1// Copyright 2010 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#ifndef DOUBLE_CONVERSION_UTILS_H_
29#define DOUBLE_CONVERSION_UTILS_H_
30
31#include <wtf/Assertions.h>
32#include <stdlib.h>
33#include <string.h>
34
35#define UNIMPLEMENTED ASSERT_NOT_REACHED
36#define UNREACHABLE ASSERT_NOT_REACHED
37
38// Double operations detection based on target architecture.
39// Linux uses a 80bit wide floating point stack on x86. This induces double
40// rounding, which in turn leads to wrong results.
41// An easy way to test if the floating-point operations are correct is to
42// evaluate: 89255.0/1e22. If the floating-point stack is 64 bits wide then
43// the result is equal to 89255e-22.
44// The best way to test this, is to create a division-function and to compare
45// the output of the division with the expected result. (Inlining must be
46// disabled.)
47// On Linux,x86 89255e-22 != Div_double(89255.0/1e22)
48#if defined(_M_X64) || defined(__x86_64__) || \
49defined(__ARMEL__) || \
50defined(_MIPS_ARCH_MIPS32R2)
51#define DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS 1
52#elif CPU(MIPS) || CPU(PPC) || CPU(PPC64) || OS(WINCE) || CPU(SH4) || CPU(S390) || CPU(S390X) || CPU(IA64) || CPU(ALPHA) || CPU(ARM64) || CPU(HPPA)
53#define DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS 1
54#elif defined(_M_IX86) || defined(__i386__)
55#if defined(_WIN32)
56// Windows uses a 64bit wide floating point stack.
57#define DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS 1
58#else
59#undef DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS
60#endif  // _WIN32
61#elif defined(WINCE) || defined(_WIN32_WCE)
62#define DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS 1
63#else
64#error Target architecture was not detected as supported by Double-Conversion.
65#endif
66
67
68#if defined(_WIN32) && !defined(__MINGW32__)
69
70typedef signed char int8_t;
71typedef unsigned char uint8_t;
72typedef short int16_t;  // NOLINT
73typedef unsigned short uint16_t;  // NOLINT
74typedef int int32_t;
75typedef unsigned int uint32_t;
76typedef __int64 int64_t;
77typedef unsigned __int64 uint64_t;
78// intptr_t and friends are defined in crtdefs.h through stdio.h.
79
80#else
81
82#include <stdint.h>
83
84#endif
85
86// The following macro works on both 32 and 64-bit platforms.
87// Usage: instead of writing 0x1234567890123456
88//      write UINT64_2PART_C(0x12345678,90123456);
89#define UINT64_2PART_C(a, b) (((static_cast<uint64_t>(a) << 32) + 0x##b##u))
90
91
92// The expression ARRAY_SIZE(a) is a compile-time constant of type
93// size_t which represents the number of elements of the given
94// array. You should only use ARRAY_SIZE on statically allocated
95// arrays.
96#define ARRAY_SIZE(a)                                   \
97((sizeof(a) / sizeof(*(a))) /                         \
98static_cast<size_t>(!(sizeof(a) % sizeof(*(a)))))
99
100// A macro to disallow the evil copy constructor and operator= functions
101// This should be used in the private: declarations for a class
102#define DISALLOW_COPY_AND_ASSIGN(TypeName)      \
103TypeName(const TypeName&);                    \
104void operator=(const TypeName&)
105
106// A macro to disallow all the implicit constructors, namely the
107// default constructor, copy constructor and operator= functions.
108//
109// This should be used in the private: declarations for a class
110// that wants to prevent anyone from instantiating it. This is
111// especially useful for classes containing only static methods.
112#define DISALLOW_IMPLICIT_CONSTRUCTORS(TypeName) \
113TypeName();                                    \
114DISALLOW_COPY_AND_ASSIGN(TypeName)
115
116namespace WTF {
117
118namespace double_conversion {
119
120    static const int kCharSize = sizeof(char);
121
122    // Returns the maximum of the two parameters.
123    template <typename T>
124    static T Max(T a, T b) {
125        return a < b ? b : a;
126    }
127
128
129    // Returns the minimum of the two parameters.
130    template <typename T>
131    static T Min(T a, T b) {
132        return a < b ? a : b;
133    }
134
135
136    inline int StrLength(const char* string) {
137        size_t length = strlen(string);
138        ASSERT(length == static_cast<size_t>(static_cast<int>(length)));
139        return static_cast<int>(length);
140    }
141
142    // BufferReference abstract a memory buffer. It provides a pointer
143    // to the beginning of the buffer, and the available length.
144    template <typename T>
145    class BufferReference {
146    public:
147        BufferReference() : start_(NULL), length_(0) {}
148        BufferReference(T* data, int length) : start_(data), length_(length) {
149            ASSERT(length == 0 || (length > 0 && data != NULL));
150        }
151
152        // Returns a vector using the same backing storage as this one,
153        // spanning from and including 'from', to but not including 'to'.
154        BufferReference<T> SubBufferReference(int from, int to) {
155            ASSERT(to <= length_);
156            ASSERT_WITH_SECURITY_IMPLICATION(from < to);
157            ASSERT(0 <= from);
158            return BufferReference<T>(start() + from, to - from);
159        }
160
161        // Returns the length of the vector.
162        int length() const { return length_; }
163
164        // Returns whether or not the vector is empty.
165        bool is_empty() const { return length_ == 0; }
166
167        // Returns the pointer to the start of the data in the vector.
168        T* start() const { return start_; }
169
170        // Access individual vector elements - checks bounds in debug mode.
171        T& operator[](int index) const {
172            ASSERT(0 <= index && index < length_);
173            return start_[index];
174        }
175
176        T& first() { return start_[0]; }
177
178        T& last() { return start_[length_ - 1]; }
179
180    private:
181        T* start_;
182        int length_;
183    };
184
185
186    // Helper class for building result strings in a character buffer. The
187    // purpose of the class is to use safe operations that checks the
188    // buffer bounds on all operations in debug mode.
189    class StringBuilder {
190    public:
191        StringBuilder(char* buffer, int size)
192        : buffer_(buffer, size), position_(0) { }
193
194        ~StringBuilder() { if (!is_finalized()) Finalize(); }
195
196        int size() const { return buffer_.length(); }
197
198        // Get the current position in the builder.
199        int position() const {
200            ASSERT(!is_finalized());
201            return position_;
202        }
203
204        // Set the current position in the builder.
205        void SetPosition(int position)
206        {
207            ASSERT(!is_finalized());
208            ASSERT_WITH_SECURITY_IMPLICATION(position < size());
209            position_ = position;
210        }
211
212        // Reset the position.
213        void Reset() { position_ = 0; }
214
215        // Add a single character to the builder. It is not allowed to add
216        // 0-characters; use the Finalize() method to terminate the string
217        // instead.
218        void AddCharacter(char c) {
219            ASSERT(c != '\0');
220            ASSERT(!is_finalized() && position_ < buffer_.length());
221            buffer_[position_++] = c;
222        }
223
224        // Add an entire string to the builder. Uses strlen() internally to
225        // compute the length of the input string.
226        void AddString(const char* s) {
227            AddSubstring(s, StrLength(s));
228        }
229
230        // Add the first 'n' characters of the given string 's' to the
231        // builder. The input string must have enough characters.
232        void AddSubstring(const char* s, int n) {
233            ASSERT(!is_finalized() && position_ + n < buffer_.length());
234            ASSERT_WITH_SECURITY_IMPLICATION(static_cast<size_t>(n) <= strlen(s));
235            memcpy(&buffer_[position_], s, n * kCharSize);
236            position_ += n;
237        }
238
239
240        // Add character padding to the builder. If count is non-positive,
241        // nothing is added to the builder.
242        void AddPadding(char c, int count) {
243            for (int i = 0; i < count; i++) {
244                AddCharacter(c);
245            }
246        }
247
248        // Finalize the string by 0-terminating it and returning the buffer.
249        char* Finalize() {
250            ASSERT(!is_finalized() && position_ < buffer_.length());
251            buffer_[position_] = '\0';
252            // Make sure nobody managed to add a 0-character to the
253            // buffer while building the string.
254            ASSERT(strlen(buffer_.start()) == static_cast<size_t>(position_));
255            position_ = -1;
256            ASSERT(is_finalized());
257            return buffer_.start();
258        }
259
260    private:
261        BufferReference<char> buffer_;
262        int position_;
263
264        bool is_finalized() const { return position_ < 0; }
265
266        DISALLOW_IMPLICIT_CONSTRUCTORS(StringBuilder);
267    };
268
269    // The type-based aliasing rule allows the compiler to assume that pointers of
270    // different types (for some definition of different) never alias each other.
271    // Thus the following code does not work:
272    //
273    // float f = foo();
274    // int fbits = *(int*)(&f);
275    //
276    // The compiler 'knows' that the int pointer can't refer to f since the types
277    // don't match, so the compiler may cache f in a register, leaving random data
278    // in fbits.  Using C++ style casts makes no difference, however a pointer to
279    // char data is assumed to alias any other pointer.  This is the 'memcpy
280    // exception'.
281    //
282    // Bit_cast uses the memcpy exception to move the bits from a variable of one
283    // type of a variable of another type.  Of course the end result is likely to
284    // be implementation dependent.  Most compilers (gcc-4.2 and MSVC 2005)
285    // will completely optimize BitCast away.
286    //
287    // There is an additional use for BitCast.
288    // Recent gccs will warn when they see casts that may result in breakage due to
289    // the type-based aliasing rule.  If you have checked that there is no breakage
290    // you can use BitCast to cast one pointer type to another.  This confuses gcc
291    // enough that it can no longer see that you have cast one pointer type to
292    // another thus avoiding the warning.
293    template <class Dest, class Source>
294    inline Dest BitCast(const Source& source) {
295        // Compile time assertion: sizeof(Dest) == sizeof(Source)
296        // A compile error here means your Dest and Source have different sizes.
297        typedef char VerifySizesAreEqual[sizeof(Dest) == sizeof(Source) ? 1 : -1];
298
299        Dest dest;
300        memcpy(&dest, &source, sizeof(dest));
301        return dest;
302    }
303
304    template <class Dest, class Source>
305    inline Dest BitCast(Source* source) {
306        return BitCast<Dest>(reinterpret_cast<uintptr_t>(source));
307    }
308
309}  // namespace double_conversion
310
311} // namespace WTF
312
313#endif  // DOUBLE_CONVERSION_UTILS_H_
314