1/* Licensed to the Apache Software Foundation (ASF) under one or more
2 * contributor license agreements.  See the NOTICE file distributed with
3 * this work for additional information regarding copyright ownership.
4 * The ASF licenses this file to You under the Apache License, Version 2.0
5 * (the "License"); you may not use this file except in compliance with
6 * the License.  You may obtain a copy of the License at
7 *
8 *     http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17/* The purpose of this file is to store the code that MOST mpm's will need
18 * this does not mean a function only goes into this file if every MPM needs
19 * it.  It means that if a function is needed by more than one MPM, and
20 * future maintenance would be served by making the code common, then the
21 * function belongs here.
22 *
23 * This is going in src/main because it is not platform specific, it is
24 * specific to multi-process servers, but NOT to Unix.  Which is why it
25 * does not belong in src/os/unix
26 */
27
28#ifndef WIN32
29
30#include "apr.h"
31#include "apr_thread_proc.h"
32#include "apr_signal.h"
33#include "apr_strings.h"
34#define APR_WANT_STRFUNC
35#include "apr_want.h"
36#include "apr_getopt.h"
37#include "apr_optional.h"
38#include "apr_allocator.h"
39
40#include "httpd.h"
41#include "http_config.h"
42#include "http_core.h"
43#include "http_log.h"
44#include "http_main.h"
45#include "mpm_common.h"
46#include "ap_mpm.h"
47#include "ap_listen.h"
48#include "scoreboard.h"
49#include "util_mutex.h"
50
51#ifdef HAVE_PWD_H
52#include <pwd.h>
53#endif
54#ifdef HAVE_GRP_H
55#include <grp.h>
56#endif
57#if APR_HAVE_UNISTD_H
58#include <unistd.h>
59#endif
60
61
62/* we know core's module_index is 0 */
63#undef APLOG_MODULE_INDEX
64#define APLOG_MODULE_INDEX AP_CORE_MODULE_INDEX
65
66typedef enum {DO_NOTHING, SEND_SIGTERM, SEND_SIGKILL, GIVEUP} action_t;
67
68typedef struct extra_process_t {
69    struct extra_process_t *next;
70    pid_t pid;
71    ap_generation_t gen;
72} extra_process_t;
73
74static extra_process_t *extras;
75
76AP_DECLARE(void) ap_register_extra_mpm_process(pid_t pid, ap_generation_t gen)
77{
78    extra_process_t *p = (extra_process_t *)ap_malloc(sizeof(extra_process_t));
79
80    p->next = extras;
81    p->pid = pid;
82    p->gen = gen;
83    extras = p;
84}
85
86AP_DECLARE(int) ap_unregister_extra_mpm_process(pid_t pid, ap_generation_t *old_gen)
87{
88    extra_process_t *cur = extras;
89    extra_process_t *prev = NULL;
90
91    while (cur && cur->pid != pid) {
92        prev = cur;
93        cur = cur->next;
94    }
95
96    if (cur) {
97        if (prev) {
98            prev->next = cur->next;
99        }
100        else {
101            extras = cur->next;
102        }
103        *old_gen = cur->gen;
104        free(cur);
105        return 1; /* found */
106    }
107    else {
108        /* we don't know about any such process */
109        return 0;
110    }
111}
112
113static int reclaim_one_pid(pid_t pid, action_t action)
114{
115    apr_proc_t proc;
116    apr_status_t waitret;
117    apr_exit_why_e why;
118    int status;
119
120    /* Ensure pid sanity. */
121    if (pid < 1) {
122        return 1;
123    }
124
125    proc.pid = pid;
126    waitret = apr_proc_wait(&proc, &status, &why, APR_NOWAIT);
127    if (waitret != APR_CHILD_NOTDONE) {
128        if (waitret == APR_CHILD_DONE)
129            ap_process_child_status(&proc, why, status);
130        return 1;
131    }
132
133    switch(action) {
134    case DO_NOTHING:
135        break;
136
137    case SEND_SIGTERM:
138        /* ok, now it's being annoying */
139        ap_log_error(APLOG_MARK, APLOG_WARNING,
140                     0, ap_server_conf, APLOGNO(00045)
141                     "child process %" APR_PID_T_FMT
142                     " still did not exit, "
143                     "sending a SIGTERM",
144                     pid);
145        kill(pid, SIGTERM);
146        break;
147
148    case SEND_SIGKILL:
149        ap_log_error(APLOG_MARK, APLOG_ERR,
150                     0, ap_server_conf, APLOGNO(00046)
151                     "child process %" APR_PID_T_FMT
152                     " still did not exit, "
153                     "sending a SIGKILL",
154                     pid);
155        kill(pid, SIGKILL);
156        break;
157
158    case GIVEUP:
159        /* gave it our best shot, but alas...  If this really
160         * is a child we are trying to kill and it really hasn't
161         * exited, we will likely fail to bind to the port
162         * after the restart.
163         */
164        ap_log_error(APLOG_MARK, APLOG_ERR,
165                     0, ap_server_conf, APLOGNO(00047)
166                     "could not make child process %" APR_PID_T_FMT
167                     " exit, "
168                     "attempting to continue anyway",
169                     pid);
170        break;
171    }
172
173    return 0;
174}
175
176AP_DECLARE(void) ap_reclaim_child_processes(int terminate,
177                                            ap_reclaim_callback_fn_t *mpm_callback)
178{
179    apr_time_t waittime = 1024 * 16;
180    int i;
181    extra_process_t *cur_extra;
182    int not_dead_yet;
183    int max_daemons;
184    apr_time_t starttime = apr_time_now();
185    /* this table of actions and elapsed times tells what action is taken
186     * at which elapsed time from starting the reclaim
187     */
188    struct {
189        action_t action;
190        apr_time_t action_time;
191    } action_table[] = {
192        {DO_NOTHING, 0}, /* dummy entry for iterations where we reap
193                          * children but take no action against
194                          * stragglers
195                          */
196        {SEND_SIGTERM, apr_time_from_sec(3)},
197        {SEND_SIGTERM, apr_time_from_sec(5)},
198        {SEND_SIGTERM, apr_time_from_sec(7)},
199        {SEND_SIGKILL, apr_time_from_sec(9)},
200        {GIVEUP,       apr_time_from_sec(10)}
201    };
202    int cur_action;      /* index of action we decided to take this
203                          * iteration
204                          */
205    int next_action = 1; /* index of first real action */
206
207    ap_mpm_query(AP_MPMQ_MAX_DAEMON_USED, &max_daemons);
208
209    do {
210        apr_sleep(waittime);
211        /* don't let waittime get longer than 1 second; otherwise, we don't
212         * react quickly to the last child exiting, and taking action can
213         * be delayed
214         */
215        waittime = waittime * 4;
216        if (waittime > apr_time_from_sec(1)) {
217            waittime = apr_time_from_sec(1);
218        }
219
220        /* see what action to take, if any */
221        if (action_table[next_action].action_time <= apr_time_now() - starttime) {
222            cur_action = next_action;
223            ++next_action;
224        }
225        else {
226            cur_action = 0; /* nothing to do */
227        }
228
229        /* now see who is done */
230        not_dead_yet = 0;
231        for (i = 0; i < max_daemons; ++i) {
232            process_score *ps = ap_get_scoreboard_process(i);
233            pid_t pid = ps->pid;
234
235            if (pid == 0) {
236                continue; /* not every scoreboard entry is in use */
237            }
238
239            if (reclaim_one_pid(pid, action_table[cur_action].action)) {
240                mpm_callback(i, 0, 0);
241            }
242            else {
243                ++not_dead_yet;
244            }
245        }
246
247        cur_extra = extras;
248        while (cur_extra) {
249            ap_generation_t old_gen;
250            extra_process_t *next = cur_extra->next;
251
252            if (reclaim_one_pid(cur_extra->pid, action_table[cur_action].action)) {
253                if (ap_unregister_extra_mpm_process(cur_extra->pid, &old_gen) == 1) {
254                    mpm_callback(-1, cur_extra->pid, old_gen);
255                }
256                else {
257                    AP_DEBUG_ASSERT(1 == 0);
258                }
259            }
260            else {
261                ++not_dead_yet;
262            }
263            cur_extra = next;
264        }
265#if APR_HAS_OTHER_CHILD
266        apr_proc_other_child_refresh_all(APR_OC_REASON_RESTART);
267#endif
268
269    } while (not_dead_yet > 0 &&
270             action_table[cur_action].action != GIVEUP);
271}
272
273AP_DECLARE(void) ap_relieve_child_processes(ap_reclaim_callback_fn_t *mpm_callback)
274{
275    int i;
276    extra_process_t *cur_extra;
277    int max_daemons;
278
279    ap_mpm_query(AP_MPMQ_MAX_DAEMON_USED, &max_daemons);
280
281    /* now see who is done */
282    for (i = 0; i < max_daemons; ++i) {
283        process_score *ps = ap_get_scoreboard_process(i);
284        pid_t pid = ps->pid;
285
286        if (pid == 0) {
287            continue; /* not every scoreboard entry is in use */
288        }
289
290        if (reclaim_one_pid(pid, DO_NOTHING)) {
291            mpm_callback(i, 0, 0);
292        }
293    }
294
295    cur_extra = extras;
296    while (cur_extra) {
297        ap_generation_t old_gen;
298        extra_process_t *next = cur_extra->next;
299
300        if (reclaim_one_pid(cur_extra->pid, DO_NOTHING)) {
301            if (ap_unregister_extra_mpm_process(cur_extra->pid, &old_gen) == 1) {
302                mpm_callback(-1, cur_extra->pid, old_gen);
303            }
304            else {
305                AP_DEBUG_ASSERT(1 == 0);
306            }
307        }
308        cur_extra = next;
309    }
310}
311
312/* Before sending the signal to the pid this function verifies that
313 * the pid is a member of the current process group; either using
314 * apr_proc_wait(), where waitpid() guarantees to fail for non-child
315 * processes; or by using getpgid() directly, if available. */
316AP_DECLARE(apr_status_t) ap_mpm_safe_kill(pid_t pid, int sig)
317{
318#ifndef HAVE_GETPGID
319    apr_proc_t proc;
320    apr_status_t rv;
321    apr_exit_why_e why;
322    int status;
323
324    /* Ensure pid sanity */
325    if (pid < 1) {
326        return APR_EINVAL;
327    }
328
329    proc.pid = pid;
330    rv = apr_proc_wait(&proc, &status, &why, APR_NOWAIT);
331    if (rv == APR_CHILD_DONE) {
332        /* The child already died - log the termination status if
333         * necessary: */
334        ap_process_child_status(&proc, why, status);
335        return APR_EINVAL;
336    }
337    else if (rv != APR_CHILD_NOTDONE) {
338        /* The child is already dead and reaped, or was a bogus pid -
339         * log this either way. */
340        ap_log_error(APLOG_MARK, APLOG_NOTICE, rv, ap_server_conf, APLOGNO(00048)
341                     "cannot send signal %d to pid %ld (non-child or "
342                     "already dead)", sig, (long)pid);
343        return APR_EINVAL;
344    }
345#else
346    pid_t pg;
347
348    /* Ensure pid sanity. */
349    if (pid < 1) {
350        return APR_EINVAL;
351    }
352
353    pg = getpgid(pid);
354    if (pg == -1) {
355        /* Process already dead... */
356        return errno;
357    }
358
359    if (pg != getpgrp()) {
360        ap_log_error(APLOG_MARK, APLOG_ALERT, 0, ap_server_conf, APLOGNO(00049)
361                     "refusing to send signal %d to pid %ld outside "
362                     "process group", sig, (long)pid);
363        return APR_EINVAL;
364    }
365#endif
366
367    return kill(pid, sig) ? errno : APR_SUCCESS;
368}
369
370
371AP_DECLARE(int) ap_process_child_status(apr_proc_t *pid, apr_exit_why_e why,
372                                        int status)
373{
374    int signum = status;
375    const char *sigdesc;
376
377    /* Child died... if it died due to a fatal error,
378     * we should simply bail out.  The caller needs to
379     * check for bad rc from us and exit, running any
380     * appropriate cleanups.
381     *
382     * If the child died due to a resource shortage,
383     * the parent should limit the rate of forking
384     */
385    if (APR_PROC_CHECK_EXIT(why)) {
386        if (status == APEXIT_CHILDSICK) {
387            return status;
388        }
389
390        if (status == APEXIT_CHILDFATAL) {
391            ap_log_error(APLOG_MARK, APLOG_ALERT,
392                         0, ap_server_conf, APLOGNO(00050)
393                         "Child %" APR_PID_T_FMT
394                         " returned a Fatal error... Apache is exiting!",
395                         pid->pid);
396            return APEXIT_CHILDFATAL;
397        }
398
399        return 0;
400    }
401
402    if (APR_PROC_CHECK_SIGNALED(why)) {
403        sigdesc = apr_signal_description_get(signum);
404
405        switch (signum) {
406        case SIGTERM:
407        case SIGHUP:
408        case AP_SIG_GRACEFUL:
409        case SIGKILL:
410            break;
411
412        default:
413            if (APR_PROC_CHECK_CORE_DUMP(why)) {
414                ap_log_error(APLOG_MARK, APLOG_NOTICE,
415                             0, ap_server_conf, APLOGNO(00051)
416                             "child pid %ld exit signal %s (%d), "
417                             "possible coredump in %s",
418                             (long)pid->pid, sigdesc, signum,
419                             ap_coredump_dir);
420            }
421            else {
422                ap_log_error(APLOG_MARK, APLOG_NOTICE,
423                             0, ap_server_conf, APLOGNO(00052)
424                             "child pid %ld exit signal %s (%d)",
425                             (long)pid->pid, sigdesc, signum);
426            }
427        }
428    }
429    return 0;
430}
431
432AP_DECLARE(apr_status_t) ap_mpm_pod_open(apr_pool_t *p, ap_pod_t **pod)
433{
434    apr_status_t rv;
435
436    *pod = apr_palloc(p, sizeof(**pod));
437    rv = apr_file_pipe_create_ex(&((*pod)->pod_in), &((*pod)->pod_out),
438                                 APR_WRITE_BLOCK, p);
439    if (rv != APR_SUCCESS) {
440        return rv;
441    }
442
443    apr_file_pipe_timeout_set((*pod)->pod_in, 0);
444    (*pod)->p = p;
445
446    /* close these before exec. */
447    apr_file_inherit_unset((*pod)->pod_in);
448    apr_file_inherit_unset((*pod)->pod_out);
449
450    return APR_SUCCESS;
451}
452
453AP_DECLARE(apr_status_t) ap_mpm_pod_check(ap_pod_t *pod)
454{
455    char c;
456    apr_size_t len = 1;
457    apr_status_t rv;
458
459    rv = apr_file_read(pod->pod_in, &c, &len);
460
461    if ((rv == APR_SUCCESS) && (len == 1)) {
462        return APR_SUCCESS;
463    }
464
465    if (rv != APR_SUCCESS) {
466        return rv;
467    }
468
469    return AP_NORESTART;
470}
471
472AP_DECLARE(apr_status_t) ap_mpm_pod_close(ap_pod_t *pod)
473{
474    apr_status_t rv;
475
476    rv = apr_file_close(pod->pod_out);
477    if (rv != APR_SUCCESS) {
478        return rv;
479    }
480
481    rv = apr_file_close(pod->pod_in);
482    if (rv != APR_SUCCESS) {
483        return rv;
484    }
485
486    return APR_SUCCESS;
487}
488
489static apr_status_t pod_signal_internal(ap_pod_t *pod)
490{
491    apr_status_t rv;
492    char char_of_death = '!';
493    apr_size_t one = 1;
494
495    rv = apr_file_write(pod->pod_out, &char_of_death, &one);
496    if (rv != APR_SUCCESS) {
497        ap_log_error(APLOG_MARK, APLOG_WARNING, rv, ap_server_conf, APLOGNO(00053)
498                     "write pipe_of_death");
499    }
500
501    return rv;
502}
503
504AP_DECLARE(apr_status_t) ap_mpm_podx_open(apr_pool_t *p, ap_pod_t **pod)
505{
506    apr_status_t rv;
507
508    *pod = apr_palloc(p, sizeof(**pod));
509    rv = apr_file_pipe_create(&((*pod)->pod_in), &((*pod)->pod_out), p);
510    if (rv != APR_SUCCESS) {
511        return rv;
512    }
513    /*
514     apr_file_pipe_timeout_set((*pod)->pod_in, 0);
515     */
516    (*pod)->p = p;
517
518    /* close these before exec. */
519    apr_file_inherit_unset((*pod)->pod_in);
520    apr_file_inherit_unset((*pod)->pod_out);
521
522    return APR_SUCCESS;
523}
524
525AP_DECLARE(int) ap_mpm_podx_check(ap_pod_t *pod)
526{
527    char c;
528    apr_os_file_t fd;
529    int rc;
530
531    /* we need to surface EINTR so we'll have to grab the
532     * native file descriptor and do the OS read() ourselves
533     */
534    apr_os_file_get(&fd, pod->pod_in);
535    rc = read(fd, &c, 1);
536    if (rc == 1) {
537        switch (c) {
538            case AP_MPM_PODX_RESTART_CHAR:
539                return AP_MPM_PODX_RESTART;
540            case AP_MPM_PODX_GRACEFUL_CHAR:
541                return AP_MPM_PODX_GRACEFUL;
542        }
543    }
544    return AP_MPM_PODX_NORESTART;
545}
546
547AP_DECLARE(apr_status_t) ap_mpm_podx_close(ap_pod_t *pod)
548{
549    apr_status_t rv;
550
551    rv = apr_file_close(pod->pod_out);
552    if (rv != APR_SUCCESS) {
553        return rv;
554    }
555
556    rv = apr_file_close(pod->pod_in);
557    if (rv != APR_SUCCESS) {
558        return rv;
559    }
560    return rv;
561}
562
563static apr_status_t podx_signal_internal(ap_pod_t *pod,
564                                        ap_podx_restart_t graceful)
565{
566    apr_status_t rv;
567    apr_size_t one = 1;
568    char char_of_death = ' ';
569    switch (graceful) {
570        case AP_MPM_PODX_RESTART:
571            char_of_death = AP_MPM_PODX_RESTART_CHAR;
572            break;
573        case AP_MPM_PODX_GRACEFUL:
574            char_of_death = AP_MPM_PODX_GRACEFUL_CHAR;
575            break;
576        case AP_MPM_PODX_NORESTART:
577            break;
578    }
579
580    rv = apr_file_write(pod->pod_out, &char_of_death, &one);
581    if (rv != APR_SUCCESS) {
582        ap_log_error(APLOG_MARK, APLOG_WARNING, rv, ap_server_conf, APLOGNO(2404)
583                     "write pipe_of_death");
584    }
585    return rv;
586}
587
588AP_DECLARE(apr_status_t) ap_mpm_podx_signal(ap_pod_t * pod,
589                                            ap_podx_restart_t graceful)
590{
591    return podx_signal_internal(pod, graceful);
592}
593
594AP_DECLARE(void) ap_mpm_podx_killpg(ap_pod_t * pod, int num,
595                                    ap_podx_restart_t graceful)
596{
597    int i;
598    apr_status_t rv = APR_SUCCESS;
599
600    for (i = 0; i < num && rv == APR_SUCCESS; i++) {
601        rv = podx_signal_internal(pod, graceful);
602    }
603}
604
605/* This function connects to the server and sends enough data to
606 * ensure the child wakes up and processes a new connection.  This
607 * permits the MPM to skip the poll when there is only one listening
608 * socket, because it provides a alternate way to unblock an accept()
609 * when the pod is used.  */
610static apr_status_t dummy_connection(ap_pod_t *pod)
611{
612    const char *data;
613    apr_status_t rv;
614    apr_socket_t *sock;
615    apr_pool_t *p;
616    apr_size_t len;
617    ap_listen_rec *lp;
618
619    /* create a temporary pool for the socket.  pconf stays around too long */
620    rv = apr_pool_create(&p, pod->p);
621    if (rv != APR_SUCCESS) {
622        return rv;
623    }
624
625    /* If possible, find a listener which is configured for
626     * plain-HTTP, not SSL; using an SSL port would either be
627     * expensive to do correctly (performing a complete SSL handshake)
628     * or cause log spam by doing incorrectly (simply sending EOF). */
629    lp = ap_listeners;
630    while (lp && lp->protocol && strcasecmp(lp->protocol, "http") != 0) {
631        lp = lp->next;
632    }
633    if (!lp) {
634        lp = ap_listeners;
635    }
636
637    rv = apr_socket_create(&sock, lp->bind_addr->family, SOCK_STREAM, 0, p);
638    if (rv != APR_SUCCESS) {
639        ap_log_error(APLOG_MARK, APLOG_WARNING, rv, ap_server_conf, APLOGNO(00054)
640                     "get socket to connect to listener");
641        apr_pool_destroy(p);
642        return rv;
643    }
644
645    /* on some platforms (e.g., FreeBSD), the kernel won't accept many
646     * queued connections before it starts blocking local connects...
647     * we need to keep from blocking too long and instead return an error,
648     * because the MPM won't want to hold up a graceful restart for a
649     * long time
650     */
651    rv = apr_socket_timeout_set(sock, apr_time_from_sec(3));
652    if (rv != APR_SUCCESS) {
653        ap_log_error(APLOG_MARK, APLOG_WARNING, rv, ap_server_conf, APLOGNO(00055)
654                     "set timeout on socket to connect to listener");
655        apr_socket_close(sock);
656        apr_pool_destroy(p);
657        return rv;
658    }
659
660    rv = apr_socket_connect(sock, lp->bind_addr);
661    if (rv != APR_SUCCESS) {
662        int log_level = APLOG_WARNING;
663
664        if (APR_STATUS_IS_TIMEUP(rv)) {
665            /* probably some server processes bailed out already and there
666             * is nobody around to call accept and clear out the kernel
667             * connection queue; usually this is not worth logging
668             */
669            log_level = APLOG_DEBUG;
670        }
671
672        ap_log_error(APLOG_MARK, log_level, rv, ap_server_conf, APLOGNO(00056)
673                     "connect to listener on %pI", lp->bind_addr);
674        apr_pool_destroy(p);
675        return rv;
676    }
677
678    if (lp->protocol && strcasecmp(lp->protocol, "https") == 0) {
679        /* Send a TLS 1.0 close_notify alert.  This is perhaps the
680         * "least wrong" way to open and cleanly terminate an SSL
681         * connection.  It should "work" without noisy error logs if
682         * the server actually expects SSLv3/TLSv1.  With
683         * SSLv23_server_method() OpenSSL's SSL_accept() fails
684         * ungracefully on receipt of this message, since it requires
685         * an 11-byte ClientHello message and this is too short. */
686        static const unsigned char tls10_close_notify[7] = {
687            '\x15',         /* TLSPlainText.type = Alert (21) */
688            '\x03', '\x01', /* TLSPlainText.version = {3, 1} */
689            '\x00', '\x02', /* TLSPlainText.length = 2 */
690            '\x01',         /* Alert.level = warning (1) */
691            '\x00'          /* Alert.description = close_notify (0) */
692        };
693        data = (const char *)tls10_close_notify;
694        len = sizeof(tls10_close_notify);
695    }
696    else /* ... XXX other request types here? */ {
697        /* Create an HTTP request string.  We include a User-Agent so
698         * that adminstrators can track down the cause of the
699         * odd-looking requests in their logs.  A complete request is
700         * used since kernel-level filtering may require that much
701         * data before returning from accept(). */
702        data = apr_pstrcat(p, "OPTIONS * HTTP/1.0\r\nUser-Agent: ",
703                           ap_get_server_description(),
704                           " (internal dummy connection)\r\n\r\n", NULL);
705        len = strlen(data);
706    }
707
708    apr_socket_send(sock, data, &len);
709    apr_socket_close(sock);
710    apr_pool_destroy(p);
711
712    return rv;
713}
714
715AP_DECLARE(apr_status_t) ap_mpm_pod_signal(ap_pod_t *pod)
716{
717    apr_status_t rv;
718
719    rv = pod_signal_internal(pod);
720    if (rv != APR_SUCCESS) {
721        return rv;
722    }
723
724    return dummy_connection(pod);
725}
726
727void ap_mpm_pod_killpg(ap_pod_t *pod, int num)
728{
729    int i;
730    apr_status_t rv = APR_SUCCESS;
731
732    /* we don't write anything to the pod here...  we assume
733     * that the would-be reader of the pod has another way to
734     * see that it is time to die once we wake it up
735     *
736     * writing lots of things to the pod at once is very
737     * problematic... we can fill the kernel pipe buffer and
738     * be blocked until somebody consumes some bytes or
739     * we hit a timeout...  if we hit a timeout we can't just
740     * keep trying because maybe we'll never successfully
741     * write again...  but then maybe we'll leave would-be
742     * readers stranded (a number of them could be tied up for
743     * a while serving time-consuming requests)
744     */
745    /* Recall: we only worry about IDLE child processes here */
746    for (i = 0; i < num && rv == APR_SUCCESS; i++) {
747        if (ap_scoreboard_image->servers[i][0].status != SERVER_READY ||
748            ap_scoreboard_image->servers[i][0].pid == 0) {
749            continue;
750        }
751        rv = dummy_connection(pod);
752    }
753}
754
755static const char *dash_k_arg = NULL;
756static const char *dash_k_arg_noarg = "noarg";
757
758static int send_signal(pid_t pid, int sig)
759{
760    if (kill(pid, sig) < 0) {
761        ap_log_error(APLOG_MARK, APLOG_STARTUP, errno, NULL, APLOGNO(00057)
762                     "sending signal to server");
763        return 1;
764    }
765    return 0;
766}
767
768int ap_signal_server(int *exit_status, apr_pool_t *pconf)
769{
770    apr_status_t rv;
771    pid_t otherpid;
772    int running = 0;
773    const char *status;
774
775    *exit_status = 0;
776
777    rv = ap_read_pid(pconf, ap_pid_fname, &otherpid);
778    if (rv != APR_SUCCESS) {
779        if (!APR_STATUS_IS_ENOENT(rv)) {
780            ap_log_error(APLOG_MARK, APLOG_STARTUP, rv, NULL, APLOGNO(00058)
781                         "Error retrieving pid file %s", ap_pid_fname);
782            ap_log_error(APLOG_MARK, APLOG_STARTUP, 0, NULL, APLOGNO(00059)
783                         "Remove it before continuing if it is corrupted.");
784            *exit_status = 1;
785            return 1;
786        }
787        status = "httpd (no pid file) not running";
788    }
789    else {
790        if (kill(otherpid, 0) == 0) {
791            running = 1;
792            status = apr_psprintf(pconf,
793                                  "httpd (pid %" APR_PID_T_FMT ") already "
794                                  "running", otherpid);
795        }
796        else {
797            status = apr_psprintf(pconf,
798                                  "httpd (pid %" APR_PID_T_FMT "?) not running",
799                                  otherpid);
800        }
801    }
802
803    if (!strcmp(dash_k_arg, "start") || dash_k_arg == dash_k_arg_noarg) {
804        if (running) {
805            printf("%s\n", status);
806            return 1;
807        }
808    }
809
810    if (!strcmp(dash_k_arg, "stop")) {
811        if (!running) {
812            printf("%s\n", status);
813        }
814        else {
815            send_signal(otherpid, SIGTERM);
816        }
817        return 1;
818    }
819
820    if (!strcmp(dash_k_arg, "restart")) {
821        if (!running) {
822            printf("httpd not running, trying to start\n");
823        }
824        else {
825            *exit_status = send_signal(otherpid, SIGHUP);
826            return 1;
827        }
828    }
829
830    if (!strcmp(dash_k_arg, "graceful")) {
831        if (!running) {
832            printf("httpd not running, trying to start\n");
833        }
834        else {
835            *exit_status = send_signal(otherpid, AP_SIG_GRACEFUL);
836            return 1;
837        }
838    }
839
840    if (!strcmp(dash_k_arg, "graceful-stop")) {
841        if (!running) {
842            printf("%s\n", status);
843        }
844        else {
845            *exit_status = send_signal(otherpid, AP_SIG_GRACEFUL_STOP);
846        }
847        return 1;
848    }
849
850    return 0;
851}
852
853void ap_mpm_rewrite_args(process_rec *process)
854{
855    apr_array_header_t *mpm_new_argv;
856    apr_status_t rv;
857    apr_getopt_t *opt;
858    char optbuf[3];
859    const char *optarg;
860
861    mpm_new_argv = apr_array_make(process->pool, process->argc,
862                                  sizeof(const char **));
863    *(const char **)apr_array_push(mpm_new_argv) = process->argv[0];
864    apr_getopt_init(&opt, process->pool, process->argc, process->argv);
865    opt->errfn = NULL;
866    optbuf[0] = '-';
867    /* option char returned by apr_getopt() will be stored in optbuf[1] */
868    optbuf[2] = '\0';
869    while ((rv = apr_getopt(opt, "k:" AP_SERVER_BASEARGS,
870                            optbuf + 1, &optarg)) == APR_SUCCESS) {
871        switch(optbuf[1]) {
872        case 'k':
873            if (!dash_k_arg) {
874                if (!strcmp(optarg, "start") || !strcmp(optarg, "stop") ||
875                    !strcmp(optarg, "restart") || !strcmp(optarg, "graceful") ||
876                    !strcmp(optarg, "graceful-stop")) {
877                    dash_k_arg = optarg;
878                    break;
879                }
880            }
881        default:
882            *(const char **)apr_array_push(mpm_new_argv) =
883                apr_pstrdup(process->pool, optbuf);
884            if (optarg) {
885                *(const char **)apr_array_push(mpm_new_argv) = optarg;
886            }
887        }
888    }
889
890    /* back up to capture the bad argument */
891    if (rv == APR_BADCH || rv == APR_BADARG) {
892        opt->ind--;
893    }
894
895    while (opt->ind < opt->argc) {
896        *(const char **)apr_array_push(mpm_new_argv) =
897            apr_pstrdup(process->pool, opt->argv[opt->ind++]);
898    }
899
900    process->argc = mpm_new_argv->nelts;
901    process->argv = (const char * const *)mpm_new_argv->elts;
902
903    if (NULL == dash_k_arg) {
904        dash_k_arg = dash_k_arg_noarg;
905    }
906
907    APR_REGISTER_OPTIONAL_FN(ap_signal_server);
908}
909
910static pid_t parent_pid, my_pid;
911static apr_pool_t *pconf;
912
913#if AP_ENABLE_EXCEPTION_HOOK
914
915static int exception_hook_enabled;
916
917const char *ap_mpm_set_exception_hook(cmd_parms *cmd, void *dummy,
918                                      const char *arg)
919{
920    const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY);
921    if (err != NULL) {
922        return err;
923    }
924
925    if (cmd->server->is_virtual) {
926        return "EnableExceptionHook directive not allowed in <VirtualHost>";
927    }
928
929    if (strcasecmp(arg, "on") == 0) {
930        exception_hook_enabled = 1;
931    }
932    else if (strcasecmp(arg, "off") == 0) {
933        exception_hook_enabled = 0;
934    }
935    else {
936        return "parameter must be 'on' or 'off'";
937    }
938
939    return NULL;
940}
941
942static void run_fatal_exception_hook(int sig)
943{
944    ap_exception_info_t ei = {0};
945
946    if (exception_hook_enabled &&
947        geteuid() != 0 &&
948        my_pid != parent_pid) {
949        ei.sig = sig;
950        ei.pid = my_pid;
951        ap_run_fatal_exception(&ei);
952    }
953}
954#endif /* AP_ENABLE_EXCEPTION_HOOK */
955
956/* handle all varieties of core dumping signals */
957static void sig_coredump(int sig)
958{
959    apr_filepath_set(ap_coredump_dir, pconf);
960    apr_signal(sig, SIG_DFL);
961#if AP_ENABLE_EXCEPTION_HOOK
962    run_fatal_exception_hook(sig);
963#endif
964    /* linuxthreads issue calling getpid() here:
965     *   This comparison won't match if the crashing thread is
966     *   some module's thread that runs in the parent process.
967     *   The fallout, which is limited to linuxthreads:
968     *   The special log message won't be written when such a
969     *   thread in the parent causes the parent to crash.
970     */
971    if (getpid() == parent_pid) {
972        ap_log_error(APLOG_MARK, APLOG_NOTICE,
973                     0, ap_server_conf, APLOGNO(00060)
974                     "seg fault or similar nasty error detected "
975                     "in the parent process");
976        /* XXX we can probably add some rudimentary cleanup code here,
977         * like getting rid of the pid file.  If any additional bad stuff
978         * happens, we are protected from recursive errors taking down the
979         * system since this function is no longer the signal handler   GLA
980         */
981    }
982    kill(getpid(), sig);
983    /* At this point we've got sig blocked, because we're still inside
984     * the signal handler.  When we leave the signal handler it will
985     * be unblocked, and we'll take the signal... and coredump or whatever
986     * is appropriate for this particular Unix.  In addition the parent
987     * will see the real signal we received -- whereas if we called
988     * abort() here, the parent would only see SIGABRT.
989     */
990}
991
992AP_DECLARE(apr_status_t) ap_fatal_signal_child_setup(server_rec *s)
993{
994    my_pid = getpid();
995    return APR_SUCCESS;
996}
997
998AP_DECLARE(apr_status_t) ap_fatal_signal_setup(server_rec *s,
999                                               apr_pool_t *in_pconf)
1000{
1001#ifndef NO_USE_SIGACTION
1002    struct sigaction sa;
1003
1004    sigemptyset(&sa.sa_mask);
1005
1006#if defined(SA_ONESHOT)
1007    sa.sa_flags = SA_ONESHOT;
1008#elif defined(SA_RESETHAND)
1009    sa.sa_flags = SA_RESETHAND;
1010#else
1011    sa.sa_flags = 0;
1012#endif
1013
1014    sa.sa_handler = sig_coredump;
1015    if (sigaction(SIGSEGV, &sa, NULL) < 0)
1016        ap_log_error(APLOG_MARK, APLOG_WARNING, errno, s, APLOGNO(00061) "sigaction(SIGSEGV)");
1017#ifdef SIGBUS
1018    if (sigaction(SIGBUS, &sa, NULL) < 0)
1019        ap_log_error(APLOG_MARK, APLOG_WARNING, errno, s, APLOGNO(00062) "sigaction(SIGBUS)");
1020#endif
1021#ifdef SIGABORT
1022    if (sigaction(SIGABORT, &sa, NULL) < 0)
1023        ap_log_error(APLOG_MARK, APLOG_WARNING, errno, s, APLOGNO(00063) "sigaction(SIGABORT)");
1024#endif
1025#ifdef SIGABRT
1026    if (sigaction(SIGABRT, &sa, NULL) < 0)
1027        ap_log_error(APLOG_MARK, APLOG_WARNING, errno, s, APLOGNO(00064) "sigaction(SIGABRT)");
1028#endif
1029#ifdef SIGILL
1030    if (sigaction(SIGILL, &sa, NULL) < 0)
1031        ap_log_error(APLOG_MARK, APLOG_WARNING, errno, s, APLOGNO(00065) "sigaction(SIGILL)");
1032#endif
1033#ifdef SIGFPE
1034    if (sigaction(SIGFPE, &sa, NULL) < 0)
1035        ap_log_error(APLOG_MARK, APLOG_WARNING, errno, s, APLOGNO(00066) "sigaction(SIGFPE)");
1036#endif
1037
1038#else /* NO_USE_SIGACTION */
1039
1040    apr_signal(SIGSEGV, sig_coredump);
1041#ifdef SIGBUS
1042    apr_signal(SIGBUS, sig_coredump);
1043#endif /* SIGBUS */
1044#ifdef SIGABORT
1045    apr_signal(SIGABORT, sig_coredump);
1046#endif /* SIGABORT */
1047#ifdef SIGABRT
1048    apr_signal(SIGABRT, sig_coredump);
1049#endif /* SIGABRT */
1050#ifdef SIGILL
1051    apr_signal(SIGILL, sig_coredump);
1052#endif /* SIGILL */
1053#ifdef SIGFPE
1054    apr_signal(SIGFPE, sig_coredump);
1055#endif /* SIGFPE */
1056
1057#endif /* NO_USE_SIGACTION */
1058
1059    pconf = in_pconf;
1060    parent_pid = my_pid = getpid();
1061
1062    return APR_SUCCESS;
1063}
1064
1065#endif /* WIN32 */
1066