1/* vi:set ts=8 sts=4 sw=4:
2 *
3 * VIM - Vi IMproved	by Bram Moolenaar
4 *
5 * Do ":help uganda"  in Vim to read copying and usage conditions.
6 * Do ":help credits" in Vim to see a list of people who contributed.
7 * See README.txt for an overview of the Vim source code.
8 */
9
10/*
11 * hashtab.c: Handling of a hashtable with Vim-specific properties.
12 *
13 * Each item in a hashtable has a NUL terminated string key.  A key can appear
14 * only once in the table.
15 *
16 * A hash number is computed from the key for quick lookup.  When the hashes
17 * of two different keys point to the same entry an algorithm is used to
18 * iterate over other entries in the table until the right one is found.
19 * To make the iteration work removed keys are different from entries where a
20 * key was never present.
21 *
22 * The mechanism has been partly based on how Python Dictionaries are
23 * implemented.  The algorithm is from Knuth Vol. 3, Sec. 6.4.
24 *
25 * The hashtable grows to accommodate more entries when needed.  At least 1/3
26 * of the entries is empty to keep the lookup efficient (at the cost of extra
27 * memory).
28 */
29
30#include "vim.h"
31
32#if defined(FEAT_EVAL) || defined(FEAT_SYN_HL) || defined(PROTO)
33
34#if 0
35# define HT_DEBUG	/* extra checks for table consistency  and statistics */
36
37static long hash_count_lookup = 0;	/* count number of hashtab lookups */
38static long hash_count_perturb = 0;	/* count number of "misses" */
39#endif
40
41/* Magic value for algorithm that walks through the array. */
42#define PERTURB_SHIFT 5
43
44static int hash_may_resize __ARGS((hashtab_T *ht, int minitems));
45
46#if 0 /* currently not used */
47/*
48 * Create an empty hash table.
49 * Returns NULL when out of memory.
50 */
51    hashtab_T *
52hash_create()
53{
54    hashtab_T *ht;
55
56    ht = (hashtab_T *)alloc(sizeof(hashtab_T));
57    if (ht != NULL)
58	hash_init(ht);
59    return ht;
60}
61#endif
62
63/*
64 * Initialize an empty hash table.
65 */
66    void
67hash_init(ht)
68    hashtab_T *ht;
69{
70    /* This zeroes all "ht_" entries and all the "hi_key" in "ht_smallarray". */
71    vim_memset(ht, 0, sizeof(hashtab_T));
72    ht->ht_array = ht->ht_smallarray;
73    ht->ht_mask = HT_INIT_SIZE - 1;
74}
75
76/*
77 * Free the array of a hash table.  Does not free the items it contains!
78 * If "ht" is not freed then you should call hash_init() next!
79 */
80    void
81hash_clear(ht)
82    hashtab_T *ht;
83{
84    if (ht->ht_array != ht->ht_smallarray)
85	vim_free(ht->ht_array);
86}
87
88/*
89 * Free the array of a hash table and all the keys it contains.  The keys must
90 * have been allocated.  "off" is the offset from the start of the allocate
91 * memory to the location of the key (it's always positive).
92 */
93    void
94hash_clear_all(ht, off)
95    hashtab_T	*ht;
96    int		off;
97{
98    long	todo;
99    hashitem_T	*hi;
100
101    todo = (long)ht->ht_used;
102    for (hi = ht->ht_array; todo > 0; ++hi)
103    {
104	if (!HASHITEM_EMPTY(hi))
105	{
106	    vim_free(hi->hi_key - off);
107	    --todo;
108	}
109    }
110    hash_clear(ht);
111}
112
113/*
114 * Find "key" in hashtable "ht".  "key" must not be NULL.
115 * Always returns a pointer to a hashitem.  If the item was not found then
116 * HASHITEM_EMPTY() is TRUE.  The pointer is then the place where the key
117 * would be added.
118 * WARNING: The returned pointer becomes invalid when the hashtable is changed
119 * (adding, setting or removing an item)!
120 */
121    hashitem_T *
122hash_find(ht, key)
123    hashtab_T	*ht;
124    char_u	*key;
125{
126    return hash_lookup(ht, key, hash_hash(key));
127}
128
129/*
130 * Like hash_find(), but caller computes "hash".
131 */
132    hashitem_T *
133hash_lookup(ht, key, hash)
134    hashtab_T	*ht;
135    char_u	*key;
136    hash_T	hash;
137{
138    hash_T	perturb;
139    hashitem_T	*freeitem;
140    hashitem_T	*hi;
141    int		idx;
142
143#ifdef HT_DEBUG
144    ++hash_count_lookup;
145#endif
146
147    /*
148     * Quickly handle the most common situations:
149     * - return if there is no item at all
150     * - skip over a removed item
151     * - return if the item matches
152     */
153    idx = (int)(hash & ht->ht_mask);
154    hi = &ht->ht_array[idx];
155
156    if (hi->hi_key == NULL)
157	return hi;
158    if (hi->hi_key == HI_KEY_REMOVED)
159	freeitem = hi;
160    else if (hi->hi_hash == hash && STRCMP(hi->hi_key, key) == 0)
161	return hi;
162    else
163	freeitem = NULL;
164
165    /*
166     * Need to search through the table to find the key.  The algorithm
167     * to step through the table starts with large steps, gradually becoming
168     * smaller down to (1/4 table size + 1).  This means it goes through all
169     * table entries in the end.
170     * When we run into a NULL key it's clear that the key isn't there.
171     * Return the first available slot found (can be a slot of a removed
172     * item).
173     */
174    for (perturb = hash; ; perturb >>= PERTURB_SHIFT)
175    {
176#ifdef HT_DEBUG
177	++hash_count_perturb;	    /* count a "miss" for hashtab lookup */
178#endif
179	idx = (int)((idx << 2) + idx + perturb + 1);
180	hi = &ht->ht_array[idx & ht->ht_mask];
181	if (hi->hi_key == NULL)
182	    return freeitem == NULL ? hi : freeitem;
183	if (hi->hi_hash == hash
184		&& hi->hi_key != HI_KEY_REMOVED
185		&& STRCMP(hi->hi_key, key) == 0)
186	    return hi;
187	if (hi->hi_key == HI_KEY_REMOVED && freeitem == NULL)
188	    freeitem = hi;
189    }
190}
191
192/*
193 * Print the efficiency of hashtable lookups.
194 * Useful when trying different hash algorithms.
195 * Called when exiting.
196 */
197    void
198hash_debug_results()
199{
200#ifdef HT_DEBUG
201    fprintf(stderr, "\r\n\r\n\r\n\r\n");
202    fprintf(stderr, "Number of hashtable lookups: %ld\r\n", hash_count_lookup);
203    fprintf(stderr, "Number of perturb loops: %ld\r\n", hash_count_perturb);
204    fprintf(stderr, "Percentage of perturb loops: %ld%%\r\n",
205				hash_count_perturb * 100 / hash_count_lookup);
206#endif
207}
208
209/*
210 * Add item with key "key" to hashtable "ht".
211 * Returns FAIL when out of memory or the key is already present.
212 */
213    int
214hash_add(ht, key)
215    hashtab_T	*ht;
216    char_u	*key;
217{
218    hash_T	hash = hash_hash(key);
219    hashitem_T	*hi;
220
221    hi = hash_lookup(ht, key, hash);
222    if (!HASHITEM_EMPTY(hi))
223    {
224	EMSG2(_(e_intern2), "hash_add()");
225	return FAIL;
226    }
227    return hash_add_item(ht, hi, key, hash);
228}
229
230/*
231 * Add item "hi" with "key" to hashtable "ht".  "key" must not be NULL and
232 * "hi" must have been obtained with hash_lookup() and point to an empty item.
233 * "hi" is invalid after this!
234 * Returns OK or FAIL (out of memory).
235 */
236    int
237hash_add_item(ht, hi, key, hash)
238    hashtab_T	*ht;
239    hashitem_T	*hi;
240    char_u	*key;
241    hash_T	hash;
242{
243    /* If resizing failed before and it fails again we can't add an item. */
244    if (ht->ht_error && hash_may_resize(ht, 0) == FAIL)
245	return FAIL;
246
247    ++ht->ht_used;
248    if (hi->hi_key == NULL)
249	++ht->ht_filled;
250    hi->hi_key = key;
251    hi->hi_hash = hash;
252
253    /* When the space gets low may resize the array. */
254    return hash_may_resize(ht, 0);
255}
256
257#if 0  /* not used */
258/*
259 * Overwrite hashtable item "hi" with "key".  "hi" must point to the item that
260 * is to be overwritten.  Thus the number of items in the hashtable doesn't
261 * change.
262 * Although the key must be identical, the pointer may be different, thus it's
263 * set anyway (the key is part of an item with that key).
264 * The caller must take care of freeing the old item.
265 * "hi" is invalid after this!
266 */
267    void
268hash_set(hi, key)
269    hashitem_T	*hi;
270    char_u	*key;
271{
272    hi->hi_key = key;
273}
274#endif
275
276/*
277 * Remove item "hi" from  hashtable "ht".  "hi" must have been obtained with
278 * hash_lookup().
279 * The caller must take care of freeing the item itself.
280 */
281    void
282hash_remove(ht, hi)
283    hashtab_T	*ht;
284    hashitem_T	*hi;
285{
286    --ht->ht_used;
287    hi->hi_key = HI_KEY_REMOVED;
288    hash_may_resize(ht, 0);
289}
290
291/*
292 * Lock a hashtable: prevent that ht_array changes.
293 * Don't use this when items are to be added!
294 * Must call hash_unlock() later.
295 */
296    void
297hash_lock(ht)
298    hashtab_T	*ht;
299{
300    ++ht->ht_locked;
301}
302
303#if 0	    /* currently not used */
304/*
305 * Lock a hashtable at the specified number of entries.
306 * Caller must make sure no more than "size" entries will be added.
307 * Must call hash_unlock() later.
308 */
309    void
310hash_lock_size(ht, size)
311    hashtab_T	*ht;
312    int		size;
313{
314    (void)hash_may_resize(ht, size);
315    ++ht->ht_locked;
316}
317#endif
318
319/*
320 * Unlock a hashtable: allow ht_array changes again.
321 * Table will be resized (shrink) when necessary.
322 * This must balance a call to hash_lock().
323 */
324    void
325hash_unlock(ht)
326    hashtab_T	*ht;
327{
328    --ht->ht_locked;
329    (void)hash_may_resize(ht, 0);
330}
331
332/*
333 * Shrink a hashtable when there is too much empty space.
334 * Grow a hashtable when there is not enough empty space.
335 * Returns OK or FAIL (out of memory).
336 */
337    static int
338hash_may_resize(ht, minitems)
339    hashtab_T	*ht;
340    int		minitems;		/* minimal number of items */
341{
342    hashitem_T	temparray[HT_INIT_SIZE];
343    hashitem_T	*oldarray, *newarray;
344    hashitem_T	*olditem, *newitem;
345    int		newi;
346    int		todo;
347    long_u	oldsize, newsize;
348    long_u	minsize;
349    long_u	newmask;
350    hash_T	perturb;
351
352    /* Don't resize a locked table. */
353    if (ht->ht_locked > 0)
354	return OK;
355
356#ifdef HT_DEBUG
357    if (ht->ht_used > ht->ht_filled)
358	EMSG("hash_may_resize(): more used than filled");
359    if (ht->ht_filled >= ht->ht_mask + 1)
360	EMSG("hash_may_resize(): table completely filled");
361#endif
362
363    if (minitems == 0)
364    {
365	/* Return quickly for small tables with at least two NULL items.  NULL
366	 * items are required for the lookup to decide a key isn't there. */
367	if (ht->ht_filled < HT_INIT_SIZE - 1
368					 && ht->ht_array == ht->ht_smallarray)
369	    return OK;
370
371	/*
372	 * Grow or refill the array when it's more than 2/3 full (including
373	 * removed items, so that they get cleaned up).
374	 * Shrink the array when it's less than 1/5 full.  When growing it is
375	 * at least 1/4 full (avoids repeated grow-shrink operations)
376	 */
377	oldsize = ht->ht_mask + 1;
378	if (ht->ht_filled * 3 < oldsize * 2 && ht->ht_used > oldsize / 5)
379	    return OK;
380
381	if (ht->ht_used > 1000)
382	    minsize = ht->ht_used * 2;  /* it's big, don't make too much room */
383	else
384	    minsize = ht->ht_used * 4;  /* make plenty of room */
385    }
386    else
387    {
388	/* Use specified size. */
389	if ((long_u)minitems < ht->ht_used)	/* just in case... */
390	    minitems = (int)ht->ht_used;
391	minsize = minitems * 3 / 2;	/* array is up to 2/3 full */
392    }
393
394    newsize = HT_INIT_SIZE;
395    while (newsize < minsize)
396    {
397	newsize <<= 1;		/* make sure it's always a power of 2 */
398	if (newsize == 0)
399	    return FAIL;	/* overflow */
400    }
401
402    if (newsize == HT_INIT_SIZE)
403    {
404	/* Use the small array inside the hashdict structure. */
405	newarray = ht->ht_smallarray;
406	if (ht->ht_array == newarray)
407	{
408	    /* Moving from ht_smallarray to ht_smallarray!  Happens when there
409	     * are many removed items.  Copy the items to be able to clean up
410	     * removed items. */
411	    mch_memmove(temparray, newarray, sizeof(temparray));
412	    oldarray = temparray;
413	}
414	else
415	    oldarray = ht->ht_array;
416    }
417    else
418    {
419	/* Allocate an array. */
420	newarray = (hashitem_T *)alloc((unsigned)
421					      (sizeof(hashitem_T) * newsize));
422	if (newarray == NULL)
423	{
424	    /* Out of memory.  When there are NULL items still return OK.
425	     * Otherwise set ht_error, because lookup may result in a hang if
426	     * we add another item. */
427	    if (ht->ht_filled < ht->ht_mask)
428		return OK;
429	    ht->ht_error = TRUE;
430	    return FAIL;
431	}
432	oldarray = ht->ht_array;
433    }
434    vim_memset(newarray, 0, (size_t)(sizeof(hashitem_T) * newsize));
435
436    /*
437     * Move all the items from the old array to the new one, placing them in
438     * the right spot.  The new array won't have any removed items, thus this
439     * is also a cleanup action.
440     */
441    newmask = newsize - 1;
442    todo = (int)ht->ht_used;
443    for (olditem = oldarray; todo > 0; ++olditem)
444	if (!HASHITEM_EMPTY(olditem))
445	{
446	    /*
447	     * The algorithm to find the spot to add the item is identical to
448	     * the algorithm to find an item in hash_lookup().  But we only
449	     * need to search for a NULL key, thus it's simpler.
450	     */
451	    newi = (int)(olditem->hi_hash & newmask);
452	    newitem = &newarray[newi];
453
454	    if (newitem->hi_key != NULL)
455		for (perturb = olditem->hi_hash; ; perturb >>= PERTURB_SHIFT)
456		{
457		    newi = (int)((newi << 2) + newi + perturb + 1);
458		    newitem = &newarray[newi & newmask];
459		    if (newitem->hi_key == NULL)
460			break;
461		}
462	    *newitem = *olditem;
463	    --todo;
464	}
465
466    if (ht->ht_array != ht->ht_smallarray)
467	vim_free(ht->ht_array);
468    ht->ht_array = newarray;
469    ht->ht_mask = newmask;
470    ht->ht_filled = ht->ht_used;
471    ht->ht_error = FALSE;
472
473    return OK;
474}
475
476/*
477 * Get the hash number for a key.
478 * If you think you know a better hash function: Compile with HT_DEBUG set and
479 * run a script that uses hashtables a lot.  Vim will then print statistics
480 * when exiting.  Try that with the current hash algorithm and yours.  The
481 * lower the percentage the better.
482 */
483    hash_T
484hash_hash(key)
485    char_u	*key;
486{
487    hash_T	hash;
488    char_u	*p;
489
490    if ((hash = *key) == 0)
491	return (hash_T)0;	/* Empty keys are not allowed, but we don't
492				   want to crash if we get one. */
493    p = key + 1;
494
495    /* A simplistic algorithm that appears to do very well.
496     * Suggested by George Reilly. */
497    while (*p != NUL)
498	hash = hash * 101 + *p++;
499
500    return hash;
501}
502
503#endif
504