1// Copyright 2010 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include "config.h"
29
30#include "fast-dtoa.h"
31
32#include "cached-powers.h"
33#include "diy-fp.h"
34#include "double.h"
35
36namespace WTF {
37
38namespace double_conversion {
39
40    // The minimal and maximal target exponent define the range of w's binary
41    // exponent, where 'w' is the result of multiplying the input by a cached power
42    // of ten.
43    //
44    // A different range might be chosen on a different platform, to optimize digit
45    // generation, but a smaller range requires more powers of ten to be cached.
46    static const int kMinimalTargetExponent = -60;
47    static const int kMaximalTargetExponent = -32;
48
49
50    // Adjusts the last digit of the generated number, and screens out generated
51    // solutions that may be inaccurate. A solution may be inaccurate if it is
52    // outside the safe interval, or if we cannot prove that it is closer to the
53    // input than a neighboring representation of the same length.
54    //
55    // Input: * buffer containing the digits of too_high / 10^kappa
56    //        * the buffer's length
57    //        * distance_too_high_w == (too_high - w).f() * unit
58    //        * unsafe_interval == (too_high - too_low).f() * unit
59    //        * rest = (too_high - buffer * 10^kappa).f() * unit
60    //        * ten_kappa = 10^kappa * unit
61    //        * unit = the common multiplier
62    // Output: returns true if the buffer is guaranteed to contain the closest
63    //    representable number to the input.
64    //  Modifies the generated digits in the buffer to approach (round towards) w.
65    static bool RoundWeed(BufferReference<char> buffer,
66                          int length,
67                          uint64_t distance_too_high_w,
68                          uint64_t unsafe_interval,
69                          uint64_t rest,
70                          uint64_t ten_kappa,
71                          uint64_t unit) {
72        uint64_t small_distance = distance_too_high_w - unit;
73        uint64_t big_distance = distance_too_high_w + unit;
74        // Let w_low  = too_high - big_distance, and
75        //     w_high = too_high - small_distance.
76        // Note: w_low < w < w_high
77        //
78        // The real w (* unit) must lie somewhere inside the interval
79        // ]w_low; w_high[ (often written as "(w_low; w_high)")
80
81        // Basically the buffer currently contains a number in the unsafe interval
82        // ]too_low; too_high[ with too_low < w < too_high
83        //
84        //  too_high - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
85        //                     ^v 1 unit            ^      ^                 ^      ^
86        //  boundary_high ---------------------     .      .                 .      .
87        //                     ^v 1 unit            .      .                 .      .
88        //   - - - - - - - - - - - - - - - - - - -  +  - - + - - - - - -     .      .
89        //                                          .      .         ^       .      .
90        //                                          .  big_distance  .       .      .
91        //                                          .      .         .       .    rest
92        //                              small_distance     .         .       .      .
93        //                                          v      .         .       .      .
94        //  w_high - - - - - - - - - - - - - - - - - -     .         .       .      .
95        //                     ^v 1 unit                   .         .       .      .
96        //  w ----------------------------------------     .         .       .      .
97        //                     ^v 1 unit                   v         .       .      .
98        //  w_low  - - - - - - - - - - - - - - - - - - - - -         .       .      .
99        //                                                           .       .      v
100        //  buffer --------------------------------------------------+-------+--------
101        //                                                           .       .
102        //                                                  safe_interval    .
103        //                                                           v       .
104        //   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -     .
105        //                     ^v 1 unit                                     .
106        //  boundary_low -------------------------                     unsafe_interval
107        //                     ^v 1 unit                                     v
108        //  too_low  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
109        //
110        //
111        // Note that the value of buffer could lie anywhere inside the range too_low
112        // to too_high.
113        //
114        // boundary_low, boundary_high and w are approximations of the real boundaries
115        // and v (the input number). They are guaranteed to be precise up to one unit.
116        // In fact the error is guaranteed to be strictly less than one unit.
117        //
118        // Anything that lies outside the unsafe interval is guaranteed not to round
119        // to v when read again.
120        // Anything that lies inside the safe interval is guaranteed to round to v
121        // when read again.
122        // If the number inside the buffer lies inside the unsafe interval but not
123        // inside the safe interval then we simply do not know and bail out (returning
124        // false).
125        //
126        // Similarly we have to take into account the imprecision of 'w' when finding
127        // the closest representation of 'w'. If we have two potential
128        // representations, and one is closer to both w_low and w_high, then we know
129        // it is closer to the actual value v.
130        //
131        // By generating the digits of too_high we got the largest (closest to
132        // too_high) buffer that is still in the unsafe interval. In the case where
133        // w_high < buffer < too_high we try to decrement the buffer.
134        // This way the buffer approaches (rounds towards) w.
135        // There are 3 conditions that stop the decrementation process:
136        //   1) the buffer is already below w_high
137        //   2) decrementing the buffer would make it leave the unsafe interval
138        //   3) decrementing the buffer would yield a number below w_high and farther
139        //      away than the current number. In other words:
140        //              (buffer{-1} < w_high) && w_high - buffer{-1} > buffer - w_high
141        // Instead of using the buffer directly we use its distance to too_high.
142        // Conceptually rest ~= too_high - buffer
143        // We need to do the following tests in this order to avoid over- and
144        // underflows.
145        ASSERT(rest <= unsafe_interval);
146        while (rest < small_distance &&  // Negated condition 1
147               unsafe_interval - rest >= ten_kappa &&  // Negated condition 2
148               (rest + ten_kappa < small_distance ||  // buffer{-1} > w_high
149                small_distance - rest >= rest + ten_kappa - small_distance)) {
150                   buffer[length - 1]--;
151                   rest += ten_kappa;
152               }
153
154        // We have approached w+ as much as possible. We now test if approaching w-
155        // would require changing the buffer. If yes, then we have two possible
156        // representations close to w, but we cannot decide which one is closer.
157        if (rest < big_distance &&
158            unsafe_interval - rest >= ten_kappa &&
159            (rest + ten_kappa < big_distance ||
160             big_distance - rest > rest + ten_kappa - big_distance)) {
161                return false;
162            }
163
164        // Weeding test.
165        //   The safe interval is [too_low + 2 ulp; too_high - 2 ulp]
166        //   Since too_low = too_high - unsafe_interval this is equivalent to
167        //      [too_high - unsafe_interval + 4 ulp; too_high - 2 ulp]
168        //   Conceptually we have: rest ~= too_high - buffer
169        return (2 * unit <= rest) && (rest <= unsafe_interval - 4 * unit);
170    }
171
172
173    // Rounds the buffer upwards if the result is closer to v by possibly adding
174    // 1 to the buffer. If the precision of the calculation is not sufficient to
175    // round correctly, return false.
176    // The rounding might shift the whole buffer in which case the kappa is
177    // adjusted. For example "99", kappa = 3 might become "10", kappa = 4.
178    //
179    // If 2*rest > ten_kappa then the buffer needs to be round up.
180    // rest can have an error of +/- 1 unit. This function accounts for the
181    // imprecision and returns false, if the rounding direction cannot be
182    // unambiguously determined.
183    //
184    // Precondition: rest < ten_kappa.
185    static bool RoundWeedCounted(BufferReference<char> buffer,
186                                 int length,
187                                 uint64_t rest,
188                                 uint64_t ten_kappa,
189                                 uint64_t unit,
190                                 int* kappa) {
191        ASSERT(rest < ten_kappa);
192        // The following tests are done in a specific order to avoid overflows. They
193        // will work correctly with any uint64 values of rest < ten_kappa and unit.
194        //
195        // If the unit is too big, then we don't know which way to round. For example
196        // a unit of 50 means that the real number lies within rest +/- 50. If
197        // 10^kappa == 40 then there is no way to tell which way to round.
198        if (unit >= ten_kappa) return false;
199        // Even if unit is just half the size of 10^kappa we are already completely
200        // lost. (And after the previous test we know that the expression will not
201        // over/underflow.)
202        if (ten_kappa - unit <= unit) return false;
203        // If 2 * (rest + unit) <= 10^kappa we can safely round down.
204        if ((ten_kappa - rest > rest) && (ten_kappa - 2 * rest >= 2 * unit)) {
205            return true;
206        }
207        // If 2 * (rest - unit) >= 10^kappa, then we can safely round up.
208        if ((rest > unit) && (ten_kappa - (rest - unit) <= (rest - unit))) {
209            // Increment the last digit recursively until we find a non '9' digit.
210            buffer[length - 1]++;
211            for (int i = length - 1; i > 0; --i) {
212                if (buffer[i] != '0' + 10) break;
213                buffer[i] = '0';
214                buffer[i - 1]++;
215            }
216            // If the first digit is now '0'+ 10 we had a buffer with all '9's. With the
217            // exception of the first digit all digits are now '0'. Simply switch the
218            // first digit to '1' and adjust the kappa. Example: "99" becomes "10" and
219            // the power (the kappa) is increased.
220            if (buffer[0] == '0' + 10) {
221                buffer[0] = '1';
222                (*kappa) += 1;
223            }
224            return true;
225        }
226        return false;
227    }
228
229
230    static const uint32_t kTen4 = 10000;
231    static const uint32_t kTen5 = 100000;
232    static const uint32_t kTen6 = 1000000;
233    static const uint32_t kTen7 = 10000000;
234    static const uint32_t kTen8 = 100000000;
235    static const uint32_t kTen9 = 1000000000;
236
237    // Returns the biggest power of ten that is less than or equal to the given
238    // number. We furthermore receive the maximum number of bits 'number' has.
239    // If number_bits == 0 then 0^-1 is returned
240    // The number of bits must be <= 32.
241    // Precondition: number < (1 << (number_bits + 1)).
242    static void BiggestPowerTen(uint32_t number,
243                                int number_bits,
244                                uint32_t* power,
245                                int* exponent) {
246        ASSERT(number < (uint32_t)(1 << (number_bits + 1)));
247
248        switch (number_bits) {
249            case 32:
250            case 31:
251            case 30:
252                if (kTen9 <= number) {
253                    *power = kTen9;
254                    *exponent = 9;
255                    break;
256                }
257                FALLTHROUGH;
258            case 29:
259            case 28:
260            case 27:
261                if (kTen8 <= number) {
262                    *power = kTen8;
263                    *exponent = 8;
264                    break;
265                }
266                FALLTHROUGH;
267            case 26:
268            case 25:
269            case 24:
270                if (kTen7 <= number) {
271                    *power = kTen7;
272                    *exponent = 7;
273                    break;
274                }
275                FALLTHROUGH;
276            case 23:
277            case 22:
278            case 21:
279            case 20:
280                if (kTen6 <= number) {
281                    *power = kTen6;
282                    *exponent = 6;
283                    break;
284                }
285                FALLTHROUGH;
286            case 19:
287            case 18:
288            case 17:
289                if (kTen5 <= number) {
290                    *power = kTen5;
291                    *exponent = 5;
292                    break;
293                }
294                FALLTHROUGH;
295            case 16:
296            case 15:
297            case 14:
298                if (kTen4 <= number) {
299                    *power = kTen4;
300                    *exponent = 4;
301                    break;
302                }
303                FALLTHROUGH;
304            case 13:
305            case 12:
306            case 11:
307            case 10:
308                if (1000 <= number) {
309                    *power = 1000;
310                    *exponent = 3;
311                    break;
312                }
313                FALLTHROUGH;
314            case 9:
315            case 8:
316            case 7:
317                if (100 <= number) {
318                    *power = 100;
319                    *exponent = 2;
320                    break;
321                }
322                FALLTHROUGH;
323            case 6:
324            case 5:
325            case 4:
326                if (10 <= number) {
327                    *power = 10;
328                    *exponent = 1;
329                    break;
330                }
331                FALLTHROUGH;
332            case 3:
333            case 2:
334            case 1:
335                if (1 <= number) {
336                    *power = 1;
337                    *exponent = 0;
338                    break;
339                }
340                FALLTHROUGH;
341            case 0:
342                *power = 0;
343                *exponent = -1;
344                break;
345            default:
346                // Following assignments are here to silence compiler warnings.
347                *power = 0;
348                *exponent = 0;
349                UNREACHABLE();
350        }
351    }
352
353
354    // Generates the digits of input number w.
355    // w is a floating-point number (DiyFp), consisting of a significand and an
356    // exponent. Its exponent is bounded by kMinimalTargetExponent and
357    // kMaximalTargetExponent.
358    //       Hence -60 <= w.e() <= -32.
359    //
360    // Returns false if it fails, in which case the generated digits in the buffer
361    // should not be used.
362    // Preconditions:
363    //  * low, w and high are correct up to 1 ulp (unit in the last place). That
364    //    is, their error must be less than a unit of their last digits.
365    //  * low.e() == w.e() == high.e()
366    //  * low < w < high, and taking into account their error: low~ <= high~
367    //  * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
368    // Postconditions: returns false if procedure fails.
369    //   otherwise:
370    //     * buffer is not null-terminated, but len contains the number of digits.
371    //     * buffer contains the shortest possible decimal digit-sequence
372    //       such that LOW < buffer * 10^kappa < HIGH, where LOW and HIGH are the
373    //       correct values of low and high (without their error).
374    //     * if more than one decimal representation gives the minimal number of
375    //       decimal digits then the one closest to W (where W is the correct value
376    //       of w) is chosen.
377    // Remark: this procedure takes into account the imprecision of its input
378    //   numbers. If the precision is not enough to guarantee all the postconditions
379    //   then false is returned. This usually happens rarely (~0.5%).
380    //
381    // Say, for the sake of example, that
382    //   w.e() == -48, and w.f() == 0x1234567890abcdef
383    // w's value can be computed by w.f() * 2^w.e()
384    // We can obtain w's integral digits by simply shifting w.f() by -w.e().
385    //  -> w's integral part is 0x1234
386    //  w's fractional part is therefore 0x567890abcdef.
387    // Printing w's integral part is easy (simply print 0x1234 in decimal).
388    // In order to print its fraction we repeatedly multiply the fraction by 10 and
389    // get each digit. Example the first digit after the point would be computed by
390    //   (0x567890abcdef * 10) >> 48. -> 3
391    // The whole thing becomes slightly more complicated because we want to stop
392    // once we have enough digits. That is, once the digits inside the buffer
393    // represent 'w' we can stop. Everything inside the interval low - high
394    // represents w. However we have to pay attention to low, high and w's
395    // imprecision.
396    static bool DigitGen(DiyFp low,
397                         DiyFp w,
398                         DiyFp high,
399                         BufferReference<char> buffer,
400                         int* length,
401                         int* kappa) {
402        ASSERT(low.e() == w.e() && w.e() == high.e());
403        ASSERT(low.f() + 1 <= high.f() - 1);
404        ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent);
405        // low, w and high are imprecise, but by less than one ulp (unit in the last
406        // place).
407        // If we remove (resp. add) 1 ulp from low (resp. high) we are certain that
408        // the new numbers are outside of the interval we want the final
409        // representation to lie in.
410        // Inversely adding (resp. removing) 1 ulp from low (resp. high) would yield
411        // numbers that are certain to lie in the interval. We will use this fact
412        // later on.
413        // We will now start by generating the digits within the uncertain
414        // interval. Later we will weed out representations that lie outside the safe
415        // interval and thus _might_ lie outside the correct interval.
416        uint64_t unit = 1;
417        DiyFp too_low = DiyFp(low.f() - unit, low.e());
418        DiyFp too_high = DiyFp(high.f() + unit, high.e());
419        // too_low and too_high are guaranteed to lie outside the interval we want the
420        // generated number in.
421        DiyFp unsafe_interval = DiyFp::Minus(too_high, too_low);
422        // We now cut the input number into two parts: the integral digits and the
423        // fractionals. We will not write any decimal separator though, but adapt
424        // kappa instead.
425        // Reminder: we are currently computing the digits (stored inside the buffer)
426        // such that:   too_low < buffer * 10^kappa < too_high
427        // We use too_high for the digit_generation and stop as soon as possible.
428        // If we stop early we effectively round down.
429        DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
430        // Division by one is a shift.
431        uint32_t integrals = static_cast<uint32_t>(too_high.f() >> -one.e());
432        // Modulo by one is an and.
433        uint64_t fractionals = too_high.f() & (one.f() - 1);
434        uint32_t divisor;
435        int divisor_exponent;
436        BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()),
437                        &divisor, &divisor_exponent);
438        *kappa = divisor_exponent + 1;
439        *length = 0;
440        // Loop invariant: buffer = too_high / 10^kappa  (integer division)
441        // The invariant holds for the first iteration: kappa has been initialized
442        // with the divisor exponent + 1. And the divisor is the biggest power of ten
443        // that is smaller than integrals.
444        while (*kappa > 0) {
445            int digit = integrals / divisor;
446            buffer[*length] = '0' + digit;
447            (*length)++;
448            integrals %= divisor;
449            (*kappa)--;
450            // Note that kappa now equals the exponent of the divisor and that the
451            // invariant thus holds again.
452            uint64_t rest =
453            (static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
454            // Invariant: too_high = buffer * 10^kappa + DiyFp(rest, one.e())
455            // Reminder: unsafe_interval.e() == one.e()
456            if (rest < unsafe_interval.f()) {
457                // Rounding down (by not emitting the remaining digits) yields a number
458                // that lies within the unsafe interval.
459                return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f(),
460                                 unsafe_interval.f(), rest,
461                                 static_cast<uint64_t>(divisor) << -one.e(), unit);
462            }
463            divisor /= 10;
464        }
465
466        // The integrals have been generated. We are at the point of the decimal
467        // separator. In the following loop we simply multiply the remaining digits by
468        // 10 and divide by one. We just need to pay attention to multiply associated
469        // data (like the interval or 'unit'), too.
470        // Note that the multiplication by 10 does not overflow, because w.e >= -60
471        // and thus one.e >= -60.
472        ASSERT(one.e() >= -60);
473        ASSERT(fractionals < one.f());
474        ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f());
475        while (true) {
476            fractionals *= 10;
477            unit *= 10;
478            unsafe_interval.set_f(unsafe_interval.f() * 10);
479            // Integer division by one.
480            int digit = static_cast<int>(fractionals >> -one.e());
481            buffer[*length] = '0' + digit;
482            (*length)++;
483            fractionals &= one.f() - 1;  // Modulo by one.
484            (*kappa)--;
485            if (fractionals < unsafe_interval.f()) {
486                return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f() * unit,
487                                 unsafe_interval.f(), fractionals, one.f(), unit);
488            }
489        }
490    }
491
492
493
494    // Generates (at most) requested_digits digits of input number w.
495    // w is a floating-point number (DiyFp), consisting of a significand and an
496    // exponent. Its exponent is bounded by kMinimalTargetExponent and
497    // kMaximalTargetExponent.
498    //       Hence -60 <= w.e() <= -32.
499    //
500    // Returns false if it fails, in which case the generated digits in the buffer
501    // should not be used.
502    // Preconditions:
503    //  * w is correct up to 1 ulp (unit in the last place). That
504    //    is, its error must be strictly less than a unit of its last digit.
505    //  * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
506    //
507    // Postconditions: returns false if procedure fails.
508    //   otherwise:
509    //     * buffer is not null-terminated, but length contains the number of
510    //       digits.
511    //     * the representation in buffer is the most precise representation of
512    //       requested_digits digits.
513    //     * buffer contains at most requested_digits digits of w. If there are less
514    //       than requested_digits digits then some trailing '0's have been removed.
515    //     * kappa is such that
516    //            w = buffer * 10^kappa + eps with |eps| < 10^kappa / 2.
517    //
518    // Remark: This procedure takes into account the imprecision of its input
519    //   numbers. If the precision is not enough to guarantee all the postconditions
520    //   then false is returned. This usually happens rarely, but the failure-rate
521    //   increases with higher requested_digits.
522    static bool DigitGenCounted(DiyFp w,
523                                int requested_digits,
524                                BufferReference<char> buffer,
525                                int* length,
526                                int* kappa) {
527        ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent);
528        ASSERT(kMinimalTargetExponent >= -60);
529        ASSERT(kMaximalTargetExponent <= -32);
530        // w is assumed to have an error less than 1 unit. Whenever w is scaled we
531        // also scale its error.
532        uint64_t w_error = 1;
533        // We cut the input number into two parts: the integral digits and the
534        // fractional digits. We don't emit any decimal separator, but adapt kappa
535        // instead. Example: instead of writing "1.2" we put "12" into the buffer and
536        // increase kappa by 1.
537        DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
538        // Division by one is a shift.
539        uint32_t integrals = static_cast<uint32_t>(w.f() >> -one.e());
540        // Modulo by one is an and.
541        uint64_t fractionals = w.f() & (one.f() - 1);
542        uint32_t divisor;
543        int divisor_exponent;
544        BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()),
545                        &divisor, &divisor_exponent);
546        *kappa = divisor_exponent + 1;
547        *length = 0;
548
549        // Loop invariant: buffer = w / 10^kappa  (integer division)
550        // The invariant holds for the first iteration: kappa has been initialized
551        // with the divisor exponent + 1. And the divisor is the biggest power of ten
552        // that is smaller than 'integrals'.
553        while (*kappa > 0) {
554            int digit = integrals / divisor;
555            buffer[*length] = '0' + digit;
556            (*length)++;
557            requested_digits--;
558            integrals %= divisor;
559            (*kappa)--;
560            // Note that kappa now equals the exponent of the divisor and that the
561            // invariant thus holds again.
562            if (requested_digits == 0) break;
563            divisor /= 10;
564        }
565
566        if (requested_digits == 0) {
567            uint64_t rest =
568            (static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
569            return RoundWeedCounted(buffer, *length, rest,
570                                    static_cast<uint64_t>(divisor) << -one.e(), w_error,
571                                    kappa);
572        }
573
574        // The integrals have been generated. We are at the point of the decimal
575        // separator. In the following loop we simply multiply the remaining digits by
576        // 10 and divide by one. We just need to pay attention to multiply associated
577        // data (the 'unit'), too.
578        // Note that the multiplication by 10 does not overflow, because w.e >= -60
579        // and thus one.e >= -60.
580        ASSERT(one.e() >= -60);
581        ASSERT(fractionals < one.f());
582        ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f());
583        while (requested_digits > 0 && fractionals > w_error) {
584            fractionals *= 10;
585            w_error *= 10;
586            // Integer division by one.
587            int digit = static_cast<int>(fractionals >> -one.e());
588            buffer[*length] = '0' + digit;
589            (*length)++;
590            requested_digits--;
591            fractionals &= one.f() - 1;  // Modulo by one.
592            (*kappa)--;
593        }
594        if (requested_digits != 0) return false;
595        return RoundWeedCounted(buffer, *length, fractionals, one.f(), w_error,
596                                kappa);
597    }
598
599
600    // Provides a decimal representation of v.
601    // Returns true if it succeeds, otherwise the result cannot be trusted.
602    // There will be *length digits inside the buffer (not null-terminated).
603    // If the function returns true then
604    //        v == (double) (buffer * 10^decimal_exponent).
605    // The digits in the buffer are the shortest representation possible: no
606    // 0.09999999999999999 instead of 0.1. The shorter representation will even be
607    // chosen even if the longer one would be closer to v.
608    // The last digit will be closest to the actual v. That is, even if several
609    // digits might correctly yield 'v' when read again, the closest will be
610    // computed.
611    static bool Grisu3(double v,
612                       BufferReference<char> buffer,
613                       int* length,
614                       int* decimal_exponent) {
615        DiyFp w = Double(v).AsNormalizedDiyFp();
616        // boundary_minus and boundary_plus are the boundaries between v and its
617        // closest floating-point neighbors. Any number strictly between
618        // boundary_minus and boundary_plus will round to v when convert to a double.
619        // Grisu3 will never output representations that lie exactly on a boundary.
620        DiyFp boundary_minus, boundary_plus;
621        Double(v).NormalizedBoundaries(&boundary_minus, &boundary_plus);
622        ASSERT(boundary_plus.e() == w.e());
623        DiyFp ten_mk;  // Cached power of ten: 10^-k
624        int mk;        // -k
625        int ten_mk_minimal_binary_exponent =
626        kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize);
627        int ten_mk_maximal_binary_exponent =
628        kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize);
629        PowersOfTenCache::GetCachedPowerForBinaryExponentRange(
630                                                               ten_mk_minimal_binary_exponent,
631                                                               ten_mk_maximal_binary_exponent,
632                                                               &ten_mk, &mk);
633        ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() +
634                DiyFp::kSignificandSize) &&
635               (kMaximalTargetExponent >= w.e() + ten_mk.e() +
636                DiyFp::kSignificandSize));
637        // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
638        // 64 bit significand and ten_mk is thus only precise up to 64 bits.
639
640        // The DiyFp::Times procedure rounds its result, and ten_mk is approximated
641        // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
642        // off by a small amount.
643        // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
644        // In other words: let f = scaled_w.f() and e = scaled_w.e(), then
645        //           (f-1) * 2^e < w*10^k < (f+1) * 2^e
646        DiyFp scaled_w = DiyFp::Times(w, ten_mk);
647        ASSERT(scaled_w.e() ==
648               boundary_plus.e() + ten_mk.e() + DiyFp::kSignificandSize);
649        // In theory it would be possible to avoid some recomputations by computing
650        // the difference between w and boundary_minus/plus (a power of 2) and to
651        // compute scaled_boundary_minus/plus by subtracting/adding from
652        // scaled_w. However the code becomes much less readable and the speed
653        // enhancements are not terriffic.
654        DiyFp scaled_boundary_minus = DiyFp::Times(boundary_minus, ten_mk);
655        DiyFp scaled_boundary_plus  = DiyFp::Times(boundary_plus,  ten_mk);
656
657        // DigitGen will generate the digits of scaled_w. Therefore we have
658        // v == (double) (scaled_w * 10^-mk).
659        // Set decimal_exponent == -mk and pass it to DigitGen. If scaled_w is not an
660        // integer than it will be updated. For instance if scaled_w == 1.23 then
661        // the buffer will be filled with "123" und the decimal_exponent will be
662        // decreased by 2.
663        int kappa;
664        bool result = DigitGen(scaled_boundary_minus, scaled_w, scaled_boundary_plus,
665                               buffer, length, &kappa);
666        *decimal_exponent = -mk + kappa;
667        return result;
668    }
669
670
671    // The "counted" version of grisu3 (see above) only generates requested_digits
672    // number of digits. This version does not generate the shortest representation,
673    // and with enough requested digits 0.1 will at some point print as 0.9999999...
674    // Grisu3 is too imprecise for real halfway cases (1.5 will not work) and
675    // therefore the rounding strategy for halfway cases is irrelevant.
676    static bool Grisu3Counted(double v,
677                              int requested_digits,
678                              BufferReference<char> buffer,
679                              int* length,
680                              int* decimal_exponent) {
681        DiyFp w = Double(v).AsNormalizedDiyFp();
682        DiyFp ten_mk;  // Cached power of ten: 10^-k
683        int mk;        // -k
684        int ten_mk_minimal_binary_exponent =
685        kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize);
686        int ten_mk_maximal_binary_exponent =
687        kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize);
688        PowersOfTenCache::GetCachedPowerForBinaryExponentRange(
689                                                               ten_mk_minimal_binary_exponent,
690                                                               ten_mk_maximal_binary_exponent,
691                                                               &ten_mk, &mk);
692        ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() +
693                DiyFp::kSignificandSize) &&
694               (kMaximalTargetExponent >= w.e() + ten_mk.e() +
695                DiyFp::kSignificandSize));
696        // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
697        // 64 bit significand and ten_mk is thus only precise up to 64 bits.
698
699        // The DiyFp::Times procedure rounds its result, and ten_mk is approximated
700        // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
701        // off by a small amount.
702        // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
703        // In other words: let f = scaled_w.f() and e = scaled_w.e(), then
704        //           (f-1) * 2^e < w*10^k < (f+1) * 2^e
705        DiyFp scaled_w = DiyFp::Times(w, ten_mk);
706
707        // We now have (double) (scaled_w * 10^-mk).
708        // DigitGen will generate the first requested_digits digits of scaled_w and
709        // return together with a kappa such that scaled_w ~= buffer * 10^kappa. (It
710        // will not always be exactly the same since DigitGenCounted only produces a
711        // limited number of digits.)
712        int kappa;
713        bool result = DigitGenCounted(scaled_w, requested_digits,
714                                      buffer, length, &kappa);
715        *decimal_exponent = -mk + kappa;
716        return result;
717    }
718
719
720    bool FastDtoa(double v,
721                  FastDtoaMode mode,
722                  int requested_digits,
723                  BufferReference<char> buffer,
724                  int* length,
725                  int* decimal_point) {
726        ASSERT(v > 0);
727        ASSERT(!Double(v).IsSpecial());
728
729        bool result = false;
730        int decimal_exponent = 0;
731        switch (mode) {
732            case FAST_DTOA_SHORTEST:
733                result = Grisu3(v, buffer, length, &decimal_exponent);
734                break;
735            case FAST_DTOA_PRECISION:
736                result = Grisu3Counted(v, requested_digits,
737                                       buffer, length, &decimal_exponent);
738                break;
739            default:
740                UNREACHABLE();
741        }
742        if (result) {
743            *decimal_point = *length + decimal_exponent;
744            buffer[*length] = '\0';
745        }
746        return result;
747    }
748
749}  // namespace double_conversion
750
751} // namespace WTF
752