}								\
259} while (0)
260#endif /* !__i386__ && !__x86_64__ */
261
262static void
263ip6_proto_input(protocol_family_t protocol, mbuf_t packet)
264{
265#pragma unused(protocol)
266	ip6_input(packet);
267}
268
269/*
270 * IP6 initialization: fill in IP6 protocol switch table.
271 * All protocols not implemented in kernel go to raw IP6 protocol handler.
272 */
273void
274ip6_init(struct ip6protosw *pp, struct domain *dp)
275{
276	static int ip6_initialized = 0;
277	struct protosw *pr;
278	struct timeval tv;
279	int i;
280	domain_unguard_t unguard;
281
282	domain_proto_mtx_lock_assert_held();
283	VERIFY((pp->pr_flags & (PR_INITIALIZED|PR_ATTACHED)) == PR_ATTACHED);
284
285	_CASSERT((sizeof (struct ip6_hdr) +
286	    sizeof (struct icmp6_hdr)) <= _MHLEN);
287
288	if (ip6_initialized)
289		return;
290	ip6_initialized = 1;
291
292	PE_parse_boot_argn("net.inet6.ip6.scopedroute", &ip6_doscopedroute,
293	    sizeof (ip6_doscopedroute));
294
295	pr = pffindproto_locked(PF_INET6, IPPROTO_RAW, SOCK_RAW);
296	if (pr == NULL) {
297		panic("%s: Unable to find [PF_INET6,IPPROTO_RAW,SOCK_RAW]\n",
298		    __func__);
299		/* NOTREACHED */
300	}
301
302	/* Initialize the entire ip6_protox[] array to IPPROTO_RAW. */
303	for (i = 0; i < IPPROTO_MAX; i++)
304		ip6_protox[i] = (struct ip6protosw *)pr;
305	/*
306	 * Cycle through IP protocols and put them into the appropriate place
307	 * in ip6_protox[], skipping protocols IPPROTO_{IP,RAW}.
308	 */
309	VERIFY(dp == inet6domain && dp->dom_family == PF_INET6);
310	TAILQ_FOREACH(pr, &dp->dom_protosw, pr_entry) {
311		VERIFY(pr->pr_domain == dp);
312		if (pr->pr_protocol != 0 && pr->pr_protocol != IPPROTO_RAW) {
313			/* Be careful to only index valid IP protocols. */
314			if (pr->pr_protocol < IPPROTO_MAX)
315				ip6_protox[pr->pr_protocol] =
316				    (struct ip6protosw *)pr;
317		}
318	}
319
320	ip6_mutex_grp_attr  = lck_grp_attr_alloc_init();
321
322	ip6_mutex_grp = lck_grp_alloc_init("ip6", ip6_mutex_grp_attr);
323	ip6_mutex_attr = lck_attr_alloc_init();
324
325	lck_mtx_init(dad6_mutex, ip6_mutex_grp, ip6_mutex_attr);
326	lck_mtx_init(nd6_mutex, ip6_mutex_grp, ip6_mutex_attr);
327	lck_mtx_init(prefix6_mutex, ip6_mutex_grp, ip6_mutex_attr);
328	scope6_init(ip6_mutex_grp, ip6_mutex_attr);
329
330#ifdef ENABLE_ADDRSEL
331	lck_mtx_init(addrsel_mutex, ip6_mutex_grp, ip6_mutex_attr);
332#endif
333
334	lck_mtx_init(&proxy6_lock, ip6_mutex_grp, ip6_mutex_attr);
335
336	in6_ifaddr_rwlock_grp_attr = lck_grp_attr_alloc_init();
337	in6_ifaddr_rwlock_grp = lck_grp_alloc_init("in6_ifaddr_rwlock",
338	    in6_ifaddr_rwlock_grp_attr);
339	in6_ifaddr_rwlock_attr = lck_attr_alloc_init();
340	lck_rw_init(&in6_ifaddr_rwlock, in6_ifaddr_rwlock_grp,
341	    in6_ifaddr_rwlock_attr);
342
343	IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_receive);
344	IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_hdrerr);
345	IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_toobig);
346	IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_noroute);
347	IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_addrerr);
348	IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_protounknown);
349	IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_truncated);
350	IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_discard);
351	IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_deliver);
352	IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_forward);
353	IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_request);
354	IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_discard);
355	IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_fragok);
356	IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_fragfail);
357	IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_fragcreat);
358	IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_reass_reqd);
359	IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_reass_ok);
360	IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_reass_fail);
361	IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_mcast);
362	IN6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_mcast);
363
364	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_msg);
365	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_error);
366	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_dstunreach);
367	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_adminprohib);
368	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_timeexceed);
369	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_paramprob);
370	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_pkttoobig);
371	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_echo);
372	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_echoreply);
373	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_routersolicit);
374	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_routeradvert);
375	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_neighborsolicit);
376	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_neighboradvert);
377	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_redirect);
378	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_mldquery);
379	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_mldreport);
380	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_in_mlddone);
381
382	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_msg);
383	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_error);
384	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_dstunreach);
385	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_adminprohib);
386	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_timeexceed);
387	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_paramprob);
388	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_pkttoobig);
389	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_echo);
390	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_echoreply);
391	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_routersolicit);
392	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_routeradvert);
393	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_neighborsolicit);
394	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_neighboradvert);
395	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_redirect);
396	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_mldquery);
397	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_mldreport);
398	ICMP6_IFSTAT_REQUIRE_ALIGNED_64(ifs6_out_mlddone);
399
400	getmicrotime(&tv);
401	ip6_desync_factor =
402	    (RandomULong() ^ tv.tv_usec) % MAX_TEMP_DESYNC_FACTOR;
403
404	in6_ifaddr_init();
405	ip6_moptions_init();
406	nd6_init();
407	frag6_init();
408	icmp6_init(NULL, dp);
409	addrsel_policy_init();
410
411	/*
412	 * P2P interfaces often route the local address to the loopback
413	 * interface. At this point, lo0 hasn't been initialized yet, which
414	 * means that we need to delay the IPv6 configuration of lo0.
415	 */
416	net_init_add(ip6_init_delayed);
417
418	unguard = domain_unguard_deploy();
419	i = proto_register_input(PF_INET6, ip6_proto_input, NULL, 0);
420	if (i != 0) {
421		panic("%s: failed to register PF_INET6 protocol: %d\n",
422		    __func__, i);
423		/* NOTREACHED */
424	}
425	domain_unguard_release(unguard);
426}
427
428static void
429ip6_init_delayed(void)
430{
431	(void) in6_ifattach_prelim(lo_ifp);
432
433	/* timer for regeneranation of temporary addresses randomize ID */
434	timeout(in6_tmpaddrtimer, NULL,
435	    (ip6_temp_preferred_lifetime - ip6_desync_factor -
436	    ip6_temp_regen_advance) * hz);
437
438#if NSTF
439	stfattach();
440#endif /* NSTF */
441}
442
443void
444ip6_input(struct mbuf *m)
445{
446	struct ip6_hdr *ip6;
447	int off = sizeof (struct ip6_hdr), nest;
448	u_int32_t plen;
449	u_int32_t rtalert = ~0;
450	int nxt = 0, ours = 0;
451	struct ifnet *inifp, *deliverifp = NULL;
452	ipfilter_t inject_ipfref = NULL;
453	int seen;
454	struct in6_ifaddr *ia6 = NULL;
455	struct sockaddr_in6 *dst6;
456#if DUMMYNET
457	struct m_tag *tag;
458#endif /* DUMMYNET */
459	struct {
460		struct route_in6 rin6;
461#if DUMMYNET
462		struct ip_fw_args args;
463#endif /* DUMMYNET */
464	} ip6ibz;
465#define	rin6	ip6ibz.rin6
466#define	args	ip6ibz.args
467
468	/* zero out {rin6, args} */
469	bzero(&ip6ibz, sizeof (ip6ibz));
470
471	/*
472	 * Check if the packet we received is valid after interface filter
473	 * processing
474	 */
475	MBUF_INPUT_CHECK(m, m->m_pkthdr.rcvif);
476	inifp = m->m_pkthdr.rcvif;
477	VERIFY(inifp != NULL);
478
479	/* Perform IP header alignment fixup, if needed */
480	IP6_HDR_ALIGNMENT_FIXUP(m, inifp, return);
481
482	m->m_pkthdr.pkt_flags &= ~PKTF_FORWARDED;
483#if IPSEC
484	/*
485	 * should the inner packet be considered authentic?
486	 * see comment in ah4_input().
487	 */
488	m->m_flags &= ~M_AUTHIPHDR;
489	m->m_flags &= ~M_AUTHIPDGM;
490#endif /* IPSEC */
491
492	/*
493	 * make sure we don't have onion peering information into m_aux.
494	 */
495	ip6_delaux(m);
496
497#if DUMMYNET
498	if ((tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID,
499	    KERNEL_TAG_TYPE_DUMMYNET, NULL)) != NULL) {
500		struct dn_pkt_tag	*dn_tag;
501
502		dn_tag = (struct dn_pkt_tag *)(tag+1);
503
504		args.fwa_pf_rule = dn_tag->dn_pf_rule;
505
506		m_tag_delete(m, tag);
507	}
508
509	if (args.fwa_pf_rule) {
510		ip6 = mtod(m, struct ip6_hdr *); /* In case PF got disabled */
511
512		goto check_with_pf;
513	}
514#endif /* DUMMYNET */
515
516	/*
517	 * No need to proccess packet twice if we've already seen it.
518	 */
519	inject_ipfref = ipf_get_inject_filter(m);
520	if (inject_ipfref != NULL) {
521		ip6 = mtod(m, struct ip6_hdr *);
522		nxt = ip6->ip6_nxt;
523		seen = 0;
524		goto injectit;
525	} else {
526		seen = 1;
527	}
528
529	/*
530	 * mbuf statistics
531	 */
532	if (m->m_flags & M_EXT) {
533		if (m->m_next != NULL)
534			ip6stat.ip6s_mext2m++;
535		else
536			ip6stat.ip6s_mext1++;
537	} else {
538#define	M2MMAX	(sizeof (ip6stat.ip6s_m2m) / sizeof (ip6stat.ip6s_m2m[0]))
539		if (m->m_next != NULL) {
540			if (m->m_pkthdr.pkt_flags & PKTF_LOOP) {
541				/* XXX */
542				ip6stat.ip6s_m2m[ifnet_index(lo_ifp)]++;
543			} else if (inifp->if_index < M2MMAX) {
544				ip6stat.ip6s_m2m[inifp->if_index]++;
545			} else {
546				ip6stat.ip6s_m2m[0]++;
547			}
548		} else {
549			ip6stat.ip6s_m1++;
550		}
551#undef M2MMAX
552	}
553
554	/*
555	 * Drop the packet if IPv6 operation is disabled on the interface.
556	 */
557	if (inifp->if_eflags & IFEF_IPV6_DISABLED)
558		goto bad;
559
560	in6_ifstat_inc_na(inifp, ifs6_in_receive);
561	ip6stat.ip6s_total++;
562
563	/*
564	 * L2 bridge code and some other code can return mbuf chain
565	 * that does not conform to KAME requirement.  too bad.
566	 * XXX: fails to join if interface MTU > MCLBYTES.  jumbogram?
567	 */
568	if (m->m_next != NULL && m->m_pkthdr.len < MCLBYTES) {
569		struct mbuf *n;
570
571		MGETHDR(n, M_DONTWAIT, MT_HEADER);	/* MAC-OK */
572		if (n)
573			M_COPY_PKTHDR(n, m);
574		if (n && m->m_pkthdr.len > MHLEN) {
575			MCLGET(n, M_DONTWAIT);
576			if ((n->m_flags & M_EXT) == 0) {
577				m_freem(n);
578				n = NULL;
579			}
580		}
581		if (n == NULL)
582			goto bad;
583
584		m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t));
585		n->m_len = m->m_pkthdr.len;
586		m_freem(m);
587		m = n;
588	}
589	IP6_EXTHDR_CHECK(m, 0, sizeof (struct ip6_hdr), { goto done; });
590
591	if (m->m_len < sizeof (struct ip6_hdr)) {
592		if ((m = m_pullup(m, sizeof (struct ip6_hdr))) == 0) {
593			ip6stat.ip6s_toosmall++;
594			in6_ifstat_inc(inifp, ifs6_in_hdrerr);
595			goto done;
596		}
597	}
598
599	ip6 = mtod(m, struct ip6_hdr *);
600
601	if ((ip6->ip6_vfc & IPV6_VERSION_MASK) != IPV6_VERSION) {
602		ip6stat.ip6s_badvers++;
603		in6_ifstat_inc(inifp, ifs6_in_hdrerr);
604		goto bad;
605	}
606
607	ip6stat.ip6s_nxthist[ip6->ip6_nxt]++;
608
609#if IPFW2
610	/*
611	 * Check with the firewall...
612	 */
613	if (ip6_fw_enable && ip6_fw_chk_ptr) {
614		u_short port = 0;
615		/* If ipfw says divert, we have to just drop packet */
616		/* use port as a dummy argument */
617		if ((*ip6_fw_chk_ptr)(&ip6, NULL, &port, &m)) {
618			m_freem(m);
619			m = NULL;
620		}
621		if (!m)
622			goto done;
623	}
624#endif /* IPFW2 */
625
626	/*
627	 * Check against address spoofing/corruption.
628	 */
629	if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src) ||
630	    IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_dst)) {
631		/*
632		 * XXX: "badscope" is not very suitable for a multicast source.
633		 */
634		ip6stat.ip6s_badscope++;
635		in6_ifstat_inc(inifp, ifs6_in_addrerr);
636		goto bad;
637	}
638	if (IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst) &&
639	    !(m->m_pkthdr.pkt_flags & PKTF_LOOP)) {
640		/*
641		 * In this case, the packet should come from the loopback
642		 * interface.  However, we cannot just check the if_flags,
643		 * because ip6_mloopback() passes the "actual" interface
644		 * as the outgoing/incoming interface.
645		 */
646		ip6stat.ip6s_badscope++;
647		in6_ifstat_inc(inifp, ifs6_in_addrerr);
648		goto bad;
649	}
650
651	/*
652	 * The following check is not documented in specs.  A malicious
653	 * party may be able to use IPv4 mapped addr to confuse tcp/udp stack
654	 * and bypass security checks (act as if it was from 127.0.0.1 by using
655	 * IPv6 src ::ffff:127.0.0.1).  Be cautious.
656	 *
657	 * This check chokes if we are in an SIIT cloud.  As none of BSDs
658	 * support IPv4-less kernel compilation, we cannot support SIIT
659	 * environment at all.  So, it makes more sense for us to reject any
660	 * malicious packets for non-SIIT environment, than try to do a
661	 * partial support for SIIT environment.
662	 */
663	if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
664	    IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
665		ip6stat.ip6s_badscope++;
666		in6_ifstat_inc(inifp, ifs6_in_addrerr);
667		goto bad;
668	}
669#if 0
670	/*
671	 * Reject packets with IPv4 compatible addresses (auto tunnel).
672	 *
673	 * The code forbids auto tunnel relay case in RFC1933 (the check is
674	 * stronger than RFC1933).  We may want to re-enable it if mech-xx
675	 * is revised to forbid relaying case.
676	 */
677	if (IN6_IS_ADDR_V4COMPAT(&ip6->ip6_src) ||
678	    IN6_IS_ADDR_V4COMPAT(&ip6->ip6_dst)) {
679		ip6stat.ip6s_badscope++;
680		in6_ifstat_inc(inifp, ifs6_in_addrerr);
681		goto bad;
682	}
683#endif
684
685	/*
686	 * Naively assume we can attribute inbound data to the route we would
687	 * use to send to this destination. Asymetric routing breaks this
688	 * assumption, but it still allows us to account for traffic from
689	 * a remote node in the routing table.
690	 * this has a very significant performance impact so we bypass
691	 * if nstat_collect is disabled. We may also bypass if the
692	 * protocol is tcp in the future because tcp will have a route that
693	 * we can use to attribute the data to. That does mean we would not
694	 * account for forwarded tcp traffic.
695	 */
696	if (nstat_collect) {
697		struct rtentry *rte =
698		    ifnet_cached_rtlookup_inet6(inifp, &ip6->ip6_src);
699		if (rte != NULL) {
700			nstat_route_rx(rte, 1, m->m_pkthdr.len, 0);
701			rtfree(rte);
702		}
703	}
704
705	/* for consistency */
706	m->m_pkthdr.pkt_proto = ip6->ip6_nxt;
707
708#if DUMMYNET
709check_with_pf:
710#endif /* DUMMYNET */
711#if PF
712	/* Invoke inbound packet filter */
713	if (PF_IS_ENABLED) {
714		int error;
715#if DUMMYNET
716		error = pf_af_hook(inifp, NULL, &m, AF_INET6, TRUE, &args);
717#else /* !DUMMYNET */
718		error = pf_af_hook(inifp, NULL, &m, AF_INET6, TRUE, NULL);
719#endif /* !DUMMYNET */
720		if (error != 0 || m == NULL) {
721			if (m != NULL) {
722				panic("%s: unexpected packet %p\n",
723				    __func__, m);
724				/* NOTREACHED */
725			}
726			/* Already freed by callee */
727			goto done;
728		}
729		ip6 = mtod(m, struct ip6_hdr *);
730	}
731#endif /* PF */
732
733	/* drop packets if interface ID portion is already filled */
734	if (!(inifp->if_flags & IFF_LOOPBACK) &&
735	    !(m->m_pkthdr.pkt_flags & PKTF_LOOP)) {
736		if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src) &&
737		    ip6->ip6_src.s6_addr16[1]) {
738			ip6stat.ip6s_badscope++;
739			goto bad;
740		}
741		if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst) &&
742		    ip6->ip6_dst.s6_addr16[1]) {
743			ip6stat.ip6s_badscope++;
744			goto bad;
745		}
746	}
747
748	if (m->m_pkthdr.pkt_flags & PKTF_IFAINFO) {
749		if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
750			ip6->ip6_src.s6_addr16[1] =
751			    htons(m->m_pkthdr.src_ifindex);
752		if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst))
753			ip6->ip6_dst.s6_addr16[1] =
754			    htons(m->m_pkthdr.dst_ifindex);
755	} else {
756		if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
757			ip6->ip6_src.s6_addr16[1] = htons(inifp->if_index);
758		if (IN6_IS_SCOPE_EMBED(&ip6->ip6_dst))
759			ip6->ip6_dst.s6_addr16[1] = htons(inifp->if_index);
760	}
761
762	/*
763	 * Multicast check
764	 */
765	if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
766		struct	in6_multi *in6m = NULL;
767
768		in6_ifstat_inc_na(inifp, ifs6_in_mcast);
769		/*
770		 * See if we belong to the destination multicast group on the
771		 * arrival interface.
772		 */
773		in6_multihead_lock_shared();
774		IN6_LOOKUP_MULTI(&ip6->ip6_dst, inifp, in6m);
775		in6_multihead_lock_done();
776		if (in6m != NULL) {
777			IN6M_REMREF(in6m);
778			ours = 1;
779		} else if (!nd6_prproxy) {
780			ip6stat.ip6s_notmember++;
781			ip6stat.ip6s_cantforward++;
782			in6_ifstat_inc(inifp, ifs6_in_discard);
783			goto bad;
784		}
785		deliverifp = inifp;
786		VERIFY(ia6 == NULL);
787		goto hbhcheck;
788	}
789
790	/*
791	 * Unicast check
792	 *
793	 * Fast path: see if the target is ourselves.
794	 */
795	lck_rw_lock_shared(&in6_ifaddr_rwlock);
796	for (ia6 = in6_ifaddrs; ia6 != NULL; ia6 = ia6->ia_next) {
797		/*
798		 * No reference is held on the address, as we just need
799		 * to test for a few things while holding the RW lock.
800		 */
801		if (IN6_ARE_ADDR_EQUAL(&ia6->ia_addr.sin6_addr, &ip6->ip6_dst))
802			break;
803	}
804
805	if (ia6 != NULL) {
806		/*
807		 * For performance, test without acquiring the address lock;
808		 * a lot of things in the address are set once and never
809		 * changed (e.g. ia_ifp.)
810		 */
811		if (!(ia6->ia6_flags & IN6_IFF_NOTREADY)) {
812			/* this address is ready */
813			ours = 1;
814			deliverifp = ia6->ia_ifp;
815			/*
816			 * record dst address information into mbuf.
817			 */
818			(void) ip6_setdstifaddr_info(m, 0, ia6);
819			lck_rw_done(&in6_ifaddr_rwlock);
820			goto hbhcheck;
821		}
822		lck_rw_done(&in6_ifaddr_rwlock);
823		ia6 = NULL;
824		/* address is not ready, so discard the packet. */
825		nd6log((LOG_INFO, "%s: packet to an unready address %s->%s\n",
826		    __func__, ip6_sprintf(&ip6->ip6_src),
827		    ip6_sprintf(&ip6->ip6_dst)));
828		goto bad;
829	}
830	lck_rw_done(&in6_ifaddr_rwlock);
831
832	/*
833	 * Slow path: route lookup.
834	 */
835	dst6 = SIN6(&rin6.ro_dst);
836	dst6->sin6_len = sizeof (struct sockaddr_in6);
837	dst6->sin6_family = AF_INET6;
838	dst6->sin6_addr = ip6->ip6_dst;
839
840	rtalloc_scoped_ign((struct route *)&rin6,
841	    RTF_PRCLONING, IFSCOPE_NONE);
842	if (rin6.ro_rt != NULL)
843		RT_LOCK_SPIN(rin6.ro_rt);
844
845#define	rt6_key(r) (SIN6((r)->rt_nodes->rn_key))
846
847	/*
848	 * Accept the packet if the forwarding interface to the destination
849	 * according to the routing table is the loopback interface,
850	 * unless the associated route has a gateway.
851	 * Note that this approach causes to accept a packet if there is a
852	 * route to the loopback interface for the destination of the packet.
853	 * But we think it's even useful in some situations, e.g. when using
854	 * a special daemon which wants to intercept the packet.
855	 *
856	 * XXX: some OSes automatically make a cloned route for the destination
857	 * of an outgoing packet.  If the outgoing interface of the packet
858	 * is a loopback one, the kernel would consider the packet to be
859	 * accepted, even if we have no such address assinged on the interface.
860	 * We check the cloned flag of the route entry to reject such cases,
861	 * assuming that route entries for our own addresses are not made by
862	 * cloning (it should be true because in6_addloop explicitly installs
863	 * the host route).  However, we might have to do an explicit check
864	 * while it would be less efficient.  Or, should we rather install a
865	 * reject route for such a case?
866	 */
867	if (rin6.ro_rt != NULL &&
868	    (rin6.ro_rt->rt_flags & (RTF_HOST|RTF_GATEWAY)) == RTF_HOST &&
869#if RTF_WASCLONED
870	    !(rin6.ro_rt->rt_flags & RTF_WASCLONED) &&
871#endif
872	    rin6.ro_rt->rt_ifp->if_type == IFT_LOOP) {
873		ia6 = (struct in6_ifaddr *)rin6.ro_rt->rt_ifa;
874		/*
875		 * Packets to a tentative, duplicated, or somehow invalid
876		 * address must not be accepted.
877		 *
878		 * For performance, test without acquiring the address lock;
879		 * a lot of things in the address are set once and never
880		 * changed (e.g. ia_ifp.)
881		 */
882		if (!(ia6->ia6_flags & IN6_IFF_NOTREADY)) {
883			/* this address is ready */
884			ours = 1;
885			deliverifp = ia6->ia_ifp;	/* correct? */
886			/*
887			 * record dst address information into mbuf.
888			 */
889			(void) ip6_setdstifaddr_info(m, 0, ia6);
890			RT_UNLOCK(rin6.ro_rt);
891			goto hbhcheck;
892		}
893		RT_UNLOCK(rin6.ro_rt);
894		ia6 = NULL;
895		/* address is not ready, so discard the packet. */
896		nd6log((LOG_INFO, "%s: packet to an unready address %s->%s\n",
897		    __func__, ip6_sprintf(&ip6->ip6_src),
898		    ip6_sprintf(&ip6->ip6_dst)));
899		goto bad;
900	}
901
902	if (rin6.ro_rt != NULL)
903		RT_UNLOCK(rin6.ro_rt);
904
905	/*
906	 * Now there is no reason to process the packet if it's not our own
907	 * and we're not a router.
908	 */
909	if (!ip6_forwarding) {
910		ip6stat.ip6s_cantforward++;
911		in6_ifstat_inc(inifp, ifs6_in_discard);
912		goto bad;
913	}
914
915hbhcheck:
916	/*
917	 * record dst address information into mbuf, if we don't have one yet.
918	 * note that we are unable to record it, if the address is not listed
919	 * as our interface address (e.g. multicast addresses, etc.)
920	 */
921	if (deliverifp != NULL && ia6 == NULL) {
922		ia6 = in6_ifawithifp(deliverifp, &ip6->ip6_dst);
923		if (ia6 != NULL) {
924			(void) ip6_setdstifaddr_info(m, 0, ia6);
925			IFA_REMREF(&ia6->ia_ifa);
926		}
927	}
928
929	/*
930	 * Process Hop-by-Hop options header if it's contained.
931	 * m may be modified in ip6_hopopts_input().
932	 * If a JumboPayload option is included, plen will also be modified.
933	 */
934	plen = (u_int32_t)ntohs(ip6->ip6_plen);
935	if (ip6->ip6_nxt == IPPROTO_HOPOPTS) {
936		struct ip6_hbh *hbh;
937
938		if (ip6_hopopts_input(&plen, &rtalert, &m, &off)) {
939#if 0	/* touches NULL pointer */
940			in6_ifstat_inc(inifp, ifs6_in_discard);
941#endif
942			goto done;	/* m have already been freed */
943		}
944
945		/* adjust pointer */
946		ip6 = mtod(m, struct ip6_hdr *);
947
948		/*
949		 * if the payload length field is 0 and the next header field
950		 * indicates Hop-by-Hop Options header, then a Jumbo Payload
951		 * option MUST be included.
952		 */
953		if (ip6->ip6_plen == 0 && plen == 0) {
954			/*
955			 * Note that if a valid jumbo payload option is
956			 * contained, ip6_hopopts_input() must set a valid
957			 * (non-zero) payload length to the variable plen.
958			 */
959			ip6stat.ip6s_badoptions++;
960			in6_ifstat_inc(inifp, ifs6_in_discard);
961			in6_ifstat_inc(inifp, ifs6_in_hdrerr);
962			icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER,
963			    (caddr_t)&ip6->ip6_plen - (caddr_t)ip6);
964			goto done;
965		}
966		/* ip6_hopopts_input() ensures that mbuf is contiguous */
967		hbh = (struct ip6_hbh *)(ip6 + 1);
968		nxt = hbh->ip6h_nxt;
969
970		/*
971		 * If we are acting as a router and the packet contains a
972		 * router alert option, see if we know the option value.
973		 * Currently, we only support the option value for MLD, in which
974		 * case we should pass the packet to the multicast routing
975		 * daemon.
976		 */
977		if (rtalert != ~0 && ip6_forwarding) {
978			switch (rtalert) {
979			case IP6OPT_RTALERT_MLD:
980				ours = 1;
981				break;
982			default:
983				/*
984				 * RFC2711 requires unrecognized values must be
985				 * silently ignored.
986				 */
987				break;
988			}
989		}
990	} else
991		nxt = ip6->ip6_nxt;
992
993	/*
994	 * Check that the amount of data in the buffers
995	 * is as at least much as the IPv6 header would have us expect.
996	 * Trim mbufs if longer than we expect.
997	 * Drop packet if shorter than we expect.
998	 */
999	if (m->m_pkthdr.len - sizeof (struct ip6_hdr) < plen) {
1000		ip6stat.ip6s_tooshort++;
1001		in6_ifstat_inc(inifp, ifs6_in_truncated);
1002		goto bad;
1003	}
1004	if (m->m_pkthdr.len > sizeof (struct ip6_hdr) + plen) {
1005		/*
1006		 * Invalidate hardware checksum info if ip6_adj_clear_hwcksum
1007		 * is set; useful to handle buggy drivers.  Note that this
1008		 * should not be enabled by default, as we may get here due
1009		 * to link-layer padding.
1010		 */
1011		if (ip6_adj_clear_hwcksum &&
1012		    (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) &&
1013		    !(inifp->if_flags & IFF_LOOPBACK) &&
1014		    !(m->m_pkthdr.pkt_flags & PKTF_LOOP)) {
1015			m->m_pkthdr.csum_flags &= ~CSUM_DATA_VALID;
1016			m->m_pkthdr.csum_data = 0;
1017			ip6stat.ip6s_adj_hwcsum_clr++;
1018		}
1019
1020		ip6stat.ip6s_adj++;
1021		if (m->m_len == m->m_pkthdr.len) {
1022			m->m_len = sizeof (struct ip6_hdr) + plen;
1023			m->m_pkthdr.len = sizeof (struct ip6_hdr) + plen;
1024		} else {
1025			m_adj(m, sizeof (struct ip6_hdr) + plen -
1026			    m->m_pkthdr.len);
1027		}
1028	}
1029
1030	/*
1031	 * Forward if desirable.
1032	 */
1033	if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
1034		if (!ours && nd6_prproxy) {
1035			/*
1036			 * If this isn't for us, this might be a Neighbor
1037			 * Solicitation (dst is solicited-node multicast)
1038			 * against an address in one of the proxied prefixes;
1039			 * if so, claim the packet and let icmp6_input()
1040			 * handle the rest.
1041			 */
1042			ours = nd6_prproxy_isours(m, ip6, NULL, IFSCOPE_NONE);
1043			VERIFY(!ours ||
1044			    (m->m_pkthdr.pkt_flags & PKTF_PROXY_DST));
1045		}
1046		if (!ours)
1047			goto bad;
1048	} else if (!ours) {
1049		/*
1050		 * The unicast forwarding function might return the packet
1051		 * if we are proxying prefix(es), and if the packet is an
1052		 * ICMPv6 packet that has failed the zone checks, but is
1053		 * targetted towards a proxied address (this is optimized by
1054		 * way of RTF_PROXY test.)  If so, claim the packet as ours
1055		 * and let icmp6_input() handle the rest.  The packet's hop
1056		 * limit value is kept intact (it's not decremented).  This
1057		 * is for supporting Neighbor Unreachability Detection between
1058		 * proxied nodes on different links (src is link-local, dst
1059		 * is target address.)
1060		 */
1061		if ((m = ip6_forward(m, &rin6, 0)) == NULL)
1062			goto done;
1063		VERIFY(rin6.ro_rt != NULL);
1064		VERIFY(m->m_pkthdr.pkt_flags & PKTF_PROXY_DST);
1065		deliverifp = rin6.ro_rt->rt_ifp;
1066		ours = 1;
1067	}
1068
1069	ip6 = mtod(m, struct ip6_hdr *);
1070
1071	/*
1072	 * Malicious party may be able to use IPv4 mapped addr to confuse
1073	 * tcp/udp stack and bypass security checks (act as if it was from
1074	 * 127.0.0.1 by using IPv6 src ::ffff:127.0.0.1).  Be cautious.
1075	 *
1076	 * For SIIT end node behavior, you may want to disable the check.
1077	 * However, you will  become vulnerable to attacks using IPv4 mapped
1078	 * source.
1079	 */
1080	if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
1081	    IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
1082		ip6stat.ip6s_badscope++;
1083		in6_ifstat_inc(inifp, ifs6_in_addrerr);
1084		goto bad;
1085	}
1086
1087	/*
1088	 * Tell launch routine the next header
1089	 */
1090	ip6stat.ip6s_delivered++;
1091	in6_ifstat_inc_na(deliverifp, ifs6_in_deliver);
1092
1093injectit:
1094	nest = 0;
1095
1096	/*
1097	 * Perform IP header alignment fixup again, if needed.  Note that
1098	 * we do it once for the outermost protocol, and we assume each
1099	 * protocol handler wouldn't mess with the alignment afterwards.
1100	 */
1101	IP6_HDR_ALIGNMENT_FIXUP(m, inifp, return);
1102
1103	while (nxt != IPPROTO_DONE) {
1104		struct ipfilter *filter;
1105		int (*pr_input)(struct mbuf **, int *, int);
1106
1107		if (ip6_hdrnestlimit && (++nest > ip6_hdrnestlimit)) {
1108			ip6stat.ip6s_toomanyhdr++;
1109			goto bad;
1110		}
1111
1112		/*
1113		 * protection against faulty packet - there should be
1114		 * more sanity checks in header chain processing.
1115		 */
1116		if (m->m_pkthdr.len < off) {
1117			ip6stat.ip6s_tooshort++;
1118			in6_ifstat_inc(inifp, ifs6_in_truncated);
1119			goto bad;
1120		}
1121
1122
1123#if IPSEC
1124		/*
1125		 * enforce IPsec policy checking if we are seeing last header.
1126		 * note that we do not visit this with protocols with pcb layer
1127		 * code - like udp/tcp/raw ip.
1128		 */
1129		if ((ipsec_bypass == 0) &&
1130		    (ip6_protox[nxt]->pr_flags & PR_LASTHDR) != 0) {
1131			if (ipsec6_in_reject(m, NULL)) {
1132				IPSEC_STAT_INCREMENT(ipsec6stat.in_polvio);
1133				goto bad;
1134			}
1135		}
1136#endif /* IPSEC */
1137
1138		/*
1139		 * Call IP filter
1140		 */
1141		if (!TAILQ_EMPTY(&ipv6_filters)) {
1142			ipf_ref();
1143			TAILQ_FOREACH(filter, &ipv6_filters, ipf_link) {
1144				if (seen == 0) {
1145					if ((struct ipfilter *)inject_ipfref ==
1146					    filter)
1147						seen = 1;
1148				} else if (filter->ipf_filter.ipf_input) {
1149					errno_t result;
1150
1151					result = filter->ipf_filter.ipf_input(
1152					    filter->ipf_filter.cookie,
1153					    (mbuf_t *)&m, off, nxt);
1154					if (result == EJUSTRETURN) {
1155						ipf_unref();
1156						goto done;
1157					}
1158					if (result != 0) {
1159						ipf_unref();
1160						goto bad;
1161					}
1162				}
1163			}
1164			ipf_unref();
1165		}
1166
1167		DTRACE_IP6(receive, struct mbuf *, m, struct inpcb *, NULL,
1168		    struct ip6_hdr *, ip6, struct ifnet *, inifp,
1169		    struct ip *, NULL, struct ip6_hdr *, ip6);
1170
1171		if ((pr_input = ip6_protox[nxt]->pr_input) == NULL) {
1172			m_freem(m);
1173			m = NULL;
1174			nxt = IPPROTO_DONE;
1175		} else if (!(ip6_protox[nxt]->pr_flags & PR_PROTOLOCK)) {
1176			lck_mtx_lock(inet6_domain_mutex);
1177			nxt = pr_input(&m, &off, nxt);
1178			lck_mtx_unlock(inet6_domain_mutex);
1179		} else {
1180			nxt = pr_input(&m, &off, nxt);
1181		}
1182	}
1183done:
1184	ROUTE_RELEASE(&rin6);
1185	return;
1186bad:
1187	m_freem(m);
1188	goto done;
1189}
1190
1191void
1192ip6_setsrcifaddr_info(struct mbuf *m, uint32_t src_idx, struct in6_ifaddr *ia6)
1193{
1194	VERIFY(m->m_flags & M_PKTHDR);
1195
1196	/*
1197	 * If the source ifaddr is specified, pick up the information
1198	 * from there; otherwise just grab the passed-in ifindex as the
1199	 * caller may not have the ifaddr available.
1200	 */
1201	if (ia6 != NULL) {
1202		m->m_pkthdr.pkt_flags |= PKTF_IFAINFO;
1203		m->m_pkthdr.src_ifindex = ia6->ia_ifp->if_index;
1204
1205		/* See IN6_IFF comments in in6_var.h */
1206		m->m_pkthdr.src_iff = (ia6->ia6_flags & 0xffff);
1207	} else {
1208		m->m_pkthdr.src_iff = 0;
1209		m->m_pkthdr.src_ifindex = src_idx;
1210		if (src_idx != 0)
1211			m->m_pkthdr.pkt_flags |= PKTF_IFAINFO;
1212	}
1213}
1214
1215void
1216ip6_setdstifaddr_info(struct mbuf *m, uint32_t dst_idx, struct in6_ifaddr *ia6)
1217{
1218	VERIFY(m->m_flags & M_PKTHDR);
1219
1220	/*
1221	 * If the destination ifaddr is specified, pick up the information
1222	 * from there; otherwise just grab the passed-in ifindex as the
1223	 * caller may not have the ifaddr available.
1224	 */
1225	if (ia6 != NULL) {
1226		m->m_pkthdr.pkt_flags |= PKTF_IFAINFO;
1227		m->m_pkthdr.dst_ifindex = ia6->ia_ifp->if_index;
1228
1229		/* See IN6_IFF comments in in6_var.h */
1230		m->m_pkthdr.dst_iff = (ia6->ia6_flags & 0xffff);
1231	} else {
1232		m->m_pkthdr.dst_iff = 0;
1233		m->m_pkthdr.dst_ifindex = dst_idx;
1234		if (dst_idx != 0)
1235			m->m_pkthdr.pkt_flags |= PKTF_IFAINFO;
1236	}
1237}
1238
1239int
1240ip6_getsrcifaddr_info(struct mbuf *m, uint32_t *src_idx, uint32_t *ia6f)
1241{
1242	VERIFY(m->m_flags & M_PKTHDR);
1243
1244	if (!(m->m_pkthdr.pkt_flags & PKTF_IFAINFO))
1245		return (-1);
1246
1247	if (src_idx != NULL)
1248		*src_idx = m->m_pkthdr.src_ifindex;
1249
1250	if (ia6f != NULL)
1251		*ia6f = m->m_pkthdr.src_iff;
1252
1253	return (0);
1254}
1255
1256int
1257ip6_getdstifaddr_info(struct mbuf *m, uint32_t *dst_idx, uint32_t *ia6f)
1258{
1259	VERIFY(m->m_flags & M_PKTHDR);
1260
1261	if (!(m->m_pkthdr.pkt_flags & PKTF_IFAINFO))
1262		return (-1);
1263
1264	if (dst_idx != NULL)
1265		*dst_idx = m->m_pkthdr.dst_ifindex;
1266
1267	if (ia6f != NULL)
1268		*ia6f = m->m_pkthdr.dst_iff;
1269
1270	return (0);
1271}
1272
1273/*
1274 * Hop-by-Hop options header processing. If a valid jumbo payload option is
1275 * included, the real payload length will be stored in plenp.
1276 */
1277static int
1278ip6_hopopts_input(uint32_t *plenp, uint32_t *rtalertp, struct mbuf **mp,
1279    int *offp)
1280{
1281	struct mbuf *m = *mp;
1282	int off = *offp, hbhlen;
1283	struct ip6_hbh *hbh;
1284	u_int8_t *opt;
1285
1286	/* validation of the length of the header */
1287	IP6_EXTHDR_CHECK(m, off, sizeof (*hbh), return (-1));
1288	hbh = (struct ip6_hbh *)(mtod(m, caddr_t) + off);
1289	hbhlen = (hbh->ip6h_len + 1) << 3;
1290
1291	IP6_EXTHDR_CHECK(m, off, hbhlen, return (-1));
1292	hbh = (struct ip6_hbh *)(mtod(m, caddr_t) + off);
1293	off += hbhlen;
1294	hbhlen -= sizeof (struct ip6_hbh);
1295	opt = (u_int8_t *)hbh + sizeof (struct ip6_hbh);
1296
1297	if (ip6_process_hopopts(m, (u_int8_t *)hbh + sizeof (struct ip6_hbh),
1298	    hbhlen, rtalertp, plenp) < 0)
1299		return (-1);
1300
1301	*offp = off;
1302	*mp = m;
1303	return (0);
1304}
1305
1306/*
1307 * Search header for all Hop-by-hop options and process each option.
1308 * This function is separate from ip6_hopopts_input() in order to
1309 * handle a case where the sending node itself process its hop-by-hop
1310 * options header. In such a case, the function is called from ip6_output().
1311 *
1312 * The function assumes that hbh header is located right after the IPv6 header
1313 * (RFC2460 p7), opthead is pointer into data content in m, and opthead to
1314 * opthead + hbhlen is located in continuous memory region.
1315 */
1316int
1317ip6_process_hopopts(m, opthead, hbhlen, rtalertp, plenp)
1318	struct mbuf *m;
1319	u_int8_t *opthead;
1320	int hbhlen;
1321	u_int32_t *rtalertp;
1322	u_int32_t *plenp;
1323{
1324	struct ip6_hdr *ip6;
1325	int optlen = 0;
1326	u_int8_t *opt = opthead;
1327	u_int16_t rtalert_val;
1328	u_int32_t jumboplen;
1329	const int erroff = sizeof (struct ip6_hdr) + sizeof (struct ip6_hbh);
1330
1331	for (; hbhlen > 0; hbhlen -= optlen, opt += optlen) {
1332		switch (*opt) {
1333		case IP6OPT_PAD1:
1334			optlen = 1;
1335			break;
1336		case IP6OPT_PADN:
1337			if (hbhlen < IP6OPT_MINLEN) {
1338				ip6stat.ip6s_toosmall++;
1339				goto bad;
1340			}
1341			optlen = *(opt + 1) + 2;
1342			break;
1343		case IP6OPT_ROUTER_ALERT:
1344			/* XXX may need check for alignment */
1345			if (hbhlen < IP6OPT_RTALERT_LEN) {
1346				ip6stat.ip6s_toosmall++;
1347				goto bad;
1348			}
1349			if (*(opt + 1) != IP6OPT_RTALERT_LEN - 2) {
1350				/* XXX stat */
1351				icmp6_error(m, ICMP6_PARAM_PROB,
1352					    ICMP6_PARAMPROB_HEADER,
1353					    erroff + opt + 1 - opthead);
1354				return (-1);
1355			}
1356			optlen = IP6OPT_RTALERT_LEN;
1357			bcopy((caddr_t)(opt + 2), (caddr_t)&rtalert_val, 2);
1358			*rtalertp = ntohs(rtalert_val);
1359			break;
1360		case IP6OPT_JUMBO:
1361			/* XXX may need check for alignment */
1362			if (hbhlen < IP6OPT_JUMBO_LEN) {
1363				ip6stat.ip6s_toosmall++;
1364				goto bad;
1365			}
1366			if (*(opt + 1) != IP6OPT_JUMBO_LEN - 2) {
1367				/* XXX stat */
1368				icmp6_error(m, ICMP6_PARAM_PROB,
1369					    ICMP6_PARAMPROB_HEADER,
1370					    erroff + opt + 1 - opthead);
1371				return (-1);
1372			}
1373			optlen = IP6OPT_JUMBO_LEN;
1374
1375			/*
1376			 * IPv6 packets that have non 0 payload length
1377			 * must not contain a jumbo payload option.
1378			 */
1379			ip6 = mtod(m, struct ip6_hdr *);
1380			if (ip6->ip6_plen) {
1381				ip6stat.ip6s_badoptions++;
1382				icmp6_error(m, ICMP6_PARAM_PROB,
1383					    ICMP6_PARAMPROB_HEADER,
1384					    erroff + opt - opthead);
1385				return (-1);
1386			}
1387
1388			/*
1389			 * We may see jumbolen in unaligned location, so
1390			 * we'd need to perform bcopy().
1391			 */
1392			bcopy(opt + 2, &jumboplen, sizeof (jumboplen));
1393			jumboplen = (u_int32_t)htonl(jumboplen);
1394
1395#if 1
1396			/*
1397			 * if there are multiple jumbo payload options,
1398			 * *plenp will be non-zero and the packet will be
1399			 * rejected.
1400			 * the behavior may need some debate in ipngwg -
1401			 * multiple options does not make sense, however,
1402			 * there's no explicit mention in specification.
1403			 */
1404			if (*plenp != 0) {
1405				ip6stat.ip6s_badoptions++;
1406				icmp6_error(m, ICMP6_PARAM_PROB,
1407					    ICMP6_PARAMPROB_HEADER,
1408					    erroff + opt + 2 - opthead);
1409				return (-1);
1410			}
1411#endif
1412
1413			/*
1414			 * jumbo payload length must be larger than 65535.
1415			 */
1416			if (jumboplen <= IPV6_MAXPACKET) {
1417				ip6stat.ip6s_badoptions++;
1418				icmp6_error(m, ICMP6_PARAM_PROB,
1419					    ICMP6_PARAMPROB_HEADER,
1420					    erroff + opt + 2 - opthead);
1421				return (-1);
1422			}
1423			*plenp = jumboplen;
1424
1425			break;
1426		default:		/* unknown option */
1427			if (hbhlen < IP6OPT_MINLEN) {
1428				ip6stat.ip6s_toosmall++;
1429				goto bad;
1430			}
1431			optlen = ip6_unknown_opt(opt, m,
1432			    erroff + opt - opthead);
1433			if (optlen == -1) {
1434				return (-1);
1435			}
1436			optlen += 2;
1437			break;
1438		}
1439	}
1440
1441	return (0);
1442
1443bad:
1444	m_freem(m);
1445	return (-1);
1446}
1447
1448/*
1449 * Unknown option processing.
1450 * The third argument `off' is the offset from the IPv6 header to the option,
1451 * which is necessary if the IPv6 header the and option header and IPv6 header
1452 * is not continuous in order to return an ICMPv6 error.
1453 */
1454int
1455ip6_unknown_opt(uint8_t *optp, struct mbuf *m, int off)
1456{
1457	struct ip6_hdr *ip6;
1458
1459	switch (IP6OPT_TYPE(*optp)) {
1460	case IP6OPT_TYPE_SKIP: /* ignore the option */
1461		return ((int)*(optp + 1));
1462
1463	case IP6OPT_TYPE_DISCARD:	/* silently discard */
1464		m_freem(m);
1465		return (-1);
1466
1467	case IP6OPT_TYPE_FORCEICMP: /* send ICMP even if multicasted */
1468		ip6stat.ip6s_badoptions++;
1469		icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_OPTION, off);
1470		return (-1);
1471
1472	case IP6OPT_TYPE_ICMP: /* send ICMP if not multicasted */
1473		ip6stat.ip6s_badoptions++;
1474		ip6 = mtod(m, struct ip6_hdr *);
1475		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1476		    (m->m_flags & (M_BCAST|M_MCAST))) {
1477			m_freem(m);
1478		} else {
1479			icmp6_error(m, ICMP6_PARAM_PROB,
1480			    ICMP6_PARAMPROB_OPTION, off);
1481		}
1482		return (-1);
1483	}
1484
1485	m_freem(m);		/* XXX: NOTREACHED */
1486	return (-1);
1487}
1488
1489/*
1490 * Create the "control" list for this pcb.
1491 * These functions will not modify mbuf chain at all.
1492 *
1493 * With KAME mbuf chain restriction:
1494 * The routine will be called from upper layer handlers like tcp6_input().
1495 * Thus the routine assumes that the caller (tcp6_input) have already
1496 * called IP6_EXTHDR_CHECK() and all the extension headers are located in the
1497 * very first mbuf on the mbuf chain.
1498 *
1499 * ip6_savecontrol_v4 will handle those options that are possible to be
1500 * set on a v4-mapped socket.
1501 * ip6_savecontrol will directly call ip6_savecontrol_v4 to handle those
1502 * options and handle the v6-only ones itself.
1503 */
1504struct mbuf **
1505ip6_savecontrol_v4(struct inpcb *inp, struct mbuf *m, struct mbuf **mp,
1506    int *v4only)
1507{
1508	struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
1509
1510	if ((inp->inp_socket->so_options & SO_TIMESTAMP) != 0) {
1511		struct timeval tv;
1512
1513		getmicrotime(&tv);
1514		mp = sbcreatecontrol_mbuf((caddr_t)&tv, sizeof (tv),
1515		    SCM_TIMESTAMP, SOL_SOCKET, mp);
1516		if (*mp == NULL)
1517			return (NULL);
1518	}
1519	if ((inp->inp_socket->so_options & SO_TIMESTAMP_MONOTONIC) != 0) {
1520		uint64_t time;
1521
1522		time = mach_absolute_time();
1523		mp = sbcreatecontrol_mbuf((caddr_t)&time, sizeof (time),
1524		    SCM_TIMESTAMP_MONOTONIC, SOL_SOCKET, mp);
1525		if (*mp == NULL)
1526			return (NULL);
1527	}
1528	if ((inp->inp_socket->so_flags & SOF_RECV_TRAFFIC_CLASS) != 0) {
1529		int tc = m_get_traffic_class(m);
1530
1531		mp = sbcreatecontrol_mbuf((caddr_t)&tc, sizeof (tc),
1532		    SO_TRAFFIC_CLASS, SOL_SOCKET, mp);
1533		if (*mp == NULL)
1534			return (NULL);
1535	}
1536
1537	if ((ip6->ip6_vfc & IPV6_VERSION_MASK) != IPV6_VERSION) {
1538		if (v4only != NULL)
1539			*v4only = 1;
1540		return (mp);
1541	}
1542
1543#define	IS2292(inp, x, y)	(((inp)->inp_flags & IN6P_RFC2292) ? (x) : (y))
1544	/* RFC 2292 sec. 5 */
1545	if ((inp->inp_flags & IN6P_PKTINFO) != 0) {
1546		struct in6_pktinfo pi6;
1547
1548		bcopy(&ip6->ip6_dst, &pi6.ipi6_addr, sizeof (struct in6_addr));
1549		in6_clearscope(&pi6.ipi6_addr);	/* XXX */
1550		pi6.ipi6_ifindex =
1551		    (m && m->m_pkthdr.rcvif) ? m->m_pkthdr.rcvif->if_index : 0;
1552
1553		mp = sbcreatecontrol_mbuf((caddr_t)&pi6,
1554		    sizeof (struct in6_pktinfo),
1555		    IS2292(inp, IPV6_2292PKTINFO, IPV6_PKTINFO),
1556		    IPPROTO_IPV6, mp);
1557		if (*mp == NULL)
1558			return (NULL);
1559	}
1560
1561	if ((inp->inp_flags & IN6P_HOPLIMIT) != 0) {
1562		int hlim = ip6->ip6_hlim & 0xff;
1563
1564		mp = sbcreatecontrol_mbuf((caddr_t)&hlim, sizeof (int),
1565		    IS2292(inp, IPV6_2292HOPLIMIT, IPV6_HOPLIMIT),
1566		    IPPROTO_IPV6, mp);
1567		if (*mp == NULL)
1568			return (NULL);
1569	}
1570
1571	if (v4only != NULL)
1572		*v4only = 0;
1573	return (mp);
1574}
1575
1576int
1577ip6_savecontrol(struct inpcb *in6p, struct mbuf *m, struct mbuf **mp)
1578{
1579	struct mbuf **np;
1580	struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
1581	int v4only = 0;
1582
1583	*mp = NULL;
1584	np = ip6_savecontrol_v4(in6p, m, mp, &v4only);
1585	if (np == NULL)
1586		goto no_mbufs;
1587
1588	mp = np;
1589	if (v4only)
1590		return (0);
1591
1592	if ((in6p->inp_flags & IN6P_TCLASS) != 0) {
1593		u_int32_t flowinfo;
1594		int tclass;
1595
1596		flowinfo = (u_int32_t)ntohl(ip6->ip6_flow & IPV6_FLOWINFO_MASK);
1597		flowinfo >>= 20;
1598
1599		tclass = flowinfo & 0xff;
1600		mp = sbcreatecontrol_mbuf((caddr_t)&tclass, sizeof (tclass),
1601		    IPV6_TCLASS, IPPROTO_IPV6, mp);
1602		if (*mp == NULL)
1603			goto no_mbufs;
1604	}
1605
1606	/*
1607	 * IPV6_HOPOPTS socket option.  Recall that we required super-user
1608	 * privilege for the option (see ip6_ctloutput), but it might be too
1609	 * strict, since there might be some hop-by-hop options which can be
1610	 * returned to normal user.
1611	 * See also RFC 2292 section 6 (or RFC 3542 section 8).
1612	 */
1613	if ((in6p->inp_flags & IN6P_HOPOPTS) != 0) {
1614		/*
1615		 * Check if a hop-by-hop options header is contatined in the
1616		 * received packet, and if so, store the options as ancillary
1617		 * data. Note that a hop-by-hop options header must be
1618		 * just after the IPv6 header, which is assured through the
1619		 * IPv6 input processing.
1620		 */
1621		ip6 = mtod(m, struct ip6_hdr *);
1622		if (ip6->ip6_nxt == IPPROTO_HOPOPTS) {
1623			struct ip6_hbh *hbh;
1624			int hbhlen = 0;
1625			hbh = (struct ip6_hbh *)(ip6 + 1);
1626			hbhlen = (hbh->ip6h_len + 1) << 3;
1627
1628			/*
1629			 * XXX: We copy the whole header even if a
1630			 * jumbo payload option is included, the option which
1631			 * is to be removed before returning according to
1632			 * RFC2292.
1633			 * Note: this constraint is removed in RFC3542
1634			 */
1635			mp = sbcreatecontrol_mbuf((caddr_t)hbh, hbhlen,
1636			    IS2292(in6p, IPV6_2292HOPOPTS, IPV6_HOPOPTS),
1637			    IPPROTO_IPV6, mp);
1638
1639			if (*mp == NULL) {
1640				goto no_mbufs;
1641			}
1642		}
1643	}
1644
1645	if ((in6p->inp_flags & (IN6P_RTHDR | IN6P_DSTOPTS)) != 0) {
1646		int nxt = ip6->ip6_nxt, off = sizeof (struct ip6_hdr);
1647
1648		/*
1649		 * Search for destination options headers or routing
1650		 * header(s) through the header chain, and stores each
1651		 * header as ancillary data.
1652		 * Note that the order of the headers remains in
1653		 * the chain of ancillary data.
1654		 */
1655		while (1) {	/* is explicit loop prevention necessary? */
1656			struct ip6_ext *ip6e = NULL;
1657			int elen;
1658
1659			/*
1660			 * if it is not an extension header, don't try to
1661			 * pull it from the chain.
1662			 */
1663			switch (nxt) {
1664			case IPPROTO_DSTOPTS:
1665			case IPPROTO_ROUTING:
1666			case IPPROTO_HOPOPTS:
1667			case IPPROTO_AH: /* is it possible? */
1668				break;
1669			default:
1670				goto loopend;
1671			}
1672
1673			if (off + sizeof (*ip6e) > m->m_len)
1674				goto loopend;
1675			ip6e = (struct ip6_ext *)(mtod(m, caddr_t) + off);
1676			if (nxt == IPPROTO_AH)
1677				elen = (ip6e->ip6e_len + 2) << 2;
1678			else
1679				elen = (ip6e->ip6e_len + 1) << 3;
1680			if (off + elen > m->m_len)
1681				goto loopend;
1682
1683			switch (nxt) {
1684			case IPPROTO_DSTOPTS:
1685				if (!(in6p->inp_flags & IN6P_DSTOPTS))
1686					break;
1687
1688				mp = sbcreatecontrol_mbuf((caddr_t)ip6e, elen,
1689				    IS2292(in6p, IPV6_2292DSTOPTS,
1690				    IPV6_DSTOPTS), IPPROTO_IPV6, mp);
1691				if (*mp == NULL) {
1692					goto no_mbufs;
1693				}
1694				break;
1695			case IPPROTO_ROUTING:
1696				if (!in6p->inp_flags & IN6P_RTHDR)
1697					break;
1698
1699				mp = sbcreatecontrol_mbuf((caddr_t)ip6e, elen,
1700				    IS2292(in6p, IPV6_2292RTHDR, IPV6_RTHDR),
1701				    IPPROTO_IPV6, mp);
1702				if (*mp == NULL) {
1703					goto no_mbufs;
1704				}
1705				break;
1706			case IPPROTO_HOPOPTS:
1707			case IPPROTO_AH: /* is it possible? */
1708				break;
1709
1710			default:
1711				/*
1712				 * other cases have been filtered in the above.
1713				 * none will visit this case.  here we supply
1714				 * the code just in case (nxt overwritten or
1715				 * other cases).
1716				 */
1717				goto loopend;
1718
1719			}
1720
1721			/* proceed with the next header. */
1722			off += elen;
1723			nxt = ip6e->ip6e_nxt;
1724			ip6e = NULL;
1725		}
1726loopend:
1727		;
1728	}
1729	return (0);
1730no_mbufs:
1731	ip6stat.ip6s_pktdropcntrl++;
1732	/* XXX increment a stat to show the failure */
1733	return (ENOBUFS);
1734}
1735#undef IS2292
1736
1737void
1738ip6_notify_pmtu(struct inpcb *in6p, struct sockaddr_in6 *dst, u_int32_t *mtu)
1739{
1740	struct socket *so;
1741	struct mbuf *m_mtu;
1742	struct ip6_mtuinfo mtuctl;
1743
1744	so =  in6p->inp_socket;
1745
1746	if (mtu == NULL)
1747		return;
1748
1749#ifdef DIAGNOSTIC
1750	if (so == NULL) {		/* I believe this is impossible */
1751		panic("ip6_notify_pmtu: socket is NULL");
1752		/* NOTREACHED */
1753	}
1754#endif
1755
1756	bzero(&mtuctl, sizeof (mtuctl));	/* zero-clear for safety */
1757	mtuctl.ip6m_mtu = *mtu;
1758	mtuctl.ip6m_addr = *dst;
1759	if (sa6_recoverscope(&mtuctl.ip6m_addr, TRUE))
1760		return;
1761
1762	if ((m_mtu = sbcreatecontrol((caddr_t)&mtuctl, sizeof (mtuctl),
1763	    IPV6_PATHMTU, IPPROTO_IPV6)) == NULL)
1764		return;
1765
1766	if (sbappendaddr(&so->so_rcv, SA(dst), NULL, m_mtu, NULL) == 0) {
1767		m_freem(m_mtu);
1768		/* XXX: should count statistics */
1769	} else {
1770		sorwakeup(so);
1771	}
1772}
1773
1774/*
1775 * Get pointer to the previous header followed by the header
1776 * currently processed.
1777 * XXX: This function supposes that
1778 *	M includes all headers,
1779 *	the next header field and the header length field of each header
1780 *	are valid, and
1781 *	the sum of each header length equals to OFF.
1782 * Because of these assumptions, this function must be called very
1783 * carefully. Moreover, it will not be used in the near future when
1784 * we develop `neater' mechanism to process extension headers.
1785 */
1786char *
1787ip6_get_prevhdr(m, off)
1788	struct mbuf *m;
1789	int off;
1790{
1791	struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
1792
1793	if (off == sizeof (struct ip6_hdr)) {
1794		return ((char *)&ip6->ip6_nxt);
1795	} else {
1796		int len, nxt;
1797		struct ip6_ext *ip6e = NULL;
1798
1799		nxt = ip6->ip6_nxt;
1800		len = sizeof (struct ip6_hdr);
1801		while (len < off) {
1802			ip6e = (struct ip6_ext *)(mtod(m, caddr_t) + len);
1803
1804			switch (nxt) {
1805			case IPPROTO_FRAGMENT:
1806				len += sizeof (struct ip6_frag);
1807				break;
1808			case IPPROTO_AH:
1809				len += (ip6e->ip6e_len + 2) << 2;
1810				break;
1811			default:
1812				len += (ip6e->ip6e_len + 1) << 3;
1813				break;
1814			}
1815			nxt = ip6e->ip6e_nxt;
1816		}
1817		if (ip6e)
1818			return ((char *)&ip6e->ip6e_nxt);
1819		else
1820			return (NULL);
1821	}
1822}
1823
1824/*
1825 * get next header offset.  m will be retained.
1826 */
1827int
1828ip6_nexthdr(struct mbuf *m, int off, int proto, int *nxtp)
1829{
1830	struct ip6_hdr ip6;
1831	struct ip6_ext ip6e;
1832	struct ip6_frag fh;
1833
1834	/* just in case */
1835	VERIFY(m != NULL);
1836	if ((m->m_flags & M_PKTHDR) == 0 || m->m_pkthdr.len < off)
1837		return (-1);
1838
1839	switch (proto) {
1840	case IPPROTO_IPV6:
1841		if (m->m_pkthdr.len < off + sizeof (ip6))
1842			return (-1);
1843		m_copydata(m, off, sizeof (ip6), (caddr_t)&ip6);
1844		if (nxtp)
1845			*nxtp = ip6.ip6_nxt;
1846		off += sizeof (ip6);
1847		return (off);
1848
1849	case IPPROTO_FRAGMENT:
1850		/*
1851		 * terminate parsing if it is not the first fragment,
1852		 * it does not make sense to parse through it.
1853		 */
1854		if (m->m_pkthdr.len < off + sizeof (fh))
1855			return (-1);
1856		m_copydata(m, off, sizeof (fh), (caddr_t)&fh);
1857		/* IP6F_OFF_MASK = 0xfff8(BigEndian), 0xf8ff(LittleEndian) */
1858		if (fh.ip6f_offlg & IP6F_OFF_MASK)
1859			return (-1);
1860		if (nxtp)
1861			*nxtp = fh.ip6f_nxt;
1862		off += sizeof (struct ip6_frag);
1863		return (off);
1864
1865	case IPPROTO_AH:
1866		if (m->m_pkthdr.len < off + sizeof (ip6e))
1867			return (-1);
1868		m_copydata(m, off, sizeof (ip6e), (caddr_t)&ip6e);
1869		if (nxtp)
1870			*nxtp = ip6e.ip6e_nxt;
1871		off += (ip6e.ip6e_len + 2) << 2;
1872		return (off);
1873
1874	case IPPROTO_HOPOPTS:
1875	case IPPROTO_ROUTING:
1876	case IPPROTO_DSTOPTS:
1877		if (m->m_pkthdr.len < off + sizeof (ip6e))
1878			return (-1);
1879		m_copydata(m, off, sizeof (ip6e), (caddr_t)&ip6e);
1880		if (nxtp)
1881			*nxtp = ip6e.ip6e_nxt;
1882		off += (ip6e.ip6e_len + 1) << 3;
1883		return (off);
1884
1885	case IPPROTO_NONE:
1886	case IPPROTO_ESP:
1887	case IPPROTO_IPCOMP:
1888		/* give up */
1889		return (-1);
1890
1891	default:
1892		return (-1);
1893	}
1894
1895	return (-1);
1896}
1897
1898/*
1899 * get offset for the last header in the chain.  m will be kept untainted.
1900 */
1901int
1902ip6_lasthdr(struct mbuf *m, int off, int proto, int *nxtp)
1903{
1904	int newoff;
1905	int nxt;
1906
1907	if (!nxtp) {
1908		nxt = -1;
1909		nxtp = &nxt;
1910	}
1911	while (1) {
1912		newoff = ip6_nexthdr(m, off, proto, nxtp);
1913		if (newoff < 0)
1914			return (off);
1915		else if (newoff < off)
1916			return (-1);	/* invalid */
1917		else if (newoff == off)
1918			return (newoff);
1919
1920		off = newoff;
1921		proto = *nxtp;
1922	}
1923}
1924
1925struct ip6aux *
1926ip6_addaux(struct mbuf *m)
1927{
1928	struct m_tag		*tag;
1929
1930	/* Check if one is already allocated */
1931	tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID,
1932	    KERNEL_TAG_TYPE_INET6, NULL);
1933	if (tag == NULL) {
1934		/* Allocate a tag */
1935		tag = m_tag_create(KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_INET6,
1936		    sizeof (struct ip6aux), M_DONTWAIT, m);
1937
1938		/* Attach it to the mbuf */
1939		if (tag) {
1940			m_tag_prepend(m, tag);
1941		}
1942	}
1943
1944	return (tag ? (struct ip6aux *)(tag + 1) : NULL);
1945}
1946
1947struct ip6aux *
1948ip6_findaux(struct mbuf *m)
1949{
1950	struct m_tag	*tag;
1951
1952	tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID,
1953	    KERNEL_TAG_TYPE_INET6, NULL);
1954
1955	return (tag ? (struct ip6aux *)(tag + 1) : NULL);
1956}
1957
1958void
1959ip6_delaux(struct mbuf *m)
1960{
1961	struct m_tag	*tag;
1962
1963	tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID,
1964	    KERNEL_TAG_TYPE_INET6, NULL);
1965	if (tag) {
1966		m_tag_delete(m, tag);
1967	}
1968}
1969
1970/*
1971 * Drain callback
1972 */
1973void
1974ip6_drain(void)
1975{
1976	frag6_drain();		/* fragments */
1977	in6_rtqdrain();		/* protocol cloned routes */
1978	nd6_drain(NULL);	/* cloned routes: ND6 */
1979}
1980
1981/*
1982 * System control for IP6
1983 */
1984
1985u_char	inet6ctlerrmap[PRC_NCMDS] = {
1986	0,		0,		0,		0,
1987	0,		EMSGSIZE,	EHOSTDOWN,	EHOSTUNREACH,
1988	EHOSTUNREACH,	EHOSTUNREACH,	ECONNREFUSED,	ECONNREFUSED,
1989	EMSGSIZE,	EHOSTUNREACH,	0,		0,
1990	0,		0,		0,		0,
1991	ENOPROTOOPT
1992};
1993