1//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Jump Threading pass.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "jump-threading"
15#include "llvm/Transforms/Scalar.h"
16#include "llvm/IntrinsicInst.h"
17#include "llvm/LLVMContext.h"
18#include "llvm/Pass.h"
19#include "llvm/Analysis/ConstantFolding.h"
20#include "llvm/Analysis/InstructionSimplify.h"
21#include "llvm/Analysis/LazyValueInfo.h"
22#include "llvm/Analysis/Loads.h"
23#include "llvm/Transforms/Utils/BasicBlockUtils.h"
24#include "llvm/Transforms/Utils/Local.h"
25#include "llvm/Transforms/Utils/SSAUpdater.h"
26#include "llvm/Target/TargetData.h"
27#include "llvm/Target/TargetLibraryInfo.h"
28#include "llvm/ADT/DenseMap.h"
29#include "llvm/ADT/DenseSet.h"
30#include "llvm/ADT/Statistic.h"
31#include "llvm/ADT/STLExtras.h"
32#include "llvm/ADT/SmallPtrSet.h"
33#include "llvm/ADT/SmallSet.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ValueHandle.h"
37#include "llvm/Support/raw_ostream.h"
38using namespace llvm;
39
40STATISTIC(NumThreads, "Number of jumps threaded");
41STATISTIC(NumFolds,   "Number of terminators folded");
42STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
43
44static cl::opt<unsigned>
45Threshold("jump-threading-threshold",
46          cl::desc("Max block size to duplicate for jump threading"),
47          cl::init(6), cl::Hidden);
48
49namespace {
50  // These are at global scope so static functions can use them too.
51  typedef SmallVectorImpl<std::pair<Constant*, BasicBlock*> > PredValueInfo;
52  typedef SmallVector<std::pair<Constant*, BasicBlock*>, 8> PredValueInfoTy;
53
54  // This is used to keep track of what kind of constant we're currently hoping
55  // to find.
56  enum ConstantPreference {
57    WantInteger,
58    WantBlockAddress
59  };
60
61  /// This pass performs 'jump threading', which looks at blocks that have
62  /// multiple predecessors and multiple successors.  If one or more of the
63  /// predecessors of the block can be proven to always jump to one of the
64  /// successors, we forward the edge from the predecessor to the successor by
65  /// duplicating the contents of this block.
66  ///
67  /// An example of when this can occur is code like this:
68  ///
69  ///   if () { ...
70  ///     X = 4;
71  ///   }
72  ///   if (X < 3) {
73  ///
74  /// In this case, the unconditional branch at the end of the first if can be
75  /// revectored to the false side of the second if.
76  ///
77  class JumpThreading : public FunctionPass {
78    TargetData *TD;
79    TargetLibraryInfo *TLI;
80    LazyValueInfo *LVI;
81#ifdef NDEBUG
82    SmallPtrSet<BasicBlock*, 16> LoopHeaders;
83#else
84    SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
85#endif
86    DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet;
87
88    // RAII helper for updating the recursion stack.
89    struct RecursionSetRemover {
90      DenseSet<std::pair<Value*, BasicBlock*> > &TheSet;
91      std::pair<Value*, BasicBlock*> ThePair;
92
93      RecursionSetRemover(DenseSet<std::pair<Value*, BasicBlock*> > &S,
94                          std::pair<Value*, BasicBlock*> P)
95        : TheSet(S), ThePair(P) { }
96
97      ~RecursionSetRemover() {
98        TheSet.erase(ThePair);
99      }
100    };
101  public:
102    static char ID; // Pass identification
103    JumpThreading() : FunctionPass(ID) {
104      initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
105    }
106
107    bool runOnFunction(Function &F);
108
109    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
110      AU.addRequired<LazyValueInfo>();
111      AU.addPreserved<LazyValueInfo>();
112      AU.addRequired<TargetLibraryInfo>();
113    }
114
115    void FindLoopHeaders(Function &F);
116    bool ProcessBlock(BasicBlock *BB);
117    bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
118                    BasicBlock *SuccBB);
119    bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
120                                  const SmallVectorImpl<BasicBlock *> &PredBBs);
121
122    bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
123                                         PredValueInfo &Result,
124                                         ConstantPreference Preference);
125    bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
126                                ConstantPreference Preference);
127
128    bool ProcessBranchOnPHI(PHINode *PN);
129    bool ProcessBranchOnXOR(BinaryOperator *BO);
130
131    bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
132  };
133}
134
135char JumpThreading::ID = 0;
136INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
137                "Jump Threading", false, false)
138INITIALIZE_PASS_DEPENDENCY(LazyValueInfo)
139INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
140INITIALIZE_PASS_END(JumpThreading, "jump-threading",
141                "Jump Threading", false, false)
142
143// Public interface to the Jump Threading pass
144FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
145
146/// runOnFunction - Top level algorithm.
147///
148bool JumpThreading::runOnFunction(Function &F) {
149  DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
150  TD = getAnalysisIfAvailable<TargetData>();
151  TLI = &getAnalysis<TargetLibraryInfo>();
152  LVI = &getAnalysis<LazyValueInfo>();
153
154  FindLoopHeaders(F);
155
156  bool Changed, EverChanged = false;
157  do {
158    Changed = false;
159    for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
160      BasicBlock *BB = I;
161      // Thread all of the branches we can over this block.
162      while (ProcessBlock(BB))
163        Changed = true;
164
165      ++I;
166
167      // If the block is trivially dead, zap it.  This eliminates the successor
168      // edges which simplifies the CFG.
169      if (pred_begin(BB) == pred_end(BB) &&
170          BB != &BB->getParent()->getEntryBlock()) {
171        DEBUG(dbgs() << "  JT: Deleting dead block '" << BB->getName()
172              << "' with terminator: " << *BB->getTerminator() << '\n');
173        LoopHeaders.erase(BB);
174        LVI->eraseBlock(BB);
175        DeleteDeadBlock(BB);
176        Changed = true;
177        continue;
178      }
179
180      BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
181
182      // Can't thread an unconditional jump, but if the block is "almost
183      // empty", we can replace uses of it with uses of the successor and make
184      // this dead.
185      if (BI && BI->isUnconditional() &&
186          BB != &BB->getParent()->getEntryBlock() &&
187          // If the terminator is the only non-phi instruction, try to nuke it.
188          BB->getFirstNonPHIOrDbg()->isTerminator()) {
189        // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
190        // block, we have to make sure it isn't in the LoopHeaders set.  We
191        // reinsert afterward if needed.
192        bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
193        BasicBlock *Succ = BI->getSuccessor(0);
194
195        // FIXME: It is always conservatively correct to drop the info
196        // for a block even if it doesn't get erased.  This isn't totally
197        // awesome, but it allows us to use AssertingVH to prevent nasty
198        // dangling pointer issues within LazyValueInfo.
199        LVI->eraseBlock(BB);
200        if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) {
201          Changed = true;
202          // If we deleted BB and BB was the header of a loop, then the
203          // successor is now the header of the loop.
204          BB = Succ;
205        }
206
207        if (ErasedFromLoopHeaders)
208          LoopHeaders.insert(BB);
209      }
210    }
211    EverChanged |= Changed;
212  } while (Changed);
213
214  LoopHeaders.clear();
215  return EverChanged;
216}
217
218/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
219/// thread across it.
220static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
221  /// Ignore PHI nodes, these will be flattened when duplication happens.
222  BasicBlock::const_iterator I = BB->getFirstNonPHI();
223
224  // FIXME: THREADING will delete values that are just used to compute the
225  // branch, so they shouldn't count against the duplication cost.
226
227
228  // Sum up the cost of each instruction until we get to the terminator.  Don't
229  // include the terminator because the copy won't include it.
230  unsigned Size = 0;
231  for (; !isa<TerminatorInst>(I); ++I) {
232    // Debugger intrinsics don't incur code size.
233    if (isa<DbgInfoIntrinsic>(I)) continue;
234
235    // If this is a pointer->pointer bitcast, it is free.
236    if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
237      continue;
238
239    // All other instructions count for at least one unit.
240    ++Size;
241
242    // Calls are more expensive.  If they are non-intrinsic calls, we model them
243    // as having cost of 4.  If they are a non-vector intrinsic, we model them
244    // as having cost of 2 total, and if they are a vector intrinsic, we model
245    // them as having cost 1.
246    if (const CallInst *CI = dyn_cast<CallInst>(I)) {
247      if (!isa<IntrinsicInst>(CI))
248        Size += 3;
249      else if (!CI->getType()->isVectorTy())
250        Size += 1;
251    }
252  }
253
254  // Threading through a switch statement is particularly profitable.  If this
255  // block ends in a switch, decrease its cost to make it more likely to happen.
256  if (isa<SwitchInst>(I))
257    Size = Size > 6 ? Size-6 : 0;
258
259  // The same holds for indirect branches, but slightly more so.
260  if (isa<IndirectBrInst>(I))
261    Size = Size > 8 ? Size-8 : 0;
262
263  return Size;
264}
265
266/// FindLoopHeaders - We do not want jump threading to turn proper loop
267/// structures into irreducible loops.  Doing this breaks up the loop nesting
268/// hierarchy and pessimizes later transformations.  To prevent this from
269/// happening, we first have to find the loop headers.  Here we approximate this
270/// by finding targets of backedges in the CFG.
271///
272/// Note that there definitely are cases when we want to allow threading of
273/// edges across a loop header.  For example, threading a jump from outside the
274/// loop (the preheader) to an exit block of the loop is definitely profitable.
275/// It is also almost always profitable to thread backedges from within the loop
276/// to exit blocks, and is often profitable to thread backedges to other blocks
277/// within the loop (forming a nested loop).  This simple analysis is not rich
278/// enough to track all of these properties and keep it up-to-date as the CFG
279/// mutates, so we don't allow any of these transformations.
280///
281void JumpThreading::FindLoopHeaders(Function &F) {
282  SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
283  FindFunctionBackedges(F, Edges);
284
285  for (unsigned i = 0, e = Edges.size(); i != e; ++i)
286    LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
287}
288
289/// getKnownConstant - Helper method to determine if we can thread over a
290/// terminator with the given value as its condition, and if so what value to
291/// use for that. What kind of value this is depends on whether we want an
292/// integer or a block address, but an undef is always accepted.
293/// Returns null if Val is null or not an appropriate constant.
294static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
295  if (!Val)
296    return 0;
297
298  // Undef is "known" enough.
299  if (UndefValue *U = dyn_cast<UndefValue>(Val))
300    return U;
301
302  if (Preference == WantBlockAddress)
303    return dyn_cast<BlockAddress>(Val->stripPointerCasts());
304
305  return dyn_cast<ConstantInt>(Val);
306}
307
308/// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
309/// if we can infer that the value is a known ConstantInt/BlockAddress or undef
310/// in any of our predecessors.  If so, return the known list of value and pred
311/// BB in the result vector.
312///
313/// This returns true if there were any known values.
314///
315bool JumpThreading::
316ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
317                                ConstantPreference Preference) {
318  // This method walks up use-def chains recursively.  Because of this, we could
319  // get into an infinite loop going around loops in the use-def chain.  To
320  // prevent this, keep track of what (value, block) pairs we've already visited
321  // and terminate the search if we loop back to them
322  if (!RecursionSet.insert(std::make_pair(V, BB)).second)
323    return false;
324
325  // An RAII help to remove this pair from the recursion set once the recursion
326  // stack pops back out again.
327  RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB));
328
329  // If V is a constant, then it is known in all predecessors.
330  if (Constant *KC = getKnownConstant(V, Preference)) {
331    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
332      Result.push_back(std::make_pair(KC, *PI));
333
334    return true;
335  }
336
337  // If V is a non-instruction value, or an instruction in a different block,
338  // then it can't be derived from a PHI.
339  Instruction *I = dyn_cast<Instruction>(V);
340  if (I == 0 || I->getParent() != BB) {
341
342    // Okay, if this is a live-in value, see if it has a known value at the end
343    // of any of our predecessors.
344    //
345    // FIXME: This should be an edge property, not a block end property.
346    /// TODO: Per PR2563, we could infer value range information about a
347    /// predecessor based on its terminator.
348    //
349    // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
350    // "I" is a non-local compare-with-a-constant instruction.  This would be
351    // able to handle value inequalities better, for example if the compare is
352    // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
353    // Perhaps getConstantOnEdge should be smart enough to do this?
354
355    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
356      BasicBlock *P = *PI;
357      // If the value is known by LazyValueInfo to be a constant in a
358      // predecessor, use that information to try to thread this block.
359      Constant *PredCst = LVI->getConstantOnEdge(V, P, BB);
360      if (Constant *KC = getKnownConstant(PredCst, Preference))
361        Result.push_back(std::make_pair(KC, P));
362    }
363
364    return !Result.empty();
365  }
366
367  /// If I is a PHI node, then we know the incoming values for any constants.
368  if (PHINode *PN = dyn_cast<PHINode>(I)) {
369    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
370      Value *InVal = PN->getIncomingValue(i);
371      if (Constant *KC = getKnownConstant(InVal, Preference)) {
372        Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
373      } else {
374        Constant *CI = LVI->getConstantOnEdge(InVal,
375                                              PN->getIncomingBlock(i), BB);
376        if (Constant *KC = getKnownConstant(CI, Preference))
377          Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
378      }
379    }
380
381    return !Result.empty();
382  }
383
384  PredValueInfoTy LHSVals, RHSVals;
385
386  // Handle some boolean conditions.
387  if (I->getType()->getPrimitiveSizeInBits() == 1) {
388    assert(Preference == WantInteger && "One-bit non-integer type?");
389    // X | true -> true
390    // X & false -> false
391    if (I->getOpcode() == Instruction::Or ||
392        I->getOpcode() == Instruction::And) {
393      ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
394                                      WantInteger);
395      ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals,
396                                      WantInteger);
397
398      if (LHSVals.empty() && RHSVals.empty())
399        return false;
400
401      ConstantInt *InterestingVal;
402      if (I->getOpcode() == Instruction::Or)
403        InterestingVal = ConstantInt::getTrue(I->getContext());
404      else
405        InterestingVal = ConstantInt::getFalse(I->getContext());
406
407      SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
408
409      // Scan for the sentinel.  If we find an undef, force it to the
410      // interesting value: x|undef -> true and x&undef -> false.
411      for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
412        if (LHSVals[i].first == InterestingVal ||
413            isa<UndefValue>(LHSVals[i].first)) {
414          Result.push_back(LHSVals[i]);
415          Result.back().first = InterestingVal;
416          LHSKnownBBs.insert(LHSVals[i].second);
417        }
418      for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
419        if (RHSVals[i].first == InterestingVal ||
420            isa<UndefValue>(RHSVals[i].first)) {
421          // If we already inferred a value for this block on the LHS, don't
422          // re-add it.
423          if (!LHSKnownBBs.count(RHSVals[i].second)) {
424            Result.push_back(RHSVals[i]);
425            Result.back().first = InterestingVal;
426          }
427        }
428
429      return !Result.empty();
430    }
431
432    // Handle the NOT form of XOR.
433    if (I->getOpcode() == Instruction::Xor &&
434        isa<ConstantInt>(I->getOperand(1)) &&
435        cast<ConstantInt>(I->getOperand(1))->isOne()) {
436      ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result,
437                                      WantInteger);
438      if (Result.empty())
439        return false;
440
441      // Invert the known values.
442      for (unsigned i = 0, e = Result.size(); i != e; ++i)
443        Result[i].first = ConstantExpr::getNot(Result[i].first);
444
445      return true;
446    }
447
448  // Try to simplify some other binary operator values.
449  } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
450    assert(Preference != WantBlockAddress
451            && "A binary operator creating a block address?");
452    if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
453      PredValueInfoTy LHSVals;
454      ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals,
455                                      WantInteger);
456
457      // Try to use constant folding to simplify the binary operator.
458      for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
459        Constant *V = LHSVals[i].first;
460        Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
461
462        if (Constant *KC = getKnownConstant(Folded, WantInteger))
463          Result.push_back(std::make_pair(KC, LHSVals[i].second));
464      }
465    }
466
467    return !Result.empty();
468  }
469
470  // Handle compare with phi operand, where the PHI is defined in this block.
471  if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
472    assert(Preference == WantInteger && "Compares only produce integers");
473    PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
474    if (PN && PN->getParent() == BB) {
475      // We can do this simplification if any comparisons fold to true or false.
476      // See if any do.
477      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
478        BasicBlock *PredBB = PN->getIncomingBlock(i);
479        Value *LHS = PN->getIncomingValue(i);
480        Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
481
482        Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD);
483        if (Res == 0) {
484          if (!isa<Constant>(RHS))
485            continue;
486
487          LazyValueInfo::Tristate
488            ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
489                                           cast<Constant>(RHS), PredBB, BB);
490          if (ResT == LazyValueInfo::Unknown)
491            continue;
492          Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
493        }
494
495        if (Constant *KC = getKnownConstant(Res, WantInteger))
496          Result.push_back(std::make_pair(KC, PredBB));
497      }
498
499      return !Result.empty();
500    }
501
502
503    // If comparing a live-in value against a constant, see if we know the
504    // live-in value on any predecessors.
505    if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) {
506      if (!isa<Instruction>(Cmp->getOperand(0)) ||
507          cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) {
508        Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
509
510        for (pred_iterator PI = pred_begin(BB), E = pred_end(BB);PI != E; ++PI){
511          BasicBlock *P = *PI;
512          // If the value is known by LazyValueInfo to be a constant in a
513          // predecessor, use that information to try to thread this block.
514          LazyValueInfo::Tristate Res =
515            LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
516                                    RHSCst, P, BB);
517          if (Res == LazyValueInfo::Unknown)
518            continue;
519
520          Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
521          Result.push_back(std::make_pair(ResC, P));
522        }
523
524        return !Result.empty();
525      }
526
527      // Try to find a constant value for the LHS of a comparison,
528      // and evaluate it statically if we can.
529      if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) {
530        PredValueInfoTy LHSVals;
531        ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
532                                        WantInteger);
533
534        for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
535          Constant *V = LHSVals[i].first;
536          Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(),
537                                                      V, CmpConst);
538          if (Constant *KC = getKnownConstant(Folded, WantInteger))
539            Result.push_back(std::make_pair(KC, LHSVals[i].second));
540        }
541
542        return !Result.empty();
543      }
544    }
545  }
546
547  if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
548    // Handle select instructions where at least one operand is a known constant
549    // and we can figure out the condition value for any predecessor block.
550    Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
551    Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
552    PredValueInfoTy Conds;
553    if ((TrueVal || FalseVal) &&
554        ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds,
555                                        WantInteger)) {
556      for (unsigned i = 0, e = Conds.size(); i != e; ++i) {
557        Constant *Cond = Conds[i].first;
558
559        // Figure out what value to use for the condition.
560        bool KnownCond;
561        if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
562          // A known boolean.
563          KnownCond = CI->isOne();
564        } else {
565          assert(isa<UndefValue>(Cond) && "Unexpected condition value");
566          // Either operand will do, so be sure to pick the one that's a known
567          // constant.
568          // FIXME: Do this more cleverly if both values are known constants?
569          KnownCond = (TrueVal != 0);
570        }
571
572        // See if the select has a known constant value for this predecessor.
573        if (Constant *Val = KnownCond ? TrueVal : FalseVal)
574          Result.push_back(std::make_pair(Val, Conds[i].second));
575      }
576
577      return !Result.empty();
578    }
579  }
580
581  // If all else fails, see if LVI can figure out a constant value for us.
582  Constant *CI = LVI->getConstant(V, BB);
583  if (Constant *KC = getKnownConstant(CI, Preference)) {
584    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
585      Result.push_back(std::make_pair(KC, *PI));
586  }
587
588  return !Result.empty();
589}
590
591
592
593/// GetBestDestForBranchOnUndef - If we determine that the specified block ends
594/// in an undefined jump, decide which block is best to revector to.
595///
596/// Since we can pick an arbitrary destination, we pick the successor with the
597/// fewest predecessors.  This should reduce the in-degree of the others.
598///
599static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
600  TerminatorInst *BBTerm = BB->getTerminator();
601  unsigned MinSucc = 0;
602  BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
603  // Compute the successor with the minimum number of predecessors.
604  unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
605  for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
606    TestBB = BBTerm->getSuccessor(i);
607    unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
608    if (NumPreds < MinNumPreds) {
609      MinSucc = i;
610      MinNumPreds = NumPreds;
611    }
612  }
613
614  return MinSucc;
615}
616
617static bool hasAddressTakenAndUsed(BasicBlock *BB) {
618  if (!BB->hasAddressTaken()) return false;
619
620  // If the block has its address taken, it may be a tree of dead constants
621  // hanging off of it.  These shouldn't keep the block alive.
622  BlockAddress *BA = BlockAddress::get(BB);
623  BA->removeDeadConstantUsers();
624  return !BA->use_empty();
625}
626
627/// ProcessBlock - If there are any predecessors whose control can be threaded
628/// through to a successor, transform them now.
629bool JumpThreading::ProcessBlock(BasicBlock *BB) {
630  // If the block is trivially dead, just return and let the caller nuke it.
631  // This simplifies other transformations.
632  if (pred_begin(BB) == pred_end(BB) &&
633      BB != &BB->getParent()->getEntryBlock())
634    return false;
635
636  // If this block has a single predecessor, and if that pred has a single
637  // successor, merge the blocks.  This encourages recursive jump threading
638  // because now the condition in this block can be threaded through
639  // predecessors of our predecessor block.
640  if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
641    if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
642        SinglePred != BB && !hasAddressTakenAndUsed(BB)) {
643      // If SinglePred was a loop header, BB becomes one.
644      if (LoopHeaders.erase(SinglePred))
645        LoopHeaders.insert(BB);
646
647      // Remember if SinglePred was the entry block of the function.  If so, we
648      // will need to move BB back to the entry position.
649      bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
650      LVI->eraseBlock(SinglePred);
651      MergeBasicBlockIntoOnlyPred(BB);
652
653      if (isEntry && BB != &BB->getParent()->getEntryBlock())
654        BB->moveBefore(&BB->getParent()->getEntryBlock());
655      return true;
656    }
657  }
658
659  // What kind of constant we're looking for.
660  ConstantPreference Preference = WantInteger;
661
662  // Look to see if the terminator is a conditional branch, switch or indirect
663  // branch, if not we can't thread it.
664  Value *Condition;
665  Instruction *Terminator = BB->getTerminator();
666  if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
667    // Can't thread an unconditional jump.
668    if (BI->isUnconditional()) return false;
669    Condition = BI->getCondition();
670  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
671    Condition = SI->getCondition();
672  } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
673    // Can't thread indirect branch with no successors.
674    if (IB->getNumSuccessors() == 0) return false;
675    Condition = IB->getAddress()->stripPointerCasts();
676    Preference = WantBlockAddress;
677  } else {
678    return false; // Must be an invoke.
679  }
680
681  // Run constant folding to see if we can reduce the condition to a simple
682  // constant.
683  if (Instruction *I = dyn_cast<Instruction>(Condition)) {
684    Value *SimpleVal = ConstantFoldInstruction(I, TD, TLI);
685    if (SimpleVal) {
686      I->replaceAllUsesWith(SimpleVal);
687      I->eraseFromParent();
688      Condition = SimpleVal;
689    }
690  }
691
692  // If the terminator is branching on an undef, we can pick any of the
693  // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
694  if (isa<UndefValue>(Condition)) {
695    unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
696
697    // Fold the branch/switch.
698    TerminatorInst *BBTerm = BB->getTerminator();
699    for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
700      if (i == BestSucc) continue;
701      BBTerm->getSuccessor(i)->removePredecessor(BB, true);
702    }
703
704    DEBUG(dbgs() << "  In block '" << BB->getName()
705          << "' folding undef terminator: " << *BBTerm << '\n');
706    BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
707    BBTerm->eraseFromParent();
708    return true;
709  }
710
711  // If the terminator of this block is branching on a constant, simplify the
712  // terminator to an unconditional branch.  This can occur due to threading in
713  // other blocks.
714  if (getKnownConstant(Condition, Preference)) {
715    DEBUG(dbgs() << "  In block '" << BB->getName()
716          << "' folding terminator: " << *BB->getTerminator() << '\n');
717    ++NumFolds;
718    ConstantFoldTerminator(BB, true);
719    return true;
720  }
721
722  Instruction *CondInst = dyn_cast<Instruction>(Condition);
723
724  // All the rest of our checks depend on the condition being an instruction.
725  if (CondInst == 0) {
726    // FIXME: Unify this with code below.
727    if (ProcessThreadableEdges(Condition, BB, Preference))
728      return true;
729    return false;
730  }
731
732
733  if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
734    // For a comparison where the LHS is outside this block, it's possible
735    // that we've branched on it before.  Used LVI to see if we can simplify
736    // the branch based on that.
737    BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
738    Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
739    pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
740    if (CondBr && CondConst && CondBr->isConditional() && PI != PE &&
741        (!isa<Instruction>(CondCmp->getOperand(0)) ||
742         cast<Instruction>(CondCmp->getOperand(0))->getParent() != BB)) {
743      // For predecessor edge, determine if the comparison is true or false
744      // on that edge.  If they're all true or all false, we can simplify the
745      // branch.
746      // FIXME: We could handle mixed true/false by duplicating code.
747      LazyValueInfo::Tristate Baseline =
748        LVI->getPredicateOnEdge(CondCmp->getPredicate(), CondCmp->getOperand(0),
749                                CondConst, *PI, BB);
750      if (Baseline != LazyValueInfo::Unknown) {
751        // Check that all remaining incoming values match the first one.
752        while (++PI != PE) {
753          LazyValueInfo::Tristate Ret =
754            LVI->getPredicateOnEdge(CondCmp->getPredicate(),
755                                    CondCmp->getOperand(0), CondConst, *PI, BB);
756          if (Ret != Baseline) break;
757        }
758
759        // If we terminated early, then one of the values didn't match.
760        if (PI == PE) {
761          unsigned ToRemove = Baseline == LazyValueInfo::True ? 1 : 0;
762          unsigned ToKeep = Baseline == LazyValueInfo::True ? 0 : 1;
763          CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true);
764          BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
765          CondBr->eraseFromParent();
766          return true;
767        }
768      }
769    }
770  }
771
772  // Check for some cases that are worth simplifying.  Right now we want to look
773  // for loads that are used by a switch or by the condition for the branch.  If
774  // we see one, check to see if it's partially redundant.  If so, insert a PHI
775  // which can then be used to thread the values.
776  //
777  Value *SimplifyValue = CondInst;
778  if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
779    if (isa<Constant>(CondCmp->getOperand(1)))
780      SimplifyValue = CondCmp->getOperand(0);
781
782  // TODO: There are other places where load PRE would be profitable, such as
783  // more complex comparisons.
784  if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
785    if (SimplifyPartiallyRedundantLoad(LI))
786      return true;
787
788
789  // Handle a variety of cases where we are branching on something derived from
790  // a PHI node in the current block.  If we can prove that any predecessors
791  // compute a predictable value based on a PHI node, thread those predecessors.
792  //
793  if (ProcessThreadableEdges(CondInst, BB, Preference))
794    return true;
795
796  // If this is an otherwise-unfoldable branch on a phi node in the current
797  // block, see if we can simplify.
798  if (PHINode *PN = dyn_cast<PHINode>(CondInst))
799    if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
800      return ProcessBranchOnPHI(PN);
801
802
803  // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
804  if (CondInst->getOpcode() == Instruction::Xor &&
805      CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
806    return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
807
808
809  // TODO: If we have: "br (X > 0)"  and we have a predecessor where we know
810  // "(X == 4)", thread through this block.
811
812  return false;
813}
814
815
816/// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
817/// load instruction, eliminate it by replacing it with a PHI node.  This is an
818/// important optimization that encourages jump threading, and needs to be run
819/// interlaced with other jump threading tasks.
820bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
821  // Don't hack volatile/atomic loads.
822  if (!LI->isSimple()) return false;
823
824  // If the load is defined in a block with exactly one predecessor, it can't be
825  // partially redundant.
826  BasicBlock *LoadBB = LI->getParent();
827  if (LoadBB->getSinglePredecessor())
828    return false;
829
830  Value *LoadedPtr = LI->getOperand(0);
831
832  // If the loaded operand is defined in the LoadBB, it can't be available.
833  // TODO: Could do simple PHI translation, that would be fun :)
834  if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
835    if (PtrOp->getParent() == LoadBB)
836      return false;
837
838  // Scan a few instructions up from the load, to see if it is obviously live at
839  // the entry to its block.
840  BasicBlock::iterator BBIt = LI;
841
842  if (Value *AvailableVal =
843        FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) {
844    // If the value if the load is locally available within the block, just use
845    // it.  This frequently occurs for reg2mem'd allocas.
846    //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
847
848    // If the returned value is the load itself, replace with an undef. This can
849    // only happen in dead loops.
850    if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
851    LI->replaceAllUsesWith(AvailableVal);
852    LI->eraseFromParent();
853    return true;
854  }
855
856  // Otherwise, if we scanned the whole block and got to the top of the block,
857  // we know the block is locally transparent to the load.  If not, something
858  // might clobber its value.
859  if (BBIt != LoadBB->begin())
860    return false;
861
862  // If all of the loads and stores that feed the value have the same TBAA tag,
863  // then we can propagate it onto any newly inserted loads.
864  MDNode *TBAATag = LI->getMetadata(LLVMContext::MD_tbaa);
865
866  SmallPtrSet<BasicBlock*, 8> PredsScanned;
867  typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
868  AvailablePredsTy AvailablePreds;
869  BasicBlock *OneUnavailablePred = 0;
870
871  // If we got here, the loaded value is transparent through to the start of the
872  // block.  Check to see if it is available in any of the predecessor blocks.
873  for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
874       PI != PE; ++PI) {
875    BasicBlock *PredBB = *PI;
876
877    // If we already scanned this predecessor, skip it.
878    if (!PredsScanned.insert(PredBB))
879      continue;
880
881    // Scan the predecessor to see if the value is available in the pred.
882    BBIt = PredBB->end();
883    MDNode *ThisTBAATag = 0;
884    Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6,
885                                                    0, &ThisTBAATag);
886    if (!PredAvailable) {
887      OneUnavailablePred = PredBB;
888      continue;
889    }
890
891    // If tbaa tags disagree or are not present, forget about them.
892    if (TBAATag != ThisTBAATag) TBAATag = 0;
893
894    // If so, this load is partially redundant.  Remember this info so that we
895    // can create a PHI node.
896    AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
897  }
898
899  // If the loaded value isn't available in any predecessor, it isn't partially
900  // redundant.
901  if (AvailablePreds.empty()) return false;
902
903  // Okay, the loaded value is available in at least one (and maybe all!)
904  // predecessors.  If the value is unavailable in more than one unique
905  // predecessor, we want to insert a merge block for those common predecessors.
906  // This ensures that we only have to insert one reload, thus not increasing
907  // code size.
908  BasicBlock *UnavailablePred = 0;
909
910  // If there is exactly one predecessor where the value is unavailable, the
911  // already computed 'OneUnavailablePred' block is it.  If it ends in an
912  // unconditional branch, we know that it isn't a critical edge.
913  if (PredsScanned.size() == AvailablePreds.size()+1 &&
914      OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
915    UnavailablePred = OneUnavailablePred;
916  } else if (PredsScanned.size() != AvailablePreds.size()) {
917    // Otherwise, we had multiple unavailable predecessors or we had a critical
918    // edge from the one.
919    SmallVector<BasicBlock*, 8> PredsToSplit;
920    SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
921
922    for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
923      AvailablePredSet.insert(AvailablePreds[i].first);
924
925    // Add all the unavailable predecessors to the PredsToSplit list.
926    for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
927         PI != PE; ++PI) {
928      BasicBlock *P = *PI;
929      // If the predecessor is an indirect goto, we can't split the edge.
930      if (isa<IndirectBrInst>(P->getTerminator()))
931        return false;
932
933      if (!AvailablePredSet.count(P))
934        PredsToSplit.push_back(P);
935    }
936
937    // Split them out to their own block.
938    UnavailablePred =
939      SplitBlockPredecessors(LoadBB, PredsToSplit, "thread-pre-split", this);
940  }
941
942  // If the value isn't available in all predecessors, then there will be
943  // exactly one where it isn't available.  Insert a load on that edge and add
944  // it to the AvailablePreds list.
945  if (UnavailablePred) {
946    assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
947           "Can't handle critical edge here!");
948    LoadInst *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false,
949                                 LI->getAlignment(),
950                                 UnavailablePred->getTerminator());
951    NewVal->setDebugLoc(LI->getDebugLoc());
952    if (TBAATag)
953      NewVal->setMetadata(LLVMContext::MD_tbaa, TBAATag);
954
955    AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
956  }
957
958  // Now we know that each predecessor of this block has a value in
959  // AvailablePreds, sort them for efficient access as we're walking the preds.
960  array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
961
962  // Create a PHI node at the start of the block for the PRE'd load value.
963  pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
964  PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "",
965                                LoadBB->begin());
966  PN->takeName(LI);
967  PN->setDebugLoc(LI->getDebugLoc());
968
969  // Insert new entries into the PHI for each predecessor.  A single block may
970  // have multiple entries here.
971  for (pred_iterator PI = PB; PI != PE; ++PI) {
972    BasicBlock *P = *PI;
973    AvailablePredsTy::iterator I =
974      std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
975                       std::make_pair(P, (Value*)0));
976
977    assert(I != AvailablePreds.end() && I->first == P &&
978           "Didn't find entry for predecessor!");
979
980    PN->addIncoming(I->second, I->first);
981  }
982
983  //cerr << "PRE: " << *LI << *PN << "\n";
984
985  LI->replaceAllUsesWith(PN);
986  LI->eraseFromParent();
987
988  return true;
989}
990
991/// FindMostPopularDest - The specified list contains multiple possible
992/// threadable destinations.  Pick the one that occurs the most frequently in
993/// the list.
994static BasicBlock *
995FindMostPopularDest(BasicBlock *BB,
996                    const SmallVectorImpl<std::pair<BasicBlock*,
997                                  BasicBlock*> > &PredToDestList) {
998  assert(!PredToDestList.empty());
999
1000  // Determine popularity.  If there are multiple possible destinations, we
1001  // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1002  // blocks with known and real destinations to threading undef.  We'll handle
1003  // them later if interesting.
1004  DenseMap<BasicBlock*, unsigned> DestPopularity;
1005  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1006    if (PredToDestList[i].second)
1007      DestPopularity[PredToDestList[i].second]++;
1008
1009  // Find the most popular dest.
1010  DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
1011  BasicBlock *MostPopularDest = DPI->first;
1012  unsigned Popularity = DPI->second;
1013  SmallVector<BasicBlock*, 4> SamePopularity;
1014
1015  for (++DPI; DPI != DestPopularity.end(); ++DPI) {
1016    // If the popularity of this entry isn't higher than the popularity we've
1017    // seen so far, ignore it.
1018    if (DPI->second < Popularity)
1019      ; // ignore.
1020    else if (DPI->second == Popularity) {
1021      // If it is the same as what we've seen so far, keep track of it.
1022      SamePopularity.push_back(DPI->first);
1023    } else {
1024      // If it is more popular, remember it.
1025      SamePopularity.clear();
1026      MostPopularDest = DPI->first;
1027      Popularity = DPI->second;
1028    }
1029  }
1030
1031  // Okay, now we know the most popular destination.  If there is more than one
1032  // destination, we need to determine one.  This is arbitrary, but we need
1033  // to make a deterministic decision.  Pick the first one that appears in the
1034  // successor list.
1035  if (!SamePopularity.empty()) {
1036    SamePopularity.push_back(MostPopularDest);
1037    TerminatorInst *TI = BB->getTerminator();
1038    for (unsigned i = 0; ; ++i) {
1039      assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
1040
1041      if (std::find(SamePopularity.begin(), SamePopularity.end(),
1042                    TI->getSuccessor(i)) == SamePopularity.end())
1043        continue;
1044
1045      MostPopularDest = TI->getSuccessor(i);
1046      break;
1047    }
1048  }
1049
1050  // Okay, we have finally picked the most popular destination.
1051  return MostPopularDest;
1052}
1053
1054bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
1055                                           ConstantPreference Preference) {
1056  // If threading this would thread across a loop header, don't even try to
1057  // thread the edge.
1058  if (LoopHeaders.count(BB))
1059    return false;
1060
1061  PredValueInfoTy PredValues;
1062  if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference))
1063    return false;
1064
1065  assert(!PredValues.empty() &&
1066         "ComputeValueKnownInPredecessors returned true with no values");
1067
1068  DEBUG(dbgs() << "IN BB: " << *BB;
1069        for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
1070          dbgs() << "  BB '" << BB->getName() << "': FOUND condition = "
1071            << *PredValues[i].first
1072            << " for pred '" << PredValues[i].second->getName() << "'.\n";
1073        });
1074
1075  // Decide what we want to thread through.  Convert our list of known values to
1076  // a list of known destinations for each pred.  This also discards duplicate
1077  // predecessors and keeps track of the undefined inputs (which are represented
1078  // as a null dest in the PredToDestList).
1079  SmallPtrSet<BasicBlock*, 16> SeenPreds;
1080  SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1081
1082  BasicBlock *OnlyDest = 0;
1083  BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1084
1085  for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
1086    BasicBlock *Pred = PredValues[i].second;
1087    if (!SeenPreds.insert(Pred))
1088      continue;  // Duplicate predecessor entry.
1089
1090    // If the predecessor ends with an indirect goto, we can't change its
1091    // destination.
1092    if (isa<IndirectBrInst>(Pred->getTerminator()))
1093      continue;
1094
1095    Constant *Val = PredValues[i].first;
1096
1097    BasicBlock *DestBB;
1098    if (isa<UndefValue>(Val))
1099      DestBB = 0;
1100    else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
1101      DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1102    else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1103      DestBB = SI->findCaseValue(cast<ConstantInt>(Val)).getCaseSuccessor();
1104    } else {
1105      assert(isa<IndirectBrInst>(BB->getTerminator())
1106              && "Unexpected terminator");
1107      DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1108    }
1109
1110    // If we have exactly one destination, remember it for efficiency below.
1111    if (PredToDestList.empty())
1112      OnlyDest = DestBB;
1113    else if (OnlyDest != DestBB)
1114      OnlyDest = MultipleDestSentinel;
1115
1116    PredToDestList.push_back(std::make_pair(Pred, DestBB));
1117  }
1118
1119  // If all edges were unthreadable, we fail.
1120  if (PredToDestList.empty())
1121    return false;
1122
1123  // Determine which is the most common successor.  If we have many inputs and
1124  // this block is a switch, we want to start by threading the batch that goes
1125  // to the most popular destination first.  If we only know about one
1126  // threadable destination (the common case) we can avoid this.
1127  BasicBlock *MostPopularDest = OnlyDest;
1128
1129  if (MostPopularDest == MultipleDestSentinel)
1130    MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1131
1132  // Now that we know what the most popular destination is, factor all
1133  // predecessors that will jump to it into a single predecessor.
1134  SmallVector<BasicBlock*, 16> PredsToFactor;
1135  for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1136    if (PredToDestList[i].second == MostPopularDest) {
1137      BasicBlock *Pred = PredToDestList[i].first;
1138
1139      // This predecessor may be a switch or something else that has multiple
1140      // edges to the block.  Factor each of these edges by listing them
1141      // according to # occurrences in PredsToFactor.
1142      TerminatorInst *PredTI = Pred->getTerminator();
1143      for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
1144        if (PredTI->getSuccessor(i) == BB)
1145          PredsToFactor.push_back(Pred);
1146    }
1147
1148  // If the threadable edges are branching on an undefined value, we get to pick
1149  // the destination that these predecessors should get to.
1150  if (MostPopularDest == 0)
1151    MostPopularDest = BB->getTerminator()->
1152                            getSuccessor(GetBestDestForJumpOnUndef(BB));
1153
1154  // Ok, try to thread it!
1155  return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1156}
1157
1158/// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1159/// a PHI node in the current block.  See if there are any simplifications we
1160/// can do based on inputs to the phi node.
1161///
1162bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) {
1163  BasicBlock *BB = PN->getParent();
1164
1165  // TODO: We could make use of this to do it once for blocks with common PHI
1166  // values.
1167  SmallVector<BasicBlock*, 1> PredBBs;
1168  PredBBs.resize(1);
1169
1170  // If any of the predecessor blocks end in an unconditional branch, we can
1171  // *duplicate* the conditional branch into that block in order to further
1172  // encourage jump threading and to eliminate cases where we have branch on a
1173  // phi of an icmp (branch on icmp is much better).
1174  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1175    BasicBlock *PredBB = PN->getIncomingBlock(i);
1176    if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1177      if (PredBr->isUnconditional()) {
1178        PredBBs[0] = PredBB;
1179        // Try to duplicate BB into PredBB.
1180        if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1181          return true;
1182      }
1183  }
1184
1185  return false;
1186}
1187
1188/// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1189/// a xor instruction in the current block.  See if there are any
1190/// simplifications we can do based on inputs to the xor.
1191///
1192bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) {
1193  BasicBlock *BB = BO->getParent();
1194
1195  // If either the LHS or RHS of the xor is a constant, don't do this
1196  // optimization.
1197  if (isa<ConstantInt>(BO->getOperand(0)) ||
1198      isa<ConstantInt>(BO->getOperand(1)))
1199    return false;
1200
1201  // If the first instruction in BB isn't a phi, we won't be able to infer
1202  // anything special about any particular predecessor.
1203  if (!isa<PHINode>(BB->front()))
1204    return false;
1205
1206  // If we have a xor as the branch input to this block, and we know that the
1207  // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1208  // the condition into the predecessor and fix that value to true, saving some
1209  // logical ops on that path and encouraging other paths to simplify.
1210  //
1211  // This copies something like this:
1212  //
1213  //  BB:
1214  //    %X = phi i1 [1],  [%X']
1215  //    %Y = icmp eq i32 %A, %B
1216  //    %Z = xor i1 %X, %Y
1217  //    br i1 %Z, ...
1218  //
1219  // Into:
1220  //  BB':
1221  //    %Y = icmp ne i32 %A, %B
1222  //    br i1 %Z, ...
1223
1224  PredValueInfoTy XorOpValues;
1225  bool isLHS = true;
1226  if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1227                                       WantInteger)) {
1228    assert(XorOpValues.empty());
1229    if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1230                                         WantInteger))
1231      return false;
1232    isLHS = false;
1233  }
1234
1235  assert(!XorOpValues.empty() &&
1236         "ComputeValueKnownInPredecessors returned true with no values");
1237
1238  // Scan the information to see which is most popular: true or false.  The
1239  // predecessors can be of the set true, false, or undef.
1240  unsigned NumTrue = 0, NumFalse = 0;
1241  for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1242    if (isa<UndefValue>(XorOpValues[i].first))
1243      // Ignore undefs for the count.
1244      continue;
1245    if (cast<ConstantInt>(XorOpValues[i].first)->isZero())
1246      ++NumFalse;
1247    else
1248      ++NumTrue;
1249  }
1250
1251  // Determine which value to split on, true, false, or undef if neither.
1252  ConstantInt *SplitVal = 0;
1253  if (NumTrue > NumFalse)
1254    SplitVal = ConstantInt::getTrue(BB->getContext());
1255  else if (NumTrue != 0 || NumFalse != 0)
1256    SplitVal = ConstantInt::getFalse(BB->getContext());
1257
1258  // Collect all of the blocks that this can be folded into so that we can
1259  // factor this once and clone it once.
1260  SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1261  for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1262    if (XorOpValues[i].first != SplitVal &&
1263        !isa<UndefValue>(XorOpValues[i].first))
1264      continue;
1265
1266    BlocksToFoldInto.push_back(XorOpValues[i].second);
1267  }
1268
1269  // If we inferred a value for all of the predecessors, then duplication won't
1270  // help us.  However, we can just replace the LHS or RHS with the constant.
1271  if (BlocksToFoldInto.size() ==
1272      cast<PHINode>(BB->front()).getNumIncomingValues()) {
1273    if (SplitVal == 0) {
1274      // If all preds provide undef, just nuke the xor, because it is undef too.
1275      BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1276      BO->eraseFromParent();
1277    } else if (SplitVal->isZero()) {
1278      // If all preds provide 0, replace the xor with the other input.
1279      BO->replaceAllUsesWith(BO->getOperand(isLHS));
1280      BO->eraseFromParent();
1281    } else {
1282      // If all preds provide 1, set the computed value to 1.
1283      BO->setOperand(!isLHS, SplitVal);
1284    }
1285
1286    return true;
1287  }
1288
1289  // Try to duplicate BB into PredBB.
1290  return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1291}
1292
1293
1294/// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1295/// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1296/// NewPred using the entries from OldPred (suitably mapped).
1297static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1298                                            BasicBlock *OldPred,
1299                                            BasicBlock *NewPred,
1300                                     DenseMap<Instruction*, Value*> &ValueMap) {
1301  for (BasicBlock::iterator PNI = PHIBB->begin();
1302       PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1303    // Ok, we have a PHI node.  Figure out what the incoming value was for the
1304    // DestBlock.
1305    Value *IV = PN->getIncomingValueForBlock(OldPred);
1306
1307    // Remap the value if necessary.
1308    if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1309      DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1310      if (I != ValueMap.end())
1311        IV = I->second;
1312    }
1313
1314    PN->addIncoming(IV, NewPred);
1315  }
1316}
1317
1318/// ThreadEdge - We have decided that it is safe and profitable to factor the
1319/// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1320/// across BB.  Transform the IR to reflect this change.
1321bool JumpThreading::ThreadEdge(BasicBlock *BB,
1322                               const SmallVectorImpl<BasicBlock*> &PredBBs,
1323                               BasicBlock *SuccBB) {
1324  // If threading to the same block as we come from, we would infinite loop.
1325  if (SuccBB == BB) {
1326    DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
1327          << "' - would thread to self!\n");
1328    return false;
1329  }
1330
1331  // If threading this would thread across a loop header, don't thread the edge.
1332  // See the comments above FindLoopHeaders for justifications and caveats.
1333  if (LoopHeaders.count(BB)) {
1334    DEBUG(dbgs() << "  Not threading across loop header BB '" << BB->getName()
1335          << "' to dest BB '" << SuccBB->getName()
1336          << "' - it might create an irreducible loop!\n");
1337    return false;
1338  }
1339
1340  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
1341  if (JumpThreadCost > Threshold) {
1342    DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
1343          << "' - Cost is too high: " << JumpThreadCost << "\n");
1344    return false;
1345  }
1346
1347  // And finally, do it!  Start by factoring the predecessors is needed.
1348  BasicBlock *PredBB;
1349  if (PredBBs.size() == 1)
1350    PredBB = PredBBs[0];
1351  else {
1352    DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1353          << " common predecessors.\n");
1354    PredBB = SplitBlockPredecessors(BB, PredBBs, ".thr_comm", this);
1355  }
1356
1357  // And finally, do it!
1358  DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName() << "' to '"
1359        << SuccBB->getName() << "' with cost: " << JumpThreadCost
1360        << ", across block:\n    "
1361        << *BB << "\n");
1362
1363  LVI->threadEdge(PredBB, BB, SuccBB);
1364
1365  // We are going to have to map operands from the original BB block to the new
1366  // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1367  // account for entry from PredBB.
1368  DenseMap<Instruction*, Value*> ValueMapping;
1369
1370  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1371                                         BB->getName()+".thread",
1372                                         BB->getParent(), BB);
1373  NewBB->moveAfter(PredBB);
1374
1375  BasicBlock::iterator BI = BB->begin();
1376  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1377    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1378
1379  // Clone the non-phi instructions of BB into NewBB, keeping track of the
1380  // mapping and using it to remap operands in the cloned instructions.
1381  for (; !isa<TerminatorInst>(BI); ++BI) {
1382    Instruction *New = BI->clone();
1383    New->setName(BI->getName());
1384    NewBB->getInstList().push_back(New);
1385    ValueMapping[BI] = New;
1386
1387    // Remap operands to patch up intra-block references.
1388    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1389      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1390        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1391        if (I != ValueMapping.end())
1392          New->setOperand(i, I->second);
1393      }
1394  }
1395
1396  // We didn't copy the terminator from BB over to NewBB, because there is now
1397  // an unconditional jump to SuccBB.  Insert the unconditional jump.
1398  BranchInst *NewBI =BranchInst::Create(SuccBB, NewBB);
1399  NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
1400
1401  // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1402  // PHI nodes for NewBB now.
1403  AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1404
1405  // If there were values defined in BB that are used outside the block, then we
1406  // now have to update all uses of the value to use either the original value,
1407  // the cloned value, or some PHI derived value.  This can require arbitrary
1408  // PHI insertion, of which we are prepared to do, clean these up now.
1409  SSAUpdater SSAUpdate;
1410  SmallVector<Use*, 16> UsesToRename;
1411  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1412    // Scan all uses of this instruction to see if it is used outside of its
1413    // block, and if so, record them in UsesToRename.
1414    for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1415         ++UI) {
1416      Instruction *User = cast<Instruction>(*UI);
1417      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1418        if (UserPN->getIncomingBlock(UI) == BB)
1419          continue;
1420      } else if (User->getParent() == BB)
1421        continue;
1422
1423      UsesToRename.push_back(&UI.getUse());
1424    }
1425
1426    // If there are no uses outside the block, we're done with this instruction.
1427    if (UsesToRename.empty())
1428      continue;
1429
1430    DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
1431
1432    // We found a use of I outside of BB.  Rename all uses of I that are outside
1433    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1434    // with the two values we know.
1435    SSAUpdate.Initialize(I->getType(), I->getName());
1436    SSAUpdate.AddAvailableValue(BB, I);
1437    SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
1438
1439    while (!UsesToRename.empty())
1440      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1441    DEBUG(dbgs() << "\n");
1442  }
1443
1444
1445  // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
1446  // NewBB instead of BB.  This eliminates predecessors from BB, which requires
1447  // us to simplify any PHI nodes in BB.
1448  TerminatorInst *PredTerm = PredBB->getTerminator();
1449  for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1450    if (PredTerm->getSuccessor(i) == BB) {
1451      BB->removePredecessor(PredBB, true);
1452      PredTerm->setSuccessor(i, NewBB);
1453    }
1454
1455  // At this point, the IR is fully up to date and consistent.  Do a quick scan
1456  // over the new instructions and zap any that are constants or dead.  This
1457  // frequently happens because of phi translation.
1458  SimplifyInstructionsInBlock(NewBB, TD, TLI);
1459
1460  // Threaded an edge!
1461  ++NumThreads;
1462  return true;
1463}
1464
1465/// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1466/// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1467/// If we can duplicate the contents of BB up into PredBB do so now, this
1468/// improves the odds that the branch will be on an analyzable instruction like
1469/// a compare.
1470bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
1471                                 const SmallVectorImpl<BasicBlock *> &PredBBs) {
1472  assert(!PredBBs.empty() && "Can't handle an empty set");
1473
1474  // If BB is a loop header, then duplicating this block outside the loop would
1475  // cause us to transform this into an irreducible loop, don't do this.
1476  // See the comments above FindLoopHeaders for justifications and caveats.
1477  if (LoopHeaders.count(BB)) {
1478    DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
1479          << "' into predecessor block '" << PredBBs[0]->getName()
1480          << "' - it might create an irreducible loop!\n");
1481    return false;
1482  }
1483
1484  unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
1485  if (DuplicationCost > Threshold) {
1486    DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
1487          << "' - Cost is too high: " << DuplicationCost << "\n");
1488    return false;
1489  }
1490
1491  // And finally, do it!  Start by factoring the predecessors is needed.
1492  BasicBlock *PredBB;
1493  if (PredBBs.size() == 1)
1494    PredBB = PredBBs[0];
1495  else {
1496    DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1497          << " common predecessors.\n");
1498    PredBB = SplitBlockPredecessors(BB, PredBBs, ".thr_comm", this);
1499  }
1500
1501  // Okay, we decided to do this!  Clone all the instructions in BB onto the end
1502  // of PredBB.
1503  DEBUG(dbgs() << "  Duplicating block '" << BB->getName() << "' into end of '"
1504        << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
1505        << DuplicationCost << " block is:" << *BB << "\n");
1506
1507  // Unless PredBB ends with an unconditional branch, split the edge so that we
1508  // can just clone the bits from BB into the end of the new PredBB.
1509  BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
1510
1511  if (OldPredBranch == 0 || !OldPredBranch->isUnconditional()) {
1512    PredBB = SplitEdge(PredBB, BB, this);
1513    OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1514  }
1515
1516  // We are going to have to map operands from the original BB block into the
1517  // PredBB block.  Evaluate PHI nodes in BB.
1518  DenseMap<Instruction*, Value*> ValueMapping;
1519
1520  BasicBlock::iterator BI = BB->begin();
1521  for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1522    ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1523
1524  // Clone the non-phi instructions of BB into PredBB, keeping track of the
1525  // mapping and using it to remap operands in the cloned instructions.
1526  for (; BI != BB->end(); ++BI) {
1527    Instruction *New = BI->clone();
1528
1529    // Remap operands to patch up intra-block references.
1530    for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1531      if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1532        DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1533        if (I != ValueMapping.end())
1534          New->setOperand(i, I->second);
1535      }
1536
1537    // If this instruction can be simplified after the operands are updated,
1538    // just use the simplified value instead.  This frequently happens due to
1539    // phi translation.
1540    if (Value *IV = SimplifyInstruction(New, TD)) {
1541      delete New;
1542      ValueMapping[BI] = IV;
1543    } else {
1544      // Otherwise, insert the new instruction into the block.
1545      New->setName(BI->getName());
1546      PredBB->getInstList().insert(OldPredBranch, New);
1547      ValueMapping[BI] = New;
1548    }
1549  }
1550
1551  // Check to see if the targets of the branch had PHI nodes. If so, we need to
1552  // add entries to the PHI nodes for branch from PredBB now.
1553  BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1554  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1555                                  ValueMapping);
1556  AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1557                                  ValueMapping);
1558
1559  // If there were values defined in BB that are used outside the block, then we
1560  // now have to update all uses of the value to use either the original value,
1561  // the cloned value, or some PHI derived value.  This can require arbitrary
1562  // PHI insertion, of which we are prepared to do, clean these up now.
1563  SSAUpdater SSAUpdate;
1564  SmallVector<Use*, 16> UsesToRename;
1565  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1566    // Scan all uses of this instruction to see if it is used outside of its
1567    // block, and if so, record them in UsesToRename.
1568    for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1569         ++UI) {
1570      Instruction *User = cast<Instruction>(*UI);
1571      if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1572        if (UserPN->getIncomingBlock(UI) == BB)
1573          continue;
1574      } else if (User->getParent() == BB)
1575        continue;
1576
1577      UsesToRename.push_back(&UI.getUse());
1578    }
1579
1580    // If there are no uses outside the block, we're done with this instruction.
1581    if (UsesToRename.empty())
1582      continue;
1583
1584    DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
1585
1586    // We found a use of I outside of BB.  Rename all uses of I that are outside
1587    // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1588    // with the two values we know.
1589    SSAUpdate.Initialize(I->getType(), I->getName());
1590    SSAUpdate.AddAvailableValue(BB, I);
1591    SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
1592
1593    while (!UsesToRename.empty())
1594      SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1595    DEBUG(dbgs() << "\n");
1596  }
1597
1598  // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1599  // that we nuked.
1600  BB->removePredecessor(PredBB, true);
1601
1602  // Remove the unconditional branch at the end of the PredBB block.
1603  OldPredBranch->eraseFromParent();
1604
1605  ++NumDupes;
1606  return true;
1607}
1608
1609
1610