1// List implementation -*- C++ -*-
2
3// Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006
4// Free Software Foundation, Inc.
5//
6// This file is part of the GNU ISO C++ Library.  This library is free
7// software; you can redistribute it and/or modify it under the
8// terms of the GNU General Public License as published by the
9// Free Software Foundation; either version 2, or (at your option)
10// any later version.
11
12// This library is distributed in the hope that it will be useful,
13// but WITHOUT ANY WARRANTY; without even the implied warranty of
14// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15// GNU General Public License for more details.
16
17// You should have received a copy of the GNU General Public License along
18// with this library; see the file COPYING.  If not, write to the Free
19// Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
20// USA.
21
22// As a special exception, you may use this file as part of a free software
23// library without restriction.  Specifically, if other files instantiate
24// templates or use macros or inline functions from this file, or you compile
25// this file and link it with other files to produce an executable, this
26// file does not by itself cause the resulting executable to be covered by
27// the GNU General Public License.  This exception does not however
28// invalidate any other reasons why the executable file might be covered by
29// the GNU General Public License.
30
31/*
32 *
33 * Copyright (c) 1994
34 * Hewlett-Packard Company
35 *
36 * Permission to use, copy, modify, distribute and sell this software
37 * and its documentation for any purpose is hereby granted without fee,
38 * provided that the above copyright notice appear in all copies and
39 * that both that copyright notice and this permission notice appear
40 * in supporting documentation.  Hewlett-Packard Company makes no
41 * representations about the suitability of this software for any
42 * purpose.  It is provided "as is" without express or implied warranty.
43 *
44 *
45 * Copyright (c) 1996,1997
46 * Silicon Graphics Computer Systems, Inc.
47 *
48 * Permission to use, copy, modify, distribute and sell this software
49 * and its documentation for any purpose is hereby granted without fee,
50 * provided that the above copyright notice appear in all copies and
51 * that both that copyright notice and this permission notice appear
52 * in supporting documentation.  Silicon Graphics makes no
53 * representations about the suitability of this software for any
54 * purpose.  It is provided "as is" without express or implied warranty.
55 */
56
57/** @file stl_list.h
58 *  This is an internal header file, included by other library headers.
59 *  You should not attempt to use it directly.
60 */
61
62#ifndef _LIST_H
63#define _LIST_H 1
64
65#include <bits/concept_check.h>
66
67_GLIBCXX_BEGIN_NESTED_NAMESPACE(std, _GLIBCXX_STD)
68
69  // Supporting structures are split into common and templated types; the
70  // latter publicly inherits from the former in an effort to reduce code
71  // duplication.  This results in some "needless" static_cast'ing later on,
72  // but it's all safe downcasting.
73
74  /// @if maint Common part of a node in the %list.  @endif
75  struct _List_node_base
76  {
77    _List_node_base* _M_next;   ///< Self-explanatory
78    _List_node_base* _M_prev;   ///< Self-explanatory
79
80    static void
81    swap(_List_node_base& __x, _List_node_base& __y);
82
83    void
84    transfer(_List_node_base * const __first,
85	     _List_node_base * const __last);
86
87    void
88    reverse();
89
90    void
91    hook(_List_node_base * const __position);
92
93    void
94    unhook();
95  };
96
97  /// @if maint An actual node in the %list.  @endif
98  template<typename _Tp>
99    struct _List_node : public _List_node_base
100    {
101      _Tp _M_data;                ///< User's data.
102    };
103
104  /**
105   *  @brief A list::iterator.
106   *
107   *  @if maint
108   *  All the functions are op overloads.
109   *  @endif
110  */
111  template<typename _Tp>
112    struct _List_iterator
113    {
114      typedef _List_iterator<_Tp>                _Self;
115      typedef _List_node<_Tp>                    _Node;
116
117      typedef ptrdiff_t                          difference_type;
118      typedef std::bidirectional_iterator_tag    iterator_category;
119      typedef _Tp                                value_type;
120      typedef _Tp*                               pointer;
121      typedef _Tp&                               reference;
122
123      _List_iterator()
124      : _M_node() { }
125
126      explicit
127      _List_iterator(_List_node_base* __x)
128      : _M_node(__x) { }
129
130      // Must downcast from List_node_base to _List_node to get to _M_data.
131      reference
132      operator*() const
133      { return static_cast<_Node*>(_M_node)->_M_data; }
134
135      pointer
136      operator->() const
137      { return &static_cast<_Node*>(_M_node)->_M_data; }
138
139      _Self&
140      operator++()
141      {
142	_M_node = _M_node->_M_next;
143	return *this;
144      }
145
146      _Self
147      operator++(int)
148      {
149	_Self __tmp = *this;
150	_M_node = _M_node->_M_next;
151	return __tmp;
152      }
153
154      _Self&
155      operator--()
156      {
157	_M_node = _M_node->_M_prev;
158	return *this;
159      }
160
161      _Self
162      operator--(int)
163      {
164	_Self __tmp = *this;
165	_M_node = _M_node->_M_prev;
166	return __tmp;
167      }
168
169      bool
170      operator==(const _Self& __x) const
171      { return _M_node == __x._M_node; }
172
173      bool
174      operator!=(const _Self& __x) const
175      { return _M_node != __x._M_node; }
176
177      // The only member points to the %list element.
178      _List_node_base* _M_node;
179    };
180
181  /**
182   *  @brief A list::const_iterator.
183   *
184   *  @if maint
185   *  All the functions are op overloads.
186   *  @endif
187  */
188  template<typename _Tp>
189    struct _List_const_iterator
190    {
191      typedef _List_const_iterator<_Tp>          _Self;
192      typedef const _List_node<_Tp>              _Node;
193      typedef _List_iterator<_Tp>                iterator;
194
195      typedef ptrdiff_t                          difference_type;
196      typedef std::bidirectional_iterator_tag    iterator_category;
197      typedef _Tp                                value_type;
198      typedef const _Tp*                         pointer;
199      typedef const _Tp&                         reference;
200
201      _List_const_iterator()
202      : _M_node() { }
203
204      explicit
205      _List_const_iterator(const _List_node_base* __x)
206      : _M_node(__x) { }
207
208      _List_const_iterator(const iterator& __x)
209      : _M_node(__x._M_node) { }
210
211      // Must downcast from List_node_base to _List_node to get to
212      // _M_data.
213      reference
214      operator*() const
215      { return static_cast<_Node*>(_M_node)->_M_data; }
216
217      pointer
218      operator->() const
219      { return &static_cast<_Node*>(_M_node)->_M_data; }
220
221      _Self&
222      operator++()
223      {
224	_M_node = _M_node->_M_next;
225	return *this;
226      }
227
228      _Self
229      operator++(int)
230      {
231	_Self __tmp = *this;
232	_M_node = _M_node->_M_next;
233	return __tmp;
234      }
235
236      _Self&
237      operator--()
238      {
239	_M_node = _M_node->_M_prev;
240	return *this;
241      }
242
243      _Self
244      operator--(int)
245      {
246	_Self __tmp = *this;
247	_M_node = _M_node->_M_prev;
248	return __tmp;
249      }
250
251      bool
252      operator==(const _Self& __x) const
253      { return _M_node == __x._M_node; }
254
255      bool
256      operator!=(const _Self& __x) const
257      { return _M_node != __x._M_node; }
258
259      // The only member points to the %list element.
260      const _List_node_base* _M_node;
261    };
262
263  template<typename _Val>
264    inline bool
265    operator==(const _List_iterator<_Val>& __x,
266	       const _List_const_iterator<_Val>& __y)
267    { return __x._M_node == __y._M_node; }
268
269  template<typename _Val>
270    inline bool
271    operator!=(const _List_iterator<_Val>& __x,
272               const _List_const_iterator<_Val>& __y)
273    { return __x._M_node != __y._M_node; }
274
275
276  /**
277   *  @if maint
278   *  See bits/stl_deque.h's _Deque_base for an explanation.
279   *  @endif
280  */
281  template<typename _Tp, typename _Alloc>
282    class _List_base
283    {
284    protected:
285      // NOTA BENE
286      // The stored instance is not actually of "allocator_type"'s
287      // type.  Instead we rebind the type to
288      // Allocator<List_node<Tp>>, which according to [20.1.5]/4
289      // should probably be the same.  List_node<Tp> is not the same
290      // size as Tp (it's two pointers larger), and specializations on
291      // Tp may go unused because List_node<Tp> is being bound
292      // instead.
293      //
294      // We put this to the test in the constructors and in
295      // get_allocator, where we use conversions between
296      // allocator_type and _Node_alloc_type. The conversion is
297      // required by table 32 in [20.1.5].
298      typedef typename _Alloc::template rebind<_List_node<_Tp> >::other
299        _Node_alloc_type;
300
301      typedef typename _Alloc::template rebind<_Tp>::other _Tp_alloc_type;
302
303      struct _List_impl
304      : public _Node_alloc_type
305      {
306	_List_node_base _M_node;
307
308	_List_impl(const _Node_alloc_type& __a)
309	: _Node_alloc_type(__a), _M_node()
310	{ }
311      };
312
313      _List_impl _M_impl;
314
315      _List_node<_Tp>*
316      _M_get_node()
317      { return _M_impl._Node_alloc_type::allocate(1); }
318
319      void
320      _M_put_node(_List_node<_Tp>* __p)
321      { _M_impl._Node_alloc_type::deallocate(__p, 1); }
322
323  public:
324      typedef _Alloc allocator_type;
325
326      _Node_alloc_type&
327      _M_get_Node_allocator()
328      { return *static_cast<_Node_alloc_type*>(&this->_M_impl); }
329
330      const _Node_alloc_type&
331      _M_get_Node_allocator() const
332      { return *static_cast<const _Node_alloc_type*>(&this->_M_impl); }
333
334      _Tp_alloc_type
335      _M_get_Tp_allocator() const
336      { return _Tp_alloc_type(_M_get_Node_allocator()); }
337
338      allocator_type
339      get_allocator() const
340      { return allocator_type(_M_get_Node_allocator()); }
341
342      _List_base(const allocator_type& __a)
343      : _M_impl(__a)
344      { _M_init(); }
345
346      // This is what actually destroys the list.
347      ~_List_base()
348      { _M_clear(); }
349
350      void
351      _M_clear();
352
353      void
354      _M_init()
355      {
356        this->_M_impl._M_node._M_next = &this->_M_impl._M_node;
357        this->_M_impl._M_node._M_prev = &this->_M_impl._M_node;
358      }
359    };
360
361  /**
362   *  @brief A standard container with linear time access to elements,
363   *  and fixed time insertion/deletion at any point in the sequence.
364   *
365   *  @ingroup Containers
366   *  @ingroup Sequences
367   *
368   *  Meets the requirements of a <a href="tables.html#65">container</a>, a
369   *  <a href="tables.html#66">reversible container</a>, and a
370   *  <a href="tables.html#67">sequence</a>, including the
371   *  <a href="tables.html#68">optional sequence requirements</a> with the
372   *  %exception of @c at and @c operator[].
373   *
374   *  This is a @e doubly @e linked %list.  Traversal up and down the
375   *  %list requires linear time, but adding and removing elements (or
376   *  @e nodes) is done in constant time, regardless of where the
377   *  change takes place.  Unlike std::vector and std::deque,
378   *  random-access iterators are not provided, so subscripting ( @c
379   *  [] ) access is not allowed.  For algorithms which only need
380   *  sequential access, this lack makes no difference.
381   *
382   *  Also unlike the other standard containers, std::list provides
383   *  specialized algorithms %unique to linked lists, such as
384   *  splicing, sorting, and in-place reversal.
385   *
386   *  @if maint
387   *  A couple points on memory allocation for list<Tp>:
388   *
389   *  First, we never actually allocate a Tp, we allocate
390   *  List_node<Tp>'s and trust [20.1.5]/4 to DTRT.  This is to ensure
391   *  that after elements from %list<X,Alloc1> are spliced into
392   *  %list<X,Alloc2>, destroying the memory of the second %list is a
393   *  valid operation, i.e., Alloc1 giveth and Alloc2 taketh away.
394   *
395   *  Second, a %list conceptually represented as
396   *  @code
397   *    A <---> B <---> C <---> D
398   *  @endcode
399   *  is actually circular; a link exists between A and D.  The %list
400   *  class holds (as its only data member) a private list::iterator
401   *  pointing to @e D, not to @e A!  To get to the head of the %list,
402   *  we start at the tail and move forward by one.  When this member
403   *  iterator's next/previous pointers refer to itself, the %list is
404   *  %empty.  @endif
405  */
406  template<typename _Tp, typename _Alloc = std::allocator<_Tp> >
407    class list : protected _List_base<_Tp, _Alloc>
408    {
409      // concept requirements
410      typedef typename _Alloc::value_type                _Alloc_value_type;
411      __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
412      __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept)
413
414      typedef _List_base<_Tp, _Alloc>                    _Base;
415      typedef typename _Base::_Tp_alloc_type		 _Tp_alloc_type;
416
417    public:
418      typedef _Tp                                        value_type;
419      typedef typename _Tp_alloc_type::pointer           pointer;
420      typedef typename _Tp_alloc_type::const_pointer     const_pointer;
421      typedef typename _Tp_alloc_type::reference         reference;
422      typedef typename _Tp_alloc_type::const_reference   const_reference;
423      typedef _List_iterator<_Tp>                        iterator;
424      typedef _List_const_iterator<_Tp>                  const_iterator;
425      typedef std::reverse_iterator<const_iterator>      const_reverse_iterator;
426      typedef std::reverse_iterator<iterator>            reverse_iterator;
427      typedef size_t                                     size_type;
428      typedef ptrdiff_t                                  difference_type;
429      typedef _Alloc                                     allocator_type;
430
431    protected:
432      // Note that pointers-to-_Node's can be ctor-converted to
433      // iterator types.
434      typedef _List_node<_Tp>				 _Node;
435
436      using _Base::_M_impl;
437      using _Base::_M_put_node;
438      using _Base::_M_get_node;
439      using _Base::_M_get_Tp_allocator;
440      using _Base::_M_get_Node_allocator;
441
442      /**
443       *  @if maint
444       *  @param  x  An instance of user data.
445       *
446       *  Allocates space for a new node and constructs a copy of @a x in it.
447       *  @endif
448       */
449      _Node*
450      _M_create_node(const value_type& __x)
451      {
452	_Node* __p = this->_M_get_node();
453	try
454	  {
455	    _M_get_Tp_allocator().construct(&__p->_M_data, __x);
456	  }
457	catch(...)
458	  {
459	    _M_put_node(__p);
460	    __throw_exception_again;
461	  }
462	return __p;
463      }
464
465    public:
466      // [23.2.2.1] construct/copy/destroy
467      // (assign() and get_allocator() are also listed in this section)
468      /**
469       *  @brief  Default constructor creates no elements.
470       */
471      explicit
472      list(const allocator_type& __a = allocator_type())
473      : _Base(__a) { }
474
475      /**
476       *  @brief  Create a %list with copies of an exemplar element.
477       *  @param  n  The number of elements to initially create.
478       *  @param  value  An element to copy.
479       *
480       *  This constructor fills the %list with @a n copies of @a value.
481       */
482      explicit
483      list(size_type __n, const value_type& __value = value_type(),
484	   const allocator_type& __a = allocator_type())
485      : _Base(__a)
486      { _M_fill_initialize(__n, __value); }
487
488      /**
489       *  @brief  %List copy constructor.
490       *  @param  x  A %list of identical element and allocator types.
491       *
492       *  The newly-created %list uses a copy of the allocation object used
493       *  by @a x.
494       */
495      list(const list& __x)
496      : _Base(__x._M_get_Node_allocator())
497      { _M_initialize_dispatch(__x.begin(), __x.end(), __false_type()); }
498
499      /**
500       *  @brief  Builds a %list from a range.
501       *  @param  first  An input iterator.
502       *  @param  last  An input iterator.
503       *
504       *  Create a %list consisting of copies of the elements from
505       *  [@a first,@a last).  This is linear in N (where N is
506       *  distance(@a first,@a last)).
507       */
508      template<typename _InputIterator>
509        list(_InputIterator __first, _InputIterator __last,
510	     const allocator_type& __a = allocator_type())
511        : _Base(__a)
512        {
513	  // Check whether it's an integral type.  If so, it's not an iterator.
514	  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
515	  _M_initialize_dispatch(__first, __last, _Integral());
516	}
517
518      /**
519       *  No explicit dtor needed as the _Base dtor takes care of
520       *  things.  The _Base dtor only erases the elements, and note
521       *  that if the elements themselves are pointers, the pointed-to
522       *  memory is not touched in any way.  Managing the pointer is
523       *  the user's responsibilty.
524       */
525
526      /**
527       *  @brief  %List assignment operator.
528       *  @param  x  A %list of identical element and allocator types.
529       *
530       *  All the elements of @a x are copied, but unlike the copy
531       *  constructor, the allocator object is not copied.
532       */
533      list&
534      operator=(const list& __x);
535
536      /**
537       *  @brief  Assigns a given value to a %list.
538       *  @param  n  Number of elements to be assigned.
539       *  @param  val  Value to be assigned.
540       *
541       *  This function fills a %list with @a n copies of the given
542       *  value.  Note that the assignment completely changes the %list
543       *  and that the resulting %list's size is the same as the number
544       *  of elements assigned.  Old data may be lost.
545       */
546      void
547      assign(size_type __n, const value_type& __val)
548      { _M_fill_assign(__n, __val); }
549
550      /**
551       *  @brief  Assigns a range to a %list.
552       *  @param  first  An input iterator.
553       *  @param  last   An input iterator.
554       *
555       *  This function fills a %list with copies of the elements in the
556       *  range [@a first,@a last).
557       *
558       *  Note that the assignment completely changes the %list and
559       *  that the resulting %list's size is the same as the number of
560       *  elements assigned.  Old data may be lost.
561       */
562      template<typename _InputIterator>
563        void
564        assign(_InputIterator __first, _InputIterator __last)
565        {
566	  // Check whether it's an integral type.  If so, it's not an iterator.
567	  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
568	  _M_assign_dispatch(__first, __last, _Integral());
569	}
570
571      /// Get a copy of the memory allocation object.
572      allocator_type
573      get_allocator() const
574      { return _Base::get_allocator(); }
575
576      // iterators
577      /**
578       *  Returns a read/write iterator that points to the first element in the
579       *  %list.  Iteration is done in ordinary element order.
580       */
581      iterator
582      begin()
583      { return iterator(this->_M_impl._M_node._M_next); }
584
585      /**
586       *  Returns a read-only (constant) iterator that points to the
587       *  first element in the %list.  Iteration is done in ordinary
588       *  element order.
589       */
590      const_iterator
591      begin() const
592      { return const_iterator(this->_M_impl._M_node._M_next); }
593
594      /**
595       *  Returns a read/write iterator that points one past the last
596       *  element in the %list.  Iteration is done in ordinary element
597       *  order.
598       */
599      iterator
600      end()
601      { return iterator(&this->_M_impl._M_node); }
602
603      /**
604       *  Returns a read-only (constant) iterator that points one past
605       *  the last element in the %list.  Iteration is done in ordinary
606       *  element order.
607       */
608      const_iterator
609      end() const
610      { return const_iterator(&this->_M_impl._M_node); }
611
612      /**
613       *  Returns a read/write reverse iterator that points to the last
614       *  element in the %list.  Iteration is done in reverse element
615       *  order.
616       */
617      reverse_iterator
618      rbegin()
619      { return reverse_iterator(end()); }
620
621      /**
622       *  Returns a read-only (constant) reverse iterator that points to
623       *  the last element in the %list.  Iteration is done in reverse
624       *  element order.
625       */
626      const_reverse_iterator
627      rbegin() const
628      { return const_reverse_iterator(end()); }
629
630      /**
631       *  Returns a read/write reverse iterator that points to one
632       *  before the first element in the %list.  Iteration is done in
633       *  reverse element order.
634       */
635      reverse_iterator
636      rend()
637      { return reverse_iterator(begin()); }
638
639      /**
640       *  Returns a read-only (constant) reverse iterator that points to one
641       *  before the first element in the %list.  Iteration is done in reverse
642       *  element order.
643       */
644      const_reverse_iterator
645      rend() const
646      { return const_reverse_iterator(begin()); }
647
648      // [23.2.2.2] capacity
649      /**
650       *  Returns true if the %list is empty.  (Thus begin() would equal
651       *  end().)
652       */
653      bool
654      empty() const
655      { return this->_M_impl._M_node._M_next == &this->_M_impl._M_node; }
656
657      /**  Returns the number of elements in the %list.  */
658      size_type
659      size() const
660      { return std::distance(begin(), end()); }
661
662      /**  Returns the size() of the largest possible %list.  */
663      size_type
664      max_size() const
665      { return _M_get_Tp_allocator().max_size(); }
666
667      /**
668       *  @brief Resizes the %list to the specified number of elements.
669       *  @param new_size Number of elements the %list should contain.
670       *  @param x Data with which new elements should be populated.
671       *
672       *  This function will %resize the %list to the specified number
673       *  of elements.  If the number is smaller than the %list's
674       *  current size the %list is truncated, otherwise the %list is
675       *  extended and new elements are populated with given data.
676       */
677      void
678      resize(size_type __new_size, value_type __x = value_type());
679
680      // element access
681      /**
682       *  Returns a read/write reference to the data at the first
683       *  element of the %list.
684       */
685      reference
686      front()
687      { return *begin(); }
688
689      /**
690       *  Returns a read-only (constant) reference to the data at the first
691       *  element of the %list.
692       */
693      const_reference
694      front() const
695      { return *begin(); }
696
697      /**
698       *  Returns a read/write reference to the data at the last element
699       *  of the %list.
700       */
701      reference
702      back()
703      {
704	iterator __tmp = end();
705	--__tmp;
706	return *__tmp;
707      }
708
709      /**
710       *  Returns a read-only (constant) reference to the data at the last
711       *  element of the %list.
712       */
713      const_reference
714      back() const
715      {
716	const_iterator __tmp = end();
717	--__tmp;
718	return *__tmp;
719      }
720
721      // [23.2.2.3] modifiers
722      /**
723       *  @brief  Add data to the front of the %list.
724       *  @param  x  Data to be added.
725       *
726       *  This is a typical stack operation.  The function creates an
727       *  element at the front of the %list and assigns the given data
728       *  to it.  Due to the nature of a %list this operation can be
729       *  done in constant time, and does not invalidate iterators and
730       *  references.
731       */
732      void
733      push_front(const value_type& __x)
734      { this->_M_insert(begin(), __x); }
735
736      /**
737       *  @brief  Removes first element.
738       *
739       *  This is a typical stack operation.  It shrinks the %list by
740       *  one.  Due to the nature of a %list this operation can be done
741       *  in constant time, and only invalidates iterators/references to
742       *  the element being removed.
743       *
744       *  Note that no data is returned, and if the first element's data
745       *  is needed, it should be retrieved before pop_front() is
746       *  called.
747       */
748      void
749      pop_front()
750      { this->_M_erase(begin()); }
751
752      /**
753       *  @brief  Add data to the end of the %list.
754       *  @param  x  Data to be added.
755       *
756       *  This is a typical stack operation.  The function creates an
757       *  element at the end of the %list and assigns the given data to
758       *  it.  Due to the nature of a %list this operation can be done
759       *  in constant time, and does not invalidate iterators and
760       *  references.
761       */
762      void
763      push_back(const value_type& __x)
764      { this->_M_insert(end(), __x); }
765
766      /**
767       *  @brief  Removes last element.
768       *
769       *  This is a typical stack operation.  It shrinks the %list by
770       *  one.  Due to the nature of a %list this operation can be done
771       *  in constant time, and only invalidates iterators/references to
772       *  the element being removed.
773       *
774       *  Note that no data is returned, and if the last element's data
775       *  is needed, it should be retrieved before pop_back() is called.
776       */
777      void
778      pop_back()
779      { this->_M_erase(iterator(this->_M_impl._M_node._M_prev)); }
780
781      /**
782       *  @brief  Inserts given value into %list before specified iterator.
783       *  @param  position  An iterator into the %list.
784       *  @param  x  Data to be inserted.
785       *  @return  An iterator that points to the inserted data.
786       *
787       *  This function will insert a copy of the given value before
788       *  the specified location.  Due to the nature of a %list this
789       *  operation can be done in constant time, and does not
790       *  invalidate iterators and references.
791       */
792      iterator
793      insert(iterator __position, const value_type& __x);
794
795      /**
796       *  @brief  Inserts a number of copies of given data into the %list.
797       *  @param  position  An iterator into the %list.
798       *  @param  n  Number of elements to be inserted.
799       *  @param  x  Data to be inserted.
800       *
801       *  This function will insert a specified number of copies of the
802       *  given data before the location specified by @a position.
803       *
804       *  This operation is linear in the number of elements inserted and
805       *  does not invalidate iterators and references.
806       */
807      void
808      insert(iterator __position, size_type __n, const value_type& __x)
809      {
810	list __tmp(__n, __x, _M_get_Node_allocator());
811	splice(__position, __tmp);
812      }
813
814      /**
815       *  @brief  Inserts a range into the %list.
816       *  @param  position  An iterator into the %list.
817       *  @param  first  An input iterator.
818       *  @param  last   An input iterator.
819       *
820       *  This function will insert copies of the data in the range [@a
821       *  first,@a last) into the %list before the location specified by
822       *  @a position.
823       *
824       *  This operation is linear in the number of elements inserted and
825       *  does not invalidate iterators and references.
826       */
827      template<typename _InputIterator>
828        void
829        insert(iterator __position, _InputIterator __first,
830	       _InputIterator __last)
831        {
832	  list __tmp(__first, __last, _M_get_Node_allocator());
833	  splice(__position, __tmp);
834	}
835
836      /**
837       *  @brief  Remove element at given position.
838       *  @param  position  Iterator pointing to element to be erased.
839       *  @return  An iterator pointing to the next element (or end()).
840       *
841       *  This function will erase the element at the given position and thus
842       *  shorten the %list by one.
843       *
844       *  Due to the nature of a %list this operation can be done in
845       *  constant time, and only invalidates iterators/references to
846       *  the element being removed.  The user is also cautioned that
847       *  this function only erases the element, and that if the element
848       *  is itself a pointer, the pointed-to memory is not touched in
849       *  any way.  Managing the pointer is the user's responsibilty.
850       */
851      iterator
852      erase(iterator __position);
853
854      /**
855       *  @brief  Remove a range of elements.
856       *  @param  first  Iterator pointing to the first element to be erased.
857       *  @param  last  Iterator pointing to one past the last element to be
858       *                erased.
859       *  @return  An iterator pointing to the element pointed to by @a last
860       *           prior to erasing (or end()).
861       *
862       *  This function will erase the elements in the range @a
863       *  [first,last) and shorten the %list accordingly.
864       *
865       *  This operation is linear time in the size of the range and only
866       *  invalidates iterators/references to the element being removed.
867       *  The user is also cautioned that this function only erases the
868       *  elements, and that if the elements themselves are pointers, the
869       *  pointed-to memory is not touched in any way.  Managing the pointer
870       *  is the user's responsibilty.
871       */
872      iterator
873      erase(iterator __first, iterator __last)
874      {
875	while (__first != __last)
876	  __first = erase(__first);
877	return __last;
878      }
879
880      /**
881       *  @brief  Swaps data with another %list.
882       *  @param  x  A %list of the same element and allocator types.
883       *
884       *  This exchanges the elements between two lists in constant
885       *  time.  Note that the global std::swap() function is
886       *  specialized such that std::swap(l1,l2) will feed to this
887       *  function.
888       */
889      void
890      swap(list& __x)
891      {
892	_List_node_base::swap(this->_M_impl._M_node, __x._M_impl._M_node);
893
894	// _GLIBCXX_RESOLVE_LIB_DEFECTS
895	// 431. Swapping containers with unequal allocators.
896	std::__alloc_swap<typename _Base::_Node_alloc_type>::
897	  _S_do_it(_M_get_Node_allocator(), __x._M_get_Node_allocator());
898      }
899
900      /**
901       *  Erases all the elements.  Note that this function only erases
902       *  the elements, and that if the elements themselves are
903       *  pointers, the pointed-to memory is not touched in any way.
904       *  Managing the pointer is the user's responsibilty.
905       */
906      void
907      clear()
908      {
909        _Base::_M_clear();
910        _Base::_M_init();
911      }
912
913      // [23.2.2.4] list operations
914      /**
915       *  @brief  Insert contents of another %list.
916       *  @param  position  Iterator referencing the element to insert before.
917       *  @param  x  Source list.
918       *
919       *  The elements of @a x are inserted in constant time in front of
920       *  the element referenced by @a position.  @a x becomes an empty
921       *  list.
922       *
923       *  Requires this != @a x.
924       */
925      void
926      splice(iterator __position, list& __x)
927      {
928	if (!__x.empty())
929	  {
930	    _M_check_equal_allocators(__x);
931
932	    this->_M_transfer(__position, __x.begin(), __x.end());
933	  }
934      }
935
936      /**
937       *  @brief  Insert element from another %list.
938       *  @param  position  Iterator referencing the element to insert before.
939       *  @param  x  Source list.
940       *  @param  i  Iterator referencing the element to move.
941       *
942       *  Removes the element in list @a x referenced by @a i and
943       *  inserts it into the current list before @a position.
944       */
945      void
946      splice(iterator __position, list& __x, iterator __i)
947      {
948	iterator __j = __i;
949	++__j;
950	if (__position == __i || __position == __j)
951	  return;
952
953	if (this != &__x)
954	  _M_check_equal_allocators(__x);
955
956	this->_M_transfer(__position, __i, __j);
957      }
958
959      /**
960       *  @brief  Insert range from another %list.
961       *  @param  position  Iterator referencing the element to insert before.
962       *  @param  x  Source list.
963       *  @param  first  Iterator referencing the start of range in x.
964       *  @param  last  Iterator referencing the end of range in x.
965       *
966       *  Removes elements in the range [first,last) and inserts them
967       *  before @a position in constant time.
968       *
969       *  Undefined if @a position is in [first,last).
970       */
971      void
972      splice(iterator __position, list& __x, iterator __first, iterator __last)
973      {
974	if (__first != __last)
975	  {
976	    if (this != &__x)
977	      _M_check_equal_allocators(__x);
978
979	    this->_M_transfer(__position, __first, __last);
980	  }
981      }
982
983      /**
984       *  @brief  Remove all elements equal to value.
985       *  @param  value  The value to remove.
986       *
987       *  Removes every element in the list equal to @a value.
988       *  Remaining elements stay in list order.  Note that this
989       *  function only erases the elements, and that if the elements
990       *  themselves are pointers, the pointed-to memory is not
991       *  touched in any way.  Managing the pointer is the user's
992       *  responsibilty.
993       */
994      void
995      remove(const _Tp& __value);
996
997      /**
998       *  @brief  Remove all elements satisfying a predicate.
999       *  @param  Predicate  Unary predicate function or object.
1000       *
1001       *  Removes every element in the list for which the predicate
1002       *  returns true.  Remaining elements stay in list order.  Note
1003       *  that this function only erases the elements, and that if the
1004       *  elements themselves are pointers, the pointed-to memory is
1005       *  not touched in any way.  Managing the pointer is the user's
1006       *  responsibilty.
1007       */
1008      template<typename _Predicate>
1009        void
1010        remove_if(_Predicate);
1011
1012      /**
1013       *  @brief  Remove consecutive duplicate elements.
1014       *
1015       *  For each consecutive set of elements with the same value,
1016       *  remove all but the first one.  Remaining elements stay in
1017       *  list order.  Note that this function only erases the
1018       *  elements, and that if the elements themselves are pointers,
1019       *  the pointed-to memory is not touched in any way.  Managing
1020       *  the pointer is the user's responsibilty.
1021       */
1022      void
1023      unique();
1024
1025      /**
1026       *  @brief  Remove consecutive elements satisfying a predicate.
1027       *  @param  BinaryPredicate  Binary predicate function or object.
1028       *
1029       *  For each consecutive set of elements [first,last) that
1030       *  satisfy predicate(first,i) where i is an iterator in
1031       *  [first,last), remove all but the first one.  Remaining
1032       *  elements stay in list order.  Note that this function only
1033       *  erases the elements, and that if the elements themselves are
1034       *  pointers, the pointed-to memory is not touched in any way.
1035       *  Managing the pointer is the user's responsibilty.
1036       */
1037      template<typename _BinaryPredicate>
1038        void
1039        unique(_BinaryPredicate);
1040
1041      /**
1042       *  @brief  Merge sorted lists.
1043       *  @param  x  Sorted list to merge.
1044       *
1045       *  Assumes that both @a x and this list are sorted according to
1046       *  operator<().  Merges elements of @a x into this list in
1047       *  sorted order, leaving @a x empty when complete.  Elements in
1048       *  this list precede elements in @a x that are equal.
1049       */
1050      void
1051      merge(list& __x);
1052
1053      /**
1054       *  @brief  Merge sorted lists according to comparison function.
1055       *  @param  x  Sorted list to merge.
1056       *  @param StrictWeakOrdering Comparison function definining
1057       *  sort order.
1058       *
1059       *  Assumes that both @a x and this list are sorted according to
1060       *  StrictWeakOrdering.  Merges elements of @a x into this list
1061       *  in sorted order, leaving @a x empty when complete.  Elements
1062       *  in this list precede elements in @a x that are equivalent
1063       *  according to StrictWeakOrdering().
1064       */
1065      template<typename _StrictWeakOrdering>
1066        void
1067        merge(list&, _StrictWeakOrdering);
1068
1069      /**
1070       *  @brief  Reverse the elements in list.
1071       *
1072       *  Reverse the order of elements in the list in linear time.
1073       */
1074      void
1075      reverse()
1076      { this->_M_impl._M_node.reverse(); }
1077
1078      /**
1079       *  @brief  Sort the elements.
1080       *
1081       *  Sorts the elements of this list in NlogN time.  Equivalent
1082       *  elements remain in list order.
1083       */
1084      void
1085      sort();
1086
1087      /**
1088       *  @brief  Sort the elements according to comparison function.
1089       *
1090       *  Sorts the elements of this list in NlogN time.  Equivalent
1091       *  elements remain in list order.
1092       */
1093      template<typename _StrictWeakOrdering>
1094        void
1095        sort(_StrictWeakOrdering);
1096
1097    protected:
1098      // Internal constructor functions follow.
1099
1100      // Called by the range constructor to implement [23.1.1]/9
1101      template<typename _Integer>
1102        void
1103        _M_initialize_dispatch(_Integer __n, _Integer __x, __true_type)
1104        {
1105	  _M_fill_initialize(static_cast<size_type>(__n),
1106			     static_cast<value_type>(__x));
1107	}
1108
1109      // Called by the range constructor to implement [23.1.1]/9
1110      template<typename _InputIterator>
1111        void
1112        _M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
1113			       __false_type)
1114        {
1115	  for (; __first != __last; ++__first)
1116	    push_back(*__first);
1117	}
1118
1119      // Called by list(n,v,a), and the range constructor when it turns out
1120      // to be the same thing.
1121      void
1122      _M_fill_initialize(size_type __n, const value_type& __x)
1123      {
1124	for (; __n > 0; --__n)
1125	  push_back(__x);
1126      }
1127
1128
1129      // Internal assign functions follow.
1130
1131      // Called by the range assign to implement [23.1.1]/9
1132      template<typename _Integer>
1133        void
1134        _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
1135        {
1136	  _M_fill_assign(static_cast<size_type>(__n),
1137			 static_cast<value_type>(__val));
1138	}
1139
1140      // Called by the range assign to implement [23.1.1]/9
1141      template<typename _InputIterator>
1142        void
1143        _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
1144			   __false_type);
1145
1146      // Called by assign(n,t), and the range assign when it turns out
1147      // to be the same thing.
1148      void
1149      _M_fill_assign(size_type __n, const value_type& __val);
1150
1151
1152      // Moves the elements from [first,last) before position.
1153      void
1154      _M_transfer(iterator __position, iterator __first, iterator __last)
1155      { __position._M_node->transfer(__first._M_node, __last._M_node); }
1156
1157      // Inserts new element at position given and with value given.
1158      void
1159      _M_insert(iterator __position, const value_type& __x)
1160      {
1161        _Node* __tmp = _M_create_node(__x);
1162        __tmp->hook(__position._M_node);
1163      }
1164
1165      // Erases element at position given.
1166      void
1167      _M_erase(iterator __position)
1168      {
1169        __position._M_node->unhook();
1170        _Node* __n = static_cast<_Node*>(__position._M_node);
1171        _M_get_Tp_allocator().destroy(&__n->_M_data);
1172        _M_put_node(__n);
1173      }
1174
1175      // To implement the splice (and merge) bits of N1599.
1176      void
1177      _M_check_equal_allocators(list& __x)
1178      {
1179	if (_M_get_Node_allocator() != __x._M_get_Node_allocator())
1180	  __throw_runtime_error(__N("list::_M_check_equal_allocators"));
1181      }
1182    };
1183
1184  /**
1185   *  @brief  List equality comparison.
1186   *  @param  x  A %list.
1187   *  @param  y  A %list of the same type as @a x.
1188   *  @return  True iff the size and elements of the lists are equal.
1189   *
1190   *  This is an equivalence relation.  It is linear in the size of
1191   *  the lists.  Lists are considered equivalent if their sizes are
1192   *  equal, and if corresponding elements compare equal.
1193  */
1194  template<typename _Tp, typename _Alloc>
1195    inline bool
1196    operator==(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1197    {
1198      typedef typename list<_Tp, _Alloc>::const_iterator const_iterator;
1199      const_iterator __end1 = __x.end();
1200      const_iterator __end2 = __y.end();
1201
1202      const_iterator __i1 = __x.begin();
1203      const_iterator __i2 = __y.begin();
1204      while (__i1 != __end1 && __i2 != __end2 && *__i1 == *__i2)
1205	{
1206	  ++__i1;
1207	  ++__i2;
1208	}
1209      return __i1 == __end1 && __i2 == __end2;
1210    }
1211
1212  /**
1213   *  @brief  List ordering relation.
1214   *  @param  x  A %list.
1215   *  @param  y  A %list of the same type as @a x.
1216   *  @return  True iff @a x is lexicographically less than @a y.
1217   *
1218   *  This is a total ordering relation.  It is linear in the size of the
1219   *  lists.  The elements must be comparable with @c <.
1220   *
1221   *  See std::lexicographical_compare() for how the determination is made.
1222  */
1223  template<typename _Tp, typename _Alloc>
1224    inline bool
1225    operator<(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1226    { return std::lexicographical_compare(__x.begin(), __x.end(),
1227					  __y.begin(), __y.end()); }
1228
1229  /// Based on operator==
1230  template<typename _Tp, typename _Alloc>
1231    inline bool
1232    operator!=(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1233    { return !(__x == __y); }
1234
1235  /// Based on operator<
1236  template<typename _Tp, typename _Alloc>
1237    inline bool
1238    operator>(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1239    { return __y < __x; }
1240
1241  /// Based on operator<
1242  template<typename _Tp, typename _Alloc>
1243    inline bool
1244    operator<=(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1245    { return !(__y < __x); }
1246
1247  /// Based on operator<
1248  template<typename _Tp, typename _Alloc>
1249    inline bool
1250    operator>=(const list<_Tp, _Alloc>& __x, const list<_Tp, _Alloc>& __y)
1251    { return !(__x < __y); }
1252
1253  /// See std::list::swap().
1254  template<typename _Tp, typename _Alloc>
1255    inline void
1256    swap(list<_Tp, _Alloc>& __x, list<_Tp, _Alloc>& __y)
1257    { __x.swap(__y); }
1258
1259_GLIBCXX_END_NESTED_NAMESPACE
1260
1261#endif /* _LIST_H */
1262
1263