1//===- CloneFunction.cpp - Clone a function into another function ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the CloneFunctionInto interface, which is used as the
11// low-level function cloner.  This is used by the CloneFunction and function
12// inliner to do the dirty work of copying the body of a function around.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Transforms/Utils/Cloning.h"
17#include "llvm/Constants.h"
18#include "llvm/DebugInfo.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Instructions.h"
21#include "llvm/IntrinsicInst.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/Function.h"
24#include "llvm/LLVMContext.h"
25#include "llvm/Metadata.h"
26#include "llvm/Support/CFG.h"
27#include "llvm/Transforms/Utils/BasicBlockUtils.h"
28#include "llvm/Transforms/Utils/Local.h"
29#include "llvm/Transforms/Utils/ValueMapper.h"
30#include "llvm/Analysis/ConstantFolding.h"
31#include "llvm/Analysis/InstructionSimplify.h"
32#include "llvm/ADT/SmallVector.h"
33#include <map>
34using namespace llvm;
35
36// CloneBasicBlock - See comments in Cloning.h
37BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB,
38                                  ValueToValueMapTy &VMap,
39                                  const Twine &NameSuffix, Function *F,
40                                  ClonedCodeInfo *CodeInfo) {
41  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
42  if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
43
44  bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
45
46  // Loop over all instructions, and copy them over.
47  for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end();
48       II != IE; ++II) {
49    Instruction *NewInst = II->clone();
50    if (II->hasName())
51      NewInst->setName(II->getName()+NameSuffix);
52    NewBB->getInstList().push_back(NewInst);
53    VMap[II] = NewInst;                // Add instruction map to value.
54
55    hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
56    if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
57      if (isa<ConstantInt>(AI->getArraySize()))
58        hasStaticAllocas = true;
59      else
60        hasDynamicAllocas = true;
61    }
62  }
63
64  if (CodeInfo) {
65    CodeInfo->ContainsCalls          |= hasCalls;
66    CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
67    CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
68                                        BB != &BB->getParent()->getEntryBlock();
69  }
70  return NewBB;
71}
72
73// Clone OldFunc into NewFunc, transforming the old arguments into references to
74// VMap values.
75//
76void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
77                             ValueToValueMapTy &VMap,
78                             bool ModuleLevelChanges,
79                             SmallVectorImpl<ReturnInst*> &Returns,
80                             const char *NameSuffix, ClonedCodeInfo *CodeInfo,
81                             ValueMapTypeRemapper *TypeMapper) {
82  assert(NameSuffix && "NameSuffix cannot be null!");
83
84#ifndef NDEBUG
85  for (Function::const_arg_iterator I = OldFunc->arg_begin(),
86       E = OldFunc->arg_end(); I != E; ++I)
87    assert(VMap.count(I) && "No mapping from source argument specified!");
88#endif
89
90  // Clone any attributes.
91  if (NewFunc->arg_size() == OldFunc->arg_size())
92    NewFunc->copyAttributesFrom(OldFunc);
93  else {
94    //Some arguments were deleted with the VMap. Copy arguments one by one
95    for (Function::const_arg_iterator I = OldFunc->arg_begin(),
96           E = OldFunc->arg_end(); I != E; ++I)
97      if (Argument* Anew = dyn_cast<Argument>(VMap[I]))
98        Anew->addAttr( OldFunc->getAttributes()
99                       .getParamAttributes(I->getArgNo() + 1));
100    NewFunc->setAttributes(NewFunc->getAttributes()
101                           .addAttr(0, OldFunc->getAttributes()
102                                     .getRetAttributes()));
103    NewFunc->setAttributes(NewFunc->getAttributes()
104                           .addAttr(~0, OldFunc->getAttributes()
105                                     .getFnAttributes()));
106
107  }
108
109  // Loop over all of the basic blocks in the function, cloning them as
110  // appropriate.  Note that we save BE this way in order to handle cloning of
111  // recursive functions into themselves.
112  //
113  for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
114       BI != BE; ++BI) {
115    const BasicBlock &BB = *BI;
116
117    // Create a new basic block and copy instructions into it!
118    BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo);
119
120    // Add basic block mapping.
121    VMap[&BB] = CBB;
122
123    // It is only legal to clone a function if a block address within that
124    // function is never referenced outside of the function.  Given that, we
125    // want to map block addresses from the old function to block addresses in
126    // the clone. (This is different from the generic ValueMapper
127    // implementation, which generates an invalid blockaddress when
128    // cloning a function.)
129    if (BB.hasAddressTaken()) {
130      Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
131                                              const_cast<BasicBlock*>(&BB));
132      VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB);
133    }
134
135    // Note return instructions for the caller.
136    if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
137      Returns.push_back(RI);
138  }
139
140  // Loop over all of the instructions in the function, fixing up operand
141  // references as we go.  This uses VMap to do all the hard work.
142  for (Function::iterator BB = cast<BasicBlock>(VMap[OldFunc->begin()]),
143         BE = NewFunc->end(); BB != BE; ++BB)
144    // Loop over all instructions, fixing each one as we find it...
145    for (BasicBlock::iterator II = BB->begin(); II != BB->end(); ++II)
146      RemapInstruction(II, VMap,
147                       ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
148                       TypeMapper);
149}
150
151/// CloneFunction - Return a copy of the specified function, but without
152/// embedding the function into another module.  Also, any references specified
153/// in the VMap are changed to refer to their mapped value instead of the
154/// original one.  If any of the arguments to the function are in the VMap,
155/// the arguments are deleted from the resultant function.  The VMap is
156/// updated to include mappings from all of the instructions and basicblocks in
157/// the function from their old to new values.
158///
159Function *llvm::CloneFunction(const Function *F, ValueToValueMapTy &VMap,
160                              bool ModuleLevelChanges,
161                              ClonedCodeInfo *CodeInfo) {
162  std::vector<Type*> ArgTypes;
163
164  // The user might be deleting arguments to the function by specifying them in
165  // the VMap.  If so, we need to not add the arguments to the arg ty vector
166  //
167  for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
168       I != E; ++I)
169    if (VMap.count(I) == 0)  // Haven't mapped the argument to anything yet?
170      ArgTypes.push_back(I->getType());
171
172  // Create a new function type...
173  FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(),
174                                    ArgTypes, F->getFunctionType()->isVarArg());
175
176  // Create the new function...
177  Function *NewF = Function::Create(FTy, F->getLinkage(), F->getName());
178
179  // Loop over the arguments, copying the names of the mapped arguments over...
180  Function::arg_iterator DestI = NewF->arg_begin();
181  for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
182       I != E; ++I)
183    if (VMap.count(I) == 0) {   // Is this argument preserved?
184      DestI->setName(I->getName()); // Copy the name over...
185      VMap[I] = DestI++;        // Add mapping to VMap
186    }
187
188  SmallVector<ReturnInst*, 8> Returns;  // Ignore returns cloned.
189  CloneFunctionInto(NewF, F, VMap, ModuleLevelChanges, Returns, "", CodeInfo);
190  return NewF;
191}
192
193
194
195namespace {
196  /// PruningFunctionCloner - This class is a private class used to implement
197  /// the CloneAndPruneFunctionInto method.
198  struct PruningFunctionCloner {
199    Function *NewFunc;
200    const Function *OldFunc;
201    ValueToValueMapTy &VMap;
202    bool ModuleLevelChanges;
203    const char *NameSuffix;
204    ClonedCodeInfo *CodeInfo;
205    const TargetData *TD;
206  public:
207    PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
208                          ValueToValueMapTy &valueMap,
209                          bool moduleLevelChanges,
210                          const char *nameSuffix,
211                          ClonedCodeInfo *codeInfo,
212                          const TargetData *td)
213    : NewFunc(newFunc), OldFunc(oldFunc),
214      VMap(valueMap), ModuleLevelChanges(moduleLevelChanges),
215      NameSuffix(nameSuffix), CodeInfo(codeInfo), TD(td) {
216    }
217
218    /// CloneBlock - The specified block is found to be reachable, clone it and
219    /// anything that it can reach.
220    void CloneBlock(const BasicBlock *BB,
221                    std::vector<const BasicBlock*> &ToClone);
222  };
223}
224
225/// CloneBlock - The specified block is found to be reachable, clone it and
226/// anything that it can reach.
227void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
228                                       std::vector<const BasicBlock*> &ToClone){
229  WeakVH &BBEntry = VMap[BB];
230
231  // Have we already cloned this block?
232  if (BBEntry) return;
233
234  // Nope, clone it now.
235  BasicBlock *NewBB;
236  BBEntry = NewBB = BasicBlock::Create(BB->getContext());
237  if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
238
239  // It is only legal to clone a function if a block address within that
240  // function is never referenced outside of the function.  Given that, we
241  // want to map block addresses from the old function to block addresses in
242  // the clone. (This is different from the generic ValueMapper
243  // implementation, which generates an invalid blockaddress when
244  // cloning a function.)
245  //
246  // Note that we don't need to fix the mapping for unreachable blocks;
247  // the default mapping there is safe.
248  if (BB->hasAddressTaken()) {
249    Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
250                                            const_cast<BasicBlock*>(BB));
251    VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB);
252  }
253
254
255  bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
256
257  // Loop over all instructions, and copy them over, DCE'ing as we go.  This
258  // loop doesn't include the terminator.
259  for (BasicBlock::const_iterator II = BB->begin(), IE = --BB->end();
260       II != IE; ++II) {
261    Instruction *NewInst = II->clone();
262
263    // Eagerly remap operands to the newly cloned instruction, except for PHI
264    // nodes for which we defer processing until we update the CFG.
265    if (!isa<PHINode>(NewInst)) {
266      RemapInstruction(NewInst, VMap,
267                       ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
268
269      // If we can simplify this instruction to some other value, simply add
270      // a mapping to that value rather than inserting a new instruction into
271      // the basic block.
272      if (Value *V = SimplifyInstruction(NewInst, TD)) {
273        // On the off-chance that this simplifies to an instruction in the old
274        // function, map it back into the new function.
275        if (Value *MappedV = VMap.lookup(V))
276          V = MappedV;
277
278        VMap[II] = V;
279        delete NewInst;
280        continue;
281      }
282    }
283
284    if (II->hasName())
285      NewInst->setName(II->getName()+NameSuffix);
286    VMap[II] = NewInst;                // Add instruction map to value.
287    NewBB->getInstList().push_back(NewInst);
288    hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
289    if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
290      if (isa<ConstantInt>(AI->getArraySize()))
291        hasStaticAllocas = true;
292      else
293        hasDynamicAllocas = true;
294    }
295  }
296
297  // Finally, clone over the terminator.
298  const TerminatorInst *OldTI = BB->getTerminator();
299  bool TerminatorDone = false;
300  if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
301    if (BI->isConditional()) {
302      // If the condition was a known constant in the callee...
303      ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
304      // Or is a known constant in the caller...
305      if (Cond == 0) {
306        Value *V = VMap[BI->getCondition()];
307        Cond = dyn_cast_or_null<ConstantInt>(V);
308      }
309
310      // Constant fold to uncond branch!
311      if (Cond) {
312        BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
313        VMap[OldTI] = BranchInst::Create(Dest, NewBB);
314        ToClone.push_back(Dest);
315        TerminatorDone = true;
316      }
317    }
318  } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
319    // If switching on a value known constant in the caller.
320    ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
321    if (Cond == 0) { // Or known constant after constant prop in the callee...
322      Value *V = VMap[SI->getCondition()];
323      Cond = dyn_cast_or_null<ConstantInt>(V);
324    }
325    if (Cond) {     // Constant fold to uncond branch!
326      SwitchInst::ConstCaseIt Case = SI->findCaseValue(Cond);
327      BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor());
328      VMap[OldTI] = BranchInst::Create(Dest, NewBB);
329      ToClone.push_back(Dest);
330      TerminatorDone = true;
331    }
332  }
333
334  if (!TerminatorDone) {
335    Instruction *NewInst = OldTI->clone();
336    if (OldTI->hasName())
337      NewInst->setName(OldTI->getName()+NameSuffix);
338    NewBB->getInstList().push_back(NewInst);
339    VMap[OldTI] = NewInst;             // Add instruction map to value.
340
341    // Recursively clone any reachable successor blocks.
342    const TerminatorInst *TI = BB->getTerminator();
343    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
344      ToClone.push_back(TI->getSuccessor(i));
345  }
346
347  if (CodeInfo) {
348    CodeInfo->ContainsCalls          |= hasCalls;
349    CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
350    CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
351      BB != &BB->getParent()->front();
352  }
353}
354
355/// CloneAndPruneFunctionInto - This works exactly like CloneFunctionInto,
356/// except that it does some simple constant prop and DCE on the fly.  The
357/// effect of this is to copy significantly less code in cases where (for
358/// example) a function call with constant arguments is inlined, and those
359/// constant arguments cause a significant amount of code in the callee to be
360/// dead.  Since this doesn't produce an exact copy of the input, it can't be
361/// used for things like CloneFunction or CloneModule.
362void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
363                                     ValueToValueMapTy &VMap,
364                                     bool ModuleLevelChanges,
365                                     SmallVectorImpl<ReturnInst*> &Returns,
366                                     const char *NameSuffix,
367                                     ClonedCodeInfo *CodeInfo,
368                                     const TargetData *TD,
369                                     Instruction *TheCall) {
370  assert(NameSuffix && "NameSuffix cannot be null!");
371
372#ifndef NDEBUG
373  for (Function::const_arg_iterator II = OldFunc->arg_begin(),
374       E = OldFunc->arg_end(); II != E; ++II)
375    assert(VMap.count(II) && "No mapping from source argument specified!");
376#endif
377
378  PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
379                            NameSuffix, CodeInfo, TD);
380
381  // Clone the entry block, and anything recursively reachable from it.
382  std::vector<const BasicBlock*> CloneWorklist;
383  CloneWorklist.push_back(&OldFunc->getEntryBlock());
384  while (!CloneWorklist.empty()) {
385    const BasicBlock *BB = CloneWorklist.back();
386    CloneWorklist.pop_back();
387    PFC.CloneBlock(BB, CloneWorklist);
388  }
389
390  // Loop over all of the basic blocks in the old function.  If the block was
391  // reachable, we have cloned it and the old block is now in the value map:
392  // insert it into the new function in the right order.  If not, ignore it.
393  //
394  // Defer PHI resolution until rest of function is resolved.
395  SmallVector<const PHINode*, 16> PHIToResolve;
396  for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
397       BI != BE; ++BI) {
398    Value *V = VMap[BI];
399    BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
400    if (NewBB == 0) continue;  // Dead block.
401
402    // Add the new block to the new function.
403    NewFunc->getBasicBlockList().push_back(NewBB);
404
405    // Handle PHI nodes specially, as we have to remove references to dead
406    // blocks.
407    for (BasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I)
408      if (const PHINode *PN = dyn_cast<PHINode>(I))
409        PHIToResolve.push_back(PN);
410      else
411        break;
412
413    // Finally, remap the terminator instructions, as those can't be remapped
414    // until all BBs are mapped.
415    RemapInstruction(NewBB->getTerminator(), VMap,
416                     ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
417  }
418
419  // Defer PHI resolution until rest of function is resolved, PHI resolution
420  // requires the CFG to be up-to-date.
421  for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) {
422    const PHINode *OPN = PHIToResolve[phino];
423    unsigned NumPreds = OPN->getNumIncomingValues();
424    const BasicBlock *OldBB = OPN->getParent();
425    BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);
426
427    // Map operands for blocks that are live and remove operands for blocks
428    // that are dead.
429    for (; phino != PHIToResolve.size() &&
430         PHIToResolve[phino]->getParent() == OldBB; ++phino) {
431      OPN = PHIToResolve[phino];
432      PHINode *PN = cast<PHINode>(VMap[OPN]);
433      for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
434        Value *V = VMap[PN->getIncomingBlock(pred)];
435        if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
436          Value *InVal = MapValue(PN->getIncomingValue(pred),
437                                  VMap,
438                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
439          assert(InVal && "Unknown input value?");
440          PN->setIncomingValue(pred, InVal);
441          PN->setIncomingBlock(pred, MappedBlock);
442        } else {
443          PN->removeIncomingValue(pred, false);
444          --pred, --e;  // Revisit the next entry.
445        }
446      }
447    }
448
449    // The loop above has removed PHI entries for those blocks that are dead
450    // and has updated others.  However, if a block is live (i.e. copied over)
451    // but its terminator has been changed to not go to this block, then our
452    // phi nodes will have invalid entries.  Update the PHI nodes in this
453    // case.
454    PHINode *PN = cast<PHINode>(NewBB->begin());
455    NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB));
456    if (NumPreds != PN->getNumIncomingValues()) {
457      assert(NumPreds < PN->getNumIncomingValues());
458      // Count how many times each predecessor comes to this block.
459      std::map<BasicBlock*, unsigned> PredCount;
460      for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB);
461           PI != E; ++PI)
462        --PredCount[*PI];
463
464      // Figure out how many entries to remove from each PHI.
465      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
466        ++PredCount[PN->getIncomingBlock(i)];
467
468      // At this point, the excess predecessor entries are positive in the
469      // map.  Loop over all of the PHIs and remove excess predecessor
470      // entries.
471      BasicBlock::iterator I = NewBB->begin();
472      for (; (PN = dyn_cast<PHINode>(I)); ++I) {
473        for (std::map<BasicBlock*, unsigned>::iterator PCI =PredCount.begin(),
474             E = PredCount.end(); PCI != E; ++PCI) {
475          BasicBlock *Pred     = PCI->first;
476          for (unsigned NumToRemove = PCI->second; NumToRemove; --NumToRemove)
477            PN->removeIncomingValue(Pred, false);
478        }
479      }
480    }
481
482    // If the loops above have made these phi nodes have 0 or 1 operand,
483    // replace them with undef or the input value.  We must do this for
484    // correctness, because 0-operand phis are not valid.
485    PN = cast<PHINode>(NewBB->begin());
486    if (PN->getNumIncomingValues() == 0) {
487      BasicBlock::iterator I = NewBB->begin();
488      BasicBlock::const_iterator OldI = OldBB->begin();
489      while ((PN = dyn_cast<PHINode>(I++))) {
490        Value *NV = UndefValue::get(PN->getType());
491        PN->replaceAllUsesWith(NV);
492        assert(VMap[OldI] == PN && "VMap mismatch");
493        VMap[OldI] = NV;
494        PN->eraseFromParent();
495        ++OldI;
496      }
497    }
498  }
499
500  // Make a second pass over the PHINodes now that all of them have been
501  // remapped into the new function, simplifying the PHINode and performing any
502  // recursive simplifications exposed. This will transparently update the
503  // WeakVH in the VMap. Notably, we rely on that so that if we coalesce
504  // two PHINodes, the iteration over the old PHIs remains valid, and the
505  // mapping will just map us to the new node (which may not even be a PHI
506  // node).
507  for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx)
508    if (PHINode *PN = dyn_cast<PHINode>(VMap[PHIToResolve[Idx]]))
509      recursivelySimplifyInstruction(PN, TD);
510
511  // Now that the inlined function body has been fully constructed, go through
512  // and zap unconditional fall-through branches.  This happen all the time when
513  // specializing code: code specialization turns conditional branches into
514  // uncond branches, and this code folds them.
515  Function::iterator Begin = cast<BasicBlock>(VMap[&OldFunc->getEntryBlock()]);
516  Function::iterator I = Begin;
517  while (I != NewFunc->end()) {
518    // Check if this block has become dead during inlining or other
519    // simplifications. Note that the first block will appear dead, as it has
520    // not yet been wired up properly.
521    if (I != Begin && (pred_begin(I) == pred_end(I) ||
522                       I->getSinglePredecessor() == I)) {
523      BasicBlock *DeadBB = I++;
524      DeleteDeadBlock(DeadBB);
525      continue;
526    }
527
528    // We need to simplify conditional branches and switches with a constant
529    // operand. We try to prune these out when cloning, but if the
530    // simplification required looking through PHI nodes, those are only
531    // available after forming the full basic block. That may leave some here,
532    // and we still want to prune the dead code as early as possible.
533    ConstantFoldTerminator(I);
534
535    BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
536    if (!BI || BI->isConditional()) { ++I; continue; }
537
538    BasicBlock *Dest = BI->getSuccessor(0);
539    if (!Dest->getSinglePredecessor()) {
540      ++I; continue;
541    }
542
543    // We shouldn't be able to get single-entry PHI nodes here, as instsimplify
544    // above should have zapped all of them..
545    assert(!isa<PHINode>(Dest->begin()));
546
547    // We know all single-entry PHI nodes in the inlined function have been
548    // removed, so we just need to splice the blocks.
549    BI->eraseFromParent();
550
551    // Make all PHI nodes that referred to Dest now refer to I as their source.
552    Dest->replaceAllUsesWith(I);
553
554    // Move all the instructions in the succ to the pred.
555    I->getInstList().splice(I->end(), Dest->getInstList());
556
557    // Remove the dest block.
558    Dest->eraseFromParent();
559
560    // Do not increment I, iteratively merge all things this block branches to.
561  }
562
563  // Make a final pass over the basic blocks from theh old function to gather
564  // any return instructions which survived folding. We have to do this here
565  // because we can iteratively remove and merge returns above.
566  for (Function::iterator I = cast<BasicBlock>(VMap[&OldFunc->getEntryBlock()]),
567                          E = NewFunc->end();
568       I != E; ++I)
569    if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
570      Returns.push_back(RI);
571}
572