1//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library.  First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
19//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression.  These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
30//
31// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
35// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42//  Chains of recurrences -- a method to expedite the evaluation
43//  of closed-form functions
44//  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46//  On computational properties of chains of recurrences
47//  Eugene V. Zima
48//
49//  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50//  Robert A. van Engelen
51//
52//  Efficient Symbolic Analysis for Optimizing Compilers
53//  Robert A. van Engelen
54//
55//  Using the chains of recurrences algebra for data dependence testing and
56//  induction variable substitution
57//  MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
61#define DEBUG_TYPE "scalar-evolution"
62#include "llvm/Analysis/ScalarEvolutionExpressions.h"
63#include "llvm/Constants.h"
64#include "llvm/DerivedTypes.h"
65#include "llvm/GlobalVariable.h"
66#include "llvm/GlobalAlias.h"
67#include "llvm/Instructions.h"
68#include "llvm/LLVMContext.h"
69#include "llvm/Operator.h"
70#include "llvm/Analysis/ConstantFolding.h"
71#include "llvm/Analysis/Dominators.h"
72#include "llvm/Analysis/InstructionSimplify.h"
73#include "llvm/Analysis/LoopInfo.h"
74#include "llvm/Analysis/ValueTracking.h"
75#include "llvm/Assembly/Writer.h"
76#include "llvm/Target/TargetData.h"
77#include "llvm/Target/TargetLibraryInfo.h"
78#include "llvm/Support/CommandLine.h"
79#include "llvm/Support/ConstantRange.h"
80#include "llvm/Support/Debug.h"
81#include "llvm/Support/ErrorHandling.h"
82#include "llvm/Support/GetElementPtrTypeIterator.h"
83#include "llvm/Support/InstIterator.h"
84#include "llvm/Support/MathExtras.h"
85#include "llvm/Support/raw_ostream.h"
86#include "llvm/ADT/Statistic.h"
87#include "llvm/ADT/STLExtras.h"
88#include "llvm/ADT/SmallPtrSet.h"
89#include <algorithm>
90using namespace llvm;
91
92STATISTIC(NumArrayLenItCounts,
93          "Number of trip counts computed with array length");
94STATISTIC(NumTripCountsComputed,
95          "Number of loops with predictable loop counts");
96STATISTIC(NumTripCountsNotComputed,
97          "Number of loops without predictable loop counts");
98STATISTIC(NumBruteForceTripCountsComputed,
99          "Number of loops with trip counts computed by force");
100
101static cl::opt<unsigned>
102MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
103                        cl::desc("Maximum number of iterations SCEV will "
104                                 "symbolically execute a constant "
105                                 "derived loop"),
106                        cl::init(100));
107
108INITIALIZE_PASS_BEGIN(ScalarEvolution, "scalar-evolution",
109                "Scalar Evolution Analysis", false, true)
110INITIALIZE_PASS_DEPENDENCY(LoopInfo)
111INITIALIZE_PASS_DEPENDENCY(DominatorTree)
112INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
113INITIALIZE_PASS_END(ScalarEvolution, "scalar-evolution",
114                "Scalar Evolution Analysis", false, true)
115char ScalarEvolution::ID = 0;
116
117//===----------------------------------------------------------------------===//
118//                           SCEV class definitions
119//===----------------------------------------------------------------------===//
120
121//===----------------------------------------------------------------------===//
122// Implementation of the SCEV class.
123//
124
125#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
126void SCEV::dump() const {
127  print(dbgs());
128  dbgs() << '\n';
129}
130#endif
131
132void SCEV::print(raw_ostream &OS) const {
133  switch (getSCEVType()) {
134  case scConstant:
135    WriteAsOperand(OS, cast<SCEVConstant>(this)->getValue(), false);
136    return;
137  case scTruncate: {
138    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
139    const SCEV *Op = Trunc->getOperand();
140    OS << "(trunc " << *Op->getType() << " " << *Op << " to "
141       << *Trunc->getType() << ")";
142    return;
143  }
144  case scZeroExtend: {
145    const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
146    const SCEV *Op = ZExt->getOperand();
147    OS << "(zext " << *Op->getType() << " " << *Op << " to "
148       << *ZExt->getType() << ")";
149    return;
150  }
151  case scSignExtend: {
152    const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
153    const SCEV *Op = SExt->getOperand();
154    OS << "(sext " << *Op->getType() << " " << *Op << " to "
155       << *SExt->getType() << ")";
156    return;
157  }
158  case scAddRecExpr: {
159    const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
160    OS << "{" << *AR->getOperand(0);
161    for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
162      OS << ",+," << *AR->getOperand(i);
163    OS << "}<";
164    if (AR->getNoWrapFlags(FlagNUW))
165      OS << "nuw><";
166    if (AR->getNoWrapFlags(FlagNSW))
167      OS << "nsw><";
168    if (AR->getNoWrapFlags(FlagNW) &&
169        !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
170      OS << "nw><";
171    WriteAsOperand(OS, AR->getLoop()->getHeader(), /*PrintType=*/false);
172    OS << ">";
173    return;
174  }
175  case scAddExpr:
176  case scMulExpr:
177  case scUMaxExpr:
178  case scSMaxExpr: {
179    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
180    const char *OpStr = 0;
181    switch (NAry->getSCEVType()) {
182    case scAddExpr: OpStr = " + "; break;
183    case scMulExpr: OpStr = " * "; break;
184    case scUMaxExpr: OpStr = " umax "; break;
185    case scSMaxExpr: OpStr = " smax "; break;
186    }
187    OS << "(";
188    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
189         I != E; ++I) {
190      OS << **I;
191      if (llvm::next(I) != E)
192        OS << OpStr;
193    }
194    OS << ")";
195    switch (NAry->getSCEVType()) {
196    case scAddExpr:
197    case scMulExpr:
198      if (NAry->getNoWrapFlags(FlagNUW))
199        OS << "<nuw>";
200      if (NAry->getNoWrapFlags(FlagNSW))
201        OS << "<nsw>";
202    }
203    return;
204  }
205  case scUDivExpr: {
206    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
207    OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
208    return;
209  }
210  case scUnknown: {
211    const SCEVUnknown *U = cast<SCEVUnknown>(this);
212    Type *AllocTy;
213    if (U->isSizeOf(AllocTy)) {
214      OS << "sizeof(" << *AllocTy << ")";
215      return;
216    }
217    if (U->isAlignOf(AllocTy)) {
218      OS << "alignof(" << *AllocTy << ")";
219      return;
220    }
221
222    Type *CTy;
223    Constant *FieldNo;
224    if (U->isOffsetOf(CTy, FieldNo)) {
225      OS << "offsetof(" << *CTy << ", ";
226      WriteAsOperand(OS, FieldNo, false);
227      OS << ")";
228      return;
229    }
230
231    // Otherwise just print it normally.
232    WriteAsOperand(OS, U->getValue(), false);
233    return;
234  }
235  case scCouldNotCompute:
236    OS << "***COULDNOTCOMPUTE***";
237    return;
238  default: break;
239  }
240  llvm_unreachable("Unknown SCEV kind!");
241}
242
243Type *SCEV::getType() const {
244  switch (getSCEVType()) {
245  case scConstant:
246    return cast<SCEVConstant>(this)->getType();
247  case scTruncate:
248  case scZeroExtend:
249  case scSignExtend:
250    return cast<SCEVCastExpr>(this)->getType();
251  case scAddRecExpr:
252  case scMulExpr:
253  case scUMaxExpr:
254  case scSMaxExpr:
255    return cast<SCEVNAryExpr>(this)->getType();
256  case scAddExpr:
257    return cast<SCEVAddExpr>(this)->getType();
258  case scUDivExpr:
259    return cast<SCEVUDivExpr>(this)->getType();
260  case scUnknown:
261    return cast<SCEVUnknown>(this)->getType();
262  case scCouldNotCompute:
263    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
264  default:
265    llvm_unreachable("Unknown SCEV kind!");
266  }
267}
268
269bool SCEV::isZero() const {
270  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
271    return SC->getValue()->isZero();
272  return false;
273}
274
275bool SCEV::isOne() const {
276  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
277    return SC->getValue()->isOne();
278  return false;
279}
280
281bool SCEV::isAllOnesValue() const {
282  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
283    return SC->getValue()->isAllOnesValue();
284  return false;
285}
286
287/// isNonConstantNegative - Return true if the specified scev is negated, but
288/// not a constant.
289bool SCEV::isNonConstantNegative() const {
290  const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
291  if (!Mul) return false;
292
293  // If there is a constant factor, it will be first.
294  const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
295  if (!SC) return false;
296
297  // Return true if the value is negative, this matches things like (-42 * V).
298  return SC->getValue()->getValue().isNegative();
299}
300
301SCEVCouldNotCompute::SCEVCouldNotCompute() :
302  SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
303
304bool SCEVCouldNotCompute::classof(const SCEV *S) {
305  return S->getSCEVType() == scCouldNotCompute;
306}
307
308const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
309  FoldingSetNodeID ID;
310  ID.AddInteger(scConstant);
311  ID.AddPointer(V);
312  void *IP = 0;
313  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
314  SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
315  UniqueSCEVs.InsertNode(S, IP);
316  return S;
317}
318
319const SCEV *ScalarEvolution::getConstant(const APInt& Val) {
320  return getConstant(ConstantInt::get(getContext(), Val));
321}
322
323const SCEV *
324ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
325  IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
326  return getConstant(ConstantInt::get(ITy, V, isSigned));
327}
328
329SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
330                           unsigned SCEVTy, const SCEV *op, Type *ty)
331  : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
332
333SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
334                                   const SCEV *op, Type *ty)
335  : SCEVCastExpr(ID, scTruncate, op, ty) {
336  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
337         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
338         "Cannot truncate non-integer value!");
339}
340
341SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
342                                       const SCEV *op, Type *ty)
343  : SCEVCastExpr(ID, scZeroExtend, op, ty) {
344  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
345         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
346         "Cannot zero extend non-integer value!");
347}
348
349SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
350                                       const SCEV *op, Type *ty)
351  : SCEVCastExpr(ID, scSignExtend, op, ty) {
352  assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
353         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
354         "Cannot sign extend non-integer value!");
355}
356
357void SCEVUnknown::deleted() {
358  // Clear this SCEVUnknown from various maps.
359  SE->forgetMemoizedResults(this);
360
361  // Remove this SCEVUnknown from the uniquing map.
362  SE->UniqueSCEVs.RemoveNode(this);
363
364  // Release the value.
365  setValPtr(0);
366}
367
368void SCEVUnknown::allUsesReplacedWith(Value *New) {
369  // Clear this SCEVUnknown from various maps.
370  SE->forgetMemoizedResults(this);
371
372  // Remove this SCEVUnknown from the uniquing map.
373  SE->UniqueSCEVs.RemoveNode(this);
374
375  // Update this SCEVUnknown to point to the new value. This is needed
376  // because there may still be outstanding SCEVs which still point to
377  // this SCEVUnknown.
378  setValPtr(New);
379}
380
381bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
382  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
383    if (VCE->getOpcode() == Instruction::PtrToInt)
384      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
385        if (CE->getOpcode() == Instruction::GetElementPtr &&
386            CE->getOperand(0)->isNullValue() &&
387            CE->getNumOperands() == 2)
388          if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
389            if (CI->isOne()) {
390              AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
391                                 ->getElementType();
392              return true;
393            }
394
395  return false;
396}
397
398bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
399  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
400    if (VCE->getOpcode() == Instruction::PtrToInt)
401      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
402        if (CE->getOpcode() == Instruction::GetElementPtr &&
403            CE->getOperand(0)->isNullValue()) {
404          Type *Ty =
405            cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
406          if (StructType *STy = dyn_cast<StructType>(Ty))
407            if (!STy->isPacked() &&
408                CE->getNumOperands() == 3 &&
409                CE->getOperand(1)->isNullValue()) {
410              if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
411                if (CI->isOne() &&
412                    STy->getNumElements() == 2 &&
413                    STy->getElementType(0)->isIntegerTy(1)) {
414                  AllocTy = STy->getElementType(1);
415                  return true;
416                }
417            }
418        }
419
420  return false;
421}
422
423bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
424  if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
425    if (VCE->getOpcode() == Instruction::PtrToInt)
426      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
427        if (CE->getOpcode() == Instruction::GetElementPtr &&
428            CE->getNumOperands() == 3 &&
429            CE->getOperand(0)->isNullValue() &&
430            CE->getOperand(1)->isNullValue()) {
431          Type *Ty =
432            cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
433          // Ignore vector types here so that ScalarEvolutionExpander doesn't
434          // emit getelementptrs that index into vectors.
435          if (Ty->isStructTy() || Ty->isArrayTy()) {
436            CTy = Ty;
437            FieldNo = CE->getOperand(2);
438            return true;
439          }
440        }
441
442  return false;
443}
444
445//===----------------------------------------------------------------------===//
446//                               SCEV Utilities
447//===----------------------------------------------------------------------===//
448
449namespace {
450  /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
451  /// than the complexity of the RHS.  This comparator is used to canonicalize
452  /// expressions.
453  class SCEVComplexityCompare {
454    const LoopInfo *const LI;
455  public:
456    explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
457
458    // Return true or false if LHS is less than, or at least RHS, respectively.
459    bool operator()(const SCEV *LHS, const SCEV *RHS) const {
460      return compare(LHS, RHS) < 0;
461    }
462
463    // Return negative, zero, or positive, if LHS is less than, equal to, or
464    // greater than RHS, respectively. A three-way result allows recursive
465    // comparisons to be more efficient.
466    int compare(const SCEV *LHS, const SCEV *RHS) const {
467      // Fast-path: SCEVs are uniqued so we can do a quick equality check.
468      if (LHS == RHS)
469        return 0;
470
471      // Primarily, sort the SCEVs by their getSCEVType().
472      unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
473      if (LType != RType)
474        return (int)LType - (int)RType;
475
476      // Aside from the getSCEVType() ordering, the particular ordering
477      // isn't very important except that it's beneficial to be consistent,
478      // so that (a + b) and (b + a) don't end up as different expressions.
479      switch (LType) {
480      case scUnknown: {
481        const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
482        const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
483
484        // Sort SCEVUnknown values with some loose heuristics. TODO: This is
485        // not as complete as it could be.
486        const Value *LV = LU->getValue(), *RV = RU->getValue();
487
488        // Order pointer values after integer values. This helps SCEVExpander
489        // form GEPs.
490        bool LIsPointer = LV->getType()->isPointerTy(),
491             RIsPointer = RV->getType()->isPointerTy();
492        if (LIsPointer != RIsPointer)
493          return (int)LIsPointer - (int)RIsPointer;
494
495        // Compare getValueID values.
496        unsigned LID = LV->getValueID(),
497                 RID = RV->getValueID();
498        if (LID != RID)
499          return (int)LID - (int)RID;
500
501        // Sort arguments by their position.
502        if (const Argument *LA = dyn_cast<Argument>(LV)) {
503          const Argument *RA = cast<Argument>(RV);
504          unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
505          return (int)LArgNo - (int)RArgNo;
506        }
507
508        // For instructions, compare their loop depth, and their operand
509        // count.  This is pretty loose.
510        if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
511          const Instruction *RInst = cast<Instruction>(RV);
512
513          // Compare loop depths.
514          const BasicBlock *LParent = LInst->getParent(),
515                           *RParent = RInst->getParent();
516          if (LParent != RParent) {
517            unsigned LDepth = LI->getLoopDepth(LParent),
518                     RDepth = LI->getLoopDepth(RParent);
519            if (LDepth != RDepth)
520              return (int)LDepth - (int)RDepth;
521          }
522
523          // Compare the number of operands.
524          unsigned LNumOps = LInst->getNumOperands(),
525                   RNumOps = RInst->getNumOperands();
526          return (int)LNumOps - (int)RNumOps;
527        }
528
529        return 0;
530      }
531
532      case scConstant: {
533        const SCEVConstant *LC = cast<SCEVConstant>(LHS);
534        const SCEVConstant *RC = cast<SCEVConstant>(RHS);
535
536        // Compare constant values.
537        const APInt &LA = LC->getValue()->getValue();
538        const APInt &RA = RC->getValue()->getValue();
539        unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
540        if (LBitWidth != RBitWidth)
541          return (int)LBitWidth - (int)RBitWidth;
542        return LA.ult(RA) ? -1 : 1;
543      }
544
545      case scAddRecExpr: {
546        const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
547        const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
548
549        // Compare addrec loop depths.
550        const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
551        if (LLoop != RLoop) {
552          unsigned LDepth = LLoop->getLoopDepth(),
553                   RDepth = RLoop->getLoopDepth();
554          if (LDepth != RDepth)
555            return (int)LDepth - (int)RDepth;
556        }
557
558        // Addrec complexity grows with operand count.
559        unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
560        if (LNumOps != RNumOps)
561          return (int)LNumOps - (int)RNumOps;
562
563        // Lexicographically compare.
564        for (unsigned i = 0; i != LNumOps; ++i) {
565          long X = compare(LA->getOperand(i), RA->getOperand(i));
566          if (X != 0)
567            return X;
568        }
569
570        return 0;
571      }
572
573      case scAddExpr:
574      case scMulExpr:
575      case scSMaxExpr:
576      case scUMaxExpr: {
577        const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
578        const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
579
580        // Lexicographically compare n-ary expressions.
581        unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
582        for (unsigned i = 0; i != LNumOps; ++i) {
583          if (i >= RNumOps)
584            return 1;
585          long X = compare(LC->getOperand(i), RC->getOperand(i));
586          if (X != 0)
587            return X;
588        }
589        return (int)LNumOps - (int)RNumOps;
590      }
591
592      case scUDivExpr: {
593        const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
594        const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
595
596        // Lexicographically compare udiv expressions.
597        long X = compare(LC->getLHS(), RC->getLHS());
598        if (X != 0)
599          return X;
600        return compare(LC->getRHS(), RC->getRHS());
601      }
602
603      case scTruncate:
604      case scZeroExtend:
605      case scSignExtend: {
606        const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
607        const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
608
609        // Compare cast expressions by operand.
610        return compare(LC->getOperand(), RC->getOperand());
611      }
612
613      default:
614        llvm_unreachable("Unknown SCEV kind!");
615      }
616    }
617  };
618}
619
620/// GroupByComplexity - Given a list of SCEV objects, order them by their
621/// complexity, and group objects of the same complexity together by value.
622/// When this routine is finished, we know that any duplicates in the vector are
623/// consecutive and that complexity is monotonically increasing.
624///
625/// Note that we go take special precautions to ensure that we get deterministic
626/// results from this routine.  In other words, we don't want the results of
627/// this to depend on where the addresses of various SCEV objects happened to
628/// land in memory.
629///
630static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
631                              LoopInfo *LI) {
632  if (Ops.size() < 2) return;  // Noop
633  if (Ops.size() == 2) {
634    // This is the common case, which also happens to be trivially simple.
635    // Special case it.
636    const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
637    if (SCEVComplexityCompare(LI)(RHS, LHS))
638      std::swap(LHS, RHS);
639    return;
640  }
641
642  // Do the rough sort by complexity.
643  std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
644
645  // Now that we are sorted by complexity, group elements of the same
646  // complexity.  Note that this is, at worst, N^2, but the vector is likely to
647  // be extremely short in practice.  Note that we take this approach because we
648  // do not want to depend on the addresses of the objects we are grouping.
649  for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
650    const SCEV *S = Ops[i];
651    unsigned Complexity = S->getSCEVType();
652
653    // If there are any objects of the same complexity and same value as this
654    // one, group them.
655    for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
656      if (Ops[j] == S) { // Found a duplicate.
657        // Move it to immediately after i'th element.
658        std::swap(Ops[i+1], Ops[j]);
659        ++i;   // no need to rescan it.
660        if (i == e-2) return;  // Done!
661      }
662    }
663  }
664}
665
666
667
668//===----------------------------------------------------------------------===//
669//                      Simple SCEV method implementations
670//===----------------------------------------------------------------------===//
671
672/// BinomialCoefficient - Compute BC(It, K).  The result has width W.
673/// Assume, K > 0.
674static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
675                                       ScalarEvolution &SE,
676                                       Type *ResultTy) {
677  // Handle the simplest case efficiently.
678  if (K == 1)
679    return SE.getTruncateOrZeroExtend(It, ResultTy);
680
681  // We are using the following formula for BC(It, K):
682  //
683  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
684  //
685  // Suppose, W is the bitwidth of the return value.  We must be prepared for
686  // overflow.  Hence, we must assure that the result of our computation is
687  // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
688  // safe in modular arithmetic.
689  //
690  // However, this code doesn't use exactly that formula; the formula it uses
691  // is something like the following, where T is the number of factors of 2 in
692  // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
693  // exponentiation:
694  //
695  //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
696  //
697  // This formula is trivially equivalent to the previous formula.  However,
698  // this formula can be implemented much more efficiently.  The trick is that
699  // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
700  // arithmetic.  To do exact division in modular arithmetic, all we have
701  // to do is multiply by the inverse.  Therefore, this step can be done at
702  // width W.
703  //
704  // The next issue is how to safely do the division by 2^T.  The way this
705  // is done is by doing the multiplication step at a width of at least W + T
706  // bits.  This way, the bottom W+T bits of the product are accurate. Then,
707  // when we perform the division by 2^T (which is equivalent to a right shift
708  // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
709  // truncated out after the division by 2^T.
710  //
711  // In comparison to just directly using the first formula, this technique
712  // is much more efficient; using the first formula requires W * K bits,
713  // but this formula less than W + K bits. Also, the first formula requires
714  // a division step, whereas this formula only requires multiplies and shifts.
715  //
716  // It doesn't matter whether the subtraction step is done in the calculation
717  // width or the input iteration count's width; if the subtraction overflows,
718  // the result must be zero anyway.  We prefer here to do it in the width of
719  // the induction variable because it helps a lot for certain cases; CodeGen
720  // isn't smart enough to ignore the overflow, which leads to much less
721  // efficient code if the width of the subtraction is wider than the native
722  // register width.
723  //
724  // (It's possible to not widen at all by pulling out factors of 2 before
725  // the multiplication; for example, K=2 can be calculated as
726  // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
727  // extra arithmetic, so it's not an obvious win, and it gets
728  // much more complicated for K > 3.)
729
730  // Protection from insane SCEVs; this bound is conservative,
731  // but it probably doesn't matter.
732  if (K > 1000)
733    return SE.getCouldNotCompute();
734
735  unsigned W = SE.getTypeSizeInBits(ResultTy);
736
737  // Calculate K! / 2^T and T; we divide out the factors of two before
738  // multiplying for calculating K! / 2^T to avoid overflow.
739  // Other overflow doesn't matter because we only care about the bottom
740  // W bits of the result.
741  APInt OddFactorial(W, 1);
742  unsigned T = 1;
743  for (unsigned i = 3; i <= K; ++i) {
744    APInt Mult(W, i);
745    unsigned TwoFactors = Mult.countTrailingZeros();
746    T += TwoFactors;
747    Mult = Mult.lshr(TwoFactors);
748    OddFactorial *= Mult;
749  }
750
751  // We need at least W + T bits for the multiplication step
752  unsigned CalculationBits = W + T;
753
754  // Calculate 2^T, at width T+W.
755  APInt DivFactor = APInt(CalculationBits, 1).shl(T);
756
757  // Calculate the multiplicative inverse of K! / 2^T;
758  // this multiplication factor will perform the exact division by
759  // K! / 2^T.
760  APInt Mod = APInt::getSignedMinValue(W+1);
761  APInt MultiplyFactor = OddFactorial.zext(W+1);
762  MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
763  MultiplyFactor = MultiplyFactor.trunc(W);
764
765  // Calculate the product, at width T+W
766  IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
767                                                      CalculationBits);
768  const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
769  for (unsigned i = 1; i != K; ++i) {
770    const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
771    Dividend = SE.getMulExpr(Dividend,
772                             SE.getTruncateOrZeroExtend(S, CalculationTy));
773  }
774
775  // Divide by 2^T
776  const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
777
778  // Truncate the result, and divide by K! / 2^T.
779
780  return SE.getMulExpr(SE.getConstant(MultiplyFactor),
781                       SE.getTruncateOrZeroExtend(DivResult, ResultTy));
782}
783
784/// evaluateAtIteration - Return the value of this chain of recurrences at
785/// the specified iteration number.  We can evaluate this recurrence by
786/// multiplying each element in the chain by the binomial coefficient
787/// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
788///
789///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
790///
791/// where BC(It, k) stands for binomial coefficient.
792///
793const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
794                                                ScalarEvolution &SE) const {
795  const SCEV *Result = getStart();
796  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
797    // The computation is correct in the face of overflow provided that the
798    // multiplication is performed _after_ the evaluation of the binomial
799    // coefficient.
800    const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
801    if (isa<SCEVCouldNotCompute>(Coeff))
802      return Coeff;
803
804    Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
805  }
806  return Result;
807}
808
809//===----------------------------------------------------------------------===//
810//                    SCEV Expression folder implementations
811//===----------------------------------------------------------------------===//
812
813const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
814                                             Type *Ty) {
815  assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
816         "This is not a truncating conversion!");
817  assert(isSCEVable(Ty) &&
818         "This is not a conversion to a SCEVable type!");
819  Ty = getEffectiveSCEVType(Ty);
820
821  FoldingSetNodeID ID;
822  ID.AddInteger(scTruncate);
823  ID.AddPointer(Op);
824  ID.AddPointer(Ty);
825  void *IP = 0;
826  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
827
828  // Fold if the operand is constant.
829  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
830    return getConstant(
831      cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
832
833  // trunc(trunc(x)) --> trunc(x)
834  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
835    return getTruncateExpr(ST->getOperand(), Ty);
836
837  // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
838  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
839    return getTruncateOrSignExtend(SS->getOperand(), Ty);
840
841  // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
842  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
843    return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
844
845  // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
846  // eliminate all the truncates.
847  if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
848    SmallVector<const SCEV *, 4> Operands;
849    bool hasTrunc = false;
850    for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
851      const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
852      hasTrunc = isa<SCEVTruncateExpr>(S);
853      Operands.push_back(S);
854    }
855    if (!hasTrunc)
856      return getAddExpr(Operands);
857    UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
858  }
859
860  // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
861  // eliminate all the truncates.
862  if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
863    SmallVector<const SCEV *, 4> Operands;
864    bool hasTrunc = false;
865    for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
866      const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
867      hasTrunc = isa<SCEVTruncateExpr>(S);
868      Operands.push_back(S);
869    }
870    if (!hasTrunc)
871      return getMulExpr(Operands);
872    UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
873  }
874
875  // If the input value is a chrec scev, truncate the chrec's operands.
876  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
877    SmallVector<const SCEV *, 4> Operands;
878    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
879      Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
880    return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
881  }
882
883  // The cast wasn't folded; create an explicit cast node. We can reuse
884  // the existing insert position since if we get here, we won't have
885  // made any changes which would invalidate it.
886  SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
887                                                 Op, Ty);
888  UniqueSCEVs.InsertNode(S, IP);
889  return S;
890}
891
892const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
893                                               Type *Ty) {
894  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
895         "This is not an extending conversion!");
896  assert(isSCEVable(Ty) &&
897         "This is not a conversion to a SCEVable type!");
898  Ty = getEffectiveSCEVType(Ty);
899
900  // Fold if the operand is constant.
901  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
902    return getConstant(
903      cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
904
905  // zext(zext(x)) --> zext(x)
906  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
907    return getZeroExtendExpr(SZ->getOperand(), Ty);
908
909  // Before doing any expensive analysis, check to see if we've already
910  // computed a SCEV for this Op and Ty.
911  FoldingSetNodeID ID;
912  ID.AddInteger(scZeroExtend);
913  ID.AddPointer(Op);
914  ID.AddPointer(Ty);
915  void *IP = 0;
916  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
917
918  // zext(trunc(x)) --> zext(x) or x or trunc(x)
919  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
920    // It's possible the bits taken off by the truncate were all zero bits. If
921    // so, we should be able to simplify this further.
922    const SCEV *X = ST->getOperand();
923    ConstantRange CR = getUnsignedRange(X);
924    unsigned TruncBits = getTypeSizeInBits(ST->getType());
925    unsigned NewBits = getTypeSizeInBits(Ty);
926    if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
927            CR.zextOrTrunc(NewBits)))
928      return getTruncateOrZeroExtend(X, Ty);
929  }
930
931  // If the input value is a chrec scev, and we can prove that the value
932  // did not overflow the old, smaller, value, we can zero extend all of the
933  // operands (often constants).  This allows analysis of something like
934  // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
935  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
936    if (AR->isAffine()) {
937      const SCEV *Start = AR->getStart();
938      const SCEV *Step = AR->getStepRecurrence(*this);
939      unsigned BitWidth = getTypeSizeInBits(AR->getType());
940      const Loop *L = AR->getLoop();
941
942      // If we have special knowledge that this addrec won't overflow,
943      // we don't need to do any further analysis.
944      if (AR->getNoWrapFlags(SCEV::FlagNUW))
945        return getAddRecExpr(getZeroExtendExpr(Start, Ty),
946                             getZeroExtendExpr(Step, Ty),
947                             L, AR->getNoWrapFlags());
948
949      // Check whether the backedge-taken count is SCEVCouldNotCompute.
950      // Note that this serves two purposes: It filters out loops that are
951      // simply not analyzable, and it covers the case where this code is
952      // being called from within backedge-taken count analysis, such that
953      // attempting to ask for the backedge-taken count would likely result
954      // in infinite recursion. In the later case, the analysis code will
955      // cope with a conservative value, and it will take care to purge
956      // that value once it has finished.
957      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
958      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
959        // Manually compute the final value for AR, checking for
960        // overflow.
961
962        // Check whether the backedge-taken count can be losslessly casted to
963        // the addrec's type. The count is always unsigned.
964        const SCEV *CastedMaxBECount =
965          getTruncateOrZeroExtend(MaxBECount, Start->getType());
966        const SCEV *RecastedMaxBECount =
967          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
968        if (MaxBECount == RecastedMaxBECount) {
969          Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
970          // Check whether Start+Step*MaxBECount has no unsigned overflow.
971          const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
972          const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
973          const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
974          const SCEV *WideMaxBECount =
975            getZeroExtendExpr(CastedMaxBECount, WideTy);
976          const SCEV *OperandExtendedAdd =
977            getAddExpr(WideStart,
978                       getMulExpr(WideMaxBECount,
979                                  getZeroExtendExpr(Step, WideTy)));
980          if (ZAdd == OperandExtendedAdd) {
981            // Cache knowledge of AR NUW, which is propagated to this AddRec.
982            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
983            // Return the expression with the addrec on the outside.
984            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
985                                 getZeroExtendExpr(Step, Ty),
986                                 L, AR->getNoWrapFlags());
987          }
988          // Similar to above, only this time treat the step value as signed.
989          // This covers loops that count down.
990          OperandExtendedAdd =
991            getAddExpr(WideStart,
992                       getMulExpr(WideMaxBECount,
993                                  getSignExtendExpr(Step, WideTy)));
994          if (ZAdd == OperandExtendedAdd) {
995            // Cache knowledge of AR NW, which is propagated to this AddRec.
996            // Negative step causes unsigned wrap, but it still can't self-wrap.
997            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
998            // Return the expression with the addrec on the outside.
999            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1000                                 getSignExtendExpr(Step, Ty),
1001                                 L, AR->getNoWrapFlags());
1002          }
1003        }
1004
1005        // If the backedge is guarded by a comparison with the pre-inc value
1006        // the addrec is safe. Also, if the entry is guarded by a comparison
1007        // with the start value and the backedge is guarded by a comparison
1008        // with the post-inc value, the addrec is safe.
1009        if (isKnownPositive(Step)) {
1010          const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1011                                      getUnsignedRange(Step).getUnsignedMax());
1012          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1013              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
1014               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
1015                                           AR->getPostIncExpr(*this), N))) {
1016            // Cache knowledge of AR NUW, which is propagated to this AddRec.
1017            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1018            // Return the expression with the addrec on the outside.
1019            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1020                                 getZeroExtendExpr(Step, Ty),
1021                                 L, AR->getNoWrapFlags());
1022          }
1023        } else if (isKnownNegative(Step)) {
1024          const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1025                                      getSignedRange(Step).getSignedMin());
1026          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1027              (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
1028               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
1029                                           AR->getPostIncExpr(*this), N))) {
1030            // Cache knowledge of AR NW, which is propagated to this AddRec.
1031            // Negative step causes unsigned wrap, but it still can't self-wrap.
1032            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1033            // Return the expression with the addrec on the outside.
1034            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
1035                                 getSignExtendExpr(Step, Ty),
1036                                 L, AR->getNoWrapFlags());
1037          }
1038        }
1039      }
1040    }
1041
1042  // The cast wasn't folded; create an explicit cast node.
1043  // Recompute the insert position, as it may have been invalidated.
1044  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1045  SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1046                                                   Op, Ty);
1047  UniqueSCEVs.InsertNode(S, IP);
1048  return S;
1049}
1050
1051// Get the limit of a recurrence such that incrementing by Step cannot cause
1052// signed overflow as long as the value of the recurrence within the loop does
1053// not exceed this limit before incrementing.
1054static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1055                                           ICmpInst::Predicate *Pred,
1056                                           ScalarEvolution *SE) {
1057  unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1058  if (SE->isKnownPositive(Step)) {
1059    *Pred = ICmpInst::ICMP_SLT;
1060    return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1061                           SE->getSignedRange(Step).getSignedMax());
1062  }
1063  if (SE->isKnownNegative(Step)) {
1064    *Pred = ICmpInst::ICMP_SGT;
1065    return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1066                       SE->getSignedRange(Step).getSignedMin());
1067  }
1068  return 0;
1069}
1070
1071// The recurrence AR has been shown to have no signed wrap. Typically, if we can
1072// prove NSW for AR, then we can just as easily prove NSW for its preincrement
1073// or postincrement sibling. This allows normalizing a sign extended AddRec as
1074// such: {sext(Step + Start),+,Step} => {(Step + sext(Start),+,Step} As a
1075// result, the expression "Step + sext(PreIncAR)" is congruent with
1076// "sext(PostIncAR)"
1077static const SCEV *getPreStartForSignExtend(const SCEVAddRecExpr *AR,
1078                                            Type *Ty,
1079                                            ScalarEvolution *SE) {
1080  const Loop *L = AR->getLoop();
1081  const SCEV *Start = AR->getStart();
1082  const SCEV *Step = AR->getStepRecurrence(*SE);
1083
1084  // Check for a simple looking step prior to loop entry.
1085  const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1086  if (!SA)
1087    return 0;
1088
1089  // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1090  // subtraction is expensive. For this purpose, perform a quick and dirty
1091  // difference, by checking for Step in the operand list.
1092  SmallVector<const SCEV *, 4> DiffOps;
1093  for (SCEVAddExpr::op_iterator I = SA->op_begin(), E = SA->op_end();
1094       I != E; ++I) {
1095    if (*I != Step)
1096      DiffOps.push_back(*I);
1097  }
1098  if (DiffOps.size() == SA->getNumOperands())
1099    return 0;
1100
1101  // This is a postinc AR. Check for overflow on the preinc recurrence using the
1102  // same three conditions that getSignExtendedExpr checks.
1103
1104  // 1. NSW flags on the step increment.
1105  const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags());
1106  const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1107    SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1108
1109  if (PreAR && PreAR->getNoWrapFlags(SCEV::FlagNSW))
1110    return PreStart;
1111
1112  // 2. Direct overflow check on the step operation's expression.
1113  unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1114  Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1115  const SCEV *OperandExtendedStart =
1116    SE->getAddExpr(SE->getSignExtendExpr(PreStart, WideTy),
1117                   SE->getSignExtendExpr(Step, WideTy));
1118  if (SE->getSignExtendExpr(Start, WideTy) == OperandExtendedStart) {
1119    // Cache knowledge of PreAR NSW.
1120    if (PreAR)
1121      const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(SCEV::FlagNSW);
1122    // FIXME: this optimization needs a unit test
1123    DEBUG(dbgs() << "SCEV: untested prestart overflow check\n");
1124    return PreStart;
1125  }
1126
1127  // 3. Loop precondition.
1128  ICmpInst::Predicate Pred;
1129  const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, SE);
1130
1131  if (OverflowLimit &&
1132      SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) {
1133    return PreStart;
1134  }
1135  return 0;
1136}
1137
1138// Get the normalized sign-extended expression for this AddRec's Start.
1139static const SCEV *getSignExtendAddRecStart(const SCEVAddRecExpr *AR,
1140                                            Type *Ty,
1141                                            ScalarEvolution *SE) {
1142  const SCEV *PreStart = getPreStartForSignExtend(AR, Ty, SE);
1143  if (!PreStart)
1144    return SE->getSignExtendExpr(AR->getStart(), Ty);
1145
1146  return SE->getAddExpr(SE->getSignExtendExpr(AR->getStepRecurrence(*SE), Ty),
1147                        SE->getSignExtendExpr(PreStart, Ty));
1148}
1149
1150const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
1151                                               Type *Ty) {
1152  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1153         "This is not an extending conversion!");
1154  assert(isSCEVable(Ty) &&
1155         "This is not a conversion to a SCEVable type!");
1156  Ty = getEffectiveSCEVType(Ty);
1157
1158  // Fold if the operand is constant.
1159  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1160    return getConstant(
1161      cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1162
1163  // sext(sext(x)) --> sext(x)
1164  if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1165    return getSignExtendExpr(SS->getOperand(), Ty);
1166
1167  // sext(zext(x)) --> zext(x)
1168  if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1169    return getZeroExtendExpr(SZ->getOperand(), Ty);
1170
1171  // Before doing any expensive analysis, check to see if we've already
1172  // computed a SCEV for this Op and Ty.
1173  FoldingSetNodeID ID;
1174  ID.AddInteger(scSignExtend);
1175  ID.AddPointer(Op);
1176  ID.AddPointer(Ty);
1177  void *IP = 0;
1178  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1179
1180  // If the input value is provably positive, build a zext instead.
1181  if (isKnownNonNegative(Op))
1182    return getZeroExtendExpr(Op, Ty);
1183
1184  // sext(trunc(x)) --> sext(x) or x or trunc(x)
1185  if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1186    // It's possible the bits taken off by the truncate were all sign bits. If
1187    // so, we should be able to simplify this further.
1188    const SCEV *X = ST->getOperand();
1189    ConstantRange CR = getSignedRange(X);
1190    unsigned TruncBits = getTypeSizeInBits(ST->getType());
1191    unsigned NewBits = getTypeSizeInBits(Ty);
1192    if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1193            CR.sextOrTrunc(NewBits)))
1194      return getTruncateOrSignExtend(X, Ty);
1195  }
1196
1197  // If the input value is a chrec scev, and we can prove that the value
1198  // did not overflow the old, smaller, value, we can sign extend all of the
1199  // operands (often constants).  This allows analysis of something like
1200  // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1201  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1202    if (AR->isAffine()) {
1203      const SCEV *Start = AR->getStart();
1204      const SCEV *Step = AR->getStepRecurrence(*this);
1205      unsigned BitWidth = getTypeSizeInBits(AR->getType());
1206      const Loop *L = AR->getLoop();
1207
1208      // If we have special knowledge that this addrec won't overflow,
1209      // we don't need to do any further analysis.
1210      if (AR->getNoWrapFlags(SCEV::FlagNSW))
1211        return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1212                             getSignExtendExpr(Step, Ty),
1213                             L, SCEV::FlagNSW);
1214
1215      // Check whether the backedge-taken count is SCEVCouldNotCompute.
1216      // Note that this serves two purposes: It filters out loops that are
1217      // simply not analyzable, and it covers the case where this code is
1218      // being called from within backedge-taken count analysis, such that
1219      // attempting to ask for the backedge-taken count would likely result
1220      // in infinite recursion. In the later case, the analysis code will
1221      // cope with a conservative value, and it will take care to purge
1222      // that value once it has finished.
1223      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1224      if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1225        // Manually compute the final value for AR, checking for
1226        // overflow.
1227
1228        // Check whether the backedge-taken count can be losslessly casted to
1229        // the addrec's type. The count is always unsigned.
1230        const SCEV *CastedMaxBECount =
1231          getTruncateOrZeroExtend(MaxBECount, Start->getType());
1232        const SCEV *RecastedMaxBECount =
1233          getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1234        if (MaxBECount == RecastedMaxBECount) {
1235          Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1236          // Check whether Start+Step*MaxBECount has no signed overflow.
1237          const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
1238          const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1239          const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1240          const SCEV *WideMaxBECount =
1241            getZeroExtendExpr(CastedMaxBECount, WideTy);
1242          const SCEV *OperandExtendedAdd =
1243            getAddExpr(WideStart,
1244                       getMulExpr(WideMaxBECount,
1245                                  getSignExtendExpr(Step, WideTy)));
1246          if (SAdd == OperandExtendedAdd) {
1247            // Cache knowledge of AR NSW, which is propagated to this AddRec.
1248            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1249            // Return the expression with the addrec on the outside.
1250            return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1251                                 getSignExtendExpr(Step, Ty),
1252                                 L, AR->getNoWrapFlags());
1253          }
1254          // Similar to above, only this time treat the step value as unsigned.
1255          // This covers loops that count up with an unsigned step.
1256          OperandExtendedAdd =
1257            getAddExpr(WideStart,
1258                       getMulExpr(WideMaxBECount,
1259                                  getZeroExtendExpr(Step, WideTy)));
1260          if (SAdd == OperandExtendedAdd) {
1261            // Cache knowledge of AR NSW, which is propagated to this AddRec.
1262            const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1263            // Return the expression with the addrec on the outside.
1264            return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1265                                 getZeroExtendExpr(Step, Ty),
1266                                 L, AR->getNoWrapFlags());
1267          }
1268        }
1269
1270        // If the backedge is guarded by a comparison with the pre-inc value
1271        // the addrec is safe. Also, if the entry is guarded by a comparison
1272        // with the start value and the backedge is guarded by a comparison
1273        // with the post-inc value, the addrec is safe.
1274        ICmpInst::Predicate Pred;
1275        const SCEV *OverflowLimit = getOverflowLimitForStep(Step, &Pred, this);
1276        if (OverflowLimit &&
1277            (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1278             (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1279              isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1280                                          OverflowLimit)))) {
1281          // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1282          const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1283          return getAddRecExpr(getSignExtendAddRecStart(AR, Ty, this),
1284                               getSignExtendExpr(Step, Ty),
1285                               L, AR->getNoWrapFlags());
1286        }
1287      }
1288    }
1289
1290  // The cast wasn't folded; create an explicit cast node.
1291  // Recompute the insert position, as it may have been invalidated.
1292  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1293  SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1294                                                   Op, Ty);
1295  UniqueSCEVs.InsertNode(S, IP);
1296  return S;
1297}
1298
1299/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1300/// unspecified bits out to the given type.
1301///
1302const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1303                                              Type *Ty) {
1304  assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1305         "This is not an extending conversion!");
1306  assert(isSCEVable(Ty) &&
1307         "This is not a conversion to a SCEVable type!");
1308  Ty = getEffectiveSCEVType(Ty);
1309
1310  // Sign-extend negative constants.
1311  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1312    if (SC->getValue()->getValue().isNegative())
1313      return getSignExtendExpr(Op, Ty);
1314
1315  // Peel off a truncate cast.
1316  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1317    const SCEV *NewOp = T->getOperand();
1318    if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1319      return getAnyExtendExpr(NewOp, Ty);
1320    return getTruncateOrNoop(NewOp, Ty);
1321  }
1322
1323  // Next try a zext cast. If the cast is folded, use it.
1324  const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1325  if (!isa<SCEVZeroExtendExpr>(ZExt))
1326    return ZExt;
1327
1328  // Next try a sext cast. If the cast is folded, use it.
1329  const SCEV *SExt = getSignExtendExpr(Op, Ty);
1330  if (!isa<SCEVSignExtendExpr>(SExt))
1331    return SExt;
1332
1333  // Force the cast to be folded into the operands of an addrec.
1334  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1335    SmallVector<const SCEV *, 4> Ops;
1336    for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
1337         I != E; ++I)
1338      Ops.push_back(getAnyExtendExpr(*I, Ty));
1339    return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
1340  }
1341
1342  // If the expression is obviously signed, use the sext cast value.
1343  if (isa<SCEVSMaxExpr>(Op))
1344    return SExt;
1345
1346  // Absent any other information, use the zext cast value.
1347  return ZExt;
1348}
1349
1350/// CollectAddOperandsWithScales - Process the given Ops list, which is
1351/// a list of operands to be added under the given scale, update the given
1352/// map. This is a helper function for getAddRecExpr. As an example of
1353/// what it does, given a sequence of operands that would form an add
1354/// expression like this:
1355///
1356///    m + n + 13 + (A * (o + p + (B * q + m + 29))) + r + (-1 * r)
1357///
1358/// where A and B are constants, update the map with these values:
1359///
1360///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1361///
1362/// and add 13 + A*B*29 to AccumulatedConstant.
1363/// This will allow getAddRecExpr to produce this:
1364///
1365///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1366///
1367/// This form often exposes folding opportunities that are hidden in
1368/// the original operand list.
1369///
1370/// Return true iff it appears that any interesting folding opportunities
1371/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1372/// the common case where no interesting opportunities are present, and
1373/// is also used as a check to avoid infinite recursion.
1374///
1375static bool
1376CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1377                             SmallVector<const SCEV *, 8> &NewOps,
1378                             APInt &AccumulatedConstant,
1379                             const SCEV *const *Ops, size_t NumOperands,
1380                             const APInt &Scale,
1381                             ScalarEvolution &SE) {
1382  bool Interesting = false;
1383
1384  // Iterate over the add operands. They are sorted, with constants first.
1385  unsigned i = 0;
1386  while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1387    ++i;
1388    // Pull a buried constant out to the outside.
1389    if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1390      Interesting = true;
1391    AccumulatedConstant += Scale * C->getValue()->getValue();
1392  }
1393
1394  // Next comes everything else. We're especially interested in multiplies
1395  // here, but they're in the middle, so just visit the rest with one loop.
1396  for (; i != NumOperands; ++i) {
1397    const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1398    if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1399      APInt NewScale =
1400        Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue();
1401      if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1402        // A multiplication of a constant with another add; recurse.
1403        const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
1404        Interesting |=
1405          CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1406                                       Add->op_begin(), Add->getNumOperands(),
1407                                       NewScale, SE);
1408      } else {
1409        // A multiplication of a constant with some other value. Update
1410        // the map.
1411        SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1412        const SCEV *Key = SE.getMulExpr(MulOps);
1413        std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1414          M.insert(std::make_pair(Key, NewScale));
1415        if (Pair.second) {
1416          NewOps.push_back(Pair.first->first);
1417        } else {
1418          Pair.first->second += NewScale;
1419          // The map already had an entry for this value, which may indicate
1420          // a folding opportunity.
1421          Interesting = true;
1422        }
1423      }
1424    } else {
1425      // An ordinary operand. Update the map.
1426      std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1427        M.insert(std::make_pair(Ops[i], Scale));
1428      if (Pair.second) {
1429        NewOps.push_back(Pair.first->first);
1430      } else {
1431        Pair.first->second += Scale;
1432        // The map already had an entry for this value, which may indicate
1433        // a folding opportunity.
1434        Interesting = true;
1435      }
1436    }
1437  }
1438
1439  return Interesting;
1440}
1441
1442namespace {
1443  struct APIntCompare {
1444    bool operator()(const APInt &LHS, const APInt &RHS) const {
1445      return LHS.ult(RHS);
1446    }
1447  };
1448}
1449
1450/// getAddExpr - Get a canonical add expression, or something simpler if
1451/// possible.
1452const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
1453                                        SCEV::NoWrapFlags Flags) {
1454  assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
1455         "only nuw or nsw allowed");
1456  assert(!Ops.empty() && "Cannot get empty add!");
1457  if (Ops.size() == 1) return Ops[0];
1458#ifndef NDEBUG
1459  Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1460  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1461    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1462           "SCEVAddExpr operand types don't match!");
1463#endif
1464
1465  // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1466  // And vice-versa.
1467  int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1468  SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1469  if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
1470    bool All = true;
1471    for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1472         E = Ops.end(); I != E; ++I)
1473      if (!isKnownNonNegative(*I)) {
1474        All = false;
1475        break;
1476      }
1477    if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
1478  }
1479
1480  // Sort by complexity, this groups all similar expression types together.
1481  GroupByComplexity(Ops, LI);
1482
1483  // If there are any constants, fold them together.
1484  unsigned Idx = 0;
1485  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1486    ++Idx;
1487    assert(Idx < Ops.size());
1488    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1489      // We found two constants, fold them together!
1490      Ops[0] = getConstant(LHSC->getValue()->getValue() +
1491                           RHSC->getValue()->getValue());
1492      if (Ops.size() == 2) return Ops[0];
1493      Ops.erase(Ops.begin()+1);  // Erase the folded element
1494      LHSC = cast<SCEVConstant>(Ops[0]);
1495    }
1496
1497    // If we are left with a constant zero being added, strip it off.
1498    if (LHSC->getValue()->isZero()) {
1499      Ops.erase(Ops.begin());
1500      --Idx;
1501    }
1502
1503    if (Ops.size() == 1) return Ops[0];
1504  }
1505
1506  // Okay, check to see if the same value occurs in the operand list more than
1507  // once.  If so, merge them together into an multiply expression.  Since we
1508  // sorted the list, these values are required to be adjacent.
1509  Type *Ty = Ops[0]->getType();
1510  bool FoundMatch = false;
1511  for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
1512    if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
1513      // Scan ahead to count how many equal operands there are.
1514      unsigned Count = 2;
1515      while (i+Count != e && Ops[i+Count] == Ops[i])
1516        ++Count;
1517      // Merge the values into a multiply.
1518      const SCEV *Scale = getConstant(Ty, Count);
1519      const SCEV *Mul = getMulExpr(Scale, Ops[i]);
1520      if (Ops.size() == Count)
1521        return Mul;
1522      Ops[i] = Mul;
1523      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
1524      --i; e -= Count - 1;
1525      FoundMatch = true;
1526    }
1527  if (FoundMatch)
1528    return getAddExpr(Ops, Flags);
1529
1530  // Check for truncates. If all the operands are truncated from the same
1531  // type, see if factoring out the truncate would permit the result to be
1532  // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
1533  // if the contents of the resulting outer trunc fold to something simple.
1534  for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
1535    const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
1536    Type *DstType = Trunc->getType();
1537    Type *SrcType = Trunc->getOperand()->getType();
1538    SmallVector<const SCEV *, 8> LargeOps;
1539    bool Ok = true;
1540    // Check all the operands to see if they can be represented in the
1541    // source type of the truncate.
1542    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1543      if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
1544        if (T->getOperand()->getType() != SrcType) {
1545          Ok = false;
1546          break;
1547        }
1548        LargeOps.push_back(T->getOperand());
1549      } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1550        LargeOps.push_back(getAnyExtendExpr(C, SrcType));
1551      } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
1552        SmallVector<const SCEV *, 8> LargeMulOps;
1553        for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
1554          if (const SCEVTruncateExpr *T =
1555                dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
1556            if (T->getOperand()->getType() != SrcType) {
1557              Ok = false;
1558              break;
1559            }
1560            LargeMulOps.push_back(T->getOperand());
1561          } else if (const SCEVConstant *C =
1562                       dyn_cast<SCEVConstant>(M->getOperand(j))) {
1563            LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
1564          } else {
1565            Ok = false;
1566            break;
1567          }
1568        }
1569        if (Ok)
1570          LargeOps.push_back(getMulExpr(LargeMulOps));
1571      } else {
1572        Ok = false;
1573        break;
1574      }
1575    }
1576    if (Ok) {
1577      // Evaluate the expression in the larger type.
1578      const SCEV *Fold = getAddExpr(LargeOps, Flags);
1579      // If it folds to something simple, use it. Otherwise, don't.
1580      if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
1581        return getTruncateExpr(Fold, DstType);
1582    }
1583  }
1584
1585  // Skip past any other cast SCEVs.
1586  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
1587    ++Idx;
1588
1589  // If there are add operands they would be next.
1590  if (Idx < Ops.size()) {
1591    bool DeletedAdd = false;
1592    while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
1593      // If we have an add, expand the add operands onto the end of the operands
1594      // list.
1595      Ops.erase(Ops.begin()+Idx);
1596      Ops.append(Add->op_begin(), Add->op_end());
1597      DeletedAdd = true;
1598    }
1599
1600    // If we deleted at least one add, we added operands to the end of the list,
1601    // and they are not necessarily sorted.  Recurse to resort and resimplify
1602    // any operands we just acquired.
1603    if (DeletedAdd)
1604      return getAddExpr(Ops);
1605  }
1606
1607  // Skip over the add expression until we get to a multiply.
1608  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1609    ++Idx;
1610
1611  // Check to see if there are any folding opportunities present with
1612  // operands multiplied by constant values.
1613  if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
1614    uint64_t BitWidth = getTypeSizeInBits(Ty);
1615    DenseMap<const SCEV *, APInt> M;
1616    SmallVector<const SCEV *, 8> NewOps;
1617    APInt AccumulatedConstant(BitWidth, 0);
1618    if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1619                                     Ops.data(), Ops.size(),
1620                                     APInt(BitWidth, 1), *this)) {
1621      // Some interesting folding opportunity is present, so its worthwhile to
1622      // re-generate the operands list. Group the operands by constant scale,
1623      // to avoid multiplying by the same constant scale multiple times.
1624      std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
1625      for (SmallVector<const SCEV *, 8>::const_iterator I = NewOps.begin(),
1626           E = NewOps.end(); I != E; ++I)
1627        MulOpLists[M.find(*I)->second].push_back(*I);
1628      // Re-generate the operands list.
1629      Ops.clear();
1630      if (AccumulatedConstant != 0)
1631        Ops.push_back(getConstant(AccumulatedConstant));
1632      for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator
1633           I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I)
1634        if (I->first != 0)
1635          Ops.push_back(getMulExpr(getConstant(I->first),
1636                                   getAddExpr(I->second)));
1637      if (Ops.empty())
1638        return getConstant(Ty, 0);
1639      if (Ops.size() == 1)
1640        return Ops[0];
1641      return getAddExpr(Ops);
1642    }
1643  }
1644
1645  // If we are adding something to a multiply expression, make sure the
1646  // something is not already an operand of the multiply.  If so, merge it into
1647  // the multiply.
1648  for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
1649    const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
1650    for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
1651      const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
1652      if (isa<SCEVConstant>(MulOpSCEV))
1653        continue;
1654      for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
1655        if (MulOpSCEV == Ops[AddOp]) {
1656          // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
1657          const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
1658          if (Mul->getNumOperands() != 2) {
1659            // If the multiply has more than two operands, we must get the
1660            // Y*Z term.
1661            SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1662                                                Mul->op_begin()+MulOp);
1663            MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
1664            InnerMul = getMulExpr(MulOps);
1665          }
1666          const SCEV *One = getConstant(Ty, 1);
1667          const SCEV *AddOne = getAddExpr(One, InnerMul);
1668          const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
1669          if (Ops.size() == 2) return OuterMul;
1670          if (AddOp < Idx) {
1671            Ops.erase(Ops.begin()+AddOp);
1672            Ops.erase(Ops.begin()+Idx-1);
1673          } else {
1674            Ops.erase(Ops.begin()+Idx);
1675            Ops.erase(Ops.begin()+AddOp-1);
1676          }
1677          Ops.push_back(OuterMul);
1678          return getAddExpr(Ops);
1679        }
1680
1681      // Check this multiply against other multiplies being added together.
1682      for (unsigned OtherMulIdx = Idx+1;
1683           OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
1684           ++OtherMulIdx) {
1685        const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
1686        // If MulOp occurs in OtherMul, we can fold the two multiplies
1687        // together.
1688        for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
1689             OMulOp != e; ++OMulOp)
1690          if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
1691            // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
1692            const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
1693            if (Mul->getNumOperands() != 2) {
1694              SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
1695                                                  Mul->op_begin()+MulOp);
1696              MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
1697              InnerMul1 = getMulExpr(MulOps);
1698            }
1699            const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
1700            if (OtherMul->getNumOperands() != 2) {
1701              SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
1702                                                  OtherMul->op_begin()+OMulOp);
1703              MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
1704              InnerMul2 = getMulExpr(MulOps);
1705            }
1706            const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
1707            const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
1708            if (Ops.size() == 2) return OuterMul;
1709            Ops.erase(Ops.begin()+Idx);
1710            Ops.erase(Ops.begin()+OtherMulIdx-1);
1711            Ops.push_back(OuterMul);
1712            return getAddExpr(Ops);
1713          }
1714      }
1715    }
1716  }
1717
1718  // If there are any add recurrences in the operands list, see if any other
1719  // added values are loop invariant.  If so, we can fold them into the
1720  // recurrence.
1721  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1722    ++Idx;
1723
1724  // Scan over all recurrences, trying to fold loop invariants into them.
1725  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1726    // Scan all of the other operands to this add and add them to the vector if
1727    // they are loop invariant w.r.t. the recurrence.
1728    SmallVector<const SCEV *, 8> LIOps;
1729    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1730    const Loop *AddRecLoop = AddRec->getLoop();
1731    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1732      if (isLoopInvariant(Ops[i], AddRecLoop)) {
1733        LIOps.push_back(Ops[i]);
1734        Ops.erase(Ops.begin()+i);
1735        --i; --e;
1736      }
1737
1738    // If we found some loop invariants, fold them into the recurrence.
1739    if (!LIOps.empty()) {
1740      //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
1741      LIOps.push_back(AddRec->getStart());
1742
1743      SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1744                                             AddRec->op_end());
1745      AddRecOps[0] = getAddExpr(LIOps);
1746
1747      // Build the new addrec. Propagate the NUW and NSW flags if both the
1748      // outer add and the inner addrec are guaranteed to have no overflow.
1749      // Always propagate NW.
1750      Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
1751      const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
1752
1753      // If all of the other operands were loop invariant, we are done.
1754      if (Ops.size() == 1) return NewRec;
1755
1756      // Otherwise, add the folded AddRec by the non-invariant parts.
1757      for (unsigned i = 0;; ++i)
1758        if (Ops[i] == AddRec) {
1759          Ops[i] = NewRec;
1760          break;
1761        }
1762      return getAddExpr(Ops);
1763    }
1764
1765    // Okay, if there weren't any loop invariants to be folded, check to see if
1766    // there are multiple AddRec's with the same loop induction variable being
1767    // added together.  If so, we can fold them.
1768    for (unsigned OtherIdx = Idx+1;
1769         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1770         ++OtherIdx)
1771      if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
1772        // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
1773        SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
1774                                               AddRec->op_end());
1775        for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
1776             ++OtherIdx)
1777          if (const SCEVAddRecExpr *OtherAddRec =
1778                dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
1779            if (OtherAddRec->getLoop() == AddRecLoop) {
1780              for (unsigned i = 0, e = OtherAddRec->getNumOperands();
1781                   i != e; ++i) {
1782                if (i >= AddRecOps.size()) {
1783                  AddRecOps.append(OtherAddRec->op_begin()+i,
1784                                   OtherAddRec->op_end());
1785                  break;
1786                }
1787                AddRecOps[i] = getAddExpr(AddRecOps[i],
1788                                          OtherAddRec->getOperand(i));
1789              }
1790              Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
1791            }
1792        // Step size has changed, so we cannot guarantee no self-wraparound.
1793        Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
1794        return getAddExpr(Ops);
1795      }
1796
1797    // Otherwise couldn't fold anything into this recurrence.  Move onto the
1798    // next one.
1799  }
1800
1801  // Okay, it looks like we really DO need an add expr.  Check to see if we
1802  // already have one, otherwise create a new one.
1803  FoldingSetNodeID ID;
1804  ID.AddInteger(scAddExpr);
1805  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1806    ID.AddPointer(Ops[i]);
1807  void *IP = 0;
1808  SCEVAddExpr *S =
1809    static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1810  if (!S) {
1811    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
1812    std::uninitialized_copy(Ops.begin(), Ops.end(), O);
1813    S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
1814                                        O, Ops.size());
1815    UniqueSCEVs.InsertNode(S, IP);
1816  }
1817  S->setNoWrapFlags(Flags);
1818  return S;
1819}
1820
1821static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
1822  uint64_t k = i*j;
1823  if (j > 1 && k / j != i) Overflow = true;
1824  return k;
1825}
1826
1827/// Compute the result of "n choose k", the binomial coefficient.  If an
1828/// intermediate computation overflows, Overflow will be set and the return will
1829/// be garbage. Overflow is not cleared on absence of overflow.
1830static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
1831  // We use the multiplicative formula:
1832  //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
1833  // At each iteration, we take the n-th term of the numeral and divide by the
1834  // (k-n)th term of the denominator.  This division will always produce an
1835  // integral result, and helps reduce the chance of overflow in the
1836  // intermediate computations. However, we can still overflow even when the
1837  // final result would fit.
1838
1839  if (n == 0 || n == k) return 1;
1840  if (k > n) return 0;
1841
1842  if (k > n/2)
1843    k = n-k;
1844
1845  uint64_t r = 1;
1846  for (uint64_t i = 1; i <= k; ++i) {
1847    r = umul_ov(r, n-(i-1), Overflow);
1848    r /= i;
1849  }
1850  return r;
1851}
1852
1853/// getMulExpr - Get a canonical multiply expression, or something simpler if
1854/// possible.
1855const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
1856                                        SCEV::NoWrapFlags Flags) {
1857  assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
1858         "only nuw or nsw allowed");
1859  assert(!Ops.empty() && "Cannot get empty mul!");
1860  if (Ops.size() == 1) return Ops[0];
1861#ifndef NDEBUG
1862  Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
1863  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
1864    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
1865           "SCEVMulExpr operand types don't match!");
1866#endif
1867
1868  // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1869  // And vice-versa.
1870  int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1871  SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
1872  if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
1873    bool All = true;
1874    for (SmallVectorImpl<const SCEV *>::const_iterator I = Ops.begin(),
1875         E = Ops.end(); I != E; ++I)
1876      if (!isKnownNonNegative(*I)) {
1877        All = false;
1878        break;
1879      }
1880    if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
1881  }
1882
1883  // Sort by complexity, this groups all similar expression types together.
1884  GroupByComplexity(Ops, LI);
1885
1886  // If there are any constants, fold them together.
1887  unsigned Idx = 0;
1888  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1889
1890    // C1*(C2+V) -> C1*C2 + C1*V
1891    if (Ops.size() == 2)
1892      if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
1893        if (Add->getNumOperands() == 2 &&
1894            isa<SCEVConstant>(Add->getOperand(0)))
1895          return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1896                            getMulExpr(LHSC, Add->getOperand(1)));
1897
1898    ++Idx;
1899    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1900      // We found two constants, fold them together!
1901      ConstantInt *Fold = ConstantInt::get(getContext(),
1902                                           LHSC->getValue()->getValue() *
1903                                           RHSC->getValue()->getValue());
1904      Ops[0] = getConstant(Fold);
1905      Ops.erase(Ops.begin()+1);  // Erase the folded element
1906      if (Ops.size() == 1) return Ops[0];
1907      LHSC = cast<SCEVConstant>(Ops[0]);
1908    }
1909
1910    // If we are left with a constant one being multiplied, strip it off.
1911    if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1912      Ops.erase(Ops.begin());
1913      --Idx;
1914    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1915      // If we have a multiply of zero, it will always be zero.
1916      return Ops[0];
1917    } else if (Ops[0]->isAllOnesValue()) {
1918      // If we have a mul by -1 of an add, try distributing the -1 among the
1919      // add operands.
1920      if (Ops.size() == 2) {
1921        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
1922          SmallVector<const SCEV *, 4> NewOps;
1923          bool AnyFolded = false;
1924          for (SCEVAddRecExpr::op_iterator I = Add->op_begin(),
1925                 E = Add->op_end(); I != E; ++I) {
1926            const SCEV *Mul = getMulExpr(Ops[0], *I);
1927            if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
1928            NewOps.push_back(Mul);
1929          }
1930          if (AnyFolded)
1931            return getAddExpr(NewOps);
1932        }
1933        else if (const SCEVAddRecExpr *
1934                 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
1935          // Negation preserves a recurrence's no self-wrap property.
1936          SmallVector<const SCEV *, 4> Operands;
1937          for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(),
1938                 E = AddRec->op_end(); I != E; ++I) {
1939            Operands.push_back(getMulExpr(Ops[0], *I));
1940          }
1941          return getAddRecExpr(Operands, AddRec->getLoop(),
1942                               AddRec->getNoWrapFlags(SCEV::FlagNW));
1943        }
1944      }
1945    }
1946
1947    if (Ops.size() == 1)
1948      return Ops[0];
1949  }
1950
1951  // Skip over the add expression until we get to a multiply.
1952  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1953    ++Idx;
1954
1955  // If there are mul operands inline them all into this expression.
1956  if (Idx < Ops.size()) {
1957    bool DeletedMul = false;
1958    while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1959      // If we have an mul, expand the mul operands onto the end of the operands
1960      // list.
1961      Ops.erase(Ops.begin()+Idx);
1962      Ops.append(Mul->op_begin(), Mul->op_end());
1963      DeletedMul = true;
1964    }
1965
1966    // If we deleted at least one mul, we added operands to the end of the list,
1967    // and they are not necessarily sorted.  Recurse to resort and resimplify
1968    // any operands we just acquired.
1969    if (DeletedMul)
1970      return getMulExpr(Ops);
1971  }
1972
1973  // If there are any add recurrences in the operands list, see if any other
1974  // added values are loop invariant.  If so, we can fold them into the
1975  // recurrence.
1976  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1977    ++Idx;
1978
1979  // Scan over all recurrences, trying to fold loop invariants into them.
1980  for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1981    // Scan all of the other operands to this mul and add them to the vector if
1982    // they are loop invariant w.r.t. the recurrence.
1983    SmallVector<const SCEV *, 8> LIOps;
1984    const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1985    const Loop *AddRecLoop = AddRec->getLoop();
1986    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1987      if (isLoopInvariant(Ops[i], AddRecLoop)) {
1988        LIOps.push_back(Ops[i]);
1989        Ops.erase(Ops.begin()+i);
1990        --i; --e;
1991      }
1992
1993    // If we found some loop invariants, fold them into the recurrence.
1994    if (!LIOps.empty()) {
1995      //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
1996      SmallVector<const SCEV *, 4> NewOps;
1997      NewOps.reserve(AddRec->getNumOperands());
1998      const SCEV *Scale = getMulExpr(LIOps);
1999      for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2000        NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
2001
2002      // Build the new addrec. Propagate the NUW and NSW flags if both the
2003      // outer mul and the inner addrec are guaranteed to have no overflow.
2004      //
2005      // No self-wrap cannot be guaranteed after changing the step size, but
2006      // will be inferred if either NUW or NSW is true.
2007      Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2008      const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
2009
2010      // If all of the other operands were loop invariant, we are done.
2011      if (Ops.size() == 1) return NewRec;
2012
2013      // Otherwise, multiply the folded AddRec by the non-invariant parts.
2014      for (unsigned i = 0;; ++i)
2015        if (Ops[i] == AddRec) {
2016          Ops[i] = NewRec;
2017          break;
2018        }
2019      return getMulExpr(Ops);
2020    }
2021
2022    // Okay, if there weren't any loop invariants to be folded, check to see if
2023    // there are multiple AddRec's with the same loop induction variable being
2024    // multiplied together.  If so, we can fold them.
2025    for (unsigned OtherIdx = Idx+1;
2026         OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2027         ++OtherIdx) {
2028      if (AddRecLoop != cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop())
2029        continue;
2030
2031      // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2032      // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2033      //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2034      //   ]]],+,...up to x=2n}.
2035      // Note that the arguments to choose() are always integers with values
2036      // known at compile time, never SCEV objects.
2037      //
2038      // The implementation avoids pointless extra computations when the two
2039      // addrec's are of different length (mathematically, it's equivalent to
2040      // an infinite stream of zeros on the right).
2041      bool OpsModified = false;
2042      for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2043           ++OtherIdx) {
2044        const SCEVAddRecExpr *OtherAddRec =
2045          dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2046        if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
2047          continue;
2048
2049        bool Overflow = false;
2050        Type *Ty = AddRec->getType();
2051        bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2052        SmallVector<const SCEV*, 7> AddRecOps;
2053        for (int x = 0, xe = AddRec->getNumOperands() +
2054               OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2055          const SCEV *Term = getConstant(Ty, 0);
2056          for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2057            uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2058            for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2059                   ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2060                 z < ze && !Overflow; ++z) {
2061              uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2062              uint64_t Coeff;
2063              if (LargerThan64Bits)
2064                Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2065              else
2066                Coeff = Coeff1*Coeff2;
2067              const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2068              const SCEV *Term1 = AddRec->getOperand(y-z);
2069              const SCEV *Term2 = OtherAddRec->getOperand(z);
2070              Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
2071            }
2072          }
2073          AddRecOps.push_back(Term);
2074        }
2075        if (!Overflow) {
2076          const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2077                                                SCEV::FlagAnyWrap);
2078          if (Ops.size() == 2) return NewAddRec;
2079          Ops[Idx] = NewAddRec;
2080          Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2081          OpsModified = true;
2082          AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2083          if (!AddRec)
2084            break;
2085        }
2086      }
2087      if (OpsModified)
2088        return getMulExpr(Ops);
2089    }
2090
2091    // Otherwise couldn't fold anything into this recurrence.  Move onto the
2092    // next one.
2093  }
2094
2095  // Okay, it looks like we really DO need an mul expr.  Check to see if we
2096  // already have one, otherwise create a new one.
2097  FoldingSetNodeID ID;
2098  ID.AddInteger(scMulExpr);
2099  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2100    ID.AddPointer(Ops[i]);
2101  void *IP = 0;
2102  SCEVMulExpr *S =
2103    static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2104  if (!S) {
2105    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2106    std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2107    S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2108                                        O, Ops.size());
2109    UniqueSCEVs.InsertNode(S, IP);
2110  }
2111  S->setNoWrapFlags(Flags);
2112  return S;
2113}
2114
2115/// getUDivExpr - Get a canonical unsigned division expression, or something
2116/// simpler if possible.
2117const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2118                                         const SCEV *RHS) {
2119  assert(getEffectiveSCEVType(LHS->getType()) ==
2120         getEffectiveSCEVType(RHS->getType()) &&
2121         "SCEVUDivExpr operand types don't match!");
2122
2123  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
2124    if (RHSC->getValue()->equalsInt(1))
2125      return LHS;                               // X udiv 1 --> x
2126    // If the denominator is zero, the result of the udiv is undefined. Don't
2127    // try to analyze it, because the resolution chosen here may differ from
2128    // the resolution chosen in other parts of the compiler.
2129    if (!RHSC->getValue()->isZero()) {
2130      // Determine if the division can be folded into the operands of
2131      // its operands.
2132      // TODO: Generalize this to non-constants by using known-bits information.
2133      Type *Ty = LHS->getType();
2134      unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros();
2135      unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
2136      // For non-power-of-two values, effectively round the value up to the
2137      // nearest power of two.
2138      if (!RHSC->getValue()->getValue().isPowerOf2())
2139        ++MaxShiftAmt;
2140      IntegerType *ExtTy =
2141        IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
2142      if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2143        if (const SCEVConstant *Step =
2144            dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2145          // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2146          const APInt &StepInt = Step->getValue()->getValue();
2147          const APInt &DivInt = RHSC->getValue()->getValue();
2148          if (!StepInt.urem(DivInt) &&
2149              getZeroExtendExpr(AR, ExtTy) ==
2150              getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2151                            getZeroExtendExpr(Step, ExtTy),
2152                            AR->getLoop(), SCEV::FlagAnyWrap)) {
2153            SmallVector<const SCEV *, 4> Operands;
2154            for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i)
2155              Operands.push_back(getUDivExpr(AR->getOperand(i), RHS));
2156            return getAddRecExpr(Operands, AR->getLoop(),
2157                                 SCEV::FlagNW);
2158          }
2159          /// Get a canonical UDivExpr for a recurrence.
2160          /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2161          // We can currently only fold X%N if X is constant.
2162          const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2163          if (StartC && !DivInt.urem(StepInt) &&
2164              getZeroExtendExpr(AR, ExtTy) ==
2165              getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2166                            getZeroExtendExpr(Step, ExtTy),
2167                            AR->getLoop(), SCEV::FlagAnyWrap)) {
2168            const APInt &StartInt = StartC->getValue()->getValue();
2169            const APInt &StartRem = StartInt.urem(StepInt);
2170            if (StartRem != 0)
2171              LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2172                                  AR->getLoop(), SCEV::FlagNW);
2173          }
2174        }
2175      // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2176      if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2177        SmallVector<const SCEV *, 4> Operands;
2178        for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i)
2179          Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy));
2180        if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2181          // Find an operand that's safely divisible.
2182          for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2183            const SCEV *Op = M->getOperand(i);
2184            const SCEV *Div = getUDivExpr(Op, RHSC);
2185            if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2186              Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2187                                                      M->op_end());
2188              Operands[i] = Div;
2189              return getMulExpr(Operands);
2190            }
2191          }
2192      }
2193      // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
2194      if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
2195        SmallVector<const SCEV *, 4> Operands;
2196        for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i)
2197          Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy));
2198        if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2199          Operands.clear();
2200          for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2201            const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2202            if (isa<SCEVUDivExpr>(Op) ||
2203                getMulExpr(Op, RHS) != A->getOperand(i))
2204              break;
2205            Operands.push_back(Op);
2206          }
2207          if (Operands.size() == A->getNumOperands())
2208            return getAddExpr(Operands);
2209        }
2210      }
2211
2212      // Fold if both operands are constant.
2213      if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2214        Constant *LHSCV = LHSC->getValue();
2215        Constant *RHSCV = RHSC->getValue();
2216        return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2217                                                                   RHSCV)));
2218      }
2219    }
2220  }
2221
2222  FoldingSetNodeID ID;
2223  ID.AddInteger(scUDivExpr);
2224  ID.AddPointer(LHS);
2225  ID.AddPointer(RHS);
2226  void *IP = 0;
2227  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2228  SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2229                                             LHS, RHS);
2230  UniqueSCEVs.InsertNode(S, IP);
2231  return S;
2232}
2233
2234
2235/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2236/// Simplify the expression as much as possible.
2237const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2238                                           const Loop *L,
2239                                           SCEV::NoWrapFlags Flags) {
2240  SmallVector<const SCEV *, 4> Operands;
2241  Operands.push_back(Start);
2242  if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
2243    if (StepChrec->getLoop() == L) {
2244      Operands.append(StepChrec->op_begin(), StepChrec->op_end());
2245      return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
2246    }
2247
2248  Operands.push_back(Step);
2249  return getAddRecExpr(Operands, L, Flags);
2250}
2251
2252/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2253/// Simplify the expression as much as possible.
2254const SCEV *
2255ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
2256                               const Loop *L, SCEV::NoWrapFlags Flags) {
2257  if (Operands.size() == 1) return Operands[0];
2258#ifndef NDEBUG
2259  Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
2260  for (unsigned i = 1, e = Operands.size(); i != e; ++i)
2261    assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
2262           "SCEVAddRecExpr operand types don't match!");
2263  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2264    assert(isLoopInvariant(Operands[i], L) &&
2265           "SCEVAddRecExpr operand is not loop-invariant!");
2266#endif
2267
2268  if (Operands.back()->isZero()) {
2269    Operands.pop_back();
2270    return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
2271  }
2272
2273  // It's tempting to want to call getMaxBackedgeTakenCount count here and
2274  // use that information to infer NUW and NSW flags. However, computing a
2275  // BE count requires calling getAddRecExpr, so we may not yet have a
2276  // meaningful BE count at this point (and if we don't, we'd be stuck
2277  // with a SCEVCouldNotCompute as the cached BE count).
2278
2279  // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2280  // And vice-versa.
2281  int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2282  SCEV::NoWrapFlags SignOrUnsignWrap = maskFlags(Flags, SignOrUnsignMask);
2283  if (SignOrUnsignWrap && (SignOrUnsignWrap != SignOrUnsignMask)) {
2284    bool All = true;
2285    for (SmallVectorImpl<const SCEV *>::const_iterator I = Operands.begin(),
2286         E = Operands.end(); I != E; ++I)
2287      if (!isKnownNonNegative(*I)) {
2288        All = false;
2289        break;
2290      }
2291    if (All) Flags = setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2292  }
2293
2294  // Canonicalize nested AddRecs in by nesting them in order of loop depth.
2295  if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
2296    const Loop *NestedLoop = NestedAR->getLoop();
2297    if (L->contains(NestedLoop) ?
2298        (L->getLoopDepth() < NestedLoop->getLoopDepth()) :
2299        (!NestedLoop->contains(L) &&
2300         DT->dominates(L->getHeader(), NestedLoop->getHeader()))) {
2301      SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
2302                                                  NestedAR->op_end());
2303      Operands[0] = NestedAR->getStart();
2304      // AddRecs require their operands be loop-invariant with respect to their
2305      // loops. Don't perform this transformation if it would break this
2306      // requirement.
2307      bool AllInvariant = true;
2308      for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2309        if (!isLoopInvariant(Operands[i], L)) {
2310          AllInvariant = false;
2311          break;
2312        }
2313      if (AllInvariant) {
2314        // Create a recurrence for the outer loop with the same step size.
2315        //
2316        // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2317        // inner recurrence has the same property.
2318        SCEV::NoWrapFlags OuterFlags =
2319          maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
2320
2321        NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
2322        AllInvariant = true;
2323        for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i)
2324          if (!isLoopInvariant(NestedOperands[i], NestedLoop)) {
2325            AllInvariant = false;
2326            break;
2327          }
2328        if (AllInvariant) {
2329          // Ok, both add recurrences are valid after the transformation.
2330          //
2331          // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2332          // the outer recurrence has the same property.
2333          SCEV::NoWrapFlags InnerFlags =
2334            maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
2335          return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2336        }
2337      }
2338      // Reset Operands to its original state.
2339      Operands[0] = NestedAR;
2340    }
2341  }
2342
2343  // Okay, it looks like we really DO need an addrec expr.  Check to see if we
2344  // already have one, otherwise create a new one.
2345  FoldingSetNodeID ID;
2346  ID.AddInteger(scAddRecExpr);
2347  for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2348    ID.AddPointer(Operands[i]);
2349  ID.AddPointer(L);
2350  void *IP = 0;
2351  SCEVAddRecExpr *S =
2352    static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2353  if (!S) {
2354    const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2355    std::uninitialized_copy(Operands.begin(), Operands.end(), O);
2356    S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2357                                           O, Operands.size(), L);
2358    UniqueSCEVs.InsertNode(S, IP);
2359  }
2360  S->setNoWrapFlags(Flags);
2361  return S;
2362}
2363
2364const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
2365                                         const SCEV *RHS) {
2366  SmallVector<const SCEV *, 2> Ops;
2367  Ops.push_back(LHS);
2368  Ops.push_back(RHS);
2369  return getSMaxExpr(Ops);
2370}
2371
2372const SCEV *
2373ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2374  assert(!Ops.empty() && "Cannot get empty smax!");
2375  if (Ops.size() == 1) return Ops[0];
2376#ifndef NDEBUG
2377  Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2378  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2379    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2380           "SCEVSMaxExpr operand types don't match!");
2381#endif
2382
2383  // Sort by complexity, this groups all similar expression types together.
2384  GroupByComplexity(Ops, LI);
2385
2386  // If there are any constants, fold them together.
2387  unsigned Idx = 0;
2388  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2389    ++Idx;
2390    assert(Idx < Ops.size());
2391    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2392      // We found two constants, fold them together!
2393      ConstantInt *Fold = ConstantInt::get(getContext(),
2394                              APIntOps::smax(LHSC->getValue()->getValue(),
2395                                             RHSC->getValue()->getValue()));
2396      Ops[0] = getConstant(Fold);
2397      Ops.erase(Ops.begin()+1);  // Erase the folded element
2398      if (Ops.size() == 1) return Ops[0];
2399      LHSC = cast<SCEVConstant>(Ops[0]);
2400    }
2401
2402    // If we are left with a constant minimum-int, strip it off.
2403    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
2404      Ops.erase(Ops.begin());
2405      --Idx;
2406    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
2407      // If we have an smax with a constant maximum-int, it will always be
2408      // maximum-int.
2409      return Ops[0];
2410    }
2411
2412    if (Ops.size() == 1) return Ops[0];
2413  }
2414
2415  // Find the first SMax
2416  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
2417    ++Idx;
2418
2419  // Check to see if one of the operands is an SMax. If so, expand its operands
2420  // onto our operand list, and recurse to simplify.
2421  if (Idx < Ops.size()) {
2422    bool DeletedSMax = false;
2423    while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
2424      Ops.erase(Ops.begin()+Idx);
2425      Ops.append(SMax->op_begin(), SMax->op_end());
2426      DeletedSMax = true;
2427    }
2428
2429    if (DeletedSMax)
2430      return getSMaxExpr(Ops);
2431  }
2432
2433  // Okay, check to see if the same value occurs in the operand list twice.  If
2434  // so, delete one.  Since we sorted the list, these values are required to
2435  // be adjacent.
2436  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2437    //  X smax Y smax Y  -->  X smax Y
2438    //  X smax Y         -->  X, if X is always greater than Y
2439    if (Ops[i] == Ops[i+1] ||
2440        isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
2441      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2442      --i; --e;
2443    } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
2444      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2445      --i; --e;
2446    }
2447
2448  if (Ops.size() == 1) return Ops[0];
2449
2450  assert(!Ops.empty() && "Reduced smax down to nothing!");
2451
2452  // Okay, it looks like we really DO need an smax expr.  Check to see if we
2453  // already have one, otherwise create a new one.
2454  FoldingSetNodeID ID;
2455  ID.AddInteger(scSMaxExpr);
2456  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2457    ID.AddPointer(Ops[i]);
2458  void *IP = 0;
2459  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2460  const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2461  std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2462  SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
2463                                             O, Ops.size());
2464  UniqueSCEVs.InsertNode(S, IP);
2465  return S;
2466}
2467
2468const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
2469                                         const SCEV *RHS) {
2470  SmallVector<const SCEV *, 2> Ops;
2471  Ops.push_back(LHS);
2472  Ops.push_back(RHS);
2473  return getUMaxExpr(Ops);
2474}
2475
2476const SCEV *
2477ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
2478  assert(!Ops.empty() && "Cannot get empty umax!");
2479  if (Ops.size() == 1) return Ops[0];
2480#ifndef NDEBUG
2481  Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2482  for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2483    assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2484           "SCEVUMaxExpr operand types don't match!");
2485#endif
2486
2487  // Sort by complexity, this groups all similar expression types together.
2488  GroupByComplexity(Ops, LI);
2489
2490  // If there are any constants, fold them together.
2491  unsigned Idx = 0;
2492  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2493    ++Idx;
2494    assert(Idx < Ops.size());
2495    while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2496      // We found two constants, fold them together!
2497      ConstantInt *Fold = ConstantInt::get(getContext(),
2498                              APIntOps::umax(LHSC->getValue()->getValue(),
2499                                             RHSC->getValue()->getValue()));
2500      Ops[0] = getConstant(Fold);
2501      Ops.erase(Ops.begin()+1);  // Erase the folded element
2502      if (Ops.size() == 1) return Ops[0];
2503      LHSC = cast<SCEVConstant>(Ops[0]);
2504    }
2505
2506    // If we are left with a constant minimum-int, strip it off.
2507    if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
2508      Ops.erase(Ops.begin());
2509      --Idx;
2510    } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
2511      // If we have an umax with a constant maximum-int, it will always be
2512      // maximum-int.
2513      return Ops[0];
2514    }
2515
2516    if (Ops.size() == 1) return Ops[0];
2517  }
2518
2519  // Find the first UMax
2520  while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
2521    ++Idx;
2522
2523  // Check to see if one of the operands is a UMax. If so, expand its operands
2524  // onto our operand list, and recurse to simplify.
2525  if (Idx < Ops.size()) {
2526    bool DeletedUMax = false;
2527    while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
2528      Ops.erase(Ops.begin()+Idx);
2529      Ops.append(UMax->op_begin(), UMax->op_end());
2530      DeletedUMax = true;
2531    }
2532
2533    if (DeletedUMax)
2534      return getUMaxExpr(Ops);
2535  }
2536
2537  // Okay, check to see if the same value occurs in the operand list twice.  If
2538  // so, delete one.  Since we sorted the list, these values are required to
2539  // be adjacent.
2540  for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
2541    //  X umax Y umax Y  -->  X umax Y
2542    //  X umax Y         -->  X, if X is always greater than Y
2543    if (Ops[i] == Ops[i+1] ||
2544        isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
2545      Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
2546      --i; --e;
2547    } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
2548      Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
2549      --i; --e;
2550    }
2551
2552  if (Ops.size() == 1) return Ops[0];
2553
2554  assert(!Ops.empty() && "Reduced umax down to nothing!");
2555
2556  // Okay, it looks like we really DO need a umax expr.  Check to see if we
2557  // already have one, otherwise create a new one.
2558  FoldingSetNodeID ID;
2559  ID.AddInteger(scUMaxExpr);
2560  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2561    ID.AddPointer(Ops[i]);
2562  void *IP = 0;
2563  if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2564  const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2565  std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2566  SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
2567                                             O, Ops.size());
2568  UniqueSCEVs.InsertNode(S, IP);
2569  return S;
2570}
2571
2572const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
2573                                         const SCEV *RHS) {
2574  // ~smax(~x, ~y) == smin(x, y).
2575  return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2576}
2577
2578const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
2579                                         const SCEV *RHS) {
2580  // ~umax(~x, ~y) == umin(x, y)
2581  return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
2582}
2583
2584const SCEV *ScalarEvolution::getSizeOfExpr(Type *AllocTy) {
2585  // If we have TargetData, we can bypass creating a target-independent
2586  // constant expression and then folding it back into a ConstantInt.
2587  // This is just a compile-time optimization.
2588  if (TD)
2589    return getConstant(TD->getIntPtrType(getContext()),
2590                       TD->getTypeAllocSize(AllocTy));
2591
2592  Constant *C = ConstantExpr::getSizeOf(AllocTy);
2593  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2594    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
2595      C = Folded;
2596  Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2597  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2598}
2599
2600const SCEV *ScalarEvolution::getAlignOfExpr(Type *AllocTy) {
2601  Constant *C = ConstantExpr::getAlignOf(AllocTy);
2602  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2603    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
2604      C = Folded;
2605  Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(AllocTy));
2606  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2607}
2608
2609const SCEV *ScalarEvolution::getOffsetOfExpr(StructType *STy,
2610                                             unsigned FieldNo) {
2611  // If we have TargetData, we can bypass creating a target-independent
2612  // constant expression and then folding it back into a ConstantInt.
2613  // This is just a compile-time optimization.
2614  if (TD)
2615    return getConstant(TD->getIntPtrType(getContext()),
2616                       TD->getStructLayout(STy)->getElementOffset(FieldNo));
2617
2618  Constant *C = ConstantExpr::getOffsetOf(STy, FieldNo);
2619  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2620    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
2621      C = Folded;
2622  Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(STy));
2623  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2624}
2625
2626const SCEV *ScalarEvolution::getOffsetOfExpr(Type *CTy,
2627                                             Constant *FieldNo) {
2628  Constant *C = ConstantExpr::getOffsetOf(CTy, FieldNo);
2629  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2630    if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
2631      C = Folded;
2632  Type *Ty = getEffectiveSCEVType(PointerType::getUnqual(CTy));
2633  return getTruncateOrZeroExtend(getSCEV(C), Ty);
2634}
2635
2636const SCEV *ScalarEvolution::getUnknown(Value *V) {
2637  // Don't attempt to do anything other than create a SCEVUnknown object
2638  // here.  createSCEV only calls getUnknown after checking for all other
2639  // interesting possibilities, and any other code that calls getUnknown
2640  // is doing so in order to hide a value from SCEV canonicalization.
2641
2642  FoldingSetNodeID ID;
2643  ID.AddInteger(scUnknown);
2644  ID.AddPointer(V);
2645  void *IP = 0;
2646  if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
2647    assert(cast<SCEVUnknown>(S)->getValue() == V &&
2648           "Stale SCEVUnknown in uniquing map!");
2649    return S;
2650  }
2651  SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
2652                                            FirstUnknown);
2653  FirstUnknown = cast<SCEVUnknown>(S);
2654  UniqueSCEVs.InsertNode(S, IP);
2655  return S;
2656}
2657
2658//===----------------------------------------------------------------------===//
2659//            Basic SCEV Analysis and PHI Idiom Recognition Code
2660//
2661
2662/// isSCEVable - Test if values of the given type are analyzable within
2663/// the SCEV framework. This primarily includes integer types, and it
2664/// can optionally include pointer types if the ScalarEvolution class
2665/// has access to target-specific information.
2666bool ScalarEvolution::isSCEVable(Type *Ty) const {
2667  // Integers and pointers are always SCEVable.
2668  return Ty->isIntegerTy() || Ty->isPointerTy();
2669}
2670
2671/// getTypeSizeInBits - Return the size in bits of the specified type,
2672/// for which isSCEVable must return true.
2673uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
2674  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2675
2676  // If we have a TargetData, use it!
2677  if (TD)
2678    return TD->getTypeSizeInBits(Ty);
2679
2680  // Integer types have fixed sizes.
2681  if (Ty->isIntegerTy())
2682    return Ty->getPrimitiveSizeInBits();
2683
2684  // The only other support type is pointer. Without TargetData, conservatively
2685  // assume pointers are 64-bit.
2686  assert(Ty->isPointerTy() && "isSCEVable permitted a non-SCEVable type!");
2687  return 64;
2688}
2689
2690/// getEffectiveSCEVType - Return a type with the same bitwidth as
2691/// the given type and which represents how SCEV will treat the given
2692/// type, for which isSCEVable must return true. For pointer types,
2693/// this is the pointer-sized integer type.
2694Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
2695  assert(isSCEVable(Ty) && "Type is not SCEVable!");
2696
2697  if (Ty->isIntegerTy())
2698    return Ty;
2699
2700  // The only other support type is pointer.
2701  assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
2702  if (TD) return TD->getIntPtrType(getContext());
2703
2704  // Without TargetData, conservatively assume pointers are 64-bit.
2705  return Type::getInt64Ty(getContext());
2706}
2707
2708const SCEV *ScalarEvolution::getCouldNotCompute() {
2709  return &CouldNotCompute;
2710}
2711
2712/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
2713/// expression and create a new one.
2714const SCEV *ScalarEvolution::getSCEV(Value *V) {
2715  assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
2716
2717  ValueExprMapType::const_iterator I = ValueExprMap.find_as(V);
2718  if (I != ValueExprMap.end()) return I->second;
2719  const SCEV *S = createSCEV(V);
2720
2721  // The process of creating a SCEV for V may have caused other SCEVs
2722  // to have been created, so it's necessary to insert the new entry
2723  // from scratch, rather than trying to remember the insert position
2724  // above.
2725  ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S));
2726  return S;
2727}
2728
2729/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
2730///
2731const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V) {
2732  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2733    return getConstant(
2734               cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
2735
2736  Type *Ty = V->getType();
2737  Ty = getEffectiveSCEVType(Ty);
2738  return getMulExpr(V,
2739                  getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))));
2740}
2741
2742/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
2743const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
2744  if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
2745    return getConstant(
2746                cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
2747
2748  Type *Ty = V->getType();
2749  Ty = getEffectiveSCEVType(Ty);
2750  const SCEV *AllOnes =
2751                   getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
2752  return getMinusSCEV(AllOnes, V);
2753}
2754
2755/// getMinusSCEV - Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
2756const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
2757                                          SCEV::NoWrapFlags Flags) {
2758  assert(!maskFlags(Flags, SCEV::FlagNUW) && "subtraction does not have NUW");
2759
2760  // Fast path: X - X --> 0.
2761  if (LHS == RHS)
2762    return getConstant(LHS->getType(), 0);
2763
2764  // X - Y --> X + -Y
2765  return getAddExpr(LHS, getNegativeSCEV(RHS), Flags);
2766}
2767
2768/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
2769/// input value to the specified type.  If the type must be extended, it is zero
2770/// extended.
2771const SCEV *
2772ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
2773  Type *SrcTy = V->getType();
2774  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2775         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2776         "Cannot truncate or zero extend with non-integer arguments!");
2777  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2778    return V;  // No conversion
2779  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2780    return getTruncateExpr(V, Ty);
2781  return getZeroExtendExpr(V, Ty);
2782}
2783
2784/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
2785/// input value to the specified type.  If the type must be extended, it is sign
2786/// extended.
2787const SCEV *
2788ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
2789                                         Type *Ty) {
2790  Type *SrcTy = V->getType();
2791  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2792         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2793         "Cannot truncate or zero extend with non-integer arguments!");
2794  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2795    return V;  // No conversion
2796  if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
2797    return getTruncateExpr(V, Ty);
2798  return getSignExtendExpr(V, Ty);
2799}
2800
2801/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
2802/// input value to the specified type.  If the type must be extended, it is zero
2803/// extended.  The conversion must not be narrowing.
2804const SCEV *
2805ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
2806  Type *SrcTy = V->getType();
2807  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2808         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2809         "Cannot noop or zero extend with non-integer arguments!");
2810  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2811         "getNoopOrZeroExtend cannot truncate!");
2812  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2813    return V;  // No conversion
2814  return getZeroExtendExpr(V, Ty);
2815}
2816
2817/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
2818/// input value to the specified type.  If the type must be extended, it is sign
2819/// extended.  The conversion must not be narrowing.
2820const SCEV *
2821ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
2822  Type *SrcTy = V->getType();
2823  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2824         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2825         "Cannot noop or sign extend with non-integer arguments!");
2826  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2827         "getNoopOrSignExtend cannot truncate!");
2828  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2829    return V;  // No conversion
2830  return getSignExtendExpr(V, Ty);
2831}
2832
2833/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
2834/// the input value to the specified type. If the type must be extended,
2835/// it is extended with unspecified bits. The conversion must not be
2836/// narrowing.
2837const SCEV *
2838ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
2839  Type *SrcTy = V->getType();
2840  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2841         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2842         "Cannot noop or any extend with non-integer arguments!");
2843  assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
2844         "getNoopOrAnyExtend cannot truncate!");
2845  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2846    return V;  // No conversion
2847  return getAnyExtendExpr(V, Ty);
2848}
2849
2850/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
2851/// input value to the specified type.  The conversion must not be widening.
2852const SCEV *
2853ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
2854  Type *SrcTy = V->getType();
2855  assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
2856         (Ty->isIntegerTy() || Ty->isPointerTy()) &&
2857         "Cannot truncate or noop with non-integer arguments!");
2858  assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
2859         "getTruncateOrNoop cannot extend!");
2860  if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
2861    return V;  // No conversion
2862  return getTruncateExpr(V, Ty);
2863}
2864
2865/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
2866/// the types using zero-extension, and then perform a umax operation
2867/// with them.
2868const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
2869                                                        const SCEV *RHS) {
2870  const SCEV *PromotedLHS = LHS;
2871  const SCEV *PromotedRHS = RHS;
2872
2873  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2874    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2875  else
2876    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2877
2878  return getUMaxExpr(PromotedLHS, PromotedRHS);
2879}
2880
2881/// getUMinFromMismatchedTypes - Promote the operands to the wider of
2882/// the types using zero-extension, and then perform a umin operation
2883/// with them.
2884const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
2885                                                        const SCEV *RHS) {
2886  const SCEV *PromotedLHS = LHS;
2887  const SCEV *PromotedRHS = RHS;
2888
2889  if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
2890    PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
2891  else
2892    PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
2893
2894  return getUMinExpr(PromotedLHS, PromotedRHS);
2895}
2896
2897/// getPointerBase - Transitively follow the chain of pointer-type operands
2898/// until reaching a SCEV that does not have a single pointer operand. This
2899/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
2900/// but corner cases do exist.
2901const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
2902  // A pointer operand may evaluate to a nonpointer expression, such as null.
2903  if (!V->getType()->isPointerTy())
2904    return V;
2905
2906  if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
2907    return getPointerBase(Cast->getOperand());
2908  }
2909  else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
2910    const SCEV *PtrOp = 0;
2911    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
2912         I != E; ++I) {
2913      if ((*I)->getType()->isPointerTy()) {
2914        // Cannot find the base of an expression with multiple pointer operands.
2915        if (PtrOp)
2916          return V;
2917        PtrOp = *I;
2918      }
2919    }
2920    if (!PtrOp)
2921      return V;
2922    return getPointerBase(PtrOp);
2923  }
2924  return V;
2925}
2926
2927/// PushDefUseChildren - Push users of the given Instruction
2928/// onto the given Worklist.
2929static void
2930PushDefUseChildren(Instruction *I,
2931                   SmallVectorImpl<Instruction *> &Worklist) {
2932  // Push the def-use children onto the Worklist stack.
2933  for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2934       UI != UE; ++UI)
2935    Worklist.push_back(cast<Instruction>(*UI));
2936}
2937
2938/// ForgetSymbolicValue - This looks up computed SCEV values for all
2939/// instructions that depend on the given instruction and removes them from
2940/// the ValueExprMapType map if they reference SymName. This is used during PHI
2941/// resolution.
2942void
2943ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) {
2944  SmallVector<Instruction *, 16> Worklist;
2945  PushDefUseChildren(PN, Worklist);
2946
2947  SmallPtrSet<Instruction *, 8> Visited;
2948  Visited.insert(PN);
2949  while (!Worklist.empty()) {
2950    Instruction *I = Worklist.pop_back_val();
2951    if (!Visited.insert(I)) continue;
2952
2953    ValueExprMapType::iterator It =
2954      ValueExprMap.find_as(static_cast<Value *>(I));
2955    if (It != ValueExprMap.end()) {
2956      const SCEV *Old = It->second;
2957
2958      // Short-circuit the def-use traversal if the symbolic name
2959      // ceases to appear in expressions.
2960      if (Old != SymName && !hasOperand(Old, SymName))
2961        continue;
2962
2963      // SCEVUnknown for a PHI either means that it has an unrecognized
2964      // structure, it's a PHI that's in the progress of being computed
2965      // by createNodeForPHI, or it's a single-value PHI. In the first case,
2966      // additional loop trip count information isn't going to change anything.
2967      // In the second case, createNodeForPHI will perform the necessary
2968      // updates on its own when it gets to that point. In the third, we do
2969      // want to forget the SCEVUnknown.
2970      if (!isa<PHINode>(I) ||
2971          !isa<SCEVUnknown>(Old) ||
2972          (I != PN && Old == SymName)) {
2973        forgetMemoizedResults(Old);
2974        ValueExprMap.erase(It);
2975      }
2976    }
2977
2978    PushDefUseChildren(I, Worklist);
2979  }
2980}
2981
2982/// createNodeForPHI - PHI nodes have two cases.  Either the PHI node exists in
2983/// a loop header, making it a potential recurrence, or it doesn't.
2984///
2985const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
2986  if (const Loop *L = LI->getLoopFor(PN->getParent()))
2987    if (L->getHeader() == PN->getParent()) {
2988      // The loop may have multiple entrances or multiple exits; we can analyze
2989      // this phi as an addrec if it has a unique entry value and a unique
2990      // backedge value.
2991      Value *BEValueV = 0, *StartValueV = 0;
2992      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2993        Value *V = PN->getIncomingValue(i);
2994        if (L->contains(PN->getIncomingBlock(i))) {
2995          if (!BEValueV) {
2996            BEValueV = V;
2997          } else if (BEValueV != V) {
2998            BEValueV = 0;
2999            break;
3000          }
3001        } else if (!StartValueV) {
3002          StartValueV = V;
3003        } else if (StartValueV != V) {
3004          StartValueV = 0;
3005          break;
3006        }
3007      }
3008      if (BEValueV && StartValueV) {
3009        // While we are analyzing this PHI node, handle its value symbolically.
3010        const SCEV *SymbolicName = getUnknown(PN);
3011        assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
3012               "PHI node already processed?");
3013        ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName));
3014
3015        // Using this symbolic name for the PHI, analyze the value coming around
3016        // the back-edge.
3017        const SCEV *BEValue = getSCEV(BEValueV);
3018
3019        // NOTE: If BEValue is loop invariant, we know that the PHI node just
3020        // has a special value for the first iteration of the loop.
3021
3022        // If the value coming around the backedge is an add with the symbolic
3023        // value we just inserted, then we found a simple induction variable!
3024        if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
3025          // If there is a single occurrence of the symbolic value, replace it
3026          // with a recurrence.
3027          unsigned FoundIndex = Add->getNumOperands();
3028          for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3029            if (Add->getOperand(i) == SymbolicName)
3030              if (FoundIndex == e) {
3031                FoundIndex = i;
3032                break;
3033              }
3034
3035          if (FoundIndex != Add->getNumOperands()) {
3036            // Create an add with everything but the specified operand.
3037            SmallVector<const SCEV *, 8> Ops;
3038            for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3039              if (i != FoundIndex)
3040                Ops.push_back(Add->getOperand(i));
3041            const SCEV *Accum = getAddExpr(Ops);
3042
3043            // This is not a valid addrec if the step amount is varying each
3044            // loop iteration, but is not itself an addrec in this loop.
3045            if (isLoopInvariant(Accum, L) ||
3046                (isa<SCEVAddRecExpr>(Accum) &&
3047                 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
3048              SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
3049
3050              // If the increment doesn't overflow, then neither the addrec nor
3051              // the post-increment will overflow.
3052              if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) {
3053                if (OBO->hasNoUnsignedWrap())
3054                  Flags = setFlags(Flags, SCEV::FlagNUW);
3055                if (OBO->hasNoSignedWrap())
3056                  Flags = setFlags(Flags, SCEV::FlagNSW);
3057              } else if (const GEPOperator *GEP =
3058                         dyn_cast<GEPOperator>(BEValueV)) {
3059                // If the increment is an inbounds GEP, then we know the address
3060                // space cannot be wrapped around. We cannot make any guarantee
3061                // about signed or unsigned overflow because pointers are
3062                // unsigned but we may have a negative index from the base
3063                // pointer.
3064                if (GEP->isInBounds())
3065                  Flags = setFlags(Flags, SCEV::FlagNW);
3066              }
3067
3068              const SCEV *StartVal = getSCEV(StartValueV);
3069              const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
3070
3071              // Since the no-wrap flags are on the increment, they apply to the
3072              // post-incremented value as well.
3073              if (isLoopInvariant(Accum, L))
3074                (void)getAddRecExpr(getAddExpr(StartVal, Accum),
3075                                    Accum, L, Flags);
3076
3077              // Okay, for the entire analysis of this edge we assumed the PHI
3078              // to be symbolic.  We now need to go back and purge all of the
3079              // entries for the scalars that use the symbolic expression.
3080              ForgetSymbolicName(PN, SymbolicName);
3081              ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
3082              return PHISCEV;
3083            }
3084          }
3085        } else if (const SCEVAddRecExpr *AddRec =
3086                     dyn_cast<SCEVAddRecExpr>(BEValue)) {
3087          // Otherwise, this could be a loop like this:
3088          //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
3089          // In this case, j = {1,+,1}  and BEValue is j.
3090          // Because the other in-value of i (0) fits the evolution of BEValue
3091          // i really is an addrec evolution.
3092          if (AddRec->getLoop() == L && AddRec->isAffine()) {
3093            const SCEV *StartVal = getSCEV(StartValueV);
3094
3095            // If StartVal = j.start - j.stride, we can use StartVal as the
3096            // initial step of the addrec evolution.
3097            if (StartVal == getMinusSCEV(AddRec->getOperand(0),
3098                                         AddRec->getOperand(1))) {
3099              // FIXME: For constant StartVal, we should be able to infer
3100              // no-wrap flags.
3101              const SCEV *PHISCEV =
3102                getAddRecExpr(StartVal, AddRec->getOperand(1), L,
3103                              SCEV::FlagAnyWrap);
3104
3105              // Okay, for the entire analysis of this edge we assumed the PHI
3106              // to be symbolic.  We now need to go back and purge all of the
3107              // entries for the scalars that use the symbolic expression.
3108              ForgetSymbolicName(PN, SymbolicName);
3109              ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
3110              return PHISCEV;
3111            }
3112          }
3113        }
3114      }
3115    }
3116
3117  // If the PHI has a single incoming value, follow that value, unless the
3118  // PHI's incoming blocks are in a different loop, in which case doing so
3119  // risks breaking LCSSA form. Instcombine would normally zap these, but
3120  // it doesn't have DominatorTree information, so it may miss cases.
3121  if (Value *V = SimplifyInstruction(PN, TD, TLI, DT))
3122    if (LI->replacementPreservesLCSSAForm(PN, V))
3123      return getSCEV(V);
3124
3125  // If it's not a loop phi, we can't handle it yet.
3126  return getUnknown(PN);
3127}
3128
3129/// createNodeForGEP - Expand GEP instructions into add and multiply
3130/// operations. This allows them to be analyzed by regular SCEV code.
3131///
3132const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
3133
3134  // Don't blindly transfer the inbounds flag from the GEP instruction to the
3135  // Add expression, because the Instruction may be guarded by control flow
3136  // and the no-overflow bits may not be valid for the expression in any
3137  // context.
3138  bool isInBounds = GEP->isInBounds();
3139
3140  Type *IntPtrTy = getEffectiveSCEVType(GEP->getType());
3141  Value *Base = GEP->getOperand(0);
3142  // Don't attempt to analyze GEPs over unsized objects.
3143  if (!cast<PointerType>(Base->getType())->getElementType()->isSized())
3144    return getUnknown(GEP);
3145  const SCEV *TotalOffset = getConstant(IntPtrTy, 0);
3146  gep_type_iterator GTI = gep_type_begin(GEP);
3147  for (GetElementPtrInst::op_iterator I = llvm::next(GEP->op_begin()),
3148                                      E = GEP->op_end();
3149       I != E; ++I) {
3150    Value *Index = *I;
3151    // Compute the (potentially symbolic) offset in bytes for this index.
3152    if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
3153      // For a struct, add the member offset.
3154      unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
3155      const SCEV *FieldOffset = getOffsetOfExpr(STy, FieldNo);
3156
3157      // Add the field offset to the running total offset.
3158      TotalOffset = getAddExpr(TotalOffset, FieldOffset);
3159    } else {
3160      // For an array, add the element offset, explicitly scaled.
3161      const SCEV *ElementSize = getSizeOfExpr(*GTI);
3162      const SCEV *IndexS = getSCEV(Index);
3163      // Getelementptr indices are signed.
3164      IndexS = getTruncateOrSignExtend(IndexS, IntPtrTy);
3165
3166      // Multiply the index by the element size to compute the element offset.
3167      const SCEV *LocalOffset = getMulExpr(IndexS, ElementSize,
3168                                           isInBounds ? SCEV::FlagNSW :
3169                                           SCEV::FlagAnyWrap);
3170
3171      // Add the element offset to the running total offset.
3172      TotalOffset = getAddExpr(TotalOffset, LocalOffset);
3173    }
3174  }
3175
3176  // Get the SCEV for the GEP base.
3177  const SCEV *BaseS = getSCEV(Base);
3178
3179  // Add the total offset from all the GEP indices to the base.
3180  return getAddExpr(BaseS, TotalOffset,
3181                    isInBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap);
3182}
3183
3184/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
3185/// guaranteed to end in (at every loop iteration).  It is, at the same time,
3186/// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
3187/// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
3188uint32_t
3189ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
3190  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3191    return C->getValue()->getValue().countTrailingZeros();
3192
3193  if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
3194    return std::min(GetMinTrailingZeros(T->getOperand()),
3195                    (uint32_t)getTypeSizeInBits(T->getType()));
3196
3197  if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
3198    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3199    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3200             getTypeSizeInBits(E->getType()) : OpRes;
3201  }
3202
3203  if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
3204    uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
3205    return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
3206             getTypeSizeInBits(E->getType()) : OpRes;
3207  }
3208
3209  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
3210    // The result is the min of all operands results.
3211    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
3212    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
3213      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
3214    return MinOpRes;
3215  }
3216
3217  if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
3218    // The result is the sum of all operands results.
3219    uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
3220    uint32_t BitWidth = getTypeSizeInBits(M->getType());
3221    for (unsigned i = 1, e = M->getNumOperands();
3222         SumOpRes != BitWidth && i != e; ++i)
3223      SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
3224                          BitWidth);
3225    return SumOpRes;
3226  }
3227
3228  if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
3229    // The result is the min of all operands results.
3230    uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
3231    for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
3232      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
3233    return MinOpRes;
3234  }
3235
3236  if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
3237    // The result is the min of all operands results.
3238    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
3239    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
3240      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
3241    return MinOpRes;
3242  }
3243
3244  if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
3245    // The result is the min of all operands results.
3246    uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
3247    for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
3248      MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
3249    return MinOpRes;
3250  }
3251
3252  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3253    // For a SCEVUnknown, ask ValueTracking.
3254    unsigned BitWidth = getTypeSizeInBits(U->getType());
3255    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3256    ComputeMaskedBits(U->getValue(), Zeros, Ones);
3257    return Zeros.countTrailingOnes();
3258  }
3259
3260  // SCEVUDivExpr
3261  return 0;
3262}
3263
3264/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
3265///
3266ConstantRange
3267ScalarEvolution::getUnsignedRange(const SCEV *S) {
3268  // See if we've computed this range already.
3269  DenseMap<const SCEV *, ConstantRange>::iterator I = UnsignedRanges.find(S);
3270  if (I != UnsignedRanges.end())
3271    return I->second;
3272
3273  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3274    return setUnsignedRange(C, ConstantRange(C->getValue()->getValue()));
3275
3276  unsigned BitWidth = getTypeSizeInBits(S->getType());
3277  ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3278
3279  // If the value has known zeros, the maximum unsigned value will have those
3280  // known zeros as well.
3281  uint32_t TZ = GetMinTrailingZeros(S);
3282  if (TZ != 0)
3283    ConservativeResult =
3284      ConstantRange(APInt::getMinValue(BitWidth),
3285                    APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
3286
3287  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3288    ConstantRange X = getUnsignedRange(Add->getOperand(0));
3289    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3290      X = X.add(getUnsignedRange(Add->getOperand(i)));
3291    return setUnsignedRange(Add, ConservativeResult.intersectWith(X));
3292  }
3293
3294  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3295    ConstantRange X = getUnsignedRange(Mul->getOperand(0));
3296    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3297      X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
3298    return setUnsignedRange(Mul, ConservativeResult.intersectWith(X));
3299  }
3300
3301  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3302    ConstantRange X = getUnsignedRange(SMax->getOperand(0));
3303    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3304      X = X.smax(getUnsignedRange(SMax->getOperand(i)));
3305    return setUnsignedRange(SMax, ConservativeResult.intersectWith(X));
3306  }
3307
3308  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3309    ConstantRange X = getUnsignedRange(UMax->getOperand(0));
3310    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3311      X = X.umax(getUnsignedRange(UMax->getOperand(i)));
3312    return setUnsignedRange(UMax, ConservativeResult.intersectWith(X));
3313  }
3314
3315  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3316    ConstantRange X = getUnsignedRange(UDiv->getLHS());
3317    ConstantRange Y = getUnsignedRange(UDiv->getRHS());
3318    return setUnsignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
3319  }
3320
3321  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3322    ConstantRange X = getUnsignedRange(ZExt->getOperand());
3323    return setUnsignedRange(ZExt,
3324      ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
3325  }
3326
3327  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3328    ConstantRange X = getUnsignedRange(SExt->getOperand());
3329    return setUnsignedRange(SExt,
3330      ConservativeResult.intersectWith(X.signExtend(BitWidth)));
3331  }
3332
3333  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3334    ConstantRange X = getUnsignedRange(Trunc->getOperand());
3335    return setUnsignedRange(Trunc,
3336      ConservativeResult.intersectWith(X.truncate(BitWidth)));
3337  }
3338
3339  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3340    // If there's no unsigned wrap, the value will never be less than its
3341    // initial value.
3342    if (AddRec->getNoWrapFlags(SCEV::FlagNUW))
3343      if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
3344        if (!C->getValue()->isZero())
3345          ConservativeResult =
3346            ConservativeResult.intersectWith(
3347              ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0)));
3348
3349    // TODO: non-affine addrec
3350    if (AddRec->isAffine()) {
3351      Type *Ty = AddRec->getType();
3352      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3353      if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3354          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3355        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3356
3357        const SCEV *Start = AddRec->getStart();
3358        const SCEV *Step = AddRec->getStepRecurrence(*this);
3359
3360        ConstantRange StartRange = getUnsignedRange(Start);
3361        ConstantRange StepRange = getSignedRange(Step);
3362        ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3363        ConstantRange EndRange =
3364          StartRange.add(MaxBECountRange.multiply(StepRange));
3365
3366        // Check for overflow. This must be done with ConstantRange arithmetic
3367        // because we could be called from within the ScalarEvolution overflow
3368        // checking code.
3369        ConstantRange ExtStartRange = StartRange.zextOrTrunc(BitWidth*2+1);
3370        ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3371        ConstantRange ExtMaxBECountRange =
3372          MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3373        ConstantRange ExtEndRange = EndRange.zextOrTrunc(BitWidth*2+1);
3374        if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3375            ExtEndRange)
3376          return setUnsignedRange(AddRec, ConservativeResult);
3377
3378        APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
3379                                   EndRange.getUnsignedMin());
3380        APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
3381                                   EndRange.getUnsignedMax());
3382        if (Min.isMinValue() && Max.isMaxValue())
3383          return setUnsignedRange(AddRec, ConservativeResult);
3384        return setUnsignedRange(AddRec,
3385          ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
3386      }
3387    }
3388
3389    return setUnsignedRange(AddRec, ConservativeResult);
3390  }
3391
3392  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3393    // For a SCEVUnknown, ask ValueTracking.
3394    APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
3395    ComputeMaskedBits(U->getValue(), Zeros, Ones, TD);
3396    if (Ones == ~Zeros + 1)
3397      return setUnsignedRange(U, ConservativeResult);
3398    return setUnsignedRange(U,
3399      ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)));
3400  }
3401
3402  return setUnsignedRange(S, ConservativeResult);
3403}
3404
3405/// getSignedRange - Determine the signed range for a particular SCEV.
3406///
3407ConstantRange
3408ScalarEvolution::getSignedRange(const SCEV *S) {
3409  // See if we've computed this range already.
3410  DenseMap<const SCEV *, ConstantRange>::iterator I = SignedRanges.find(S);
3411  if (I != SignedRanges.end())
3412    return I->second;
3413
3414  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
3415    return setSignedRange(C, ConstantRange(C->getValue()->getValue()));
3416
3417  unsigned BitWidth = getTypeSizeInBits(S->getType());
3418  ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
3419
3420  // If the value has known zeros, the maximum signed value will have those
3421  // known zeros as well.
3422  uint32_t TZ = GetMinTrailingZeros(S);
3423  if (TZ != 0)
3424    ConservativeResult =
3425      ConstantRange(APInt::getSignedMinValue(BitWidth),
3426                    APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
3427
3428  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3429    ConstantRange X = getSignedRange(Add->getOperand(0));
3430    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
3431      X = X.add(getSignedRange(Add->getOperand(i)));
3432    return setSignedRange(Add, ConservativeResult.intersectWith(X));
3433  }
3434
3435  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3436    ConstantRange X = getSignedRange(Mul->getOperand(0));
3437    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
3438      X = X.multiply(getSignedRange(Mul->getOperand(i)));
3439    return setSignedRange(Mul, ConservativeResult.intersectWith(X));
3440  }
3441
3442  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
3443    ConstantRange X = getSignedRange(SMax->getOperand(0));
3444    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
3445      X = X.smax(getSignedRange(SMax->getOperand(i)));
3446    return setSignedRange(SMax, ConservativeResult.intersectWith(X));
3447  }
3448
3449  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
3450    ConstantRange X = getSignedRange(UMax->getOperand(0));
3451    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
3452      X = X.umax(getSignedRange(UMax->getOperand(i)));
3453    return setSignedRange(UMax, ConservativeResult.intersectWith(X));
3454  }
3455
3456  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
3457    ConstantRange X = getSignedRange(UDiv->getLHS());
3458    ConstantRange Y = getSignedRange(UDiv->getRHS());
3459    return setSignedRange(UDiv, ConservativeResult.intersectWith(X.udiv(Y)));
3460  }
3461
3462  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
3463    ConstantRange X = getSignedRange(ZExt->getOperand());
3464    return setSignedRange(ZExt,
3465      ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
3466  }
3467
3468  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
3469    ConstantRange X = getSignedRange(SExt->getOperand());
3470    return setSignedRange(SExt,
3471      ConservativeResult.intersectWith(X.signExtend(BitWidth)));
3472  }
3473
3474  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
3475    ConstantRange X = getSignedRange(Trunc->getOperand());
3476    return setSignedRange(Trunc,
3477      ConservativeResult.intersectWith(X.truncate(BitWidth)));
3478  }
3479
3480  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
3481    // If there's no signed wrap, and all the operands have the same sign or
3482    // zero, the value won't ever change sign.
3483    if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) {
3484      bool AllNonNeg = true;
3485      bool AllNonPos = true;
3486      for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
3487        if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
3488        if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
3489      }
3490      if (AllNonNeg)
3491        ConservativeResult = ConservativeResult.intersectWith(
3492          ConstantRange(APInt(BitWidth, 0),
3493                        APInt::getSignedMinValue(BitWidth)));
3494      else if (AllNonPos)
3495        ConservativeResult = ConservativeResult.intersectWith(
3496          ConstantRange(APInt::getSignedMinValue(BitWidth),
3497                        APInt(BitWidth, 1)));
3498    }
3499
3500    // TODO: non-affine addrec
3501    if (AddRec->isAffine()) {
3502      Type *Ty = AddRec->getType();
3503      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
3504      if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
3505          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
3506        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
3507
3508        const SCEV *Start = AddRec->getStart();
3509        const SCEV *Step = AddRec->getStepRecurrence(*this);
3510
3511        ConstantRange StartRange = getSignedRange(Start);
3512        ConstantRange StepRange = getSignedRange(Step);
3513        ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
3514        ConstantRange EndRange =
3515          StartRange.add(MaxBECountRange.multiply(StepRange));
3516
3517        // Check for overflow. This must be done with ConstantRange arithmetic
3518        // because we could be called from within the ScalarEvolution overflow
3519        // checking code.
3520        ConstantRange ExtStartRange = StartRange.sextOrTrunc(BitWidth*2+1);
3521        ConstantRange ExtStepRange = StepRange.sextOrTrunc(BitWidth*2+1);
3522        ConstantRange ExtMaxBECountRange =
3523          MaxBECountRange.zextOrTrunc(BitWidth*2+1);
3524        ConstantRange ExtEndRange = EndRange.sextOrTrunc(BitWidth*2+1);
3525        if (ExtStartRange.add(ExtMaxBECountRange.multiply(ExtStepRange)) !=
3526            ExtEndRange)
3527          return setSignedRange(AddRec, ConservativeResult);
3528
3529        APInt Min = APIntOps::smin(StartRange.getSignedMin(),
3530                                   EndRange.getSignedMin());
3531        APInt Max = APIntOps::smax(StartRange.getSignedMax(),
3532                                   EndRange.getSignedMax());
3533        if (Min.isMinSignedValue() && Max.isMaxSignedValue())
3534          return setSignedRange(AddRec, ConservativeResult);
3535        return setSignedRange(AddRec,
3536          ConservativeResult.intersectWith(ConstantRange(Min, Max+1)));
3537      }
3538    }
3539
3540    return setSignedRange(AddRec, ConservativeResult);
3541  }
3542
3543  if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
3544    // For a SCEVUnknown, ask ValueTracking.
3545    if (!U->getValue()->getType()->isIntegerTy() && !TD)
3546      return setSignedRange(U, ConservativeResult);
3547    unsigned NS = ComputeNumSignBits(U->getValue(), TD);
3548    if (NS == 1)
3549      return setSignedRange(U, ConservativeResult);
3550    return setSignedRange(U, ConservativeResult.intersectWith(
3551      ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
3552                    APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1)));
3553  }
3554
3555  return setSignedRange(S, ConservativeResult);
3556}
3557
3558/// createSCEV - We know that there is no SCEV for the specified value.
3559/// Analyze the expression.
3560///
3561const SCEV *ScalarEvolution::createSCEV(Value *V) {
3562  if (!isSCEVable(V->getType()))
3563    return getUnknown(V);
3564
3565  unsigned Opcode = Instruction::UserOp1;
3566  if (Instruction *I = dyn_cast<Instruction>(V)) {
3567    Opcode = I->getOpcode();
3568
3569    // Don't attempt to analyze instructions in blocks that aren't
3570    // reachable. Such instructions don't matter, and they aren't required
3571    // to obey basic rules for definitions dominating uses which this
3572    // analysis depends on.
3573    if (!DT->isReachableFromEntry(I->getParent()))
3574      return getUnknown(V);
3575  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
3576    Opcode = CE->getOpcode();
3577  else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
3578    return getConstant(CI);
3579  else if (isa<ConstantPointerNull>(V))
3580    return getConstant(V->getType(), 0);
3581  else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
3582    return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
3583  else
3584    return getUnknown(V);
3585
3586  Operator *U = cast<Operator>(V);
3587  switch (Opcode) {
3588  case Instruction::Add: {
3589    // The simple thing to do would be to just call getSCEV on both operands
3590    // and call getAddExpr with the result. However if we're looking at a
3591    // bunch of things all added together, this can be quite inefficient,
3592    // because it leads to N-1 getAddExpr calls for N ultimate operands.
3593    // Instead, gather up all the operands and make a single getAddExpr call.
3594    // LLVM IR canonical form means we need only traverse the left operands.
3595    //
3596    // Don't apply this instruction's NSW or NUW flags to the new
3597    // expression. The instruction may be guarded by control flow that the
3598    // no-wrap behavior depends on. Non-control-equivalent instructions can be
3599    // mapped to the same SCEV expression, and it would be incorrect to transfer
3600    // NSW/NUW semantics to those operations.
3601    SmallVector<const SCEV *, 4> AddOps;
3602    AddOps.push_back(getSCEV(U->getOperand(1)));
3603    for (Value *Op = U->getOperand(0); ; Op = U->getOperand(0)) {
3604      unsigned Opcode = Op->getValueID() - Value::InstructionVal;
3605      if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
3606        break;
3607      U = cast<Operator>(Op);
3608      const SCEV *Op1 = getSCEV(U->getOperand(1));
3609      if (Opcode == Instruction::Sub)
3610        AddOps.push_back(getNegativeSCEV(Op1));
3611      else
3612        AddOps.push_back(Op1);
3613    }
3614    AddOps.push_back(getSCEV(U->getOperand(0)));
3615    return getAddExpr(AddOps);
3616  }
3617  case Instruction::Mul: {
3618    // Don't transfer NSW/NUW for the same reason as AddExpr.
3619    SmallVector<const SCEV *, 4> MulOps;
3620    MulOps.push_back(getSCEV(U->getOperand(1)));
3621    for (Value *Op = U->getOperand(0);
3622         Op->getValueID() == Instruction::Mul + Value::InstructionVal;
3623         Op = U->getOperand(0)) {
3624      U = cast<Operator>(Op);
3625      MulOps.push_back(getSCEV(U->getOperand(1)));
3626    }
3627    MulOps.push_back(getSCEV(U->getOperand(0)));
3628    return getMulExpr(MulOps);
3629  }
3630  case Instruction::UDiv:
3631    return getUDivExpr(getSCEV(U->getOperand(0)),
3632                       getSCEV(U->getOperand(1)));
3633  case Instruction::Sub:
3634    return getMinusSCEV(getSCEV(U->getOperand(0)),
3635                        getSCEV(U->getOperand(1)));
3636  case Instruction::And:
3637    // For an expression like x&255 that merely masks off the high bits,
3638    // use zext(trunc(x)) as the SCEV expression.
3639    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3640      if (CI->isNullValue())
3641        return getSCEV(U->getOperand(1));
3642      if (CI->isAllOnesValue())
3643        return getSCEV(U->getOperand(0));
3644      const APInt &A = CI->getValue();
3645
3646      // Instcombine's ShrinkDemandedConstant may strip bits out of
3647      // constants, obscuring what would otherwise be a low-bits mask.
3648      // Use ComputeMaskedBits to compute what ShrinkDemandedConstant
3649      // knew about to reconstruct a low-bits mask value.
3650      unsigned LZ = A.countLeadingZeros();
3651      unsigned BitWidth = A.getBitWidth();
3652      APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3653      ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, TD);
3654
3655      APInt EffectiveMask = APInt::getLowBitsSet(BitWidth, BitWidth - LZ);
3656
3657      if (LZ != 0 && !((~A & ~KnownZero) & EffectiveMask))
3658        return
3659          getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
3660                                IntegerType::get(getContext(), BitWidth - LZ)),
3661                            U->getType());
3662    }
3663    break;
3664
3665  case Instruction::Or:
3666    // If the RHS of the Or is a constant, we may have something like:
3667    // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
3668    // optimizations will transparently handle this case.
3669    //
3670    // In order for this transformation to be safe, the LHS must be of the
3671    // form X*(2^n) and the Or constant must be less than 2^n.
3672    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3673      const SCEV *LHS = getSCEV(U->getOperand(0));
3674      const APInt &CIVal = CI->getValue();
3675      if (GetMinTrailingZeros(LHS) >=
3676          (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
3677        // Build a plain add SCEV.
3678        const SCEV *S = getAddExpr(LHS, getSCEV(CI));
3679        // If the LHS of the add was an addrec and it has no-wrap flags,
3680        // transfer the no-wrap flags, since an or won't introduce a wrap.
3681        if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
3682          const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
3683          const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
3684            OldAR->getNoWrapFlags());
3685        }
3686        return S;
3687      }
3688    }
3689    break;
3690  case Instruction::Xor:
3691    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
3692      // If the RHS of the xor is a signbit, then this is just an add.
3693      // Instcombine turns add of signbit into xor as a strength reduction step.
3694      if (CI->getValue().isSignBit())
3695        return getAddExpr(getSCEV(U->getOperand(0)),
3696                          getSCEV(U->getOperand(1)));
3697
3698      // If the RHS of xor is -1, then this is a not operation.
3699      if (CI->isAllOnesValue())
3700        return getNotSCEV(getSCEV(U->getOperand(0)));
3701
3702      // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
3703      // This is a variant of the check for xor with -1, and it handles
3704      // the case where instcombine has trimmed non-demanded bits out
3705      // of an xor with -1.
3706      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0)))
3707        if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1)))
3708          if (BO->getOpcode() == Instruction::And &&
3709              LCI->getValue() == CI->getValue())
3710            if (const SCEVZeroExtendExpr *Z =
3711                  dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) {
3712              Type *UTy = U->getType();
3713              const SCEV *Z0 = Z->getOperand();
3714              Type *Z0Ty = Z0->getType();
3715              unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
3716
3717              // If C is a low-bits mask, the zero extend is serving to
3718              // mask off the high bits. Complement the operand and
3719              // re-apply the zext.
3720              if (APIntOps::isMask(Z0TySize, CI->getValue()))
3721                return getZeroExtendExpr(getNotSCEV(Z0), UTy);
3722
3723              // If C is a single bit, it may be in the sign-bit position
3724              // before the zero-extend. In this case, represent the xor
3725              // using an add, which is equivalent, and re-apply the zext.
3726              APInt Trunc = CI->getValue().trunc(Z0TySize);
3727              if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
3728                  Trunc.isSignBit())
3729                return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
3730                                         UTy);
3731            }
3732    }
3733    break;
3734
3735  case Instruction::Shl:
3736    // Turn shift left of a constant amount into a multiply.
3737    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3738      uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3739
3740      // If the shift count is not less than the bitwidth, the result of
3741      // the shift is undefined. Don't try to analyze it, because the
3742      // resolution chosen here may differ from the resolution chosen in
3743      // other parts of the compiler.
3744      if (SA->getValue().uge(BitWidth))
3745        break;
3746
3747      Constant *X = ConstantInt::get(getContext(),
3748        APInt(BitWidth, 1).shl(SA->getZExtValue()));
3749      return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3750    }
3751    break;
3752
3753  case Instruction::LShr:
3754    // Turn logical shift right of a constant into a unsigned divide.
3755    if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
3756      uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth();
3757
3758      // If the shift count is not less than the bitwidth, the result of
3759      // the shift is undefined. Don't try to analyze it, because the
3760      // resolution chosen here may differ from the resolution chosen in
3761      // other parts of the compiler.
3762      if (SA->getValue().uge(BitWidth))
3763        break;
3764
3765      Constant *X = ConstantInt::get(getContext(),
3766        APInt(BitWidth, 1).shl(SA->getZExtValue()));
3767      return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
3768    }
3769    break;
3770
3771  case Instruction::AShr:
3772    // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
3773    if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
3774      if (Operator *L = dyn_cast<Operator>(U->getOperand(0)))
3775        if (L->getOpcode() == Instruction::Shl &&
3776            L->getOperand(1) == U->getOperand(1)) {
3777          uint64_t BitWidth = getTypeSizeInBits(U->getType());
3778
3779          // If the shift count is not less than the bitwidth, the result of
3780          // the shift is undefined. Don't try to analyze it, because the
3781          // resolution chosen here may differ from the resolution chosen in
3782          // other parts of the compiler.
3783          if (CI->getValue().uge(BitWidth))
3784            break;
3785
3786          uint64_t Amt = BitWidth - CI->getZExtValue();
3787          if (Amt == BitWidth)
3788            return getSCEV(L->getOperand(0));       // shift by zero --> noop
3789          return
3790            getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
3791                                              IntegerType::get(getContext(),
3792                                                               Amt)),
3793                              U->getType());
3794        }
3795    break;
3796
3797  case Instruction::Trunc:
3798    return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
3799
3800  case Instruction::ZExt:
3801    return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3802
3803  case Instruction::SExt:
3804    return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
3805
3806  case Instruction::BitCast:
3807    // BitCasts are no-op casts so we just eliminate the cast.
3808    if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
3809      return getSCEV(U->getOperand(0));
3810    break;
3811
3812  // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
3813  // lead to pointer expressions which cannot safely be expanded to GEPs,
3814  // because ScalarEvolution doesn't respect the GEP aliasing rules when
3815  // simplifying integer expressions.
3816
3817  case Instruction::GetElementPtr:
3818    return createNodeForGEP(cast<GEPOperator>(U));
3819
3820  case Instruction::PHI:
3821    return createNodeForPHI(cast<PHINode>(U));
3822
3823  case Instruction::Select:
3824    // This could be a smax or umax that was lowered earlier.
3825    // Try to recover it.
3826    if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
3827      Value *LHS = ICI->getOperand(0);
3828      Value *RHS = ICI->getOperand(1);
3829      switch (ICI->getPredicate()) {
3830      case ICmpInst::ICMP_SLT:
3831      case ICmpInst::ICMP_SLE:
3832        std::swap(LHS, RHS);
3833        // fall through
3834      case ICmpInst::ICMP_SGT:
3835      case ICmpInst::ICMP_SGE:
3836        // a >s b ? a+x : b+x  ->  smax(a, b)+x
3837        // a >s b ? b+x : a+x  ->  smin(a, b)+x
3838        if (LHS->getType() == U->getType()) {
3839          const SCEV *LS = getSCEV(LHS);
3840          const SCEV *RS = getSCEV(RHS);
3841          const SCEV *LA = getSCEV(U->getOperand(1));
3842          const SCEV *RA = getSCEV(U->getOperand(2));
3843          const SCEV *LDiff = getMinusSCEV(LA, LS);
3844          const SCEV *RDiff = getMinusSCEV(RA, RS);
3845          if (LDiff == RDiff)
3846            return getAddExpr(getSMaxExpr(LS, RS), LDiff);
3847          LDiff = getMinusSCEV(LA, RS);
3848          RDiff = getMinusSCEV(RA, LS);
3849          if (LDiff == RDiff)
3850            return getAddExpr(getSMinExpr(LS, RS), LDiff);
3851        }
3852        break;
3853      case ICmpInst::ICMP_ULT:
3854      case ICmpInst::ICMP_ULE:
3855        std::swap(LHS, RHS);
3856        // fall through
3857      case ICmpInst::ICMP_UGT:
3858      case ICmpInst::ICMP_UGE:
3859        // a >u b ? a+x : b+x  ->  umax(a, b)+x
3860        // a >u b ? b+x : a+x  ->  umin(a, b)+x
3861        if (LHS->getType() == U->getType()) {
3862          const SCEV *LS = getSCEV(LHS);
3863          const SCEV *RS = getSCEV(RHS);
3864          const SCEV *LA = getSCEV(U->getOperand(1));
3865          const SCEV *RA = getSCEV(U->getOperand(2));
3866          const SCEV *LDiff = getMinusSCEV(LA, LS);
3867          const SCEV *RDiff = getMinusSCEV(RA, RS);
3868          if (LDiff == RDiff)
3869            return getAddExpr(getUMaxExpr(LS, RS), LDiff);
3870          LDiff = getMinusSCEV(LA, RS);
3871          RDiff = getMinusSCEV(RA, LS);
3872          if (LDiff == RDiff)
3873            return getAddExpr(getUMinExpr(LS, RS), LDiff);
3874        }
3875        break;
3876      case ICmpInst::ICMP_NE:
3877        // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
3878        if (LHS->getType() == U->getType() &&
3879            isa<ConstantInt>(RHS) &&
3880            cast<ConstantInt>(RHS)->isZero()) {
3881          const SCEV *One = getConstant(LHS->getType(), 1);
3882          const SCEV *LS = getSCEV(LHS);
3883          const SCEV *LA = getSCEV(U->getOperand(1));
3884          const SCEV *RA = getSCEV(U->getOperand(2));
3885          const SCEV *LDiff = getMinusSCEV(LA, LS);
3886          const SCEV *RDiff = getMinusSCEV(RA, One);
3887          if (LDiff == RDiff)
3888            return getAddExpr(getUMaxExpr(One, LS), LDiff);
3889        }
3890        break;
3891      case ICmpInst::ICMP_EQ:
3892        // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
3893        if (LHS->getType() == U->getType() &&
3894            isa<ConstantInt>(RHS) &&
3895            cast<ConstantInt>(RHS)->isZero()) {
3896          const SCEV *One = getConstant(LHS->getType(), 1);
3897          const SCEV *LS = getSCEV(LHS);
3898          const SCEV *LA = getSCEV(U->getOperand(1));
3899          const SCEV *RA = getSCEV(U->getOperand(2));
3900          const SCEV *LDiff = getMinusSCEV(LA, One);
3901          const SCEV *RDiff = getMinusSCEV(RA, LS);
3902          if (LDiff == RDiff)
3903            return getAddExpr(getUMaxExpr(One, LS), LDiff);
3904        }
3905        break;
3906      default:
3907        break;
3908      }
3909    }
3910
3911  default: // We cannot analyze this expression.
3912    break;
3913  }
3914
3915  return getUnknown(V);
3916}
3917
3918
3919
3920//===----------------------------------------------------------------------===//
3921//                   Iteration Count Computation Code
3922//
3923
3924/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
3925/// normal unsigned value. Returns 0 if the trip count is unknown or not
3926/// constant. Will also return 0 if the maximum trip count is very large (>=
3927/// 2^32).
3928///
3929/// This "trip count" assumes that control exits via ExitingBlock. More
3930/// precisely, it is the number of times that control may reach ExitingBlock
3931/// before taking the branch. For loops with multiple exits, it may not be the
3932/// number times that the loop header executes because the loop may exit
3933/// prematurely via another branch.
3934unsigned ScalarEvolution::
3935getSmallConstantTripCount(Loop *L, BasicBlock *ExitingBlock) {
3936  const SCEVConstant *ExitCount =
3937    dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
3938  if (!ExitCount)
3939    return 0;
3940
3941  ConstantInt *ExitConst = ExitCount->getValue();
3942
3943  // Guard against huge trip counts.
3944  if (ExitConst->getValue().getActiveBits() > 32)
3945    return 0;
3946
3947  // In case of integer overflow, this returns 0, which is correct.
3948  return ((unsigned)ExitConst->getZExtValue()) + 1;
3949}
3950
3951/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
3952/// trip count of this loop as a normal unsigned value, if possible. This
3953/// means that the actual trip count is always a multiple of the returned
3954/// value (don't forget the trip count could very well be zero as well!).
3955///
3956/// Returns 1 if the trip count is unknown or not guaranteed to be the
3957/// multiple of a constant (which is also the case if the trip count is simply
3958/// constant, use getSmallConstantTripCount for that case), Will also return 1
3959/// if the trip count is very large (>= 2^32).
3960///
3961/// As explained in the comments for getSmallConstantTripCount, this assumes
3962/// that control exits the loop via ExitingBlock.
3963unsigned ScalarEvolution::
3964getSmallConstantTripMultiple(Loop *L, BasicBlock *ExitingBlock) {
3965  const SCEV *ExitCount = getExitCount(L, ExitingBlock);
3966  if (ExitCount == getCouldNotCompute())
3967    return 1;
3968
3969  // Get the trip count from the BE count by adding 1.
3970  const SCEV *TCMul = getAddExpr(ExitCount,
3971                                 getConstant(ExitCount->getType(), 1));
3972  // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
3973  // to factor simple cases.
3974  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
3975    TCMul = Mul->getOperand(0);
3976
3977  const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
3978  if (!MulC)
3979    return 1;
3980
3981  ConstantInt *Result = MulC->getValue();
3982
3983  // Guard against huge trip counts.
3984  if (!Result || Result->getValue().getActiveBits() > 32)
3985    return 1;
3986
3987  return (unsigned)Result->getZExtValue();
3988}
3989
3990// getExitCount - Get the expression for the number of loop iterations for which
3991// this loop is guaranteed not to exit via ExitintBlock. Otherwise return
3992// SCEVCouldNotCompute.
3993const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
3994  return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
3995}
3996
3997/// getBackedgeTakenCount - If the specified loop has a predictable
3998/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
3999/// object. The backedge-taken count is the number of times the loop header
4000/// will be branched to from within the loop. This is one less than the
4001/// trip count of the loop, since it doesn't count the first iteration,
4002/// when the header is branched to from outside the loop.
4003///
4004/// Note that it is not valid to call this method on a loop without a
4005/// loop-invariant backedge-taken count (see
4006/// hasLoopInvariantBackedgeTakenCount).
4007///
4008const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
4009  return getBackedgeTakenInfo(L).getExact(this);
4010}
4011
4012/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
4013/// return the least SCEV value that is known never to be less than the
4014/// actual backedge taken count.
4015const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
4016  return getBackedgeTakenInfo(L).getMax(this);
4017}
4018
4019/// PushLoopPHIs - Push PHI nodes in the header of the given loop
4020/// onto the given Worklist.
4021static void
4022PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
4023  BasicBlock *Header = L->getHeader();
4024
4025  // Push all Loop-header PHIs onto the Worklist stack.
4026  for (BasicBlock::iterator I = Header->begin();
4027       PHINode *PN = dyn_cast<PHINode>(I); ++I)
4028    Worklist.push_back(PN);
4029}
4030
4031const ScalarEvolution::BackedgeTakenInfo &
4032ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
4033  // Initially insert an invalid entry for this loop. If the insertion
4034  // succeeds, proceed to actually compute a backedge-taken count and
4035  // update the value. The temporary CouldNotCompute value tells SCEV
4036  // code elsewhere that it shouldn't attempt to request a new
4037  // backedge-taken count, which could result in infinite recursion.
4038  std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
4039    BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo()));
4040  if (!Pair.second)
4041    return Pair.first->second;
4042
4043  // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it
4044  // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
4045  // must be cleared in this scope.
4046  BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L);
4047
4048  if (Result.getExact(this) != getCouldNotCompute()) {
4049    assert(isLoopInvariant(Result.getExact(this), L) &&
4050           isLoopInvariant(Result.getMax(this), L) &&
4051           "Computed backedge-taken count isn't loop invariant for loop!");
4052    ++NumTripCountsComputed;
4053  }
4054  else if (Result.getMax(this) == getCouldNotCompute() &&
4055           isa<PHINode>(L->getHeader()->begin())) {
4056    // Only count loops that have phi nodes as not being computable.
4057    ++NumTripCountsNotComputed;
4058  }
4059
4060  // Now that we know more about the trip count for this loop, forget any
4061  // existing SCEV values for PHI nodes in this loop since they are only
4062  // conservative estimates made without the benefit of trip count
4063  // information. This is similar to the code in forgetLoop, except that
4064  // it handles SCEVUnknown PHI nodes specially.
4065  if (Result.hasAnyInfo()) {
4066    SmallVector<Instruction *, 16> Worklist;
4067    PushLoopPHIs(L, Worklist);
4068
4069    SmallPtrSet<Instruction *, 8> Visited;
4070    while (!Worklist.empty()) {
4071      Instruction *I = Worklist.pop_back_val();
4072      if (!Visited.insert(I)) continue;
4073
4074      ValueExprMapType::iterator It =
4075        ValueExprMap.find_as(static_cast<Value *>(I));
4076      if (It != ValueExprMap.end()) {
4077        const SCEV *Old = It->second;
4078
4079        // SCEVUnknown for a PHI either means that it has an unrecognized
4080        // structure, or it's a PHI that's in the progress of being computed
4081        // by createNodeForPHI.  In the former case, additional loop trip
4082        // count information isn't going to change anything. In the later
4083        // case, createNodeForPHI will perform the necessary updates on its
4084        // own when it gets to that point.
4085        if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
4086          forgetMemoizedResults(Old);
4087          ValueExprMap.erase(It);
4088        }
4089        if (PHINode *PN = dyn_cast<PHINode>(I))
4090          ConstantEvolutionLoopExitValue.erase(PN);
4091      }
4092
4093      PushDefUseChildren(I, Worklist);
4094    }
4095  }
4096
4097  // Re-lookup the insert position, since the call to
4098  // ComputeBackedgeTakenCount above could result in a
4099  // recusive call to getBackedgeTakenInfo (on a different
4100  // loop), which would invalidate the iterator computed
4101  // earlier.
4102  return BackedgeTakenCounts.find(L)->second = Result;
4103}
4104
4105/// forgetLoop - This method should be called by the client when it has
4106/// changed a loop in a way that may effect ScalarEvolution's ability to
4107/// compute a trip count, or if the loop is deleted.
4108void ScalarEvolution::forgetLoop(const Loop *L) {
4109  // Drop any stored trip count value.
4110  DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
4111    BackedgeTakenCounts.find(L);
4112  if (BTCPos != BackedgeTakenCounts.end()) {
4113    BTCPos->second.clear();
4114    BackedgeTakenCounts.erase(BTCPos);
4115  }
4116
4117  // Drop information about expressions based on loop-header PHIs.
4118  SmallVector<Instruction *, 16> Worklist;
4119  PushLoopPHIs(L, Worklist);
4120
4121  SmallPtrSet<Instruction *, 8> Visited;
4122  while (!Worklist.empty()) {
4123    Instruction *I = Worklist.pop_back_val();
4124    if (!Visited.insert(I)) continue;
4125
4126    ValueExprMapType::iterator It =
4127      ValueExprMap.find_as(static_cast<Value *>(I));
4128    if (It != ValueExprMap.end()) {
4129      forgetMemoizedResults(It->second);
4130      ValueExprMap.erase(It);
4131      if (PHINode *PN = dyn_cast<PHINode>(I))
4132        ConstantEvolutionLoopExitValue.erase(PN);
4133    }
4134
4135    PushDefUseChildren(I, Worklist);
4136  }
4137
4138  // Forget all contained loops too, to avoid dangling entries in the
4139  // ValuesAtScopes map.
4140  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
4141    forgetLoop(*I);
4142}
4143
4144/// forgetValue - This method should be called by the client when it has
4145/// changed a value in a way that may effect its value, or which may
4146/// disconnect it from a def-use chain linking it to a loop.
4147void ScalarEvolution::forgetValue(Value *V) {
4148  Instruction *I = dyn_cast<Instruction>(V);
4149  if (!I) return;
4150
4151  // Drop information about expressions based on loop-header PHIs.
4152  SmallVector<Instruction *, 16> Worklist;
4153  Worklist.push_back(I);
4154
4155  SmallPtrSet<Instruction *, 8> Visited;
4156  while (!Worklist.empty()) {
4157    I = Worklist.pop_back_val();
4158    if (!Visited.insert(I)) continue;
4159
4160    ValueExprMapType::iterator It =
4161      ValueExprMap.find_as(static_cast<Value *>(I));
4162    if (It != ValueExprMap.end()) {
4163      forgetMemoizedResults(It->second);
4164      ValueExprMap.erase(It);
4165      if (PHINode *PN = dyn_cast<PHINode>(I))
4166        ConstantEvolutionLoopExitValue.erase(PN);
4167    }
4168
4169    PushDefUseChildren(I, Worklist);
4170  }
4171}
4172
4173/// getExact - Get the exact loop backedge taken count considering all loop
4174/// exits. A computable result can only be return for loops with a single exit.
4175/// Returning the minimum taken count among all exits is incorrect because one
4176/// of the loop's exit limit's may have been skipped. HowFarToZero assumes that
4177/// the limit of each loop test is never skipped. This is a valid assumption as
4178/// long as the loop exits via that test. For precise results, it is the
4179/// caller's responsibility to specify the relevant loop exit using
4180/// getExact(ExitingBlock, SE).
4181const SCEV *
4182ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
4183  // If any exits were not computable, the loop is not computable.
4184  if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
4185
4186  // We need exactly one computable exit.
4187  if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
4188  assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
4189
4190  const SCEV *BECount = 0;
4191  for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4192       ENT != 0; ENT = ENT->getNextExit()) {
4193
4194    assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
4195
4196    if (!BECount)
4197      BECount = ENT->ExactNotTaken;
4198    else if (BECount != ENT->ExactNotTaken)
4199      return SE->getCouldNotCompute();
4200  }
4201  assert(BECount && "Invalid not taken count for loop exit");
4202  return BECount;
4203}
4204
4205/// getExact - Get the exact not taken count for this loop exit.
4206const SCEV *
4207ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
4208                                             ScalarEvolution *SE) const {
4209  for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
4210       ENT != 0; ENT = ENT->getNextExit()) {
4211
4212    if (ENT->ExitingBlock == ExitingBlock)
4213      return ENT->ExactNotTaken;
4214  }
4215  return SE->getCouldNotCompute();
4216}
4217
4218/// getMax - Get the max backedge taken count for the loop.
4219const SCEV *
4220ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
4221  return Max ? Max : SE->getCouldNotCompute();
4222}
4223
4224/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
4225/// computable exit into a persistent ExitNotTakenInfo array.
4226ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
4227  SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
4228  bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
4229
4230  if (!Complete)
4231    ExitNotTaken.setIncomplete();
4232
4233  unsigned NumExits = ExitCounts.size();
4234  if (NumExits == 0) return;
4235
4236  ExitNotTaken.ExitingBlock = ExitCounts[0].first;
4237  ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
4238  if (NumExits == 1) return;
4239
4240  // Handle the rare case of multiple computable exits.
4241  ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
4242
4243  ExitNotTakenInfo *PrevENT = &ExitNotTaken;
4244  for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
4245    PrevENT->setNextExit(ENT);
4246    ENT->ExitingBlock = ExitCounts[i].first;
4247    ENT->ExactNotTaken = ExitCounts[i].second;
4248  }
4249}
4250
4251/// clear - Invalidate this result and free the ExitNotTakenInfo array.
4252void ScalarEvolution::BackedgeTakenInfo::clear() {
4253  ExitNotTaken.ExitingBlock = 0;
4254  ExitNotTaken.ExactNotTaken = 0;
4255  delete[] ExitNotTaken.getNextExit();
4256}
4257
4258/// ComputeBackedgeTakenCount - Compute the number of times the backedge
4259/// of the specified loop will execute.
4260ScalarEvolution::BackedgeTakenInfo
4261ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
4262  SmallVector<BasicBlock *, 8> ExitingBlocks;
4263  L->getExitingBlocks(ExitingBlocks);
4264
4265  // Examine all exits and pick the most conservative values.
4266  const SCEV *MaxBECount = getCouldNotCompute();
4267  bool CouldComputeBECount = true;
4268  SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
4269  for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
4270    ExitLimit EL = ComputeExitLimit(L, ExitingBlocks[i]);
4271    if (EL.Exact == getCouldNotCompute())
4272      // We couldn't compute an exact value for this exit, so
4273      // we won't be able to compute an exact value for the loop.
4274      CouldComputeBECount = false;
4275    else
4276      ExitCounts.push_back(std::make_pair(ExitingBlocks[i], EL.Exact));
4277
4278    if (MaxBECount == getCouldNotCompute())
4279      MaxBECount = EL.Max;
4280    else if (EL.Max != getCouldNotCompute()) {
4281      // We cannot take the "min" MaxBECount, because non-unit stride loops may
4282      // skip some loop tests. Taking the max over the exits is sufficiently
4283      // conservative.  TODO: We could do better taking into consideration
4284      // that (1) the loop has unit stride (2) the last loop test is
4285      // less-than/greater-than (3) any loop test is less-than/greater-than AND
4286      // falls-through some constant times less then the other tests.
4287      MaxBECount = getUMaxFromMismatchedTypes(MaxBECount, EL.Max);
4288    }
4289  }
4290
4291  return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
4292}
4293
4294/// ComputeExitLimit - Compute the number of times the backedge of the specified
4295/// loop will execute if it exits via the specified block.
4296ScalarEvolution::ExitLimit
4297ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
4298
4299  // Okay, we've chosen an exiting block.  See what condition causes us to
4300  // exit at this block.
4301  //
4302  // FIXME: we should be able to handle switch instructions (with a single exit)
4303  BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
4304  if (ExitBr == 0) return getCouldNotCompute();
4305  assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
4306
4307  // At this point, we know we have a conditional branch that determines whether
4308  // the loop is exited.  However, we don't know if the branch is executed each
4309  // time through the loop.  If not, then the execution count of the branch will
4310  // not be equal to the trip count of the loop.
4311  //
4312  // Currently we check for this by checking to see if the Exit branch goes to
4313  // the loop header.  If so, we know it will always execute the same number of
4314  // times as the loop.  We also handle the case where the exit block *is* the
4315  // loop header.  This is common for un-rotated loops.
4316  //
4317  // If both of those tests fail, walk up the unique predecessor chain to the
4318  // header, stopping if there is an edge that doesn't exit the loop. If the
4319  // header is reached, the execution count of the branch will be equal to the
4320  // trip count of the loop.
4321  //
4322  //  More extensive analysis could be done to handle more cases here.
4323  //
4324  if (ExitBr->getSuccessor(0) != L->getHeader() &&
4325      ExitBr->getSuccessor(1) != L->getHeader() &&
4326      ExitBr->getParent() != L->getHeader()) {
4327    // The simple checks failed, try climbing the unique predecessor chain
4328    // up to the header.
4329    bool Ok = false;
4330    for (BasicBlock *BB = ExitBr->getParent(); BB; ) {
4331      BasicBlock *Pred = BB->getUniquePredecessor();
4332      if (!Pred)
4333        return getCouldNotCompute();
4334      TerminatorInst *PredTerm = Pred->getTerminator();
4335      for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) {
4336        BasicBlock *PredSucc = PredTerm->getSuccessor(i);
4337        if (PredSucc == BB)
4338          continue;
4339        // If the predecessor has a successor that isn't BB and isn't
4340        // outside the loop, assume the worst.
4341        if (L->contains(PredSucc))
4342          return getCouldNotCompute();
4343      }
4344      if (Pred == L->getHeader()) {
4345        Ok = true;
4346        break;
4347      }
4348      BB = Pred;
4349    }
4350    if (!Ok)
4351      return getCouldNotCompute();
4352  }
4353
4354  // Proceed to the next level to examine the exit condition expression.
4355  return ComputeExitLimitFromCond(L, ExitBr->getCondition(),
4356                                  ExitBr->getSuccessor(0),
4357                                  ExitBr->getSuccessor(1));
4358}
4359
4360/// ComputeExitLimitFromCond - Compute the number of times the
4361/// backedge of the specified loop will execute if its exit condition
4362/// were a conditional branch of ExitCond, TBB, and FBB.
4363ScalarEvolution::ExitLimit
4364ScalarEvolution::ComputeExitLimitFromCond(const Loop *L,
4365                                          Value *ExitCond,
4366                                          BasicBlock *TBB,
4367                                          BasicBlock *FBB) {
4368  // Check if the controlling expression for this loop is an And or Or.
4369  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
4370    if (BO->getOpcode() == Instruction::And) {
4371      // Recurse on the operands of the and.
4372      ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB);
4373      ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB);
4374      const SCEV *BECount = getCouldNotCompute();
4375      const SCEV *MaxBECount = getCouldNotCompute();
4376      if (L->contains(TBB)) {
4377        // Both conditions must be true for the loop to continue executing.
4378        // Choose the less conservative count.
4379        if (EL0.Exact == getCouldNotCompute() ||
4380            EL1.Exact == getCouldNotCompute())
4381          BECount = getCouldNotCompute();
4382        else
4383          BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4384        if (EL0.Max == getCouldNotCompute())
4385          MaxBECount = EL1.Max;
4386        else if (EL1.Max == getCouldNotCompute())
4387          MaxBECount = EL0.Max;
4388        else
4389          MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
4390      } else {
4391        // Both conditions must be true at the same time for the loop to exit.
4392        // For now, be conservative.
4393        assert(L->contains(FBB) && "Loop block has no successor in loop!");
4394        if (EL0.Max == EL1.Max)
4395          MaxBECount = EL0.Max;
4396        if (EL0.Exact == EL1.Exact)
4397          BECount = EL0.Exact;
4398      }
4399
4400      return ExitLimit(BECount, MaxBECount);
4401    }
4402    if (BO->getOpcode() == Instruction::Or) {
4403      // Recurse on the operands of the or.
4404      ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB);
4405      ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB);
4406      const SCEV *BECount = getCouldNotCompute();
4407      const SCEV *MaxBECount = getCouldNotCompute();
4408      if (L->contains(FBB)) {
4409        // Both conditions must be false for the loop to continue executing.
4410        // Choose the less conservative count.
4411        if (EL0.Exact == getCouldNotCompute() ||
4412            EL1.Exact == getCouldNotCompute())
4413          BECount = getCouldNotCompute();
4414        else
4415          BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
4416        if (EL0.Max == getCouldNotCompute())
4417          MaxBECount = EL1.Max;
4418        else if (EL1.Max == getCouldNotCompute())
4419          MaxBECount = EL0.Max;
4420        else
4421          MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
4422      } else {
4423        // Both conditions must be false at the same time for the loop to exit.
4424        // For now, be conservative.
4425        assert(L->contains(TBB) && "Loop block has no successor in loop!");
4426        if (EL0.Max == EL1.Max)
4427          MaxBECount = EL0.Max;
4428        if (EL0.Exact == EL1.Exact)
4429          BECount = EL0.Exact;
4430      }
4431
4432      return ExitLimit(BECount, MaxBECount);
4433    }
4434  }
4435
4436  // With an icmp, it may be feasible to compute an exact backedge-taken count.
4437  // Proceed to the next level to examine the icmp.
4438  if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
4439    return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB);
4440
4441  // Check for a constant condition. These are normally stripped out by
4442  // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
4443  // preserve the CFG and is temporarily leaving constant conditions
4444  // in place.
4445  if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
4446    if (L->contains(FBB) == !CI->getZExtValue())
4447      // The backedge is always taken.
4448      return getCouldNotCompute();
4449    else
4450      // The backedge is never taken.
4451      return getConstant(CI->getType(), 0);
4452  }
4453
4454  // If it's not an integer or pointer comparison then compute it the hard way.
4455  return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
4456}
4457
4458/// ComputeExitLimitFromICmp - Compute the number of times the
4459/// backedge of the specified loop will execute if its exit condition
4460/// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB.
4461ScalarEvolution::ExitLimit
4462ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L,
4463                                          ICmpInst *ExitCond,
4464                                          BasicBlock *TBB,
4465                                          BasicBlock *FBB) {
4466
4467  // If the condition was exit on true, convert the condition to exit on false
4468  ICmpInst::Predicate Cond;
4469  if (!L->contains(FBB))
4470    Cond = ExitCond->getPredicate();
4471  else
4472    Cond = ExitCond->getInversePredicate();
4473
4474  // Handle common loops like: for (X = "string"; *X; ++X)
4475  if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
4476    if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
4477      ExitLimit ItCnt =
4478        ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
4479      if (ItCnt.hasAnyInfo())
4480        return ItCnt;
4481    }
4482
4483  const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
4484  const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
4485
4486  // Try to evaluate any dependencies out of the loop.
4487  LHS = getSCEVAtScope(LHS, L);
4488  RHS = getSCEVAtScope(RHS, L);
4489
4490  // At this point, we would like to compute how many iterations of the
4491  // loop the predicate will return true for these inputs.
4492  if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
4493    // If there is a loop-invariant, force it into the RHS.
4494    std::swap(LHS, RHS);
4495    Cond = ICmpInst::getSwappedPredicate(Cond);
4496  }
4497
4498  // Simplify the operands before analyzing them.
4499  (void)SimplifyICmpOperands(Cond, LHS, RHS);
4500
4501  // If we have a comparison of a chrec against a constant, try to use value
4502  // ranges to answer this query.
4503  if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
4504    if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
4505      if (AddRec->getLoop() == L) {
4506        // Form the constant range.
4507        ConstantRange CompRange(
4508            ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue()));
4509
4510        const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
4511        if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
4512      }
4513
4514  switch (Cond) {
4515  case ICmpInst::ICMP_NE: {                     // while (X != Y)
4516    // Convert to: while (X-Y != 0)
4517    ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L);
4518    if (EL.hasAnyInfo()) return EL;
4519    break;
4520  }
4521  case ICmpInst::ICMP_EQ: {                     // while (X == Y)
4522    // Convert to: while (X-Y == 0)
4523    ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
4524    if (EL.hasAnyInfo()) return EL;
4525    break;
4526  }
4527  case ICmpInst::ICMP_SLT: {
4528    ExitLimit EL = HowManyLessThans(LHS, RHS, L, true);
4529    if (EL.hasAnyInfo()) return EL;
4530    break;
4531  }
4532  case ICmpInst::ICMP_SGT: {
4533    ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
4534                                             getNotSCEV(RHS), L, true);
4535    if (EL.hasAnyInfo()) return EL;
4536    break;
4537  }
4538  case ICmpInst::ICMP_ULT: {
4539    ExitLimit EL = HowManyLessThans(LHS, RHS, L, false);
4540    if (EL.hasAnyInfo()) return EL;
4541    break;
4542  }
4543  case ICmpInst::ICMP_UGT: {
4544    ExitLimit EL = HowManyLessThans(getNotSCEV(LHS),
4545                                             getNotSCEV(RHS), L, false);
4546    if (EL.hasAnyInfo()) return EL;
4547    break;
4548  }
4549  default:
4550#if 0
4551    dbgs() << "ComputeBackedgeTakenCount ";
4552    if (ExitCond->getOperand(0)->getType()->isUnsigned())
4553      dbgs() << "[unsigned] ";
4554    dbgs() << *LHS << "   "
4555         << Instruction::getOpcodeName(Instruction::ICmp)
4556         << "   " << *RHS << "\n";
4557#endif
4558    break;
4559  }
4560  return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
4561}
4562
4563static ConstantInt *
4564EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
4565                                ScalarEvolution &SE) {
4566  const SCEV *InVal = SE.getConstant(C);
4567  const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
4568  assert(isa<SCEVConstant>(Val) &&
4569         "Evaluation of SCEV at constant didn't fold correctly?");
4570  return cast<SCEVConstant>(Val)->getValue();
4571}
4572
4573/// ComputeLoadConstantCompareExitLimit - Given an exit condition of
4574/// 'icmp op load X, cst', try to see if we can compute the backedge
4575/// execution count.
4576ScalarEvolution::ExitLimit
4577ScalarEvolution::ComputeLoadConstantCompareExitLimit(
4578  LoadInst *LI,
4579  Constant *RHS,
4580  const Loop *L,
4581  ICmpInst::Predicate predicate) {
4582
4583  if (LI->isVolatile()) return getCouldNotCompute();
4584
4585  // Check to see if the loaded pointer is a getelementptr of a global.
4586  // TODO: Use SCEV instead of manually grubbing with GEPs.
4587  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
4588  if (!GEP) return getCouldNotCompute();
4589
4590  // Make sure that it is really a constant global we are gepping, with an
4591  // initializer, and make sure the first IDX is really 0.
4592  GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
4593  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
4594      GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
4595      !cast<Constant>(GEP->getOperand(1))->isNullValue())
4596    return getCouldNotCompute();
4597
4598  // Okay, we allow one non-constant index into the GEP instruction.
4599  Value *VarIdx = 0;
4600  std::vector<Constant*> Indexes;
4601  unsigned VarIdxNum = 0;
4602  for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
4603    if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
4604      Indexes.push_back(CI);
4605    } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
4606      if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
4607      VarIdx = GEP->getOperand(i);
4608      VarIdxNum = i-2;
4609      Indexes.push_back(0);
4610    }
4611
4612  // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
4613  if (!VarIdx)
4614    return getCouldNotCompute();
4615
4616  // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
4617  // Check to see if X is a loop variant variable value now.
4618  const SCEV *Idx = getSCEV(VarIdx);
4619  Idx = getSCEVAtScope(Idx, L);
4620
4621  // We can only recognize very limited forms of loop index expressions, in
4622  // particular, only affine AddRec's like {C1,+,C2}.
4623  const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
4624  if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
4625      !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
4626      !isa<SCEVConstant>(IdxExpr->getOperand(1)))
4627    return getCouldNotCompute();
4628
4629  unsigned MaxSteps = MaxBruteForceIterations;
4630  for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
4631    ConstantInt *ItCst = ConstantInt::get(
4632                           cast<IntegerType>(IdxExpr->getType()), IterationNum);
4633    ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
4634
4635    // Form the GEP offset.
4636    Indexes[VarIdxNum] = Val;
4637
4638    Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
4639                                                         Indexes);
4640    if (Result == 0) break;  // Cannot compute!
4641
4642    // Evaluate the condition for this iteration.
4643    Result = ConstantExpr::getICmp(predicate, Result, RHS);
4644    if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
4645    if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
4646#if 0
4647      dbgs() << "\n***\n*** Computed loop count " << *ItCst
4648             << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
4649             << "***\n";
4650#endif
4651      ++NumArrayLenItCounts;
4652      return getConstant(ItCst);   // Found terminating iteration!
4653    }
4654  }
4655  return getCouldNotCompute();
4656}
4657
4658
4659/// CanConstantFold - Return true if we can constant fold an instruction of the
4660/// specified type, assuming that all operands were constants.
4661static bool CanConstantFold(const Instruction *I) {
4662  if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
4663      isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
4664      isa<LoadInst>(I))
4665    return true;
4666
4667  if (const CallInst *CI = dyn_cast<CallInst>(I))
4668    if (const Function *F = CI->getCalledFunction())
4669      return canConstantFoldCallTo(F);
4670  return false;
4671}
4672
4673/// Determine whether this instruction can constant evolve within this loop
4674/// assuming its operands can all constant evolve.
4675static bool canConstantEvolve(Instruction *I, const Loop *L) {
4676  // An instruction outside of the loop can't be derived from a loop PHI.
4677  if (!L->contains(I)) return false;
4678
4679  if (isa<PHINode>(I)) {
4680    if (L->getHeader() == I->getParent())
4681      return true;
4682    else
4683      // We don't currently keep track of the control flow needed to evaluate
4684      // PHIs, so we cannot handle PHIs inside of loops.
4685      return false;
4686  }
4687
4688  // If we won't be able to constant fold this expression even if the operands
4689  // are constants, bail early.
4690  return CanConstantFold(I);
4691}
4692
4693/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
4694/// recursing through each instruction operand until reaching a loop header phi.
4695static PHINode *
4696getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
4697                               DenseMap<Instruction *, PHINode *> &PHIMap) {
4698
4699  // Otherwise, we can evaluate this instruction if all of its operands are
4700  // constant or derived from a PHI node themselves.
4701  PHINode *PHI = 0;
4702  for (Instruction::op_iterator OpI = UseInst->op_begin(),
4703         OpE = UseInst->op_end(); OpI != OpE; ++OpI) {
4704
4705    if (isa<Constant>(*OpI)) continue;
4706
4707    Instruction *OpInst = dyn_cast<Instruction>(*OpI);
4708    if (!OpInst || !canConstantEvolve(OpInst, L)) return 0;
4709
4710    PHINode *P = dyn_cast<PHINode>(OpInst);
4711    if (!P)
4712      // If this operand is already visited, reuse the prior result.
4713      // We may have P != PHI if this is the deepest point at which the
4714      // inconsistent paths meet.
4715      P = PHIMap.lookup(OpInst);
4716    if (!P) {
4717      // Recurse and memoize the results, whether a phi is found or not.
4718      // This recursive call invalidates pointers into PHIMap.
4719      P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
4720      PHIMap[OpInst] = P;
4721    }
4722    if (P == 0) return 0;        // Not evolving from PHI
4723    if (PHI && PHI != P) return 0;  // Evolving from multiple different PHIs.
4724    PHI = P;
4725  }
4726  // This is a expression evolving from a constant PHI!
4727  return PHI;
4728}
4729
4730/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
4731/// in the loop that V is derived from.  We allow arbitrary operations along the
4732/// way, but the operands of an operation must either be constants or a value
4733/// derived from a constant PHI.  If this expression does not fit with these
4734/// constraints, return null.
4735static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
4736  Instruction *I = dyn_cast<Instruction>(V);
4737  if (I == 0 || !canConstantEvolve(I, L)) return 0;
4738
4739  if (PHINode *PN = dyn_cast<PHINode>(I)) {
4740    return PN;
4741  }
4742
4743  // Record non-constant instructions contained by the loop.
4744  DenseMap<Instruction *, PHINode *> PHIMap;
4745  return getConstantEvolvingPHIOperands(I, L, PHIMap);
4746}
4747
4748/// EvaluateExpression - Given an expression that passes the
4749/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
4750/// in the loop has the value PHIVal.  If we can't fold this expression for some
4751/// reason, return null.
4752static Constant *EvaluateExpression(Value *V, const Loop *L,
4753                                    DenseMap<Instruction *, Constant *> &Vals,
4754                                    const TargetData *TD,
4755                                    const TargetLibraryInfo *TLI) {
4756  // Convenient constant check, but redundant for recursive calls.
4757  if (Constant *C = dyn_cast<Constant>(V)) return C;
4758  Instruction *I = dyn_cast<Instruction>(V);
4759  if (!I) return 0;
4760
4761  if (Constant *C = Vals.lookup(I)) return C;
4762
4763  // An instruction inside the loop depends on a value outside the loop that we
4764  // weren't given a mapping for, or a value such as a call inside the loop.
4765  if (!canConstantEvolve(I, L)) return 0;
4766
4767  // An unmapped PHI can be due to a branch or another loop inside this loop,
4768  // or due to this not being the initial iteration through a loop where we
4769  // couldn't compute the evolution of this particular PHI last time.
4770  if (isa<PHINode>(I)) return 0;
4771
4772  std::vector<Constant*> Operands(I->getNumOperands());
4773
4774  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
4775    Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
4776    if (!Operand) {
4777      Operands[i] = dyn_cast<Constant>(I->getOperand(i));
4778      if (!Operands[i]) return 0;
4779      continue;
4780    }
4781    Constant *C = EvaluateExpression(Operand, L, Vals, TD, TLI);
4782    Vals[Operand] = C;
4783    if (!C) return 0;
4784    Operands[i] = C;
4785  }
4786
4787  if (CmpInst *CI = dyn_cast<CmpInst>(I))
4788    return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
4789                                           Operands[1], TD, TLI);
4790  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
4791    if (!LI->isVolatile())
4792      return ConstantFoldLoadFromConstPtr(Operands[0], TD);
4793  }
4794  return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, TD,
4795                                  TLI);
4796}
4797
4798/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
4799/// in the header of its containing loop, we know the loop executes a
4800/// constant number of times, and the PHI node is just a recurrence
4801/// involving constants, fold it.
4802Constant *
4803ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
4804                                                   const APInt &BEs,
4805                                                   const Loop *L) {
4806  DenseMap<PHINode*, Constant*>::const_iterator I =
4807    ConstantEvolutionLoopExitValue.find(PN);
4808  if (I != ConstantEvolutionLoopExitValue.end())
4809    return I->second;
4810
4811  if (BEs.ugt(MaxBruteForceIterations))
4812    return ConstantEvolutionLoopExitValue[PN] = 0;  // Not going to evaluate it.
4813
4814  Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
4815
4816  DenseMap<Instruction *, Constant *> CurrentIterVals;
4817  BasicBlock *Header = L->getHeader();
4818  assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
4819
4820  // Since the loop is canonicalized, the PHI node must have two entries.  One
4821  // entry must be a constant (coming in from outside of the loop), and the
4822  // second must be derived from the same PHI.
4823  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4824  PHINode *PHI = 0;
4825  for (BasicBlock::iterator I = Header->begin();
4826       (PHI = dyn_cast<PHINode>(I)); ++I) {
4827    Constant *StartCST =
4828      dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
4829    if (StartCST == 0) continue;
4830    CurrentIterVals[PHI] = StartCST;
4831  }
4832  if (!CurrentIterVals.count(PN))
4833    return RetVal = 0;
4834
4835  Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
4836
4837  // Execute the loop symbolically to determine the exit value.
4838  if (BEs.getActiveBits() >= 32)
4839    return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
4840
4841  unsigned NumIterations = BEs.getZExtValue(); // must be in range
4842  unsigned IterationNum = 0;
4843  for (; ; ++IterationNum) {
4844    if (IterationNum == NumIterations)
4845      return RetVal = CurrentIterVals[PN];  // Got exit value!
4846
4847    // Compute the value of the PHIs for the next iteration.
4848    // EvaluateExpression adds non-phi values to the CurrentIterVals map.
4849    DenseMap<Instruction *, Constant *> NextIterVals;
4850    Constant *NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD,
4851                                           TLI);
4852    if (NextPHI == 0)
4853      return 0;        // Couldn't evaluate!
4854    NextIterVals[PN] = NextPHI;
4855
4856    bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
4857
4858    // Also evaluate the other PHI nodes.  However, we don't get to stop if we
4859    // cease to be able to evaluate one of them or if they stop evolving,
4860    // because that doesn't necessarily prevent us from computing PN.
4861    SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
4862    for (DenseMap<Instruction *, Constant *>::const_iterator
4863           I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
4864      PHINode *PHI = dyn_cast<PHINode>(I->first);
4865      if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
4866      PHIsToCompute.push_back(std::make_pair(PHI, I->second));
4867    }
4868    // We use two distinct loops because EvaluateExpression may invalidate any
4869    // iterators into CurrentIterVals.
4870    for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator
4871             I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) {
4872      PHINode *PHI = I->first;
4873      Constant *&NextPHI = NextIterVals[PHI];
4874      if (!NextPHI) {   // Not already computed.
4875        Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
4876        NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI);
4877      }
4878      if (NextPHI != I->second)
4879        StoppedEvolving = false;
4880    }
4881
4882    // If all entries in CurrentIterVals == NextIterVals then we can stop
4883    // iterating, the loop can't continue to change.
4884    if (StoppedEvolving)
4885      return RetVal = CurrentIterVals[PN];
4886
4887    CurrentIterVals.swap(NextIterVals);
4888  }
4889}
4890
4891/// ComputeExitCountExhaustively - If the loop is known to execute a
4892/// constant number of times (the condition evolves only from constants),
4893/// try to evaluate a few iterations of the loop until we get the exit
4894/// condition gets a value of ExitWhen (true or false).  If we cannot
4895/// evaluate the trip count of the loop, return getCouldNotCompute().
4896const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L,
4897                                                          Value *Cond,
4898                                                          bool ExitWhen) {
4899  PHINode *PN = getConstantEvolvingPHI(Cond, L);
4900  if (PN == 0) return getCouldNotCompute();
4901
4902  // If the loop is canonicalized, the PHI will have exactly two entries.
4903  // That's the only form we support here.
4904  if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
4905
4906  DenseMap<Instruction *, Constant *> CurrentIterVals;
4907  BasicBlock *Header = L->getHeader();
4908  assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
4909
4910  // One entry must be a constant (coming in from outside of the loop), and the
4911  // second must be derived from the same PHI.
4912  bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
4913  PHINode *PHI = 0;
4914  for (BasicBlock::iterator I = Header->begin();
4915       (PHI = dyn_cast<PHINode>(I)); ++I) {
4916    Constant *StartCST =
4917      dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge));
4918    if (StartCST == 0) continue;
4919    CurrentIterVals[PHI] = StartCST;
4920  }
4921  if (!CurrentIterVals.count(PN))
4922    return getCouldNotCompute();
4923
4924  // Okay, we find a PHI node that defines the trip count of this loop.  Execute
4925  // the loop symbolically to determine when the condition gets a value of
4926  // "ExitWhen".
4927
4928  unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
4929  for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
4930    ConstantInt *CondVal =
4931      dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, L, CurrentIterVals,
4932                                                       TD, TLI));
4933
4934    // Couldn't symbolically evaluate.
4935    if (!CondVal) return getCouldNotCompute();
4936
4937    if (CondVal->getValue() == uint64_t(ExitWhen)) {
4938      ++NumBruteForceTripCountsComputed;
4939      return getConstant(Type::getInt32Ty(getContext()), IterationNum);
4940    }
4941
4942    // Update all the PHI nodes for the next iteration.
4943    DenseMap<Instruction *, Constant *> NextIterVals;
4944
4945    // Create a list of which PHIs we need to compute. We want to do this before
4946    // calling EvaluateExpression on them because that may invalidate iterators
4947    // into CurrentIterVals.
4948    SmallVector<PHINode *, 8> PHIsToCompute;
4949    for (DenseMap<Instruction *, Constant *>::const_iterator
4950           I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){
4951      PHINode *PHI = dyn_cast<PHINode>(I->first);
4952      if (!PHI || PHI->getParent() != Header) continue;
4953      PHIsToCompute.push_back(PHI);
4954    }
4955    for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(),
4956             E = PHIsToCompute.end(); I != E; ++I) {
4957      PHINode *PHI = *I;
4958      Constant *&NextPHI = NextIterVals[PHI];
4959      if (NextPHI) continue;    // Already computed!
4960
4961      Value *BEValue = PHI->getIncomingValue(SecondIsBackedge);
4962      NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, TD, TLI);
4963    }
4964    CurrentIterVals.swap(NextIterVals);
4965  }
4966
4967  // Too many iterations were needed to evaluate.
4968  return getCouldNotCompute();
4969}
4970
4971/// getSCEVAtScope - Return a SCEV expression for the specified value
4972/// at the specified scope in the program.  The L value specifies a loop
4973/// nest to evaluate the expression at, where null is the top-level or a
4974/// specified loop is immediately inside of the loop.
4975///
4976/// This method can be used to compute the exit value for a variable defined
4977/// in a loop by querying what the value will hold in the parent loop.
4978///
4979/// In the case that a relevant loop exit value cannot be computed, the
4980/// original value V is returned.
4981const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
4982  // Check to see if we've folded this expression at this loop before.
4983  std::map<const Loop *, const SCEV *> &Values = ValuesAtScopes[V];
4984  std::pair<std::map<const Loop *, const SCEV *>::iterator, bool> Pair =
4985    Values.insert(std::make_pair(L, static_cast<const SCEV *>(0)));
4986  if (!Pair.second)
4987    return Pair.first->second ? Pair.first->second : V;
4988
4989  // Otherwise compute it.
4990  const SCEV *C = computeSCEVAtScope(V, L);
4991  ValuesAtScopes[V][L] = C;
4992  return C;
4993}
4994
4995/// This builds up a Constant using the ConstantExpr interface.  That way, we
4996/// will return Constants for objects which aren't represented by a
4997/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
4998/// Returns NULL if the SCEV isn't representable as a Constant.
4999static Constant *BuildConstantFromSCEV(const SCEV *V) {
5000  switch (V->getSCEVType()) {
5001    default:  // TODO: smax, umax.
5002    case scCouldNotCompute:
5003    case scAddRecExpr:
5004      break;
5005    case scConstant:
5006      return cast<SCEVConstant>(V)->getValue();
5007    case scUnknown:
5008      return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
5009    case scSignExtend: {
5010      const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
5011      if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
5012        return ConstantExpr::getSExt(CastOp, SS->getType());
5013      break;
5014    }
5015    case scZeroExtend: {
5016      const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
5017      if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
5018        return ConstantExpr::getZExt(CastOp, SZ->getType());
5019      break;
5020    }
5021    case scTruncate: {
5022      const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
5023      if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
5024        return ConstantExpr::getTrunc(CastOp, ST->getType());
5025      break;
5026    }
5027    case scAddExpr: {
5028      const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
5029      if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
5030        if (C->getType()->isPointerTy())
5031          C = ConstantExpr::getBitCast(C, Type::getInt8PtrTy(C->getContext()));
5032        for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
5033          Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
5034          if (!C2) return 0;
5035
5036          // First pointer!
5037          if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
5038            std::swap(C, C2);
5039            // The offsets have been converted to bytes.  We can add bytes to an
5040            // i8* by GEP with the byte count in the first index.
5041            C = ConstantExpr::getBitCast(C,Type::getInt8PtrTy(C->getContext()));
5042          }
5043
5044          // Don't bother trying to sum two pointers. We probably can't
5045          // statically compute a load that results from it anyway.
5046          if (C2->getType()->isPointerTy())
5047            return 0;
5048
5049          if (C->getType()->isPointerTy()) {
5050            if (cast<PointerType>(C->getType())->getElementType()->isStructTy())
5051              C2 = ConstantExpr::getIntegerCast(
5052                  C2, Type::getInt32Ty(C->getContext()), true);
5053            C = ConstantExpr::getGetElementPtr(C, C2);
5054          } else
5055            C = ConstantExpr::getAdd(C, C2);
5056        }
5057        return C;
5058      }
5059      break;
5060    }
5061    case scMulExpr: {
5062      const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
5063      if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
5064        // Don't bother with pointers at all.
5065        if (C->getType()->isPointerTy()) return 0;
5066        for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
5067          Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
5068          if (!C2 || C2->getType()->isPointerTy()) return 0;
5069          C = ConstantExpr::getMul(C, C2);
5070        }
5071        return C;
5072      }
5073      break;
5074    }
5075    case scUDivExpr: {
5076      const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
5077      if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
5078        if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
5079          if (LHS->getType() == RHS->getType())
5080            return ConstantExpr::getUDiv(LHS, RHS);
5081      break;
5082    }
5083  }
5084  return 0;
5085}
5086
5087const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
5088  if (isa<SCEVConstant>(V)) return V;
5089
5090  // If this instruction is evolved from a constant-evolving PHI, compute the
5091  // exit value from the loop without using SCEVs.
5092  if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
5093    if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
5094      const Loop *LI = (*this->LI)[I->getParent()];
5095      if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
5096        if (PHINode *PN = dyn_cast<PHINode>(I))
5097          if (PN->getParent() == LI->getHeader()) {
5098            // Okay, there is no closed form solution for the PHI node.  Check
5099            // to see if the loop that contains it has a known backedge-taken
5100            // count.  If so, we may be able to force computation of the exit
5101            // value.
5102            const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
5103            if (const SCEVConstant *BTCC =
5104                  dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
5105              // Okay, we know how many times the containing loop executes.  If
5106              // this is a constant evolving PHI node, get the final value at
5107              // the specified iteration number.
5108              Constant *RV = getConstantEvolutionLoopExitValue(PN,
5109                                                   BTCC->getValue()->getValue(),
5110                                                               LI);
5111              if (RV) return getSCEV(RV);
5112            }
5113          }
5114
5115      // Okay, this is an expression that we cannot symbolically evaluate
5116      // into a SCEV.  Check to see if it's possible to symbolically evaluate
5117      // the arguments into constants, and if so, try to constant propagate the
5118      // result.  This is particularly useful for computing loop exit values.
5119      if (CanConstantFold(I)) {
5120        SmallVector<Constant *, 4> Operands;
5121        bool MadeImprovement = false;
5122        for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
5123          Value *Op = I->getOperand(i);
5124          if (Constant *C = dyn_cast<Constant>(Op)) {
5125            Operands.push_back(C);
5126            continue;
5127          }
5128
5129          // If any of the operands is non-constant and if they are
5130          // non-integer and non-pointer, don't even try to analyze them
5131          // with scev techniques.
5132          if (!isSCEVable(Op->getType()))
5133            return V;
5134
5135          const SCEV *OrigV = getSCEV(Op);
5136          const SCEV *OpV = getSCEVAtScope(OrigV, L);
5137          MadeImprovement |= OrigV != OpV;
5138
5139          Constant *C = BuildConstantFromSCEV(OpV);
5140          if (!C) return V;
5141          if (C->getType() != Op->getType())
5142            C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5143                                                              Op->getType(),
5144                                                              false),
5145                                      C, Op->getType());
5146          Operands.push_back(C);
5147        }
5148
5149        // Check to see if getSCEVAtScope actually made an improvement.
5150        if (MadeImprovement) {
5151          Constant *C = 0;
5152          if (const CmpInst *CI = dyn_cast<CmpInst>(I))
5153            C = ConstantFoldCompareInstOperands(CI->getPredicate(),
5154                                                Operands[0], Operands[1], TD,
5155                                                TLI);
5156          else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
5157            if (!LI->isVolatile())
5158              C = ConstantFoldLoadFromConstPtr(Operands[0], TD);
5159          } else
5160            C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
5161                                         Operands, TD, TLI);
5162          if (!C) return V;
5163          return getSCEV(C);
5164        }
5165      }
5166    }
5167
5168    // This is some other type of SCEVUnknown, just return it.
5169    return V;
5170  }
5171
5172  if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
5173    // Avoid performing the look-up in the common case where the specified
5174    // expression has no loop-variant portions.
5175    for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
5176      const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
5177      if (OpAtScope != Comm->getOperand(i)) {
5178        // Okay, at least one of these operands is loop variant but might be
5179        // foldable.  Build a new instance of the folded commutative expression.
5180        SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
5181                                            Comm->op_begin()+i);
5182        NewOps.push_back(OpAtScope);
5183
5184        for (++i; i != e; ++i) {
5185          OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
5186          NewOps.push_back(OpAtScope);
5187        }
5188        if (isa<SCEVAddExpr>(Comm))
5189          return getAddExpr(NewOps);
5190        if (isa<SCEVMulExpr>(Comm))
5191          return getMulExpr(NewOps);
5192        if (isa<SCEVSMaxExpr>(Comm))
5193          return getSMaxExpr(NewOps);
5194        if (isa<SCEVUMaxExpr>(Comm))
5195          return getUMaxExpr(NewOps);
5196        llvm_unreachable("Unknown commutative SCEV type!");
5197      }
5198    }
5199    // If we got here, all operands are loop invariant.
5200    return Comm;
5201  }
5202
5203  if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
5204    const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
5205    const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
5206    if (LHS == Div->getLHS() && RHS == Div->getRHS())
5207      return Div;   // must be loop invariant
5208    return getUDivExpr(LHS, RHS);
5209  }
5210
5211  // If this is a loop recurrence for a loop that does not contain L, then we
5212  // are dealing with the final value computed by the loop.
5213  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
5214    // First, attempt to evaluate each operand.
5215    // Avoid performing the look-up in the common case where the specified
5216    // expression has no loop-variant portions.
5217    for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5218      const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
5219      if (OpAtScope == AddRec->getOperand(i))
5220        continue;
5221
5222      // Okay, at least one of these operands is loop variant but might be
5223      // foldable.  Build a new instance of the folded commutative expression.
5224      SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
5225                                          AddRec->op_begin()+i);
5226      NewOps.push_back(OpAtScope);
5227      for (++i; i != e; ++i)
5228        NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
5229
5230      const SCEV *FoldedRec =
5231        getAddRecExpr(NewOps, AddRec->getLoop(),
5232                      AddRec->getNoWrapFlags(SCEV::FlagNW));
5233      AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
5234      // The addrec may be folded to a nonrecurrence, for example, if the
5235      // induction variable is multiplied by zero after constant folding. Go
5236      // ahead and return the folded value.
5237      if (!AddRec)
5238        return FoldedRec;
5239      break;
5240    }
5241
5242    // If the scope is outside the addrec's loop, evaluate it by using the
5243    // loop exit value of the addrec.
5244    if (!AddRec->getLoop()->contains(L)) {
5245      // To evaluate this recurrence, we need to know how many times the AddRec
5246      // loop iterates.  Compute this now.
5247      const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
5248      if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
5249
5250      // Then, evaluate the AddRec.
5251      return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
5252    }
5253
5254    return AddRec;
5255  }
5256
5257  if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
5258    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
5259    if (Op == Cast->getOperand())
5260      return Cast;  // must be loop invariant
5261    return getZeroExtendExpr(Op, Cast->getType());
5262  }
5263
5264  if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
5265    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
5266    if (Op == Cast->getOperand())
5267      return Cast;  // must be loop invariant
5268    return getSignExtendExpr(Op, Cast->getType());
5269  }
5270
5271  if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
5272    const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
5273    if (Op == Cast->getOperand())
5274      return Cast;  // must be loop invariant
5275    return getTruncateExpr(Op, Cast->getType());
5276  }
5277
5278  llvm_unreachable("Unknown SCEV type!");
5279}
5280
5281/// getSCEVAtScope - This is a convenience function which does
5282/// getSCEVAtScope(getSCEV(V), L).
5283const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
5284  return getSCEVAtScope(getSCEV(V), L);
5285}
5286
5287/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
5288/// following equation:
5289///
5290///     A * X = B (mod N)
5291///
5292/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
5293/// A and B isn't important.
5294///
5295/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
5296static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
5297                                               ScalarEvolution &SE) {
5298  uint32_t BW = A.getBitWidth();
5299  assert(BW == B.getBitWidth() && "Bit widths must be the same.");
5300  assert(A != 0 && "A must be non-zero.");
5301
5302  // 1. D = gcd(A, N)
5303  //
5304  // The gcd of A and N may have only one prime factor: 2. The number of
5305  // trailing zeros in A is its multiplicity
5306  uint32_t Mult2 = A.countTrailingZeros();
5307  // D = 2^Mult2
5308
5309  // 2. Check if B is divisible by D.
5310  //
5311  // B is divisible by D if and only if the multiplicity of prime factor 2 for B
5312  // is not less than multiplicity of this prime factor for D.
5313  if (B.countTrailingZeros() < Mult2)
5314    return SE.getCouldNotCompute();
5315
5316  // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
5317  // modulo (N / D).
5318  //
5319  // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
5320  // bit width during computations.
5321  APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
5322  APInt Mod(BW + 1, 0);
5323  Mod.setBit(BW - Mult2);  // Mod = N / D
5324  APInt I = AD.multiplicativeInverse(Mod);
5325
5326  // 4. Compute the minimum unsigned root of the equation:
5327  // I * (B / D) mod (N / D)
5328  APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
5329
5330  // The result is guaranteed to be less than 2^BW so we may truncate it to BW
5331  // bits.
5332  return SE.getConstant(Result.trunc(BW));
5333}
5334
5335/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
5336/// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
5337/// might be the same) or two SCEVCouldNotCompute objects.
5338///
5339static std::pair<const SCEV *,const SCEV *>
5340SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
5341  assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
5342  const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
5343  const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
5344  const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
5345
5346  // We currently can only solve this if the coefficients are constants.
5347  if (!LC || !MC || !NC) {
5348    const SCEV *CNC = SE.getCouldNotCompute();
5349    return std::make_pair(CNC, CNC);
5350  }
5351
5352  uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
5353  const APInt &L = LC->getValue()->getValue();
5354  const APInt &M = MC->getValue()->getValue();
5355  const APInt &N = NC->getValue()->getValue();
5356  APInt Two(BitWidth, 2);
5357  APInt Four(BitWidth, 4);
5358
5359  {
5360    using namespace APIntOps;
5361    const APInt& C = L;
5362    // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
5363    // The B coefficient is M-N/2
5364    APInt B(M);
5365    B -= sdiv(N,Two);
5366
5367    // The A coefficient is N/2
5368    APInt A(N.sdiv(Two));
5369
5370    // Compute the B^2-4ac term.
5371    APInt SqrtTerm(B);
5372    SqrtTerm *= B;
5373    SqrtTerm -= Four * (A * C);
5374
5375    if (SqrtTerm.isNegative()) {
5376      // The loop is provably infinite.
5377      const SCEV *CNC = SE.getCouldNotCompute();
5378      return std::make_pair(CNC, CNC);
5379    }
5380
5381    // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
5382    // integer value or else APInt::sqrt() will assert.
5383    APInt SqrtVal(SqrtTerm.sqrt());
5384
5385    // Compute the two solutions for the quadratic formula.
5386    // The divisions must be performed as signed divisions.
5387    APInt NegB(-B);
5388    APInt TwoA(A << 1);
5389    if (TwoA.isMinValue()) {
5390      const SCEV *CNC = SE.getCouldNotCompute();
5391      return std::make_pair(CNC, CNC);
5392    }
5393
5394    LLVMContext &Context = SE.getContext();
5395
5396    ConstantInt *Solution1 =
5397      ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
5398    ConstantInt *Solution2 =
5399      ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
5400
5401    return std::make_pair(SE.getConstant(Solution1),
5402                          SE.getConstant(Solution2));
5403  } // end APIntOps namespace
5404}
5405
5406/// HowFarToZero - Return the number of times a backedge comparing the specified
5407/// value to zero will execute.  If not computable, return CouldNotCompute.
5408///
5409/// This is only used for loops with a "x != y" exit test. The exit condition is
5410/// now expressed as a single expression, V = x-y. So the exit test is
5411/// effectively V != 0.  We know and take advantage of the fact that this
5412/// expression only being used in a comparison by zero context.
5413ScalarEvolution::ExitLimit
5414ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L) {
5415  // If the value is a constant
5416  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
5417    // If the value is already zero, the branch will execute zero times.
5418    if (C->getValue()->isZero()) return C;
5419    return getCouldNotCompute();  // Otherwise it will loop infinitely.
5420  }
5421
5422  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
5423  if (!AddRec || AddRec->getLoop() != L)
5424    return getCouldNotCompute();
5425
5426  // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
5427  // the quadratic equation to solve it.
5428  if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
5429    std::pair<const SCEV *,const SCEV *> Roots =
5430      SolveQuadraticEquation(AddRec, *this);
5431    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
5432    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
5433    if (R1 && R2) {
5434#if 0
5435      dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1
5436             << "  sol#2: " << *R2 << "\n";
5437#endif
5438      // Pick the smallest positive root value.
5439      if (ConstantInt *CB =
5440          dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
5441                                                      R1->getValue(),
5442                                                      R2->getValue()))) {
5443        if (CB->getZExtValue() == false)
5444          std::swap(R1, R2);   // R1 is the minimum root now.
5445
5446        // We can only use this value if the chrec ends up with an exact zero
5447        // value at this index.  When solving for "X*X != 5", for example, we
5448        // should not accept a root of 2.
5449        const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
5450        if (Val->isZero())
5451          return R1;  // We found a quadratic root!
5452      }
5453    }
5454    return getCouldNotCompute();
5455  }
5456
5457  // Otherwise we can only handle this if it is affine.
5458  if (!AddRec->isAffine())
5459    return getCouldNotCompute();
5460
5461  // If this is an affine expression, the execution count of this branch is
5462  // the minimum unsigned root of the following equation:
5463  //
5464  //     Start + Step*N = 0 (mod 2^BW)
5465  //
5466  // equivalent to:
5467  //
5468  //             Step*N = -Start (mod 2^BW)
5469  //
5470  // where BW is the common bit width of Start and Step.
5471
5472  // Get the initial value for the loop.
5473  const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
5474  const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
5475
5476  // For now we handle only constant steps.
5477  //
5478  // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
5479  // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
5480  // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
5481  // We have not yet seen any such cases.
5482  const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
5483  if (StepC == 0 || StepC->getValue()->equalsInt(0))
5484    return getCouldNotCompute();
5485
5486  // For positive steps (counting up until unsigned overflow):
5487  //   N = -Start/Step (as unsigned)
5488  // For negative steps (counting down to zero):
5489  //   N = Start/-Step
5490  // First compute the unsigned distance from zero in the direction of Step.
5491  bool CountDown = StepC->getValue()->getValue().isNegative();
5492  const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
5493
5494  // Handle unitary steps, which cannot wraparound.
5495  // 1*N = -Start; -1*N = Start (mod 2^BW), so:
5496  //   N = Distance (as unsigned)
5497  if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
5498    ConstantRange CR = getUnsignedRange(Start);
5499    const SCEV *MaxBECount;
5500    if (!CountDown && CR.getUnsignedMin().isMinValue())
5501      // When counting up, the worst starting value is 1, not 0.
5502      MaxBECount = CR.getUnsignedMax().isMinValue()
5503        ? getConstant(APInt::getMinValue(CR.getBitWidth()))
5504        : getConstant(APInt::getMaxValue(CR.getBitWidth()));
5505    else
5506      MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
5507                                         : -CR.getUnsignedMin());
5508    return ExitLimit(Distance, MaxBECount);
5509  }
5510
5511  // If the recurrence is known not to wraparound, unsigned divide computes the
5512  // back edge count. We know that the value will either become zero (and thus
5513  // the loop terminates), that the loop will terminate through some other exit
5514  // condition first, or that the loop has undefined behavior.  This means
5515  // we can't "miss" the exit value, even with nonunit stride.
5516  //
5517  // FIXME: Prove that loops always exhibits *acceptable* undefined
5518  // behavior. Loops must exhibit defined behavior until a wrapped value is
5519  // actually used. So the trip count computed by udiv could be smaller than the
5520  // number of well-defined iterations.
5521  if (AddRec->getNoWrapFlags(SCEV::FlagNW)) {
5522    // FIXME: We really want an "isexact" bit for udiv.
5523    return getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
5524  }
5525  // Then, try to solve the above equation provided that Start is constant.
5526  if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
5527    return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
5528                                        -StartC->getValue()->getValue(),
5529                                        *this);
5530  return getCouldNotCompute();
5531}
5532
5533/// HowFarToNonZero - Return the number of times a backedge checking the
5534/// specified value for nonzero will execute.  If not computable, return
5535/// CouldNotCompute
5536ScalarEvolution::ExitLimit
5537ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
5538  // Loops that look like: while (X == 0) are very strange indeed.  We don't
5539  // handle them yet except for the trivial case.  This could be expanded in the
5540  // future as needed.
5541
5542  // If the value is a constant, check to see if it is known to be non-zero
5543  // already.  If so, the backedge will execute zero times.
5544  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
5545    if (!C->getValue()->isNullValue())
5546      return getConstant(C->getType(), 0);
5547    return getCouldNotCompute();  // Otherwise it will loop infinitely.
5548  }
5549
5550  // We could implement others, but I really doubt anyone writes loops like
5551  // this, and if they did, they would already be constant folded.
5552  return getCouldNotCompute();
5553}
5554
5555/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
5556/// (which may not be an immediate predecessor) which has exactly one
5557/// successor from which BB is reachable, or null if no such block is
5558/// found.
5559///
5560std::pair<BasicBlock *, BasicBlock *>
5561ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
5562  // If the block has a unique predecessor, then there is no path from the
5563  // predecessor to the block that does not go through the direct edge
5564  // from the predecessor to the block.
5565  if (BasicBlock *Pred = BB->getSinglePredecessor())
5566    return std::make_pair(Pred, BB);
5567
5568  // A loop's header is defined to be a block that dominates the loop.
5569  // If the header has a unique predecessor outside the loop, it must be
5570  // a block that has exactly one successor that can reach the loop.
5571  if (Loop *L = LI->getLoopFor(BB))
5572    return std::make_pair(L->getLoopPredecessor(), L->getHeader());
5573
5574  return std::pair<BasicBlock *, BasicBlock *>();
5575}
5576
5577/// HasSameValue - SCEV structural equivalence is usually sufficient for
5578/// testing whether two expressions are equal, however for the purposes of
5579/// looking for a condition guarding a loop, it can be useful to be a little
5580/// more general, since a front-end may have replicated the controlling
5581/// expression.
5582///
5583static bool HasSameValue(const SCEV *A, const SCEV *B) {
5584  // Quick check to see if they are the same SCEV.
5585  if (A == B) return true;
5586
5587  // Otherwise, if they're both SCEVUnknown, it's possible that they hold
5588  // two different instructions with the same value. Check for this case.
5589  if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
5590    if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
5591      if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
5592        if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
5593          if (AI->isIdenticalTo(BI) && !AI->mayReadFromMemory())
5594            return true;
5595
5596  // Otherwise assume they may have a different value.
5597  return false;
5598}
5599
5600/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
5601/// predicate Pred. Return true iff any changes were made.
5602///
5603bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
5604                                           const SCEV *&LHS, const SCEV *&RHS,
5605                                           unsigned Depth) {
5606  bool Changed = false;
5607
5608  // If we hit the max recursion limit bail out.
5609  if (Depth >= 3)
5610    return false;
5611
5612  // Canonicalize a constant to the right side.
5613  if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
5614    // Check for both operands constant.
5615    if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
5616      if (ConstantExpr::getICmp(Pred,
5617                                LHSC->getValue(),
5618                                RHSC->getValue())->isNullValue())
5619        goto trivially_false;
5620      else
5621        goto trivially_true;
5622    }
5623    // Otherwise swap the operands to put the constant on the right.
5624    std::swap(LHS, RHS);
5625    Pred = ICmpInst::getSwappedPredicate(Pred);
5626    Changed = true;
5627  }
5628
5629  // If we're comparing an addrec with a value which is loop-invariant in the
5630  // addrec's loop, put the addrec on the left. Also make a dominance check,
5631  // as both operands could be addrecs loop-invariant in each other's loop.
5632  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
5633    const Loop *L = AR->getLoop();
5634    if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
5635      std::swap(LHS, RHS);
5636      Pred = ICmpInst::getSwappedPredicate(Pred);
5637      Changed = true;
5638    }
5639  }
5640
5641  // If there's a constant operand, canonicalize comparisons with boundary
5642  // cases, and canonicalize *-or-equal comparisons to regular comparisons.
5643  if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
5644    const APInt &RA = RC->getValue()->getValue();
5645    switch (Pred) {
5646    default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5647    case ICmpInst::ICMP_EQ:
5648    case ICmpInst::ICMP_NE:
5649      // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
5650      if (!RA)
5651        if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
5652          if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
5653            if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
5654                ME->getOperand(0)->isAllOnesValue()) {
5655              RHS = AE->getOperand(1);
5656              LHS = ME->getOperand(1);
5657              Changed = true;
5658            }
5659      break;
5660    case ICmpInst::ICMP_UGE:
5661      if ((RA - 1).isMinValue()) {
5662        Pred = ICmpInst::ICMP_NE;
5663        RHS = getConstant(RA - 1);
5664        Changed = true;
5665        break;
5666      }
5667      if (RA.isMaxValue()) {
5668        Pred = ICmpInst::ICMP_EQ;
5669        Changed = true;
5670        break;
5671      }
5672      if (RA.isMinValue()) goto trivially_true;
5673
5674      Pred = ICmpInst::ICMP_UGT;
5675      RHS = getConstant(RA - 1);
5676      Changed = true;
5677      break;
5678    case ICmpInst::ICMP_ULE:
5679      if ((RA + 1).isMaxValue()) {
5680        Pred = ICmpInst::ICMP_NE;
5681        RHS = getConstant(RA + 1);
5682        Changed = true;
5683        break;
5684      }
5685      if (RA.isMinValue()) {
5686        Pred = ICmpInst::ICMP_EQ;
5687        Changed = true;
5688        break;
5689      }
5690      if (RA.isMaxValue()) goto trivially_true;
5691
5692      Pred = ICmpInst::ICMP_ULT;
5693      RHS = getConstant(RA + 1);
5694      Changed = true;
5695      break;
5696    case ICmpInst::ICMP_SGE:
5697      if ((RA - 1).isMinSignedValue()) {
5698        Pred = ICmpInst::ICMP_NE;
5699        RHS = getConstant(RA - 1);
5700        Changed = true;
5701        break;
5702      }
5703      if (RA.isMaxSignedValue()) {
5704        Pred = ICmpInst::ICMP_EQ;
5705        Changed = true;
5706        break;
5707      }
5708      if (RA.isMinSignedValue()) goto trivially_true;
5709
5710      Pred = ICmpInst::ICMP_SGT;
5711      RHS = getConstant(RA - 1);
5712      Changed = true;
5713      break;
5714    case ICmpInst::ICMP_SLE:
5715      if ((RA + 1).isMaxSignedValue()) {
5716        Pred = ICmpInst::ICMP_NE;
5717        RHS = getConstant(RA + 1);
5718        Changed = true;
5719        break;
5720      }
5721      if (RA.isMinSignedValue()) {
5722        Pred = ICmpInst::ICMP_EQ;
5723        Changed = true;
5724        break;
5725      }
5726      if (RA.isMaxSignedValue()) goto trivially_true;
5727
5728      Pred = ICmpInst::ICMP_SLT;
5729      RHS = getConstant(RA + 1);
5730      Changed = true;
5731      break;
5732    case ICmpInst::ICMP_UGT:
5733      if (RA.isMinValue()) {
5734        Pred = ICmpInst::ICMP_NE;
5735        Changed = true;
5736        break;
5737      }
5738      if ((RA + 1).isMaxValue()) {
5739        Pred = ICmpInst::ICMP_EQ;
5740        RHS = getConstant(RA + 1);
5741        Changed = true;
5742        break;
5743      }
5744      if (RA.isMaxValue()) goto trivially_false;
5745      break;
5746    case ICmpInst::ICMP_ULT:
5747      if (RA.isMaxValue()) {
5748        Pred = ICmpInst::ICMP_NE;
5749        Changed = true;
5750        break;
5751      }
5752      if ((RA - 1).isMinValue()) {
5753        Pred = ICmpInst::ICMP_EQ;
5754        RHS = getConstant(RA - 1);
5755        Changed = true;
5756        break;
5757      }
5758      if (RA.isMinValue()) goto trivially_false;
5759      break;
5760    case ICmpInst::ICMP_SGT:
5761      if (RA.isMinSignedValue()) {
5762        Pred = ICmpInst::ICMP_NE;
5763        Changed = true;
5764        break;
5765      }
5766      if ((RA + 1).isMaxSignedValue()) {
5767        Pred = ICmpInst::ICMP_EQ;
5768        RHS = getConstant(RA + 1);
5769        Changed = true;
5770        break;
5771      }
5772      if (RA.isMaxSignedValue()) goto trivially_false;
5773      break;
5774    case ICmpInst::ICMP_SLT:
5775      if (RA.isMaxSignedValue()) {
5776        Pred = ICmpInst::ICMP_NE;
5777        Changed = true;
5778        break;
5779      }
5780      if ((RA - 1).isMinSignedValue()) {
5781       Pred = ICmpInst::ICMP_EQ;
5782       RHS = getConstant(RA - 1);
5783        Changed = true;
5784       break;
5785      }
5786      if (RA.isMinSignedValue()) goto trivially_false;
5787      break;
5788    }
5789  }
5790
5791  // Check for obvious equality.
5792  if (HasSameValue(LHS, RHS)) {
5793    if (ICmpInst::isTrueWhenEqual(Pred))
5794      goto trivially_true;
5795    if (ICmpInst::isFalseWhenEqual(Pred))
5796      goto trivially_false;
5797  }
5798
5799  // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
5800  // adding or subtracting 1 from one of the operands.
5801  switch (Pred) {
5802  case ICmpInst::ICMP_SLE:
5803    if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
5804      RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5805                       SCEV::FlagNSW);
5806      Pred = ICmpInst::ICMP_SLT;
5807      Changed = true;
5808    } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
5809      LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
5810                       SCEV::FlagNSW);
5811      Pred = ICmpInst::ICMP_SLT;
5812      Changed = true;
5813    }
5814    break;
5815  case ICmpInst::ICMP_SGE:
5816    if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
5817      RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
5818                       SCEV::FlagNSW);
5819      Pred = ICmpInst::ICMP_SGT;
5820      Changed = true;
5821    } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
5822      LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5823                       SCEV::FlagNSW);
5824      Pred = ICmpInst::ICMP_SGT;
5825      Changed = true;
5826    }
5827    break;
5828  case ICmpInst::ICMP_ULE:
5829    if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
5830      RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
5831                       SCEV::FlagNUW);
5832      Pred = ICmpInst::ICMP_ULT;
5833      Changed = true;
5834    } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
5835      LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
5836                       SCEV::FlagNUW);
5837      Pred = ICmpInst::ICMP_ULT;
5838      Changed = true;
5839    }
5840    break;
5841  case ICmpInst::ICMP_UGE:
5842    if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
5843      RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
5844                       SCEV::FlagNUW);
5845      Pred = ICmpInst::ICMP_UGT;
5846      Changed = true;
5847    } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
5848      LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
5849                       SCEV::FlagNUW);
5850      Pred = ICmpInst::ICMP_UGT;
5851      Changed = true;
5852    }
5853    break;
5854  default:
5855    break;
5856  }
5857
5858  // TODO: More simplifications are possible here.
5859
5860  // Recursively simplify until we either hit a recursion limit or nothing
5861  // changes.
5862  if (Changed)
5863    return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
5864
5865  return Changed;
5866
5867trivially_true:
5868  // Return 0 == 0.
5869  LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
5870  Pred = ICmpInst::ICMP_EQ;
5871  return true;
5872
5873trivially_false:
5874  // Return 0 != 0.
5875  LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
5876  Pred = ICmpInst::ICMP_NE;
5877  return true;
5878}
5879
5880bool ScalarEvolution::isKnownNegative(const SCEV *S) {
5881  return getSignedRange(S).getSignedMax().isNegative();
5882}
5883
5884bool ScalarEvolution::isKnownPositive(const SCEV *S) {
5885  return getSignedRange(S).getSignedMin().isStrictlyPositive();
5886}
5887
5888bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
5889  return !getSignedRange(S).getSignedMin().isNegative();
5890}
5891
5892bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
5893  return !getSignedRange(S).getSignedMax().isStrictlyPositive();
5894}
5895
5896bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
5897  return isKnownNegative(S) || isKnownPositive(S);
5898}
5899
5900bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
5901                                       const SCEV *LHS, const SCEV *RHS) {
5902  // Canonicalize the inputs first.
5903  (void)SimplifyICmpOperands(Pred, LHS, RHS);
5904
5905  // If LHS or RHS is an addrec, check to see if the condition is true in
5906  // every iteration of the loop.
5907  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
5908    if (isLoopEntryGuardedByCond(
5909          AR->getLoop(), Pred, AR->getStart(), RHS) &&
5910        isLoopBackedgeGuardedByCond(
5911          AR->getLoop(), Pred, AR->getPostIncExpr(*this), RHS))
5912      return true;
5913  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS))
5914    if (isLoopEntryGuardedByCond(
5915          AR->getLoop(), Pred, LHS, AR->getStart()) &&
5916        isLoopBackedgeGuardedByCond(
5917          AR->getLoop(), Pred, LHS, AR->getPostIncExpr(*this)))
5918      return true;
5919
5920  // Otherwise see what can be done with known constant ranges.
5921  return isKnownPredicateWithRanges(Pred, LHS, RHS);
5922}
5923
5924bool
5925ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
5926                                            const SCEV *LHS, const SCEV *RHS) {
5927  if (HasSameValue(LHS, RHS))
5928    return ICmpInst::isTrueWhenEqual(Pred);
5929
5930  // This code is split out from isKnownPredicate because it is called from
5931  // within isLoopEntryGuardedByCond.
5932  switch (Pred) {
5933  default:
5934    llvm_unreachable("Unexpected ICmpInst::Predicate value!");
5935  case ICmpInst::ICMP_SGT:
5936    Pred = ICmpInst::ICMP_SLT;
5937    std::swap(LHS, RHS);
5938  case ICmpInst::ICMP_SLT: {
5939    ConstantRange LHSRange = getSignedRange(LHS);
5940    ConstantRange RHSRange = getSignedRange(RHS);
5941    if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
5942      return true;
5943    if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
5944      return false;
5945    break;
5946  }
5947  case ICmpInst::ICMP_SGE:
5948    Pred = ICmpInst::ICMP_SLE;
5949    std::swap(LHS, RHS);
5950  case ICmpInst::ICMP_SLE: {
5951    ConstantRange LHSRange = getSignedRange(LHS);
5952    ConstantRange RHSRange = getSignedRange(RHS);
5953    if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
5954      return true;
5955    if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
5956      return false;
5957    break;
5958  }
5959  case ICmpInst::ICMP_UGT:
5960    Pred = ICmpInst::ICMP_ULT;
5961    std::swap(LHS, RHS);
5962  case ICmpInst::ICMP_ULT: {
5963    ConstantRange LHSRange = getUnsignedRange(LHS);
5964    ConstantRange RHSRange = getUnsignedRange(RHS);
5965    if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
5966      return true;
5967    if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
5968      return false;
5969    break;
5970  }
5971  case ICmpInst::ICMP_UGE:
5972    Pred = ICmpInst::ICMP_ULE;
5973    std::swap(LHS, RHS);
5974  case ICmpInst::ICMP_ULE: {
5975    ConstantRange LHSRange = getUnsignedRange(LHS);
5976    ConstantRange RHSRange = getUnsignedRange(RHS);
5977    if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
5978      return true;
5979    if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
5980      return false;
5981    break;
5982  }
5983  case ICmpInst::ICMP_NE: {
5984    if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
5985      return true;
5986    if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
5987      return true;
5988
5989    const SCEV *Diff = getMinusSCEV(LHS, RHS);
5990    if (isKnownNonZero(Diff))
5991      return true;
5992    break;
5993  }
5994  case ICmpInst::ICMP_EQ:
5995    // The check at the top of the function catches the case where
5996    // the values are known to be equal.
5997    break;
5998  }
5999  return false;
6000}
6001
6002/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
6003/// protected by a conditional between LHS and RHS.  This is used to
6004/// to eliminate casts.
6005bool
6006ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
6007                                             ICmpInst::Predicate Pred,
6008                                             const SCEV *LHS, const SCEV *RHS) {
6009  // Interpret a null as meaning no loop, where there is obviously no guard
6010  // (interprocedural conditions notwithstanding).
6011  if (!L) return true;
6012
6013  BasicBlock *Latch = L->getLoopLatch();
6014  if (!Latch)
6015    return false;
6016
6017  BranchInst *LoopContinuePredicate =
6018    dyn_cast<BranchInst>(Latch->getTerminator());
6019  if (!LoopContinuePredicate ||
6020      LoopContinuePredicate->isUnconditional())
6021    return false;
6022
6023  return isImpliedCond(Pred, LHS, RHS,
6024                       LoopContinuePredicate->getCondition(),
6025                       LoopContinuePredicate->getSuccessor(0) != L->getHeader());
6026}
6027
6028/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
6029/// by a conditional between LHS and RHS.  This is used to help avoid max
6030/// expressions in loop trip counts, and to eliminate casts.
6031bool
6032ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
6033                                          ICmpInst::Predicate Pred,
6034                                          const SCEV *LHS, const SCEV *RHS) {
6035  // Interpret a null as meaning no loop, where there is obviously no guard
6036  // (interprocedural conditions notwithstanding).
6037  if (!L) return false;
6038
6039  // Starting at the loop predecessor, climb up the predecessor chain, as long
6040  // as there are predecessors that can be found that have unique successors
6041  // leading to the original header.
6042  for (std::pair<BasicBlock *, BasicBlock *>
6043         Pair(L->getLoopPredecessor(), L->getHeader());
6044       Pair.first;
6045       Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
6046
6047    BranchInst *LoopEntryPredicate =
6048      dyn_cast<BranchInst>(Pair.first->getTerminator());
6049    if (!LoopEntryPredicate ||
6050        LoopEntryPredicate->isUnconditional())
6051      continue;
6052
6053    if (isImpliedCond(Pred, LHS, RHS,
6054                      LoopEntryPredicate->getCondition(),
6055                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
6056      return true;
6057  }
6058
6059  return false;
6060}
6061
6062/// RAII wrapper to prevent recursive application of isImpliedCond.
6063/// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
6064/// currently evaluating isImpliedCond.
6065struct MarkPendingLoopPredicate {
6066  Value *Cond;
6067  DenseSet<Value*> &LoopPreds;
6068  bool Pending;
6069
6070  MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
6071    : Cond(C), LoopPreds(LP) {
6072    Pending = !LoopPreds.insert(Cond).second;
6073  }
6074  ~MarkPendingLoopPredicate() {
6075    if (!Pending)
6076      LoopPreds.erase(Cond);
6077  }
6078};
6079
6080/// isImpliedCond - Test whether the condition described by Pred, LHS,
6081/// and RHS is true whenever the given Cond value evaluates to true.
6082bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
6083                                    const SCEV *LHS, const SCEV *RHS,
6084                                    Value *FoundCondValue,
6085                                    bool Inverse) {
6086  MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
6087  if (Mark.Pending)
6088    return false;
6089
6090  // Recursively handle And and Or conditions.
6091  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
6092    if (BO->getOpcode() == Instruction::And) {
6093      if (!Inverse)
6094        return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6095               isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
6096    } else if (BO->getOpcode() == Instruction::Or) {
6097      if (Inverse)
6098        return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
6099               isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
6100    }
6101  }
6102
6103  ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
6104  if (!ICI) return false;
6105
6106  // Bail if the ICmp's operands' types are wider than the needed type
6107  // before attempting to call getSCEV on them. This avoids infinite
6108  // recursion, since the analysis of widening casts can require loop
6109  // exit condition information for overflow checking, which would
6110  // lead back here.
6111  if (getTypeSizeInBits(LHS->getType()) <
6112      getTypeSizeInBits(ICI->getOperand(0)->getType()))
6113    return false;
6114
6115  // Now that we found a conditional branch that dominates the loop, check to
6116  // see if it is the comparison we are looking for.
6117  ICmpInst::Predicate FoundPred;
6118  if (Inverse)
6119    FoundPred = ICI->getInversePredicate();
6120  else
6121    FoundPred = ICI->getPredicate();
6122
6123  const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
6124  const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
6125
6126  // Balance the types. The case where FoundLHS' type is wider than
6127  // LHS' type is checked for above.
6128  if (getTypeSizeInBits(LHS->getType()) >
6129      getTypeSizeInBits(FoundLHS->getType())) {
6130    if (CmpInst::isSigned(Pred)) {
6131      FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
6132      FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
6133    } else {
6134      FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
6135      FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
6136    }
6137  }
6138
6139  // Canonicalize the query to match the way instcombine will have
6140  // canonicalized the comparison.
6141  if (SimplifyICmpOperands(Pred, LHS, RHS))
6142    if (LHS == RHS)
6143      return CmpInst::isTrueWhenEqual(Pred);
6144  if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
6145    if (FoundLHS == FoundRHS)
6146      return CmpInst::isFalseWhenEqual(Pred);
6147
6148  // Check to see if we can make the LHS or RHS match.
6149  if (LHS == FoundRHS || RHS == FoundLHS) {
6150    if (isa<SCEVConstant>(RHS)) {
6151      std::swap(FoundLHS, FoundRHS);
6152      FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
6153    } else {
6154      std::swap(LHS, RHS);
6155      Pred = ICmpInst::getSwappedPredicate(Pred);
6156    }
6157  }
6158
6159  // Check whether the found predicate is the same as the desired predicate.
6160  if (FoundPred == Pred)
6161    return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
6162
6163  // Check whether swapping the found predicate makes it the same as the
6164  // desired predicate.
6165  if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
6166    if (isa<SCEVConstant>(RHS))
6167      return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
6168    else
6169      return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
6170                                   RHS, LHS, FoundLHS, FoundRHS);
6171  }
6172
6173  // Check whether the actual condition is beyond sufficient.
6174  if (FoundPred == ICmpInst::ICMP_EQ)
6175    if (ICmpInst::isTrueWhenEqual(Pred))
6176      if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
6177        return true;
6178  if (Pred == ICmpInst::ICMP_NE)
6179    if (!ICmpInst::isTrueWhenEqual(FoundPred))
6180      if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
6181        return true;
6182
6183  // Otherwise assume the worst.
6184  return false;
6185}
6186
6187/// isImpliedCondOperands - Test whether the condition described by Pred,
6188/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
6189/// and FoundRHS is true.
6190bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
6191                                            const SCEV *LHS, const SCEV *RHS,
6192                                            const SCEV *FoundLHS,
6193                                            const SCEV *FoundRHS) {
6194  return isImpliedCondOperandsHelper(Pred, LHS, RHS,
6195                                     FoundLHS, FoundRHS) ||
6196         // ~x < ~y --> x > y
6197         isImpliedCondOperandsHelper(Pred, LHS, RHS,
6198                                     getNotSCEV(FoundRHS),
6199                                     getNotSCEV(FoundLHS));
6200}
6201
6202/// isImpliedCondOperandsHelper - Test whether the condition described by
6203/// Pred, LHS, and RHS is true whenever the condition described by Pred,
6204/// FoundLHS, and FoundRHS is true.
6205bool
6206ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
6207                                             const SCEV *LHS, const SCEV *RHS,
6208                                             const SCEV *FoundLHS,
6209                                             const SCEV *FoundRHS) {
6210  switch (Pred) {
6211  default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
6212  case ICmpInst::ICMP_EQ:
6213  case ICmpInst::ICMP_NE:
6214    if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
6215      return true;
6216    break;
6217  case ICmpInst::ICMP_SLT:
6218  case ICmpInst::ICMP_SLE:
6219    if (isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
6220        isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, RHS, FoundRHS))
6221      return true;
6222    break;
6223  case ICmpInst::ICMP_SGT:
6224  case ICmpInst::ICMP_SGE:
6225    if (isKnownPredicateWithRanges(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
6226        isKnownPredicateWithRanges(ICmpInst::ICMP_SLE, RHS, FoundRHS))
6227      return true;
6228    break;
6229  case ICmpInst::ICMP_ULT:
6230  case ICmpInst::ICMP_ULE:
6231    if (isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
6232        isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, RHS, FoundRHS))
6233      return true;
6234    break;
6235  case ICmpInst::ICMP_UGT:
6236  case ICmpInst::ICMP_UGE:
6237    if (isKnownPredicateWithRanges(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
6238        isKnownPredicateWithRanges(ICmpInst::ICMP_ULE, RHS, FoundRHS))
6239      return true;
6240    break;
6241  }
6242
6243  return false;
6244}
6245
6246/// getBECount - Subtract the end and start values and divide by the step,
6247/// rounding up, to get the number of times the backedge is executed. Return
6248/// CouldNotCompute if an intermediate computation overflows.
6249const SCEV *ScalarEvolution::getBECount(const SCEV *Start,
6250                                        const SCEV *End,
6251                                        const SCEV *Step,
6252                                        bool NoWrap) {
6253  assert(!isKnownNegative(Step) &&
6254         "This code doesn't handle negative strides yet!");
6255
6256  Type *Ty = Start->getType();
6257
6258  // When Start == End, we have an exact BECount == 0. Short-circuit this case
6259  // here because SCEV may not be able to determine that the unsigned division
6260  // after rounding is zero.
6261  if (Start == End)
6262    return getConstant(Ty, 0);
6263
6264  const SCEV *NegOne = getConstant(Ty, (uint64_t)-1);
6265  const SCEV *Diff = getMinusSCEV(End, Start);
6266  const SCEV *RoundUp = getAddExpr(Step, NegOne);
6267
6268  // Add an adjustment to the difference between End and Start so that
6269  // the division will effectively round up.
6270  const SCEV *Add = getAddExpr(Diff, RoundUp);
6271
6272  if (!NoWrap) {
6273    // Check Add for unsigned overflow.
6274    // TODO: More sophisticated things could be done here.
6275    Type *WideTy = IntegerType::get(getContext(),
6276                                          getTypeSizeInBits(Ty) + 1);
6277    const SCEV *EDiff = getZeroExtendExpr(Diff, WideTy);
6278    const SCEV *ERoundUp = getZeroExtendExpr(RoundUp, WideTy);
6279    const SCEV *OperandExtendedAdd = getAddExpr(EDiff, ERoundUp);
6280    if (getZeroExtendExpr(Add, WideTy) != OperandExtendedAdd)
6281      return getCouldNotCompute();
6282  }
6283
6284  return getUDivExpr(Add, Step);
6285}
6286
6287/// HowManyLessThans - Return the number of times a backedge containing the
6288/// specified less-than comparison will execute.  If not computable, return
6289/// CouldNotCompute.
6290ScalarEvolution::ExitLimit
6291ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
6292                                  const Loop *L, bool isSigned) {
6293  // Only handle:  "ADDREC < LoopInvariant".
6294  if (!isLoopInvariant(RHS, L)) return getCouldNotCompute();
6295
6296  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
6297  if (!AddRec || AddRec->getLoop() != L)
6298    return getCouldNotCompute();
6299
6300  // Check to see if we have a flag which makes analysis easy.
6301  bool NoWrap = isSigned ?
6302    AddRec->getNoWrapFlags((SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNW)) :
6303    AddRec->getNoWrapFlags((SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNW));
6304
6305  if (AddRec->isAffine()) {
6306    unsigned BitWidth = getTypeSizeInBits(AddRec->getType());
6307    const SCEV *Step = AddRec->getStepRecurrence(*this);
6308
6309    if (Step->isZero())
6310      return getCouldNotCompute();
6311    if (Step->isOne()) {
6312      // With unit stride, the iteration never steps past the limit value.
6313    } else if (isKnownPositive(Step)) {
6314      // Test whether a positive iteration can step past the limit
6315      // value and past the maximum value for its type in a single step.
6316      // Note that it's not sufficient to check NoWrap here, because even
6317      // though the value after a wrap is undefined, it's not undefined
6318      // behavior, so if wrap does occur, the loop could either terminate or
6319      // loop infinitely, but in either case, the loop is guaranteed to
6320      // iterate at least until the iteration where the wrapping occurs.
6321      const SCEV *One = getConstant(Step->getType(), 1);
6322      if (isSigned) {
6323        APInt Max = APInt::getSignedMaxValue(BitWidth);
6324        if ((Max - getSignedRange(getMinusSCEV(Step, One)).getSignedMax())
6325              .slt(getSignedRange(RHS).getSignedMax()))
6326          return getCouldNotCompute();
6327      } else {
6328        APInt Max = APInt::getMaxValue(BitWidth);
6329        if ((Max - getUnsignedRange(getMinusSCEV(Step, One)).getUnsignedMax())
6330              .ult(getUnsignedRange(RHS).getUnsignedMax()))
6331          return getCouldNotCompute();
6332      }
6333    } else
6334      // TODO: Handle negative strides here and below.
6335      return getCouldNotCompute();
6336
6337    // We know the LHS is of the form {n,+,s} and the RHS is some loop-invariant
6338    // m.  So, we count the number of iterations in which {n,+,s} < m is true.
6339    // Note that we cannot simply return max(m-n,0)/s because it's not safe to
6340    // treat m-n as signed nor unsigned due to overflow possibility.
6341
6342    // First, we get the value of the LHS in the first iteration: n
6343    const SCEV *Start = AddRec->getOperand(0);
6344
6345    // Determine the minimum constant start value.
6346    const SCEV *MinStart = getConstant(isSigned ?
6347      getSignedRange(Start).getSignedMin() :
6348      getUnsignedRange(Start).getUnsignedMin());
6349
6350    // If we know that the condition is true in order to enter the loop,
6351    // then we know that it will run exactly (m-n)/s times. Otherwise, we
6352    // only know that it will execute (max(m,n)-n)/s times. In both cases,
6353    // the division must round up.
6354    const SCEV *End = RHS;
6355    if (!isLoopEntryGuardedByCond(L,
6356                                  isSigned ? ICmpInst::ICMP_SLT :
6357                                             ICmpInst::ICMP_ULT,
6358                                  getMinusSCEV(Start, Step), RHS))
6359      End = isSigned ? getSMaxExpr(RHS, Start)
6360                     : getUMaxExpr(RHS, Start);
6361
6362    // Determine the maximum constant end value.
6363    const SCEV *MaxEnd = getConstant(isSigned ?
6364      getSignedRange(End).getSignedMax() :
6365      getUnsignedRange(End).getUnsignedMax());
6366
6367    // If MaxEnd is within a step of the maximum integer value in its type,
6368    // adjust it down to the minimum value which would produce the same effect.
6369    // This allows the subsequent ceiling division of (N+(step-1))/step to
6370    // compute the correct value.
6371    const SCEV *StepMinusOne = getMinusSCEV(Step,
6372                                            getConstant(Step->getType(), 1));
6373    MaxEnd = isSigned ?
6374      getSMinExpr(MaxEnd,
6375                  getMinusSCEV(getConstant(APInt::getSignedMaxValue(BitWidth)),
6376                               StepMinusOne)) :
6377      getUMinExpr(MaxEnd,
6378                  getMinusSCEV(getConstant(APInt::getMaxValue(BitWidth)),
6379                               StepMinusOne));
6380
6381    // Finally, we subtract these two values and divide, rounding up, to get
6382    // the number of times the backedge is executed.
6383    const SCEV *BECount = getBECount(Start, End, Step, NoWrap);
6384
6385    // The maximum backedge count is similar, except using the minimum start
6386    // value and the maximum end value.
6387    // If we already have an exact constant BECount, use it instead.
6388    const SCEV *MaxBECount = isa<SCEVConstant>(BECount) ? BECount
6389      : getBECount(MinStart, MaxEnd, Step, NoWrap);
6390
6391    // If the stride is nonconstant, and NoWrap == true, then
6392    // getBECount(MinStart, MaxEnd) may not compute. This would result in an
6393    // exact BECount and invalid MaxBECount, which should be avoided to catch
6394    // more optimization opportunities.
6395    if (isa<SCEVCouldNotCompute>(MaxBECount))
6396      MaxBECount = BECount;
6397
6398    return ExitLimit(BECount, MaxBECount);
6399  }
6400
6401  return getCouldNotCompute();
6402}
6403
6404/// getNumIterationsInRange - Return the number of iterations of this loop that
6405/// produce values in the specified constant range.  Another way of looking at
6406/// this is that it returns the first iteration number where the value is not in
6407/// the condition, thus computing the exit count. If the iteration count can't
6408/// be computed, an instance of SCEVCouldNotCompute is returned.
6409const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
6410                                                    ScalarEvolution &SE) const {
6411  if (Range.isFullSet())  // Infinite loop.
6412    return SE.getCouldNotCompute();
6413
6414  // If the start is a non-zero constant, shift the range to simplify things.
6415  if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
6416    if (!SC->getValue()->isZero()) {
6417      SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
6418      Operands[0] = SE.getConstant(SC->getType(), 0);
6419      const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
6420                                             getNoWrapFlags(FlagNW));
6421      if (const SCEVAddRecExpr *ShiftedAddRec =
6422            dyn_cast<SCEVAddRecExpr>(Shifted))
6423        return ShiftedAddRec->getNumIterationsInRange(
6424                           Range.subtract(SC->getValue()->getValue()), SE);
6425      // This is strange and shouldn't happen.
6426      return SE.getCouldNotCompute();
6427    }
6428
6429  // The only time we can solve this is when we have all constant indices.
6430  // Otherwise, we cannot determine the overflow conditions.
6431  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
6432    if (!isa<SCEVConstant>(getOperand(i)))
6433      return SE.getCouldNotCompute();
6434
6435
6436  // Okay at this point we know that all elements of the chrec are constants and
6437  // that the start element is zero.
6438
6439  // First check to see if the range contains zero.  If not, the first
6440  // iteration exits.
6441  unsigned BitWidth = SE.getTypeSizeInBits(getType());
6442  if (!Range.contains(APInt(BitWidth, 0)))
6443    return SE.getConstant(getType(), 0);
6444
6445  if (isAffine()) {
6446    // If this is an affine expression then we have this situation:
6447    //   Solve {0,+,A} in Range  ===  Ax in Range
6448
6449    // We know that zero is in the range.  If A is positive then we know that
6450    // the upper value of the range must be the first possible exit value.
6451    // If A is negative then the lower of the range is the last possible loop
6452    // value.  Also note that we already checked for a full range.
6453    APInt One(BitWidth,1);
6454    APInt A     = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
6455    APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
6456
6457    // The exit value should be (End+A)/A.
6458    APInt ExitVal = (End + A).udiv(A);
6459    ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
6460
6461    // Evaluate at the exit value.  If we really did fall out of the valid
6462    // range, then we computed our trip count, otherwise wrap around or other
6463    // things must have happened.
6464    ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
6465    if (Range.contains(Val->getValue()))
6466      return SE.getCouldNotCompute();  // Something strange happened
6467
6468    // Ensure that the previous value is in the range.  This is a sanity check.
6469    assert(Range.contains(
6470           EvaluateConstantChrecAtConstant(this,
6471           ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
6472           "Linear scev computation is off in a bad way!");
6473    return SE.getConstant(ExitValue);
6474  } else if (isQuadratic()) {
6475    // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
6476    // quadratic equation to solve it.  To do this, we must frame our problem in
6477    // terms of figuring out when zero is crossed, instead of when
6478    // Range.getUpper() is crossed.
6479    SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
6480    NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
6481    const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
6482                                             // getNoWrapFlags(FlagNW)
6483                                             FlagAnyWrap);
6484
6485    // Next, solve the constructed addrec
6486    std::pair<const SCEV *,const SCEV *> Roots =
6487      SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
6488    const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6489    const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
6490    if (R1) {
6491      // Pick the smallest positive root value.
6492      if (ConstantInt *CB =
6493          dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
6494                         R1->getValue(), R2->getValue()))) {
6495        if (CB->getZExtValue() == false)
6496          std::swap(R1, R2);   // R1 is the minimum root now.
6497
6498        // Make sure the root is not off by one.  The returned iteration should
6499        // not be in the range, but the previous one should be.  When solving
6500        // for "X*X < 5", for example, we should not return a root of 2.
6501        ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
6502                                                             R1->getValue(),
6503                                                             SE);
6504        if (Range.contains(R1Val->getValue())) {
6505          // The next iteration must be out of the range...
6506          ConstantInt *NextVal =
6507                ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1);
6508
6509          R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
6510          if (!Range.contains(R1Val->getValue()))
6511            return SE.getConstant(NextVal);
6512          return SE.getCouldNotCompute();  // Something strange happened
6513        }
6514
6515        // If R1 was not in the range, then it is a good return value.  Make
6516        // sure that R1-1 WAS in the range though, just in case.
6517        ConstantInt *NextVal =
6518               ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1);
6519        R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
6520        if (Range.contains(R1Val->getValue()))
6521          return R1;
6522        return SE.getCouldNotCompute();  // Something strange happened
6523      }
6524    }
6525  }
6526
6527  return SE.getCouldNotCompute();
6528}
6529
6530
6531
6532//===----------------------------------------------------------------------===//
6533//                   SCEVCallbackVH Class Implementation
6534//===----------------------------------------------------------------------===//
6535
6536void ScalarEvolution::SCEVCallbackVH::deleted() {
6537  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
6538  if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
6539    SE->ConstantEvolutionLoopExitValue.erase(PN);
6540  SE->ValueExprMap.erase(getValPtr());
6541  // this now dangles!
6542}
6543
6544void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
6545  assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
6546
6547  // Forget all the expressions associated with users of the old value,
6548  // so that future queries will recompute the expressions using the new
6549  // value.
6550  Value *Old = getValPtr();
6551  SmallVector<User *, 16> Worklist;
6552  SmallPtrSet<User *, 8> Visited;
6553  for (Value::use_iterator UI = Old->use_begin(), UE = Old->use_end();
6554       UI != UE; ++UI)
6555    Worklist.push_back(*UI);
6556  while (!Worklist.empty()) {
6557    User *U = Worklist.pop_back_val();
6558    // Deleting the Old value will cause this to dangle. Postpone
6559    // that until everything else is done.
6560    if (U == Old)
6561      continue;
6562    if (!Visited.insert(U))
6563      continue;
6564    if (PHINode *PN = dyn_cast<PHINode>(U))
6565      SE->ConstantEvolutionLoopExitValue.erase(PN);
6566    SE->ValueExprMap.erase(U);
6567    for (Value::use_iterator UI = U->use_begin(), UE = U->use_end();
6568         UI != UE; ++UI)
6569      Worklist.push_back(*UI);
6570  }
6571  // Delete the Old value.
6572  if (PHINode *PN = dyn_cast<PHINode>(Old))
6573    SE->ConstantEvolutionLoopExitValue.erase(PN);
6574  SE->ValueExprMap.erase(Old);
6575  // this now dangles!
6576}
6577
6578ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
6579  : CallbackVH(V), SE(se) {}
6580
6581//===----------------------------------------------------------------------===//
6582//                   ScalarEvolution Class Implementation
6583//===----------------------------------------------------------------------===//
6584
6585ScalarEvolution::ScalarEvolution()
6586  : FunctionPass(ID), FirstUnknown(0) {
6587  initializeScalarEvolutionPass(*PassRegistry::getPassRegistry());
6588}
6589
6590bool ScalarEvolution::runOnFunction(Function &F) {
6591  this->F = &F;
6592  LI = &getAnalysis<LoopInfo>();
6593  TD = getAnalysisIfAvailable<TargetData>();
6594  TLI = &getAnalysis<TargetLibraryInfo>();
6595  DT = &getAnalysis<DominatorTree>();
6596  return false;
6597}
6598
6599void ScalarEvolution::releaseMemory() {
6600  // Iterate through all the SCEVUnknown instances and call their
6601  // destructors, so that they release their references to their values.
6602  for (SCEVUnknown *U = FirstUnknown; U; U = U->Next)
6603    U->~SCEVUnknown();
6604  FirstUnknown = 0;
6605
6606  ValueExprMap.clear();
6607
6608  // Free any extra memory created for ExitNotTakenInfo in the unlikely event
6609  // that a loop had multiple computable exits.
6610  for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
6611         BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end();
6612       I != E; ++I) {
6613    I->second.clear();
6614  }
6615
6616  assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
6617
6618  BackedgeTakenCounts.clear();
6619  ConstantEvolutionLoopExitValue.clear();
6620  ValuesAtScopes.clear();
6621  LoopDispositions.clear();
6622  BlockDispositions.clear();
6623  UnsignedRanges.clear();
6624  SignedRanges.clear();
6625  UniqueSCEVs.clear();
6626  SCEVAllocator.Reset();
6627}
6628
6629void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
6630  AU.setPreservesAll();
6631  AU.addRequiredTransitive<LoopInfo>();
6632  AU.addRequiredTransitive<DominatorTree>();
6633  AU.addRequired<TargetLibraryInfo>();
6634}
6635
6636bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
6637  return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
6638}
6639
6640static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
6641                          const Loop *L) {
6642  // Print all inner loops first
6643  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
6644    PrintLoopInfo(OS, SE, *I);
6645
6646  OS << "Loop ";
6647  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6648  OS << ": ";
6649
6650  SmallVector<BasicBlock *, 8> ExitBlocks;
6651  L->getExitBlocks(ExitBlocks);
6652  if (ExitBlocks.size() != 1)
6653    OS << "<multiple exits> ";
6654
6655  if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
6656    OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
6657  } else {
6658    OS << "Unpredictable backedge-taken count. ";
6659  }
6660
6661  OS << "\n"
6662        "Loop ";
6663  WriteAsOperand(OS, L->getHeader(), /*PrintType=*/false);
6664  OS << ": ";
6665
6666  if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
6667    OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
6668  } else {
6669    OS << "Unpredictable max backedge-taken count. ";
6670  }
6671
6672  OS << "\n";
6673}
6674
6675void ScalarEvolution::print(raw_ostream &OS, const Module *) const {
6676  // ScalarEvolution's implementation of the print method is to print
6677  // out SCEV values of all instructions that are interesting. Doing
6678  // this potentially causes it to create new SCEV objects though,
6679  // which technically conflicts with the const qualifier. This isn't
6680  // observable from outside the class though, so casting away the
6681  // const isn't dangerous.
6682  ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
6683
6684  OS << "Classifying expressions for: ";
6685  WriteAsOperand(OS, F, /*PrintType=*/false);
6686  OS << "\n";
6687  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
6688    if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) {
6689      OS << *I << '\n';
6690      OS << "  -->  ";
6691      const SCEV *SV = SE.getSCEV(&*I);
6692      SV->print(OS);
6693
6694      const Loop *L = LI->getLoopFor((*I).getParent());
6695
6696      const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
6697      if (AtUse != SV) {
6698        OS << "  -->  ";
6699        AtUse->print(OS);
6700      }
6701
6702      if (L) {
6703        OS << "\t\t" "Exits: ";
6704        const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
6705        if (!SE.isLoopInvariant(ExitValue, L)) {
6706          OS << "<<Unknown>>";
6707        } else {
6708          OS << *ExitValue;
6709        }
6710      }
6711
6712      OS << "\n";
6713    }
6714
6715  OS << "Determining loop execution counts for: ";
6716  WriteAsOperand(OS, F, /*PrintType=*/false);
6717  OS << "\n";
6718  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
6719    PrintLoopInfo(OS, &SE, *I);
6720}
6721
6722ScalarEvolution::LoopDisposition
6723ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
6724  std::map<const Loop *, LoopDisposition> &Values = LoopDispositions[S];
6725  std::pair<std::map<const Loop *, LoopDisposition>::iterator, bool> Pair =
6726    Values.insert(std::make_pair(L, LoopVariant));
6727  if (!Pair.second)
6728    return Pair.first->second;
6729
6730  LoopDisposition D = computeLoopDisposition(S, L);
6731  return LoopDispositions[S][L] = D;
6732}
6733
6734ScalarEvolution::LoopDisposition
6735ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
6736  switch (S->getSCEVType()) {
6737  case scConstant:
6738    return LoopInvariant;
6739  case scTruncate:
6740  case scZeroExtend:
6741  case scSignExtend:
6742    return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
6743  case scAddRecExpr: {
6744    const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6745
6746    // If L is the addrec's loop, it's computable.
6747    if (AR->getLoop() == L)
6748      return LoopComputable;
6749
6750    // Add recurrences are never invariant in the function-body (null loop).
6751    if (!L)
6752      return LoopVariant;
6753
6754    // This recurrence is variant w.r.t. L if L contains AR's loop.
6755    if (L->contains(AR->getLoop()))
6756      return LoopVariant;
6757
6758    // This recurrence is invariant w.r.t. L if AR's loop contains L.
6759    if (AR->getLoop()->contains(L))
6760      return LoopInvariant;
6761
6762    // This recurrence is variant w.r.t. L if any of its operands
6763    // are variant.
6764    for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
6765         I != E; ++I)
6766      if (!isLoopInvariant(*I, L))
6767        return LoopVariant;
6768
6769    // Otherwise it's loop-invariant.
6770    return LoopInvariant;
6771  }
6772  case scAddExpr:
6773  case scMulExpr:
6774  case scUMaxExpr:
6775  case scSMaxExpr: {
6776    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6777    bool HasVarying = false;
6778    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6779         I != E; ++I) {
6780      LoopDisposition D = getLoopDisposition(*I, L);
6781      if (D == LoopVariant)
6782        return LoopVariant;
6783      if (D == LoopComputable)
6784        HasVarying = true;
6785    }
6786    return HasVarying ? LoopComputable : LoopInvariant;
6787  }
6788  case scUDivExpr: {
6789    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6790    LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
6791    if (LD == LoopVariant)
6792      return LoopVariant;
6793    LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
6794    if (RD == LoopVariant)
6795      return LoopVariant;
6796    return (LD == LoopInvariant && RD == LoopInvariant) ?
6797           LoopInvariant : LoopComputable;
6798  }
6799  case scUnknown:
6800    // All non-instruction values are loop invariant.  All instructions are loop
6801    // invariant if they are not contained in the specified loop.
6802    // Instructions are never considered invariant in the function body
6803    // (null loop) because they are defined within the "loop".
6804    if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
6805      return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
6806    return LoopInvariant;
6807  case scCouldNotCompute:
6808    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6809  default: llvm_unreachable("Unknown SCEV kind!");
6810  }
6811}
6812
6813bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
6814  return getLoopDisposition(S, L) == LoopInvariant;
6815}
6816
6817bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
6818  return getLoopDisposition(S, L) == LoopComputable;
6819}
6820
6821ScalarEvolution::BlockDisposition
6822ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
6823  std::map<const BasicBlock *, BlockDisposition> &Values = BlockDispositions[S];
6824  std::pair<std::map<const BasicBlock *, BlockDisposition>::iterator, bool>
6825    Pair = Values.insert(std::make_pair(BB, DoesNotDominateBlock));
6826  if (!Pair.second)
6827    return Pair.first->second;
6828
6829  BlockDisposition D = computeBlockDisposition(S, BB);
6830  return BlockDispositions[S][BB] = D;
6831}
6832
6833ScalarEvolution::BlockDisposition
6834ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
6835  switch (S->getSCEVType()) {
6836  case scConstant:
6837    return ProperlyDominatesBlock;
6838  case scTruncate:
6839  case scZeroExtend:
6840  case scSignExtend:
6841    return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
6842  case scAddRecExpr: {
6843    // This uses a "dominates" query instead of "properly dominates" query
6844    // to test for proper dominance too, because the instruction which
6845    // produces the addrec's value is a PHI, and a PHI effectively properly
6846    // dominates its entire containing block.
6847    const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
6848    if (!DT->dominates(AR->getLoop()->getHeader(), BB))
6849      return DoesNotDominateBlock;
6850  }
6851  // FALL THROUGH into SCEVNAryExpr handling.
6852  case scAddExpr:
6853  case scMulExpr:
6854  case scUMaxExpr:
6855  case scSMaxExpr: {
6856    const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
6857    bool Proper = true;
6858    for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
6859         I != E; ++I) {
6860      BlockDisposition D = getBlockDisposition(*I, BB);
6861      if (D == DoesNotDominateBlock)
6862        return DoesNotDominateBlock;
6863      if (D == DominatesBlock)
6864        Proper = false;
6865    }
6866    return Proper ? ProperlyDominatesBlock : DominatesBlock;
6867  }
6868  case scUDivExpr: {
6869    const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
6870    const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
6871    BlockDisposition LD = getBlockDisposition(LHS, BB);
6872    if (LD == DoesNotDominateBlock)
6873      return DoesNotDominateBlock;
6874    BlockDisposition RD = getBlockDisposition(RHS, BB);
6875    if (RD == DoesNotDominateBlock)
6876      return DoesNotDominateBlock;
6877    return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
6878      ProperlyDominatesBlock : DominatesBlock;
6879  }
6880  case scUnknown:
6881    if (Instruction *I =
6882          dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
6883      if (I->getParent() == BB)
6884        return DominatesBlock;
6885      if (DT->properlyDominates(I->getParent(), BB))
6886        return ProperlyDominatesBlock;
6887      return DoesNotDominateBlock;
6888    }
6889    return ProperlyDominatesBlock;
6890  case scCouldNotCompute:
6891    llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6892  default:
6893    llvm_unreachable("Unknown SCEV kind!");
6894  }
6895}
6896
6897bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
6898  return getBlockDisposition(S, BB) >= DominatesBlock;
6899}
6900
6901bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
6902  return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
6903}
6904
6905namespace {
6906// Search for a SCEV expression node within an expression tree.
6907// Implements SCEVTraversal::Visitor.
6908struct SCEVSearch {
6909  const SCEV *Node;
6910  bool IsFound;
6911
6912  SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
6913
6914  bool follow(const SCEV *S) {
6915    IsFound |= (S == Node);
6916    return !IsFound;
6917  }
6918  bool isDone() const { return IsFound; }
6919};
6920}
6921
6922bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
6923  SCEVSearch Search(Op);
6924  visitAll(S, Search);
6925  return Search.IsFound;
6926}
6927
6928void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
6929  ValuesAtScopes.erase(S);
6930  LoopDispositions.erase(S);
6931  BlockDispositions.erase(S);
6932  UnsignedRanges.erase(S);
6933  SignedRanges.erase(S);
6934}
6935