1//===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef X86ISELLOWERING_H
16#define X86ISELLOWERING_H
17
18#include "X86Subtarget.h"
19#include "X86RegisterInfo.h"
20#include "X86MachineFunctionInfo.h"
21#include "llvm/Target/TargetLowering.h"
22#include "llvm/Target/TargetOptions.h"
23#include "llvm/CodeGen/FastISel.h"
24#include "llvm/CodeGen/SelectionDAG.h"
25#include "llvm/CodeGen/CallingConvLower.h"
26
27namespace llvm {
28  namespace X86ISD {
29    // X86 Specific DAG Nodes
30    enum NodeType {
31      // Start the numbering where the builtin ops leave off.
32      FIRST_NUMBER = ISD::BUILTIN_OP_END,
33
34      /// BSF - Bit scan forward.
35      /// BSR - Bit scan reverse.
36      BSF,
37      BSR,
38
39      /// SHLD, SHRD - Double shift instructions. These correspond to
40      /// X86::SHLDxx and X86::SHRDxx instructions.
41      SHLD,
42      SHRD,
43
44      /// FAND - Bitwise logical AND of floating point values. This corresponds
45      /// to X86::ANDPS or X86::ANDPD.
46      FAND,
47
48      /// FOR - Bitwise logical OR of floating point values. This corresponds
49      /// to X86::ORPS or X86::ORPD.
50      FOR,
51
52      /// FXOR - Bitwise logical XOR of floating point values. This corresponds
53      /// to X86::XORPS or X86::XORPD.
54      FXOR,
55
56      /// FSRL - Bitwise logical right shift of floating point values. These
57      /// corresponds to X86::PSRLDQ.
58      FSRL,
59
60      /// CALL - These operations represent an abstract X86 call
61      /// instruction, which includes a bunch of information.  In particular the
62      /// operands of these node are:
63      ///
64      ///     #0 - The incoming token chain
65      ///     #1 - The callee
66      ///     #2 - The number of arg bytes the caller pushes on the stack.
67      ///     #3 - The number of arg bytes the callee pops off the stack.
68      ///     #4 - The value to pass in AL/AX/EAX (optional)
69      ///     #5 - The value to pass in DL/DX/EDX (optional)
70      ///
71      /// The result values of these nodes are:
72      ///
73      ///     #0 - The outgoing token chain
74      ///     #1 - The first register result value (optional)
75      ///     #2 - The second register result value (optional)
76      ///
77      CALL,
78
79      /// RDTSC_DAG - This operation implements the lowering for
80      /// readcyclecounter
81      RDTSC_DAG,
82
83      /// X86 compare and logical compare instructions.
84      CMP, COMI, UCOMI,
85
86      /// X86 bit-test instructions.
87      BT,
88
89      /// X86 SetCC. Operand 0 is condition code, and operand 1 is the EFLAGS
90      /// operand, usually produced by a CMP instruction.
91      SETCC,
92
93      // Same as SETCC except it's materialized with a sbb and the value is all
94      // one's or all zero's.
95      SETCC_CARRY,  // R = carry_bit ? ~0 : 0
96
97      /// X86 FP SETCC, implemented with CMP{cc}SS/CMP{cc}SD.
98      /// Operands are two FP values to compare; result is a mask of
99      /// 0s or 1s.  Generally DTRT for C/C++ with NaNs.
100      FSETCCss, FSETCCsd,
101
102      /// X86 MOVMSK{pd|ps}, extracts sign bits of two or four FP values,
103      /// result in an integer GPR.  Needs masking for scalar result.
104      FGETSIGNx86,
105
106      /// X86 conditional moves. Operand 0 and operand 1 are the two values
107      /// to select from. Operand 2 is the condition code, and operand 3 is the
108      /// flag operand produced by a CMP or TEST instruction. It also writes a
109      /// flag result.
110      CMOV,
111
112      /// X86 conditional branches. Operand 0 is the chain operand, operand 1
113      /// is the block to branch if condition is true, operand 2 is the
114      /// condition code, and operand 3 is the flag operand produced by a CMP
115      /// or TEST instruction.
116      BRCOND,
117
118      /// Return with a flag operand. Operand 0 is the chain operand, operand
119      /// 1 is the number of bytes of stack to pop.
120      RET_FLAG,
121
122      /// REP_STOS - Repeat fill, corresponds to X86::REP_STOSx.
123      REP_STOS,
124
125      /// REP_MOVS - Repeat move, corresponds to X86::REP_MOVSx.
126      REP_MOVS,
127
128      /// GlobalBaseReg - On Darwin, this node represents the result of the popl
129      /// at function entry, used for PIC code.
130      GlobalBaseReg,
131
132      /// Wrapper - A wrapper node for TargetConstantPool,
133      /// TargetExternalSymbol, and TargetGlobalAddress.
134      Wrapper,
135
136      /// WrapperRIP - Special wrapper used under X86-64 PIC mode for RIP
137      /// relative displacements.
138      WrapperRIP,
139
140      /// MOVDQ2Q - Copies a 64-bit value from the low word of an XMM vector
141      /// to an MMX vector.  If you think this is too close to the previous
142      /// mnemonic, so do I; blame Intel.
143      MOVDQ2Q,
144
145      /// PEXTRB - Extract an 8-bit value from a vector and zero extend it to
146      /// i32, corresponds to X86::PEXTRB.
147      PEXTRB,
148
149      /// PEXTRW - Extract a 16-bit value from a vector and zero extend it to
150      /// i32, corresponds to X86::PEXTRW.
151      PEXTRW,
152
153      /// INSERTPS - Insert any element of a 4 x float vector into any element
154      /// of a destination 4 x floatvector.
155      INSERTPS,
156
157      /// PINSRB - Insert the lower 8-bits of a 32-bit value to a vector,
158      /// corresponds to X86::PINSRB.
159      PINSRB,
160
161      /// PINSRW - Insert the lower 16-bits of a 32-bit value to a vector,
162      /// corresponds to X86::PINSRW.
163      PINSRW, MMX_PINSRW,
164
165      /// PSHUFB - Shuffle 16 8-bit values within a vector.
166      PSHUFB,
167
168      /// ANDNP - Bitwise Logical AND NOT of Packed FP values.
169      ANDNP,
170
171      /// PSIGN - Copy integer sign.
172      PSIGN,
173
174      /// BLENDV - Blend where the selector is an XMM.
175      BLENDV,
176
177      /// BLENDxx - Blend where the selector is an immediate.
178      BLENDPW,
179      BLENDPS,
180      BLENDPD,
181
182      /// HADD - Integer horizontal add.
183      HADD,
184
185      /// HSUB - Integer horizontal sub.
186      HSUB,
187
188      /// FHADD - Floating point horizontal add.
189      FHADD,
190
191      /// FHSUB - Floating point horizontal sub.
192      FHSUB,
193
194      /// FMAX, FMIN - Floating point max and min.
195      ///
196      FMAX, FMIN,
197
198      /// FMAXC, FMINC - Commutative FMIN and FMAX.
199      FMAXC, FMINC,
200
201      /// FRSQRT, FRCP - Floating point reciprocal-sqrt and reciprocal
202      /// approximation.  Note that these typically require refinement
203      /// in order to obtain suitable precision.
204      FRSQRT, FRCP,
205
206      // TLSADDR - Thread Local Storage.
207      TLSADDR,
208
209      // TLSBASEADDR - Thread Local Storage. A call to get the start address
210      // of the TLS block for the current module.
211      TLSBASEADDR,
212
213      // TLSCALL - Thread Local Storage.  When calling to an OS provided
214      // thunk at the address from an earlier relocation.
215      TLSCALL,
216
217      // EH_RETURN - Exception Handling helpers.
218      EH_RETURN,
219
220      /// TC_RETURN - Tail call return.
221      ///   operand #0 chain
222      ///   operand #1 callee (register or absolute)
223      ///   operand #2 stack adjustment
224      ///   operand #3 optional in flag
225      TC_RETURN,
226
227      // VZEXT_MOVL - Vector move low and zero extend.
228      VZEXT_MOVL,
229
230      // VSEXT_MOVL - Vector move low and sign extend.
231      VSEXT_MOVL,
232
233      // VFPEXT - Vector FP extend.
234      VFPEXT,
235
236      // VSHL, VSRL - 128-bit vector logical left / right shift
237      VSHLDQ, VSRLDQ,
238
239      // VSHL, VSRL, VSRA - Vector shift elements
240      VSHL, VSRL, VSRA,
241
242      // VSHLI, VSRLI, VSRAI - Vector shift elements by immediate
243      VSHLI, VSRLI, VSRAI,
244
245      // CMPP - Vector packed double/float comparison.
246      CMPP,
247
248      // PCMP* - Vector integer comparisons.
249      PCMPEQ, PCMPGT,
250
251      // ADD, SUB, SMUL, etc. - Arithmetic operations with FLAGS results.
252      ADD, SUB, ADC, SBB, SMUL,
253      INC, DEC, OR, XOR, AND,
254
255      ANDN, // ANDN - Bitwise AND NOT with FLAGS results.
256
257      BLSI,   // BLSI - Extract lowest set isolated bit
258      BLSMSK, // BLSMSK - Get mask up to lowest set bit
259      BLSR,   // BLSR - Reset lowest set bit
260
261      UMUL, // LOW, HI, FLAGS = umul LHS, RHS
262
263      // MUL_IMM - X86 specific multiply by immediate.
264      MUL_IMM,
265
266      // PTEST - Vector bitwise comparisons
267      PTEST,
268
269      // TESTP - Vector packed fp sign bitwise comparisons
270      TESTP,
271
272      // Several flavors of instructions with vector shuffle behaviors.
273      PALIGN,
274      PSHUFD,
275      PSHUFHW,
276      PSHUFLW,
277      SHUFP,
278      MOVDDUP,
279      MOVSHDUP,
280      MOVSLDUP,
281      MOVLHPS,
282      MOVLHPD,
283      MOVHLPS,
284      MOVLPS,
285      MOVLPD,
286      MOVSD,
287      MOVSS,
288      UNPCKL,
289      UNPCKH,
290      VPERMILP,
291      VPERMV,
292      VPERMI,
293      VPERM2X128,
294      VBROADCAST,
295
296      // PMULUDQ - Vector multiply packed unsigned doubleword integers
297      PMULUDQ,
298
299      // FMA nodes
300      FMADD,
301      FNMADD,
302      FMSUB,
303      FNMSUB,
304      FMADDSUB,
305      FMSUBADD,
306
307      // VASTART_SAVE_XMM_REGS - Save xmm argument registers to the stack,
308      // according to %al. An operator is needed so that this can be expanded
309      // with control flow.
310      VASTART_SAVE_XMM_REGS,
311
312      // WIN_ALLOCA - Windows's _chkstk call to do stack probing.
313      WIN_ALLOCA,
314
315      // SEG_ALLOCA - For allocating variable amounts of stack space when using
316      // segmented stacks. Check if the current stacklet has enough space, and
317      // falls back to heap allocation if not.
318      SEG_ALLOCA,
319
320      // WIN_FTOL - Windows's _ftol2 runtime routine to do fptoui.
321      WIN_FTOL,
322
323      // Memory barrier
324      MEMBARRIER,
325      MFENCE,
326      SFENCE,
327      LFENCE,
328
329      // FNSTSW16r - Store FP status word into i16 register.
330      FNSTSW16r,
331
332      // SAHF - Store contents of %ah into %eflags.
333      SAHF,
334
335      // RDRAND - Get a random integer and indicate whether it is valid in CF.
336      RDRAND,
337
338      // PCMP*STRI
339      PCMPISTRI,
340      PCMPESTRI,
341
342      // ATOMADD64_DAG, ATOMSUB64_DAG, ATOMOR64_DAG, ATOMAND64_DAG,
343      // ATOMXOR64_DAG, ATOMNAND64_DAG, ATOMSWAP64_DAG -
344      // Atomic 64-bit binary operations.
345      ATOMADD64_DAG = ISD::FIRST_TARGET_MEMORY_OPCODE,
346      ATOMSUB64_DAG,
347      ATOMOR64_DAG,
348      ATOMXOR64_DAG,
349      ATOMAND64_DAG,
350      ATOMNAND64_DAG,
351      ATOMMAX64_DAG,
352      ATOMMIN64_DAG,
353      ATOMUMAX64_DAG,
354      ATOMUMIN64_DAG,
355      ATOMSWAP64_DAG,
356
357      // LCMPXCHG_DAG, LCMPXCHG8_DAG, LCMPXCHG16_DAG - Compare and swap.
358      LCMPXCHG_DAG,
359      LCMPXCHG8_DAG,
360      LCMPXCHG16_DAG,
361
362      // VZEXT_LOAD - Load, scalar_to_vector, and zero extend.
363      VZEXT_LOAD,
364
365      // FNSTCW16m - Store FP control world into i16 memory.
366      FNSTCW16m,
367
368      /// FP_TO_INT*_IN_MEM - This instruction implements FP_TO_SINT with the
369      /// integer destination in memory and a FP reg source.  This corresponds
370      /// to the X86::FIST*m instructions and the rounding mode change stuff. It
371      /// has two inputs (token chain and address) and two outputs (int value
372      /// and token chain).
373      FP_TO_INT16_IN_MEM,
374      FP_TO_INT32_IN_MEM,
375      FP_TO_INT64_IN_MEM,
376
377      /// FILD, FILD_FLAG - This instruction implements SINT_TO_FP with the
378      /// integer source in memory and FP reg result.  This corresponds to the
379      /// X86::FILD*m instructions. It has three inputs (token chain, address,
380      /// and source type) and two outputs (FP value and token chain). FILD_FLAG
381      /// also produces a flag).
382      FILD,
383      FILD_FLAG,
384
385      /// FLD - This instruction implements an extending load to FP stack slots.
386      /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
387      /// operand, ptr to load from, and a ValueType node indicating the type
388      /// to load to.
389      FLD,
390
391      /// FST - This instruction implements a truncating store to FP stack
392      /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
393      /// chain operand, value to store, address, and a ValueType to store it
394      /// as.
395      FST,
396
397      /// VAARG_64 - This instruction grabs the address of the next argument
398      /// from a va_list. (reads and modifies the va_list in memory)
399      VAARG_64
400
401      // WARNING: Do not add anything in the end unless you want the node to
402      // have memop! In fact, starting from ATOMADD64_DAG all opcodes will be
403      // thought as target memory ops!
404    };
405  }
406
407  /// Define some predicates that are used for node matching.
408  namespace X86 {
409    /// isVEXTRACTF128Index - Return true if the specified
410    /// EXTRACT_SUBVECTOR operand specifies a vector extract that is
411    /// suitable for input to VEXTRACTF128.
412    bool isVEXTRACTF128Index(SDNode *N);
413
414    /// isVINSERTF128Index - Return true if the specified
415    /// INSERT_SUBVECTOR operand specifies a subvector insert that is
416    /// suitable for input to VINSERTF128.
417    bool isVINSERTF128Index(SDNode *N);
418
419    /// getExtractVEXTRACTF128Immediate - Return the appropriate
420    /// immediate to extract the specified EXTRACT_SUBVECTOR index
421    /// with VEXTRACTF128 instructions.
422    unsigned getExtractVEXTRACTF128Immediate(SDNode *N);
423
424    /// getInsertVINSERTF128Immediate - Return the appropriate
425    /// immediate to insert at the specified INSERT_SUBVECTOR index
426    /// with VINSERTF128 instructions.
427    unsigned getInsertVINSERTF128Immediate(SDNode *N);
428
429    /// isZeroNode - Returns true if Elt is a constant zero or a floating point
430    /// constant +0.0.
431    bool isZeroNode(SDValue Elt);
432
433    /// isOffsetSuitableForCodeModel - Returns true of the given offset can be
434    /// fit into displacement field of the instruction.
435    bool isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
436                                      bool hasSymbolicDisplacement = true);
437
438
439    /// isCalleePop - Determines whether the callee is required to pop its
440    /// own arguments. Callee pop is necessary to support tail calls.
441    bool isCalleePop(CallingConv::ID CallingConv,
442                     bool is64Bit, bool IsVarArg, bool TailCallOpt);
443  }
444
445  //===--------------------------------------------------------------------===//
446  //  X86TargetLowering - X86 Implementation of the TargetLowering interface
447  class X86TargetLowering : public TargetLowering {
448  public:
449    explicit X86TargetLowering(X86TargetMachine &TM);
450
451    virtual unsigned getJumpTableEncoding() const;
452
453    virtual MVT getShiftAmountTy(EVT LHSTy) const { return MVT::i8; }
454
455    virtual const MCExpr *
456    LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
457                              const MachineBasicBlock *MBB, unsigned uid,
458                              MCContext &Ctx) const;
459
460    /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
461    /// jumptable.
462    virtual SDValue getPICJumpTableRelocBase(SDValue Table,
463                                             SelectionDAG &DAG) const;
464    virtual const MCExpr *
465    getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
466                                 unsigned JTI, MCContext &Ctx) const;
467
468    /// getStackPtrReg - Return the stack pointer register we are using: either
469    /// ESP or RSP.
470    unsigned getStackPtrReg() const { return X86StackPtr; }
471
472    /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
473    /// function arguments in the caller parameter area. For X86, aggregates
474    /// that contains are placed at 16-byte boundaries while the rest are at
475    /// 4-byte boundaries.
476    virtual unsigned getByValTypeAlignment(Type *Ty) const;
477
478    /// getOptimalMemOpType - Returns the target specific optimal type for load
479    /// and store operations as a result of memset, memcpy, and memmove
480    /// lowering. If DstAlign is zero that means it's safe to destination
481    /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
482    /// means there isn't a need to check it against alignment requirement,
483    /// probably because the source does not need to be loaded. If
484    /// 'IsZeroVal' is true, that means it's safe to return a
485    /// non-scalar-integer type, e.g. empty string source, constant, or loaded
486    /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
487    /// constant so it does not need to be loaded.
488    /// It returns EVT::Other if the type should be determined using generic
489    /// target-independent logic.
490    virtual EVT
491    getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
492                        bool IsZeroVal, bool MemcpyStrSrc,
493                        MachineFunction &MF) const;
494
495    /// allowsUnalignedMemoryAccesses - Returns true if the target allows
496    /// unaligned memory accesses. of the specified type.
497    virtual bool allowsUnalignedMemoryAccesses(EVT VT) const {
498      return true;
499    }
500
501    /// LowerOperation - Provide custom lowering hooks for some operations.
502    ///
503    virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
504
505    /// ReplaceNodeResults - Replace the results of node with an illegal result
506    /// type with new values built out of custom code.
507    ///
508    virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
509                                    SelectionDAG &DAG) const;
510
511
512    virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
513
514    /// isTypeDesirableForOp - Return true if the target has native support for
515    /// the specified value type and it is 'desirable' to use the type for the
516    /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
517    /// instruction encodings are longer and some i16 instructions are slow.
518    virtual bool isTypeDesirableForOp(unsigned Opc, EVT VT) const;
519
520    /// isTypeDesirable - Return true if the target has native support for the
521    /// specified value type and it is 'desirable' to use the type. e.g. On x86
522    /// i16 is legal, but undesirable since i16 instruction encodings are longer
523    /// and some i16 instructions are slow.
524    virtual bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const;
525
526    virtual MachineBasicBlock *
527      EmitInstrWithCustomInserter(MachineInstr *MI,
528                                  MachineBasicBlock *MBB) const;
529
530
531    /// getTargetNodeName - This method returns the name of a target specific
532    /// DAG node.
533    virtual const char *getTargetNodeName(unsigned Opcode) const;
534
535    /// getSetCCResultType - Return the value type to use for ISD::SETCC.
536    virtual EVT getSetCCResultType(EVT VT) const;
537
538    /// computeMaskedBitsForTargetNode - Determine which of the bits specified
539    /// in Mask are known to be either zero or one and return them in the
540    /// KnownZero/KnownOne bitsets.
541    virtual void computeMaskedBitsForTargetNode(const SDValue Op,
542                                                APInt &KnownZero,
543                                                APInt &KnownOne,
544                                                const SelectionDAG &DAG,
545                                                unsigned Depth = 0) const;
546
547    // ComputeNumSignBitsForTargetNode - Determine the number of bits in the
548    // operation that are sign bits.
549    virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
550                                                     unsigned Depth) const;
551
552    virtual bool
553    isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
554
555    SDValue getReturnAddressFrameIndex(SelectionDAG &DAG) const;
556
557    virtual bool ExpandInlineAsm(CallInst *CI) const;
558
559    ConstraintType getConstraintType(const std::string &Constraint) const;
560
561    /// Examine constraint string and operand type and determine a weight value.
562    /// The operand object must already have been set up with the operand type.
563    virtual ConstraintWeight getSingleConstraintMatchWeight(
564      AsmOperandInfo &info, const char *constraint) const;
565
566    virtual const char *LowerXConstraint(EVT ConstraintVT) const;
567
568    /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
569    /// vector.  If it is invalid, don't add anything to Ops. If hasMemory is
570    /// true it means one of the asm constraint of the inline asm instruction
571    /// being processed is 'm'.
572    virtual void LowerAsmOperandForConstraint(SDValue Op,
573                                              std::string &Constraint,
574                                              std::vector<SDValue> &Ops,
575                                              SelectionDAG &DAG) const;
576
577    /// getRegForInlineAsmConstraint - Given a physical register constraint
578    /// (e.g. {edx}), return the register number and the register class for the
579    /// register.  This should only be used for C_Register constraints.  On
580    /// error, this returns a register number of 0.
581    std::pair<unsigned, const TargetRegisterClass*>
582      getRegForInlineAsmConstraint(const std::string &Constraint,
583                                   EVT VT) const;
584
585    /// isLegalAddressingMode - Return true if the addressing mode represented
586    /// by AM is legal for this target, for a load/store of the specified type.
587    virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty)const;
588
589    /// isLegalICmpImmediate - Return true if the specified immediate is legal
590    /// icmp immediate, that is the target has icmp instructions which can
591    /// compare a register against the immediate without having to materialize
592    /// the immediate into a register.
593    virtual bool isLegalICmpImmediate(int64_t Imm) const;
594
595    /// isLegalAddImmediate - Return true if the specified immediate is legal
596    /// add immediate, that is the target has add instructions which can
597    /// add a register and the immediate without having to materialize
598    /// the immediate into a register.
599    virtual bool isLegalAddImmediate(int64_t Imm) const;
600
601    /// isTruncateFree - Return true if it's free to truncate a value of
602    /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
603    /// register EAX to i16 by referencing its sub-register AX.
604    virtual bool isTruncateFree(Type *Ty1, Type *Ty2) const;
605    virtual bool isTruncateFree(EVT VT1, EVT VT2) const;
606
607    /// isZExtFree - Return true if any actual instruction that defines a
608    /// value of type Ty1 implicit zero-extends the value to Ty2 in the result
609    /// register. This does not necessarily include registers defined in
610    /// unknown ways, such as incoming arguments, or copies from unknown
611    /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
612    /// does not necessarily apply to truncate instructions. e.g. on x86-64,
613    /// all instructions that define 32-bit values implicit zero-extend the
614    /// result out to 64 bits.
615    virtual bool isZExtFree(Type *Ty1, Type *Ty2) const;
616    virtual bool isZExtFree(EVT VT1, EVT VT2) const;
617
618    /// isFMAFasterThanMulAndAdd - Return true if an FMA operation is faster than
619    /// a pair of mul and add instructions. fmuladd intrinsics will be expanded to
620    /// FMAs when this method returns true (and FMAs are legal), otherwise fmuladd
621    /// is expanded to mul + add.
622    virtual bool isFMAFasterThanMulAndAdd(EVT) const { return true; }
623
624    /// isNarrowingProfitable - Return true if it's profitable to narrow
625    /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
626    /// from i32 to i8 but not from i32 to i16.
627    virtual bool isNarrowingProfitable(EVT VT1, EVT VT2) const;
628
629    /// isFPImmLegal - Returns true if the target can instruction select the
630    /// specified FP immediate natively. If false, the legalizer will
631    /// materialize the FP immediate as a load from a constant pool.
632    virtual bool isFPImmLegal(const APFloat &Imm, EVT VT) const;
633
634    /// isShuffleMaskLegal - Targets can use this to indicate that they only
635    /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
636    /// By default, if a target supports the VECTOR_SHUFFLE node, all mask
637    /// values are assumed to be legal.
638    virtual bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
639                                    EVT VT) const;
640
641    /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
642    /// used by Targets can use this to indicate if there is a suitable
643    /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
644    /// pool entry.
645    virtual bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
646                                        EVT VT) const;
647
648    /// ShouldShrinkFPConstant - If true, then instruction selection should
649    /// seek to shrink the FP constant of the specified type to a smaller type
650    /// in order to save space and / or reduce runtime.
651    virtual bool ShouldShrinkFPConstant(EVT VT) const {
652      // Don't shrink FP constpool if SSE2 is available since cvtss2sd is more
653      // expensive than a straight movsd. On the other hand, it's important to
654      // shrink long double fp constant since fldt is very slow.
655      return !X86ScalarSSEf64 || VT == MVT::f80;
656    }
657
658    const X86Subtarget* getSubtarget() const {
659      return Subtarget;
660    }
661
662    /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
663    /// computed in an SSE register, not on the X87 floating point stack.
664    bool isScalarFPTypeInSSEReg(EVT VT) const {
665      return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
666      (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
667    }
668
669    /// isTargetFTOL - Return true if the target uses the MSVC _ftol2 routine
670    /// for fptoui.
671    bool isTargetFTOL() const {
672      return Subtarget->isTargetWindows() && !Subtarget->is64Bit();
673    }
674
675    /// isIntegerTypeFTOL - Return true if the MSVC _ftol2 routine should be
676    /// used for fptoui to the given type.
677    bool isIntegerTypeFTOL(EVT VT) const {
678      return isTargetFTOL() && VT == MVT::i64;
679    }
680
681    /// createFastISel - This method returns a target specific FastISel object,
682    /// or null if the target does not support "fast" ISel.
683    virtual FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
684                                     const TargetLibraryInfo *libInfo) const;
685
686    /// getStackCookieLocation - Return true if the target stores stack
687    /// protector cookies at a fixed offset in some non-standard address
688    /// space, and populates the address space and offset as
689    /// appropriate.
690    virtual bool getStackCookieLocation(unsigned &AddressSpace, unsigned &Offset) const;
691
692    SDValue BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain, SDValue StackSlot,
693                      SelectionDAG &DAG) const;
694
695  protected:
696    std::pair<const TargetRegisterClass*, uint8_t>
697    findRepresentativeClass(EVT VT) const;
698
699  private:
700    /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
701    /// make the right decision when generating code for different targets.
702    const X86Subtarget *Subtarget;
703    const X86RegisterInfo *RegInfo;
704    const TargetData *TD;
705
706    /// X86StackPtr - X86 physical register used as stack ptr.
707    unsigned X86StackPtr;
708
709    /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
710    /// floating point ops.
711    /// When SSE is available, use it for f32 operations.
712    /// When SSE2 is available, use it for f64 operations.
713    bool X86ScalarSSEf32;
714    bool X86ScalarSSEf64;
715
716    /// LegalFPImmediates - A list of legal fp immediates.
717    std::vector<APFloat> LegalFPImmediates;
718
719    /// addLegalFPImmediate - Indicate that this x86 target can instruction
720    /// select the specified FP immediate natively.
721    void addLegalFPImmediate(const APFloat& Imm) {
722      LegalFPImmediates.push_back(Imm);
723    }
724
725    SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
726                            CallingConv::ID CallConv, bool isVarArg,
727                            const SmallVectorImpl<ISD::InputArg> &Ins,
728                            DebugLoc dl, SelectionDAG &DAG,
729                            SmallVectorImpl<SDValue> &InVals) const;
730    SDValue LowerMemArgument(SDValue Chain,
731                             CallingConv::ID CallConv,
732                             const SmallVectorImpl<ISD::InputArg> &ArgInfo,
733                             DebugLoc dl, SelectionDAG &DAG,
734                             const CCValAssign &VA,  MachineFrameInfo *MFI,
735                              unsigned i) const;
736    SDValue LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg,
737                             DebugLoc dl, SelectionDAG &DAG,
738                             const CCValAssign &VA,
739                             ISD::ArgFlagsTy Flags) const;
740
741    // Call lowering helpers.
742
743    /// IsEligibleForTailCallOptimization - Check whether the call is eligible
744    /// for tail call optimization. Targets which want to do tail call
745    /// optimization should implement this function.
746    bool IsEligibleForTailCallOptimization(SDValue Callee,
747                                           CallingConv::ID CalleeCC,
748                                           bool isVarArg,
749                                           bool isCalleeStructRet,
750                                           bool isCallerStructRet,
751                                           Type *RetTy,
752                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
753                                    const SmallVectorImpl<SDValue> &OutVals,
754                                    const SmallVectorImpl<ISD::InputArg> &Ins,
755                                           SelectionDAG& DAG) const;
756    bool IsCalleePop(bool isVarArg, CallingConv::ID CallConv) const;
757    SDValue EmitTailCallLoadRetAddr(SelectionDAG &DAG, SDValue &OutRetAddr,
758                                SDValue Chain, bool IsTailCall, bool Is64Bit,
759                                int FPDiff, DebugLoc dl) const;
760
761    unsigned GetAlignedArgumentStackSize(unsigned StackSize,
762                                         SelectionDAG &DAG) const;
763
764    std::pair<SDValue,SDValue> FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
765                                               bool isSigned,
766                                               bool isReplace) const;
767
768    SDValue LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
769                                   SelectionDAG &DAG) const;
770    SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
771    SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
772    SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
773    SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) const;
774    SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
775    SDValue LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) const;
776    SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
777    SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
778    SDValue LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
779                               int64_t Offset, SelectionDAG &DAG) const;
780    SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
781    SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
782    SDValue LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const;
783    SDValue LowerShiftParts(SDValue Op, SelectionDAG &DAG) const;
784    SDValue LowerBITCAST(SDValue op, SelectionDAG &DAG) const;
785    SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
786    SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
787    SDValue LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) const;
788    SDValue LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) const;
789    SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const;
790    SDValue LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) const;
791    SDValue LowerFABS(SDValue Op, SelectionDAG &DAG) const;
792    SDValue LowerFNEG(SDValue Op, SelectionDAG &DAG) const;
793    SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const;
794    SDValue LowerToBT(SDValue And, ISD::CondCode CC,
795                      DebugLoc dl, SelectionDAG &DAG) const;
796    SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
797    SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) const;
798    SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG) const;
799    SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG) const;
800    SDValue LowerMEMSET(SDValue Op, SelectionDAG &DAG) const;
801    SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
802    SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
803    SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
804    SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
805    SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
806    SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
807    SDValue LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const;
808    SDValue LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const;
809    SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
810    SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
811    SDValue LowerShift(SDValue Op, SelectionDAG &DAG) const;
812
813    SDValue LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const;
814
815    // Utility functions to help LowerVECTOR_SHUFFLE
816    SDValue LowerVectorBroadcast(SDValue Op, SelectionDAG &DAG) const;
817    SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG) const;
818
819    SDValue LowerVectorAllZeroTest(SDValue Op, SelectionDAG &DAG) const;
820
821    SDValue LowerVectorFpExtend(SDValue &Op, SelectionDAG &DAG) const;
822
823    virtual SDValue
824      LowerFormalArguments(SDValue Chain,
825                           CallingConv::ID CallConv, bool isVarArg,
826                           const SmallVectorImpl<ISD::InputArg> &Ins,
827                           DebugLoc dl, SelectionDAG &DAG,
828                           SmallVectorImpl<SDValue> &InVals) const;
829    virtual SDValue
830      LowerCall(CallLoweringInfo &CLI,
831                SmallVectorImpl<SDValue> &InVals) const;
832
833    virtual SDValue
834      LowerReturn(SDValue Chain,
835                  CallingConv::ID CallConv, bool isVarArg,
836                  const SmallVectorImpl<ISD::OutputArg> &Outs,
837                  const SmallVectorImpl<SDValue> &OutVals,
838                  DebugLoc dl, SelectionDAG &DAG) const;
839
840    virtual bool isUsedByReturnOnly(SDNode *N, SDValue &Chain) const;
841
842    virtual bool mayBeEmittedAsTailCall(CallInst *CI) const;
843
844    virtual EVT
845    getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
846                             ISD::NodeType ExtendKind) const;
847
848    virtual bool
849    CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
850                   bool isVarArg,
851                   const SmallVectorImpl<ISD::OutputArg> &Outs,
852                   LLVMContext &Context) const;
853
854    /// Utility function to emit string processing sse4.2 instructions
855    /// that return in xmm0.
856    /// This takes the instruction to expand, the associated machine basic
857    /// block, the number of args, and whether or not the second arg is
858    /// in memory or not.
859    MachineBasicBlock *EmitPCMP(MachineInstr *BInstr, MachineBasicBlock *BB,
860                                unsigned argNum, bool inMem) const;
861
862    /// Utility functions to emit monitor and mwait instructions. These
863    /// need to make sure that the arguments to the intrinsic are in the
864    /// correct registers.
865    MachineBasicBlock *EmitMonitor(MachineInstr *MI,
866                                   MachineBasicBlock *BB) const;
867    MachineBasicBlock *EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const;
868
869    /// Utility function to emit atomic-load-arith operations (and, or, xor,
870    /// nand, max, min, umax, umin). It takes the corresponding instruction to
871    /// expand, the associated machine basic block, and the associated X86
872    /// opcodes for reg/reg.
873    MachineBasicBlock *EmitAtomicLoadArith(MachineInstr *MI,
874                                           MachineBasicBlock *MBB) const;
875
876    /// Utility function to emit atomic-load-arith operations (and, or, xor,
877    /// nand, add, sub, swap) for 64-bit operands on 32-bit target.
878    MachineBasicBlock *EmitAtomicLoadArith6432(MachineInstr *MI,
879                                               MachineBasicBlock *MBB) const;
880
881    // Utility function to emit the low-level va_arg code for X86-64.
882    MachineBasicBlock *EmitVAARG64WithCustomInserter(
883                       MachineInstr *MI,
884                       MachineBasicBlock *MBB) const;
885
886    /// Utility function to emit the xmm reg save portion of va_start.
887    MachineBasicBlock *EmitVAStartSaveXMMRegsWithCustomInserter(
888                                                   MachineInstr *BInstr,
889                                                   MachineBasicBlock *BB) const;
890
891    MachineBasicBlock *EmitLoweredSelect(MachineInstr *I,
892                                         MachineBasicBlock *BB) const;
893
894    MachineBasicBlock *EmitLoweredWinAlloca(MachineInstr *MI,
895                                              MachineBasicBlock *BB) const;
896
897    MachineBasicBlock *EmitLoweredSegAlloca(MachineInstr *MI,
898                                            MachineBasicBlock *BB,
899                                            bool Is64Bit) const;
900
901    MachineBasicBlock *EmitLoweredTLSCall(MachineInstr *MI,
902                                          MachineBasicBlock *BB) const;
903
904    MachineBasicBlock *emitLoweredTLSAddr(MachineInstr *MI,
905                                          MachineBasicBlock *BB) const;
906
907    /// Emit nodes that will be selected as "test Op0,Op0", or something
908    /// equivalent, for use with the given x86 condition code.
909    SDValue EmitTest(SDValue Op0, unsigned X86CC, SelectionDAG &DAG) const;
910
911    /// Emit nodes that will be selected as "cmp Op0,Op1", or something
912    /// equivalent, for use with the given x86 condition code.
913    SDValue EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
914                    SelectionDAG &DAG) const;
915
916    /// Convert a comparison if required by the subtarget.
917    SDValue ConvertCmpIfNecessary(SDValue Cmp, SelectionDAG &DAG) const;
918  };
919
920  namespace X86 {
921    FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
922                             const TargetLibraryInfo *libInfo);
923  }
924}
925
926#endif    // X86ISELLOWERING_H
927