1# desjr.tcl
2# $Revision: 1.1 $
3# $Date: 2005/09/26 09:16:59 $
4#
5# Port of Javascript implementation to Tcl 8.4 by Mac A. Cody,
6# 3DES functionality removed, February, 2003
7# July, 2003   - Separated key set generation from encryption/decryption.
8#                Renamed "des" procedure to "block" to differentiate from the
9#                "stream" procedure used for CFB and OFB modes.
10#                Modified the "encrypt" and "decrypt" procedures to support
11#                CFB and OFB modes. Changed the procedure arguments.
12# August, 2003 - Added the "stream" procedure to support CFB and OFB modes.
13# June, 2004 - Corrected input vector bug in stream-mode processing.  Added
14#              support for feedback vector storage and management function.
15#              This enables a stream of data to be processed over several calls
16#              to the encryptor or decryptor.
17# September, 2004 - Added feedback vector to the CBC mode of operation to allow
18#                   a large data set to be processed over several calls to the
19#                   encryptor or decryptor.
20# October, 2004 - Added test for weak keys in the createKeys procedure.
21#
22# Paul Tero, July 2001
23# http://www.shopable.co.uk/des.html
24#
25# Optimised for performance with large blocks by Michael Hayworth,
26# November 2001, http://www.netdealing.com
27#
28# This software is copyrighted (c) 2003, 2004 by Mac A. Cody.  All rights
29# reserved.  The following terms apply to all files associated with
30# the software unless explicitly disclaimed in individual files or
31# directories.
32
33# The authors hereby grant permission to use, copy, modify, distribute,
34# and license this software for any purpose, provided that existing
35# copyright notices are retained in all copies and that this notice is
36# included verbatim in any distributions. No written agreement, license,
37# or royalty fee is required for any of the authorized uses.
38# Modifications to this software may be copyrighted by their authors and
39# need not follow the licensing terms described here, provided that the
40# new terms are clearly indicated on the first page of each file where
41# they apply.
42
43# IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY
44# FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
45# ARISING OUT OF THE USE OF THIS SOFTWARE, ITS DOCUMENTATION, OR ANY
46# DERIVATIVES THEREOF, EVEN IF THE AUTHORS HAVE BEEN ADVISED OF THE
47# POSSIBILITY OF SUCH DAMAGE.
48
49# THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES,
50# INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
51# FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT.  THIS SOFTWARE
52# IS PROVIDED ON AN "AS IS" BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE
53# NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR
54# MODIFICATIONS.
55
56# GOVERNMENT USE: If you are acquiring this software on behalf of the
57# U.S. government, the Government shall have only "Restricted Rights"
58# in the software and related documentation as defined in the Federal
59# Acquisition Regulations (FARs) in Clause 52.227.19 (c) (2).  If you
60# are acquiring the software on behalf of the Department of Defense, the
61# software shall be classified as "Commercial Computer Software" and the
62# Government shall have only "Restricted Rights" as defined in Clause
63# 252.227-7013 (c) (1) of DFARs.  Notwithstanding the foregoing, the
64# authors grant the U.S. Government and others acting in its behalf
65# permission to use and distribute the software in accordance with the
66# terms specified in this license.
67namespace eval des {
68    variable keysets
69    set keysets(ndx) 1
70    # Produre: keyset - Create or destroy a keyset created
71    #                   from a 64-bit DES key.
72    # Inputs:
73    #   oper  : The operation to be performed.  This will be either "create"
74    #           (make a new keyset) or "destroy" (delete an existing keyset).
75    #           The meaning of the argument "value" depends of the operation
76    #           performed.  An error is generated if "oper" is not "create"
77    #           or "destroy".
78    #
79    #   value : If the argument "oper" is "create", then "value" is the 64-bit
80    #           DES key.  (Note: The lsb of each byte is ignored; odd parity is
81    #           not required).  If the argument "oper" is "destroy", then
82    #           "value" is a handle to a keyset that was created previously.
83    #
84    #   weak:   If true then weak keys are allowed. The default is to raise an
85    #           error when a weak key is seen.
86    # Output:
87    #   If the argument "oper" is "create", then the output is a handle to the
88    #   keyset stored in the des namespace.  If the argument "oper" is
89    #   "destroy", then nothing is returned.
90    proc keyset {oper value {weak 0}} {
91	variable keysets
92	set newset {}
93	switch -exact -- $oper {
94	    create {
95		# Create a new keyset handle.
96		set newset keyset$keysets(ndx)
97		# Create key set
98		set keysets($newset) [createKeys $value $weak]
99		# Never use that keyset handle index again.
100		incr keysets(ndx)
101	    }
102	    destroy {
103		# Determine if the keyset handle is valid.
104		if {[array names keysets $value] != {}} {
105		    # Delete the handle and corresponding keyset.
106                    unset keysets($value)
107		} else {
108		    error "The keyset handle \"$value\" is invalid!"
109		}
110	    }
111	    default {
112		error {The operator must be either "create" or "destroy".}
113	    }
114	}
115	return $newset
116    }
117
118    # Procedure: encrypt - Encryption front-end for the des procedure
119    # Inputs:
120    #   keyset  : Handle to an existing keyset.
121    #   message : String to be encrypted.
122    #   mode    : DES mode ecb (default), cbc, cfb, or ofb.
123    #   iv      : Name of the initialization vector used in CBC, CFB,
124    #             and OFB modes.
125    #   kbits   : Number of bits in a data block (default of 64).
126    # Output:
127    #   The encrypted data string.
128    proc encrypt {keyset message {mode ecb} {iv {}} {kbits 64}} {
129	switch -exact -- $mode {
130	    ecb {
131		return [block $keyset $message 1 0]
132	    }
133	    cbc -
134	    ofb -
135	    cfb {
136		# Is the initialization/feedback vector variable is valid?
137		if {[string length $iv] == 0} {
138		    error "An initialization variable must be specified."
139		} else {
140		    upvar $iv ivec
141		    if {![info exists ivec]} {
142			error "The variable $iv does not exist."
143		    }
144		}
145		switch -exact -- $mode {
146		    cbc {
147			return [block $keyset $message 1 1 ivec]
148		    }
149		    ofb {
150			return [stream $keyset $message 1 0 ivec $kbits]
151		    }
152		    cfb {
153			return [stream $keyset $message 1 1 ivec $kbits]
154		    }
155		}
156	    }
157	    default {
158		error {Mode must be ecb, cbc, cfb, or ofb.}
159	    }
160	}
161    }
162
163    # Procedure: decrypt - Decryption front-end for the des procedure
164    # Inputs:
165    #   keyset  : Handle to an existing keyset.
166    #   message : String to be decrypted.
167    #   mode    : DES mode ecb (default), cbc, cfb, or ofb.
168    #   iv      : Name of the initialization vector used in CBC, CFB,
169    #             and OFB modes.
170    #   kbits   : Number of bits in a data block (default of 64).
171    # Output:
172    #   The encrypted or decrypted data string.
173    proc decrypt {keyset message {mode ecb} {iv {}} {kbits 64}} {
174	switch -exact -- $mode {
175	    ecb {
176		return [block $keyset $message 0 0]
177	    }
178	    cbc -
179	    ofb -
180	    cfb {
181		# Is the initialization/feedback vector variable is valid?
182		if {[string length $iv] < 1} {
183		    error "An initialization variable must be specified."
184		} else {
185		    upvar $iv ivec
186		    if {![info exists ivec]} {
187			error "The variable $iv does not exist."
188		    }
189		}
190		switch -exact -- $mode {
191		    cbc {
192			return [block $keyset $message 0 1 ivec]
193		    }
194		    ofb {
195			return [stream $keyset $message 0 0 ivec $kbits]
196		    }
197		    cfb {
198			return [stream $keyset $message 0 1 ivec $kbits]
199		    }
200		}
201	    }
202	    default {
203		error {Mode must be ecb, cbc, cfb, or ofb.}
204	    }
205	}
206    }
207
208    variable spfunction1 [list 0x1010400 0 0x10000 0x1010404 0x1010004 0x10404 0x4 0x10000 0x400 0x1010400 0x1010404 0x400 0x1000404 0x1010004 0x1000000 0x4 0x404 0x1000400 0x1000400 0x10400 0x10400 0x1010000 0x1010000 0x1000404 0x10004 0x1000004 0x1000004 0x10004 0 0x404 0x10404 0x1000000 0x10000 0x1010404 0x4 0x1010000 0x1010400 0x1000000 0x1000000 0x400 0x1010004 0x10000 0x10400 0x1000004 0x400 0x4 0x1000404 0x10404 0x1010404 0x10004 0x1010000 0x1000404 0x1000004 0x404 0x10404 0x1010400 0x404 0x1000400 0x1000400 0 0x10004 0x10400 0 0x1010004];
209    variable spfunction2 [list 0x80108020 0x80008000 0x8000 0x108020 0x100000 0x20 0x80100020 0x80008020 0x80000020 0x80108020 0x80108000 0x80000000 0x80008000 0x100000 0x20 0x80100020 0x108000 0x100020 0x80008020 0 0x80000000 0x8000 0x108020 0x80100000 0x100020 0x80000020 0 0x108000 0x8020 0x80108000 0x80100000 0x8020 0 0x108020 0x80100020 0x100000 0x80008020 0x80100000 0x80108000 0x8000 0x80100000 0x80008000 0x20 0x80108020 0x108020 0x20 0x8000 0x80000000 0x8020 0x80108000 0x100000 0x80000020 0x100020 0x80008020 0x80000020 0x100020 0x108000 0 0x80008000 0x8020 0x80000000 0x80100020 0x80108020 0x108000];
210    variable spfunction3 [list 0x208 0x8020200 0 0x8020008 0x8000200 0 0x20208 0x8000200 0x20008 0x8000008 0x8000008 0x20000 0x8020208 0x20008 0x8020000 0x208 0x8000000 0x8 0x8020200 0x200 0x20200 0x8020000 0x8020008 0x20208 0x8000208 0x20200 0x20000 0x8000208 0x8 0x8020208 0x200 0x8000000 0x8020200 0x8000000 0x20008 0x208 0x20000 0x8020200 0x8000200 0 0x200 0x20008 0x8020208 0x8000200 0x8000008 0x200 0 0x8020008 0x8000208 0x20000 0x8000000 0x8020208 0x8 0x20208 0x20200 0x8000008 0x8020000 0x8000208 0x208 0x8020000 0x20208 0x8 0x8020008 0x20200];
211    variable spfunction4 [list 0x802001 0x2081 0x2081 0x80 0x802080 0x800081 0x800001 0x2001 0 0x802000 0x802000 0x802081 0x81 0 0x800080 0x800001 0x1 0x2000 0x800000 0x802001 0x80 0x800000 0x2001 0x2080 0x800081 0x1 0x2080 0x800080 0x2000 0x802080 0x802081 0x81 0x800080 0x800001 0x802000 0x802081 0x81 0 0 0x802000 0x2080 0x800080 0x800081 0x1 0x802001 0x2081 0x2081 0x80 0x802081 0x81 0x1 0x2000 0x800001 0x2001 0x802080 0x800081 0x2001 0x2080 0x800000 0x802001 0x80 0x800000 0x2000 0x802080];
212    variable spfunction5 [list 0x100 0x2080100 0x2080000 0x42000100 0x80000 0x100 0x40000000 0x2080000 0x40080100 0x80000 0x2000100 0x40080100 0x42000100 0x42080000 0x80100 0x40000000 0x2000000 0x40080000 0x40080000 0 0x40000100 0x42080100 0x42080100 0x2000100 0x42080000 0x40000100 0 0x42000000 0x2080100 0x2000000 0x42000000 0x80100 0x80000 0x42000100 0x100 0x2000000 0x40000000 0x2080000 0x42000100 0x40080100 0x2000100 0x40000000 0x42080000 0x2080100 0x40080100 0x100 0x2000000 0x42080000 0x42080100 0x80100 0x42000000 0x42080100 0x2080000 0 0x40080000 0x42000000 0x80100 0x2000100 0x40000100 0x80000 0 0x40080000 0x2080100 0x40000100];
213    variable spfunction6 [list 0x20000010 0x20400000 0x4000 0x20404010 0x20400000 0x10 0x20404010 0x400000 0x20004000 0x404010 0x400000 0x20000010 0x400010 0x20004000 0x20000000 0x4010 0 0x400010 0x20004010 0x4000 0x404000 0x20004010 0x10 0x20400010 0x20400010 0 0x404010 0x20404000 0x4010 0x404000 0x20404000 0x20000000 0x20004000 0x10 0x20400010 0x404000 0x20404010 0x400000 0x4010 0x20000010 0x400000 0x20004000 0x20000000 0x4010 0x20000010 0x20404010 0x404000 0x20400000 0x404010 0x20404000 0 0x20400010 0x10 0x4000 0x20400000 0x404010 0x4000 0x400010 0x20004010 0 0x20404000 0x20000000 0x400010 0x20004010];
214    variable spfunction7 [list 0x200000 0x4200002 0x4000802 0 0x800 0x4000802 0x200802 0x4200800 0x4200802 0x200000 0 0x4000002 0x2 0x4000000 0x4200002 0x802 0x4000800 0x200802 0x200002 0x4000800 0x4000002 0x4200000 0x4200800 0x200002 0x4200000 0x800 0x802 0x4200802 0x200800 0x2 0x4000000 0x200800 0x4000000 0x200800 0x200000 0x4000802 0x4000802 0x4200002 0x4200002 0x2 0x200002 0x4000000 0x4000800 0x200000 0x4200800 0x802 0x200802 0x4200800 0x802 0x4000002 0x4200802 0x4200000 0x200800 0 0x2 0x4200802 0 0x200802 0x4200000 0x800 0x4000002 0x4000800 0x800 0x200002];
215    variable spfunction8 [list 0x10001040 0x1000 0x40000 0x10041040 0x10000000 0x10001040 0x40 0x10000000 0x40040 0x10040000 0x10041040 0x41000 0x10041000 0x41040 0x1000 0x40 0x10040000 0x10000040 0x10001000 0x1040 0x41000 0x40040 0x10040040 0x10041000 0x1040 0 0 0x10040040 0x10000040 0x10001000 0x41040 0x40000 0x41040 0x40000 0x10041000 0x1000 0x40 0x10040040 0x1000 0x41040 0x10001000 0x40 0x10000040 0x10040000 0x10040040 0x10000000 0x40000 0x10001040 0 0x10041040 0x40040 0x10000040 0x10040000 0x10001000 0x10001040 0 0x10041040 0x41000 0x41000 0x1040 0x1040 0x40040 0x10000000 0x10041000];
216
217    variable desEncrypt {0 32 2}
218    variable desDecrypt {30 -2 -2}
219
220    # Procedure: block - DES ECB and CBC mode support
221    # Inputs:
222    #   keyset   : Handle to an existing keyset.
223    #   message  : String to be encrypted or decrypted (Note: For encryption,
224    #              the string is extended with null characters to an integral
225    #              multiple of eight bytes.  For decryption, the string length
226    #              must be an integral multiple of eight bytes.
227    #   encrypt  : Perform encryption (1) or decryption (0)
228    #   mode     : DES mode 1=CBC, 0=ECB (default).
229    #   iv       : Name of the variable containing the initialization vector
230    #              used in CBC mode.  The value must be 64 bits in length.
231    # Output:
232    #   The encrypted or decrypted data string.
233    proc block {keyset message encrypt {mode 0} {iv {}}} {
234	variable spfunction1
235	variable spfunction2
236	variable spfunction3
237	variable spfunction4
238	variable spfunction5
239	variable spfunction6
240	variable spfunction7
241	variable spfunction8
242	variable desEncrypt
243	variable desDecrypt
244	variable keysets
245
246	# Determine if the keyset handle is valid.
247	if {[array names keysets $keyset] != {}} {
248	    # Acquire the 16 or 48 subkeys we will need
249	    set keys $keysets($keyset)
250	} else {
251	    error "The keyset handle \"$keyset\" is invalid!"
252	}
253	set m 0
254	set cbcleft 0x00; set cbcleft2 0x00
255	set cbcright 0x00; set cbcright2 0x00
256	set len [string length $message];
257        if {$len == 0} {
258            return -code error "invalid message size: the message may not be empty"
259        }
260	set chunk 0;
261	# Set up the loops for des
262	expr {$encrypt ? [set looping $desEncrypt] : [set looping $desDecrypt]}
263
264	# Pad the message out with null bytes.
265	append message "\0\0\0\0\0\0\0\0"
266
267	# Store the result here
268	set result {};
269	set tempresult {};
270
271	# CBC mode
272	if {$mode == 1} {
273	    # Is the initialization/feedback vector variable is valid?
274	    if {[string length $iv] < 1} {
275		error "An initialization variable must be specified."
276	    } else {
277		upvar $iv ivec
278		if {![info exists ivec]} {
279		    error "The variable $iv does not exist."
280		}
281                if {[string length $ivec] != 8} {
282                    return -code error "invalid initialization vector size:\
283                        the initialization vector must be 8 bytes"
284                }
285	    }
286	    # Use the input vector as the intial vector.
287	    binary scan $ivec H8H8 cbcleftTemp cbcrightTemp
288	    set cbcleft "0x$cbcleftTemp"
289	    set cbcright "0x$cbcrightTemp"
290	}
291
292	# Loop through each 64 bit chunk of the message
293	while {$m < $len} {
294	    binary scan $message x${m}H8H8 lefttemp righttemp
295	    set left {}
296	    append left "0x" $lefttemp
297	    set right {}
298	    append right "0x" $righttemp
299	    incr m 8
300
301	    #puts "Left start: $left";
302	    #puts "Right start: $right";
303	    # For Cipher Block Chaining mode, xor the
304	    # message with the previous result.
305	    if {$mode == 1} {
306		if {$encrypt} {
307		    set left [expr {$left ^ $cbcleft}]
308		    set right [expr {$right ^ $cbcright}]
309		} else {
310		    set cbcleft2 $cbcleft;
311		    set cbcright2 $cbcright;
312		    set cbcleft $left;
313		    set cbcright $right;
314		}
315	    }
316
317	    #puts "Left mode: $left";
318	    #puts "Right mode: $right";
319	    #puts "cbcleft: $cbcleft";
320	    #puts "cbcleft2: $cbcleft2";
321	    #puts "cbcright: $cbcright";
322	    #puts "cbcright2: $cbcright2";
323
324	    # First each 64 but chunk of the message
325	    # must be permuted according to IP.
326	    set temp [expr {(($left >> 4) ^ $right) & 0x0f0f0f0f}];
327	    set right [expr {$right ^ $temp}];
328	    set left [expr {$left ^ ($temp << 4)}];
329	    set temp [expr {(($left >> 16) ^ $right) & 0x0000ffff}];
330	    set right [expr {$right ^ $temp}];
331	    set left [expr {$left ^ ($temp << 16)}];
332	    set temp [expr {(($right >> 2) ^ $left) & 0x33333333}];
333	    set left [expr {$left ^ $temp}]
334	    set right [expr {$right ^ ($temp << 2)}];
335
336	    set temp [expr {(($right >> 8) ^ $left) & 0x00ff00ff}];
337	    set left [expr {$left ^ $temp}];
338	    set right [expr {$right ^ ($temp << 8)}];
339	    set temp [expr {(($left >> 1) ^ $right) & 0x55555555}];
340	    set right [expr {$right ^ $temp}];
341	    set left [expr {$left ^ ($temp << 1)}];
342
343	    set left [expr {((($left << 1) & 0xffffffff) | \
344				 (($left >> 31) & 0x00000001))}];
345	    set right [expr {((($right << 1) & 0xffffffff) | \
346				  (($right >> 31) & 0x00000001))}];
347
348	    #puts "Left IP: [format %x $left]";
349	    #puts "Right IP: [format %x $right]";
350
351	    # Do this 1 time for each chunk of the message.
352	    set endloop [lindex $looping 1];
353	    set loopinc [lindex $looping 2];
354
355	    #puts "endloop: $endloop";
356	    #puts "loopinc: $loopinc";
357
358	    # Now go through and perform the encryption or decryption.
359	    for {set i [lindex $looping 0]} \
360		{$i != $endloop} {incr i $loopinc} {
361		# For efficiency
362		set right1 [expr {$right ^ [lindex $keys $i]}];
363		set right2 [expr {((($right >> 4) & 0x0fffffff) | \
364				       (($right << 28) & 0xffffffff)) ^ \
365				      [lindex $keys [expr {$i + 1}]]}];
366
367		# puts "right1: [format %x $right1]";
368		# puts "right2: [format %x $right2]";
369
370		# The result is attained by passing these
371		# bytes through the S selection functions.
372		set temp $left;
373		set left $right;
374		set right [expr {$temp ^ ([lindex $spfunction2 [expr {($right1 >> 24) & 0x3f}]] | \
375					      [lindex $spfunction4 [expr {($right1 >> 16) & 0x3f}]] | \
376					      [lindex $spfunction6 [expr {($right1 >>  8) & 0x3f}]] | \
377					      [lindex $spfunction8 [expr {$right1 & 0x3f}]] | \
378					      [lindex $spfunction1 [expr {($right2 >> 24) & 0x3f}]] | \
379					      [lindex $spfunction3 [expr {($right2 >> 16) & 0x3f}]] | \
380					      [lindex $spfunction5 [expr {($right2 >>  8) & 0x3f}]] | \
381					      [lindex $spfunction7 [expr {$right2 & 0x3f}]])}];
382
383		# puts "Left iter: [format %x $left]";
384		# puts "Right iter: [format %x $right]";
385
386	    }
387	    set temp $left;
388	    set left $right;
389	    set right $temp; # Unreverse left and right.
390
391	    #puts "Left Iterated: [format %x $left]";
392	    #puts "Right Iterated: [format %x $right]";
393
394	    # Move then each one bit to the right
395	    set left [expr {((($left >> 1) & 0x7fffffff) \
396				 | (($left << 31) & 0xffffffff))}];
397	    set right [expr {((($right >> 1) & 0x7fffffff) \
398				  | (($right << 31) & 0xffffffff))}];
399
400	    #puts "Left shifted: [format %x $left]";
401	    #puts "Right shifted: [format %x $right]";
402
403	    # Now perform IP-1, which is IP in the opposite direction
404	    set temp [expr {((($left >> 1) & 0x7fffffff) ^ $right) & 0x55555555}];
405	    set right [expr {$right ^ $temp}];
406	    set left [expr {$left ^ ($temp << 1)}];
407	    set temp [expr {((($right >> 8) & 0x00ffffff) ^ $left) & 0x00ff00ff}];
408	    set left [expr {$left ^ $temp}];
409	    set right [expr {$right ^ ($temp << 8)}];
410	    set temp [expr {((($right >> 2) & 0x3fffffff) ^ $left) & 0x33333333}];
411	    set left [expr {$left ^ $temp}];
412	    set right [expr {$right ^ ($temp << 2)}];
413	    set temp [expr {((($left >> 16) & 0x0000ffff) ^ $right) & 0x0000ffff}];
414	    set right [expr {$right ^ $temp}];
415	    set left [expr {$left ^ ($temp << 16)}];
416	    set temp [expr {((($left >> 4) & 0x0fffffff) ^ $right) & 0x0f0f0f0f}];
417	    set right [expr {$right ^ $temp}];
418	    set left [expr {$left ^ ($temp << 4)}];
419
420	    #puts "Left IP-1: [format %x $left]";
421	    #puts "Right IP-1: [format %x $right]";
422
423	    # For Cipher Block Chaining mode, xor
424	    # the message with the previous result.
425	    if {$mode == 1} {
426		if {$encrypt} {
427		    set cbcleft $left;
428		    set cbcright $right;
429		} else {
430		    set left [expr {$left ^ $cbcleft2}];
431		    set right [expr {$right ^ $cbcright2}];
432		}
433	    }
434
435	    append tempresult \
436		[binary format H16 [format %08x%08x $left $right]]
437
438	    #puts "Left final: [format %x $left]";
439	    #puts "Right final: [format %x $right]";
440
441	    incr chunk 8;
442	    if {$chunk == 512} {
443		append result $tempresult
444		set tempresult {};
445		set chunk 0;
446	    }
447	}; # For every 8 characters, or 64 bits in the message
448
449	if {$mode == 1} {
450	    if {$encrypt} {
451		# Save the left and right registers to the feedback vector.
452		set ivec [binary format H* \
453			      [format %08x $left][format %08x $right]]
454	    } else {
455		set ivec [binary format H* \
456			      [format %08x $cbcleft][format %08x $cbcright]]
457	    }
458	}
459
460	# Return the result as an array
461	return ${result}$tempresult
462    }; # End of block
463
464    # Procedure: stream - DES CFB and OFB mode support
465    # Inputs:
466    #   keyset   : Handle to an existing keyset.
467    #   message  : String to be encrypted or decrypted (Note: The length of the
468    #              string is dependent upon the value of kbits.  Remember that
469    #              the string is part of a stream of data, so it must be sized
470    #              properly for subsequent encryptions/decryptions to be
471    #              correct.  See the man page for correct message lengths for
472    #              values of kbits).
473    #   encrypt  : Perform encryption (1) or decryption (0)
474    #   mode     : DES mode 0=OFB, 1=CFB.
475    #   iv       : Name of variable containing the initialization vector.  The
476    #              value must be 64 bits in length with the first 64-L bits set
477    #              to zero.
478    #   kbits    : Number of bits in a data block (default of 64).
479    # Output:
480    #   The encrypted or decrypted data string.
481    proc stream {keyset message encrypt mode iv {kbits 64}} {
482	variable spfunction1
483	variable spfunction2
484	variable spfunction3
485	variable spfunction4
486	variable spfunction5
487	variable spfunction6
488	variable spfunction7
489	variable spfunction8
490	variable desEncrypt
491	variable keysets
492
493	# Determine if the keyset handle is valid.
494	if {[array names keysets $keyset] != {}} {
495	    # Acquire the 16 subkeys we will need.
496	    set keys $keysets($keyset)
497	} else {
498	    error "The keyset handle \"$keyset\" is invalid!"
499	}
500
501	# Is the initialization/feedback vector variable is valid?
502	if {[string length $iv] < 1} {
503	    error "An initialization variable must be specified."
504	} else {
505	    upvar $iv ivec
506	    if {![info exists ivec]} {
507		error "The variable $iv does not exist."
508	    }
509	}
510
511        # Determine if message length (in bits)
512	# is not an integral number of kbits.
513	set len [string length $message];
514        #puts "len: $len, kbits: $kbits"
515	if {($kbits < 1) || ($kbits > 64)} {
516	    error "The valid values of kbits are 1 through 64."
517        } elseif {($kbits % 8) != 0} {
518	    set blockSize [expr {$kbits + (8 - ($kbits % 8))}]
519	    set fail [expr {(($len * 8) / $blockSize) % $kbits}]
520	} else {
521	    set blockSize [expr {$kbits / 8}]
522	    set fail [expr {$len % $blockSize}]
523	}
524        if {$fail} {
525	    error "Data length (in bits) is not an integral number of kbits."
526	}
527
528	set m 0
529	set n 0
530	set chunk 0;
531	# Set up the loops for des
532	set looping $desEncrypt
533
534        # Set up shifting values.  Used for both CFB and OFB modes.
535        if {$kbits < 32} {
536	    # Only some bits from left output are needed.
537	    set kOutShift [expr {32 - $kbits}]
538	    set kOutMask [expr {0x7fffffff >> (31 - $kbits)}]
539	    # Determine number of message bytes needed per iteration.
540	    set msgBytes [expr {int(ceil(double($kbits) / 8.0))}]
541	    # Determine number of message bits needed per iteration.
542	    set msgBits [expr {$msgBytes * 8}]
543	    set msgBitsSub1 [expr {$msgBits - 1}]
544	    # Define bit caches.
545	    set bitCacheIn {}
546	    set bitCacheOut {}
547	    # Variable used to remove bits 0 through
548	    # kbits-1 in the input bit cache.
549	    set kbitsSub1 [expr {$kbits - 1}]
550	    # Variable used to remove leading dummy binary bits.
551	    set xbits [expr {32 - $kbits}]
552	} elseif {$kbits == 32} {
553	    # Only bits of left output are used.
554	    # Four messages bytes are needed per iteration.
555	    set msgBytes 4
556	    set xbits 32
557	} elseif {$kbits < 64} {
558	    # All bits from left output are needed.
559	    set kOutShiftLeft [expr {$kbits - 32}]
560	    # Some bits from right output are needed.
561	    set kOutShiftRight [expr {64 - $kbits}]
562	    set kOutMaskRight [expr {0x7fffffff >> (63 - $kbits)}]
563	    # Determine number of message bytes needed per iteration.
564	    set msgBytes [expr {int(ceil(double($kbits) / 8.0))}]
565	    # Determine number of message bits needed per iteration.
566	    set msgBits [expr {$msgBytes * 8}]
567	    set msgBitsSub1 [expr {$msgBits - 1}]
568	    # Define bit caches.
569	    set bitCacheIn {}
570	    set bitCacheOut {}
571	    # Variable used to remove bits 0 through
572	    # kbits-1 in the input bit cache.
573	    set kbitsSub1 [expr {$kbits - 1}]
574	    # Variable used to remove leading dummy binary bits.
575	    set xbits [expr {64 - $kbits}]
576	} else {
577	    # All 64 bits of output are used.
578	    # Eight messages bytes are needed per iteration.
579	    set msgBytes 8
580	    set xbits 0
581	}
582
583	# Store the result here
584	set result {}
585	set tempresult {}
586
587	# Set up the initialization vector bitstream
588	binary scan $ivec H8H8 leftTemp rightTemp
589	set left "0x$leftTemp"
590	set right "0x$rightTemp"
591        #puts "Retrieved Feedback vector: $fbvec"
592        #puts "Start: |$left| |$right|"
593
594	# Loop through each 64 bit chunk of the message
595	while {$m < $len} {
596	    # puts "Left start: $left";
597	    # puts "Right start: $right";
598
599	    # First each 64 but chunk of the
600	    # message must be permuted according to IP.
601	    set temp [expr {(($left >> 4) ^ $right) & 0x0f0f0f0f}];
602	    set right [expr {$right ^ $temp}];
603	    set left [expr {$left ^ ($temp << 4)}];
604	    set temp [expr {(($left >> 16) ^ $right) & 0x0000ffff}];
605	    set right [expr {$right ^ $temp}];
606	    set left [expr {$left ^ ($temp << 16)}];
607	    set temp [expr {(($right >> 2) ^ $left) & 0x33333333}];
608	    set left [expr {$left ^ $temp}];
609	    set right [expr {$right ^ ($temp << 2)}];
610
611	    set temp [expr {(($right >> 8) ^ $left) & 0x00ff00ff}];
612	    set left [expr {$left ^ $temp}];
613	    set right [expr {$right ^ ($temp << 8)}];
614	    set temp [expr {(($left >> 1) ^ $right) & 0x55555555}];
615	    set right [expr {$right ^ $temp}];
616	    set left [expr {$left ^ ($temp << 1)}];
617
618	    set left [expr {((($left << 1) & 0xffffffff) | \
619				 (($left >> 31) & 0x00000001))}];
620	    set right [expr {((($right << 1) & 0xffffffff) | \
621				  (($right >> 31) & 0x00000001))}];
622
623	    #puts "Left IP: [format %x $left]";
624	    #puts "Right IP: [format %x $right]";
625
626	    # Do this 1 time for each chunk of the message
627	    set endloop [lindex $looping 1];
628	    set loopinc [lindex $looping 2];
629
630	    # puts "endloop: $endloop";
631	    # puts "loopinc: $loopinc";
632
633	    # Now go through and perform the encryption or decryption
634	    for {set i [lindex $looping 0]} \
635		{$i != $endloop} {incr i $loopinc} {
636		# For efficiency
637		set right1 [expr {$right ^ [lindex $keys $i]}];
638		set right2 [expr {((($right >> 4) & 0x0fffffff) | \
639				       (($right << 28) & 0xffffffff)) ^ \
640				      [lindex $keys [expr {$i + 1}]]}];
641
642		# puts "right1: [format %x $right1]";
643		# puts "right2: [format %x $right2]";
644
645		# The result is attained by passing these
646		# bytes through the S selection functions.
647		set temp $left;
648		set left $right;
649		set right [expr {$temp ^ ([lindex $spfunction2 [expr {($right1 >> 24) & 0x3f}]] | \
650					      [lindex $spfunction4 [expr {($right1 >> 16) & 0x3f}]] | \
651					      [lindex $spfunction6 [expr {($right1 >>  8) & 0x3f}]] | \
652					      [lindex $spfunction8 [expr {$right1 & 0x3f}]] | \
653					      [lindex $spfunction1 [expr {($right2 >> 24) & 0x3f}]] | \
654					      [lindex $spfunction3 [expr {($right2 >> 16) & 0x3f}]] | \
655					      [lindex $spfunction5 [expr {($right2 >>  8) & 0x3f}]] | \
656					      [lindex $spfunction7 [expr {$right2 & 0x3f}]])}];
657
658		# puts "Left iter: [format %x $left]";
659		# puts "Right iter: [format %x $right]";
660	    }
661	    set temp $left;
662	    set left $right;
663	    set right $temp; # Unreverse left and right
664
665	    #puts "Left Iterated: [format %x $left]";
666	    #puts "Right Iterated: [format %x $right]";
667
668	    # Move then each one bit to the right
669	    set left [expr {((($left >> 1) & 0x7fffffff) | \
670				 (($left << 31) & 0xffffffff))}];
671	    set right [expr {((($right >> 1) & 0x7fffffff) | \
672				  (($right << 31) & 0xffffffff))}];
673
674	    #puts "Left shifted: [format %x $left]";
675	    #puts "Right shifted: [format %x $right]";
676
677	    # Now perform IP-1, which is IP in the opposite direction
678	    set temp [expr {((($left >> 1) & 0x7fffffff) ^ $right) & 0x55555555}];
679	    set right [expr {$right ^ $temp}];
680	    set left [expr {$left ^ ($temp << 1)}];
681	    set temp [expr {((($right >> 8) & 0x00ffffff) ^ $left) & 0x00ff00ff}];
682	    set left [expr {$left ^ $temp}];
683	    set right [expr {$right ^ ($temp << 8)}];
684	    set temp [expr {((($right >> 2) & 0x3fffffff) ^ $left) & 0x33333333}];
685	    set left [expr {$left ^ $temp}];
686	    set right [expr {$right ^ ($temp << 2)}];
687	    set temp [expr {((($left >> 16) & 0x0000ffff) ^ $right) & 0x0000ffff}];
688	    set right [expr {$right ^ $temp}];
689	    set left [expr {$left ^ ($temp << 16)}];
690	    set temp [expr {((($left >> 4) & 0x0fffffff) ^ $right) & 0x0f0f0f0f}];
691	    set right [expr {$right ^ $temp}];
692	    set left [expr {$left ^ ($temp << 4)}];
693
694	    #puts "Left IP-1: [format %x $left]";
695	    #puts "Right IP-1: [format %x $right]";
696
697	    # Extract the "kbits" most significant bits from the output block.
698	    if {$kbits < 32} {
699		# Only some bits from left output are needed.
700		set kData [expr {($left >> $kOutShift) & $kOutMask}]
701		set newBits {}
702		# If necessary, copy message bytes into input bit cache.
703		if {([string length $bitCacheIn] < $kbits) && ($n < $len)} {
704		    if {$len - $n < $msgBytes} {
705			set lastBits [expr {($len - $n) * 8}]
706			###puts -nonewline [binary scan $message x${n}B$lastBits newBits]
707			binary scan $message x${n}B$lastBits newBits
708		    } else {
709			# Extract "msgBytes" whole bytes as bits
710			###puts -nonewline [binary scan $message x${n}B$msgBits newBits]
711			binary scan $message x${n}B$msgBits newBits
712		    }
713		    incr n $msgBytes
714		    #puts " $newBits  $n [expr {$len - $n}]"
715		    # Add the bits to the input bit cache.
716		    append bitCacheIn $newBits
717		}
718		#puts -nonewline "In bit cache: $bitCacheIn"
719		# Set up message data from input bit cache.
720		binary scan [binary format B32 [format %032s [string range $bitCacheIn 0 $kbitsSub1]]] H8 temp
721		set msgData "0x$temp"
722		# Mix message bits with crypto bits.
723		set mixData [expr {$msgData ^ $kData}]
724		# Discard collected bits from the input bit cache.
725		set bitCacheIn [string range $bitCacheIn $kbits end]
726		#puts "  After: $bitCacheIn"
727		# Convert back to a bit stream and append to the output bit cache.
728		# Only the lower kbits are wanted.
729		binary scan [binary format H8 [format %08x $mixData]] B32 msgOut
730		append bitCacheOut [string range $msgOut $xbits end]
731		#puts -nonewline "Out bit cache: $bitCacheOut"
732		# If there are sufficient bits, move bytes to the temporary holding string.
733		if {[string length $bitCacheOut] >= $msgBits} {
734		    append tempresult [binary format B$msgBits [string range $bitCacheOut 0 $msgBitsSub1]]
735		    set bitCacheOut [string range $bitCacheOut $msgBits end]
736                    #puts -nonewline "  After: $bitCacheOut"
737		    incr m $msgBytes
738		    ###puts "$m bytes output"
739		    incr chunk $msgBytes
740		}
741		#puts ""
742		# For CFB mode
743		if {$mode == 1} {
744		    if {$encrypt} {
745			set temp [expr {($right << $kbits) & 0xffffffff}]
746			set left [expr {(($left << $kbits) & 0xffffffff) | (($right >> $kOutShift) & $kOutMask)}]
747			set right [expr {$temp | $mixData}]
748		    } else {
749			set temp [expr {($right << $kbits) & 0xffffffff}]
750			set left [expr {(($left << $kbits) & 0xffffffff) | (($right >> $kOutShift) & $kOutMask)}]
751			set right [expr {$temp | $msgData}]
752		    }
753		}
754	    } elseif {$kbits == 32} {
755		# Only bits of left output are used.
756		set kData $left
757		# Four messages bytes are needed per iteration.
758		binary scan $message x${m}H8 temp
759		incr m 4
760		incr chunk 4
761		set msgData "0x$temp"
762		# Mix message bits with crypto bits.
763		set mixData [expr {$msgData ^ $kData}]
764		# Move bytes to the temporary holding string.
765		append tempresult [binary format H8 [format %08x $mixData]]
766		# For CFB mode
767		if {$mode == 1} {
768		    set left $right
769		    if {$encrypt} {
770			set right $mixData
771		    } else {
772			set right $msgData
773		    }
774		}
775	    } elseif {$kbits < 64} {
776		set kDataLeft [expr {($left >> $kOutShiftRight) & $kOutMaskRight}]
777		set temp [expr {($left << $kOutShiftLeft) & 0xffffffff}]
778		set kDataRight [expr {(($right >> $kOutShiftRight) & $kOutMaskRight) | $temp}]
779		# If necessary, copy message bytes into input bit cache.
780		if {([string length $bitCacheIn] < $kbits)  && ($n < $len)} {
781		    if {$len - $n < $msgBytes} {
782			set lastBits [expr {($len - $n) * 8}]
783			###puts -nonewline [binary scan $message x${n}B$lastBits newBits]
784			binary scan $message x${n}B$lastBits newBits
785		    } else {
786			# Extract "msgBytes" whole bytes as bits
787			###puts -nonewline [binary scan $message x${n}B$msgBits newBits]
788			binary scan $message x${n}B$msgBits newBits
789		    }
790		    incr n $msgBytes
791		    # Add the bits to the input bit cache.
792		    append bitCacheIn $newBits
793		}
794		# Set up message data from input bit cache.
795		# puts "Bits from cache: [set temp [string range $bitCacheIn 0 $kbitsSub1]]"
796		# puts "Length of bit string: [string length $temp]"
797		binary scan [binary format B64 [format %064s [string range $bitCacheIn 0 $kbitsSub1]]] H8H8 leftTemp rightTemp
798		set msgDataLeft "0x$leftTemp"
799		set msgDataRight "0x$rightTemp"
800		# puts "msgDataLeft: $msgDataLeft"
801		# puts "msgDataRight: $msgDataRight"
802		# puts "kDataLeft: [format 0x%08x $kDataLeft]"
803		# puts "kDataRight: [format 0x%08x $kDataRight]"
804		# Mix message bits with crypto bits.
805		set mixDataLeft [expr {$msgDataLeft ^ $kDataLeft}]
806		set mixDataRight [expr {$msgDataRight ^ $kDataRight}]
807		# puts "mixDataLeft: $mixDataLeft"
808		# puts "mixDataRight: $mixDataRight"
809		# puts "mixDataLeft: [format 0x%08x $mixDataLeft]"
810		# puts "mixDataRight: [format 0x%08x $mixDataRight]"
811		# Discard collected bits from the input bit cache.
812		set bitCacheIn [string range $bitCacheIn $kbits end]
813		# Convert back to a bit stream and
814		# append to the output bit cache.
815		# Only the lower kbits are wanted.
816		binary scan \
817		    [binary format H8H8 \
818			 [format %08x $mixDataLeft] \
819			 [format %08x $mixDataRight]] B64 msgOut
820		append bitCacheOut [string range $msgOut $xbits end]
821		# If there are sufficient bits, move
822		# bytes to the temporary holding string.
823		if {[string length $bitCacheOut] >= $msgBits} {
824		    append tempresult \
825			[binary format B$msgBits \
826			     [string range $bitCacheOut 0 $msgBitsSub1]]
827		    set bitCacheOut [string range $bitCacheOut $msgBits end]
828		    incr m $msgBytes
829		    incr chunk $msgBytes
830		}
831		# For CFB mode
832		if {$mode == 1} {
833		    if {$encrypt} {
834			set temp \
835			    [expr {($right << $kOutShiftRight) & 0xffffffff}]
836			set left [expr {$temp | $mixDataLeft}]
837			set right $mixDataRight
838		    } else {
839			set temp \
840			    [expr {($right << $kOutShiftRight) & 0xffffffff}]
841			set left [expr {$temp | $msgDataLeft}]
842			set right $msgDataRight
843		    }
844		}
845	    } else {
846		# All 64 bits of output are used.
847		set kDataLeft $left
848		set kDataRight $right
849		# Eight messages bytes are needed per iteration.
850		binary scan $message x${m}H8H8 leftTemp rightTemp
851		incr m 8
852		incr chunk 8
853		set msgDataLeft "0x$leftTemp"
854		set msgDataRight "0x$rightTemp"
855		# Mix message bits with crypto bits.
856		set mixDataLeft [expr {$msgDataLeft ^ $kDataLeft}]
857		set mixDataRight [expr {$msgDataRight ^ $kDataRight}]
858		# Move bytes to the temporary holding string.
859		append tempresult \
860		    [binary format H16 \
861			 [format %08x%08x $mixDataLeft $mixDataRight]]
862		# For CFB mode
863		if {$mode == 1} {
864		    if {$encrypt} {
865			set left $mixDataLeft
866			set right $mixDataRight
867		    } else {
868			set left $msgDataLeft
869			set right $msgDataRight
870		    }
871		}
872	    }
873
874	    #puts "Left final: [format %08x $left]";
875	    #puts "Right final: [format %08x $right]"
876
877	    if {$chunk >= 512} {
878		append result $tempresult
879		set tempresult {};
880		set chunk 0;
881	    }
882	}; # For every 8 characters, or 64 bits in the message
883        #puts "End: |[format 0x%08x $left]| |[format 0x%08x $right]|"
884	# Save the left and right registers to the feedback vector.
885	set ivec [binary format H* [format %08x $left][format %08x $right]]
886	#puts "Saved Feedback vector: $fbvectors($fbvector)"
887
888        append result $tempresult
889	if {[string length $result] > $len} {
890	    set result [string replace $result $len end]
891	}
892	# Return the result as an array
893	return $result
894    }; # End of stream
895
896    variable pc2bytes0 [list 0 0x4 0x20000000 0x20000004 0x10000 0x10004 0x20010000 0x20010004 0x200 0x204 0x20000200 0x20000204 0x10200 0x10204 0x20010200 0x20010204]
897    variable pc2bytes1 [list 0 0x1 0x100000 0x100001 0x4000000 0x4000001 0x4100000 0x4100001 0x100 0x101 0x100100 0x100101 0x4000100 0x4000101 0x4100100 0x4100101]
898    variable pc2bytes2 [list 0 0x8 0x800 0x808 0x1000000 0x1000008 0x1000800 0x1000808 0 0x8 0x800 0x808 0x1000000 0x1000008 0x1000800 0x1000808]
899    variable pc2bytes3 [list 0 0x200000 0x8000000 0x8200000 0x2000 0x202000 0x8002000 0x8202000 0x20000 0x220000 0x8020000 0x8220000 0x22000 0x222000 0x8022000 0x8222000]
900    variable pc2bytes4 [list 0 0x40000 0x10 0x40010 0 0x40000 0x10 0x40010 0x1000 0x41000 0x1010 0x41010 0x1000 0x41000 0x1010 0x41010]
901    variable pc2bytes5 [list 0 0x400 0x20 0x420 0 0x400 0x20 0x420 0x2000000 0x2000400 0x2000020 0x2000420 0x2000000 0x2000400 0x2000020 0x2000420]
902    variable pc2bytes6 [list 0 0x10000000 0x80000 0x10080000 0x2 0x10000002 0x80002 0x10080002 0 0x10000000 0x80000 0x10080000 0x2 0x10000002 0x80002 0x10080002]
903    variable pc2bytes7 [list 0 0x10000 0x800 0x10800 0x20000000 0x20010000 0x20000800 0x20010800 0x20000 0x30000 0x20800 0x30800 0x20020000 0x20030000 0x20020800 0x20030800]
904    variable pc2bytes8 [list 0 0x40000 0 0x40000 0x2 0x40002 0x2 0x40002 0x2000000 0x2040000 0x2000000 0x2040000 0x2000002 0x2040002 0x2000002 0x2040002]
905    variable pc2bytes9 [list 0 0x10000000 0x8 0x10000008 0 0x10000000 0x8 0x10000008 0x400 0x10000400 0x408 0x10000408 0x400 0x10000400 0x408 0x10000408]
906    variable pc2bytes10 [list 0 0x20 0 0x20 0x100000 0x100020 0x100000 0x100020 0x2000 0x2020 0x2000 0x2020 0x102000 0x102020 0x102000 0x102020]
907    variable pc2bytes11 [list 0 0x1000000 0x200 0x1000200 0x200000 0x1200000 0x200200 0x1200200 0x4000000 0x5000000 0x4000200 0x5000200 0x4200000 0x5200000 0x4200200 0x5200200]
908    variable pc2bytes12 [list 0 0x1000 0x8000000 0x8001000 0x80000 0x81000 0x8080000 0x8081000 0x10 0x1010 0x8000010 0x8001010 0x80010 0x81010 0x8080010 0x8081010]
909    variable pc2bytes13 [list 0 0x4 0x100 0x104 0 0x4 0x100 0x104 0x1 0x5 0x101 0x105 0x1 0x5 0x101 0x105]
910
911    # Now define the left shifts which need to be done
912    variable shifts {0  0  1  1  1  1  1  1  0  1  1  1  1  1  1  0};
913
914    # Procedure: createKeys
915    # Input:
916    #   key     : The 64-bit DES key (Note: The lsb of each byte
917    #             is ignored; odd parity is not required).
918    #
919    #   weak:   If true then weak keys are allowed. The default is to raise an
920    #           error when a weak key is seen.
921    # Output:
922    # The 16 (DES) subkeys.
923    proc createKeys {key {weak 0}} {
924	variable pc2bytes0
925	variable pc2bytes1
926	variable pc2bytes2
927	variable pc2bytes3
928	variable pc2bytes4
929	variable pc2bytes5
930	variable pc2bytes6
931	variable pc2bytes7
932	variable pc2bytes8
933	variable pc2bytes9
934	variable pc2bytes10
935	variable pc2bytes11
936	variable pc2bytes12
937	variable pc2bytes13
938	variable shifts
939
940	# Stores the return keys
941	set keys {}
942	# Other variables
943	set lefttemp {}; set righttemp {}
944	binary scan $key H8H8 lefttemp righttemp
945	set left {}
946	append left "0x" $lefttemp
947	set right {}
948	append right "0x" $righttemp
949
950	#puts "Left key: $left"
951	#puts "Right key: $right"
952
953	# Test for weak keys
954        if {! $weak} {
955            set maskedLeft [expr {$left & 0xfefefefe}]
956            set maskedRight [expr {$right & 0xfefefefe}]
957            if {($maskedLeft == 0x00000000) \
958                    && ($maskedRight == 0x00000000)} {
959                error "The key is weak!"
960            } elseif {($maskedLeft == 0x1e1e1e1e) \
961                          && ($maskedRight == 0x0e0e0e0e)} {
962                error "The key is weak!"
963            } elseif {($maskedLeft == 0xe0e0e0e0) \
964                          && ($maskedRight == 0xf0f0f0f0)} {
965                error "The key is weak!"
966            } elseif {($maskedLeft == 0xfefefefe) \
967                          && ($maskedRight == 0xfefefefe)} {
968                error "The key is weak!"
969            }
970        }
971
972	set temp [expr {(($left >> 4) ^ $right) & 0x0f0f0f0f}]
973	set right [expr {$right ^ $temp}]
974	set left [expr {$left ^ ($temp << 4)}]
975	set temp [expr {(($right >> 16) ^ $left) & 0x0000ffff}]
976	set left [expr {$left ^ $temp}]
977	set right [expr {$right ^ ($temp << 16)}]
978	set temp [expr {(($left >> 2) ^ $right) & 0x33333333}]
979	set right [expr {$right ^ $temp}]
980	set left [expr {$left ^ ($temp << 2)}]
981	set temp [expr {(($right >> 16) ^ $left) & 0x0000ffff}]
982	set left [expr {$left ^ $temp}]
983	set right [expr {$right ^ ($temp << 16)}]
984	set temp [expr {(($left >> 1) ^ $right) & 0x55555555}]
985	set right [expr {$right ^ $temp}]
986	set left [expr {$left ^ ($temp << 1)}]
987	set temp [expr {(($right >> 8) ^ $left) & 0x00ff00ff}]
988	set left [expr {$left ^ $temp}]
989	set right [expr {$right ^ ($temp << 8)}]
990	set temp [expr {(($left >> 1) ^ $right) & 0x55555555}]
991	set right [expr $right ^ $temp]
992	set left [expr {$left ^ ($temp << 1)}]
993
994	# puts "Left key PC1: [format %x $left]"
995	# puts "Right key PC1: [format %x $right]"
996
997	# The right side needs to be shifted and to get
998	# the last four bits of the left side
999	set temp [expr {($left << 8) | (($right >> 20) & 0x000000f0)}];
1000	# Left needs to be put upside down
1001	set left [expr {($right << 24) | (($right << 8) & 0x00ff0000) | \
1002			    (($right >> 8) & 0x0000ff00) \
1003			    | (($right >> 24) & 0x000000f0)}];
1004	set right $temp;
1005
1006	#puts "Left key juggle: [format %x $left]"
1007	#puts "Right key juggle: [format %x $right]"
1008
1009	# Now go through and perform these
1010	# shifts on the left and right keys.
1011	foreach i $shifts  {
1012	    # Shift the keys either one or two bits to the left.
1013	    if {$i} {
1014		set left [expr {($left << 2) \
1015				    | (($left >> 26) & 0x0000003f)}];
1016		set right [expr {($right << 2) \
1017				     | (($right >> 26) & 0x0000003f)}];
1018	    } else {
1019		set left [expr {($left << 1) \
1020				    | (($left >> 27) & 0x0000001f)}];
1021		set right [expr {($right << 1) \
1022				     | (($right >> 27) & 0x0000001f)}];
1023	    }
1024	    set left [expr {$left & 0xfffffff0}];
1025	    set right [expr {$right & 0xfffffff0}];
1026
1027	    # Now apply PC-2, in such a way that E is easier when encrypting or
1028	    # decrypting this conversion will look like PC-2 except only the
1029	    # last 6 bits of each byte are used rather than 48 consecutive bits
1030	    # and the order of lines will be according to how the S selection
1031	    # functions will be applied: S2, S4, S6, S8, S1, S3, S5, S7.
1032	    set lefttemp [expr {[lindex $pc2bytes0 [expr {($left >> 28) & 0x0000000f}]] | \
1033				    [lindex $pc2bytes1 [expr {($left >> 24) & 0x0000000f}]] | \
1034				    [lindex $pc2bytes2 [expr {($left >> 20) & 0x0000000f}]] | \
1035				    [lindex $pc2bytes3 [expr {($left >> 16) & 0x0000000f}]] | \
1036				    [lindex $pc2bytes4 [expr {($left >> 12) & 0x0000000f}]] | \
1037				    [lindex $pc2bytes5 [expr {($left >> 8) & 0x0000000f}]] | \
1038				    [lindex $pc2bytes6 [expr {($left >> 4) & 0x0000000f}]]}];
1039	    set righttemp [expr {[lindex $pc2bytes7 [expr {($right >> 28) & 0x0000000f}]] | \
1040				     [lindex $pc2bytes8 [expr {($right >> 24) & 0x0000000f}]] | \
1041				     [lindex $pc2bytes9 [expr {($right >> 20) & 0x0000000f}]] | \
1042				     [lindex $pc2bytes10 [expr {($right >> 16) & 0x0000000f}]] | \
1043				     [lindex $pc2bytes11 [expr {($right >> 12) & 0x0000000f}]] | \
1044				     [lindex $pc2bytes12 [expr {($right >> 8) & 0x0000000f}]] | \
1045				     [lindex $pc2bytes13 [expr {($right >> 4) & 0x0000000f}]]}];
1046	    set temp [expr {(($righttemp >> 16) ^ $lefttemp) & 0x0000ffff}];
1047	    lappend keys [expr {$lefttemp ^ $temp}];
1048	    lappend keys [expr {$righttemp ^ ($temp << 16)}];
1049	}
1050	# Return the keys we've created.
1051	return $keys;
1052    }; # End of createKeys.
1053}; # End of des namespace eval.
1054
1055package provide tclDESjr 1.0.0
1056