1//===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the primary stateless implementation of the
11// Alias Analysis interface that implements identities (two different
12// globals cannot alias, etc), but does no stateful analysis.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/Analysis/Passes.h"
18#include "llvm/Constants.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Function.h"
21#include "llvm/GlobalAlias.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/Instructions.h"
24#include "llvm/IntrinsicInst.h"
25#include "llvm/LLVMContext.h"
26#include "llvm/Operator.h"
27#include "llvm/Pass.h"
28#include "llvm/Analysis/CaptureTracking.h"
29#include "llvm/Analysis/MemoryBuiltins.h"
30#include "llvm/Analysis/InstructionSimplify.h"
31#include "llvm/Analysis/ValueTracking.h"
32#include "llvm/Target/TargetData.h"
33#include "llvm/Target/TargetLibraryInfo.h"
34#include "llvm/ADT/SmallPtrSet.h"
35#include "llvm/ADT/SmallVector.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/GetElementPtrTypeIterator.h"
38#include <algorithm>
39using namespace llvm;
40
41//===----------------------------------------------------------------------===//
42// Useful predicates
43//===----------------------------------------------------------------------===//
44
45/// isNonEscapingLocalObject - Return true if the pointer is to a function-local
46/// object that never escapes from the function.
47static bool isNonEscapingLocalObject(const Value *V) {
48  // If this is a local allocation, check to see if it escapes.
49  if (isa<AllocaInst>(V) || isNoAliasCall(V))
50    // Set StoreCaptures to True so that we can assume in our callers that the
51    // pointer is not the result of a load instruction. Currently
52    // PointerMayBeCaptured doesn't have any special analysis for the
53    // StoreCaptures=false case; if it did, our callers could be refined to be
54    // more precise.
55    return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
56
57  // If this is an argument that corresponds to a byval or noalias argument,
58  // then it has not escaped before entering the function.  Check if it escapes
59  // inside the function.
60  if (const Argument *A = dyn_cast<Argument>(V))
61    if (A->hasByValAttr() || A->hasNoAliasAttr()) {
62      // Don't bother analyzing arguments already known not to escape.
63      if (A->hasNoCaptureAttr())
64        return true;
65      return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
66    }
67  return false;
68}
69
70/// isEscapeSource - Return true if the pointer is one which would have
71/// been considered an escape by isNonEscapingLocalObject.
72static bool isEscapeSource(const Value *V) {
73  if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V))
74    return true;
75
76  // The load case works because isNonEscapingLocalObject considers all
77  // stores to be escapes (it passes true for the StoreCaptures argument
78  // to PointerMayBeCaptured).
79  if (isa<LoadInst>(V))
80    return true;
81
82  return false;
83}
84
85/// getObjectSize - Return the size of the object specified by V, or
86/// UnknownSize if unknown.
87static uint64_t getObjectSize(const Value *V, const TargetData &TD,
88                              const TargetLibraryInfo &TLI,
89                              bool RoundToAlign = false) {
90  uint64_t Size;
91  if (getObjectSize(V, Size, &TD, &TLI, RoundToAlign))
92    return Size;
93  return AliasAnalysis::UnknownSize;
94}
95
96/// isObjectSmallerThan - Return true if we can prove that the object specified
97/// by V is smaller than Size.
98static bool isObjectSmallerThan(const Value *V, uint64_t Size,
99                                const TargetData &TD,
100                                const TargetLibraryInfo &TLI) {
101  // This function needs to use the aligned object size because we allow
102  // reads a bit past the end given sufficient alignment.
103  uint64_t ObjectSize = getObjectSize(V, TD, TLI, /*RoundToAlign*/true);
104
105  return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize < Size;
106}
107
108/// isObjectSize - Return true if we can prove that the object specified
109/// by V has size Size.
110static bool isObjectSize(const Value *V, uint64_t Size,
111                         const TargetData &TD, const TargetLibraryInfo &TLI) {
112  uint64_t ObjectSize = getObjectSize(V, TD, TLI);
113  return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize == Size;
114}
115
116//===----------------------------------------------------------------------===//
117// GetElementPtr Instruction Decomposition and Analysis
118//===----------------------------------------------------------------------===//
119
120namespace {
121  enum ExtensionKind {
122    EK_NotExtended,
123    EK_SignExt,
124    EK_ZeroExt
125  };
126
127  struct VariableGEPIndex {
128    const Value *V;
129    ExtensionKind Extension;
130    int64_t Scale;
131
132    bool operator==(const VariableGEPIndex &Other) const {
133      return V == Other.V && Extension == Other.Extension &&
134        Scale == Other.Scale;
135    }
136
137    bool operator!=(const VariableGEPIndex &Other) const {
138      return !operator==(Other);
139    }
140  };
141}
142
143
144/// GetLinearExpression - Analyze the specified value as a linear expression:
145/// "A*V + B", where A and B are constant integers.  Return the scale and offset
146/// values as APInts and return V as a Value*, and return whether we looked
147/// through any sign or zero extends.  The incoming Value is known to have
148/// IntegerType and it may already be sign or zero extended.
149///
150/// Note that this looks through extends, so the high bits may not be
151/// represented in the result.
152static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset,
153                                  ExtensionKind &Extension,
154                                  const TargetData &TD, unsigned Depth) {
155  assert(V->getType()->isIntegerTy() && "Not an integer value");
156
157  // Limit our recursion depth.
158  if (Depth == 6) {
159    Scale = 1;
160    Offset = 0;
161    return V;
162  }
163
164  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
165    if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
166      switch (BOp->getOpcode()) {
167      default: break;
168      case Instruction::Or:
169        // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
170        // analyze it.
171        if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), &TD))
172          break;
173        // FALL THROUGH.
174      case Instruction::Add:
175        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
176                                TD, Depth+1);
177        Offset += RHSC->getValue();
178        return V;
179      case Instruction::Mul:
180        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
181                                TD, Depth+1);
182        Offset *= RHSC->getValue();
183        Scale *= RHSC->getValue();
184        return V;
185      case Instruction::Shl:
186        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
187                                TD, Depth+1);
188        Offset <<= RHSC->getValue().getLimitedValue();
189        Scale <<= RHSC->getValue().getLimitedValue();
190        return V;
191      }
192    }
193  }
194
195  // Since GEP indices are sign extended anyway, we don't care about the high
196  // bits of a sign or zero extended value - just scales and offsets.  The
197  // extensions have to be consistent though.
198  if ((isa<SExtInst>(V) && Extension != EK_ZeroExt) ||
199      (isa<ZExtInst>(V) && Extension != EK_SignExt)) {
200    Value *CastOp = cast<CastInst>(V)->getOperand(0);
201    unsigned OldWidth = Scale.getBitWidth();
202    unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
203    Scale = Scale.trunc(SmallWidth);
204    Offset = Offset.trunc(SmallWidth);
205    Extension = isa<SExtInst>(V) ? EK_SignExt : EK_ZeroExt;
206
207    Value *Result = GetLinearExpression(CastOp, Scale, Offset, Extension,
208                                        TD, Depth+1);
209    Scale = Scale.zext(OldWidth);
210    Offset = Offset.zext(OldWidth);
211
212    return Result;
213  }
214
215  Scale = 1;
216  Offset = 0;
217  return V;
218}
219
220/// DecomposeGEPExpression - If V is a symbolic pointer expression, decompose it
221/// into a base pointer with a constant offset and a number of scaled symbolic
222/// offsets.
223///
224/// The scaled symbolic offsets (represented by pairs of a Value* and a scale in
225/// the VarIndices vector) are Value*'s that are known to be scaled by the
226/// specified amount, but which may have other unrepresented high bits. As such,
227/// the gep cannot necessarily be reconstructed from its decomposed form.
228///
229/// When TargetData is around, this function is capable of analyzing everything
230/// that GetUnderlyingObject can look through.  When not, it just looks
231/// through pointer casts.
232///
233static const Value *
234DecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
235                       SmallVectorImpl<VariableGEPIndex> &VarIndices,
236                       const TargetData *TD) {
237  // Limit recursion depth to limit compile time in crazy cases.
238  unsigned MaxLookup = 6;
239
240  BaseOffs = 0;
241  do {
242    // See if this is a bitcast or GEP.
243    const Operator *Op = dyn_cast<Operator>(V);
244    if (Op == 0) {
245      // The only non-operator case we can handle are GlobalAliases.
246      if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
247        if (!GA->mayBeOverridden()) {
248          V = GA->getAliasee();
249          continue;
250        }
251      }
252      return V;
253    }
254
255    if (Op->getOpcode() == Instruction::BitCast) {
256      V = Op->getOperand(0);
257      continue;
258    }
259
260    const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
261    if (GEPOp == 0) {
262      // If it's not a GEP, hand it off to SimplifyInstruction to see if it
263      // can come up with something. This matches what GetUnderlyingObject does.
264      if (const Instruction *I = dyn_cast<Instruction>(V))
265        // TODO: Get a DominatorTree and use it here.
266        if (const Value *Simplified =
267              SimplifyInstruction(const_cast<Instruction *>(I), TD)) {
268          V = Simplified;
269          continue;
270        }
271
272      return V;
273    }
274
275    // Don't attempt to analyze GEPs over unsized objects.
276    if (!cast<PointerType>(GEPOp->getOperand(0)->getType())
277        ->getElementType()->isSized())
278      return V;
279
280    // If we are lacking TargetData information, we can't compute the offets of
281    // elements computed by GEPs.  However, we can handle bitcast equivalent
282    // GEPs.
283    if (TD == 0) {
284      if (!GEPOp->hasAllZeroIndices())
285        return V;
286      V = GEPOp->getOperand(0);
287      continue;
288    }
289
290    // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
291    gep_type_iterator GTI = gep_type_begin(GEPOp);
292    for (User::const_op_iterator I = GEPOp->op_begin()+1,
293         E = GEPOp->op_end(); I != E; ++I) {
294      Value *Index = *I;
295      // Compute the (potentially symbolic) offset in bytes for this index.
296      if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
297        // For a struct, add the member offset.
298        unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
299        if (FieldNo == 0) continue;
300
301        BaseOffs += TD->getStructLayout(STy)->getElementOffset(FieldNo);
302        continue;
303      }
304
305      // For an array/pointer, add the element offset, explicitly scaled.
306      if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
307        if (CIdx->isZero()) continue;
308        BaseOffs += TD->getTypeAllocSize(*GTI)*CIdx->getSExtValue();
309        continue;
310      }
311
312      uint64_t Scale = TD->getTypeAllocSize(*GTI);
313      ExtensionKind Extension = EK_NotExtended;
314
315      // If the integer type is smaller than the pointer size, it is implicitly
316      // sign extended to pointer size.
317      unsigned Width = cast<IntegerType>(Index->getType())->getBitWidth();
318      if (TD->getPointerSizeInBits() > Width)
319        Extension = EK_SignExt;
320
321      // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
322      APInt IndexScale(Width, 0), IndexOffset(Width, 0);
323      Index = GetLinearExpression(Index, IndexScale, IndexOffset, Extension,
324                                  *TD, 0);
325
326      // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
327      // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
328      BaseOffs += IndexOffset.getSExtValue()*Scale;
329      Scale *= IndexScale.getSExtValue();
330
331
332      // If we already had an occurrence of this index variable, merge this
333      // scale into it.  For example, we want to handle:
334      //   A[x][x] -> x*16 + x*4 -> x*20
335      // This also ensures that 'x' only appears in the index list once.
336      for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) {
337        if (VarIndices[i].V == Index &&
338            VarIndices[i].Extension == Extension) {
339          Scale += VarIndices[i].Scale;
340          VarIndices.erase(VarIndices.begin()+i);
341          break;
342        }
343      }
344
345      // Make sure that we have a scale that makes sense for this target's
346      // pointer size.
347      if (unsigned ShiftBits = 64-TD->getPointerSizeInBits()) {
348        Scale <<= ShiftBits;
349        Scale = (int64_t)Scale >> ShiftBits;
350      }
351
352      if (Scale) {
353        VariableGEPIndex Entry = {Index, Extension,
354                                  static_cast<int64_t>(Scale)};
355        VarIndices.push_back(Entry);
356      }
357    }
358
359    // Analyze the base pointer next.
360    V = GEPOp->getOperand(0);
361  } while (--MaxLookup);
362
363  // If the chain of expressions is too deep, just return early.
364  return V;
365}
366
367/// GetIndexDifference - Dest and Src are the variable indices from two
368/// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base
369/// pointers.  Subtract the GEP2 indices from GEP1 to find the symbolic
370/// difference between the two pointers.
371static void GetIndexDifference(SmallVectorImpl<VariableGEPIndex> &Dest,
372                               const SmallVectorImpl<VariableGEPIndex> &Src) {
373  if (Src.empty()) return;
374
375  for (unsigned i = 0, e = Src.size(); i != e; ++i) {
376    const Value *V = Src[i].V;
377    ExtensionKind Extension = Src[i].Extension;
378    int64_t Scale = Src[i].Scale;
379
380    // Find V in Dest.  This is N^2, but pointer indices almost never have more
381    // than a few variable indexes.
382    for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
383      if (Dest[j].V != V || Dest[j].Extension != Extension) continue;
384
385      // If we found it, subtract off Scale V's from the entry in Dest.  If it
386      // goes to zero, remove the entry.
387      if (Dest[j].Scale != Scale)
388        Dest[j].Scale -= Scale;
389      else
390        Dest.erase(Dest.begin()+j);
391      Scale = 0;
392      break;
393    }
394
395    // If we didn't consume this entry, add it to the end of the Dest list.
396    if (Scale) {
397      VariableGEPIndex Entry = { V, Extension, -Scale };
398      Dest.push_back(Entry);
399    }
400  }
401}
402
403//===----------------------------------------------------------------------===//
404// BasicAliasAnalysis Pass
405//===----------------------------------------------------------------------===//
406
407#ifndef NDEBUG
408static const Function *getParent(const Value *V) {
409  if (const Instruction *inst = dyn_cast<Instruction>(V))
410    return inst->getParent()->getParent();
411
412  if (const Argument *arg = dyn_cast<Argument>(V))
413    return arg->getParent();
414
415  return NULL;
416}
417
418static bool notDifferentParent(const Value *O1, const Value *O2) {
419
420  const Function *F1 = getParent(O1);
421  const Function *F2 = getParent(O2);
422
423  return !F1 || !F2 || F1 == F2;
424}
425#endif
426
427namespace {
428  /// BasicAliasAnalysis - This is the primary alias analysis implementation.
429  struct BasicAliasAnalysis : public ImmutablePass, public AliasAnalysis {
430    static char ID; // Class identification, replacement for typeinfo
431    BasicAliasAnalysis() : ImmutablePass(ID) {
432      initializeBasicAliasAnalysisPass(*PassRegistry::getPassRegistry());
433    }
434
435    virtual void initializePass() {
436      InitializeAliasAnalysis(this);
437    }
438
439    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
440      AU.addRequired<AliasAnalysis>();
441      AU.addRequired<TargetLibraryInfo>();
442    }
443
444    virtual AliasResult alias(const Location &LocA,
445                              const Location &LocB) {
446      assert(AliasCache.empty() && "AliasCache must be cleared after use!");
447      assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
448             "BasicAliasAnalysis doesn't support interprocedural queries.");
449      AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.TBAATag,
450                                     LocB.Ptr, LocB.Size, LocB.TBAATag);
451      // AliasCache rarely has more than 1 or 2 elements, always use
452      // shrink_and_clear so it quickly returns to the inline capacity of the
453      // SmallDenseMap if it ever grows larger.
454      // FIXME: This should really be shrink_to_inline_capacity_and_clear().
455      AliasCache.shrink_and_clear();
456      return Alias;
457    }
458
459    virtual ModRefResult getModRefInfo(ImmutableCallSite CS,
460                                       const Location &Loc);
461
462    virtual ModRefResult getModRefInfo(ImmutableCallSite CS1,
463                                       ImmutableCallSite CS2) {
464      // The AliasAnalysis base class has some smarts, lets use them.
465      return AliasAnalysis::getModRefInfo(CS1, CS2);
466    }
467
468    /// pointsToConstantMemory - Chase pointers until we find a (constant
469    /// global) or not.
470    virtual bool pointsToConstantMemory(const Location &Loc, bool OrLocal);
471
472    /// getModRefBehavior - Return the behavior when calling the given
473    /// call site.
474    virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS);
475
476    /// getModRefBehavior - Return the behavior when calling the given function.
477    /// For use when the call site is not known.
478    virtual ModRefBehavior getModRefBehavior(const Function *F);
479
480    /// getAdjustedAnalysisPointer - This method is used when a pass implements
481    /// an analysis interface through multiple inheritance.  If needed, it
482    /// should override this to adjust the this pointer as needed for the
483    /// specified pass info.
484    virtual void *getAdjustedAnalysisPointer(const void *ID) {
485      if (ID == &AliasAnalysis::ID)
486        return (AliasAnalysis*)this;
487      return this;
488    }
489
490  private:
491    // AliasCache - Track alias queries to guard against recursion.
492    typedef std::pair<Location, Location> LocPair;
493    typedef SmallDenseMap<LocPair, AliasResult, 8> AliasCacheTy;
494    AliasCacheTy AliasCache;
495
496    // Visited - Track instructions visited by pointsToConstantMemory.
497    SmallPtrSet<const Value*, 16> Visited;
498
499    // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP
500    // instruction against another.
501    AliasResult aliasGEP(const GEPOperator *V1, uint64_t V1Size,
502                         const MDNode *V1TBAAInfo,
503                         const Value *V2, uint64_t V2Size,
504                         const MDNode *V2TBAAInfo,
505                         const Value *UnderlyingV1, const Value *UnderlyingV2);
506
507    // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI
508    // instruction against another.
509    AliasResult aliasPHI(const PHINode *PN, uint64_t PNSize,
510                         const MDNode *PNTBAAInfo,
511                         const Value *V2, uint64_t V2Size,
512                         const MDNode *V2TBAAInfo);
513
514    /// aliasSelect - Disambiguate a Select instruction against another value.
515    AliasResult aliasSelect(const SelectInst *SI, uint64_t SISize,
516                            const MDNode *SITBAAInfo,
517                            const Value *V2, uint64_t V2Size,
518                            const MDNode *V2TBAAInfo);
519
520    AliasResult aliasCheck(const Value *V1, uint64_t V1Size,
521                           const MDNode *V1TBAATag,
522                           const Value *V2, uint64_t V2Size,
523                           const MDNode *V2TBAATag);
524  };
525}  // End of anonymous namespace
526
527// Register this pass...
528char BasicAliasAnalysis::ID = 0;
529INITIALIZE_AG_PASS_BEGIN(BasicAliasAnalysis, AliasAnalysis, "basicaa",
530                   "Basic Alias Analysis (stateless AA impl)",
531                   false, true, false)
532INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
533INITIALIZE_AG_PASS_END(BasicAliasAnalysis, AliasAnalysis, "basicaa",
534                   "Basic Alias Analysis (stateless AA impl)",
535                   false, true, false)
536
537
538ImmutablePass *llvm::createBasicAliasAnalysisPass() {
539  return new BasicAliasAnalysis();
540}
541
542/// pointsToConstantMemory - Returns whether the given pointer value
543/// points to memory that is local to the function, with global constants being
544/// considered local to all functions.
545bool
546BasicAliasAnalysis::pointsToConstantMemory(const Location &Loc, bool OrLocal) {
547  assert(Visited.empty() && "Visited must be cleared after use!");
548
549  unsigned MaxLookup = 8;
550  SmallVector<const Value *, 16> Worklist;
551  Worklist.push_back(Loc.Ptr);
552  do {
553    const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), TD);
554    if (!Visited.insert(V)) {
555      Visited.clear();
556      return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
557    }
558
559    // An alloca instruction defines local memory.
560    if (OrLocal && isa<AllocaInst>(V))
561      continue;
562
563    // A global constant counts as local memory for our purposes.
564    if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
565      // Note: this doesn't require GV to be "ODR" because it isn't legal for a
566      // global to be marked constant in some modules and non-constant in
567      // others.  GV may even be a declaration, not a definition.
568      if (!GV->isConstant()) {
569        Visited.clear();
570        return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
571      }
572      continue;
573    }
574
575    // If both select values point to local memory, then so does the select.
576    if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
577      Worklist.push_back(SI->getTrueValue());
578      Worklist.push_back(SI->getFalseValue());
579      continue;
580    }
581
582    // If all values incoming to a phi node point to local memory, then so does
583    // the phi.
584    if (const PHINode *PN = dyn_cast<PHINode>(V)) {
585      // Don't bother inspecting phi nodes with many operands.
586      if (PN->getNumIncomingValues() > MaxLookup) {
587        Visited.clear();
588        return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
589      }
590      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
591        Worklist.push_back(PN->getIncomingValue(i));
592      continue;
593    }
594
595    // Otherwise be conservative.
596    Visited.clear();
597    return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
598
599  } while (!Worklist.empty() && --MaxLookup);
600
601  Visited.clear();
602  return Worklist.empty();
603}
604
605/// getModRefBehavior - Return the behavior when calling the given call site.
606AliasAnalysis::ModRefBehavior
607BasicAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
608  if (CS.doesNotAccessMemory())
609    // Can't do better than this.
610    return DoesNotAccessMemory;
611
612  ModRefBehavior Min = UnknownModRefBehavior;
613
614  // If the callsite knows it only reads memory, don't return worse
615  // than that.
616  if (CS.onlyReadsMemory())
617    Min = OnlyReadsMemory;
618
619  // The AliasAnalysis base class has some smarts, lets use them.
620  return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min);
621}
622
623/// getModRefBehavior - Return the behavior when calling the given function.
624/// For use when the call site is not known.
625AliasAnalysis::ModRefBehavior
626BasicAliasAnalysis::getModRefBehavior(const Function *F) {
627  // If the function declares it doesn't access memory, we can't do better.
628  if (F->doesNotAccessMemory())
629    return DoesNotAccessMemory;
630
631  // For intrinsics, we can check the table.
632  if (unsigned iid = F->getIntrinsicID()) {
633#define GET_INTRINSIC_MODREF_BEHAVIOR
634#include "llvm/Intrinsics.gen"
635#undef GET_INTRINSIC_MODREF_BEHAVIOR
636  }
637
638  ModRefBehavior Min = UnknownModRefBehavior;
639
640  // If the function declares it only reads memory, go with that.
641  if (F->onlyReadsMemory())
642    Min = OnlyReadsMemory;
643
644  // Otherwise be conservative.
645  return ModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min);
646}
647
648/// getModRefInfo - Check to see if the specified callsite can clobber the
649/// specified memory object.  Since we only look at local properties of this
650/// function, we really can't say much about this query.  We do, however, use
651/// simple "address taken" analysis on local objects.
652AliasAnalysis::ModRefResult
653BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
654                                  const Location &Loc) {
655  assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) &&
656         "AliasAnalysis query involving multiple functions!");
657
658  const Value *Object = GetUnderlyingObject(Loc.Ptr, TD);
659
660  // If this is a tail call and Loc.Ptr points to a stack location, we know that
661  // the tail call cannot access or modify the local stack.
662  // We cannot exclude byval arguments here; these belong to the caller of
663  // the current function not to the current function, and a tail callee
664  // may reference them.
665  if (isa<AllocaInst>(Object))
666    if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
667      if (CI->isTailCall())
668        return NoModRef;
669
670  // If the pointer is to a locally allocated object that does not escape,
671  // then the call can not mod/ref the pointer unless the call takes the pointer
672  // as an argument, and itself doesn't capture it.
673  if (!isa<Constant>(Object) && CS.getInstruction() != Object &&
674      isNonEscapingLocalObject(Object)) {
675    bool PassedAsArg = false;
676    unsigned ArgNo = 0;
677    for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
678         CI != CE; ++CI, ++ArgNo) {
679      // Only look at the no-capture or byval pointer arguments.  If this
680      // pointer were passed to arguments that were neither of these, then it
681      // couldn't be no-capture.
682      if (!(*CI)->getType()->isPointerTy() ||
683          (!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo)))
684        continue;
685
686      // If this is a no-capture pointer argument, see if we can tell that it
687      // is impossible to alias the pointer we're checking.  If not, we have to
688      // assume that the call could touch the pointer, even though it doesn't
689      // escape.
690      if (!isNoAlias(Location(*CI), Location(Object))) {
691        PassedAsArg = true;
692        break;
693      }
694    }
695
696    if (!PassedAsArg)
697      return NoModRef;
698  }
699
700  const TargetLibraryInfo &TLI = getAnalysis<TargetLibraryInfo>();
701  ModRefResult Min = ModRef;
702
703  // Finally, handle specific knowledge of intrinsics.
704  const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
705  if (II != 0)
706    switch (II->getIntrinsicID()) {
707    default: break;
708    case Intrinsic::memcpy:
709    case Intrinsic::memmove: {
710      uint64_t Len = UnknownSize;
711      if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2)))
712        Len = LenCI->getZExtValue();
713      Value *Dest = II->getArgOperand(0);
714      Value *Src = II->getArgOperand(1);
715      // If it can't overlap the source dest, then it doesn't modref the loc.
716      if (isNoAlias(Location(Dest, Len), Loc)) {
717        if (isNoAlias(Location(Src, Len), Loc))
718          return NoModRef;
719        // If it can't overlap the dest, then worst case it reads the loc.
720        Min = Ref;
721      } else if (isNoAlias(Location(Src, Len), Loc)) {
722        // If it can't overlap the source, then worst case it mutates the loc.
723        Min = Mod;
724      }
725      break;
726    }
727    case Intrinsic::memset:
728      // Since memset is 'accesses arguments' only, the AliasAnalysis base class
729      // will handle it for the variable length case.
730      if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2))) {
731        uint64_t Len = LenCI->getZExtValue();
732        Value *Dest = II->getArgOperand(0);
733        if (isNoAlias(Location(Dest, Len), Loc))
734          return NoModRef;
735      }
736      // We know that memset doesn't load anything.
737      Min = Mod;
738      break;
739    case Intrinsic::lifetime_start:
740    case Intrinsic::lifetime_end:
741    case Intrinsic::invariant_start: {
742      uint64_t PtrSize =
743        cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
744      if (isNoAlias(Location(II->getArgOperand(1),
745                             PtrSize,
746                             II->getMetadata(LLVMContext::MD_tbaa)),
747                    Loc))
748        return NoModRef;
749      break;
750    }
751    case Intrinsic::invariant_end: {
752      uint64_t PtrSize =
753        cast<ConstantInt>(II->getArgOperand(1))->getZExtValue();
754      if (isNoAlias(Location(II->getArgOperand(2),
755                             PtrSize,
756                             II->getMetadata(LLVMContext::MD_tbaa)),
757                    Loc))
758        return NoModRef;
759      break;
760    }
761    case Intrinsic::arm_neon_vld1: {
762      // LLVM's vld1 and vst1 intrinsics currently only support a single
763      // vector register.
764      uint64_t Size =
765        TD ? TD->getTypeStoreSize(II->getType()) : UnknownSize;
766      if (isNoAlias(Location(II->getArgOperand(0), Size,
767                             II->getMetadata(LLVMContext::MD_tbaa)),
768                    Loc))
769        return NoModRef;
770      break;
771    }
772    case Intrinsic::arm_neon_vst1: {
773      uint64_t Size =
774        TD ? TD->getTypeStoreSize(II->getArgOperand(1)->getType()) : UnknownSize;
775      if (isNoAlias(Location(II->getArgOperand(0), Size,
776                             II->getMetadata(LLVMContext::MD_tbaa)),
777                    Loc))
778        return NoModRef;
779      break;
780    }
781    }
782
783  // We can bound the aliasing properties of memset_pattern16 just as we can
784  // for memcpy/memset.  This is particularly important because the
785  // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
786  // whenever possible.
787  else if (TLI.has(LibFunc::memset_pattern16) &&
788           CS.getCalledFunction() &&
789           CS.getCalledFunction()->getName() == "memset_pattern16") {
790    const Function *MS = CS.getCalledFunction();
791    FunctionType *MemsetType = MS->getFunctionType();
792    if (!MemsetType->isVarArg() && MemsetType->getNumParams() == 3 &&
793        isa<PointerType>(MemsetType->getParamType(0)) &&
794        isa<PointerType>(MemsetType->getParamType(1)) &&
795        isa<IntegerType>(MemsetType->getParamType(2))) {
796      uint64_t Len = UnknownSize;
797      if (const ConstantInt *LenCI = dyn_cast<ConstantInt>(CS.getArgument(2)))
798        Len = LenCI->getZExtValue();
799      const Value *Dest = CS.getArgument(0);
800      const Value *Src = CS.getArgument(1);
801      // If it can't overlap the source dest, then it doesn't modref the loc.
802      if (isNoAlias(Location(Dest, Len), Loc)) {
803        // Always reads 16 bytes of the source.
804        if (isNoAlias(Location(Src, 16), Loc))
805          return NoModRef;
806        // If it can't overlap the dest, then worst case it reads the loc.
807        Min = Ref;
808      // Always reads 16 bytes of the source.
809      } else if (isNoAlias(Location(Src, 16), Loc)) {
810        // If it can't overlap the source, then worst case it mutates the loc.
811        Min = Mod;
812      }
813    }
814  }
815
816  // The AliasAnalysis base class has some smarts, lets use them.
817  return ModRefResult(AliasAnalysis::getModRefInfo(CS, Loc) & Min);
818}
819
820static bool areVarIndicesEqual(SmallVector<VariableGEPIndex, 4> &Indices1,
821                               SmallVector<VariableGEPIndex, 4> &Indices2) {
822  unsigned Size1 = Indices1.size();
823  unsigned Size2 = Indices2.size();
824
825  if (Size1 != Size2)
826    return false;
827
828  for (unsigned I = 0; I != Size1; ++I)
829    if (Indices1[I] != Indices2[I])
830      return false;
831
832  return true;
833}
834
835/// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction
836/// against another pointer.  We know that V1 is a GEP, but we don't know
837/// anything about V2.  UnderlyingV1 is GetUnderlyingObject(GEP1, TD),
838/// UnderlyingV2 is the same for V2.
839///
840AliasAnalysis::AliasResult
841BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
842                             const MDNode *V1TBAAInfo,
843                             const Value *V2, uint64_t V2Size,
844                             const MDNode *V2TBAAInfo,
845                             const Value *UnderlyingV1,
846                             const Value *UnderlyingV2) {
847  int64_t GEP1BaseOffset;
848  SmallVector<VariableGEPIndex, 4> GEP1VariableIndices;
849
850  // If we have two gep instructions with must-alias or not-alias'ing base
851  // pointers, figure out if the indexes to the GEP tell us anything about the
852  // derived pointer.
853  if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
854    // Check for geps of non-aliasing underlying pointers where the offsets are
855    // identical.
856    if (V1Size == V2Size) {
857      // Do the base pointers alias assuming type and size.
858      AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size,
859                                                V1TBAAInfo, UnderlyingV2,
860                                                V2Size, V2TBAAInfo);
861      if (PreciseBaseAlias == NoAlias) {
862        // See if the computed offset from the common pointer tells us about the
863        // relation of the resulting pointer.
864        int64_t GEP2BaseOffset;
865        SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
866        const Value *GEP2BasePtr =
867          DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, TD);
868        const Value *GEP1BasePtr =
869          DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
870        // DecomposeGEPExpression and GetUnderlyingObject should return the
871        // same result except when DecomposeGEPExpression has no TargetData.
872        if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
873          assert(TD == 0 &&
874             "DecomposeGEPExpression and GetUnderlyingObject disagree!");
875          return MayAlias;
876        }
877        // Same offsets.
878        if (GEP1BaseOffset == GEP2BaseOffset &&
879            areVarIndicesEqual(GEP1VariableIndices, GEP2VariableIndices))
880          return NoAlias;
881        GEP1VariableIndices.clear();
882      }
883    }
884
885    // Do the base pointers alias?
886    AliasResult BaseAlias = aliasCheck(UnderlyingV1, UnknownSize, 0,
887                                       UnderlyingV2, UnknownSize, 0);
888
889    // If we get a No or May, then return it immediately, no amount of analysis
890    // will improve this situation.
891    if (BaseAlias != MustAlias) return BaseAlias;
892
893    // Otherwise, we have a MustAlias.  Since the base pointers alias each other
894    // exactly, see if the computed offset from the common pointer tells us
895    // about the relation of the resulting pointer.
896    const Value *GEP1BasePtr =
897      DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
898
899    int64_t GEP2BaseOffset;
900    SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
901    const Value *GEP2BasePtr =
902      DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices, TD);
903
904    // DecomposeGEPExpression and GetUnderlyingObject should return the
905    // same result except when DecomposeGEPExpression has no TargetData.
906    if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
907      assert(TD == 0 &&
908             "DecomposeGEPExpression and GetUnderlyingObject disagree!");
909      return MayAlias;
910    }
911
912    // Subtract the GEP2 pointer from the GEP1 pointer to find out their
913    // symbolic difference.
914    GEP1BaseOffset -= GEP2BaseOffset;
915    GetIndexDifference(GEP1VariableIndices, GEP2VariableIndices);
916
917  } else {
918    // Check to see if these two pointers are related by the getelementptr
919    // instruction.  If one pointer is a GEP with a non-zero index of the other
920    // pointer, we know they cannot alias.
921
922    // If both accesses are unknown size, we can't do anything useful here.
923    if (V1Size == UnknownSize && V2Size == UnknownSize)
924      return MayAlias;
925
926    AliasResult R = aliasCheck(UnderlyingV1, UnknownSize, 0,
927                               V2, V2Size, V2TBAAInfo);
928    if (R != MustAlias)
929      // If V2 may alias GEP base pointer, conservatively returns MayAlias.
930      // If V2 is known not to alias GEP base pointer, then the two values
931      // cannot alias per GEP semantics: "A pointer value formed from a
932      // getelementptr instruction is associated with the addresses associated
933      // with the first operand of the getelementptr".
934      return R;
935
936    const Value *GEP1BasePtr =
937      DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices, TD);
938
939    // DecomposeGEPExpression and GetUnderlyingObject should return the
940    // same result except when DecomposeGEPExpression has no TargetData.
941    if (GEP1BasePtr != UnderlyingV1) {
942      assert(TD == 0 &&
943             "DecomposeGEPExpression and GetUnderlyingObject disagree!");
944      return MayAlias;
945    }
946  }
947
948  // In the two GEP Case, if there is no difference in the offsets of the
949  // computed pointers, the resultant pointers are a must alias.  This
950  // hapens when we have two lexically identical GEP's (for example).
951  //
952  // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
953  // must aliases the GEP, the end result is a must alias also.
954  if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty())
955    return MustAlias;
956
957  // If there is a constant difference between the pointers, but the difference
958  // is less than the size of the associated memory object, then we know
959  // that the objects are partially overlapping.  If the difference is
960  // greater, we know they do not overlap.
961  if (GEP1BaseOffset != 0 && GEP1VariableIndices.empty()) {
962    if (GEP1BaseOffset >= 0) {
963      if (V2Size != UnknownSize) {
964        if ((uint64_t)GEP1BaseOffset < V2Size)
965          return PartialAlias;
966        return NoAlias;
967      }
968    } else {
969      if (V1Size != UnknownSize) {
970        if (-(uint64_t)GEP1BaseOffset < V1Size)
971          return PartialAlias;
972        return NoAlias;
973      }
974    }
975  }
976
977  // Try to distinguish something like &A[i][1] against &A[42][0].
978  // Grab the least significant bit set in any of the scales.
979  if (!GEP1VariableIndices.empty()) {
980    uint64_t Modulo = 0;
981    for (unsigned i = 0, e = GEP1VariableIndices.size(); i != e; ++i)
982      Modulo |= (uint64_t)GEP1VariableIndices[i].Scale;
983    Modulo = Modulo ^ (Modulo & (Modulo - 1));
984
985    // We can compute the difference between the two addresses
986    // mod Modulo. Check whether that difference guarantees that the
987    // two locations do not alias.
988    uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1);
989    if (V1Size != UnknownSize && V2Size != UnknownSize &&
990        ModOffset >= V2Size && V1Size <= Modulo - ModOffset)
991      return NoAlias;
992  }
993
994  // Statically, we can see that the base objects are the same, but the
995  // pointers have dynamic offsets which we can't resolve. And none of our
996  // little tricks above worked.
997  //
998  // TODO: Returning PartialAlias instead of MayAlias is a mild hack; the
999  // practical effect of this is protecting TBAA in the case of dynamic
1000  // indices into arrays of unions or malloc'd memory.
1001  return PartialAlias;
1002}
1003
1004static AliasAnalysis::AliasResult
1005MergeAliasResults(AliasAnalysis::AliasResult A, AliasAnalysis::AliasResult B) {
1006  // If the results agree, take it.
1007  if (A == B)
1008    return A;
1009  // A mix of PartialAlias and MustAlias is PartialAlias.
1010  if ((A == AliasAnalysis::PartialAlias && B == AliasAnalysis::MustAlias) ||
1011      (B == AliasAnalysis::PartialAlias && A == AliasAnalysis::MustAlias))
1012    return AliasAnalysis::PartialAlias;
1013  // Otherwise, we don't know anything.
1014  return AliasAnalysis::MayAlias;
1015}
1016
1017/// aliasSelect - Provide a bunch of ad-hoc rules to disambiguate a Select
1018/// instruction against another.
1019AliasAnalysis::AliasResult
1020BasicAliasAnalysis::aliasSelect(const SelectInst *SI, uint64_t SISize,
1021                                const MDNode *SITBAAInfo,
1022                                const Value *V2, uint64_t V2Size,
1023                                const MDNode *V2TBAAInfo) {
1024  // If the values are Selects with the same condition, we can do a more precise
1025  // check: just check for aliases between the values on corresponding arms.
1026  if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
1027    if (SI->getCondition() == SI2->getCondition()) {
1028      AliasResult Alias =
1029        aliasCheck(SI->getTrueValue(), SISize, SITBAAInfo,
1030                   SI2->getTrueValue(), V2Size, V2TBAAInfo);
1031      if (Alias == MayAlias)
1032        return MayAlias;
1033      AliasResult ThisAlias =
1034        aliasCheck(SI->getFalseValue(), SISize, SITBAAInfo,
1035                   SI2->getFalseValue(), V2Size, V2TBAAInfo);
1036      return MergeAliasResults(ThisAlias, Alias);
1037    }
1038
1039  // If both arms of the Select node NoAlias or MustAlias V2, then returns
1040  // NoAlias / MustAlias. Otherwise, returns MayAlias.
1041  AliasResult Alias =
1042    aliasCheck(V2, V2Size, V2TBAAInfo, SI->getTrueValue(), SISize, SITBAAInfo);
1043  if (Alias == MayAlias)
1044    return MayAlias;
1045
1046  AliasResult ThisAlias =
1047    aliasCheck(V2, V2Size, V2TBAAInfo, SI->getFalseValue(), SISize, SITBAAInfo);
1048  return MergeAliasResults(ThisAlias, Alias);
1049}
1050
1051// aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction
1052// against another.
1053AliasAnalysis::AliasResult
1054BasicAliasAnalysis::aliasPHI(const PHINode *PN, uint64_t PNSize,
1055                             const MDNode *PNTBAAInfo,
1056                             const Value *V2, uint64_t V2Size,
1057                             const MDNode *V2TBAAInfo) {
1058  // If the values are PHIs in the same block, we can do a more precise
1059  // as well as efficient check: just check for aliases between the values
1060  // on corresponding edges.
1061  if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
1062    if (PN2->getParent() == PN->getParent()) {
1063      LocPair Locs(Location(PN, PNSize, PNTBAAInfo),
1064                   Location(V2, V2Size, V2TBAAInfo));
1065      if (PN > V2)
1066        std::swap(Locs.first, Locs.second);
1067
1068      AliasResult Alias =
1069        aliasCheck(PN->getIncomingValue(0), PNSize, PNTBAAInfo,
1070                   PN2->getIncomingValueForBlock(PN->getIncomingBlock(0)),
1071                   V2Size, V2TBAAInfo);
1072      if (Alias == MayAlias)
1073        return MayAlias;
1074
1075      // If the first source of the PHI nodes NoAlias and the other inputs are
1076      // the PHI node itself through some amount of recursion this does not add
1077      // any new information so just return NoAlias.
1078      // bb:
1079      //    ptr = ptr2 + 1
1080      // loop:
1081      //    ptr_phi = phi [bb, ptr], [loop, ptr_plus_one]
1082      //    ptr2_phi = phi [bb, ptr2], [loop, ptr2_plus_one]
1083      //    ...
1084      //    ptr_plus_one = gep ptr_phi, 1
1085      //    ptr2_plus_one = gep ptr2_phi, 1
1086      // We assume for the recursion that the the phis (ptr_phi, ptr2_phi) do
1087      // not alias each other.
1088      bool ArePhisAssumedNoAlias = false;
1089      AliasResult OrigAliasResult = NoAlias;
1090      if (Alias == NoAlias) {
1091        // Pretend the phis do not alias.
1092        assert(AliasCache.count(Locs) &&
1093               "There must exist an entry for the phi node");
1094        OrigAliasResult = AliasCache[Locs];
1095        AliasCache[Locs] = NoAlias;
1096        ArePhisAssumedNoAlias = true;
1097      }
1098
1099      for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
1100        AliasResult ThisAlias =
1101          aliasCheck(PN->getIncomingValue(i), PNSize, PNTBAAInfo,
1102                     PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
1103                     V2Size, V2TBAAInfo);
1104        Alias = MergeAliasResults(ThisAlias, Alias);
1105        if (Alias == MayAlias)
1106          break;
1107      }
1108
1109      // Reset if speculation failed.
1110      if (ArePhisAssumedNoAlias && Alias != NoAlias)
1111        AliasCache[Locs] = OrigAliasResult;
1112
1113      return Alias;
1114    }
1115
1116  SmallPtrSet<Value*, 4> UniqueSrc;
1117  SmallVector<Value*, 4> V1Srcs;
1118  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1119    Value *PV1 = PN->getIncomingValue(i);
1120    if (isa<PHINode>(PV1))
1121      // If any of the source itself is a PHI, return MayAlias conservatively
1122      // to avoid compile time explosion. The worst possible case is if both
1123      // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
1124      // and 'n' are the number of PHI sources.
1125      return MayAlias;
1126    if (UniqueSrc.insert(PV1))
1127      V1Srcs.push_back(PV1);
1128  }
1129
1130  AliasResult Alias = aliasCheck(V2, V2Size, V2TBAAInfo,
1131                                 V1Srcs[0], PNSize, PNTBAAInfo);
1132  // Early exit if the check of the first PHI source against V2 is MayAlias.
1133  // Other results are not possible.
1134  if (Alias == MayAlias)
1135    return MayAlias;
1136
1137  // If all sources of the PHI node NoAlias or MustAlias V2, then returns
1138  // NoAlias / MustAlias. Otherwise, returns MayAlias.
1139  for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
1140    Value *V = V1Srcs[i];
1141
1142    AliasResult ThisAlias = aliasCheck(V2, V2Size, V2TBAAInfo,
1143                                       V, PNSize, PNTBAAInfo);
1144    Alias = MergeAliasResults(ThisAlias, Alias);
1145    if (Alias == MayAlias)
1146      break;
1147  }
1148
1149  return Alias;
1150}
1151
1152// aliasCheck - Provide a bunch of ad-hoc rules to disambiguate in common cases,
1153// such as array references.
1154//
1155AliasAnalysis::AliasResult
1156BasicAliasAnalysis::aliasCheck(const Value *V1, uint64_t V1Size,
1157                               const MDNode *V1TBAAInfo,
1158                               const Value *V2, uint64_t V2Size,
1159                               const MDNode *V2TBAAInfo) {
1160  // If either of the memory references is empty, it doesn't matter what the
1161  // pointer values are.
1162  if (V1Size == 0 || V2Size == 0)
1163    return NoAlias;
1164
1165  // Strip off any casts if they exist.
1166  V1 = V1->stripPointerCasts();
1167  V2 = V2->stripPointerCasts();
1168
1169  // Are we checking for alias of the same value?
1170  if (V1 == V2) return MustAlias;
1171
1172  if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
1173    return NoAlias;  // Scalars cannot alias each other
1174
1175  // Figure out what objects these things are pointing to if we can.
1176  const Value *O1 = GetUnderlyingObject(V1, TD);
1177  const Value *O2 = GetUnderlyingObject(V2, TD);
1178
1179  // Null values in the default address space don't point to any object, so they
1180  // don't alias any other pointer.
1181  if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
1182    if (CPN->getType()->getAddressSpace() == 0)
1183      return NoAlias;
1184  if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
1185    if (CPN->getType()->getAddressSpace() == 0)
1186      return NoAlias;
1187
1188  if (O1 != O2) {
1189    // If V1/V2 point to two different objects we know that we have no alias.
1190    if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
1191      return NoAlias;
1192
1193    // Constant pointers can't alias with non-const isIdentifiedObject objects.
1194    if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
1195        (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
1196      return NoAlias;
1197
1198    // Arguments can't alias with local allocations or noalias calls
1199    // in the same function.
1200    if (((isa<Argument>(O1) && (isa<AllocaInst>(O2) || isNoAliasCall(O2))) ||
1201         (isa<Argument>(O2) && (isa<AllocaInst>(O1) || isNoAliasCall(O1)))))
1202      return NoAlias;
1203
1204    // Most objects can't alias null.
1205    if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) ||
1206        (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2)))
1207      return NoAlias;
1208
1209    // If one pointer is the result of a call/invoke or load and the other is a
1210    // non-escaping local object within the same function, then we know the
1211    // object couldn't escape to a point where the call could return it.
1212    //
1213    // Note that if the pointers are in different functions, there are a
1214    // variety of complications. A call with a nocapture argument may still
1215    // temporary store the nocapture argument's value in a temporary memory
1216    // location if that memory location doesn't escape. Or it may pass a
1217    // nocapture value to other functions as long as they don't capture it.
1218    if (isEscapeSource(O1) && isNonEscapingLocalObject(O2))
1219      return NoAlias;
1220    if (isEscapeSource(O2) && isNonEscapingLocalObject(O1))
1221      return NoAlias;
1222  }
1223
1224  // If the size of one access is larger than the entire object on the other
1225  // side, then we know such behavior is undefined and can assume no alias.
1226  if (TD)
1227    if ((V1Size != UnknownSize && isObjectSmallerThan(O2, V1Size, *TD, *TLI)) ||
1228        (V2Size != UnknownSize && isObjectSmallerThan(O1, V2Size, *TD, *TLI)))
1229      return NoAlias;
1230
1231  // Check the cache before climbing up use-def chains. This also terminates
1232  // otherwise infinitely recursive queries.
1233  LocPair Locs(Location(V1, V1Size, V1TBAAInfo),
1234               Location(V2, V2Size, V2TBAAInfo));
1235  if (V1 > V2)
1236    std::swap(Locs.first, Locs.second);
1237  std::pair<AliasCacheTy::iterator, bool> Pair =
1238    AliasCache.insert(std::make_pair(Locs, MayAlias));
1239  if (!Pair.second)
1240    return Pair.first->second;
1241
1242  // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
1243  // GEP can't simplify, we don't even look at the PHI cases.
1244  if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
1245    std::swap(V1, V2);
1246    std::swap(V1Size, V2Size);
1247    std::swap(O1, O2);
1248  }
1249  if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
1250    AliasResult Result = aliasGEP(GV1, V1Size, V1TBAAInfo, V2, V2Size, V2TBAAInfo, O1, O2);
1251    if (Result != MayAlias) return AliasCache[Locs] = Result;
1252  }
1253
1254  if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
1255    std::swap(V1, V2);
1256    std::swap(V1Size, V2Size);
1257  }
1258  if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
1259    AliasResult Result = aliasPHI(PN, V1Size, V1TBAAInfo,
1260                                  V2, V2Size, V2TBAAInfo);
1261    if (Result != MayAlias) return AliasCache[Locs] = Result;
1262  }
1263
1264  if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
1265    std::swap(V1, V2);
1266    std::swap(V1Size, V2Size);
1267  }
1268  if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
1269    AliasResult Result = aliasSelect(S1, V1Size, V1TBAAInfo,
1270                                     V2, V2Size, V2TBAAInfo);
1271    if (Result != MayAlias) return AliasCache[Locs] = Result;
1272  }
1273
1274  // If both pointers are pointing into the same object and one of them
1275  // accesses is accessing the entire object, then the accesses must
1276  // overlap in some way.
1277  if (TD && O1 == O2)
1278    if ((V1Size != UnknownSize && isObjectSize(O1, V1Size, *TD, *TLI)) ||
1279        (V2Size != UnknownSize && isObjectSize(O2, V2Size, *TD, *TLI)))
1280      return AliasCache[Locs] = PartialAlias;
1281
1282  AliasResult Result =
1283    AliasAnalysis::alias(Location(V1, V1Size, V1TBAAInfo),
1284                         Location(V2, V2Size, V2TBAAInfo));
1285  return AliasCache[Locs] = Result;
1286}
1287