1//===-- LLParser.cpp - Parser Class ---------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file defines the parser class for .ll files.
11//
12//===----------------------------------------------------------------------===//
13
14#include "LLParser.h"
15#include "llvm/AutoUpgrade.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/InlineAsm.h"
20#include "llvm/Instructions.h"
21#include "llvm/Module.h"
22#include "llvm/Operator.h"
23#include "llvm/ValueSymbolTable.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/raw_ostream.h"
27using namespace llvm;
28
29static std::string getTypeString(Type *T) {
30  std::string Result;
31  raw_string_ostream Tmp(Result);
32  Tmp << *T;
33  return Tmp.str();
34}
35
36/// Run: module ::= toplevelentity*
37bool LLParser::Run() {
38  // Prime the lexer.
39  Lex.Lex();
40
41  return ParseTopLevelEntities() ||
42         ValidateEndOfModule();
43}
44
45/// ValidateEndOfModule - Do final validity and sanity checks at the end of the
46/// module.
47bool LLParser::ValidateEndOfModule() {
48  // Handle any instruction metadata forward references.
49  if (!ForwardRefInstMetadata.empty()) {
50    for (DenseMap<Instruction*, std::vector<MDRef> >::iterator
51         I = ForwardRefInstMetadata.begin(), E = ForwardRefInstMetadata.end();
52         I != E; ++I) {
53      Instruction *Inst = I->first;
54      const std::vector<MDRef> &MDList = I->second;
55
56      for (unsigned i = 0, e = MDList.size(); i != e; ++i) {
57        unsigned SlotNo = MDList[i].MDSlot;
58
59        if (SlotNo >= NumberedMetadata.size() || NumberedMetadata[SlotNo] == 0)
60          return Error(MDList[i].Loc, "use of undefined metadata '!" +
61                       Twine(SlotNo) + "'");
62        Inst->setMetadata(MDList[i].MDKind, NumberedMetadata[SlotNo]);
63      }
64    }
65    ForwardRefInstMetadata.clear();
66  }
67
68
69  // If there are entries in ForwardRefBlockAddresses at this point, they are
70  // references after the function was defined.  Resolve those now.
71  while (!ForwardRefBlockAddresses.empty()) {
72    // Okay, we are referencing an already-parsed function, resolve them now.
73    Function *TheFn = 0;
74    const ValID &Fn = ForwardRefBlockAddresses.begin()->first;
75    if (Fn.Kind == ValID::t_GlobalName)
76      TheFn = M->getFunction(Fn.StrVal);
77    else if (Fn.UIntVal < NumberedVals.size())
78      TheFn = dyn_cast<Function>(NumberedVals[Fn.UIntVal]);
79
80    if (TheFn == 0)
81      return Error(Fn.Loc, "unknown function referenced by blockaddress");
82
83    // Resolve all these references.
84    if (ResolveForwardRefBlockAddresses(TheFn,
85                                      ForwardRefBlockAddresses.begin()->second,
86                                        0))
87      return true;
88
89    ForwardRefBlockAddresses.erase(ForwardRefBlockAddresses.begin());
90  }
91
92  for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i)
93    if (NumberedTypes[i].second.isValid())
94      return Error(NumberedTypes[i].second,
95                   "use of undefined type '%" + Twine(i) + "'");
96
97  for (StringMap<std::pair<Type*, LocTy> >::iterator I =
98       NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
99    if (I->second.second.isValid())
100      return Error(I->second.second,
101                   "use of undefined type named '" + I->getKey() + "'");
102
103  if (!ForwardRefVals.empty())
104    return Error(ForwardRefVals.begin()->second.second,
105                 "use of undefined value '@" + ForwardRefVals.begin()->first +
106                 "'");
107
108  if (!ForwardRefValIDs.empty())
109    return Error(ForwardRefValIDs.begin()->second.second,
110                 "use of undefined value '@" +
111                 Twine(ForwardRefValIDs.begin()->first) + "'");
112
113  if (!ForwardRefMDNodes.empty())
114    return Error(ForwardRefMDNodes.begin()->second.second,
115                 "use of undefined metadata '!" +
116                 Twine(ForwardRefMDNodes.begin()->first) + "'");
117
118
119  // Look for intrinsic functions and CallInst that need to be upgraded
120  for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
121    UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove
122
123  return false;
124}
125
126bool LLParser::ResolveForwardRefBlockAddresses(Function *TheFn,
127                             std::vector<std::pair<ValID, GlobalValue*> > &Refs,
128                                               PerFunctionState *PFS) {
129  // Loop over all the references, resolving them.
130  for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
131    BasicBlock *Res;
132    if (PFS) {
133      if (Refs[i].first.Kind == ValID::t_LocalName)
134        Res = PFS->GetBB(Refs[i].first.StrVal, Refs[i].first.Loc);
135      else
136        Res = PFS->GetBB(Refs[i].first.UIntVal, Refs[i].first.Loc);
137    } else if (Refs[i].first.Kind == ValID::t_LocalID) {
138      return Error(Refs[i].first.Loc,
139       "cannot take address of numeric label after the function is defined");
140    } else {
141      Res = dyn_cast_or_null<BasicBlock>(
142                     TheFn->getValueSymbolTable().lookup(Refs[i].first.StrVal));
143    }
144
145    if (Res == 0)
146      return Error(Refs[i].first.Loc,
147                   "referenced value is not a basic block");
148
149    // Get the BlockAddress for this and update references to use it.
150    BlockAddress *BA = BlockAddress::get(TheFn, Res);
151    Refs[i].second->replaceAllUsesWith(BA);
152    Refs[i].second->eraseFromParent();
153  }
154  return false;
155}
156
157
158//===----------------------------------------------------------------------===//
159// Top-Level Entities
160//===----------------------------------------------------------------------===//
161
162bool LLParser::ParseTopLevelEntities() {
163  while (1) {
164    switch (Lex.getKind()) {
165    default:         return TokError("expected top-level entity");
166    case lltok::Eof: return false;
167    case lltok::kw_declare: if (ParseDeclare()) return true; break;
168    case lltok::kw_define:  if (ParseDefine()) return true; break;
169    case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
170    case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
171    case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
172    case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
173    case lltok::LocalVar:   if (ParseNamedType()) return true; break;
174    case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
175    case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
176    case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
177    case lltok::MetadataVar: if (ParseNamedMetadata()) return true; break;
178
179    // The Global variable production with no name can have many different
180    // optional leading prefixes, the production is:
181    // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
182    //               OptionalAddrSpace OptionalUnNammedAddr
183    //               ('constant'|'global') ...
184    case lltok::kw_private:             // OptionalLinkage
185    case lltok::kw_linker_private:      // OptionalLinkage
186    case lltok::kw_linker_private_weak: // OptionalLinkage
187    case lltok::kw_linker_private_weak_def_auto: // FIXME: backwards compat.
188    case lltok::kw_internal:            // OptionalLinkage
189    case lltok::kw_weak:                // OptionalLinkage
190    case lltok::kw_weak_odr:            // OptionalLinkage
191    case lltok::kw_linkonce:            // OptionalLinkage
192    case lltok::kw_linkonce_odr:        // OptionalLinkage
193    case lltok::kw_linkonce_odr_auto_hide: // OptionalLinkage
194    case lltok::kw_appending:           // OptionalLinkage
195    case lltok::kw_dllexport:           // OptionalLinkage
196    case lltok::kw_common:              // OptionalLinkage
197    case lltok::kw_dllimport:           // OptionalLinkage
198    case lltok::kw_extern_weak:         // OptionalLinkage
199    case lltok::kw_external: {          // OptionalLinkage
200      unsigned Linkage, Visibility;
201      if (ParseOptionalLinkage(Linkage) ||
202          ParseOptionalVisibility(Visibility) ||
203          ParseGlobal("", SMLoc(), Linkage, true, Visibility))
204        return true;
205      break;
206    }
207    case lltok::kw_default:       // OptionalVisibility
208    case lltok::kw_hidden:        // OptionalVisibility
209    case lltok::kw_protected: {   // OptionalVisibility
210      unsigned Visibility;
211      if (ParseOptionalVisibility(Visibility) ||
212          ParseGlobal("", SMLoc(), 0, false, Visibility))
213        return true;
214      break;
215    }
216
217    case lltok::kw_thread_local:  // OptionalThreadLocal
218    case lltok::kw_addrspace:     // OptionalAddrSpace
219    case lltok::kw_constant:      // GlobalType
220    case lltok::kw_global:        // GlobalType
221      if (ParseGlobal("", SMLoc(), 0, false, 0)) return true;
222      break;
223    }
224  }
225}
226
227
228/// toplevelentity
229///   ::= 'module' 'asm' STRINGCONSTANT
230bool LLParser::ParseModuleAsm() {
231  assert(Lex.getKind() == lltok::kw_module);
232  Lex.Lex();
233
234  std::string AsmStr;
235  if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
236      ParseStringConstant(AsmStr)) return true;
237
238  M->appendModuleInlineAsm(AsmStr);
239  return false;
240}
241
242/// toplevelentity
243///   ::= 'target' 'triple' '=' STRINGCONSTANT
244///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
245bool LLParser::ParseTargetDefinition() {
246  assert(Lex.getKind() == lltok::kw_target);
247  std::string Str;
248  switch (Lex.Lex()) {
249  default: return TokError("unknown target property");
250  case lltok::kw_triple:
251    Lex.Lex();
252    if (ParseToken(lltok::equal, "expected '=' after target triple") ||
253        ParseStringConstant(Str))
254      return true;
255    M->setTargetTriple(Str);
256    return false;
257  case lltok::kw_datalayout:
258    Lex.Lex();
259    if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
260        ParseStringConstant(Str))
261      return true;
262    M->setDataLayout(Str);
263    return false;
264  }
265}
266
267/// toplevelentity
268///   ::= 'deplibs' '=' '[' ']'
269///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
270bool LLParser::ParseDepLibs() {
271  assert(Lex.getKind() == lltok::kw_deplibs);
272  Lex.Lex();
273  if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
274      ParseToken(lltok::lsquare, "expected '=' after deplibs"))
275    return true;
276
277  if (EatIfPresent(lltok::rsquare))
278    return false;
279
280  std::string Str;
281  if (ParseStringConstant(Str)) return true;
282  M->addLibrary(Str);
283
284  while (EatIfPresent(lltok::comma)) {
285    if (ParseStringConstant(Str)) return true;
286    M->addLibrary(Str);
287  }
288
289  return ParseToken(lltok::rsquare, "expected ']' at end of list");
290}
291
292/// ParseUnnamedType:
293///   ::= LocalVarID '=' 'type' type
294bool LLParser::ParseUnnamedType() {
295  LocTy TypeLoc = Lex.getLoc();
296  unsigned TypeID = Lex.getUIntVal();
297  Lex.Lex(); // eat LocalVarID;
298
299  if (ParseToken(lltok::equal, "expected '=' after name") ||
300      ParseToken(lltok::kw_type, "expected 'type' after '='"))
301    return true;
302
303  if (TypeID >= NumberedTypes.size())
304    NumberedTypes.resize(TypeID+1);
305
306  Type *Result = 0;
307  if (ParseStructDefinition(TypeLoc, "",
308                            NumberedTypes[TypeID], Result)) return true;
309
310  if (!isa<StructType>(Result)) {
311    std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
312    if (Entry.first)
313      return Error(TypeLoc, "non-struct types may not be recursive");
314    Entry.first = Result;
315    Entry.second = SMLoc();
316  }
317
318  return false;
319}
320
321
322/// toplevelentity
323///   ::= LocalVar '=' 'type' type
324bool LLParser::ParseNamedType() {
325  std::string Name = Lex.getStrVal();
326  LocTy NameLoc = Lex.getLoc();
327  Lex.Lex();  // eat LocalVar.
328
329  if (ParseToken(lltok::equal, "expected '=' after name") ||
330      ParseToken(lltok::kw_type, "expected 'type' after name"))
331    return true;
332
333  Type *Result = 0;
334  if (ParseStructDefinition(NameLoc, Name,
335                            NamedTypes[Name], Result)) return true;
336
337  if (!isa<StructType>(Result)) {
338    std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
339    if (Entry.first)
340      return Error(NameLoc, "non-struct types may not be recursive");
341    Entry.first = Result;
342    Entry.second = SMLoc();
343  }
344
345  return false;
346}
347
348
349/// toplevelentity
350///   ::= 'declare' FunctionHeader
351bool LLParser::ParseDeclare() {
352  assert(Lex.getKind() == lltok::kw_declare);
353  Lex.Lex();
354
355  Function *F;
356  return ParseFunctionHeader(F, false);
357}
358
359/// toplevelentity
360///   ::= 'define' FunctionHeader '{' ...
361bool LLParser::ParseDefine() {
362  assert(Lex.getKind() == lltok::kw_define);
363  Lex.Lex();
364
365  Function *F;
366  return ParseFunctionHeader(F, true) ||
367         ParseFunctionBody(*F);
368}
369
370/// ParseGlobalType
371///   ::= 'constant'
372///   ::= 'global'
373bool LLParser::ParseGlobalType(bool &IsConstant) {
374  if (Lex.getKind() == lltok::kw_constant)
375    IsConstant = true;
376  else if (Lex.getKind() == lltok::kw_global)
377    IsConstant = false;
378  else {
379    IsConstant = false;
380    return TokError("expected 'global' or 'constant'");
381  }
382  Lex.Lex();
383  return false;
384}
385
386/// ParseUnnamedGlobal:
387///   OptionalVisibility ALIAS ...
388///   OptionalLinkage OptionalVisibility ...   -> global variable
389///   GlobalID '=' OptionalVisibility ALIAS ...
390///   GlobalID '=' OptionalLinkage OptionalVisibility ...   -> global variable
391bool LLParser::ParseUnnamedGlobal() {
392  unsigned VarID = NumberedVals.size();
393  std::string Name;
394  LocTy NameLoc = Lex.getLoc();
395
396  // Handle the GlobalID form.
397  if (Lex.getKind() == lltok::GlobalID) {
398    if (Lex.getUIntVal() != VarID)
399      return Error(Lex.getLoc(), "variable expected to be numbered '%" +
400                   Twine(VarID) + "'");
401    Lex.Lex(); // eat GlobalID;
402
403    if (ParseToken(lltok::equal, "expected '=' after name"))
404      return true;
405  }
406
407  bool HasLinkage;
408  unsigned Linkage, Visibility;
409  if (ParseOptionalLinkage(Linkage, HasLinkage) ||
410      ParseOptionalVisibility(Visibility))
411    return true;
412
413  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
414    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
415  return ParseAlias(Name, NameLoc, Visibility);
416}
417
418/// ParseNamedGlobal:
419///   GlobalVar '=' OptionalVisibility ALIAS ...
420///   GlobalVar '=' OptionalLinkage OptionalVisibility ...   -> global variable
421bool LLParser::ParseNamedGlobal() {
422  assert(Lex.getKind() == lltok::GlobalVar);
423  LocTy NameLoc = Lex.getLoc();
424  std::string Name = Lex.getStrVal();
425  Lex.Lex();
426
427  bool HasLinkage;
428  unsigned Linkage, Visibility;
429  if (ParseToken(lltok::equal, "expected '=' in global variable") ||
430      ParseOptionalLinkage(Linkage, HasLinkage) ||
431      ParseOptionalVisibility(Visibility))
432    return true;
433
434  if (HasLinkage || Lex.getKind() != lltok::kw_alias)
435    return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility);
436  return ParseAlias(Name, NameLoc, Visibility);
437}
438
439// MDString:
440//   ::= '!' STRINGCONSTANT
441bool LLParser::ParseMDString(MDString *&Result) {
442  std::string Str;
443  if (ParseStringConstant(Str)) return true;
444  Result = MDString::get(Context, Str);
445  return false;
446}
447
448// MDNode:
449//   ::= '!' MDNodeNumber
450//
451/// This version of ParseMDNodeID returns the slot number and null in the case
452/// of a forward reference.
453bool LLParser::ParseMDNodeID(MDNode *&Result, unsigned &SlotNo) {
454  // !{ ..., !42, ... }
455  if (ParseUInt32(SlotNo)) return true;
456
457  // Check existing MDNode.
458  if (SlotNo < NumberedMetadata.size() && NumberedMetadata[SlotNo] != 0)
459    Result = NumberedMetadata[SlotNo];
460  else
461    Result = 0;
462  return false;
463}
464
465bool LLParser::ParseMDNodeID(MDNode *&Result) {
466  // !{ ..., !42, ... }
467  unsigned MID = 0;
468  if (ParseMDNodeID(Result, MID)) return true;
469
470  // If not a forward reference, just return it now.
471  if (Result) return false;
472
473  // Otherwise, create MDNode forward reference.
474  MDNode *FwdNode = MDNode::getTemporary(Context, ArrayRef<Value*>());
475  ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc());
476
477  if (NumberedMetadata.size() <= MID)
478    NumberedMetadata.resize(MID+1);
479  NumberedMetadata[MID] = FwdNode;
480  Result = FwdNode;
481  return false;
482}
483
484/// ParseNamedMetadata:
485///   !foo = !{ !1, !2 }
486bool LLParser::ParseNamedMetadata() {
487  assert(Lex.getKind() == lltok::MetadataVar);
488  std::string Name = Lex.getStrVal();
489  Lex.Lex();
490
491  if (ParseToken(lltok::equal, "expected '=' here") ||
492      ParseToken(lltok::exclaim, "Expected '!' here") ||
493      ParseToken(lltok::lbrace, "Expected '{' here"))
494    return true;
495
496  NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
497  if (Lex.getKind() != lltok::rbrace)
498    do {
499      if (ParseToken(lltok::exclaim, "Expected '!' here"))
500        return true;
501
502      MDNode *N = 0;
503      if (ParseMDNodeID(N)) return true;
504      NMD->addOperand(N);
505    } while (EatIfPresent(lltok::comma));
506
507  if (ParseToken(lltok::rbrace, "expected end of metadata node"))
508    return true;
509
510  return false;
511}
512
513/// ParseStandaloneMetadata:
514///   !42 = !{...}
515bool LLParser::ParseStandaloneMetadata() {
516  assert(Lex.getKind() == lltok::exclaim);
517  Lex.Lex();
518  unsigned MetadataID = 0;
519
520  LocTy TyLoc;
521  Type *Ty = 0;
522  SmallVector<Value *, 16> Elts;
523  if (ParseUInt32(MetadataID) ||
524      ParseToken(lltok::equal, "expected '=' here") ||
525      ParseType(Ty, TyLoc) ||
526      ParseToken(lltok::exclaim, "Expected '!' here") ||
527      ParseToken(lltok::lbrace, "Expected '{' here") ||
528      ParseMDNodeVector(Elts, NULL) ||
529      ParseToken(lltok::rbrace, "expected end of metadata node"))
530    return true;
531
532  MDNode *Init = MDNode::get(Context, Elts);
533
534  // See if this was forward referenced, if so, handle it.
535  std::map<unsigned, std::pair<TrackingVH<MDNode>, LocTy> >::iterator
536    FI = ForwardRefMDNodes.find(MetadataID);
537  if (FI != ForwardRefMDNodes.end()) {
538    MDNode *Temp = FI->second.first;
539    Temp->replaceAllUsesWith(Init);
540    MDNode::deleteTemporary(Temp);
541    ForwardRefMDNodes.erase(FI);
542
543    assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
544  } else {
545    if (MetadataID >= NumberedMetadata.size())
546      NumberedMetadata.resize(MetadataID+1);
547
548    if (NumberedMetadata[MetadataID] != 0)
549      return TokError("Metadata id is already used");
550    NumberedMetadata[MetadataID] = Init;
551  }
552
553  return false;
554}
555
556/// ParseAlias:
557///   ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee
558/// Aliasee
559///   ::= TypeAndValue
560///   ::= 'bitcast' '(' TypeAndValue 'to' Type ')'
561///   ::= 'getelementptr' 'inbounds'? '(' ... ')'
562///
563/// Everything through visibility has already been parsed.
564///
565bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc,
566                          unsigned Visibility) {
567  assert(Lex.getKind() == lltok::kw_alias);
568  Lex.Lex();
569  unsigned Linkage;
570  LocTy LinkageLoc = Lex.getLoc();
571  if (ParseOptionalLinkage(Linkage))
572    return true;
573
574  if (Linkage != GlobalValue::ExternalLinkage &&
575      Linkage != GlobalValue::WeakAnyLinkage &&
576      Linkage != GlobalValue::WeakODRLinkage &&
577      Linkage != GlobalValue::InternalLinkage &&
578      Linkage != GlobalValue::PrivateLinkage &&
579      Linkage != GlobalValue::LinkerPrivateLinkage &&
580      Linkage != GlobalValue::LinkerPrivateWeakLinkage)
581    return Error(LinkageLoc, "invalid linkage type for alias");
582
583  Constant *Aliasee;
584  LocTy AliaseeLoc = Lex.getLoc();
585  if (Lex.getKind() != lltok::kw_bitcast &&
586      Lex.getKind() != lltok::kw_getelementptr) {
587    if (ParseGlobalTypeAndValue(Aliasee)) return true;
588  } else {
589    // The bitcast dest type is not present, it is implied by the dest type.
590    ValID ID;
591    if (ParseValID(ID)) return true;
592    if (ID.Kind != ValID::t_Constant)
593      return Error(AliaseeLoc, "invalid aliasee");
594    Aliasee = ID.ConstantVal;
595  }
596
597  if (!Aliasee->getType()->isPointerTy())
598    return Error(AliaseeLoc, "alias must have pointer type");
599
600  // Okay, create the alias but do not insert it into the module yet.
601  GlobalAlias* GA = new GlobalAlias(Aliasee->getType(),
602                                    (GlobalValue::LinkageTypes)Linkage, Name,
603                                    Aliasee);
604  GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
605
606  // See if this value already exists in the symbol table.  If so, it is either
607  // a redefinition or a definition of a forward reference.
608  if (GlobalValue *Val = M->getNamedValue(Name)) {
609    // See if this was a redefinition.  If so, there is no entry in
610    // ForwardRefVals.
611    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
612      I = ForwardRefVals.find(Name);
613    if (I == ForwardRefVals.end())
614      return Error(NameLoc, "redefinition of global named '@" + Name + "'");
615
616    // Otherwise, this was a definition of forward ref.  Verify that types
617    // agree.
618    if (Val->getType() != GA->getType())
619      return Error(NameLoc,
620              "forward reference and definition of alias have different types");
621
622    // If they agree, just RAUW the old value with the alias and remove the
623    // forward ref info.
624    Val->replaceAllUsesWith(GA);
625    Val->eraseFromParent();
626    ForwardRefVals.erase(I);
627  }
628
629  // Insert into the module, we know its name won't collide now.
630  M->getAliasList().push_back(GA);
631  assert(GA->getName() == Name && "Should not be a name conflict!");
632
633  return false;
634}
635
636/// ParseGlobal
637///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal
638///       OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const
639///   ::= OptionalLinkage OptionalVisibility OptionalThreadLocal
640///       OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const
641///
642/// Everything through visibility has been parsed already.
643///
644bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
645                           unsigned Linkage, bool HasLinkage,
646                           unsigned Visibility) {
647  unsigned AddrSpace;
648  bool IsConstant, UnnamedAddr;
649  GlobalVariable::ThreadLocalMode TLM;
650  LocTy UnnamedAddrLoc;
651  LocTy TyLoc;
652
653  Type *Ty = 0;
654  if (ParseOptionalThreadLocal(TLM) ||
655      ParseOptionalAddrSpace(AddrSpace) ||
656      ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
657                         &UnnamedAddrLoc) ||
658      ParseGlobalType(IsConstant) ||
659      ParseType(Ty, TyLoc))
660    return true;
661
662  // If the linkage is specified and is external, then no initializer is
663  // present.
664  Constant *Init = 0;
665  if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage &&
666                      Linkage != GlobalValue::ExternalWeakLinkage &&
667                      Linkage != GlobalValue::ExternalLinkage)) {
668    if (ParseGlobalValue(Ty, Init))
669      return true;
670  }
671
672  if (Ty->isFunctionTy() || Ty->isLabelTy())
673    return Error(TyLoc, "invalid type for global variable");
674
675  GlobalVariable *GV = 0;
676
677  // See if the global was forward referenced, if so, use the global.
678  if (!Name.empty()) {
679    if (GlobalValue *GVal = M->getNamedValue(Name)) {
680      if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal))
681        return Error(NameLoc, "redefinition of global '@" + Name + "'");
682      GV = cast<GlobalVariable>(GVal);
683    }
684  } else {
685    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
686      I = ForwardRefValIDs.find(NumberedVals.size());
687    if (I != ForwardRefValIDs.end()) {
688      GV = cast<GlobalVariable>(I->second.first);
689      ForwardRefValIDs.erase(I);
690    }
691  }
692
693  if (GV == 0) {
694    GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0,
695                            Name, 0, GlobalVariable::NotThreadLocal,
696                            AddrSpace);
697  } else {
698    if (GV->getType()->getElementType() != Ty)
699      return Error(TyLoc,
700            "forward reference and definition of global have different types");
701
702    // Move the forward-reference to the correct spot in the module.
703    M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
704  }
705
706  if (Name.empty())
707    NumberedVals.push_back(GV);
708
709  // Set the parsed properties on the global.
710  if (Init)
711    GV->setInitializer(Init);
712  GV->setConstant(IsConstant);
713  GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
714  GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
715  GV->setThreadLocalMode(TLM);
716  GV->setUnnamedAddr(UnnamedAddr);
717
718  // Parse attributes on the global.
719  while (Lex.getKind() == lltok::comma) {
720    Lex.Lex();
721
722    if (Lex.getKind() == lltok::kw_section) {
723      Lex.Lex();
724      GV->setSection(Lex.getStrVal());
725      if (ParseToken(lltok::StringConstant, "expected global section string"))
726        return true;
727    } else if (Lex.getKind() == lltok::kw_align) {
728      unsigned Alignment;
729      if (ParseOptionalAlignment(Alignment)) return true;
730      GV->setAlignment(Alignment);
731    } else {
732      TokError("unknown global variable property!");
733    }
734  }
735
736  return false;
737}
738
739
740//===----------------------------------------------------------------------===//
741// GlobalValue Reference/Resolution Routines.
742//===----------------------------------------------------------------------===//
743
744/// GetGlobalVal - Get a value with the specified name or ID, creating a
745/// forward reference record if needed.  This can return null if the value
746/// exists but does not have the right type.
747GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
748                                    LocTy Loc) {
749  PointerType *PTy = dyn_cast<PointerType>(Ty);
750  if (PTy == 0) {
751    Error(Loc, "global variable reference must have pointer type");
752    return 0;
753  }
754
755  // Look this name up in the normal function symbol table.
756  GlobalValue *Val =
757    cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
758
759  // If this is a forward reference for the value, see if we already created a
760  // forward ref record.
761  if (Val == 0) {
762    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator
763      I = ForwardRefVals.find(Name);
764    if (I != ForwardRefVals.end())
765      Val = I->second.first;
766  }
767
768  // If we have the value in the symbol table or fwd-ref table, return it.
769  if (Val) {
770    if (Val->getType() == Ty) return Val;
771    Error(Loc, "'@" + Name + "' defined with type '" +
772          getTypeString(Val->getType()) + "'");
773    return 0;
774  }
775
776  // Otherwise, create a new forward reference for this value and remember it.
777  GlobalValue *FwdVal;
778  if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
779    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
780  else
781    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
782                                GlobalValue::ExternalWeakLinkage, 0, Name);
783
784  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
785  return FwdVal;
786}
787
788GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
789  PointerType *PTy = dyn_cast<PointerType>(Ty);
790  if (PTy == 0) {
791    Error(Loc, "global variable reference must have pointer type");
792    return 0;
793  }
794
795  GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
796
797  // If this is a forward reference for the value, see if we already created a
798  // forward ref record.
799  if (Val == 0) {
800    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator
801      I = ForwardRefValIDs.find(ID);
802    if (I != ForwardRefValIDs.end())
803      Val = I->second.first;
804  }
805
806  // If we have the value in the symbol table or fwd-ref table, return it.
807  if (Val) {
808    if (Val->getType() == Ty) return Val;
809    Error(Loc, "'@" + Twine(ID) + "' defined with type '" +
810          getTypeString(Val->getType()) + "'");
811    return 0;
812  }
813
814  // Otherwise, create a new forward reference for this value and remember it.
815  GlobalValue *FwdVal;
816  if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType()))
817    FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M);
818  else
819    FwdVal = new GlobalVariable(*M, PTy->getElementType(), false,
820                                GlobalValue::ExternalWeakLinkage, 0, "");
821
822  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
823  return FwdVal;
824}
825
826
827//===----------------------------------------------------------------------===//
828// Helper Routines.
829//===----------------------------------------------------------------------===//
830
831/// ParseToken - If the current token has the specified kind, eat it and return
832/// success.  Otherwise, emit the specified error and return failure.
833bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
834  if (Lex.getKind() != T)
835    return TokError(ErrMsg);
836  Lex.Lex();
837  return false;
838}
839
840/// ParseStringConstant
841///   ::= StringConstant
842bool LLParser::ParseStringConstant(std::string &Result) {
843  if (Lex.getKind() != lltok::StringConstant)
844    return TokError("expected string constant");
845  Result = Lex.getStrVal();
846  Lex.Lex();
847  return false;
848}
849
850/// ParseUInt32
851///   ::= uint32
852bool LLParser::ParseUInt32(unsigned &Val) {
853  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
854    return TokError("expected integer");
855  uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
856  if (Val64 != unsigned(Val64))
857    return TokError("expected 32-bit integer (too large)");
858  Val = Val64;
859  Lex.Lex();
860  return false;
861}
862
863/// ParseTLSModel
864///   := 'localdynamic'
865///   := 'initialexec'
866///   := 'localexec'
867bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
868  switch (Lex.getKind()) {
869    default:
870      return TokError("expected localdynamic, initialexec or localexec");
871    case lltok::kw_localdynamic:
872      TLM = GlobalVariable::LocalDynamicTLSModel;
873      break;
874    case lltok::kw_initialexec:
875      TLM = GlobalVariable::InitialExecTLSModel;
876      break;
877    case lltok::kw_localexec:
878      TLM = GlobalVariable::LocalExecTLSModel;
879      break;
880  }
881
882  Lex.Lex();
883  return false;
884}
885
886/// ParseOptionalThreadLocal
887///   := /*empty*/
888///   := 'thread_local'
889///   := 'thread_local' '(' tlsmodel ')'
890bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
891  TLM = GlobalVariable::NotThreadLocal;
892  if (!EatIfPresent(lltok::kw_thread_local))
893    return false;
894
895  TLM = GlobalVariable::GeneralDynamicTLSModel;
896  if (Lex.getKind() == lltok::lparen) {
897    Lex.Lex();
898    return ParseTLSModel(TLM) ||
899      ParseToken(lltok::rparen, "expected ')' after thread local model");
900  }
901  return false;
902}
903
904/// ParseOptionalAddrSpace
905///   := /*empty*/
906///   := 'addrspace' '(' uint32 ')'
907bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
908  AddrSpace = 0;
909  if (!EatIfPresent(lltok::kw_addrspace))
910    return false;
911  return ParseToken(lltok::lparen, "expected '(' in address space") ||
912         ParseUInt32(AddrSpace) ||
913         ParseToken(lltok::rparen, "expected ')' in address space");
914}
915
916/// ParseOptionalAttrs - Parse a potentially empty attribute list.  AttrKind
917/// indicates what kind of attribute list this is: 0: function arg, 1: result,
918/// 2: function attr.
919bool LLParser::ParseOptionalAttrs(Attributes &Attrs, unsigned AttrKind) {
920  Attrs = Attribute::None;
921  LocTy AttrLoc = Lex.getLoc();
922  bool HaveError = false;
923
924  while (1) {
925    lltok::Kind Token = Lex.getKind();
926    switch (Token) {
927    default:  // End of attributes.
928      return HaveError;
929    case lltok::kw_zeroext:         Attrs |= Attribute::ZExt; break;
930    case lltok::kw_signext:         Attrs |= Attribute::SExt; break;
931    case lltok::kw_inreg:           Attrs |= Attribute::InReg; break;
932    case lltok::kw_sret:            Attrs |= Attribute::StructRet; break;
933    case lltok::kw_noalias:         Attrs |= Attribute::NoAlias; break;
934    case lltok::kw_nocapture:       Attrs |= Attribute::NoCapture; break;
935    case lltok::kw_byval:           Attrs |= Attribute::ByVal; break;
936    case lltok::kw_nest:            Attrs |= Attribute::Nest; break;
937
938    case lltok::kw_noreturn:        Attrs |= Attribute::NoReturn; break;
939    case lltok::kw_nounwind:        Attrs |= Attribute::NoUnwind; break;
940    case lltok::kw_uwtable:         Attrs |= Attribute::UWTable; break;
941    case lltok::kw_returns_twice:   Attrs |= Attribute::ReturnsTwice; break;
942    case lltok::kw_noinline:        Attrs |= Attribute::NoInline; break;
943    case lltok::kw_readnone:        Attrs |= Attribute::ReadNone; break;
944    case lltok::kw_readonly:        Attrs |= Attribute::ReadOnly; break;
945    case lltok::kw_inlinehint:      Attrs |= Attribute::InlineHint; break;
946    case lltok::kw_alwaysinline:    Attrs |= Attribute::AlwaysInline; break;
947    case lltok::kw_optsize:         Attrs |= Attribute::OptimizeForSize; break;
948    case lltok::kw_ssp:             Attrs |= Attribute::StackProtect; break;
949    case lltok::kw_sspreq:          Attrs |= Attribute::StackProtectReq; break;
950    case lltok::kw_noredzone:       Attrs |= Attribute::NoRedZone; break;
951    case lltok::kw_noimplicitfloat: Attrs |= Attribute::NoImplicitFloat; break;
952    case lltok::kw_naked:           Attrs |= Attribute::Naked; break;
953    case lltok::kw_nonlazybind:     Attrs |= Attribute::NonLazyBind; break;
954    case lltok::kw_address_safety:  Attrs |= Attribute::AddressSafety; break;
955
956    case lltok::kw_alignstack: {
957      unsigned Alignment;
958      if (ParseOptionalStackAlignment(Alignment))
959        return true;
960      Attrs |= Attributes::constructStackAlignmentFromInt(Alignment);
961      continue;
962    }
963
964    case lltok::kw_align: {
965      unsigned Alignment;
966      if (ParseOptionalAlignment(Alignment))
967        return true;
968      Attrs |= Attributes::constructAlignmentFromInt(Alignment);
969      continue;
970    }
971
972    }
973
974    // Perform some error checking.
975    switch (Token) {
976    default:
977      if (AttrKind == 2)
978        HaveError |= Error(AttrLoc, "invalid use of attribute on a function");
979      break;
980    case lltok::kw_align:
981      // As a hack, we allow "align 2" on functions as a synonym for
982      // "alignstack 2".
983      break;
984
985    // Parameter Only:
986    case lltok::kw_sret:
987    case lltok::kw_nocapture:
988    case lltok::kw_byval:
989    case lltok::kw_nest:
990      if (AttrKind != 0)
991        HaveError |= Error(AttrLoc, "invalid use of parameter-only attribute");
992      break;
993
994    // Function Only:
995    case lltok::kw_noreturn:
996    case lltok::kw_nounwind:
997    case lltok::kw_readnone:
998    case lltok::kw_readonly:
999    case lltok::kw_noinline:
1000    case lltok::kw_alwaysinline:
1001    case lltok::kw_optsize:
1002    case lltok::kw_ssp:
1003    case lltok::kw_sspreq:
1004    case lltok::kw_noredzone:
1005    case lltok::kw_noimplicitfloat:
1006    case lltok::kw_naked:
1007    case lltok::kw_inlinehint:
1008    case lltok::kw_alignstack:
1009    case lltok::kw_uwtable:
1010    case lltok::kw_nonlazybind:
1011    case lltok::kw_returns_twice:
1012    case lltok::kw_address_safety:
1013      if (AttrKind != 2)
1014        HaveError |= Error(AttrLoc, "invalid use of function-only attribute");
1015      break;
1016    }
1017
1018    Lex.Lex();
1019  }
1020}
1021
1022/// ParseOptionalLinkage
1023///   ::= /*empty*/
1024///   ::= 'private'
1025///   ::= 'linker_private'
1026///   ::= 'linker_private_weak'
1027///   ::= 'internal'
1028///   ::= 'weak'
1029///   ::= 'weak_odr'
1030///   ::= 'linkonce'
1031///   ::= 'linkonce_odr'
1032///   ::= 'linkonce_odr_auto_hide'
1033///   ::= 'available_externally'
1034///   ::= 'appending'
1035///   ::= 'dllexport'
1036///   ::= 'common'
1037///   ::= 'dllimport'
1038///   ::= 'extern_weak'
1039///   ::= 'external'
1040bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) {
1041  HasLinkage = false;
1042  switch (Lex.getKind()) {
1043  default:                       Res=GlobalValue::ExternalLinkage; return false;
1044  case lltok::kw_private:        Res = GlobalValue::PrivateLinkage;       break;
1045  case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break;
1046  case lltok::kw_linker_private_weak:
1047    Res = GlobalValue::LinkerPrivateWeakLinkage;
1048    break;
1049  case lltok::kw_internal:       Res = GlobalValue::InternalLinkage;      break;
1050  case lltok::kw_weak:           Res = GlobalValue::WeakAnyLinkage;       break;
1051  case lltok::kw_weak_odr:       Res = GlobalValue::WeakODRLinkage;       break;
1052  case lltok::kw_linkonce:       Res = GlobalValue::LinkOnceAnyLinkage;   break;
1053  case lltok::kw_linkonce_odr:   Res = GlobalValue::LinkOnceODRLinkage;   break;
1054  case lltok::kw_linkonce_odr_auto_hide:
1055  case lltok::kw_linker_private_weak_def_auto: // FIXME: For backwards compat.
1056    Res = GlobalValue::LinkOnceODRAutoHideLinkage;
1057    break;
1058  case lltok::kw_available_externally:
1059    Res = GlobalValue::AvailableExternallyLinkage;
1060    break;
1061  case lltok::kw_appending:      Res = GlobalValue::AppendingLinkage;     break;
1062  case lltok::kw_dllexport:      Res = GlobalValue::DLLExportLinkage;     break;
1063  case lltok::kw_common:         Res = GlobalValue::CommonLinkage;        break;
1064  case lltok::kw_dllimport:      Res = GlobalValue::DLLImportLinkage;     break;
1065  case lltok::kw_extern_weak:    Res = GlobalValue::ExternalWeakLinkage;  break;
1066  case lltok::kw_external:       Res = GlobalValue::ExternalLinkage;      break;
1067  }
1068  Lex.Lex();
1069  HasLinkage = true;
1070  return false;
1071}
1072
1073/// ParseOptionalVisibility
1074///   ::= /*empty*/
1075///   ::= 'default'
1076///   ::= 'hidden'
1077///   ::= 'protected'
1078///
1079bool LLParser::ParseOptionalVisibility(unsigned &Res) {
1080  switch (Lex.getKind()) {
1081  default:                  Res = GlobalValue::DefaultVisibility; return false;
1082  case lltok::kw_default:   Res = GlobalValue::DefaultVisibility; break;
1083  case lltok::kw_hidden:    Res = GlobalValue::HiddenVisibility; break;
1084  case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break;
1085  }
1086  Lex.Lex();
1087  return false;
1088}
1089
1090/// ParseOptionalCallingConv
1091///   ::= /*empty*/
1092///   ::= 'ccc'
1093///   ::= 'fastcc'
1094///   ::= 'kw_intel_ocl_bicc'
1095///   ::= 'coldcc'
1096///   ::= 'x86_stdcallcc'
1097///   ::= 'x86_fastcallcc'
1098///   ::= 'x86_thiscallcc'
1099///   ::= 'arm_apcscc'
1100///   ::= 'arm_aapcscc'
1101///   ::= 'arm_aapcs_vfpcc'
1102///   ::= 'msp430_intrcc'
1103///   ::= 'ptx_kernel'
1104///   ::= 'ptx_device'
1105///   ::= 'spir_func'
1106///   ::= 'spir_kernel'
1107///   ::= 'cc' UINT
1108///
1109bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) {
1110  switch (Lex.getKind()) {
1111  default:                       CC = CallingConv::C; return false;
1112  case lltok::kw_ccc:            CC = CallingConv::C; break;
1113  case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1114  case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1115  case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1116  case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1117  case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1118  case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1119  case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1120  case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1121  case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1122  case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1123  case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1124  case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
1125  case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
1126  case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1127  case lltok::kw_cc: {
1128      unsigned ArbitraryCC;
1129      Lex.Lex();
1130      if (ParseUInt32(ArbitraryCC))
1131        return true;
1132      CC = static_cast<CallingConv::ID>(ArbitraryCC);
1133      return false;
1134    }
1135  }
1136
1137  Lex.Lex();
1138  return false;
1139}
1140
1141/// ParseInstructionMetadata
1142///   ::= !dbg !42 (',' !dbg !57)*
1143bool LLParser::ParseInstructionMetadata(Instruction *Inst,
1144                                        PerFunctionState *PFS) {
1145  do {
1146    if (Lex.getKind() != lltok::MetadataVar)
1147      return TokError("expected metadata after comma");
1148
1149    std::string Name = Lex.getStrVal();
1150    unsigned MDK = M->getMDKindID(Name);
1151    Lex.Lex();
1152
1153    MDNode *Node;
1154    SMLoc Loc = Lex.getLoc();
1155
1156    if (ParseToken(lltok::exclaim, "expected '!' here"))
1157      return true;
1158
1159    // This code is similar to that of ParseMetadataValue, however it needs to
1160    // have special-case code for a forward reference; see the comments on
1161    // ForwardRefInstMetadata for details. Also, MDStrings are not supported
1162    // at the top level here.
1163    if (Lex.getKind() == lltok::lbrace) {
1164      ValID ID;
1165      if (ParseMetadataListValue(ID, PFS))
1166        return true;
1167      assert(ID.Kind == ValID::t_MDNode);
1168      Inst->setMetadata(MDK, ID.MDNodeVal);
1169    } else {
1170      unsigned NodeID = 0;
1171      if (ParseMDNodeID(Node, NodeID))
1172        return true;
1173      if (Node) {
1174        // If we got the node, add it to the instruction.
1175        Inst->setMetadata(MDK, Node);
1176      } else {
1177        MDRef R = { Loc, MDK, NodeID };
1178        // Otherwise, remember that this should be resolved later.
1179        ForwardRefInstMetadata[Inst].push_back(R);
1180      }
1181    }
1182
1183    // If this is the end of the list, we're done.
1184  } while (EatIfPresent(lltok::comma));
1185  return false;
1186}
1187
1188/// ParseOptionalAlignment
1189///   ::= /* empty */
1190///   ::= 'align' 4
1191bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1192  Alignment = 0;
1193  if (!EatIfPresent(lltok::kw_align))
1194    return false;
1195  LocTy AlignLoc = Lex.getLoc();
1196  if (ParseUInt32(Alignment)) return true;
1197  if (!isPowerOf2_32(Alignment))
1198    return Error(AlignLoc, "alignment is not a power of two");
1199  if (Alignment > Value::MaximumAlignment)
1200    return Error(AlignLoc, "huge alignments are not supported yet");
1201  return false;
1202}
1203
1204/// ParseOptionalCommaAlign
1205///   ::=
1206///   ::= ',' align 4
1207///
1208/// This returns with AteExtraComma set to true if it ate an excess comma at the
1209/// end.
1210bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
1211                                       bool &AteExtraComma) {
1212  AteExtraComma = false;
1213  while (EatIfPresent(lltok::comma)) {
1214    // Metadata at the end is an early exit.
1215    if (Lex.getKind() == lltok::MetadataVar) {
1216      AteExtraComma = true;
1217      return false;
1218    }
1219
1220    if (Lex.getKind() != lltok::kw_align)
1221      return Error(Lex.getLoc(), "expected metadata or 'align'");
1222
1223    if (ParseOptionalAlignment(Alignment)) return true;
1224  }
1225
1226  return false;
1227}
1228
1229/// ParseScopeAndOrdering
1230///   if isAtomic: ::= 'singlethread'? AtomicOrdering
1231///   else: ::=
1232///
1233/// This sets Scope and Ordering to the parsed values.
1234bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope,
1235                                     AtomicOrdering &Ordering) {
1236  if (!isAtomic)
1237    return false;
1238
1239  Scope = CrossThread;
1240  if (EatIfPresent(lltok::kw_singlethread))
1241    Scope = SingleThread;
1242  switch (Lex.getKind()) {
1243  default: return TokError("Expected ordering on atomic instruction");
1244  case lltok::kw_unordered: Ordering = Unordered; break;
1245  case lltok::kw_monotonic: Ordering = Monotonic; break;
1246  case lltok::kw_acquire: Ordering = Acquire; break;
1247  case lltok::kw_release: Ordering = Release; break;
1248  case lltok::kw_acq_rel: Ordering = AcquireRelease; break;
1249  case lltok::kw_seq_cst: Ordering = SequentiallyConsistent; break;
1250  }
1251  Lex.Lex();
1252  return false;
1253}
1254
1255/// ParseOptionalStackAlignment
1256///   ::= /* empty */
1257///   ::= 'alignstack' '(' 4 ')'
1258bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
1259  Alignment = 0;
1260  if (!EatIfPresent(lltok::kw_alignstack))
1261    return false;
1262  LocTy ParenLoc = Lex.getLoc();
1263  if (!EatIfPresent(lltok::lparen))
1264    return Error(ParenLoc, "expected '('");
1265  LocTy AlignLoc = Lex.getLoc();
1266  if (ParseUInt32(Alignment)) return true;
1267  ParenLoc = Lex.getLoc();
1268  if (!EatIfPresent(lltok::rparen))
1269    return Error(ParenLoc, "expected ')'");
1270  if (!isPowerOf2_32(Alignment))
1271    return Error(AlignLoc, "stack alignment is not a power of two");
1272  return false;
1273}
1274
1275/// ParseIndexList - This parses the index list for an insert/extractvalue
1276/// instruction.  This sets AteExtraComma in the case where we eat an extra
1277/// comma at the end of the line and find that it is followed by metadata.
1278/// Clients that don't allow metadata can call the version of this function that
1279/// only takes one argument.
1280///
1281/// ParseIndexList
1282///    ::=  (',' uint32)+
1283///
1284bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
1285                              bool &AteExtraComma) {
1286  AteExtraComma = false;
1287
1288  if (Lex.getKind() != lltok::comma)
1289    return TokError("expected ',' as start of index list");
1290
1291  while (EatIfPresent(lltok::comma)) {
1292    if (Lex.getKind() == lltok::MetadataVar) {
1293      AteExtraComma = true;
1294      return false;
1295    }
1296    unsigned Idx = 0;
1297    if (ParseUInt32(Idx)) return true;
1298    Indices.push_back(Idx);
1299  }
1300
1301  return false;
1302}
1303
1304//===----------------------------------------------------------------------===//
1305// Type Parsing.
1306//===----------------------------------------------------------------------===//
1307
1308/// ParseType - Parse a type.
1309bool LLParser::ParseType(Type *&Result, bool AllowVoid) {
1310  SMLoc TypeLoc = Lex.getLoc();
1311  switch (Lex.getKind()) {
1312  default:
1313    return TokError("expected type");
1314  case lltok::Type:
1315    // Type ::= 'float' | 'void' (etc)
1316    Result = Lex.getTyVal();
1317    Lex.Lex();
1318    break;
1319  case lltok::lbrace:
1320    // Type ::= StructType
1321    if (ParseAnonStructType(Result, false))
1322      return true;
1323    break;
1324  case lltok::lsquare:
1325    // Type ::= '[' ... ']'
1326    Lex.Lex(); // eat the lsquare.
1327    if (ParseArrayVectorType(Result, false))
1328      return true;
1329    break;
1330  case lltok::less: // Either vector or packed struct.
1331    // Type ::= '<' ... '>'
1332    Lex.Lex();
1333    if (Lex.getKind() == lltok::lbrace) {
1334      if (ParseAnonStructType(Result, true) ||
1335          ParseToken(lltok::greater, "expected '>' at end of packed struct"))
1336        return true;
1337    } else if (ParseArrayVectorType(Result, true))
1338      return true;
1339    break;
1340  case lltok::LocalVar: {
1341    // Type ::= %foo
1342    std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
1343
1344    // If the type hasn't been defined yet, create a forward definition and
1345    // remember where that forward def'n was seen (in case it never is defined).
1346    if (Entry.first == 0) {
1347      Entry.first = StructType::create(Context, Lex.getStrVal());
1348      Entry.second = Lex.getLoc();
1349    }
1350    Result = Entry.first;
1351    Lex.Lex();
1352    break;
1353  }
1354
1355  case lltok::LocalVarID: {
1356    // Type ::= %4
1357    if (Lex.getUIntVal() >= NumberedTypes.size())
1358      NumberedTypes.resize(Lex.getUIntVal()+1);
1359    std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
1360
1361    // If the type hasn't been defined yet, create a forward definition and
1362    // remember where that forward def'n was seen (in case it never is defined).
1363    if (Entry.first == 0) {
1364      Entry.first = StructType::create(Context);
1365      Entry.second = Lex.getLoc();
1366    }
1367    Result = Entry.first;
1368    Lex.Lex();
1369    break;
1370  }
1371  }
1372
1373  // Parse the type suffixes.
1374  while (1) {
1375    switch (Lex.getKind()) {
1376    // End of type.
1377    default:
1378      if (!AllowVoid && Result->isVoidTy())
1379        return Error(TypeLoc, "void type only allowed for function results");
1380      return false;
1381
1382    // Type ::= Type '*'
1383    case lltok::star:
1384      if (Result->isLabelTy())
1385        return TokError("basic block pointers are invalid");
1386      if (Result->isVoidTy())
1387        return TokError("pointers to void are invalid - use i8* instead");
1388      if (!PointerType::isValidElementType(Result))
1389        return TokError("pointer to this type is invalid");
1390      Result = PointerType::getUnqual(Result);
1391      Lex.Lex();
1392      break;
1393
1394    // Type ::= Type 'addrspace' '(' uint32 ')' '*'
1395    case lltok::kw_addrspace: {
1396      if (Result->isLabelTy())
1397        return TokError("basic block pointers are invalid");
1398      if (Result->isVoidTy())
1399        return TokError("pointers to void are invalid; use i8* instead");
1400      if (!PointerType::isValidElementType(Result))
1401        return TokError("pointer to this type is invalid");
1402      unsigned AddrSpace;
1403      if (ParseOptionalAddrSpace(AddrSpace) ||
1404          ParseToken(lltok::star, "expected '*' in address space"))
1405        return true;
1406
1407      Result = PointerType::get(Result, AddrSpace);
1408      break;
1409    }
1410
1411    /// Types '(' ArgTypeListI ')' OptFuncAttrs
1412    case lltok::lparen:
1413      if (ParseFunctionType(Result))
1414        return true;
1415      break;
1416    }
1417  }
1418}
1419
1420/// ParseParameterList
1421///    ::= '(' ')'
1422///    ::= '(' Arg (',' Arg)* ')'
1423///  Arg
1424///    ::= Type OptionalAttributes Value OptionalAttributes
1425bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
1426                                  PerFunctionState &PFS) {
1427  if (ParseToken(lltok::lparen, "expected '(' in call"))
1428    return true;
1429
1430  while (Lex.getKind() != lltok::rparen) {
1431    // If this isn't the first argument, we need a comma.
1432    if (!ArgList.empty() &&
1433        ParseToken(lltok::comma, "expected ',' in argument list"))
1434      return true;
1435
1436    // Parse the argument.
1437    LocTy ArgLoc;
1438    Type *ArgTy = 0;
1439    Attributes ArgAttrs1;
1440    Attributes ArgAttrs2;
1441    Value *V;
1442    if (ParseType(ArgTy, ArgLoc))
1443      return true;
1444
1445    // Otherwise, handle normal operands.
1446    if (ParseOptionalAttrs(ArgAttrs1, 0) || ParseValue(ArgTy, V, PFS))
1447      return true;
1448    ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2));
1449  }
1450
1451  Lex.Lex();  // Lex the ')'.
1452  return false;
1453}
1454
1455
1456
1457/// ParseArgumentList - Parse the argument list for a function type or function
1458/// prototype.
1459///   ::= '(' ArgTypeListI ')'
1460/// ArgTypeListI
1461///   ::= /*empty*/
1462///   ::= '...'
1463///   ::= ArgTypeList ',' '...'
1464///   ::= ArgType (',' ArgType)*
1465///
1466bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
1467                                 bool &isVarArg){
1468  isVarArg = false;
1469  assert(Lex.getKind() == lltok::lparen);
1470  Lex.Lex(); // eat the (.
1471
1472  if (Lex.getKind() == lltok::rparen) {
1473    // empty
1474  } else if (Lex.getKind() == lltok::dotdotdot) {
1475    isVarArg = true;
1476    Lex.Lex();
1477  } else {
1478    LocTy TypeLoc = Lex.getLoc();
1479    Type *ArgTy = 0;
1480    Attributes Attrs;
1481    std::string Name;
1482
1483    if (ParseType(ArgTy) ||
1484        ParseOptionalAttrs(Attrs, 0)) return true;
1485
1486    if (ArgTy->isVoidTy())
1487      return Error(TypeLoc, "argument can not have void type");
1488
1489    if (Lex.getKind() == lltok::LocalVar) {
1490      Name = Lex.getStrVal();
1491      Lex.Lex();
1492    }
1493
1494    if (!FunctionType::isValidArgumentType(ArgTy))
1495      return Error(TypeLoc, "invalid type for function argument");
1496
1497    ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1498
1499    while (EatIfPresent(lltok::comma)) {
1500      // Handle ... at end of arg list.
1501      if (EatIfPresent(lltok::dotdotdot)) {
1502        isVarArg = true;
1503        break;
1504      }
1505
1506      // Otherwise must be an argument type.
1507      TypeLoc = Lex.getLoc();
1508      if (ParseType(ArgTy) || ParseOptionalAttrs(Attrs, 0)) return true;
1509
1510      if (ArgTy->isVoidTy())
1511        return Error(TypeLoc, "argument can not have void type");
1512
1513      if (Lex.getKind() == lltok::LocalVar) {
1514        Name = Lex.getStrVal();
1515        Lex.Lex();
1516      } else {
1517        Name = "";
1518      }
1519
1520      if (!ArgTy->isFirstClassType())
1521        return Error(TypeLoc, "invalid type for function argument");
1522
1523      ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name));
1524    }
1525  }
1526
1527  return ParseToken(lltok::rparen, "expected ')' at end of argument list");
1528}
1529
1530/// ParseFunctionType
1531///  ::= Type ArgumentList OptionalAttrs
1532bool LLParser::ParseFunctionType(Type *&Result) {
1533  assert(Lex.getKind() == lltok::lparen);
1534
1535  if (!FunctionType::isValidReturnType(Result))
1536    return TokError("invalid function return type");
1537
1538  SmallVector<ArgInfo, 8> ArgList;
1539  bool isVarArg;
1540  if (ParseArgumentList(ArgList, isVarArg))
1541    return true;
1542
1543  // Reject names on the arguments lists.
1544  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
1545    if (!ArgList[i].Name.empty())
1546      return Error(ArgList[i].Loc, "argument name invalid in function type");
1547    if (ArgList[i].Attrs)
1548      return Error(ArgList[i].Loc,
1549                   "argument attributes invalid in function type");
1550  }
1551
1552  SmallVector<Type*, 16> ArgListTy;
1553  for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
1554    ArgListTy.push_back(ArgList[i].Ty);
1555
1556  Result = FunctionType::get(Result, ArgListTy, isVarArg);
1557  return false;
1558}
1559
1560/// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
1561/// other structs.
1562bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
1563  SmallVector<Type*, 8> Elts;
1564  if (ParseStructBody(Elts)) return true;
1565
1566  Result = StructType::get(Context, Elts, Packed);
1567  return false;
1568}
1569
1570/// ParseStructDefinition - Parse a struct in a 'type' definition.
1571bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
1572                                     std::pair<Type*, LocTy> &Entry,
1573                                     Type *&ResultTy) {
1574  // If the type was already defined, diagnose the redefinition.
1575  if (Entry.first && !Entry.second.isValid())
1576    return Error(TypeLoc, "redefinition of type");
1577
1578  // If we have opaque, just return without filling in the definition for the
1579  // struct.  This counts as a definition as far as the .ll file goes.
1580  if (EatIfPresent(lltok::kw_opaque)) {
1581    // This type is being defined, so clear the location to indicate this.
1582    Entry.second = SMLoc();
1583
1584    // If this type number has never been uttered, create it.
1585    if (Entry.first == 0)
1586      Entry.first = StructType::create(Context, Name);
1587    ResultTy = Entry.first;
1588    return false;
1589  }
1590
1591  // If the type starts with '<', then it is either a packed struct or a vector.
1592  bool isPacked = EatIfPresent(lltok::less);
1593
1594  // If we don't have a struct, then we have a random type alias, which we
1595  // accept for compatibility with old files.  These types are not allowed to be
1596  // forward referenced and not allowed to be recursive.
1597  if (Lex.getKind() != lltok::lbrace) {
1598    if (Entry.first)
1599      return Error(TypeLoc, "forward references to non-struct type");
1600
1601    ResultTy = 0;
1602    if (isPacked)
1603      return ParseArrayVectorType(ResultTy, true);
1604    return ParseType(ResultTy);
1605  }
1606
1607  // This type is being defined, so clear the location to indicate this.
1608  Entry.second = SMLoc();
1609
1610  // If this type number has never been uttered, create it.
1611  if (Entry.first == 0)
1612    Entry.first = StructType::create(Context, Name);
1613
1614  StructType *STy = cast<StructType>(Entry.first);
1615
1616  SmallVector<Type*, 8> Body;
1617  if (ParseStructBody(Body) ||
1618      (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
1619    return true;
1620
1621  STy->setBody(Body, isPacked);
1622  ResultTy = STy;
1623  return false;
1624}
1625
1626
1627/// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
1628///   StructType
1629///     ::= '{' '}'
1630///     ::= '{' Type (',' Type)* '}'
1631///     ::= '<' '{' '}' '>'
1632///     ::= '<' '{' Type (',' Type)* '}' '>'
1633bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
1634  assert(Lex.getKind() == lltok::lbrace);
1635  Lex.Lex(); // Consume the '{'
1636
1637  // Handle the empty struct.
1638  if (EatIfPresent(lltok::rbrace))
1639    return false;
1640
1641  LocTy EltTyLoc = Lex.getLoc();
1642  Type *Ty = 0;
1643  if (ParseType(Ty)) return true;
1644  Body.push_back(Ty);
1645
1646  if (!StructType::isValidElementType(Ty))
1647    return Error(EltTyLoc, "invalid element type for struct");
1648
1649  while (EatIfPresent(lltok::comma)) {
1650    EltTyLoc = Lex.getLoc();
1651    if (ParseType(Ty)) return true;
1652
1653    if (!StructType::isValidElementType(Ty))
1654      return Error(EltTyLoc, "invalid element type for struct");
1655
1656    Body.push_back(Ty);
1657  }
1658
1659  return ParseToken(lltok::rbrace, "expected '}' at end of struct");
1660}
1661
1662/// ParseArrayVectorType - Parse an array or vector type, assuming the first
1663/// token has already been consumed.
1664///   Type
1665///     ::= '[' APSINTVAL 'x' Types ']'
1666///     ::= '<' APSINTVAL 'x' Types '>'
1667bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
1668  if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
1669      Lex.getAPSIntVal().getBitWidth() > 64)
1670    return TokError("expected number in address space");
1671
1672  LocTy SizeLoc = Lex.getLoc();
1673  uint64_t Size = Lex.getAPSIntVal().getZExtValue();
1674  Lex.Lex();
1675
1676  if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
1677      return true;
1678
1679  LocTy TypeLoc = Lex.getLoc();
1680  Type *EltTy = 0;
1681  if (ParseType(EltTy)) return true;
1682
1683  if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
1684                 "expected end of sequential type"))
1685    return true;
1686
1687  if (isVector) {
1688    if (Size == 0)
1689      return Error(SizeLoc, "zero element vector is illegal");
1690    if ((unsigned)Size != Size)
1691      return Error(SizeLoc, "size too large for vector");
1692    if (!VectorType::isValidElementType(EltTy))
1693      return Error(TypeLoc,
1694       "vector element type must be fp, integer or a pointer to these types");
1695    Result = VectorType::get(EltTy, unsigned(Size));
1696  } else {
1697    if (!ArrayType::isValidElementType(EltTy))
1698      return Error(TypeLoc, "invalid array element type");
1699    Result = ArrayType::get(EltTy, Size);
1700  }
1701  return false;
1702}
1703
1704//===----------------------------------------------------------------------===//
1705// Function Semantic Analysis.
1706//===----------------------------------------------------------------------===//
1707
1708LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
1709                                             int functionNumber)
1710  : P(p), F(f), FunctionNumber(functionNumber) {
1711
1712  // Insert unnamed arguments into the NumberedVals list.
1713  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
1714       AI != E; ++AI)
1715    if (!AI->hasName())
1716      NumberedVals.push_back(AI);
1717}
1718
1719LLParser::PerFunctionState::~PerFunctionState() {
1720  // If there were any forward referenced non-basicblock values, delete them.
1721  for (std::map<std::string, std::pair<Value*, LocTy> >::iterator
1722       I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I)
1723    if (!isa<BasicBlock>(I->second.first)) {
1724      I->second.first->replaceAllUsesWith(
1725                           UndefValue::get(I->second.first->getType()));
1726      delete I->second.first;
1727      I->second.first = 0;
1728    }
1729
1730  for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1731       I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I)
1732    if (!isa<BasicBlock>(I->second.first)) {
1733      I->second.first->replaceAllUsesWith(
1734                           UndefValue::get(I->second.first->getType()));
1735      delete I->second.first;
1736      I->second.first = 0;
1737    }
1738}
1739
1740bool LLParser::PerFunctionState::FinishFunction() {
1741  // Check to see if someone took the address of labels in this block.
1742  if (!P.ForwardRefBlockAddresses.empty()) {
1743    ValID FunctionID;
1744    if (!F.getName().empty()) {
1745      FunctionID.Kind = ValID::t_GlobalName;
1746      FunctionID.StrVal = F.getName();
1747    } else {
1748      FunctionID.Kind = ValID::t_GlobalID;
1749      FunctionID.UIntVal = FunctionNumber;
1750    }
1751
1752    std::map<ValID, std::vector<std::pair<ValID, GlobalValue*> > >::iterator
1753      FRBAI = P.ForwardRefBlockAddresses.find(FunctionID);
1754    if (FRBAI != P.ForwardRefBlockAddresses.end()) {
1755      // Resolve all these references.
1756      if (P.ResolveForwardRefBlockAddresses(&F, FRBAI->second, this))
1757        return true;
1758
1759      P.ForwardRefBlockAddresses.erase(FRBAI);
1760    }
1761  }
1762
1763  if (!ForwardRefVals.empty())
1764    return P.Error(ForwardRefVals.begin()->second.second,
1765                   "use of undefined value '%" + ForwardRefVals.begin()->first +
1766                   "'");
1767  if (!ForwardRefValIDs.empty())
1768    return P.Error(ForwardRefValIDs.begin()->second.second,
1769                   "use of undefined value '%" +
1770                   Twine(ForwardRefValIDs.begin()->first) + "'");
1771  return false;
1772}
1773
1774
1775/// GetVal - Get a value with the specified name or ID, creating a
1776/// forward reference record if needed.  This can return null if the value
1777/// exists but does not have the right type.
1778Value *LLParser::PerFunctionState::GetVal(const std::string &Name,
1779                                          Type *Ty, LocTy Loc) {
1780  // Look this name up in the normal function symbol table.
1781  Value *Val = F.getValueSymbolTable().lookup(Name);
1782
1783  // If this is a forward reference for the value, see if we already created a
1784  // forward ref record.
1785  if (Val == 0) {
1786    std::map<std::string, std::pair<Value*, LocTy> >::iterator
1787      I = ForwardRefVals.find(Name);
1788    if (I != ForwardRefVals.end())
1789      Val = I->second.first;
1790  }
1791
1792  // If we have the value in the symbol table or fwd-ref table, return it.
1793  if (Val) {
1794    if (Val->getType() == Ty) return Val;
1795    if (Ty->isLabelTy())
1796      P.Error(Loc, "'%" + Name + "' is not a basic block");
1797    else
1798      P.Error(Loc, "'%" + Name + "' defined with type '" +
1799              getTypeString(Val->getType()) + "'");
1800    return 0;
1801  }
1802
1803  // Don't make placeholders with invalid type.
1804  if (!Ty->isFirstClassType() && !Ty->isLabelTy()) {
1805    P.Error(Loc, "invalid use of a non-first-class type");
1806    return 0;
1807  }
1808
1809  // Otherwise, create a new forward reference for this value and remember it.
1810  Value *FwdVal;
1811  if (Ty->isLabelTy())
1812    FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
1813  else
1814    FwdVal = new Argument(Ty, Name);
1815
1816  ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1817  return FwdVal;
1818}
1819
1820Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty,
1821                                          LocTy Loc) {
1822  // Look this name up in the normal function symbol table.
1823  Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0;
1824
1825  // If this is a forward reference for the value, see if we already created a
1826  // forward ref record.
1827  if (Val == 0) {
1828    std::map<unsigned, std::pair<Value*, LocTy> >::iterator
1829      I = ForwardRefValIDs.find(ID);
1830    if (I != ForwardRefValIDs.end())
1831      Val = I->second.first;
1832  }
1833
1834  // If we have the value in the symbol table or fwd-ref table, return it.
1835  if (Val) {
1836    if (Val->getType() == Ty) return Val;
1837    if (Ty->isLabelTy())
1838      P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block");
1839    else
1840      P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" +
1841              getTypeString(Val->getType()) + "'");
1842    return 0;
1843  }
1844
1845  if (!Ty->isFirstClassType() && !Ty->isLabelTy()) {
1846    P.Error(Loc, "invalid use of a non-first-class type");
1847    return 0;
1848  }
1849
1850  // Otherwise, create a new forward reference for this value and remember it.
1851  Value *FwdVal;
1852  if (Ty->isLabelTy())
1853    FwdVal = BasicBlock::Create(F.getContext(), "", &F);
1854  else
1855    FwdVal = new Argument(Ty);
1856
1857  ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1858  return FwdVal;
1859}
1860
1861/// SetInstName - After an instruction is parsed and inserted into its
1862/// basic block, this installs its name.
1863bool LLParser::PerFunctionState::SetInstName(int NameID,
1864                                             const std::string &NameStr,
1865                                             LocTy NameLoc, Instruction *Inst) {
1866  // If this instruction has void type, it cannot have a name or ID specified.
1867  if (Inst->getType()->isVoidTy()) {
1868    if (NameID != -1 || !NameStr.empty())
1869      return P.Error(NameLoc, "instructions returning void cannot have a name");
1870    return false;
1871  }
1872
1873  // If this was a numbered instruction, verify that the instruction is the
1874  // expected value and resolve any forward references.
1875  if (NameStr.empty()) {
1876    // If neither a name nor an ID was specified, just use the next ID.
1877    if (NameID == -1)
1878      NameID = NumberedVals.size();
1879
1880    if (unsigned(NameID) != NumberedVals.size())
1881      return P.Error(NameLoc, "instruction expected to be numbered '%" +
1882                     Twine(NumberedVals.size()) + "'");
1883
1884    std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI =
1885      ForwardRefValIDs.find(NameID);
1886    if (FI != ForwardRefValIDs.end()) {
1887      if (FI->second.first->getType() != Inst->getType())
1888        return P.Error(NameLoc, "instruction forward referenced with type '" +
1889                       getTypeString(FI->second.first->getType()) + "'");
1890      FI->second.first->replaceAllUsesWith(Inst);
1891      delete FI->second.first;
1892      ForwardRefValIDs.erase(FI);
1893    }
1894
1895    NumberedVals.push_back(Inst);
1896    return false;
1897  }
1898
1899  // Otherwise, the instruction had a name.  Resolve forward refs and set it.
1900  std::map<std::string, std::pair<Value*, LocTy> >::iterator
1901    FI = ForwardRefVals.find(NameStr);
1902  if (FI != ForwardRefVals.end()) {
1903    if (FI->second.first->getType() != Inst->getType())
1904      return P.Error(NameLoc, "instruction forward referenced with type '" +
1905                     getTypeString(FI->second.first->getType()) + "'");
1906    FI->second.first->replaceAllUsesWith(Inst);
1907    delete FI->second.first;
1908    ForwardRefVals.erase(FI);
1909  }
1910
1911  // Set the name on the instruction.
1912  Inst->setName(NameStr);
1913
1914  if (Inst->getName() != NameStr)
1915    return P.Error(NameLoc, "multiple definition of local value named '" +
1916                   NameStr + "'");
1917  return false;
1918}
1919
1920/// GetBB - Get a basic block with the specified name or ID, creating a
1921/// forward reference record if needed.
1922BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
1923                                              LocTy Loc) {
1924  return cast_or_null<BasicBlock>(GetVal(Name,
1925                                        Type::getLabelTy(F.getContext()), Loc));
1926}
1927
1928BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
1929  return cast_or_null<BasicBlock>(GetVal(ID,
1930                                        Type::getLabelTy(F.getContext()), Loc));
1931}
1932
1933/// DefineBB - Define the specified basic block, which is either named or
1934/// unnamed.  If there is an error, this returns null otherwise it returns
1935/// the block being defined.
1936BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
1937                                                 LocTy Loc) {
1938  BasicBlock *BB;
1939  if (Name.empty())
1940    BB = GetBB(NumberedVals.size(), Loc);
1941  else
1942    BB = GetBB(Name, Loc);
1943  if (BB == 0) return 0; // Already diagnosed error.
1944
1945  // Move the block to the end of the function.  Forward ref'd blocks are
1946  // inserted wherever they happen to be referenced.
1947  F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
1948
1949  // Remove the block from forward ref sets.
1950  if (Name.empty()) {
1951    ForwardRefValIDs.erase(NumberedVals.size());
1952    NumberedVals.push_back(BB);
1953  } else {
1954    // BB forward references are already in the function symbol table.
1955    ForwardRefVals.erase(Name);
1956  }
1957
1958  return BB;
1959}
1960
1961//===----------------------------------------------------------------------===//
1962// Constants.
1963//===----------------------------------------------------------------------===//
1964
1965/// ParseValID - Parse an abstract value that doesn't necessarily have a
1966/// type implied.  For example, if we parse "4" we don't know what integer type
1967/// it has.  The value will later be combined with its type and checked for
1968/// sanity.  PFS is used to convert function-local operands of metadata (since
1969/// metadata operands are not just parsed here but also converted to values).
1970/// PFS can be null when we are not parsing metadata values inside a function.
1971bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
1972  ID.Loc = Lex.getLoc();
1973  switch (Lex.getKind()) {
1974  default: return TokError("expected value token");
1975  case lltok::GlobalID:  // @42
1976    ID.UIntVal = Lex.getUIntVal();
1977    ID.Kind = ValID::t_GlobalID;
1978    break;
1979  case lltok::GlobalVar:  // @foo
1980    ID.StrVal = Lex.getStrVal();
1981    ID.Kind = ValID::t_GlobalName;
1982    break;
1983  case lltok::LocalVarID:  // %42
1984    ID.UIntVal = Lex.getUIntVal();
1985    ID.Kind = ValID::t_LocalID;
1986    break;
1987  case lltok::LocalVar:  // %foo
1988    ID.StrVal = Lex.getStrVal();
1989    ID.Kind = ValID::t_LocalName;
1990    break;
1991  case lltok::exclaim:   // !42, !{...}, or !"foo"
1992    return ParseMetadataValue(ID, PFS);
1993  case lltok::APSInt:
1994    ID.APSIntVal = Lex.getAPSIntVal();
1995    ID.Kind = ValID::t_APSInt;
1996    break;
1997  case lltok::APFloat:
1998    ID.APFloatVal = Lex.getAPFloatVal();
1999    ID.Kind = ValID::t_APFloat;
2000    break;
2001  case lltok::kw_true:
2002    ID.ConstantVal = ConstantInt::getTrue(Context);
2003    ID.Kind = ValID::t_Constant;
2004    break;
2005  case lltok::kw_false:
2006    ID.ConstantVal = ConstantInt::getFalse(Context);
2007    ID.Kind = ValID::t_Constant;
2008    break;
2009  case lltok::kw_null: ID.Kind = ValID::t_Null; break;
2010  case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
2011  case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
2012
2013  case lltok::lbrace: {
2014    // ValID ::= '{' ConstVector '}'
2015    Lex.Lex();
2016    SmallVector<Constant*, 16> Elts;
2017    if (ParseGlobalValueVector(Elts) ||
2018        ParseToken(lltok::rbrace, "expected end of struct constant"))
2019      return true;
2020
2021    ID.ConstantStructElts = new Constant*[Elts.size()];
2022    ID.UIntVal = Elts.size();
2023    memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0]));
2024    ID.Kind = ValID::t_ConstantStruct;
2025    return false;
2026  }
2027  case lltok::less: {
2028    // ValID ::= '<' ConstVector '>'         --> Vector.
2029    // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
2030    Lex.Lex();
2031    bool isPackedStruct = EatIfPresent(lltok::lbrace);
2032
2033    SmallVector<Constant*, 16> Elts;
2034    LocTy FirstEltLoc = Lex.getLoc();
2035    if (ParseGlobalValueVector(Elts) ||
2036        (isPackedStruct &&
2037         ParseToken(lltok::rbrace, "expected end of packed struct")) ||
2038        ParseToken(lltok::greater, "expected end of constant"))
2039      return true;
2040
2041    if (isPackedStruct) {
2042      ID.ConstantStructElts = new Constant*[Elts.size()];
2043      memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0]));
2044      ID.UIntVal = Elts.size();
2045      ID.Kind = ValID::t_PackedConstantStruct;
2046      return false;
2047    }
2048
2049    if (Elts.empty())
2050      return Error(ID.Loc, "constant vector must not be empty");
2051
2052    if (!Elts[0]->getType()->isIntegerTy() &&
2053        !Elts[0]->getType()->isFloatingPointTy() &&
2054        !Elts[0]->getType()->isPointerTy())
2055      return Error(FirstEltLoc,
2056            "vector elements must have integer, pointer or floating point type");
2057
2058    // Verify that all the vector elements have the same type.
2059    for (unsigned i = 1, e = Elts.size(); i != e; ++i)
2060      if (Elts[i]->getType() != Elts[0]->getType())
2061        return Error(FirstEltLoc,
2062                     "vector element #" + Twine(i) +
2063                    " is not of type '" + getTypeString(Elts[0]->getType()));
2064
2065    ID.ConstantVal = ConstantVector::get(Elts);
2066    ID.Kind = ValID::t_Constant;
2067    return false;
2068  }
2069  case lltok::lsquare: {   // Array Constant
2070    Lex.Lex();
2071    SmallVector<Constant*, 16> Elts;
2072    LocTy FirstEltLoc = Lex.getLoc();
2073    if (ParseGlobalValueVector(Elts) ||
2074        ParseToken(lltok::rsquare, "expected end of array constant"))
2075      return true;
2076
2077    // Handle empty element.
2078    if (Elts.empty()) {
2079      // Use undef instead of an array because it's inconvenient to determine
2080      // the element type at this point, there being no elements to examine.
2081      ID.Kind = ValID::t_EmptyArray;
2082      return false;
2083    }
2084
2085    if (!Elts[0]->getType()->isFirstClassType())
2086      return Error(FirstEltLoc, "invalid array element type: " +
2087                   getTypeString(Elts[0]->getType()));
2088
2089    ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
2090
2091    // Verify all elements are correct type!
2092    for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
2093      if (Elts[i]->getType() != Elts[0]->getType())
2094        return Error(FirstEltLoc,
2095                     "array element #" + Twine(i) +
2096                     " is not of type '" + getTypeString(Elts[0]->getType()));
2097    }
2098
2099    ID.ConstantVal = ConstantArray::get(ATy, Elts);
2100    ID.Kind = ValID::t_Constant;
2101    return false;
2102  }
2103  case lltok::kw_c:  // c "foo"
2104    Lex.Lex();
2105    ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
2106                                                  false);
2107    if (ParseToken(lltok::StringConstant, "expected string")) return true;
2108    ID.Kind = ValID::t_Constant;
2109    return false;
2110
2111  case lltok::kw_asm: {
2112    // ValID ::= 'asm' SideEffect? AlignStack? STRINGCONSTANT ',' STRINGCONSTANT
2113    bool HasSideEffect, AlignStack, AsmDialect;
2114    Lex.Lex();
2115    if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
2116        ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
2117        ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
2118        ParseStringConstant(ID.StrVal) ||
2119        ParseToken(lltok::comma, "expected comma in inline asm expression") ||
2120        ParseToken(lltok::StringConstant, "expected constraint string"))
2121      return true;
2122    ID.StrVal2 = Lex.getStrVal();
2123    ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
2124      (unsigned(AsmDialect)<<2);
2125    ID.Kind = ValID::t_InlineAsm;
2126    return false;
2127  }
2128
2129  case lltok::kw_blockaddress: {
2130    // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2131    Lex.Lex();
2132
2133    ValID Fn, Label;
2134    LocTy FnLoc, LabelLoc;
2135
2136    if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
2137        ParseValID(Fn) ||
2138        ParseToken(lltok::comma, "expected comma in block address expression")||
2139        ParseValID(Label) ||
2140        ParseToken(lltok::rparen, "expected ')' in block address expression"))
2141      return true;
2142
2143    if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
2144      return Error(Fn.Loc, "expected function name in blockaddress");
2145    if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
2146      return Error(Label.Loc, "expected basic block name in blockaddress");
2147
2148    // Make a global variable as a placeholder for this reference.
2149    GlobalVariable *FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context),
2150                                           false, GlobalValue::InternalLinkage,
2151                                                0, "");
2152    ForwardRefBlockAddresses[Fn].push_back(std::make_pair(Label, FwdRef));
2153    ID.ConstantVal = FwdRef;
2154    ID.Kind = ValID::t_Constant;
2155    return false;
2156  }
2157
2158  case lltok::kw_trunc:
2159  case lltok::kw_zext:
2160  case lltok::kw_sext:
2161  case lltok::kw_fptrunc:
2162  case lltok::kw_fpext:
2163  case lltok::kw_bitcast:
2164  case lltok::kw_uitofp:
2165  case lltok::kw_sitofp:
2166  case lltok::kw_fptoui:
2167  case lltok::kw_fptosi:
2168  case lltok::kw_inttoptr:
2169  case lltok::kw_ptrtoint: {
2170    unsigned Opc = Lex.getUIntVal();
2171    Type *DestTy = 0;
2172    Constant *SrcVal;
2173    Lex.Lex();
2174    if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
2175        ParseGlobalTypeAndValue(SrcVal) ||
2176        ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
2177        ParseType(DestTy) ||
2178        ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
2179      return true;
2180    if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
2181      return Error(ID.Loc, "invalid cast opcode for cast from '" +
2182                   getTypeString(SrcVal->getType()) + "' to '" +
2183                   getTypeString(DestTy) + "'");
2184    ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
2185                                                 SrcVal, DestTy);
2186    ID.Kind = ValID::t_Constant;
2187    return false;
2188  }
2189  case lltok::kw_extractvalue: {
2190    Lex.Lex();
2191    Constant *Val;
2192    SmallVector<unsigned, 4> Indices;
2193    if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
2194        ParseGlobalTypeAndValue(Val) ||
2195        ParseIndexList(Indices) ||
2196        ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
2197      return true;
2198
2199    if (!Val->getType()->isAggregateType())
2200      return Error(ID.Loc, "extractvalue operand must be aggregate type");
2201    if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
2202      return Error(ID.Loc, "invalid indices for extractvalue");
2203    ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
2204    ID.Kind = ValID::t_Constant;
2205    return false;
2206  }
2207  case lltok::kw_insertvalue: {
2208    Lex.Lex();
2209    Constant *Val0, *Val1;
2210    SmallVector<unsigned, 4> Indices;
2211    if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
2212        ParseGlobalTypeAndValue(Val0) ||
2213        ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
2214        ParseGlobalTypeAndValue(Val1) ||
2215        ParseIndexList(Indices) ||
2216        ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
2217      return true;
2218    if (!Val0->getType()->isAggregateType())
2219      return Error(ID.Loc, "insertvalue operand must be aggregate type");
2220    if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices))
2221      return Error(ID.Loc, "invalid indices for insertvalue");
2222    ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
2223    ID.Kind = ValID::t_Constant;
2224    return false;
2225  }
2226  case lltok::kw_icmp:
2227  case lltok::kw_fcmp: {
2228    unsigned PredVal, Opc = Lex.getUIntVal();
2229    Constant *Val0, *Val1;
2230    Lex.Lex();
2231    if (ParseCmpPredicate(PredVal, Opc) ||
2232        ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
2233        ParseGlobalTypeAndValue(Val0) ||
2234        ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
2235        ParseGlobalTypeAndValue(Val1) ||
2236        ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
2237      return true;
2238
2239    if (Val0->getType() != Val1->getType())
2240      return Error(ID.Loc, "compare operands must have the same type");
2241
2242    CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
2243
2244    if (Opc == Instruction::FCmp) {
2245      if (!Val0->getType()->isFPOrFPVectorTy())
2246        return Error(ID.Loc, "fcmp requires floating point operands");
2247      ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
2248    } else {
2249      assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
2250      if (!Val0->getType()->isIntOrIntVectorTy() &&
2251          !Val0->getType()->getScalarType()->isPointerTy())
2252        return Error(ID.Loc, "icmp requires pointer or integer operands");
2253      ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
2254    }
2255    ID.Kind = ValID::t_Constant;
2256    return false;
2257  }
2258
2259  // Binary Operators.
2260  case lltok::kw_add:
2261  case lltok::kw_fadd:
2262  case lltok::kw_sub:
2263  case lltok::kw_fsub:
2264  case lltok::kw_mul:
2265  case lltok::kw_fmul:
2266  case lltok::kw_udiv:
2267  case lltok::kw_sdiv:
2268  case lltok::kw_fdiv:
2269  case lltok::kw_urem:
2270  case lltok::kw_srem:
2271  case lltok::kw_frem:
2272  case lltok::kw_shl:
2273  case lltok::kw_lshr:
2274  case lltok::kw_ashr: {
2275    bool NUW = false;
2276    bool NSW = false;
2277    bool Exact = false;
2278    unsigned Opc = Lex.getUIntVal();
2279    Constant *Val0, *Val1;
2280    Lex.Lex();
2281    LocTy ModifierLoc = Lex.getLoc();
2282    if (Opc == Instruction::Add || Opc == Instruction::Sub ||
2283        Opc == Instruction::Mul || Opc == Instruction::Shl) {
2284      if (EatIfPresent(lltok::kw_nuw))
2285        NUW = true;
2286      if (EatIfPresent(lltok::kw_nsw)) {
2287        NSW = true;
2288        if (EatIfPresent(lltok::kw_nuw))
2289          NUW = true;
2290      }
2291    } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
2292               Opc == Instruction::LShr || Opc == Instruction::AShr) {
2293      if (EatIfPresent(lltok::kw_exact))
2294        Exact = true;
2295    }
2296    if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
2297        ParseGlobalTypeAndValue(Val0) ||
2298        ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
2299        ParseGlobalTypeAndValue(Val1) ||
2300        ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
2301      return true;
2302    if (Val0->getType() != Val1->getType())
2303      return Error(ID.Loc, "operands of constexpr must have same type");
2304    if (!Val0->getType()->isIntOrIntVectorTy()) {
2305      if (NUW)
2306        return Error(ModifierLoc, "nuw only applies to integer operations");
2307      if (NSW)
2308        return Error(ModifierLoc, "nsw only applies to integer operations");
2309    }
2310    // Check that the type is valid for the operator.
2311    switch (Opc) {
2312    case Instruction::Add:
2313    case Instruction::Sub:
2314    case Instruction::Mul:
2315    case Instruction::UDiv:
2316    case Instruction::SDiv:
2317    case Instruction::URem:
2318    case Instruction::SRem:
2319    case Instruction::Shl:
2320    case Instruction::AShr:
2321    case Instruction::LShr:
2322      if (!Val0->getType()->isIntOrIntVectorTy())
2323        return Error(ID.Loc, "constexpr requires integer operands");
2324      break;
2325    case Instruction::FAdd:
2326    case Instruction::FSub:
2327    case Instruction::FMul:
2328    case Instruction::FDiv:
2329    case Instruction::FRem:
2330      if (!Val0->getType()->isFPOrFPVectorTy())
2331        return Error(ID.Loc, "constexpr requires fp operands");
2332      break;
2333    default: llvm_unreachable("Unknown binary operator!");
2334    }
2335    unsigned Flags = 0;
2336    if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2337    if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
2338    if (Exact) Flags |= PossiblyExactOperator::IsExact;
2339    Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
2340    ID.ConstantVal = C;
2341    ID.Kind = ValID::t_Constant;
2342    return false;
2343  }
2344
2345  // Logical Operations
2346  case lltok::kw_and:
2347  case lltok::kw_or:
2348  case lltok::kw_xor: {
2349    unsigned Opc = Lex.getUIntVal();
2350    Constant *Val0, *Val1;
2351    Lex.Lex();
2352    if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
2353        ParseGlobalTypeAndValue(Val0) ||
2354        ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
2355        ParseGlobalTypeAndValue(Val1) ||
2356        ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
2357      return true;
2358    if (Val0->getType() != Val1->getType())
2359      return Error(ID.Loc, "operands of constexpr must have same type");
2360    if (!Val0->getType()->isIntOrIntVectorTy())
2361      return Error(ID.Loc,
2362                   "constexpr requires integer or integer vector operands");
2363    ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
2364    ID.Kind = ValID::t_Constant;
2365    return false;
2366  }
2367
2368  case lltok::kw_getelementptr:
2369  case lltok::kw_shufflevector:
2370  case lltok::kw_insertelement:
2371  case lltok::kw_extractelement:
2372  case lltok::kw_select: {
2373    unsigned Opc = Lex.getUIntVal();
2374    SmallVector<Constant*, 16> Elts;
2375    bool InBounds = false;
2376    Lex.Lex();
2377    if (Opc == Instruction::GetElementPtr)
2378      InBounds = EatIfPresent(lltok::kw_inbounds);
2379    if (ParseToken(lltok::lparen, "expected '(' in constantexpr") ||
2380        ParseGlobalValueVector(Elts) ||
2381        ParseToken(lltok::rparen, "expected ')' in constantexpr"))
2382      return true;
2383
2384    if (Opc == Instruction::GetElementPtr) {
2385      if (Elts.size() == 0 ||
2386          !Elts[0]->getType()->getScalarType()->isPointerTy())
2387        return Error(ID.Loc, "getelementptr requires pointer operand");
2388
2389      ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2390      if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(), Indices))
2391        return Error(ID.Loc, "invalid indices for getelementptr");
2392      ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0], Indices,
2393                                                      InBounds);
2394    } else if (Opc == Instruction::Select) {
2395      if (Elts.size() != 3)
2396        return Error(ID.Loc, "expected three operands to select");
2397      if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
2398                                                              Elts[2]))
2399        return Error(ID.Loc, Reason);
2400      ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
2401    } else if (Opc == Instruction::ShuffleVector) {
2402      if (Elts.size() != 3)
2403        return Error(ID.Loc, "expected three operands to shufflevector");
2404      if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2405        return Error(ID.Loc, "invalid operands to shufflevector");
2406      ID.ConstantVal =
2407                 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
2408    } else if (Opc == Instruction::ExtractElement) {
2409      if (Elts.size() != 2)
2410        return Error(ID.Loc, "expected two operands to extractelement");
2411      if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
2412        return Error(ID.Loc, "invalid extractelement operands");
2413      ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
2414    } else {
2415      assert(Opc == Instruction::InsertElement && "Unknown opcode");
2416      if (Elts.size() != 3)
2417      return Error(ID.Loc, "expected three operands to insertelement");
2418      if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
2419        return Error(ID.Loc, "invalid insertelement operands");
2420      ID.ConstantVal =
2421                 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
2422    }
2423
2424    ID.Kind = ValID::t_Constant;
2425    return false;
2426  }
2427  }
2428
2429  Lex.Lex();
2430  return false;
2431}
2432
2433/// ParseGlobalValue - Parse a global value with the specified type.
2434bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
2435  C = 0;
2436  ValID ID;
2437  Value *V = NULL;
2438  bool Parsed = ParseValID(ID) ||
2439                ConvertValIDToValue(Ty, ID, V, NULL);
2440  if (V && !(C = dyn_cast<Constant>(V)))
2441    return Error(ID.Loc, "global values must be constants");
2442  return Parsed;
2443}
2444
2445bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
2446  Type *Ty = 0;
2447  return ParseType(Ty) ||
2448         ParseGlobalValue(Ty, V);
2449}
2450
2451/// ParseGlobalValueVector
2452///   ::= /*empty*/
2453///   ::= TypeAndValue (',' TypeAndValue)*
2454bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) {
2455  // Empty list.
2456  if (Lex.getKind() == lltok::rbrace ||
2457      Lex.getKind() == lltok::rsquare ||
2458      Lex.getKind() == lltok::greater ||
2459      Lex.getKind() == lltok::rparen)
2460    return false;
2461
2462  Constant *C;
2463  if (ParseGlobalTypeAndValue(C)) return true;
2464  Elts.push_back(C);
2465
2466  while (EatIfPresent(lltok::comma)) {
2467    if (ParseGlobalTypeAndValue(C)) return true;
2468    Elts.push_back(C);
2469  }
2470
2471  return false;
2472}
2473
2474bool LLParser::ParseMetadataListValue(ValID &ID, PerFunctionState *PFS) {
2475  assert(Lex.getKind() == lltok::lbrace);
2476  Lex.Lex();
2477
2478  SmallVector<Value*, 16> Elts;
2479  if (ParseMDNodeVector(Elts, PFS) ||
2480      ParseToken(lltok::rbrace, "expected end of metadata node"))
2481    return true;
2482
2483  ID.MDNodeVal = MDNode::get(Context, Elts);
2484  ID.Kind = ValID::t_MDNode;
2485  return false;
2486}
2487
2488/// ParseMetadataValue
2489///  ::= !42
2490///  ::= !{...}
2491///  ::= !"string"
2492bool LLParser::ParseMetadataValue(ValID &ID, PerFunctionState *PFS) {
2493  assert(Lex.getKind() == lltok::exclaim);
2494  Lex.Lex();
2495
2496  // MDNode:
2497  // !{ ... }
2498  if (Lex.getKind() == lltok::lbrace)
2499    return ParseMetadataListValue(ID, PFS);
2500
2501  // Standalone metadata reference
2502  // !42
2503  if (Lex.getKind() == lltok::APSInt) {
2504    if (ParseMDNodeID(ID.MDNodeVal)) return true;
2505    ID.Kind = ValID::t_MDNode;
2506    return false;
2507  }
2508
2509  // MDString:
2510  //   ::= '!' STRINGCONSTANT
2511  if (ParseMDString(ID.MDStringVal)) return true;
2512  ID.Kind = ValID::t_MDString;
2513  return false;
2514}
2515
2516
2517//===----------------------------------------------------------------------===//
2518// Function Parsing.
2519//===----------------------------------------------------------------------===//
2520
2521bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
2522                                   PerFunctionState *PFS) {
2523  if (Ty->isFunctionTy())
2524    return Error(ID.Loc, "functions are not values, refer to them as pointers");
2525
2526  switch (ID.Kind) {
2527  case ValID::t_LocalID:
2528    if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2529    V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
2530    return (V == 0);
2531  case ValID::t_LocalName:
2532    if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
2533    V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
2534    return (V == 0);
2535  case ValID::t_InlineAsm: {
2536    PointerType *PTy = dyn_cast<PointerType>(Ty);
2537    FunctionType *FTy =
2538      PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
2539    if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2))
2540      return Error(ID.Loc, "invalid type for inline asm constraint string");
2541    V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1,
2542                       (ID.UIntVal>>1)&1, (InlineAsm::AsmDialect(ID.UIntVal>>2)));
2543    return false;
2544  }
2545  case ValID::t_MDNode:
2546    if (!Ty->isMetadataTy())
2547      return Error(ID.Loc, "metadata value must have metadata type");
2548    V = ID.MDNodeVal;
2549    return false;
2550  case ValID::t_MDString:
2551    if (!Ty->isMetadataTy())
2552      return Error(ID.Loc, "metadata value must have metadata type");
2553    V = ID.MDStringVal;
2554    return false;
2555  case ValID::t_GlobalName:
2556    V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
2557    return V == 0;
2558  case ValID::t_GlobalID:
2559    V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
2560    return V == 0;
2561  case ValID::t_APSInt:
2562    if (!Ty->isIntegerTy())
2563      return Error(ID.Loc, "integer constant must have integer type");
2564    ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
2565    V = ConstantInt::get(Context, ID.APSIntVal);
2566    return false;
2567  case ValID::t_APFloat:
2568    if (!Ty->isFloatingPointTy() ||
2569        !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
2570      return Error(ID.Loc, "floating point constant invalid for type");
2571
2572    // The lexer has no type info, so builds all half, float, and double FP
2573    // constants as double.  Fix this here.  Long double does not need this.
2574    if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) {
2575      bool Ignored;
2576      if (Ty->isHalfTy())
2577        ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven,
2578                              &Ignored);
2579      else if (Ty->isFloatTy())
2580        ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
2581                              &Ignored);
2582    }
2583    V = ConstantFP::get(Context, ID.APFloatVal);
2584
2585    if (V->getType() != Ty)
2586      return Error(ID.Loc, "floating point constant does not have type '" +
2587                   getTypeString(Ty) + "'");
2588
2589    return false;
2590  case ValID::t_Null:
2591    if (!Ty->isPointerTy())
2592      return Error(ID.Loc, "null must be a pointer type");
2593    V = ConstantPointerNull::get(cast<PointerType>(Ty));
2594    return false;
2595  case ValID::t_Undef:
2596    // FIXME: LabelTy should not be a first-class type.
2597    if (!Ty->isFirstClassType() || Ty->isLabelTy())
2598      return Error(ID.Loc, "invalid type for undef constant");
2599    V = UndefValue::get(Ty);
2600    return false;
2601  case ValID::t_EmptyArray:
2602    if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
2603      return Error(ID.Loc, "invalid empty array initializer");
2604    V = UndefValue::get(Ty);
2605    return false;
2606  case ValID::t_Zero:
2607    // FIXME: LabelTy should not be a first-class type.
2608    if (!Ty->isFirstClassType() || Ty->isLabelTy())
2609      return Error(ID.Loc, "invalid type for null constant");
2610    V = Constant::getNullValue(Ty);
2611    return false;
2612  case ValID::t_Constant:
2613    if (ID.ConstantVal->getType() != Ty)
2614      return Error(ID.Loc, "constant expression type mismatch");
2615
2616    V = ID.ConstantVal;
2617    return false;
2618  case ValID::t_ConstantStruct:
2619  case ValID::t_PackedConstantStruct:
2620    if (StructType *ST = dyn_cast<StructType>(Ty)) {
2621      if (ST->getNumElements() != ID.UIntVal)
2622        return Error(ID.Loc,
2623                     "initializer with struct type has wrong # elements");
2624      if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
2625        return Error(ID.Loc, "packed'ness of initializer and type don't match");
2626
2627      // Verify that the elements are compatible with the structtype.
2628      for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
2629        if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
2630          return Error(ID.Loc, "element " + Twine(i) +
2631                    " of struct initializer doesn't match struct element type");
2632
2633      V = ConstantStruct::get(ST, makeArrayRef(ID.ConstantStructElts,
2634                                               ID.UIntVal));
2635    } else
2636      return Error(ID.Loc, "constant expression type mismatch");
2637    return false;
2638  }
2639  llvm_unreachable("Invalid ValID");
2640}
2641
2642bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
2643  V = 0;
2644  ValID ID;
2645  return ParseValID(ID, PFS) ||
2646         ConvertValIDToValue(Ty, ID, V, PFS);
2647}
2648
2649bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
2650  Type *Ty = 0;
2651  return ParseType(Ty) ||
2652         ParseValue(Ty, V, PFS);
2653}
2654
2655bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
2656                                      PerFunctionState &PFS) {
2657  Value *V;
2658  Loc = Lex.getLoc();
2659  if (ParseTypeAndValue(V, PFS)) return true;
2660  if (!isa<BasicBlock>(V))
2661    return Error(Loc, "expected a basic block");
2662  BB = cast<BasicBlock>(V);
2663  return false;
2664}
2665
2666
2667/// FunctionHeader
2668///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
2669///       OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
2670///       OptionalAlign OptGC
2671bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
2672  // Parse the linkage.
2673  LocTy LinkageLoc = Lex.getLoc();
2674  unsigned Linkage;
2675
2676  unsigned Visibility;
2677  Attributes RetAttrs;
2678  CallingConv::ID CC;
2679  Type *RetType = 0;
2680  LocTy RetTypeLoc = Lex.getLoc();
2681  if (ParseOptionalLinkage(Linkage) ||
2682      ParseOptionalVisibility(Visibility) ||
2683      ParseOptionalCallingConv(CC) ||
2684      ParseOptionalAttrs(RetAttrs, 1) ||
2685      ParseType(RetType, RetTypeLoc, true /*void allowed*/))
2686    return true;
2687
2688  // Verify that the linkage is ok.
2689  switch ((GlobalValue::LinkageTypes)Linkage) {
2690  case GlobalValue::ExternalLinkage:
2691    break; // always ok.
2692  case GlobalValue::DLLImportLinkage:
2693  case GlobalValue::ExternalWeakLinkage:
2694    if (isDefine)
2695      return Error(LinkageLoc, "invalid linkage for function definition");
2696    break;
2697  case GlobalValue::PrivateLinkage:
2698  case GlobalValue::LinkerPrivateLinkage:
2699  case GlobalValue::LinkerPrivateWeakLinkage:
2700  case GlobalValue::InternalLinkage:
2701  case GlobalValue::AvailableExternallyLinkage:
2702  case GlobalValue::LinkOnceAnyLinkage:
2703  case GlobalValue::LinkOnceODRLinkage:
2704  case GlobalValue::LinkOnceODRAutoHideLinkage:
2705  case GlobalValue::WeakAnyLinkage:
2706  case GlobalValue::WeakODRLinkage:
2707  case GlobalValue::DLLExportLinkage:
2708    if (!isDefine)
2709      return Error(LinkageLoc, "invalid linkage for function declaration");
2710    break;
2711  case GlobalValue::AppendingLinkage:
2712  case GlobalValue::CommonLinkage:
2713    return Error(LinkageLoc, "invalid function linkage type");
2714  }
2715
2716  if (!FunctionType::isValidReturnType(RetType))
2717    return Error(RetTypeLoc, "invalid function return type");
2718
2719  LocTy NameLoc = Lex.getLoc();
2720
2721  std::string FunctionName;
2722  if (Lex.getKind() == lltok::GlobalVar) {
2723    FunctionName = Lex.getStrVal();
2724  } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
2725    unsigned NameID = Lex.getUIntVal();
2726
2727    if (NameID != NumberedVals.size())
2728      return TokError("function expected to be numbered '%" +
2729                      Twine(NumberedVals.size()) + "'");
2730  } else {
2731    return TokError("expected function name");
2732  }
2733
2734  Lex.Lex();
2735
2736  if (Lex.getKind() != lltok::lparen)
2737    return TokError("expected '(' in function argument list");
2738
2739  SmallVector<ArgInfo, 8> ArgList;
2740  bool isVarArg;
2741  Attributes FuncAttrs;
2742  std::string Section;
2743  unsigned Alignment;
2744  std::string GC;
2745  bool UnnamedAddr;
2746  LocTy UnnamedAddrLoc;
2747
2748  if (ParseArgumentList(ArgList, isVarArg) ||
2749      ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
2750                         &UnnamedAddrLoc) ||
2751      ParseOptionalAttrs(FuncAttrs, 2) ||
2752      (EatIfPresent(lltok::kw_section) &&
2753       ParseStringConstant(Section)) ||
2754      ParseOptionalAlignment(Alignment) ||
2755      (EatIfPresent(lltok::kw_gc) &&
2756       ParseStringConstant(GC)))
2757    return true;
2758
2759  // If the alignment was parsed as an attribute, move to the alignment field.
2760  if (FuncAttrs & Attribute::Alignment) {
2761    Alignment = FuncAttrs.getAlignment();
2762    FuncAttrs &= ~Attribute::Alignment;
2763  }
2764
2765  // Okay, if we got here, the function is syntactically valid.  Convert types
2766  // and do semantic checks.
2767  std::vector<Type*> ParamTypeList;
2768  SmallVector<AttributeWithIndex, 8> Attrs;
2769
2770  if (RetAttrs.hasAttributes())
2771    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
2772
2773  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2774    ParamTypeList.push_back(ArgList[i].Ty);
2775    if (ArgList[i].Attrs.hasAttributes())
2776      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
2777  }
2778
2779  if (FuncAttrs.hasAttributes())
2780    Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs));
2781
2782  AttrListPtr PAL = AttrListPtr::get(Attrs);
2783
2784  if (PAL.paramHasAttr(1, Attribute::StructRet) && !RetType->isVoidTy())
2785    return Error(RetTypeLoc, "functions with 'sret' argument must return void");
2786
2787  FunctionType *FT =
2788    FunctionType::get(RetType, ParamTypeList, isVarArg);
2789  PointerType *PFT = PointerType::getUnqual(FT);
2790
2791  Fn = 0;
2792  if (!FunctionName.empty()) {
2793    // If this was a definition of a forward reference, remove the definition
2794    // from the forward reference table and fill in the forward ref.
2795    std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI =
2796      ForwardRefVals.find(FunctionName);
2797    if (FRVI != ForwardRefVals.end()) {
2798      Fn = M->getFunction(FunctionName);
2799      if (Fn->getType() != PFT)
2800        return Error(FRVI->second.second, "invalid forward reference to "
2801                     "function '" + FunctionName + "' with wrong type!");
2802
2803      ForwardRefVals.erase(FRVI);
2804    } else if ((Fn = M->getFunction(FunctionName))) {
2805      // Reject redefinitions.
2806      return Error(NameLoc, "invalid redefinition of function '" +
2807                   FunctionName + "'");
2808    } else if (M->getNamedValue(FunctionName)) {
2809      return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
2810    }
2811
2812  } else {
2813    // If this is a definition of a forward referenced function, make sure the
2814    // types agree.
2815    std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I
2816      = ForwardRefValIDs.find(NumberedVals.size());
2817    if (I != ForwardRefValIDs.end()) {
2818      Fn = cast<Function>(I->second.first);
2819      if (Fn->getType() != PFT)
2820        return Error(NameLoc, "type of definition and forward reference of '@" +
2821                     Twine(NumberedVals.size()) + "' disagree");
2822      ForwardRefValIDs.erase(I);
2823    }
2824  }
2825
2826  if (Fn == 0)
2827    Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
2828  else // Move the forward-reference to the correct spot in the module.
2829    M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
2830
2831  if (FunctionName.empty())
2832    NumberedVals.push_back(Fn);
2833
2834  Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
2835  Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
2836  Fn->setCallingConv(CC);
2837  Fn->setAttributes(PAL);
2838  Fn->setUnnamedAddr(UnnamedAddr);
2839  Fn->setAlignment(Alignment);
2840  Fn->setSection(Section);
2841  if (!GC.empty()) Fn->setGC(GC.c_str());
2842
2843  // Add all of the arguments we parsed to the function.
2844  Function::arg_iterator ArgIt = Fn->arg_begin();
2845  for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
2846    // If the argument has a name, insert it into the argument symbol table.
2847    if (ArgList[i].Name.empty()) continue;
2848
2849    // Set the name, if it conflicted, it will be auto-renamed.
2850    ArgIt->setName(ArgList[i].Name);
2851
2852    if (ArgIt->getName() != ArgList[i].Name)
2853      return Error(ArgList[i].Loc, "redefinition of argument '%" +
2854                   ArgList[i].Name + "'");
2855  }
2856
2857  return false;
2858}
2859
2860
2861/// ParseFunctionBody
2862///   ::= '{' BasicBlock+ '}'
2863///
2864bool LLParser::ParseFunctionBody(Function &Fn) {
2865  if (Lex.getKind() != lltok::lbrace)
2866    return TokError("expected '{' in function body");
2867  Lex.Lex();  // eat the {.
2868
2869  int FunctionNumber = -1;
2870  if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
2871
2872  PerFunctionState PFS(*this, Fn, FunctionNumber);
2873
2874  // We need at least one basic block.
2875  if (Lex.getKind() == lltok::rbrace)
2876    return TokError("function body requires at least one basic block");
2877
2878  while (Lex.getKind() != lltok::rbrace)
2879    if (ParseBasicBlock(PFS)) return true;
2880
2881  // Eat the }.
2882  Lex.Lex();
2883
2884  // Verify function is ok.
2885  return PFS.FinishFunction();
2886}
2887
2888/// ParseBasicBlock
2889///   ::= LabelStr? Instruction*
2890bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
2891  // If this basic block starts out with a name, remember it.
2892  std::string Name;
2893  LocTy NameLoc = Lex.getLoc();
2894  if (Lex.getKind() == lltok::LabelStr) {
2895    Name = Lex.getStrVal();
2896    Lex.Lex();
2897  }
2898
2899  BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
2900  if (BB == 0) return true;
2901
2902  std::string NameStr;
2903
2904  // Parse the instructions in this block until we get a terminator.
2905  Instruction *Inst;
2906  SmallVector<std::pair<unsigned, MDNode *>, 4> MetadataOnInst;
2907  do {
2908    // This instruction may have three possibilities for a name: a) none
2909    // specified, b) name specified "%foo =", c) number specified: "%4 =".
2910    LocTy NameLoc = Lex.getLoc();
2911    int NameID = -1;
2912    NameStr = "";
2913
2914    if (Lex.getKind() == lltok::LocalVarID) {
2915      NameID = Lex.getUIntVal();
2916      Lex.Lex();
2917      if (ParseToken(lltok::equal, "expected '=' after instruction id"))
2918        return true;
2919    } else if (Lex.getKind() == lltok::LocalVar) {
2920      NameStr = Lex.getStrVal();
2921      Lex.Lex();
2922      if (ParseToken(lltok::equal, "expected '=' after instruction name"))
2923        return true;
2924    }
2925
2926    switch (ParseInstruction(Inst, BB, PFS)) {
2927    default: llvm_unreachable("Unknown ParseInstruction result!");
2928    case InstError: return true;
2929    case InstNormal:
2930      BB->getInstList().push_back(Inst);
2931
2932      // With a normal result, we check to see if the instruction is followed by
2933      // a comma and metadata.
2934      if (EatIfPresent(lltok::comma))
2935        if (ParseInstructionMetadata(Inst, &PFS))
2936          return true;
2937      break;
2938    case InstExtraComma:
2939      BB->getInstList().push_back(Inst);
2940
2941      // If the instruction parser ate an extra comma at the end of it, it
2942      // *must* be followed by metadata.
2943      if (ParseInstructionMetadata(Inst, &PFS))
2944        return true;
2945      break;
2946    }
2947
2948    // Set the name on the instruction.
2949    if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
2950  } while (!isa<TerminatorInst>(Inst));
2951
2952  return false;
2953}
2954
2955//===----------------------------------------------------------------------===//
2956// Instruction Parsing.
2957//===----------------------------------------------------------------------===//
2958
2959/// ParseInstruction - Parse one of the many different instructions.
2960///
2961int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
2962                               PerFunctionState &PFS) {
2963  lltok::Kind Token = Lex.getKind();
2964  if (Token == lltok::Eof)
2965    return TokError("found end of file when expecting more instructions");
2966  LocTy Loc = Lex.getLoc();
2967  unsigned KeywordVal = Lex.getUIntVal();
2968  Lex.Lex();  // Eat the keyword.
2969
2970  switch (Token) {
2971  default:                    return Error(Loc, "expected instruction opcode");
2972  // Terminator Instructions.
2973  case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
2974  case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
2975  case lltok::kw_br:          return ParseBr(Inst, PFS);
2976  case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
2977  case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
2978  case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
2979  case lltok::kw_resume:      return ParseResume(Inst, PFS);
2980  // Binary Operators.
2981  case lltok::kw_add:
2982  case lltok::kw_sub:
2983  case lltok::kw_mul:
2984  case lltok::kw_shl: {
2985    bool NUW = EatIfPresent(lltok::kw_nuw);
2986    bool NSW = EatIfPresent(lltok::kw_nsw);
2987    if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
2988
2989    if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
2990
2991    if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
2992    if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
2993    return false;
2994  }
2995  case lltok::kw_fadd:
2996  case lltok::kw_fsub:
2997  case lltok::kw_fmul:    return ParseArithmetic(Inst, PFS, KeywordVal, 2);
2998
2999  case lltok::kw_sdiv:
3000  case lltok::kw_udiv:
3001  case lltok::kw_lshr:
3002  case lltok::kw_ashr: {
3003    bool Exact = EatIfPresent(lltok::kw_exact);
3004
3005    if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
3006    if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
3007    return false;
3008  }
3009
3010  case lltok::kw_urem:
3011  case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
3012  case lltok::kw_fdiv:
3013  case lltok::kw_frem:   return ParseArithmetic(Inst, PFS, KeywordVal, 2);
3014  case lltok::kw_and:
3015  case lltok::kw_or:
3016  case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
3017  case lltok::kw_icmp:
3018  case lltok::kw_fcmp:   return ParseCompare(Inst, PFS, KeywordVal);
3019  // Casts.
3020  case lltok::kw_trunc:
3021  case lltok::kw_zext:
3022  case lltok::kw_sext:
3023  case lltok::kw_fptrunc:
3024  case lltok::kw_fpext:
3025  case lltok::kw_bitcast:
3026  case lltok::kw_uitofp:
3027  case lltok::kw_sitofp:
3028  case lltok::kw_fptoui:
3029  case lltok::kw_fptosi:
3030  case lltok::kw_inttoptr:
3031  case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
3032  // Other.
3033  case lltok::kw_select:         return ParseSelect(Inst, PFS);
3034  case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
3035  case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
3036  case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
3037  case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
3038  case lltok::kw_phi:            return ParsePHI(Inst, PFS);
3039  case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
3040  case lltok::kw_call:           return ParseCall(Inst, PFS, false);
3041  case lltok::kw_tail:           return ParseCall(Inst, PFS, true);
3042  // Memory.
3043  case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
3044  case lltok::kw_load:           return ParseLoad(Inst, PFS);
3045  case lltok::kw_store:          return ParseStore(Inst, PFS);
3046  case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
3047  case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
3048  case lltok::kw_fence:          return ParseFence(Inst, PFS);
3049  case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
3050  case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
3051  case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
3052  }
3053}
3054
3055/// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
3056bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
3057  if (Opc == Instruction::FCmp) {
3058    switch (Lex.getKind()) {
3059    default: TokError("expected fcmp predicate (e.g. 'oeq')");
3060    case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
3061    case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
3062    case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
3063    case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
3064    case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
3065    case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
3066    case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
3067    case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
3068    case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
3069    case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
3070    case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
3071    case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
3072    case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
3073    case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
3074    case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
3075    case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
3076    }
3077  } else {
3078    switch (Lex.getKind()) {
3079    default: TokError("expected icmp predicate (e.g. 'eq')");
3080    case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
3081    case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
3082    case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
3083    case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
3084    case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
3085    case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
3086    case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
3087    case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
3088    case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
3089    case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
3090    }
3091  }
3092  Lex.Lex();
3093  return false;
3094}
3095
3096//===----------------------------------------------------------------------===//
3097// Terminator Instructions.
3098//===----------------------------------------------------------------------===//
3099
3100/// ParseRet - Parse a return instruction.
3101///   ::= 'ret' void (',' !dbg, !1)*
3102///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
3103bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
3104                        PerFunctionState &PFS) {
3105  SMLoc TypeLoc = Lex.getLoc();
3106  Type *Ty = 0;
3107  if (ParseType(Ty, true /*void allowed*/)) return true;
3108
3109  Type *ResType = PFS.getFunction().getReturnType();
3110
3111  if (Ty->isVoidTy()) {
3112    if (!ResType->isVoidTy())
3113      return Error(TypeLoc, "value doesn't match function result type '" +
3114                   getTypeString(ResType) + "'");
3115
3116    Inst = ReturnInst::Create(Context);
3117    return false;
3118  }
3119
3120  Value *RV;
3121  if (ParseValue(Ty, RV, PFS)) return true;
3122
3123  if (ResType != RV->getType())
3124    return Error(TypeLoc, "value doesn't match function result type '" +
3125                 getTypeString(ResType) + "'");
3126
3127  Inst = ReturnInst::Create(Context, RV);
3128  return false;
3129}
3130
3131
3132/// ParseBr
3133///   ::= 'br' TypeAndValue
3134///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3135bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
3136  LocTy Loc, Loc2;
3137  Value *Op0;
3138  BasicBlock *Op1, *Op2;
3139  if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
3140
3141  if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
3142    Inst = BranchInst::Create(BB);
3143    return false;
3144  }
3145
3146  if (Op0->getType() != Type::getInt1Ty(Context))
3147    return Error(Loc, "branch condition must have 'i1' type");
3148
3149  if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
3150      ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
3151      ParseToken(lltok::comma, "expected ',' after true destination") ||
3152      ParseTypeAndBasicBlock(Op2, Loc2, PFS))
3153    return true;
3154
3155  Inst = BranchInst::Create(Op1, Op2, Op0);
3156  return false;
3157}
3158
3159/// ParseSwitch
3160///  Instruction
3161///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
3162///  JumpTable
3163///    ::= (TypeAndValue ',' TypeAndValue)*
3164bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
3165  LocTy CondLoc, BBLoc;
3166  Value *Cond;
3167  BasicBlock *DefaultBB;
3168  if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
3169      ParseToken(lltok::comma, "expected ',' after switch condition") ||
3170      ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
3171      ParseToken(lltok::lsquare, "expected '[' with switch table"))
3172    return true;
3173
3174  if (!Cond->getType()->isIntegerTy())
3175    return Error(CondLoc, "switch condition must have integer type");
3176
3177  // Parse the jump table pairs.
3178  SmallPtrSet<Value*, 32> SeenCases;
3179  SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
3180  while (Lex.getKind() != lltok::rsquare) {
3181    Value *Constant;
3182    BasicBlock *DestBB;
3183
3184    if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
3185        ParseToken(lltok::comma, "expected ',' after case value") ||
3186        ParseTypeAndBasicBlock(DestBB, PFS))
3187      return true;
3188
3189    if (!SeenCases.insert(Constant))
3190      return Error(CondLoc, "duplicate case value in switch");
3191    if (!isa<ConstantInt>(Constant))
3192      return Error(CondLoc, "case value is not a constant integer");
3193
3194    Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
3195  }
3196
3197  Lex.Lex();  // Eat the ']'.
3198
3199  SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
3200  for (unsigned i = 0, e = Table.size(); i != e; ++i)
3201    SI->addCase(Table[i].first, Table[i].second);
3202  Inst = SI;
3203  return false;
3204}
3205
3206/// ParseIndirectBr
3207///  Instruction
3208///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
3209bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
3210  LocTy AddrLoc;
3211  Value *Address;
3212  if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
3213      ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
3214      ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
3215    return true;
3216
3217  if (!Address->getType()->isPointerTy())
3218    return Error(AddrLoc, "indirectbr address must have pointer type");
3219
3220  // Parse the destination list.
3221  SmallVector<BasicBlock*, 16> DestList;
3222
3223  if (Lex.getKind() != lltok::rsquare) {
3224    BasicBlock *DestBB;
3225    if (ParseTypeAndBasicBlock(DestBB, PFS))
3226      return true;
3227    DestList.push_back(DestBB);
3228
3229    while (EatIfPresent(lltok::comma)) {
3230      if (ParseTypeAndBasicBlock(DestBB, PFS))
3231        return true;
3232      DestList.push_back(DestBB);
3233    }
3234  }
3235
3236  if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
3237    return true;
3238
3239  IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
3240  for (unsigned i = 0, e = DestList.size(); i != e; ++i)
3241    IBI->addDestination(DestList[i]);
3242  Inst = IBI;
3243  return false;
3244}
3245
3246
3247/// ParseInvoke
3248///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
3249///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
3250bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
3251  LocTy CallLoc = Lex.getLoc();
3252  Attributes RetAttrs, FnAttrs;
3253  CallingConv::ID CC;
3254  Type *RetType = 0;
3255  LocTy RetTypeLoc;
3256  ValID CalleeID;
3257  SmallVector<ParamInfo, 16> ArgList;
3258
3259  BasicBlock *NormalBB, *UnwindBB;
3260  if (ParseOptionalCallingConv(CC) ||
3261      ParseOptionalAttrs(RetAttrs, 1) ||
3262      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3263      ParseValID(CalleeID) ||
3264      ParseParameterList(ArgList, PFS) ||
3265      ParseOptionalAttrs(FnAttrs, 2) ||
3266      ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
3267      ParseTypeAndBasicBlock(NormalBB, PFS) ||
3268      ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
3269      ParseTypeAndBasicBlock(UnwindBB, PFS))
3270    return true;
3271
3272  // If RetType is a non-function pointer type, then this is the short syntax
3273  // for the call, which means that RetType is just the return type.  Infer the
3274  // rest of the function argument types from the arguments that are present.
3275  PointerType *PFTy = 0;
3276  FunctionType *Ty = 0;
3277  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3278      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3279    // Pull out the types of all of the arguments...
3280    std::vector<Type*> ParamTypes;
3281    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3282      ParamTypes.push_back(ArgList[i].V->getType());
3283
3284    if (!FunctionType::isValidReturnType(RetType))
3285      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3286
3287    Ty = FunctionType::get(RetType, ParamTypes, false);
3288    PFTy = PointerType::getUnqual(Ty);
3289  }
3290
3291  // Look up the callee.
3292  Value *Callee;
3293  if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3294
3295  // Set up the Attributes for the function.
3296  SmallVector<AttributeWithIndex, 8> Attrs;
3297  if (RetAttrs.hasAttributes())
3298    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3299
3300  SmallVector<Value*, 8> Args;
3301
3302  // Loop through FunctionType's arguments and ensure they are specified
3303  // correctly.  Also, gather any parameter attributes.
3304  FunctionType::param_iterator I = Ty->param_begin();
3305  FunctionType::param_iterator E = Ty->param_end();
3306  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3307    Type *ExpectedTy = 0;
3308    if (I != E) {
3309      ExpectedTy = *I++;
3310    } else if (!Ty->isVarArg()) {
3311      return Error(ArgList[i].Loc, "too many arguments specified");
3312    }
3313
3314    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3315      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3316                   getTypeString(ExpectedTy) + "'");
3317    Args.push_back(ArgList[i].V);
3318    if (ArgList[i].Attrs.hasAttributes())
3319      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3320  }
3321
3322  if (I != E)
3323    return Error(CallLoc, "not enough parameters specified for call");
3324
3325  if (FnAttrs.hasAttributes())
3326    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3327
3328  // Finish off the Attributes and check them
3329  AttrListPtr PAL = AttrListPtr::get(Attrs);
3330
3331  InvokeInst *II = InvokeInst::Create(Callee, NormalBB, UnwindBB, Args);
3332  II->setCallingConv(CC);
3333  II->setAttributes(PAL);
3334  Inst = II;
3335  return false;
3336}
3337
3338/// ParseResume
3339///   ::= 'resume' TypeAndValue
3340bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
3341  Value *Exn; LocTy ExnLoc;
3342  if (ParseTypeAndValue(Exn, ExnLoc, PFS))
3343    return true;
3344
3345  ResumeInst *RI = ResumeInst::Create(Exn);
3346  Inst = RI;
3347  return false;
3348}
3349
3350//===----------------------------------------------------------------------===//
3351// Binary Operators.
3352//===----------------------------------------------------------------------===//
3353
3354/// ParseArithmetic
3355///  ::= ArithmeticOps TypeAndValue ',' Value
3356///
3357/// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
3358/// then any integer operand is allowed, if it is 2, any fp operand is allowed.
3359bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
3360                               unsigned Opc, unsigned OperandType) {
3361  LocTy Loc; Value *LHS, *RHS;
3362  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3363      ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
3364      ParseValue(LHS->getType(), RHS, PFS))
3365    return true;
3366
3367  bool Valid;
3368  switch (OperandType) {
3369  default: llvm_unreachable("Unknown operand type!");
3370  case 0: // int or FP.
3371    Valid = LHS->getType()->isIntOrIntVectorTy() ||
3372            LHS->getType()->isFPOrFPVectorTy();
3373    break;
3374  case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
3375  case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
3376  }
3377
3378  if (!Valid)
3379    return Error(Loc, "invalid operand type for instruction");
3380
3381  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3382  return false;
3383}
3384
3385/// ParseLogical
3386///  ::= ArithmeticOps TypeAndValue ',' Value {
3387bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
3388                            unsigned Opc) {
3389  LocTy Loc; Value *LHS, *RHS;
3390  if (ParseTypeAndValue(LHS, Loc, PFS) ||
3391      ParseToken(lltok::comma, "expected ',' in logical operation") ||
3392      ParseValue(LHS->getType(), RHS, PFS))
3393    return true;
3394
3395  if (!LHS->getType()->isIntOrIntVectorTy())
3396    return Error(Loc,"instruction requires integer or integer vector operands");
3397
3398  Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3399  return false;
3400}
3401
3402
3403/// ParseCompare
3404///  ::= 'icmp' IPredicates TypeAndValue ',' Value
3405///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
3406bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
3407                            unsigned Opc) {
3408  // Parse the integer/fp comparison predicate.
3409  LocTy Loc;
3410  unsigned Pred;
3411  Value *LHS, *RHS;
3412  if (ParseCmpPredicate(Pred, Opc) ||
3413      ParseTypeAndValue(LHS, Loc, PFS) ||
3414      ParseToken(lltok::comma, "expected ',' after compare value") ||
3415      ParseValue(LHS->getType(), RHS, PFS))
3416    return true;
3417
3418  if (Opc == Instruction::FCmp) {
3419    if (!LHS->getType()->isFPOrFPVectorTy())
3420      return Error(Loc, "fcmp requires floating point operands");
3421    Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3422  } else {
3423    assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
3424    if (!LHS->getType()->isIntOrIntVectorTy() &&
3425        !LHS->getType()->getScalarType()->isPointerTy())
3426      return Error(Loc, "icmp requires integer operands");
3427    Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
3428  }
3429  return false;
3430}
3431
3432//===----------------------------------------------------------------------===//
3433// Other Instructions.
3434//===----------------------------------------------------------------------===//
3435
3436
3437/// ParseCast
3438///   ::= CastOpc TypeAndValue 'to' Type
3439bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
3440                         unsigned Opc) {
3441  LocTy Loc;
3442  Value *Op;
3443  Type *DestTy = 0;
3444  if (ParseTypeAndValue(Op, Loc, PFS) ||
3445      ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
3446      ParseType(DestTy))
3447    return true;
3448
3449  if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
3450    CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
3451    return Error(Loc, "invalid cast opcode for cast from '" +
3452                 getTypeString(Op->getType()) + "' to '" +
3453                 getTypeString(DestTy) + "'");
3454  }
3455  Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
3456  return false;
3457}
3458
3459/// ParseSelect
3460///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3461bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
3462  LocTy Loc;
3463  Value *Op0, *Op1, *Op2;
3464  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3465      ParseToken(lltok::comma, "expected ',' after select condition") ||
3466      ParseTypeAndValue(Op1, PFS) ||
3467      ParseToken(lltok::comma, "expected ',' after select value") ||
3468      ParseTypeAndValue(Op2, PFS))
3469    return true;
3470
3471  if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
3472    return Error(Loc, Reason);
3473
3474  Inst = SelectInst::Create(Op0, Op1, Op2);
3475  return false;
3476}
3477
3478/// ParseVA_Arg
3479///   ::= 'va_arg' TypeAndValue ',' Type
3480bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
3481  Value *Op;
3482  Type *EltTy = 0;
3483  LocTy TypeLoc;
3484  if (ParseTypeAndValue(Op, PFS) ||
3485      ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
3486      ParseType(EltTy, TypeLoc))
3487    return true;
3488
3489  if (!EltTy->isFirstClassType())
3490    return Error(TypeLoc, "va_arg requires operand with first class type");
3491
3492  Inst = new VAArgInst(Op, EltTy);
3493  return false;
3494}
3495
3496/// ParseExtractElement
3497///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
3498bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
3499  LocTy Loc;
3500  Value *Op0, *Op1;
3501  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3502      ParseToken(lltok::comma, "expected ',' after extract value") ||
3503      ParseTypeAndValue(Op1, PFS))
3504    return true;
3505
3506  if (!ExtractElementInst::isValidOperands(Op0, Op1))
3507    return Error(Loc, "invalid extractelement operands");
3508
3509  Inst = ExtractElementInst::Create(Op0, Op1);
3510  return false;
3511}
3512
3513/// ParseInsertElement
3514///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3515bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
3516  LocTy Loc;
3517  Value *Op0, *Op1, *Op2;
3518  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3519      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3520      ParseTypeAndValue(Op1, PFS) ||
3521      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3522      ParseTypeAndValue(Op2, PFS))
3523    return true;
3524
3525  if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
3526    return Error(Loc, "invalid insertelement operands");
3527
3528  Inst = InsertElementInst::Create(Op0, Op1, Op2);
3529  return false;
3530}
3531
3532/// ParseShuffleVector
3533///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
3534bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
3535  LocTy Loc;
3536  Value *Op0, *Op1, *Op2;
3537  if (ParseTypeAndValue(Op0, Loc, PFS) ||
3538      ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
3539      ParseTypeAndValue(Op1, PFS) ||
3540      ParseToken(lltok::comma, "expected ',' after shuffle value") ||
3541      ParseTypeAndValue(Op2, PFS))
3542    return true;
3543
3544  if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
3545    return Error(Loc, "invalid shufflevector operands");
3546
3547  Inst = new ShuffleVectorInst(Op0, Op1, Op2);
3548  return false;
3549}
3550
3551/// ParsePHI
3552///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
3553int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
3554  Type *Ty = 0;  LocTy TypeLoc;
3555  Value *Op0, *Op1;
3556
3557  if (ParseType(Ty, TypeLoc) ||
3558      ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3559      ParseValue(Ty, Op0, PFS) ||
3560      ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3561      ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3562      ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3563    return true;
3564
3565  bool AteExtraComma = false;
3566  SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
3567  while (1) {
3568    PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
3569
3570    if (!EatIfPresent(lltok::comma))
3571      break;
3572
3573    if (Lex.getKind() == lltok::MetadataVar) {
3574      AteExtraComma = true;
3575      break;
3576    }
3577
3578    if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
3579        ParseValue(Ty, Op0, PFS) ||
3580        ParseToken(lltok::comma, "expected ',' after insertelement value") ||
3581        ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
3582        ParseToken(lltok::rsquare, "expected ']' in phi value list"))
3583      return true;
3584  }
3585
3586  if (!Ty->isFirstClassType())
3587    return Error(TypeLoc, "phi node must have first class type");
3588
3589  PHINode *PN = PHINode::Create(Ty, PHIVals.size());
3590  for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
3591    PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
3592  Inst = PN;
3593  return AteExtraComma ? InstExtraComma : InstNormal;
3594}
3595
3596/// ParseLandingPad
3597///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
3598/// Clause
3599///   ::= 'catch' TypeAndValue
3600///   ::= 'filter'
3601///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
3602bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
3603  Type *Ty = 0; LocTy TyLoc;
3604  Value *PersFn; LocTy PersFnLoc;
3605
3606  if (ParseType(Ty, TyLoc) ||
3607      ParseToken(lltok::kw_personality, "expected 'personality'") ||
3608      ParseTypeAndValue(PersFn, PersFnLoc, PFS))
3609    return true;
3610
3611  LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, 0);
3612  LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
3613
3614  while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
3615    LandingPadInst::ClauseType CT;
3616    if (EatIfPresent(lltok::kw_catch))
3617      CT = LandingPadInst::Catch;
3618    else if (EatIfPresent(lltok::kw_filter))
3619      CT = LandingPadInst::Filter;
3620    else
3621      return TokError("expected 'catch' or 'filter' clause type");
3622
3623    Value *V; LocTy VLoc;
3624    if (ParseTypeAndValue(V, VLoc, PFS)) {
3625      delete LP;
3626      return true;
3627    }
3628
3629    // A 'catch' type expects a non-array constant. A filter clause expects an
3630    // array constant.
3631    if (CT == LandingPadInst::Catch) {
3632      if (isa<ArrayType>(V->getType()))
3633        Error(VLoc, "'catch' clause has an invalid type");
3634    } else {
3635      if (!isa<ArrayType>(V->getType()))
3636        Error(VLoc, "'filter' clause has an invalid type");
3637    }
3638
3639    LP->addClause(V);
3640  }
3641
3642  Inst = LP;
3643  return false;
3644}
3645
3646/// ParseCall
3647///   ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value
3648///       ParameterList OptionalAttrs
3649bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
3650                         bool isTail) {
3651  Attributes RetAttrs, FnAttrs;
3652  CallingConv::ID CC;
3653  Type *RetType = 0;
3654  LocTy RetTypeLoc;
3655  ValID CalleeID;
3656  SmallVector<ParamInfo, 16> ArgList;
3657  LocTy CallLoc = Lex.getLoc();
3658
3659  if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) ||
3660      ParseOptionalCallingConv(CC) ||
3661      ParseOptionalAttrs(RetAttrs, 1) ||
3662      ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
3663      ParseValID(CalleeID) ||
3664      ParseParameterList(ArgList, PFS) ||
3665      ParseOptionalAttrs(FnAttrs, 2))
3666    return true;
3667
3668  // If RetType is a non-function pointer type, then this is the short syntax
3669  // for the call, which means that RetType is just the return type.  Infer the
3670  // rest of the function argument types from the arguments that are present.
3671  PointerType *PFTy = 0;
3672  FunctionType *Ty = 0;
3673  if (!(PFTy = dyn_cast<PointerType>(RetType)) ||
3674      !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
3675    // Pull out the types of all of the arguments...
3676    std::vector<Type*> ParamTypes;
3677    for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
3678      ParamTypes.push_back(ArgList[i].V->getType());
3679
3680    if (!FunctionType::isValidReturnType(RetType))
3681      return Error(RetTypeLoc, "Invalid result type for LLVM function");
3682
3683    Ty = FunctionType::get(RetType, ParamTypes, false);
3684    PFTy = PointerType::getUnqual(Ty);
3685  }
3686
3687  // Look up the callee.
3688  Value *Callee;
3689  if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true;
3690
3691  // Set up the Attributes for the function.
3692  SmallVector<AttributeWithIndex, 8> Attrs;
3693  if (RetAttrs.hasAttributes())
3694    Attrs.push_back(AttributeWithIndex::get(0, RetAttrs));
3695
3696  SmallVector<Value*, 8> Args;
3697
3698  // Loop through FunctionType's arguments and ensure they are specified
3699  // correctly.  Also, gather any parameter attributes.
3700  FunctionType::param_iterator I = Ty->param_begin();
3701  FunctionType::param_iterator E = Ty->param_end();
3702  for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
3703    Type *ExpectedTy = 0;
3704    if (I != E) {
3705      ExpectedTy = *I++;
3706    } else if (!Ty->isVarArg()) {
3707      return Error(ArgList[i].Loc, "too many arguments specified");
3708    }
3709
3710    if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
3711      return Error(ArgList[i].Loc, "argument is not of expected type '" +
3712                   getTypeString(ExpectedTy) + "'");
3713    Args.push_back(ArgList[i].V);
3714    if (ArgList[i].Attrs.hasAttributes())
3715      Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs));
3716  }
3717
3718  if (I != E)
3719    return Error(CallLoc, "not enough parameters specified for call");
3720
3721  if (FnAttrs.hasAttributes())
3722    Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs));
3723
3724  // Finish off the Attributes and check them
3725  AttrListPtr PAL = AttrListPtr::get(Attrs);
3726
3727  CallInst *CI = CallInst::Create(Callee, Args);
3728  CI->setTailCall(isTail);
3729  CI->setCallingConv(CC);
3730  CI->setAttributes(PAL);
3731  Inst = CI;
3732  return false;
3733}
3734
3735//===----------------------------------------------------------------------===//
3736// Memory Instructions.
3737//===----------------------------------------------------------------------===//
3738
3739/// ParseAlloc
3740///   ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)?
3741int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
3742  Value *Size = 0;
3743  LocTy SizeLoc;
3744  unsigned Alignment = 0;
3745  Type *Ty = 0;
3746  if (ParseType(Ty)) return true;
3747
3748  bool AteExtraComma = false;
3749  if (EatIfPresent(lltok::comma)) {
3750    if (Lex.getKind() == lltok::kw_align) {
3751      if (ParseOptionalAlignment(Alignment)) return true;
3752    } else if (Lex.getKind() == lltok::MetadataVar) {
3753      AteExtraComma = true;
3754    } else {
3755      if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
3756          ParseOptionalCommaAlign(Alignment, AteExtraComma))
3757        return true;
3758    }
3759  }
3760
3761  if (Size && !Size->getType()->isIntegerTy())
3762    return Error(SizeLoc, "element count must have integer type");
3763
3764  Inst = new AllocaInst(Ty, Size, Alignment);
3765  return AteExtraComma ? InstExtraComma : InstNormal;
3766}
3767
3768/// ParseLoad
3769///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
3770///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
3771///       'singlethread'? AtomicOrdering (',' 'align' i32)?
3772int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
3773  Value *Val; LocTy Loc;
3774  unsigned Alignment = 0;
3775  bool AteExtraComma = false;
3776  bool isAtomic = false;
3777  AtomicOrdering Ordering = NotAtomic;
3778  SynchronizationScope Scope = CrossThread;
3779
3780  if (Lex.getKind() == lltok::kw_atomic) {
3781    isAtomic = true;
3782    Lex.Lex();
3783  }
3784
3785  bool isVolatile = false;
3786  if (Lex.getKind() == lltok::kw_volatile) {
3787    isVolatile = true;
3788    Lex.Lex();
3789  }
3790
3791  if (ParseTypeAndValue(Val, Loc, PFS) ||
3792      ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
3793      ParseOptionalCommaAlign(Alignment, AteExtraComma))
3794    return true;
3795
3796  if (!Val->getType()->isPointerTy() ||
3797      !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType())
3798    return Error(Loc, "load operand must be a pointer to a first class type");
3799  if (isAtomic && !Alignment)
3800    return Error(Loc, "atomic load must have explicit non-zero alignment");
3801  if (Ordering == Release || Ordering == AcquireRelease)
3802    return Error(Loc, "atomic load cannot use Release ordering");
3803
3804  Inst = new LoadInst(Val, "", isVolatile, Alignment, Ordering, Scope);
3805  return AteExtraComma ? InstExtraComma : InstNormal;
3806}
3807
3808/// ParseStore
3809
3810///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
3811///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
3812///       'singlethread'? AtomicOrdering (',' 'align' i32)?
3813int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
3814  Value *Val, *Ptr; LocTy Loc, PtrLoc;
3815  unsigned Alignment = 0;
3816  bool AteExtraComma = false;
3817  bool isAtomic = false;
3818  AtomicOrdering Ordering = NotAtomic;
3819  SynchronizationScope Scope = CrossThread;
3820
3821  if (Lex.getKind() == lltok::kw_atomic) {
3822    isAtomic = true;
3823    Lex.Lex();
3824  }
3825
3826  bool isVolatile = false;
3827  if (Lex.getKind() == lltok::kw_volatile) {
3828    isVolatile = true;
3829    Lex.Lex();
3830  }
3831
3832  if (ParseTypeAndValue(Val, Loc, PFS) ||
3833      ParseToken(lltok::comma, "expected ',' after store operand") ||
3834      ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3835      ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
3836      ParseOptionalCommaAlign(Alignment, AteExtraComma))
3837    return true;
3838
3839  if (!Ptr->getType()->isPointerTy())
3840    return Error(PtrLoc, "store operand must be a pointer");
3841  if (!Val->getType()->isFirstClassType())
3842    return Error(Loc, "store operand must be a first class value");
3843  if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3844    return Error(Loc, "stored value and pointer type do not match");
3845  if (isAtomic && !Alignment)
3846    return Error(Loc, "atomic store must have explicit non-zero alignment");
3847  if (Ordering == Acquire || Ordering == AcquireRelease)
3848    return Error(Loc, "atomic store cannot use Acquire ordering");
3849
3850  Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope);
3851  return AteExtraComma ? InstExtraComma : InstNormal;
3852}
3853
3854/// ParseCmpXchg
3855///   ::= 'cmpxchg' 'volatile'? TypeAndValue ',' TypeAndValue ',' TypeAndValue
3856///       'singlethread'? AtomicOrdering
3857int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
3858  Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
3859  bool AteExtraComma = false;
3860  AtomicOrdering Ordering = NotAtomic;
3861  SynchronizationScope Scope = CrossThread;
3862  bool isVolatile = false;
3863
3864  if (EatIfPresent(lltok::kw_volatile))
3865    isVolatile = true;
3866
3867  if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3868      ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
3869      ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
3870      ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
3871      ParseTypeAndValue(New, NewLoc, PFS) ||
3872      ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
3873    return true;
3874
3875  if (Ordering == Unordered)
3876    return TokError("cmpxchg cannot be unordered");
3877  if (!Ptr->getType()->isPointerTy())
3878    return Error(PtrLoc, "cmpxchg operand must be a pointer");
3879  if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
3880    return Error(CmpLoc, "compare value and pointer type do not match");
3881  if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
3882    return Error(NewLoc, "new value and pointer type do not match");
3883  if (!New->getType()->isIntegerTy())
3884    return Error(NewLoc, "cmpxchg operand must be an integer");
3885  unsigned Size = New->getType()->getPrimitiveSizeInBits();
3886  if (Size < 8 || (Size & (Size - 1)))
3887    return Error(NewLoc, "cmpxchg operand must be power-of-two byte-sized"
3888                         " integer");
3889
3890  AtomicCmpXchgInst *CXI =
3891    new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, Scope);
3892  CXI->setVolatile(isVolatile);
3893  Inst = CXI;
3894  return AteExtraComma ? InstExtraComma : InstNormal;
3895}
3896
3897/// ParseAtomicRMW
3898///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
3899///       'singlethread'? AtomicOrdering
3900int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
3901  Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
3902  bool AteExtraComma = false;
3903  AtomicOrdering Ordering = NotAtomic;
3904  SynchronizationScope Scope = CrossThread;
3905  bool isVolatile = false;
3906  AtomicRMWInst::BinOp Operation;
3907
3908  if (EatIfPresent(lltok::kw_volatile))
3909    isVolatile = true;
3910
3911  switch (Lex.getKind()) {
3912  default: return TokError("expected binary operation in atomicrmw");
3913  case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
3914  case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
3915  case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
3916  case lltok::kw_and: Operation = AtomicRMWInst::And; break;
3917  case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
3918  case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
3919  case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
3920  case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
3921  case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
3922  case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
3923  case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
3924  }
3925  Lex.Lex();  // Eat the operation.
3926
3927  if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
3928      ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
3929      ParseTypeAndValue(Val, ValLoc, PFS) ||
3930      ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
3931    return true;
3932
3933  if (Ordering == Unordered)
3934    return TokError("atomicrmw cannot be unordered");
3935  if (!Ptr->getType()->isPointerTy())
3936    return Error(PtrLoc, "atomicrmw operand must be a pointer");
3937  if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
3938    return Error(ValLoc, "atomicrmw value and pointer type do not match");
3939  if (!Val->getType()->isIntegerTy())
3940    return Error(ValLoc, "atomicrmw operand must be an integer");
3941  unsigned Size = Val->getType()->getPrimitiveSizeInBits();
3942  if (Size < 8 || (Size & (Size - 1)))
3943    return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
3944                         " integer");
3945
3946  AtomicRMWInst *RMWI =
3947    new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope);
3948  RMWI->setVolatile(isVolatile);
3949  Inst = RMWI;
3950  return AteExtraComma ? InstExtraComma : InstNormal;
3951}
3952
3953/// ParseFence
3954///   ::= 'fence' 'singlethread'? AtomicOrdering
3955int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
3956  AtomicOrdering Ordering = NotAtomic;
3957  SynchronizationScope Scope = CrossThread;
3958  if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
3959    return true;
3960
3961  if (Ordering == Unordered)
3962    return TokError("fence cannot be unordered");
3963  if (Ordering == Monotonic)
3964    return TokError("fence cannot be monotonic");
3965
3966  Inst = new FenceInst(Context, Ordering, Scope);
3967  return InstNormal;
3968}
3969
3970/// ParseGetElementPtr
3971///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
3972int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
3973  Value *Ptr = 0;
3974  Value *Val = 0;
3975  LocTy Loc, EltLoc;
3976
3977  bool InBounds = EatIfPresent(lltok::kw_inbounds);
3978
3979  if (ParseTypeAndValue(Ptr, Loc, PFS)) return true;
3980
3981  if (!Ptr->getType()->getScalarType()->isPointerTy())
3982    return Error(Loc, "base of getelementptr must be a pointer");
3983
3984  SmallVector<Value*, 16> Indices;
3985  bool AteExtraComma = false;
3986  while (EatIfPresent(lltok::comma)) {
3987    if (Lex.getKind() == lltok::MetadataVar) {
3988      AteExtraComma = true;
3989      break;
3990    }
3991    if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
3992    if (!Val->getType()->getScalarType()->isIntegerTy())
3993      return Error(EltLoc, "getelementptr index must be an integer");
3994    if (Val->getType()->isVectorTy() != Ptr->getType()->isVectorTy())
3995      return Error(EltLoc, "getelementptr index type missmatch");
3996    if (Val->getType()->isVectorTy()) {
3997      unsigned ValNumEl = cast<VectorType>(Val->getType())->getNumElements();
3998      unsigned PtrNumEl = cast<VectorType>(Ptr->getType())->getNumElements();
3999      if (ValNumEl != PtrNumEl)
4000        return Error(EltLoc,
4001          "getelementptr vector index has a wrong number of elements");
4002    }
4003    Indices.push_back(Val);
4004  }
4005
4006  if (Val && Val->getType()->isVectorTy() && Indices.size() != 1)
4007    return Error(EltLoc, "vector getelementptrs must have a single index");
4008
4009  if (!GetElementPtrInst::getIndexedType(Ptr->getType(), Indices))
4010    return Error(Loc, "invalid getelementptr indices");
4011  Inst = GetElementPtrInst::Create(Ptr, Indices);
4012  if (InBounds)
4013    cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
4014  return AteExtraComma ? InstExtraComma : InstNormal;
4015}
4016
4017/// ParseExtractValue
4018///   ::= 'extractvalue' TypeAndValue (',' uint32)+
4019int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
4020  Value *Val; LocTy Loc;
4021  SmallVector<unsigned, 4> Indices;
4022  bool AteExtraComma;
4023  if (ParseTypeAndValue(Val, Loc, PFS) ||
4024      ParseIndexList(Indices, AteExtraComma))
4025    return true;
4026
4027  if (!Val->getType()->isAggregateType())
4028    return Error(Loc, "extractvalue operand must be aggregate type");
4029
4030  if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
4031    return Error(Loc, "invalid indices for extractvalue");
4032  Inst = ExtractValueInst::Create(Val, Indices);
4033  return AteExtraComma ? InstExtraComma : InstNormal;
4034}
4035
4036/// ParseInsertValue
4037///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
4038int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
4039  Value *Val0, *Val1; LocTy Loc0, Loc1;
4040  SmallVector<unsigned, 4> Indices;
4041  bool AteExtraComma;
4042  if (ParseTypeAndValue(Val0, Loc0, PFS) ||
4043      ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
4044      ParseTypeAndValue(Val1, Loc1, PFS) ||
4045      ParseIndexList(Indices, AteExtraComma))
4046    return true;
4047
4048  if (!Val0->getType()->isAggregateType())
4049    return Error(Loc0, "insertvalue operand must be aggregate type");
4050
4051  if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices))
4052    return Error(Loc0, "invalid indices for insertvalue");
4053  Inst = InsertValueInst::Create(Val0, Val1, Indices);
4054  return AteExtraComma ? InstExtraComma : InstNormal;
4055}
4056
4057//===----------------------------------------------------------------------===//
4058// Embedded metadata.
4059//===----------------------------------------------------------------------===//
4060
4061/// ParseMDNodeVector
4062///   ::= Element (',' Element)*
4063/// Element
4064///   ::= 'null' | TypeAndValue
4065bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts,
4066                                 PerFunctionState *PFS) {
4067  // Check for an empty list.
4068  if (Lex.getKind() == lltok::rbrace)
4069    return false;
4070
4071  do {
4072    // Null is a special case since it is typeless.
4073    if (EatIfPresent(lltok::kw_null)) {
4074      Elts.push_back(0);
4075      continue;
4076    }
4077
4078    Value *V = 0;
4079    if (ParseTypeAndValue(V, PFS)) return true;
4080    Elts.push_back(V);
4081  } while (EatIfPresent(lltok::comma));
4082
4083  return false;
4084}
4085